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Abstract
The modeling of sound propagation in acoustical spaces has garnered interest with
the advent of virtual acoustics and the subsequent rise in popularity of virtual reality.
Virtual acoustics, in fact, finds applications in interactive multimedia platforms such
as virtual and augmented reality (VR and AR), video games, VoIP-enabled virtual
environments, and the Metaverse. In the field of architecture and building design, VR
technology has proven invaluable, enabling enhanced design comparison and facilitating
communication among stakeholders. Moreover, VR technology aids in predicting noise
levels in diverse environments, contributing to improved acoustical comfort and the
formulation of effective noise mitigation strategies.
Our research is centered around the modeling of sound propagation in acoustical spaces,
with a particular focus on exploring innovative wave-based techniques. We delve into the
Adaptive Rectangular Decomposition (ARD) method, renowned for its computational
efficiency and its capability to deliver accurate acoustic responses. Our objective is to
overcome certain limitations associated with the ARD method, namely the absence of
air damping support and the lack of realistic boundary conditions.

Keywords: virtual acoustics, sound propagation modeling, auralization





Abstract in lingua italiana
La modellazione della propagazione sonora negli ambienti acustici ha guadagnato una
grande popolarità con l’avvento dell’acustica virtuale e il grande successo della realtà
virtuale. L’acustica virtuale, infatti, trova applicazioni in piattaforme multimediali
interattive come la realtà virtuale e aumentata (VR e AR), videogiochi, ambienti virtuali
VoIP-enabled e il Metaverso. Nel campo dell’architettura e del design degli edifici, la
tecnologia VR si è rivelata preziosa, consentendo un miglior confronto dei progetti e
facilitando la comunicazione tra gli stakeholder. Inoltre, la tecnologia VR rappresenta
un ausilio per la previsione dei livelli di rumore in diversi ambienti, contribuendo a
migliorare il comfort acustico e a formulare efficaci strategie di mitigazione del rumore.
La nostra ricerca si concentra sulla modellazione della propagazione del suono negli
ambienti acustici, con particolare attenzione all’esplorazione di innovative tecniche wave-
based. Approfondiremo il metodo dell’Adaptive Rectangular Decomposition (ARD),
noto per la sua efficienza computazionale e la sua capacità di fornire risposte impulsive
acustiche accurate. Il nostro obiettivo è quello di superare alcune limitazioni associate
al metodo ARD, in particolare l’assenza di supporto per l’assorbimento dell’aria e la
mancanza di condizioni al contorno realistiche.

Parole chiave: acustica virtuale, modellazione della propagazione sonora, auraliz-
zazione
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1| Introduction
The task of modeling sound propagation behavior in acoustical spaces has garnered in-
creasing interest in recent years due to the rising popularity of virtual reality, leading to the
development of virtual acoustics. Virtual acoustics refers to the three major subsystems
involved in an acoustical communication task: source modeling, transmission medium
(room acoustics) modeling, and receiver (listener) modeling (Savioja et al. [1999]).
Virtual acoustics finds application in several interactive multimedia applications, such as
VoIP-enabled virtual environments, video games, and, more recently, in virtual and aug-
mented reality (VR and AR). In the latter case, VR and AR experiences are delivered via
Head-Mounted Display devices (HMD) for visual rendering and for head-tracking, while
headphones are employed for audio reproduction: the audio-visual presentation must take
into account the user’s position in a 3D space and its head’s orientation, effectively simu-
lating a 6-Degree-of-Freedom (6DoF) navigation inside a virtual world which, recently, has
lead to the development of the Metaverse. The Metaverse is a simulated world, in which
inanimate objects and players coexist in an environment that manifests itself through
realistic audio-visual scene rendering (Jot et al. [2021]).
The technology developed to build the Metaverse has made possible to extend the ap-
plicability of AR and VR to many other cases of use, not limited to entertainment as
before. These include virtual meetings, assisted surgery, virtual travel, and "time ma-
chines". In fact, in the aftermath of the Notre-Dame cathedral fire, a team of researchers
and sound engineers created a virtual reconstruction of a concert in the cathedral based
on old recordings. This innovative approach offers users an immersive audio experience,
transporting them to a specific moment in the past (Brian et al. [2021]).
Creating a convincing illusion for the human brain is no simple task. To achieve suspen-
sion of disbelief, a strong consistency must be maintained between the audio and visual
components of the user’s experienced scene, known as audio/visual congruence. Addition-
ally, congruence between virtual elements and the real world, as previously experienced
by the user, is crucial (virtual/real congruence) (Jot et al. [2021]).
For instance, when a user is in a cathedral, they naturally expect to hear sounds with
noticeable reverberations. Conversely, in a library setting, a sense of intimacy should be
conveyed through the soundscape. Merely simulating sound propagation from sources to
the listener is insufficient. Factors such as the variations in sound heard by each ear and
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the scattering process from the user’s body, head, and ears contribute to the externaliza-
tion of sounds. Neglecting these phenomena results in the sound emitted from headphones
appearing to originate from within the listener’s head, leading to a lack of spatial local-
ization of sounds. Throughout this work, we will briefly explore some techniques used to
model these acoustic effects (Kosikowski [2018]).
In recent years, VR has gained significant traction in the field of architecture and building
design. VR technology proves invaluable in the design process, simplifying the compari-
son of different design choices and enhancing communication among stakeholders. In the
past, the evaluation of design choices from an aesthetic perspective relied on scale mod-
els, while assessing acoustic aspects involved analyzing room acoustics parameters such
as reverberation time, clarity, and speech intelligibility index. These evaluations were
conducted either on scale models or through numerical simulations.
Advancing beyond these methods, auralizations emerged as a novel approach. Auraliza-
tions allow listeners to experience the sound of a simulated room by utilizing room impulse
responses, given a source-receiver configuration and a virtual environment. However, the
use of VR takes the evaluation of acoustic qualities in a space to a new level. By immers-
ing users in a VR environment, enabling them to freely navigate the modeled space, and
providing the ability to switch between different proposed designs, a more comprehensive
understanding of the space’s acoustics can be achieved. This immersive experience can
be likened to an interactive auralization, where both the source and receiver have the
capability to move. It is crucial to assess how the acoustic quality within a space varies
based on the positions of the source and listener (Kosikowski [2018]).
In addition to the previous applications, VR proves to be valuable in predicting noise
levels within different environments, aiming to improve the overall comfort of occupants.
By simulating and analyzing acoustic scenarios, such as urban settings, workplaces, and
public spaces, our methodology can assist in identifying potential noise concerns and
devising effective strategies for noise mitigation. This utilization has the potential to en-
hance living conditions, promote healthier environments, and contribute to the fields of
urban planning and design. In this regard, it is essential to not only focus on auraliza-
tion alone but also consider the broader concept of soundscape composition. Predicting
noise levels within a room necessitates modeling all ambient sounds that contribute to
the soundscape. For example, when simulating an office environment, it becomes crucial
to reproduce sounds such as keyboard clicks, ambient noise from outside, conversations
among individuals, impact noise from walking on the upper floor, and so on (Kosikowski
[2018]).
Furthermore, this methodology finds application in the automotive and aerospace indus-
tries, where it assists in simulating and analyzing airborne noise and vibration patterns.
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By employing VR, designers can effectively enhance the design of vehicles, aiming for
reduced noise levels and increased comfort for passengers.
Throughout this work, our focus will be extensively on modeling sound propagation in
acoustical spaces. Ray-based methods, such as ray tracing and the image-source method,
are the most commonly used modeling techniques. However, wave-based techniques,
such as the finite-element method (FEM), boundary-element method (BEM), and finite-
difference time-domain (FDTD) method, which directly solve the acoustic wave equation,
have gained interest recently. These wave-based techniques provide a full transient so-
lution that accurately accounts for all wave phenomena, including diffraction. However,
they are computationally expensive and suitable for simulating low frequencies only.
Recently, an Adaptive Rectangular Decomposition (ARD) technique was proposed, which
achieves two orders of magnitude speed-up over FDTD methods and other state-of-the-
art numerical techniques, while guaranteeing the computation of an accurate acoustic
response. This simulation method is still too computationally expensive to unveil the
possibilities of developing a fully real-time auralization technique; many interactive appli-
cations like video games only devote 10% of the total computation and memory resources
to auralization. Hence, precomputation-based methods using ARD were developed and
are well documented in Raghuvanshi et al. [2011] and Chandak et al. [2011], either for
the trivial Static Source - Static Receiver (SS-SR) case and for the more general Moving
Source - Moving Receiver (MS-MR) case, and will be presented in this work.
It is a common practice in video game engines to model reverberation by means of digital
filters (reverb filters), whose parameters depend on the room’s characteristics and on the
source-receiver configuration. However, these filters are not physically based and only
provide a rough approximation of acoustical spaces with different sizes. They are unable
to capture the full range of acoustical effects observed in real life. Additionally, manually
assigning these reverb filters to different parts of the environment requires a significant
amount of time and effort. ARD can be used to precompute high-quality reverb filters
for arbitrary scenes without any human intervention. This technique provides physically
motivated reverb filters parameters, ensuring that the audio pipeline remains unchanged.
In the current state of the art, the ARD method exhibits several limitations. Firstly, it is
impractical to model enclosures with irregular boundaries due to the algorithm’s reliance
on rectangular decomposition within the volume. Moreover, the supported boundary
conditions are limited to partial and full absorption, which do not account for frequency-
dependent absorption characteristics commonly observed in physical walls and bound-
aries. Additionally, the neglect of air absorption is acceptable only in small spaces, while
in larger spaces, such as cathedrals, air damping becomes a significant factor. In our
research, we will present a modified version of the ARD algorithm that incorporates air
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damping, addressing this limitation. Furthermore, we will offer insights into effectively
modeling various types of boundary conditions.
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2| Mathematical modeling and
solution techniques for
acoustics

In this chapter, we explore the mathematical foundations and some solution techniques
used in acoustics.
We begin by formulating our acoustic problem using the unviscid and viscous wave equa-
tions, which are the most important mathematical models in acoustics.
Next, we introduce analytical tools for solving partial differential equations. Specifically,
we explore Fourier analysis, which allows us to decompose complex waveforms, and the
separation of variables technique, which enables modal analysis of the wave equation.
Numerical methods play a crucial role in solving complex acoustic problems. We explore
the finite difference method, a popular numerical technique for solving partial differential
equations. We present a well known Finite Difference Time Domain (FDTD) scheme for
the wave equation, with a focus on its performance and stability.
Furthermore, we investigate the harmonic oscillator, a model that provides insights into
various systems, including the evolution of the normal modes of the wave equation.

2.1. Acoustic problem formulation
In this section we introduce the wave equation, the most important partial differential
equation in acoustics. We will also formulate the problem of acoustic wave propagation
which will be used throughout this text. The following dissertation is based on Asmar
[2010] and Bilbao [2009].

2.1.1. Unviscid wave equation

The propagation of sound waves in an isentropic fluid within a three-dimensional domain
Ω is characterized by the three-dimensional wave equation, which is commonly referred to
as the (unviscid) acoustic wave equation:

B2pp
¯
x, tq

Bt2
´ c2∆pp

¯
x, tq “ fp

¯
x, tq, t P R`,

¯
x P R3, (2.1.1)
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where p “ pp
¯
x, tq denotes the pressure at the point

¯
x at time t, c is the propagation speed,

and f “ fp
¯
x, tq denotes an external force at the point

¯
x at time t.

We also introduce the pressure velocity v, which is defined as

vp
¯
x, tq “

∆ Bp

Bt
. (2.1.2)

Please note that the pressure velocity, defined as the time derivative of the pressure, does
not correspond to the particle velocity, which is instead proportional to the Laplacian of
the pressure. The latter won’t be considered throughout this work.

2.1.2. Viscous wave equation

The attenuation of sound waves in the free medium becomes significant in large rooms,
in particular at high frequencies. Thus, in reverberation calculations it has to be taken
into account, Cfr. Kuttruff and Everton [2010].
We introduce frequency-independent, mass-proportional damping to model viscous dissi-
pation in air. As the treatment is analogous to the unviscid case, we’ll only report the
differences.
Sound propagation in a fluid, considering viscous damping, is governed by the viscous
acoustic wave equation:

B2pp
¯
x, tq

Bt2
` 2α

Bpp
¯
x, tq

Bt
´ c2∆pp

¯
x, tq “ F px, tq, t P R`,

¯
x P R3, (2.1.3)

where α is the absorption coefficient.

2.1.3. Initial conditions

The wave equation is a second-order (in time) PDE, and, as such, requires the specification
of two initial conditions. Normally, these are the values of the pressure p and of the
pressure velocity v at time t “ 0, i.e.,

$

’

&

’

%

pp
¯
x, 0q “ p0p

¯
xq,

Bp

Bt
p
¯
x, 0q “ v0p

¯
xq,

(2.1.4)

where p0 and v0 are given functions.



2| Mathematical modeling and solution techniques for acoustics 7

2.1.4. Boundary conditions

The wave equation involves a second-order differentiation in space, and, as such, requires
the specification of boundary conditions on the boundary of the spatial domain.
If we consider Eq. (2.1.1) or Eq. (2.1.3) in a bounded domain Ω, we can impose the
Neumann boundary conditions on the Lipschitz boundary Γv “ BΩ, namely,

Bpp
¯
x, tq

B
¯
n

“ g,
¯
x P Γv, (2.1.5)

where g is a given function. For g “ 0 (homogeneous case), it corresponds to a closed
end; a propagating wave impinging a closed end will be reflected losslessly with no change
of sign.
Another type are the Dirichlet boundary conditions, namely,

pp
¯
x, tq “ g,

¯
x P Γv. (2.1.6)

For g “ 0, such a condition corresponds to an open end; a propagating wave impinging
an open end will be reflected losslessly with a change of sign.

2.1.5. Force envelope modeling

In the study of acoustics, it is necessary to develop mathematical representations of sound
fields. To accurately model the forces acting on the pressure field, a common approach
is to utilize force envelope modeling. This technique involves defining a spatial region
within which the force is assumed to act.
We can express the force as

fp
¯
x, tq “ fenvp

¯
xqftimeptq,

where fenvp
¯
xq is the force envelope and ftimeptq is the time evolution term of the force.

One example of a force envelope is a Gaussian envelope which, in the three-dimensional
case, can be defined as

fenvp
¯
xq “

∆ 1

p2πq3{2σxσyσz
e

´
px´µxq2

2σ2
x

´
py´µyq2

2σ2
y

´
pz´µzq2

2σ2
z ,

where µ, σ represent respectively the mean and the standard deviation. This function has
a bell-shaped profile, with the maximum amplitude at the center and decreasing rapidly
as the distance from the center increases, as shown in Fig. 2.1.1.
Concerning the time evolution term ftimeptq, it is common, as discussed in Sec. 7.6.1,
for it to be an impulse signal with a short duration. This characteristic ensures that its
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spectrum remains flat across a wide frequency range.

Figure 2.1.1: Top view (z “ 0) of a three-dimensional Gaussian with µx “ 3, µy “ 7, µz “

0, σx “ σy “ σz “ 0.5.

2.1.6. Problem formulation

The problem of wave propagation that we will consider from now on is the wave equation
with arbitrary initial conditions and the homogeneous Neumann boundary conditions,
i.e., Eq. (2.1.5) with g “ 0. This choice of boundary conditions is necessary to develop
the Fourier method (Cfr. Ch. 4). The problem can be formulated as follows:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B2pp
¯
x,tq

Bt2
` 2α

Bpp
¯
x,tq

Bt
´ c2∆pp

¯
x, tq “ fp

¯
x, tq, t P R`,

¯
x P R3,

pp
¯
x, 0q “ p0p

¯
xq,

¯
x P R3,

Bp
Bt

p
¯
x, 0q “ v0p

¯
xq,

¯
x P R3,

Bpp
¯
x,tq

B
¯
n

“ 0, t P R`,
¯
x P Γv.

(2.1.7)

2.1.7. Setup of test cases

In this section, we’ll introduce some test cases whose analytical solution is known, in
order to perform testing of the numerical simulation methods. We’ll consider the 1D
wave equation.
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The first one will be the standing wave test case in the domain Ω “ r0, Ls in the time
range r0, T s:

$

’

’

’

&

’

’

’

%

p0pxq “ 0,

v0pxq “ Aω cospkxq,

fpxq “ 0,

with the homogeneous Neumann boundary conditions on both ends. The parameters are
configured as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

L “ 1,

T “ 2,

c0 “ 1,

α “ 0,

A “ 0.1,

k “ π,

ω “ kc0 “ πc0.

The ground truth solution, shown in Fig. 2.1.2, is

ppxq “ A cospkxq sinpωtq,

vpxq “ Aω cospkxq cospωtq.

(a) Top view. (b) 3D view.

Figure 2.1.2: Ground truth solution of the standing wave test case.

The second one will be the propagating wave test case in the domain Ω “ r0, Ls in the
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time range r0, T s:
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ypxq “ 1?
2πσ2

e
´px´µq2

2σ2 ,

y1pxq “
dy
dx

“ ´x
σ2 ypxq,

p0pxq “ A pyp´kxq ` ypkxqq ,

v0pxq “ Aω py1p´kxq ` y1pkxqq ,

fpxq “ 0,

with the homogeneous Neumann boundary conditions on both ends. The parameters are
configured as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

L “ 10,

T “ 4,

c0 “ 1,

α “ 0,

A “ 0.1,

k “ π,

ω “ kc0 “ πc0,

µ “ 5,

σ “ 0.5.

The ground truth solution, shown in Fig. 2.1.3, is

ppxq “ A pypωt ´ kxq ` ypωt ` kxqq ,

vpxq “ Aω py1
pωt ´ kxq ` y1

pωt ` kxqq .
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(a) Top view. (b) 3D view.

Figure 2.1.3: Ground truth solution of the propagating wave test case.

2.2. Modal analysis of the wave equation
This section introduces the fundamentals of Fourier analysis, which is a mathematical
tool used to represent a signal as a sum of trigonometric functions. Furthermore, it will
present the separation of variables technique applied to the wave equation. These tools
constitute a framework which let us perform modal analysis and obtain the standing wave
solution to the wave equation.

2.2.1. Continuous Fourier analysis

A Fourier series represents a periodic signal or a finite-length signal as a sum of sine and
cosine functions.
The following dissertation is based on Asmar [2010].

Fourier Series

Suppose that fpxq is a 2p-periodic piecewise smooth function. The Fourier series of f is
given by:

sf pxq “
∆ a0 `

8
ÿ

n“1

ˆ

an cos

ˆ

nπ

p
x

˙

` bn sin

ˆ

nπ

p
x

˙˙

, (2.2.1)

where

a0 “
∆ 1

2p

ż p

´p

fpxqdx, (2.2.2)

an “
∆ 1

p

ż p

´p

fpxq cos

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . , (2.2.3)
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bn “
∆ 1

2p

ż p

´p

fpxq sin

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . . (2.2.4)

Theorem 2.2.1: Convergence of the Fourier Series

• If f is continuous at x, the Fourier series sf pxq converges to fpxq;
• If f presents a jump discontinuity at x, the Fourier series sf pxq converges to

fpx´q`fpx`q

2
.

Definition 2.2.1: Compact form of the Fourier Series

Suppose that fpxq is a real 2p-periodic piecewise smooth function. The Fourier
series of f in Eq. (2.2.1) can be rewritten in a compact form as

sf pxq “
∆ C0 `

8
ÿ

n“1

Cn cos

ˆ

nπ

p
x ` θn

˙

, (2.2.5)

where Cn and θn are related to an and bn as

C0 “ a0, Cn “
a

a2n ` b2n, θn “ arctan

ˆ

´bn
an

˙

.

Note that the compact form in Eq. (2.2.5) uses the cosine form. We could just have
used the sine form, with terms sin

´

nπ
p
x ` θn

¯

instead of cos
´

nπ
p
x ` θn

¯

. The literature
overwhelmingly favors the cosine form (Lathi and Green [2018]).

Definition 2.2.2: Complex form of Fourier Series

Let f be a 2p-periodic smooth function. The complex form of the Fourier series of
f is

rsf pxq “
∆

8
ÿ

n“´8

cne
j nπ

p
x, (2.2.6)

where the Fourier coefficients cn are given by

cn “
∆ 1

2p

ż p

´p

fpxqe´j nπ
p
xdx, n “ 0,˘1,˘2, . . . . (2.2.7)
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Theorem 2.2.2: Fourier Series of an even function

Suppose that fpxq is 2p-periodic and has the Fourier series representation as in
Eq. (2.2.1). Then, f is even if and only if bn “ 0 for all n P N. In this case

sf pxq “
∆ a0 `

8
ÿ

n“1

an cos

ˆ

nπ

p
x

˙

, (2.2.8)

where

a0 “
∆ 1

p

ż p

0

fpxqdx, (2.2.9)

an “
∆ 2

p

ż p

0

fpxq cos

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . . (2.2.10)

Theorem 2.2.3: Fourier Series of an odd function

Suppose that fpxq is 2p-periodic and has the Fourier series representation as in
Eq. (2.2.1). Then, f is odd if and only if an “ 0 for all n P N (including a0). In this
case

sf pxq “
∆

8
ÿ

n“1

bn sin

ˆ

nπ

p
x

˙

, (2.2.11)

where

bn “
∆ 2

p

ż p

0

fpxq cos

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . . (2.2.12)

Half-range expansions: Cosine Series and Sine Series

In many applications, we are interested in representing a function fpxq by a Fourier series
that is defined only in a finite interval, say 0 ă x ă p. Since f is clearly not periodic, the
results of the previous sections are not readily applicable. However, we can represent f
by a Fourier series sf , after extending it to a periodic function.
We define the even periodic extension of f :

fepxq “
∆

$

’

’

’

&

’

’

’

%

fpxq, 0 ă x ă p,

fp´xq, ´p ă x ă 0,

fepx ` 2pq, otherwise.
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We define the odd periodic extension of f :

fopxq “
∆

$

’

’

’

&

’

’

’

%

fpxq, 0 ă x ă p,

´fp´xq, ´p ă x ă 0,

fopx ` 2pq, otherwise.

(a) fpxq, 0 ă x ă p. (b) Even 2p-periodic extension. (c) Odd 2p-periodic extension.

Figure 2.2.1: Example of extensions of a function f . Source: Asmar [2010].

By the way they are constructed, the function fe is even and 2p-periodic, and the function
fo is odd and 2p-periodic. Both functions agree with f on the interval 0 ă x ă p, which
justifies calling them extensions of f (Fig. 2.2.1). Since f is piecewise smooth, it follows
that fe and fo are both piecewise smooth.
Applying Th. 2.2.2 and Th. 2.2.3, we find respectively that fe has a cosine series expansion
(Th. 2.2.4) and fo has a sine series expansion (Th. 2.2.5). Now, fpxq “ fepxq for all
0 ă x ă p, and so the cosine series represents f on this interval. Similar reasoning, using
fo yields the sine series expansion of f .

Theorem 2.2.4: Cosine Series expansion

Suppose that fpxq is a piecewise smooth function defined on an interval 0 ă x ă p.
Then, f has a cosine series expansion:

sf pxq “
∆ a0 `

8
ÿ

n“1

an cos

ˆ

nπ

p
x

˙

, (2.2.13)

where

a0 “
∆ 1

p

ż p

0

fpxqdx, (2.2.14)

an “
∆ 2

p

ż p

0

fpxq cos

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . . (2.2.15)
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Theorem 2.2.5: Sine Series expansion

Suppose that fpxq is a piecewise smooth function defined on an interval 0 ă x ă p.
Then, f has a sine series expansion:

sf pxq “
∆

8
ÿ

n“1

bn sin

ˆ

nπ

p
x

˙

, (2.2.16)

where

bn “
∆ 2

p

ż p

0

fpxq cos

ˆ

nπ

p
x

˙

dx, n “ 1, 2, . . . . (2.2.17)

2.2.2. Discrete Fourier analysis

By now, it is clear that Fourier analysis is an essential tool for decomposing complex
signals in easily manageable trigonometric or complex exponential functions. However, in
realistic applications, functions are measured over discrete sets of values, and hence they
are usually represented by sequences of values. To analyze these discrete functions, we
will introduce and use the Discrete Fourier Transform, along with some modified versions
usable when some requirements are met.
The following dissertation is based on Asmar [2010] and Bull and Zhang [2021].

Discrete Fourier Transform

Given a discrete-time signal x “ xn defined over the domain n “ 0, 1, . . . , N´1, we define
the N -point (direct) discrete Fourier transform of x, abbreviated DFT, by:

Xk “ DFTtxnu “
∆ 1

?
N

N´1
ÿ

n“0

xne
j2πn k

N , k “ 0, 1, . . . , N ´ 1. (2.2.18)

Thus, the DFT of an N -length signal x “ xn is an N -length complex signal Xk, where k
is the index of the frequency bin. We will also use the notation Xk “ FNpxq.
The inverse discrete Fourier transform (iDFT) is defined as

xn “ iDFTtXku “
∆ 1

?
N

N´1
ÿ

k“0

Xke
´j2πn k

N , n “ 0, 1, . . . , N ´ 1. (2.2.19)

We will also use the notation xn “ F ´1
N pXq.
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Discrete Cosine Transform

For a one-dimensional array xn, the Discrete Cosine Transform (DCT), in its most popular
form (DCT-II), is given by

Xk “

c

2

N
εk

N´1
ÿ

n“0

xn cos

ˆ

πk

N

ˆ

n `
1

2

˙˙

, (2.2.20)

where

εk “

$

&

%

1?
2
, k “ 0,

1, otherwise.

Similarly, the inverse DCT (also known as DCT-III), is defined by

xn “

c

2

N

N´1
ÿ

k“0

εkXk cos

ˆ

πn

N

ˆ

k `
1

2

˙˙

. (2.2.21)

The DCT is derived by performing an even extension yn of the original signal xn and then
applying the DFT to yn, which corresponds to the DCT of xn. In case of DCT-II, the
even extension is performed as follows:

yn “
∆

$

&

%

xn, 0 ď n ď N ´ 1,

x2N´1´n, N ď n ď 2N ´ 1.
(2.2.22)

An example is shown in Fig. 2.2.2. The other variants of the DCT perform the even
extension differently, sometimes not duplicating the value xN´1.

Figure 2.2.2: Symmetrical signal extension for the DCT. Source: Bull and Zhang [2021].
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Using Eq. (2.2.20), we can see that the DCT basis functions are given by

apk, nq “
∆

c

2

N
εk cos

ˆ

πk

N

ˆ

n `
1

2

˙˙

, 0 ď k, n ď N ´ 1.

For N “ 16, the basis functions for DCT-II are shown in Fig. 2.2.3.

Figure 2.2.3: Basis functions for DCT-II for N “ 16. Source: Bull and Zhang [2021].

2.2.3. Separation of variables

The method of separation of variables is used to solve a wide range of linear partial differ-
ential equations with boundary and initial conditions, including the homogeneous wave
equation.
Consider the acoustic wave propagation problem (2.1.7) in a rectangular domain of di-
mensions Lx, Ly, Lz. We’ll first consider the unviscid case (α “ 0). The acoustic wave
equation (2.1.1), employing Cartesian coordinates, becomes

B2pp
¯
x, tq

Bt2
´ c2

ˆ

B2p

Bx2
`

B2p

By2
`

B2p

Bz2

˙

“ fp
¯
x, tq,

t P R`, 0 ă x ă Lx, 0 ă y ă Ly, 0 ă z ă Lz. (2.2.23)
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The homogeneous Neumann boundary conditions, in Cartesian coordinates, reduce to

$

’

’

’

&

’

’

’

%

Bpp
¯
x,tq

Bx

∣∣
x“0

“ 0,
Bpp

¯
x,tq

Bx

∣∣
x“Lx

“ 0, 0 ď y ď Ly, 0 ď z ď Lz, t ě 0,

Bpp
¯
x,tq

By

∣∣
y“0

“ 0,
Bpp

¯
x,tq

By

∣∣
y“Ly

“ 0, 0 ď x ď Lx, 0 ď z ď Lz, t ě 0,

Bpp
¯
x,tq

Bz

∣∣
z“0

“ 0,
Bpp

¯
x,tq

Bz

∣∣
z“Lz

“ 0, 0 ď x ď Lx, 0 ď y ď Ly, t ě 0.

(2.2.24)

We want to solve the associated homogeneous equation:

B2pp
¯
x, tq

Bt2
“ c2

ˆ

B2p

Bx2
`

B2p

By2
`

B2p

Bz2

˙

,

t P R`, 0 ă x ă Lx, 0 ă y ă Ly, 0 ă z ă Lz. (2.2.25)

Following the suggestion of Asmar [2010], we apply separation of variables, obtaining

ppx, y, z, tq “ XpxqY pyqZpzqT ptq.

Thus, the PDE in Eq. (2.2.25) can be rewritten as four independent ODEs:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

X2 ` µ2X “ 0, dX
dx

∣∣
0

“ 0, dX
dx

∣∣
Lx

“ 0,

Y 2 ` ν2Y “ 0, dY
dy

∣∣
0

“ 0, dY
dy

∣∣
Ly

“ 0,

Z2 ` ξ2Z “ 0, dZ
dz

∣∣
0

“ 0, dZ
dz

∣∣
Lz

“ 0,

T 2 ` c2k2T “ 0, k2 “ µ2 ` ν2 ` ξ2.

A guess solution to the last four differential equations is

Xmpxq “ cos

ˆ

mπ

Lx

x

˙

,

Ynpyq “ cos

ˆ

nπ

Ly

y

˙

,

Zppzq “ cos

ˆ

pπ

Lz

z

˙

,

Tmnpptq “ rPmnp e
jωmnpt,

where we put

ωmnp “ c kmnp “ cπ

d

m2

L2
x

`
n2

L2
y

`
p2

L2
z

, (2.2.26)
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with m P N`, n P N`, p P N`. The ωmnp’s are called the characteristic frequencies, or
natural frequencies, of the volume, while the kmnp’s are the natural wavenumbers.
We can derive a product solution satisfying Eq. (2.1.1) and Eq. (2.2.24):

rpp
¯
x, tq “ rPmnp rpmnpp

¯
x, tq,

where the functions rpmnpp
¯
x, tq are called the normal modes of the three-dimensional wave

equation, expressed as a multiplication between the mode shapes pmnpp
¯
xq and the time

evolution term
rpmnpp

¯
x, tq “

∆ pmnpp
¯
xq ejωmnpt,

pmnpp
¯
xq “ cos

ˆ

mπ

Lx

x

˙

cos

ˆ

nπ

Ly

y

˙

cos

ˆ

pπ

Lz

z

˙

,
(2.2.27)

while rPmnp are the modal coefficients which depend on the initial conditions (they can be
interpreted as phasors):

rPmnp “
∆
ˇ

ˇ

ˇ

rPmnp

ˇ

ˇ

ˇ
ej= rPmnp “ Pmnp e

jϕmnp .

In Fig. 2.2.4 we depict the first mode shapes of the two-dimensional wave equation in
a rectangular domain of dimensions Lx “ 1m, Ly “ 1m. We also specify the value of
kmn “ ωmn{c for each mode pm,nq; notice that, as Lx “ Ly, we have that kmn “ knm for
each m,n P N`.

Figure 2.2.4: First mode shapes of the two-dimensional wave equation.
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The general solution, known as standing wave solution, is

rpp
¯
x, tq “

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

rPmnp cos

ˆ

mπ

Lx

x

˙

cos

ˆ

nπ

Ly

y

˙

cos

ˆ

pπ

Lz

z

˙

ejωmnpt.

The above equation represents a triple Cosine Series expansion with respect to the spatial
coordinates x, y, z (generalization of Th. 2.2.4). Instead, the time dependence is expressed
as a Fourier Series in complex form (Def. 2.2.2). However, as the pressure pp

¯
x, tq is a real

function, we can rewrite it in compact form (Def. 2.2.1):

pp
¯
x, tq “

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

Pmnp

cos

ˆ

mπ

Lx

x

˙

cos

ˆ

nπ

Ly

y

˙

cos

ˆ

pπ

Lz

z

˙

cos pωmnpt ` ϕmnpq . (2.2.28)

Let’s now consider the viscous problem. It can be proven that the mode shapes are
not affected by the viscous damping, while the normal modes are characterized by an
exponential decay:

rpmnpp
¯
x, tq “ pmnpp

¯
xq e´αt ejωmnpt,

The separation of variables method alone cannot be used to solve the inhomogeneous
wave equation, but it provides the basis for the formulation of the modal superposition
approach which we’ll present in Subsec. 2.4.3.

2.3. Finite difference method for the solution of the

wave equation
In this section, we introduce a popular numerical method for the solution of ordinary and
partial differential equations: the finite difference method. The following dissertation is
based on Fornberg [1988].
Consider the following discretization of the x-axis with constant step size dh:

xn “ n ¨ dh, n P Z,

where xn is the n-th grid point.
We can approximate a derivative f pmqpxq of a sufficiently smooth function f by defining
a set of 2N ` 1 grid points txnu

N
n“´N and employing a centered finite difference scheme
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δx (also known as centered finite difference stencil or centered difference operator):

dmf

dxm

∣∣∣∣
x“x0

« δxfpxq “
∆

N
ř

n“´N

δnfpxnq

dhm
,

where δn is the n-th weight (also known as finite difference coefficient). Some weights for
the centered difference operator are reported in Tab. 2.3.1, for order of derivation one
and two, also specifying the order of accuracy (see Subsec. 2.3.1).

Derivative Accuracy -3 -2 -1 0 1 2 3

f p1q

2 -1/2 0 1/2
4 1/12 -2/3 0 2/3 -1/12
6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60

f p2q

2 1 -2 1
4 -1/12 4/3 -5/2 4/3 -1/12
6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90

Table 2.3.1: Finite difference coefficients. Source: Fornberg [1988].

For example, to approximate the first derivative (m “ 1) with second order accuracy, we
employ the following centered stencil with coefficients δ´1 “ ´1{2, δ0 “ 0, δ1 “ 1{2:

df

dx

∣∣∣∣
x“x0

«

1
ř

n“´1

δnfpxnq

dh
“
fpx1q ´ fpx´1q

2 dh
.

2.3.1. Accuracy of the finite difference stencil

Accuracy is a metric used to describe the proportionality between the step size and trun-
cation error of a finite difference operator. For example, consider the following operator,
known as forward difference operator, applied to a function fpxq:

δx`fpxq “
∆ 1

dx
pfpx ` dxq ´ fpxqq ,

where dx is the step size or increment.
Assuming fpxq to be infinitely differentiable, and expanding fpx ` dxq in Taylor series
about x, one has

δx`fpxq “
df

dx
`
dx

2

d2f

dx2
` opdx2q.
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The operator δx` thus approximates the first derivative to an accuracy which depends on
the first power of dx; as dx is made small, the difference approximation approaches the
exact value of the derivative with an error proportional to dx. Such an approximation is
thus often called first-order accurate.
In general, the better the accuracy of the approximation, the more adjacent values of the
function f will be required (higher operator width). This leads to a trade-off between
performance and accuracy (Bilbao [2009]).

2.3.2. An example of a FDTD scheme for the wave equation

We want to derive a finite difference scheme to solve the 1D unviscid acoustic wave
equation (Cfr. Eq. 2.1.1):

$

&

%

B2p
Bt2

´ c2 B2p
Bx2 “ F px, tq, t P R`, x P R,

ppx, 0q “ p0pxq, x P R.
(2.3.1)

We preliminarly introduce the notation: pni represents an approximation to the solution
of the wave equation at x “ i dh, t “ n dt, where dh is the spacing between adjacent grid
points, and dt is the time step.
We approximate the second order time derivative with a centered second order finite
difference:

B2p

Bt2
«
pn`1
i ´ 2pni ` pn´1

i

dt2
, (2.3.2)

and, analogously, we approximate the second order space derivative:

B2p

Bx2
«
pni`1 ´ 2pni ` pni´1

dh2
. (2.3.3)

Substituting Eq. (2.3.2) and Eq. (2.3.3) in Eq. (2.3.1), we obtain

pn`1
i “ 2p1 ´ λ2qpni ` λ2ppni`1 ` pni´1q ´ pn´1

i , (2.3.4)

where λ is a dimensionless parameter known as Courant number, defined as

λ “
∆ c

dt

dh
. (2.3.5)

The scheme (2.3.4) is known as Leap-Frog (Quarteroni et al. [2007]); the solution may be
updated, explicitly, at each time step n, from previously computed values at the previous
two time steps. It is perhaps easiest to see the behavior of this algorithm through a
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dependence plot showing the "footprint" of the scheme, shown in Fig. 2.3.1.
For the moment, it is assumed that the spatial domain of the problem is infinite; the
analysis of boundary conditions is postponed to Sec. 3.3.

Figure 2.3.1: Computational footprint of the scheme in Eq. (2.3.4): a value of the grid
function pni at the update location pi, n` 1q, as indicated, is updated using values at the
previous two time steps. The set of active points of the scheme at this update location is
indicated in black. Source: Bilbao [2009].

2.3.3. Review of the Leap-Frog method

In this section we analyze the finite difference scheme introduced in Sec. 2.3.2 from the
point of view of the accuracy, stability, and convergence. We will also examine the impact
of numerical dispersion on the accuracy of the finite difference method.
As a reference, we will consider the Leap-Frog scheme in Eq. (2.3.4) used to solve the 1D
unviscid wave equation.
The following dissertation is based on Quarteroni et al. [2007], Bilbao [2009], and Smith
[1985].

Consistency

The local truncation error of a numerical scheme is the residual that is generated by
pretending the exact solution to satisfy the numerical method itself.
Denoting by p the solution of the exact problem in Eq. (2.3.1), and considering the FDTD
scheme (2.3.4), we define the local truncation error τni at pxi, t

nq as follows

τni “
∆ ppxi, t

n`1q ´ 2ppxi, t
nq ` ppxi, t

n´1q

dt2
´ c2

ppxi`1, t
nq ´ 2ppxi, t

nq ` ppxi´1, t
nq

dh2
.



24 2| Mathematical modeling and solution techniques for acoustics

The truncation error is
τpdt, dhq “

∆ max
i,n

|τni |.

When τpdt, dhq goes to zero as dt and dh tend to zero independently, the numerical scheme
is said to be consistent.
Moreover, we say that it is of order p in time and of order q in space (for suitable integers
p and q), if, for a sufficiently smooth solution of the exact problem, we have

τpdt, dhq “ O pdtp ` dhqq.

Scheme (2.3.4) is second order accurate in both time and space, i.e., O pdt2 ` dh2q (Quar-
teroni et al. [2007]).
Finally, we say that a numerical scheme is convergent if

lim
dt,dhÑ0

max
i,n

|ppxi, t
n
q ´ pni | “ 0.

Stability

A numerical method for a hyperbolic problem (linear or nonlinear) is said to be stable, for
any time T , if there exist two constants CT ą 0 (possibly depending on T ) and δ0 ą 0,
such that ∥∥

¯
pn
∥∥
∆

ď CT

∥∥
¯
p0
∥∥
∆
,

for any n such that ndt ď T and for any dt, dx such that 0 ă dt ď δ0, 0 ă dh ď δ0.
We have denoted by ∥¨∥∆ a suitable discrete norm as, for instance, one of those indicated
below ∥∥

¯
p
∥∥
∆,r

“

˜

dh
8
ÿ

j“´8

|pj|
r

¸
1
r

for r “ 1, 2,

∥∥
¯
p
∥∥
∆,8

“ sup
j

|pj|.

Note that ∥¨∥∆,r is an approximation of the norm of LrpRq defined in Def. 2.3.1.



2| Mathematical modeling and solution techniques for acoustics 25

Definition 2.3.1: Lp norms

Consider a vector
¯
x of components txiu in a normed space, e.g., Rn. According to

Quarteroni et al. [2007], the p-norm or Lp norm is defined as

∥
¯
x∥p “

∆

˜

n
ÿ

i“1

|xi|
p

¸
1
p

, for 1 ď p ă 8.

The most common p-norms are L1 norm, known as taxicab norm, and L2 norm,
known as Euclidean norm.
Notice that the limit as p goes to infinity of ∥

¯
x∥p exists, is finite, and equals the

maximum module of the components of
¯
x. Such a limit defines in turn a norm,

called the infinity norm (or maximum norm), and is known as L8 norm:

∥
¯
x∥

8
“ max

1ďiďn
|xi|.

CFL condition

Courant, Friedrichs and Lewy have shown that a necessary and sufficient condition for
any explicit scheme (including the Leap-Frog scheme (2.3.4)) to be stable is that the time
and space discretization steps must obey the following condition:

|λ| “

ˇ

ˇ

ˇ

ˇ

c
dt

dh

ˇ

ˇ

ˇ

ˇ

ď λmax, (2.3.6)

which is known as the CFL condition, and λmax is a given constant. In particular, for the
Leap-Frog scheme we have that λmax “ 1, i.e.,

|λ| “

ˇ

ˇ

ˇ

ˇ

c
dt

dh

ˇ

ˇ

ˇ

ˇ

ď 1, (2.3.7)

This has an interesting geometrical interpretation, as illustrated in Fig. 2.3.2. At a given
update point, the value of the solution to the continuous-time wave equation depends on
values traveling on solution characteristics (solid dark lines), defined by x´ ct “ constant
and x ` ct “ constant. The cone of dependence of the solution may be illustrated as the
interior of this region (in grey). The scheme in Eq. (2.3.4) at the update point possesses a
numerical cone of dependence, illustrated by black points, and bounded by dashed black
lines.

• At left, dh “ c dt, and the characteristics align exactly with values on the grid; in
this case, the numerical solution is exact.
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• At center, a value dh ă c dt is chosen, violating stability condition in Eq. (2.3.7);
the numerical cone of dependence lies strictly within the region of the dependence
of the wave equation, and the scheme cannot compute correctly the solution.

• At right, with a choice of dh ą c dt, the numerical cone of dependence of the scheme
includes that of the wave equation, and the scheme is stable.

Figure 2.3.2: A geometrical interpretation of the Courant-Friedrichs-Lewy stability con-
dition. Source: Bilbao [2009].

Von Neumann stability analysis

We plug in the Leap-Frog scheme (2.3.4) a general solution of the form

pni “ znejiβdh (2.3.8)

where z “ esdt, where s “ σ ` jω is a complex frequency variable, and β is a real
wavenumber. This may be thought as a wavelike solution, which corresponds to the
sampled propagating wave solution:

ppx, tq “ est`jβx
“ eσtejpβx`ωtq. (2.3.9)

By substituting Eq. (2.3.8) in Eq. (2.3.4), we obtain

zn`1ejiβdh “ 2p1 ´ λ2qznejiβdh ` λ2
`

znejpi`1qβdh
` znejpi´1qβdh

˘

´ zn´1ejiβdh.

By dividing by zn we get

z “ 2p1 ´ λ2q ` λ2
`

ejβdh ` e´jβdh
˘

´ z´1

z ´ 2
`

1 ´ λ2p1 ´ cospβdhqq
˘

` z´1
“ 0,

from which the following characteristic equation results:

z ` 2

ˆ

2λ2 sin2

ˆ

1

2
βdh

˙

´ 1

˙

` z´1
“ 0. (2.3.10)
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Eq. (2.3.10) is analogous to the continuous characteristic equation:

s2 ` c2β2
“ 0,

which is obtained by replacing Eq. (2.3.9) in Eq. (2.3.1).
The roots of the FDTD characteristic equation in Eq. (2.3.10) are given by

z˘ “ 1 ´ 2λ2 sin2

ˆ

1

2
βdh

˙

˘
?
∆,

where ∆ is defined as

∆ “
∆
`

1 ´ 2λ2 sin2
pβdh{2q

˘2
´ 1,

while the roots of the characteristic equation of the wave equation itself are

s˘pβq “ ˘jcβ. (2.3.11)

We notice that, in both cases, there are two solutions, representing the propagation of
the wave in opposite directions.
In order for a solution such as Eq. (2.3.8) to behave as a solution to the wave equation,
one should have |z| ď 1 for any value of the wavenumber β, otherwise such a solution will
experience exponential growth or damping. From inspection of the FDTD scheme char-
acteristic equation in Eq. (2.3.10), one may deduce that the roots are complex conjugates
of magnitude less than 1 when ∆ is non-positive:

`

1 ´ 2λ2 sin2
pβdh{2q

˘2
´ 1 ď 0,

1 `
`

2λ2 sin2
pβdh{2q

˘2
´ 2 ¨ 2λ2 sin2

pβdh{2q ´ 1 ď 0,

`

2λ2 sin2
pβdh{2q

˘2
´ 2 ¨ 2λ2 sin2

pβdh{2q ď 0,

that is
λ2 sin2

pβdh{2q ď 1,

which must be satisfied for any possible value of β, hence we obtain

max
␣

λ2 sin2
pβdh{2q

(

ď 1,

|λ| ď 1,

recalling that 0 ď sin2pβdh{2q ď 1. This condition is the CFL condition introduced in
Eq. (2.3.7).
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Note that for λ slightly greater than unity, the condition λ2 sin2pβdh{2q ď 1 will be
violated near the maximum of the squared sine, which occurs at the wavenumber β “

π{dh, corresponding to a wavelength of 2 dh, which is the shortest wavelength which may
be represented on a grid of spacing dh (spatial Nyquist wavelength).

Dissipation

The Leap-Frog scheme (2.3.4) is exactly conservative, in a numerical sense, over the
unbounded spatial domain D “ Z. This is true regardless of the values chosen for the
time step dt and the grid spacing dh, and whether or not the scheme is stable (Bilbao
[2009]).

Dispersion

Consider the Leap-Frog scheme (2.3.4) under the stability condition in Eq. (2.3.7). Using
z “ ejωdt, the characteristic equation in Eq. (2.3.10) may be written as

ejωdt ` 2

ˆ

2λ2 sin2

ˆ

1

2
βdh

˙

´ 1

˙

` e´jωdt
“ 0,

2

ˆ

2λ2 sin2

ˆ

1

2
βdh

˙

´ 1

˙

“ ´2 cospωdtq,

or
˘λ sin

ˆ

1

2
βdh

˙

“ sin

ˆ

1

2
ωdt

˙

,

that is
1

2
ωdt “ ˘ arcsin

ˆ

λ sin

ˆ

1

2
βdh

˙˙

,

which results in the dispersion relation for the FDTD scheme:

ω “ ˘
2

dt
arcsin

ˆ

λ sin

ˆ

1

2
βdh

˙˙

. (2.3.12)

The above equation relates the frequency ω and the wavenumber β in complete analogy
with the dispersion relation for the wave equation itself, obtained imposing σ “ 0 in the
characteristic equation (2.3.11):

ωpβq “ ˘cβ. (2.3.13)



2| Mathematical modeling and solution techniques for acoustics 29

To compare the two dispersion relations, we define the phase velocity vϕ and the group
velocity vg:

vϕ “
∆ ω

β
,

vg “
∆ dω

dβ
.

(2.3.14a)

(2.3.14b)

In the case under consideration, these velocities are constant and equal to c for all
wavenumbers. Instead, for the Leap-Frog scheme (2.3.4), these velocities are, in general,
functions of the wavenumber: different wavelengths travel at different speeds, making the
scheme dispersive. Dispersion leads to a progressive distortion of a pulse as it travels, as
illustrated in Fig. 2.3.3. This type of anomalous behavior is purely a result of the dis-
cretization, and it is known as numerical dispersion; it should be carefully distinguished
from physical dispersion of a model problem itself, which will arise when systems are
subject to stiffness. It is also true that the numerical velocities will also depend on the

Figure 2.3.3: Numerical dispersion. Output from the scheme in Eq. (2.3.4) for the wave
equation, at times as indicated, for λ “ 1 (in grey) and λ “ 0.5 (in black). c is chosen
as 100, the sample rate is 16000Hz, and the initial conditions are set according to a
narrow cosine distribution, of width 1{40. Notice that, for λ ă 1, the higher-frequency
components lag the wavefront, illustrating the phase velocity characteristic of the scheme.
Notice also that the gross speed of the wave packet is slower as well, illustrating the group
velocity characteristic. Source: Bilbao [2009].

choice of the parameter λ. The velocity curves, as functions of frequency f “ ω{p2πq for
different values of λ, are shown in Fig. 2.3.4.
Now, consider the very special case of λ “ 1. Under this condition, the dispersion relation
in Eq. (2.3.12) reduces to

ω “ ˘
2

dt
arcsin

ˆ

sin

ˆ

1

2
βdh

˙˙

“ ˘
2

dt

1

2
βdh “ ˘

βdh

dt
“ ˘cβ.
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Figure 2.3.4: Numerical phase velocity (up) and group velocity (down) as a function of
frequency f , normalized by the model velocity c0, for the Leap-Frog scheme (2.3.4), for a
variety of values of λ, as indicated. The sample rate is chosen as 44100Hz.

Now, the numerical dispersion relation is exactly the same of the continuous one, and
the phase and group velocities are both equal to c, independently of β. Thus, there is no
numerical dispersion for this choice of λ. In fact, as a rule of thumb, for any FDTD explicit
numerical method, the best numerical behavior (i.e., the least numerical dispersion) is
achieved when the stability condition is satisfied as near to equality as possible (Bilbao
[2009]).
The bandwidth of the scheme can be computed from Eq. (2.3.12). Considering only
the positive solution, using ω “ 2πf , defining the sampling frequency fs “ 1{dt, and
maximizing the term sinpβdh{2q, the maximum frequency fmax will be given by

2πfmax “ 2fs arcsin pλq,

fmax “
fs
π
arcsinpλq.
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2.4. Solution techniques for the harmonic oscillator
In this section, we discuss the discretization of the classical harmonic oscillator equation,
which includes the inhomogeneous and damped cases. Finally, we will introduce the
modal superposition approach, which demonstrates that each mode of the wave equation
can be represented as an independent harmonic oscillator. The following dissertation is
based on Cieśliński [2011] and Asmar [2010].

2.4.1. Harmonic oscillator equation

The equation of motion of a forced harmonic oscillator with a driving force fptq P R is

$

’

’

’

&

’

’

’

%

:xptq ` ω2xptq “ fptq, t ą 0,

xp0q “ x0,

vp0q “ dx
dt

∣∣
t“0

“ v0,

(2.4.1)

where x “ xptq P R, ω P R`. It is convenient to represent Eq. (2.4.1) as the following first
order system

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9xptq “ vptq, t ą 0,

9vptq “ ´ω2xptq ` fptq, t ą 0,

xp0q “ x0,

vp0q “ dx
dt

∣∣
t“0

“ v0,

(2.4.2)

where v represents the velocity.

Analytical solution

The general solution to the harmonic oscillator equation in Eq. (2.4.1), for the case of
constant driving force, is given by

xptq “ c1e
jωt

` c2e
´jωt

`
f

ω2
,

vptq “ jω
`

c1e
jωt

´ c2e
´jωt

˘

,

(2.4.3)

where c1, c2 P R.
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Numerical solution

We can consider Eq. (2.4.3) at a given instant tn P R by setting xn :“ xptnq, obtaining
the discretized solution

xn “ c1e
jωtn ` c2e

´jωtn `
f

ω2
,

vn “ jω
`

c1e
jωtn ´ c2e

´jωtn
˘

.

(2.4.4)

From Eq. (2.4.4) we obtain

c1e
jωtn “

1

2

ˆ

xn ´
f

ω2
´ j

vn
ω

˙

,

c2e
´jωtn “

1

2

ˆ

xn ´
f

ω2
` j

vn
ω

˙

.

(2.4.5)

Denoting dtn “ tn`1 ´ tn (the time step, in general variable) and evaluating Eq. (2.4.4)
at tn`1, we obtain

xn`1 “ c1e
jωtn`jωdtn ` c2e

´jωtn´jωdtn `
f

ω2
,

vn`1 “ jω
`

c1e
jωtn`jωdtn ´ c2e

´jωtn´jωdtn
˘

,

(2.4.6)

where c1 and c2 depend on the initial conditions.

Proposition 2.4.1

For any n “ 0, 1, . . ., the solution of Eq. (2.4.2) is given by

¨

˝

xn`1

vn`1

˛

‚“

¨

˝

cospωdtnq sinpωdtnq{ω

´ω sinpωdtnq cospωdtnq

˛

‚

¨

˝

xn

vn

˛

‚`

¨

˝

2
ω2 sin

2
`

ωdtn
2

˘

f

1
ω
sinpωdtnqf

˛

‚, (2.4.7)

where dtn is an arbitrary variable time step (in particular, we can take dtn “ dt “

const).

Proof: It is enough to substitute Eq. (2.4.5) into Eq. (2.4.6). This result holds for any
value of the coefficients c1, c2. l

Proposition 2.4.2

The solution in Eq. (2.4.7) of the harmonic oscillator equation with constant driving
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force f is equivalent to the system

xn`1 ´ xn
δn

“
1

2
pvn`1 ` vnq,

vn`1 ´ vn
δn

“ ´
1

2
ω2

pxn`1 ` xnq ` f,

(2.4.8)

where
δn “

2

ω
tan

ˆ

ωdtn
2

˙

.

Proof: From Eq. (2.4.7) we compute:

xn`1 ` xn “ p1 ` cospωdtnqqxn `
1

ω
sinpωdtnqvn `

1

ω2
p1 ´ cospωdtnqqf,

xn`1 ´ xn “ ´p1 ´ cospωdtnqqxn `
1

ω
sinpωdtnqvn `

1

ω2
p1 ´ cospωdtnqqf,

vn`1 ` vn “ ´ωpsinpωdtnqqxn ` p1 ` cospωdtnqqvn `
1

ω
sinpωdtnqf,

vn`1 ´ vn “ ´ωpsinpωdtnqqxn ´ p1 ´ cospωdtnqqvn `
1

ω
sinpωdtnqf.

Hence

ω sin

ˆ

ωdtn
2

˙

pxn`1 ` xnq ` cos

ˆ

ωdtn
2

˙

pvn`1 ´ vnq “
2

ω
sin

ˆ

ωdtn
2

˙

f,

ω cos

ˆ

ωdtn
2

˙

pxn`1 ´ xnq “ sin

ˆ

ωdtn
2

˙

pvn`1 ` vnq,

which is equivalent to Eq. (2.4.8). l

Proposition 2.4.3

If the time step is constant, i.e., dtn “ dt @n “ 0, 1, . . ., then Eq. (2.4.7) can be
rewritten in the following equivalent form

xn`1 ´ 2 cospωdtqxn ` xn´1 “
2

ω2
p1 ´ cospωdtqqf,

vn “
ω

sinpωdtq
pxn`1 ´ cospωdtqxnq ´

1

ω
tan

ˆ

ωdt

2

˙

f.

(2.4.9)
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Proof: From Eq. (2.4.7) we get:

vn “
ω

sinpωdtq
pxn`1 ´ cospωdtqxnq ´

1

ω
tan

ˆ

ωdt

2

˙

f

“ ´ω sinpωdtqxn´1 ` cospωdtqvn´1 `
1

ω
sinpωdtqf,

vn´1 “
ω

sinpωdtq
pxn ´ cospωdtqxn´1q ´

1

ω
tan

ˆ

ωdt

2

˙

f,

(2.4.10)

for which it follows Eq. (2.4.9) for vn. Eliminating vn and vn´1 from the system (2.4.10)
we get the first equation of Eq. (2.4.9). l

2.4.2. Damped harmonic oscillator equation

If viscous damping is considered, the equation of motion for the harmonic oscillator with
constant driving force f is given by

$

’

’

’

&

’

’

’

%

:xptq ` 2α 9xptq ` ω2
0xptq “ f,

xp0q “ x0,

vp0q “ dx
dt

∣∣
t“0

“ v0.

(2.4.11)

We can reduce it to the homogeneous harmonic oscillator without damping.

Proposition 2.4.4

Consider the transformation
X “ eαtpx ´ xeq, (2.4.12)

where xe is the steady-state solution, obtained when all the transients are extin-
guished, i.e.,

ω2
0xe “ f Ñ xe “ fω´2

0 ,

Replacing Eq. (2.4.12) into Eq. (2.4.11) we get

$

’

’

’

&

’

’

’

%

:X ` ω2X “ 0,

Xp0q “ X0,

V p0q “ dX
dt

∣∣
t“0

“ V0,

(2.4.13)

where ω2 “ ω2
0 ´ α2 is the damped natural frequency.

Proof: Straightforward computation. l
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Defining the dummy variables p “ m 9x “ mv and P “ m 9X with m P Rz0, we can express
P in terms of x, p, namely,

P “ eαtpp ` mαpx ´ xeqq.

Analytical solution

The general solution to the forced damped harmonic oscillator equation, which is trans-
formed to the undamped harmonic oscillator equation (2.4.13) with f “ 0, is given by

Xptq “ c1e
jωt

` c2e
´jωt,

V ptq “ jω
`

c1e
jωt

´ c2e
´jωt

˘

,
(2.4.14)

where c1, c2 P R.

Numerical solution

Recalling Eq. (2.4.7), the solution of Eq. (2.4.11) in terms of variables X,P is given by

¨

˝

Xn`1

Pn`1

˛

‚“

¨

˝

cospωdtq 1
mω

sinpωdtq

´mω sinpωdtq cospωdtq

˛

‚

¨

˝

Xn

Pn

˛

‚, (2.4.15)

where Xn`1 “ Xptn`1q and Pn`1 “ P ptn`1q for n “ 0, 1, . . .. Finally, substituting

Xn “ eαtnpxn ´ xeq,

Pn “ eαtnppn ` mαpxn ´ xeqq,

into Eq. (2.4.15), we obtain the following result.

Corollary 2.4.1

The solution of the damped harmonic oscillator equation with constant driving force
f (see Eq. 2.4.11) is given by

xn`1 “ xe ` e´αdt

ˆ

pxn ´ xeq

´

cospωdtq `
α

ω
sinpωdtq

¯

`
sinpωdtq

ω
pn

˙

,

pn`1 “ e´αdt

ˆ

pn

´

cospωdtq ´
α

ω
sinpωdtq

¯

´

ˆ

ω `
α2

ω

˙

pxn ´ xeq sinpωdtq

˙

,

@n “ 0, 1, . . . .

(2.4.16)
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2.4.3. Modal superposition for the wave equation

In this paragraph, we use the modal superposition approach to solve the acoustic wave
equation with arbitrary initial conditions and the homogeneous Neumann boundary con-
ditions. Our goal is to derive the Fourier-time domain acoustic wave equation: we will
see that, in the Fourier-time domain, the infinite degrees-of-freedom system reduces to an
infinite number of single degree-of-freedom systems, which can be solved independently
and effortlessly.
Consider a rectangular domain of dimensions Lx, Ly, Lz. Recalling Eq. (2.2.27), the mode
shapes are

pmnpp
¯
xq “

∆ cos

ˆ

mπ

Lx

x

˙

cos

ˆ

nπ

Ly

y

˙

cos

ˆ

pπ

Lz

z

˙

.

This method corresponds exactly to the method of eigenfunction expansion proposed in
Asmar [2010]. In fact, analogously to Eq. (2.2.28), we can express pp

¯
x, tq as a triple Cosine

Series expansion as follows:

pp
¯
x, tq “

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

Pmnpptq pmnpp
¯
xq

“

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

Pmnpptq cos

ˆ

mπ

Lx

x

˙

cos

ˆ

nπ

Ly

y

˙

cos

ˆ

pπ

Lz

z

˙

, (2.4.17)

where the modal coefficients Pmnpptq are interpreted as triple Fourier cosine series coeffi-
cients, and can be computed as

Pmnpptq “
8

LxLyLz

ż Lz

0

ż Ly

0

ż Lx

0
pp
¯
x, tq cos

ˆ

mπ

Lx
x

˙

cos

ˆ

nπ

Ly
y

˙

cos

ˆ

pπ

Lz
z

˙

dxdydz.

We express the force analogously:

fp
¯
x, tq “

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

Fmnpptq pmnpp
¯
xq.

We can replace pp
¯
x, tq and fp

¯
x, tq with the triple Fourier cosine series in the acoustic wave

equation (2.2.23), obtaining

d2Pmnpptq

dt2
pmnpp

¯
xq ´ c2Pmnpptq

ˆ

B2pmnpp
¯
xq

Bx2
`

B2pmnpp
¯
xq

By2
`

B2pmnpp
¯
xq

Bz2

˙

“ Fmnpptq pmnpp
¯
xq.
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We proceed differentiating the normal modes pmnpp
¯
xq with respect to the space coordi-

nates:
B2pmnpp

¯
xq

Bx2
“ ´µ2

mpmnpp
¯
xq,

B2pmnpp
¯
xq

By2
“ ´ν2npmnpp

¯
xq,

B2pmnpp
¯
xq

Bz2
“ ´ξ2ppmnpp

¯
xq.

So that, remembering that k2 “ µ2 ` ν2 ` ξ2, we get the acoustic wave equation in the
Fourier-time domain:

d2Pmnpptq

dt2
` k2mnpc

2Pmnpptq “ Fmnpptq, m P N`, n P N`, p P N`. (2.4.18)

For each tuple pm,n, pq, this represents the equation of motion for a single degree-of-
freedom system (forced harmonic oscillator), whose solution Pmnpptq is trivial. Employing
Eq. (2.4.17), we can go back to the solution in the space-time domain.
Let’s now consider the viscous case. We recall that the mode shapes are not affected
by the viscous damping; hence, the Fourier-time domain equation with the homogeneous
Neumann boundary conditions becomes

d2Pmnpptq

dt2
` 2α

dPmnpptq

dt
` k2mnpc

2Pmnpptq “ Fmnpptq,

m P N`, n P N`, p P N`, (2.4.19)

which, for each tuple pm,n, pq, represents the equation of motion for a single degree-of-
freedom system (forced damped harmonic oscillator).
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3| Simulation of the wave
equation through the FDTD
method

The numerical simulation of the wave equation is of fundamental importance in the field
of acoustics, as it allows us to study the behavior of sound waves in different environments.
In this chapter, we focus on the Finite-Difference Time-Domain (FDTD) method for the
discretization of the wave equation. In Sec. 2.3.2 we have already presented a well known
finite difference scheme of order p2, 2q to solve the wave equation; in this chapter, we’ll
derive a higher order finite difference scheme to solve the viscous acoustic wave equation,
both in second order representation (see Eq. 2.1.3) and in first order representation. We
also explain the implementation of boundary conditions, which are necessary to ensure
that the simulated sound waves behave correctly at the boundaries of the computational
domain.

3.1. Discretization of the second order equation
Consider the viscous acoustic wave equation in Eq. (2.1.3),

B2pp
¯
x, tq

Bt2
` 2α

Bpp
¯
x, tq

Bt
´ c2∆pp

¯
x, tq “ fpx, tq, t P R`,

¯
x P RN .

The unviscid case can be seen as a particular case of the viscous case.
Consider a space-time grid with constant step size in both space (dh) and time (dt). Thus:

¯
xi,j,k “ xi î ` yj ĵ ` zk k̂

“ i dh î ` j dh ĵ ` k dh k̂, i, j, k P N,

tn “ n dt, n P N,

where î, ĵ, k̂ are the unit vectors in Cartesian coordinates. We introduce the following
notation for simplicity:

pp
¯
xi,j,k, t

n
q “ pni,j,k.
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We consider a second order accurate centered stencil for the approximation of the first
time derivative:

Bp

Bt

∣∣∣∣
¯
x“

¯
xi,j,k,t“tn

«
pn`1
i,j,k ´ pn´1

i,j,k

2 dt
,

and the second time derivative, respectively,

B2p

Bt2

∣∣∣∣
¯
x“

¯
xi,j,k,t“tn

«
pn´1
i,j,k ´ 2pni,j,k ` pn`1

i,j,k

dt2
.

Next, we approximate each second order space derivatives with a sixth order accurate
centered stencil:

B2p

Bx2

∣∣∣∣
¯
x“

¯
xi,j,k,t“tn

«

Apni´3,j,k ` Bpni´2,j,k ` Cpni´1,j,k ` Dpni,j,k ` Cpni`1,j,k ` Bpni`2,j,k ` Apni`3,j,k

dh2
, (3.1.1)

which, in vector notation, becomes

B2p

Bx2

∣∣∣∣
¯
x“

¯
xi,j,k,t“tn

«
1

dh2

”

A B C D C B A
ı

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pni´3,j,k

pni´2,j,k

pni´1,j,k

pni,j,k

pni`1,j,k

pni`2,j,k

pni`3,j,k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the stencil coefficients A,B,C,D, found in Tab. 2.3.1, are

A “
1

90
,

B “ ´
3

20
,

C “
3

2
,

D “ ´
49

18
.

(3.1.2)

We would like to note here that a sixth order scheme was chosen as it will give sufficiently
low interface errors in the context of Rectangular Domain Decomposition (which will be
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introduced in Ch. 5) and Adaptive Rectangular Decomposition (Ch. 7), while being
reasonably efficient. Lower (second/fourth) order schemes would be more efficient and
much easier to implement, but they would result in more prominent spurious reflections
(Cfr. Sec. 5.5.2), which would appear as undesirable and audible high frequency noise
(Raghuvanshi et al. [2011]).
In the 1D case, the finite difference scheme can be expressed as

¯
pn`1

“ 2
¯
pn ´

¯
pn´1

´ α dt p
¯
pn`1

´
¯
pn´1

q `

ˆ

cdt

dh

˙2

rKs
¯
pn ` dt2

¯
fn

` O pdt2q ` O pdh6q,

which can be rewritten by expliciting
¯
pn`1:

¯
pn`1

“
2
¯
pn ´ p1 ´ α dtq

¯
pn´1 `

`

cdt
dh

˘2
rKs

¯
pn ` dt2

¯
fn

1 ` α dt
` O pdt2q ` O pdh6q. (3.1.3)

This equation represents an explicit finite difference scheme which computes the solution
at time tn`1 starting from the solution at times tn and tn´1.

¯
p “ rp1, p2, . . .s is the vector

storing the pressure values at each space step,
¯
f “ rf1, f2, . . .s is the vector storing the

force values at each space step, while rKs is the stiffness matrix, defined as

rKs “
∆

»

—

—

—

—

—

—

—

—

—

—

–

. . .

A B C D C B A

A B C D C B A

A B C D C B A

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.1.4)

We can approximate the pressure velocity (defined in Eq. (2.1.2)) employing the implicit
Euler method, i.e.,

¯
vn`1

“ ¯
pn`1 ´

¯
pn

dt
. (3.1.5)

3.1.1. Analysis of the scheme

In this subsection, we will perform the von Neumann analysis of the derived finite differ-
ence method as in Subsec. 2.3.3.
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Stability analysis

Consider the FDTD p2, 6q scheme (3.1.3), which we report for readability:

¯
pn`1

“
2
¯
pn ´ p1 ´ α dtq

¯
pn´1 `

`

cdt
dh

˘2
rKs

¯
pn ` dt2

¯
fn

1 ` α dt
. (3.1.6)

Recalling the definition of the Courant number λ in Eq. (2.3.5), we rewrite Eq. (3.1.6) as

p1 ` α dtq
¯
pn`1

“ 2
¯
pn ´ p1 ´ α dtq

¯
pn´1

` λ2rKs
¯
pn ` dt2

¯
fn,

which, in scalar form, becomes

p1 ` α dtqpn`1
i “ 2pni ´ p1 ´ α dtqpn´1

i ´ α dt ppn`1
i ´ pn´1

i q

` λ2
”

A B C D C B A
ı

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

pni´3

pni´2

pni´1

pni

pni`1

pni`2

pni`3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` dt2fn
i . (3.1.7)

Imposing pni “ znejiβdh as in Eq. (2.3.8) and fn
i “ 0 in the above equation, we get

p1 ` dt αqz “ 2 ` λ2
”

A B C D C B A
ı

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

e´3jβdh

e´2jβdh

e´jβdh

1

ejβdh

e2jβdh

e3jβdh

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´ p1 ´ dt αqz´1,

which results in the characteristic equation

p1 ` dt αqz ´ 2
`

1 ` λ2γ
˘

` p1 ´ dt αqz´1
“ 0. (3.1.8)



3| Simulation of the wave equation through the FDTD method 43

where γpβdhq is defined as

γpβdhq “
∆ A cosp3βdhq ` B cosp2βdhq ` C cospβdhq `

D

2
. (3.1.9)

The plot of the function γpβdhq is shown in Fig. 3.1.1. We notice that the minimum of
the function is ´A1 where A1 “

∆
|A|` |B|` |C|` |D|{2 “ 136{45 “ 3.02 and the maximum

is 0, hence ´A1 ď γ ď 0, @λ, βdh. Furthermore, the function is periodic of period 2π.

Figure 3.1.1: Plot of the function γpβdhq and of the single harmonics.

The roots of the characteristic equation (3.1.8) are

z˘ “
1 ` λ2γ ˘

?
∆

1 ` dt α
,

where ∆ is defined as

∆ “
∆
`

1 ` λ2γ
˘2

´ p1 ` dt αqp1 ´ dt αq.

The scheme is conditionally stable: we require that, for each possible value of βdh, both
roots have magnitude less than 1. In Fig. 3.1.2 we plot the maximum absolute value of
the roots z˘ as a function of λ for different values of α. Notice how, for λ À 0.8, both
roots have magnitude less than 1 for all the considered values of α: this means that the
CFL condition might be |λ| À 0.8; a more accurate bound will be computed below. We
also notice that it would reasonable to consider the case α “ 0 as the worst case, i.e., the
case for which the stability criterion would be more strict.
In Fig. 3.1.3 we plot the value of ∆ as a function of βdh for different values of λ and α.
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We notice that, in the undamped case (α “ 0), ∆ ă 0 for λ À 0.8.

Figure 3.1.2: Maximum absolute value of the roots as a function of the Courant number
λ for different values of the absorption coefficient α. The dashed curve in red represents
the stability limit |z˘| “ 1.

Figure 3.1.3: ∆ as a function of βdh for different values of the Courant number λ and of
the absorption coefficient α. The dashed curve in red represents ∆ “ 0.
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We want to compute the stability criterion more accurately and analytically. First, we
compute the magnitude of the roots for the case of non-positive ∆:

|z˘| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ` λ2γ ˘ j
b

p1 ` dt αqp1 ´ dt αq ´ p1 ` λ2γq
2

1 ` dt α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

b

p1 ` λ2γq
2

` p1 ` dt αqp1 ´ dt αq ´ p1 ` λ2γq
2

|1 ` dt α|

“

a

p1 ` dt αqp1 ´ dt αq

|1 ` dt α|
“

d

p1 ` dt αqp1 ´ dt αq

p1 ` dt αq2
“

c

1 ´ dt α

1 ` dt α
ď 1,

(3.1.10)

since α ě 0. The equality holds for α “ 0.
Now, we compute the magnitude of the roots for the case of positive ∆:

|z˘| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ` λ2γ ˘

b

p1 ` λ2γq
2

´ p1 ` dt αqp1 ´ dt αq

1 ` dt α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

This means that the scheme is stable for the values of the Courant number λ such that,
for each value of βdh, either ∆ ď 0 or, if ∆ ą 0, the magnitude of z˘ is less or equal than
1 (i.e., ∆ ą 0 ^ |z˘| ď 1).
In the undamped case, the condition ∆ ď 0 reduces to

∆ “
`

1 ` λ2γ
˘2

´ 1 ď 0,

`

1 ` λ2γ
˘2

ď 1,

´ 1 ď 1 ` λ2γ ď 1,

´ 2 ď λ2γ ď 0,

that is
λ2γ ě ´2 ^ γ ď 0,

which, recalling the bounds on γ, can be rewritten as

minλ2γ ě ´2 ^ max γ ď 0,

λ2A1
ď 2 ^ 0 ď 0,

which results in

|λ| ď

c

2

A1
. (3.1.11)
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We also need to consider the condition ∆ ą 0 ^ |z˘| ď 1. First, examine the positive
solution, for which the condition becomes

ˇ

ˇ

ˇ

ˇ

1 ` λ2γ `

b

p1 ` λ2γq
2

ˇ

ˇ

ˇ

ˇ

ď 1,

´ 1 ď 2 ` 2λ2γ ď 1,

2 ` 2λ2γ ě ´1 ^ 2 ` 2λ2γ ď 1,

that is
λ2γ ě ´

3

2
^ λ2γ ď ´

1

2
,

which again, recalling the bounds on γ, can be rewritten as

minλ2γ ě ´
3

2
^ maxλ2γ ď ´

1

2
,

λ2A1
ď

3

2
^ λ2 ¨ 0 ď ´

1

2
,

which is never satisfied.
By excess of zeal, we consider the negative solution, for which the condition becomes

ˇ

ˇ

ˇ

ˇ

1 ` λ2γ ´

b

p1 ` λ2γq
2

ˇ

ˇ

ˇ

ˇ

ď 1,

0 ď 1,

which is always satisfied.
This means that, in the undamped case, only with ∆ ď 0 we can guarantee that |z˘| ď 1.
Hence, from Eq. (3.1.11) we obtain the CFL condition for the undamped FDTD p2, 6q

scheme:

|λ| ď

c

2

A1
“

d

2

|A| ` |B| ` |C| `
|D|

2

“

c

45

68
“

3
?
85

34
« 0.8135. (3.1.12)

In the damped case, we already know from Eq. (3.1.10) that, in case of non-positive ∆, we
have complex conjugate roots of unit magnitude less than 1 (see Eq. 3.1.10): this means
that, for values of λ such that ∆ ď 0, @βdh, the scheme is stable. This condition can be
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expressed as
`

1 ` λ2γ
˘2

´ p1 ` dt αqp1 ´ dt αq ď 0,

1 `
`

λ2γ
˘2

` 2λ2γ ď 1 ´ pdt αq
2,

`

λ2γ
˘2

` 2
`

λ2γ
˘

` pdt αq
2

ď 0.

First, we find the root of the associated equation:

`

λ2γ
˘2

` 2
`

λ2γ
˘

` pdt αq
2

“ 0,

`

λ2γ
˘

˘
“ ´1 ˘

a

1 ´ pdt αq2.

For pdt αq2 ą 1 Ñ dt α ą 1, we have that ∆1 “
∆ 1 ´ pdt αq2 is negative and the inequality

has no solution. If ∆1 ě 0, i.e., dt α ď 1, the solution is

´ 1 ´
a

1 ´ pdt αq2 ď λ2γ ď ´1 `
a

1 ´ pdt αq2,

λ2γ ě ´1 ´
a

1 ´ pdt αq2 ^ λ2γ ď ´1 `
a

1 ´ pdt αq2,

which, recalling the bounds on γ, can be rewritten as

minλ2γ ě ´1 ´
a

1 ´ pdt αq2 ^ maxλ2γ ď ´1 `
a

1 ´ pdt αq2,

λ2A1
ď 1 `

a

1 ´ pdt αq2 ^ 0 ď ´1 `
a

1 ´ pdt αq2,

λ2 ď
1 `

a

1 ´ pdt αq2

A1
^
a

1 ´ pdt αq2 ě 1,

that is

|λ| ď

d

1 `
a

1 ´ pdt αq2

A1
^ pdt αq

2
ď 0,

which is satisfied only for α “ 0. In fact, inspecting Fig. 3.1.3, we notice that, for
0 ă dt α ď 1, there’s no λ such that the condition ∆ ď 0 is satisfied for all the values of
βdh.
However, recalling Fig. 3.1.2, we know that there are some values of λ such that, for each
value of βdh, either ∆ ď 0 or ∆ ą 0 ^ |z˘| ď 1. In particular, it can be proven that a
CFL condition of the damped p2, 6q FDTD scheme is, again, given by Eq. (3.1.12), which
we report for readability:

|λ| ď

c

2

A1
“

3
?
85

34
« 0.8135.

For the sake of clarity, the CFL condition could be higher for higher values of α, but we



48 3| Simulation of the wave equation through the FDTD method

prefer to have a stability criterion valid for the worst case (α “ 0).

Dissipation and dispersion analysis

Consider the characteristic equation of the FDTD p2, 6q scheme in Eq. (3.1.8) with α “ 0,
and impose z “ ejωdt:

ejωdt ´ 2
`

1 ` λ2γ
˘

` e´jωdt
“ 0,

cospωdtq “ 1 ` λ2γ,

which, recalling the definition of γ in Eq. (3.1.9), becomes

1 ´ 2 sin2

ˆ

1

2
ωdt

˙

“ 1 ` λ2
„

A ` B ` C `
D

2

ȷ

´ 2λ2
„

A sin2

ˆ

3

2
βdh

˙

` B sin2

ˆ

βdh

˙

` C sin2

ˆ

1

2
βdh

˙ȷ

.

Noticing that A`B `C `D{2 “ 0 (see Eq. 3.1.2), the above equation can be rewritten
as

sin2

ˆ

1

2
ωdt

˙

“ λ2
„

A sin2

ˆ

3

2
βdh

˙

` B sin2

ˆ

βdh

˙

` C sin2

ˆ

1

2
βdh

˙ȷ

,

sin

ˆ

1

2
ωdt

˙

“ λ

d

A sin2

ˆ

3

2
βdh

˙

` B sin2

ˆ

βdh

˙

` C sin2

ˆ

1

2
βdh

˙

,

which results in the dispersion relation for the FDTD p2, 6q scheme:

ω “ ˘
2

dt
arcsin

˜

λ

d

A sin2

ˆ

3

2
βdh

˙

` B sin2

ˆ

βdh

˙

` C sin2

ˆ

1

2
βdh

˙

¸

. (3.1.13)

The numerical phase and group velocities (respectively defined in Eq. (2.3.14a) and
Eq. (2.3.14b)) depend on the choice of the parameter λ. The velocity curves, as functions
of frequency f “ ω{p2πq for different values of λ, are shown in Fig. 3.1.4. Notice that,
when λ “ λmax, there is a discontinuity in the group velocity.
For the FDTD p2, 6q scheme, the best numerical behavior (less dispersion) is obtained for
low values of λ in a limited frequency band where the response is nearly flat; in general,
there is a trade-off between the bandwidth of the scheme and the amount of numerical
dispersion, thus the most suitable choice of λ depends on the application. For example,
if we want the phase velocity to be limited in a range r1 ´ ε, 1 ` εs, we choose the value
of λ that satisfies this requirement while maximizing the scheme’s bandwidth as much as
possible.
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Figure 3.1.4: Numerical phase velocity (up) and group velocity (down) as a function
of frequency f , normalized by the model velocity c0, for the FDTD p2, 6q scheme in
Eq. (3.1.8), for a variety of values of λ, as indicated. The sample rate is chosen as
44100Hz.
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Figure 3.1.5: Plot of the argument of the square root in Eq. 3.1.13. We notice that the
maximum corresponds to the constructive interference of the first and third "harmonic"
when the second harmonic is zero.

The effects of dispersion are illustrated in Fig. 3.1.6, in which we show the wave packet
at t “ 0 (a Gaussian distribution of width 1{500) and at t “ 1 for different values of λ.
Notice that, for λ Ñ 0.8135 . . . , the higher-frequency components surpass the wavefront,
illustrating the phase velocity characteristic of the scheme. Notice also that the gross
speed of the wave packet is faster as well, illustrating the group velocity characteristic.
We recall that the expected amplitude of the wave packet at the final time of simulation
is half of that at the start, because the wave is split in two propagating waves.
In Fig. 3.1.7 and Fig. 3.1.8 we show the frequency response (respectively magnitude and
phase) for different values of λ, from which we can infer the dissipation and dispersion
characteristic of the scheme. They are obtained by performing the ratio between the FFT
of the wave packet at t “ 1 and the one at t “ 0. We notice that the best results (less
dissipation and less dispersion) are obtained for low values of λ, and the artifacts gets
worse for λ Ñ 0.8135 . . . .
Further confirmations of the behavior of the scheme (3.1.3) are found in Fig. 3.1.9, in
which we show the DCT of the wave packet at t “ 0 and at t “ 1 for different values of λ.
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Figure 3.1.6: The snapshot in the northwest corner depicts the wave packet at t “ 0, a Gaussian
distribution with a width of 1{500. The remaining snapshots depict the output of second order FDTD
p2, 6q at t “ 1 for different values of λ. The wave speed c is set to 1, α “ 0, and the spatial step size is
dh “ 4e´ 4. The ground truth solution is displayed using dashed lines.

Figure 3.1.7: The northwest image represents the magnitude of the FFT of the wave packet at t “ 0.
The other figures depict the magnitude of the frequency response of second order FDTD p2, 6q for different
values of λ. The ground truth solution is displayed using dashed lines.
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Figure 3.1.8: The northwest image represents the unwrapped phase of the FFT of the wave packet
at t “ 0. The other figures depict the phase of the frequency response of second order FDTD p2, 6q for
different values of λ. The ground truth solution is displayed using dashed lines.

Figure 3.1.9: The northwest snapshot represents the DCT of the wave packet at t “ 0. The other
snapshots depict the DCT of the output from second order FDTD p2, 6q for different values of λ. The
ground truth solution is displayed using dashed lines.
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The bandwidth of the scheme can be computed analytically from Eq. (3.1.13). Considering
only the positive solution, using ω “ 2πf , defining the sampling frequency fs “ 1{dt, and
maximizing the argument of the square root (see Fig. 3.1.5), the maximum frequency
fmax will be given by

2πfmax “ 2fs arcsin
`

λ
?
A ` C

˘

,

fmax “
fs
π
arcsin

`

λ
?
A ` C

˘

,

fmax “
fs
π
arcsin

˜

λ

c

68

45

¸

,

which is defined for any value of λ which satisfies the CFL condition in Eq. (3.1.12).

3.1.2. Simulation of a test case

Consider the propagating wave test case in Subsec. 2.1.7. The results of the simulation
using second order FDTD with dh “ 0.1 and λ “ 0.8 are shown in Fig. 3.1.10.

(a) Top view. (b) 3D view.

Figure 3.1.10: propagating wave test case simulated with second order FDTD p2, 6q with
parameters dh “ 0.1 and λ “ 0.8.

3.1.3. Convergence test

Consider the standing wave test case in Subsec. 2.1.7. The results of convergence test
on second order FDTD with dh “ 1e ´ 2 and different values of dt are shown in Fig.
3.1.11: for each value of dt, we show the values of L1, L2, and L8 norm (Def. 2.3.1) of the
error (difference between numerical solution and ground truth at the last time instant).
Analogously, in Fig. 3.1.12, we show the results of convergence test with dt “ 1e´ 3 and
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different values of dh.
Notice that the theoretical order of accuracy is not O pdt2 ` dh6q as one would expect: in
fact, the order of accuracy of a numerical scheme is, in general different from the order of
accuracy of the finite difference operators employed to approximate the partial derivatives.
It has been found that the best fitting order of accuracy for second order FDTD p2, 6q is
O pdt ` dh3q.

Figure 3.1.11: Convergence test on second order FDTD p2, 6q with dh “ 1e ´ 2 and
different values of dt. The red curve represents the theoretical convergence behavior.
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Figure 3.1.12: Convergence test on second order FDTD p2, 6q with dt “ 1e ´ 3 and
different values of dh. The red curve represents the theoretical convergence behavior.

3.2. Discretization of the first order equation
We employ a first order representation for the wave equation:

$

&

%

9vp
¯
x, tq “ c2∆pp

¯
x, tq ´ 2αvp

¯
x, tq ` fp

¯
x, tq, t P R`,

¯
x P R3,

9pp
¯
x, tq “ vp

¯
x, tq, t P R`,

¯
x P R3.

(3.2.1)

Analogously to the discretization of the second-order wave equation in Sec. 3.1, we
consider the following discretization of the x-axis with a constant step size dh, focusing
on the 1D case for simplicity:

xi “ i ¨ dh, i “ 0, . . . , I ´ 1,

where xi is the i-th grid point.
Furthermore, we proceed by approximating the partial derivatives with finite differences.
For the pressure velocity we employ implicit Euler, while for the pressure we use explicit



56 3| Simulation of the wave equation through the FDTD method

Euler, obtaining
$

’

’

&

’

’

%

¯
vn`1 ´

¯
vn

dt
“

c2

dh2
rKs

¯
pn`1

´ 2α
¯
vn`1

`
¯
fn`1,

¯
pn`1 ´

¯
pn

dt
“
¯
vn,

where
¯
p,

¯
v and

¯
f are vectors of dimension I, while the matrix rKs is of dimension I ˆ I.

It can be rewritten as
$

’

’

&

’

’

%

¯
vn`1

“ ¯
vn ` c2 dt

dh2 rKs
¯
pn`1 ` dt

¯
fn`1

1 ` 2dt α
,

¯
pn`1

“ dt
¯
vn `

¯
pn,

(3.2.2)

or, making both equations independent of each other, as

$

’

’

&

’

’

%

¯
vn`1

“

´

1 ` c2 dt2

dh2 rKs

¯

¯
vn ` c2 dt

dh2 rKs
¯
pn ` dt

¯
fn`1

1 ` 2dt α
,

¯
pn`1

“ dt
¯
vn `

¯
pn,

(3.2.3)

To make the notation more compact, we define the state vector
¯
z of dimension 2I as

¯
z “

∆

»

–¯
v

¯
p

fi

fl ,

so that Eq. (3.2.2) can be rewritten as

¯
zn`1

“

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl

¯
zn `

»

–

dt
¯
fn`1

¯
0I

fi

fl . (3.2.4)

We define the system matrix
“

K
‰

of dimension 2I ˆ 2I as

“

K
‰

“
∆

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl , (3.2.5)

and the system force vector
¯
f of dimension 2I as

¯
f “

∆

»

–

dt
¯
fn`1

¯
0I

fi

fl ,
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so that Eq. (3.2.4) can be rewritten in a compact form as

¯
zn`1

“
“

K
‰

¯
zn `

¯
f
n`1

. (3.2.6)

This equation represents an explicit finite difference scheme of order p2, 6q which computes
the solution at time tn`1 starting from the solution at time tn.

3.2.1. Analysis of the scheme

In this subsection, we’ll perform the analysis of the derived finite difference method.

Stability analysis

In this subsection, we will perform the stability analysis of the derived finite difference
method (see Eq. 3.2.6), which we report for readability:

¯
zn`1

“
“

K
‰

¯
zn `

¯
f
n
. (3.2.7)

Theorem 3.2.1: Convergence of a linear system

Consider the following homogeneous system of first order linear difference equations
with constant coefficients:

¯
xn`1

“ rAs
¯
xn,

where the matrix rAsNˆN and the initial vector
¯
xp0q are known.

The system is asymptotically stable, i.e.,

lim
nÑ8

rAs
n

“
¯
0,

if and only if the spectral radius ρprAsq, defined as

ρprAsq “
∆ max |λ|, (3.2.8)

is less than 1 (Meyer [2000]).

From Th. 3.2.1 follows that we need to guarantee that the spectral radius of
“

K
‰

is less
than 1, recalling that

“

K
‰

is defined in Eq. (3.2.5) as

“

K
‰

“
∆

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl . (3.2.9)
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To compute the spectral radius of
“

K
‰

, we first compute that of rKs which, recalling
Eq. (3.1.4), is defined as

rKs “
∆

»

—

—

—

—

—

—

—

–

. . .

A B C D C B A

A B C D C B A

A B C D C B A
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It can be proven that

max |λk| ď 2|A| ` 2|B| ` 2|C| ` |D| “
272

45
« 6.0444 , (3.2.10)

implying that
ρprKsq ď 2|A| ` 2|B| ` 2|C| ` |D| “

∆ ρprKsqmax.

It has been numerically verified that

lim
IÑ8

ρprKsq “ ρprKsqmax. (3.2.11)

Furthermore, from Eq. (3.2.10) and the definition of spectral radius in Eq. (3.2.8) follows
that, for all eigenvalues λk of the matrix rKs we have that

|λk| ď ρprKsqmax,

and it has been numerically verified that

lim
IÑ8

λk “ ´ρprKsqmax. (3.2.12)

To prove this result we can use the Gershgorin Circle Theorem in 3.2.2.
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Theorem 3.2.2: Gershgorin circle theorem

The Gershgorin circle theorem (Bell [1965]) states that every eigenvalue of a square
matrix rAs of dimension N ˆ N lies in the union of the circles (Gershgorin discs)

|z ´ aii| ď Ri, (3.2.13)

where the radius Ri is computed summing the moduli of the off-diagonal elements
in the i-th row or column

Ri “
ÿ

j‰i

|aij|.

Analogously, we can define an upper bound on the larger circles

|z| ď |aii| ` Ri. (3.2.14)

To sum up, according to this theorem, every eigenvalue of a matrix must lie within at
least one of the circles in the complex plane centered at the diagonal entries of the matrix
and with radius equal to the sum of the absolute values of the off-diagonal entries in
the corresponding row. Equivalently, every eigenvalue lies within the union of the circles
centered in zero and with radius |aii| ` Ri.
For our matrix, the diagonal entries are all equal to D, and the off-diagonal entries in the
each row are A for the first and last entries, B for the second and second-to-last entries,
C for the remaining entries. Therefore, every eigenvalue of the matrix must lie within the
circle in the complex plane centered at D with radius 2|A| ` 2|B| ` 2|C|. Equivalently,
recalling Eq. (3.2.14), we state that

max |λk| ď |D| ` 2|A| ` 2|B| ` 2|C|,

which is exactly the upper bound in Eq. (3.2.10). l

To compute an upper bound on the spectral radius of the matrix
“

K
‰

, we can exploit its
property of being a block matrix. We start by computing the characteristic polynomial
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of
“

K
‰

:
ˇ

ˇ

“

K
‰

´
“

I
‰ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl ´ λk
“

I
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α
´ λkrIsIˆI

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI ´ λkrIsIˆI

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

p1 ´ p1 ` 2dt αqq
rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI p1 ´ λkqrIsIˆI

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

that is
ˇ

ˇ

“

K
‰

´
“

I
‰
ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

1 ` 2dt α

ˆ

p1 ´ λkq p1 ´ p1 ` 2dt αqλkq rIs ` p1 ´ λkqc2
dt2

dh2
rKs ´ c2

dt2

dh2
rKs

˙
ˇ

ˇ

ˇ

ˇ

“

ˆ

1

1 ` 2dt α

˙I ˇ
ˇ

ˇ

ˇ

p1 ´ λkq p1 ´ p1 ` 2dt αqλkq rIs ´ λkc
2 dt

2

dh2
rKs

ˇ

ˇ

ˇ

ˇ

“

ˆ

1

1 ` 2dt α
λkc

2 dt
2

dh2

˙I
ˇ

ˇ

ˇ

ˇ

ˇ

p1 ´ λkq p1 ´ p1 ` 2dt αqλkq

λkc
2 dt2

dh2

rIs ´ rKs

ˇ

ˇ

ˇ

ˇ

ˇ

,

thus, the characteristic equation of
“

K
‰

is

ˇ

ˇ

ˇ

ˇ

ˇ

p1 ´ λkq p1 ´ p1 ` 2dt αqλkq

λkc
2 dt2

dh2

rIs ´ rKs

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (3.2.15)

We also know that the characteristic equation of rKs is

|λkrIs ´ rKs| “ 0. (3.2.16)

Comparing the characteristic equations of rKs and
“

K
‰

, namely Eq. (3.2.16) and
Eq. (3.2.15), we derive that

λk “
p1 ´ λkq p1 ´ p1 ` 2dt αqλkq

λkc
2 dt2

dh2

,



3| Simulation of the wave equation through the FDTD method 61

which, recalling the definition of the Courant number λ “
∆ cdt{dh, can be rewritten as

λk “
p1 ´ λkq p1 ´ p1 ` 2dt αqλkq

λkλ
2

,

λ2λkλk “ p1 ´ λkq p1 ´ p1 ` 2dt αqλkq

“ 1 ´ p1 ` 2dt αqλk ´ λk ` p1 ` 2dt αqλ2
k
,

which results in the following quadratic equation:

p1 ` 2dt αqλ2
k

´ p2 ` 2dt α ` λkλ
2
qλk ` 1 “ 0. (3.2.17)

Let’s now compute the roots of Eq. (3.2.17):

λk,˘ “ 1 ` dt α `
1

2
λkλ

2
˘

d

ˆ

1 ` dt α `
1

2
λkλ2

˙2

´ 1

“ 1 ` dt α `
1

2
λkλ

2
˘

c

dt2α2 ` 2dt α `
1

4
λ2kλ

4 ` p1 ` dt αqλkλ2.

Recalling Th. 3.2.1, the scheme is stable if the absolute value of λk,˘ is less than 1 for
λk “ ´ρprKsqmax (see Eq. 3.2.12). Hence, the roots can be expressed as

λk,˘ “ 1 ` dt α ´
ρprKsqmax

2
λ2 ˘

d

ˆ

1 ` dt α ´
ρprKsqmax

2
λ2
˙2

´ 1.

Let

∆ “
∆

ˆ

1 ` dt α ´
ρprKsqmax

2
λ2
˙2

´ 1.

In Fig. 3.2.1 we plot the absolute value of the roots z˘ and ∆ as a function of λ for
different values of α. Notice how, for λ À 0.8, both roots have magnitude less than 1

and ∆ ă 0 for all the considered values of α: this means that the CFL condition might
be |λ| À 0.8; a more accurate bound will be computed below. We also notice that it
would reasonable to consider the case α “ 0 as the worst case, i.e., the case for which the
stability criterion would be more strict.
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Figure 3.2.1: Absolute value of the roots and ∆ as a function of the Courant number λ
for different values of the absorption coefficient α. The dashed curve in red in the roots
plots represents the stability limit |z˘| “ 1, while in the ∆ plot it represents ∆ “ 0.

We want to compute a more accurate stability criterion: we’ll consider the worst case
α “ 0. If ∆ ď 0, the absolute value of the roots, which are complex conjugate, is

ˇ

ˇλk,˘
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
ρprKsqmax

2
λ2 ˘ j

d

´
pρprKsqmaxq

2

4
λ4 ` ρprKsqmaxλ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

d

ˆ

1 ´
ρprKsqmax

2
λ2
˙2

´
pρprKsqmaxq

2

4
λ4 ` ρprKsqmaxλ2

“

d

1 `
pρprKsqmaxq

2

4
λ4 ´ ρprKsqmaxλ2 ´

pρprKsqmaxq
2

4
λ4 ` ρprKsqmaxλ2 “ 1.

It can be proven that, for ∆ ě 0, the condition |λk,˘| ă 1 cannot be satisfied. This means
that, to ensure the stability of the scheme in the undamped case, we must satisfy the



3| Simulation of the wave equation through the FDTD method 63

condition ∆ ď 0, i.e.,

ˆ

1 ´
ρprKsqmax

2
λ2
˙2

´ 1 ď 0,

´ 1 ď 1 ´
1

2
ρprKsqmaxλ

2
ď 1,

1 ´
1

2
ρprKsqmaxλ

2
ě ´1 ^ 1 ´

ρprKsqmax

2
λ2 ď 1,

´ ρprKsqmaxλ
2

ě ´4 ^ ρprKsqmax ě 0,

that is
λ2 ď

4

ρprKsqmax

,

|λ| ď
2

a

ρprKsqmax

,

which results in the stability criterion of first order FDTD:

|λ| ď
2

a

2|A| ` 2|B| ` 2|C| ` |D|
“

d

2

|A| ` |B| ` |C| `
|D|

2

“
3
?
85

34
« 0.8135. (3.2.18)

Eq. (3.2.18) corresponds exactly to the stability criterion of the second order FDTD
scheme in Eq. (3.1.12). With α ą 0, the CFL condition would be higher, however we’re
considering the worst case.

Dissipation and dispersion analysis

The effects of dispersion of the first order FDTD p1, 6q scheme in Eq. (3.2.6) are illustrated
in Fig. 3.2.2, in which we show the wave packet at t “ 0 (a Gaussian distribution of width
1{500) and at t “ 1 for different values of λ. In Fig. 3.2.3 and Fig. 3.2.4 we show the
frequency response (respectively magnitude and phase) for different values of λ. In Fig.
3.2.5 we show the DCT of the wave packet at t “ 0 and at t “ 1 for different values of λ.
We notice that the dissipation and dispersion characteristic of this scheme are worse than
that of the second order FDTD p2, 6q scheme in Eq. (3.1.3), but similar considerations
hold. Again, we notice that, for λ Ñ 0.8135 . . . , the higher-frequency components surpass
the wavefront and the gross speed of the wave packet is faster as well. The best results
(less dissipation and less dispersion) are obtained for low values of λ, and the artifacts
gets worse for λ Ñ 0.8135 . . . .
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Figure 3.2.2: The snapshot in the northwest corner depicts the wave packet at t “ 0, a Gaussian
distribution with a width of 1{500. The remaining snapshots depict the output of first order FDTD p1, 6q

at t “ 1 for different values of λ. The wave speed c is set to 1, α “ 0 is applied, and the spatial step size
is dh “ 4e´ 4. The ground truth solution is displayed using dashed lines.

Figure 3.2.3: The northwest image represents the magnitude of the FFT of the wave packet at t “ 0.
The other figures depict the magnitude of the frequency response of first order FDTD p1, 6q for different
values of λ. The ground truth solution is displayed using dashed lines.
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Figure 3.2.4: The northwest image represents the unwrapped phase of the FFT of the wave packet at
t “ 0. The other figures depict the phase of the frequency response of first order FDTD p1, 6q for different
values of λ. The ground truth solution is displayed using dashed lines.

Figure 3.2.5: The northwest snapshot represents the DCT of the wave packet at t “ 0. The other
snapshots depict the DCT of the output from first order FDTD p1, 6q for different values of λ. The
ground truth solution is displayed using dashed lines.
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3.2.2. Simulation of a test case

Consider the propagating wave test case in Subsec. 2.1.7. The results of the simulation
using first order FDTD with dh “ 0.1 and λ “ 0.8 are shown in Fig. 3.2.6.

(a) Top view. (b) 3D view.

Figure 3.2.6: propagating wave test case simulated with first order FDTD p1, 6q with
parameters dh “ 0.1 and λ “ 0.8.

3.2.3. Convergence test

Consider the standing wave test case in Subsec. 2.1.7. The results of convergence test
on first order FDTD with dh “ 1e ´ 2 and different values of dt are shown in Fig. 3.2.7:
for each value of dt, we show the values of L1, L2, and L8 norm (Def. 2.3.1) of the
error (difference between numerical solution and ground truth at the last time instant).
Analogously, in Fig. 3.2.8, we show the results of convergence test with dt “ 1e ´ 3 and
different values of dh.
Notice that the theoretical order of accuracy is not O pdt ` dh6q as one would expect.
It has been found that the best fitting order of accuracy for first order FDTD p1, 6q is
O pdt ` dh3q.
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Figure 3.2.7: Convergence test on first order FDTD p1, 6q with dh “ 1e´ 2 and different
values of dt. The red curve represents the theoretical convergence behavior.

Figure 3.2.8: Convergence test on first order FDTD p1, 6q with dt “ 1e ´ 3 and different
values of dh. The red curve represents the theoretical convergence behavior.
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3.3. Treatment of boundary conditions
In this paragraph, we show how to impose the Neumann boundary conditions for the
previously derived FDTD schemes in the 1D case.
Consider the following discretization of the x-axis with constant step size dh:

xi “ i ¨ dh, i “ 0, . . . , I ´ 1,

where xi is the i-th grid point. We want to impose the following homogeneous conditions
at the left boundary:

Bp

Bx

∣∣∣∣
x“x0,t

“ 0.

The right boundary condition can be treated similarly.
Consider the 6-th order accurate centered stencil for the second space derivative of
Eq. (3.1.1). The second space derivative evaluated at the leftmost point x0 is approx-
imated as follows:

B2p

Bx2

∣∣∣∣
¯
x“

¯
x1,t“tn

«
Apn´3 ` Bpn´2 ` Cpn´1 ` Dpn0 ` Cpn1 ` Bpn2 ` Apn3

dh2
.

As the points x´3, x´2, x´1 are not defined, we impose even symmetry about x´1{2
†:

$

’

’

’

’

&

’

’

’

’

%

pn´1 “ pn0 ,

pn´2 “ pn1 ,

pn´3 “ pn2 ,

(3.3.1)

so that the stencil becomes

B2p

Bx2

∣∣∣∣
¯
x“

¯
x0,t“tn

«
pD ` Cqpn0 ` pC ` Bqpn1 ` pB ` Aqpn2 ` Apn3

dh2
.

†As will become clearer in Ch. 5, to derive a Domain Decomposition scheme, the type of even
symmetry assumed for the FDTD method must be the same as the one defined by the DCT-II (see
Eq. 2.2.22) employed for the Fourier method (Ch. 4).
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The stencils to evaluate the second space derivative at the points x1, x2 can be derived
analogously. Thus, it can be proven that the matrix rKs becomes

»

—

—

—

—

—

—

—

—

—

—

—

–

D ` C C ` B B ` A A

C ` B D ` A C B A

B ` A C D C B A

A B C D C B A

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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4| Simulation of the wave
equation through the Fourier
method

In this chapter, we focus on the Fourier method, an efficient numerical technique that
relies on the use of discrete transforms to simulate the acoustic wave equation. We will
focus on the Discrete Cosine Transform (DCT), a transform that is particularly well-
suited for simulating waves that are a combination of cosines. We will explore how to
derive the acoustic wave equation in the DCT-time domain, and how to discretize it. We
will explain why the homogeneous Neumann boundary conditions are necessary for this
method, as other boundary conditions can result in spectral leakage and cause numerical
inaccuracies.

4.1. Choice of the discrete transform
We want to select a discrete transform which let us express the solution pp

¯
x, tq in terms

of the mode shapes for the homogeneous Neumann boundary conditions. As explained in
Bull and Zhang [2021], the discrete Fourier transform (DFT, introduced in Subsec. 2.2.2)
can serve as a suitable starting point for our purpose. After all, we know that the DFT
is well matched to sinusoidal data. However, some complications arise.
With the DFT, a windowed † finite-length data sequence is naturally extended by periodic
extension prior to transformation. Applying the discrete-time Fourier series (DTFS) to
this new periodic function produces the DFT coefficients: this is quite useful for capturing
the magnitude and phase of the underlying signal in the frequency domain.
The extension process using a rectangular window introduces discontinuities, which cause
spectral leakage or ripples in the frequency domain: this can be addressed by using
smoother windows, which however produce a smearing effect worse than in the case of
rectangular window which has a narrower main lobe. All these effects distort the char-
acteristics of the underlying signal, and the original signal is not recoverable anymore,
which is against our goal of accurate simulation.

†The DFT implicitly applies a rectangular window on the time-domain signal.



72 4| Simulation of the wave equation through the Fourier method

We now state the desirable characteristic of our discrete transform:

• Good energy compaction, so that truncating the coefficients introduces negligible
errors.

• Orthonormality, to support energy balancing and for a fast implementation of the
inverse transform.

• Basis functions corresponding to the mode shapes obtained with the homogeneous
Neumann boundary conditions. As a bonus, the basis functions will be independent
of the signal, avoiding the need to recompute the basis functions at each iteration.

• Minimal spectral leakage, to not degradate the accuracy of the simulation.

• Separability, to reduce complexity for fast 3D computations.

• Real-valued basis functions and coefficients, to ease arithmetic complexity and sup-
port simple matrix transposition.

We anticipate that the DCT, introduced in Subsec. 2.2.2, satisfies all these requirements.
Like the DFT, the DCT provides information about a signal in the frequency domain.
However, unlike the DFT, the DCT of a real-valued signal is itself real-valued and impor-
tantly it also does not introduce artifacts due to periodic extension of the input data. A
comparison is shown in Fig. 4.1.1.

Figure 4.1.1: Comparison of DFT and DCT. Top: Input signal xrns and the symmetrically
extended sequence x1rns. Middle: Eight-point DFT (magnitude only) and the eight-point
DCT. Bottom: inverse DFT (magnitude only) and inverse DCT. Source: Bull and Zhang
[2021].
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With the DFT, a finite-length data sequence is naturally extended by periodic extension.
The DCT avoids the artifacts introduced by this periodic extension by symmetrically
extending the signal prior to application of the DFT. This produces an even sequence
which has the added benefit of yielding real-valued coefficients.
As shown in Fig. 2.2.3, the basis functions are analogous to the mode shapes with the
homogeneous Neumann boundary conditions and are independent of the signal. As the
solution of the acoustic wave equation is a linear combination of the mode shapes, and
these mode shapes correspond exactly to the basis functions of the DCT, spectral leakage
is dramatically reduced.
The proof of the remaining characteristics is out of the scope of this work.

4.2. Discretization of the unviscid wave equation in

the Fourier-time domain
In Subsec. 2.4.3 we have derived the acoustic wave equation in the Fourier-time domain
with the homogeneous Neumann boundary conditions (see Eq. 2.4.18), which we report
for readability:

d2Pmnpptq

dt2
` k2mnpc

2Pmnpptq “ Fmnpptq, m P N`, n P N`, p P N`.

To represent the DCT coefficients Pmnpptq and Fmnpptq in a calculator, it’s convenient to
introduce the global index i defined as

i “
∆ p

LyLx

dh2
` n

Lx

dh
` m ` 1.

Then, we truncate the index sequence so that i “ 1, 2, . . . , I with ωI ě ωmax, where ωmax

is the highest radian frequency we’re interested in.
We get

d2Piptq

dt2
` ω2

i Piptq “ Fiptq, i “ 1, . . . , I, (4.2.1)

where ωi can be expressed as

ωi “ ωmnp “ cπ

d

m2

L2
x

`
n2

L2
y

`
p2

L2
z

,



74 4| Simulation of the wave equation through the Fourier method

with ω1 “ ω0,0,0 “ 0, Cfr. Eq. (2.2.26).
Eq. (4.2.1) in vector notation becomes

d2
¯
P ptq

dt2
`
¯
ω2

d
¯
P ptq “

¯
F ptq, (4.2.2)

where
¯
P ,

¯
F , and

¯
ω2 † are I-length vectors, while d represents the Hadamard product

(also known as elementwise product). In case we are interested in the pressure velocity
(defined in Eq. (2.1.2)), we introduce the I-length vector

¯
V storing the DCT coefficients

of the pressure velocity.
To convert the pressure field values at a given time pp

¯
x, t̂q to the modal coefficients

¯
P pt̂q

and back, we employ respectively the DCT and the iDCT:

¯
P pt̂q “ DCT

␣

pp
¯
x, t̂q

(

,

pp
¯
x, t̂q “ iDCT

␣

¯
P pt̂q

(

.

An analogous transformation is defined for the force terms and for the pressure velocity:

¯
F pt̂q “ DCT

␣

fp
¯
x, t̂q

(

,

fp
¯
x, t̂q “ iDCT

␣

¯
F pt̂q

(

,

¯
V pt̂q “ DCT

␣

vp
¯
x, t̂q

(

,

vp
¯
x, t̂q “ iDCT

␣

¯
V pt̂q

(

.

4.2.1. Time integration

In Sec. 2.4 we have introduced the exact time integration of the forced harmonic oscillator.
As the DCT-time domain wave equation 4.2.2 represents I independent single degree-of-
freedom systems, its integration is trivial. In particular:

• The equation associated to the first mode (where ω1 “ 0) is

:P1ptq “ F1ptq,

which is solved by the following (second order finite-difference) scheme:

P n`1
1 “ 2P n

1 ´ P n´1
1 ` dt2F n

1 , n “ 1, 2, . . . ,

†The notation can be confusing; the square is applied elementwise. In other words,
¯
ω2 is the vector

storing the squared natural radian frequencies.
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where the coefficients have been inferred from Tab. 2.3.1. Note that this time-
stepping scheme is exact in time.

• The remaining equations represent independent forced harmonic oscillators of natu-
ral frequency ωi, i “ 2, . . . , I, whose time-stepping scheme is defined in Eq. (2.4.9).
However, it’s important to note that this time-stepping scheme is exact under the
assumption of F ptq constant over a time step dt: this is not a problem for input
source sounds, as the time step is necessarily below the sampling rate of the input
signal (Raghuvanshi et al. [2011]).

Hence, exact time integration of the unviscid acoustic wave equation in the DCT-time
domain is formulated as

$

’

&

’

%

P n`1
1 “ 2P n

1 ´ P n´1
1 ` dt2F n

1 ,

P n`1
i “ 2P n

i cospωidtq ´ P n´1
i `

2

ω2
i

F n
i p1 ´ cospωidtqq, i “ 2, . . . , I,

(4.2.3)

for n “ 1, 2, . . . .
To update the pressure velocity, we employ explicit Euler for the first mode and Prop.
2.4.3 for the remaining modes, obtaining the following scheme:

$

’

’

’

&

’

’

’

%

V n
1 “

P n`1
1 ´ P n

1

dt
,

V n
i “

ωi

sinpωidtq
pP n`1

i ´ cospωidtqP
n
i q ´

1

ωi

tan

ˆ

ωidt

2

˙

F n
i , i “ 2, . . . , I,

(4.2.4)

for n “ 1, 2, . . . .

4.2.2. Stability, dissipation and dispersion analysis

We perform Von Neumann analysis (see Subsec. 2.3.3) on the second order Fourier scheme
in Eq. (4.2.3). We obtain the following characteristic equation:

z ´ 2 cospωidtq ` z´1
“ 0, (4.2.5)

hence the roots are

z˘ “ cospωidtq ˘
a

cos2pωidtq ´ 1 “ cospωidtq ˘ j sinpωidtq.
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Stability is achieved when the roots are of magnitude less or equal than 1. We have that
|z˘| “ 1, in fact

|z˘| “ cos2pωidtq ` sin2
pωidtq “ 1.

This means that the scheme is unconditionally stable.
Starting from the characteristic equation in Eq. (4.2.5), we want to derive the dispersion
relation imposing z “ ejωdt:

2 cospωdtq ´ 2 cospωidtq “ 0,

cospωdtq “ cospωidtq,

ω “ ωi,

hence the second order Fourier scheme is not dispersive, meaning that vϕ “ vg “ c.
The effects of dispersion are illustrated in Fig. 4.2.1, in which we show the wave packet
at t “ 0 (a Gaussian distribution of width 1{500) and at t “ 1 for different values of λ.
Notice that, for all values of λ, there are no artifacts (except, for λ ‰ 0.5, for a delay
inherent to the discrete time nature of the numerical solution) and the numerical solution
closely matches the ground truth solution. Notice also that the speed of the wave packet
is c as desired. We recall that the expected amplitude of the wave packet at the final
time of simulation is half of that at the start, because the wave is split in two propagating
waves.
In Fig. 4.2.2 and Fig. 4.2.3 we show the frequency response (respectively magnitude and
phase) for different values of λ, from which we can infer the dissipation and dispersion
characteristic of the scheme. They are obtained by performing the ratio between the FFT
of the wave packet at t “ 1 and the one at t “ 0. We notice that, except for a linear
phase difference for λ ‰ 0.5, there’s no dispersion and no dissipation.
Further confirmations of the behavior of the scheme (3.1.3) are found in Fig. 4.2.4, in
which we show the DCT of the wave packet at t “ 0 and at t “ 1 for different values of λ.
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Figure 4.2.1: The snapshot in the northwest corner depicts the wave packet at t “ 0, a
Gaussian distribution with a width of 1{500. The remaining snapshots depict the output
of the second order Fourier method at t “ 1 for different values of λ. The wave speed c

is set to 1, α “ 0, and the spatial step size is dh “ 4e ´ 4. The ground truth solution is
displayed using dashed lines.

Figure 4.2.2: The northwest image represents the magnitude of the FFT of the wave
packet at t “ 0. The other figures depict the magnitude of the frequency response of
the second order Fourier method for different values of λ. The ground truth solution is
displayed using dashed lines.
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Figure 4.2.3: The northwest image represents the unwrapped phase of the FFT of the
wave packet at t “ 0. The other figures depict the phase of the frequency response of
the second order Fourier method for different values of λ. The ground truth solution is
displayed using dashed lines.

Figure 4.2.4: The northwest snapshot represents the DCT of the wave packet at t “ 0.
The other snapshots depict the DCT of the output from the second order Fourier method
for different values of λ. The ground truth solution is displayed using dashed lines.
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4.2.3. Simulation of a test case

Consider the propagating wave test case in Subsec. 2.1.7. The results of the simulation
using the second order Fourier method with dh “ 0.1 and λ “ 1 are shown in Fig. 4.2.5.

(a) Top view. (b) 3D view.

Figure 4.2.5: propagating wave test case simulated with the second order Fourier method
with parameters dh “ 0.1 and λ “ 1.

4.2.4. Convergence test

Consider the standing wave test case in Subsec. 2.1.7. The results of convergence test on
the second order Fourier method with dh “ 1e ´ 2 and different values of dt are shown
in Fig. 4.2.6: for each value of dt, we show the values of L1, L2, and L8 norm (Def.
2.3.1) of the error (difference between numerical solution and ground truth at the last
time instant). Analogously, in Fig. 4.2.7, we show the results of convergence test with
dt “ 1e ´ 3 and different values of dh.
It has been found that the best fitting order of accuracy for the second order Fourier
method is O pdt ` dhq.
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Figure 4.2.6: Convergence test on the second order Fourier method with dh “ 1e´ 2 and
different values of dt. The red curve represents the theoretical convergence behavior.

Figure 4.2.7: Convergence test on the second order Fourier method with dt “ 1e´ 3 and
different values of dh. The red curve represents the theoretical convergence behavior.
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4.3. Discretization of the viscous wave equation in

the Fourier-time domain
From analogous considerations to Subsec. 4.2, starting from the viscous acoustic wave
equation in the Fourier-time domain (see Eq. 2.4.19), we obtain the following DCT-time
domain equation:

d2Piptq

dt2
` 2α

dPiptq

dt
` ω2

i Piptq “ Fiptq, i “ 1, . . . , I, (4.3.1)

which, in vector notation becomes

d2
¯
P ptq

dt2
` 2α

d
¯
P ptq

dt
`
¯
ω2

¯
P ptq “

¯
F ptq. (4.3.2)

This represents I independent forced damped harmonic oscillators. However, in Sec. 2.4,
we have shown that to perform time integration of damped harmonic oscillators, it’s
convenient to express its equation of motion as a first order system. Hence, we employ a
first order representation of Eq. (4.3.1), namely

»

–

9Viptq

9Piptq

fi

fl “

»

–

´2α ´ω2
i

1 0

fi

fl

»

–

Viptq

Piptq

fi

fl `

»

–

Fiptq

0

fi

fl , i “ 1, . . . , I.

4.3.1. Time integration

Analogously to Subsec. 4.2.1, we perform exact time integration of the DCT-time domain
wave equation in Eq. (4.3.2), which represents I independent single degree-of-freedom
systems. In particular:

• The equation associated to the first mode (where ω1 “ 0) is

:P1ptq ` 2α 9P1ptq “ F1ptq,

which, expressed as a first order system, corresponds to
$

&

%

9V1ptq “ ´2αV1ptq ` F1ptq,

9P1ptq “ V1ptq,

which, in turn, is discretized by the following finite-difference scheme (implicit Euler
for the pressure velocity DCT coefficient V1 and explicit Euler for the pressure DCT
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coefficient P1):

$

’

’

&

’

’

%

V n`1
1 ´ V n

1

dt
“ ´2αV n`1

1 ` F n`1
1 ,

P n`1
1 ´ P n

1

dt
“ V n

1 ,

n “ 0, 1, . . . ,

or equivalently
$

’

&

’

%

V n`1
1 “

V n
1 ` dtF n`1

1

1 ` 2αdt
,

P n`1
1 “ P n

` dt V n
1 ,

n “ 0, 1, . . . .

• The remaining equations represent independent forced damped harmonic oscillators
of natural frequency ωi, i “ 2, . . . , I, whose time-stepping scheme is defined in
Eq. (2.4.16).

Hence, exact time discretization of the viscous acoustic wave equation in the DCT-time
domain is formulated as the two following algorithms, respectively used to update the
pressure field and the pressure velocity:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Pn`1
1 “ Pn

1 ` dt V n
1 ,

Pi,e “
Fn
i

ω2
i

, i “ 2, . . . , I,

Pn`1
i “ Pi,e ` e´αdt

ˆ

pPn
i ´ Pi,eq

ˆ

cospωidtq `
α

ωi
sinpωidtq

˙

`
sinpωidtq

ωi
V n
i

˙

, i “ 2, . . . , I,

(4.3.3)

for n “ 1, 2, . . . .

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

V n`1
1 “

V n
1 ` dtFn

1

1 ` 2αdt
,

Pi,e “
Fn`1
i

ω2
i

, i “ 2, . . . , I,

V n`1
i “ e´αdt

ˆ

V n
i

ˆ

cospωidtq ´
α

ωi
sinpωidtq

˙

´

ˆ

ωi `
α2

ωi

˙

pPn
i ´ Pi,eq sinpωidtq

˙

, i “ 2, . . . , I,

(4.3.4)

for n “ 1, 2, . . . .

4.3.2. Stability, dissipation and dispersion analysis

It can be proven that the first order Fourier scheme in Eq. (4.3.3) is unconditionally stable,
not dispersive and not dissipative analogously to the second order scheme (see Subsec.
4.2.2). The effects of dispersion are illustrated in Fig. 4.3.1, in which we show the wave
packet at t “ 0 (a Gaussian distribution of width 1{500) and at t “ 1 for different values
of λ. In Fig. 4.3.2 and Fig. 4.3.3 we show the frequency response (respectively magnitude
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and phase) for different values of λ. In Fig. 3.2.5 we show the DCT of the wave packet
at t “ 0 and at t “ 1 for different values of λ.

Figure 4.3.1: The snapshot in the northwest corner depicts the wave packet at t “ 0, a
Gaussian distribution with a width of 1{500. The remaining snapshots depict the output
of the first order Fourier method at t “ 1 for different values of λ. The wave speed c is
set to 1, α “ 0, and the spatial step size is dh “ 4e ´ 4. The ground truth solution is
displayed using dashed lines.

Figure 4.3.2: The northwest image represents the magnitude of the FFT of the wave
packet at t “ 0. The other figures depict the magnitude of the frequency response of the
first order Fourier method for different values of λ. The ground truth solution is displayed
using dashed lines.
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Figure 4.3.3: The northwest image represents the unwrapped phase of the FFT of the
wave packet at t “ 0. The other figures depict the phase of the frequency response of the
first order Fourier method for different values of λ. The ground truth solution is displayed
using dashed lines.

Figure 4.3.4: The northwest snapshot represents the DCT of the wave packet at t “ 0.
The other snapshots depict the DCT of the output from the first order Fourier method
for different values of λ. The ground truth solution is displayed using dashed lines.
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4.3.3. Simulation of a test case

Consider the propagating wave test case in Subsec. 2.1.7. The results of the simulation
using the second order Fourier method with dh “ 0.1 and λ “ 0.5 are shown in Fig. 4.3.5.

(a) Top view. (b) 3D view.

Figure 4.3.5: propagating wave test case simulated with the first order Fourier method
with parameters dh “ 0.1 and λ “ 0.5.

4.3.4. Convergence test

Consider the standing wave test case in Subsec. 2.1.7. The results of convergence test on
the first order Fourier method with dh “ 1e´2 and different values of dt are shown in Fig.
4.3.6: for each value of dt, we show the values of L1, L2, and L8 norm (Def. 2.3.1) of the
error (difference between numerical solution and ground truth at the last time instant).
Analogously, in Fig. 4.3.7, we show the results of convergence test with dt “ 1e ´ 3 and
different values of dh.
It has been found that the best fitting order of accuracy for the first order Fourier method
is O pdt ` dhq.
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Figure 4.3.6: Convergence test on the first order Fourier method with dh “ 1e ´ 2 and
different values of dt. The red curve represents the theoretical convergence behavior.

Figure 4.3.7: Convergence test on the first order Fourier method with dt “ 1e ´ 3 and
different values of dh. The red curve represents the theoretical convergence behavior.
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4.4. Treatment of boundary conditions
In the current state, since we are considering the Fourier method, we are limited to
imposing the Neumann boundary conditions, as we rely on the DCT to obtain indepen-
dent single degree-of-freedom equations. This is because the DCT employs cosines as
basis functions, which coincide with the mode shapes obtained imposing the Neumann
boundary conditions. Imposing a different type of boundary conditions, such as Dirichlet
conditions, would lead to a non-negligible spectral leakage which would negatively affect
the accuracy of the solution.
To impose Dirichlet boundary conditions, one could replace the DCT with the DST,
which uses sines basis functions instead of cosine ones as the kernel. In general, for more
complex boundary conditions, a different discrete transform is required, since the mode
shapes will not be trigonometric functions anymore: these transforms are likely more
computationally expensive.
Finally, it is possible to impose the non-homogeneous Dirichlet or Neumann boundary
conditions using modified versions of the DCT/DST (analogous to the Shifted Discrete
Fourier Transform) that shift the basis functions to satisfy the boundary conditions. How-
ever, this approach is out of the scope of this work (and is computationally expensive) and
would lack clear advantages in terms of physical modeling over homogeneous boundary
conditions.
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decomposition

In the previous chapters, we have introduced two numerical methods, namely the Finite-
Difference Time-Domain (FDTD) method in Ch. 3 and the Fourier method in Ch. 4, for
solving the wave equation. Although these methods possess straightforward formulations,
they exhibit certain limitations, such as constraints on geometry and a lack of ease in
parallelization. Consequently, the purpose of this chapter is to address and overcome
these limitations.
To achieve this goal, we will first provide a comprehensive explanation of Domain Decom-
position, a technique utilized to partition a domain into multiple independent subdomains
that can be updated separately. Subsequently, we will present the Rectangular Domain
Decomposition approach, which is a specific type of domain decomposition suitable for
the Fourier method. Finally, we’ll present a simulation algorithm for the wave equation
based on Rectangular Domain Decomposition.

5.1. Fundamentals of Domain Decomposition
Domain decomposition methods are effective techniques for solving problems that involve
different shapes and sizes of domains, including in the field of acoustics.
This approach is especially helpful when working with large and complex domains like
concert halls or auditoriums. It would be too computationally expensive to solve the
entire problem all at once in such cases. Instead, we divide the domain into smaller parts,
solve each part separately, and then bring together the results to find a solution for the
whole domain. This method allows us to handle the computational demands of large and
complex domains more efficiently.

5.1.1. Definition

The following dissertation is based on Quarteroni and Valli [1999] and Dolean et al. [2015].
The domain decomposition methods involve dividing the computational domain into sub-
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domains, which may or may not overlap.
Let Ω be a domain in d dimensions with a Lipschitz boundary BΩ. The outer unit normal
direction is denoted by n⃗. Initially, we assume that Ω is divided into two non-overlapping
subdomains Ω1 and Ω2. The intersection between the boundaries of Ω1 and Ω2 is denoted
by Γ “ BΩ1XBΩ2 (see Fig. 5.1.1). We also assume that Γ is a Lipschitz pd´1q-dimensional
manifold.

Figure 5.1.1: Non-overlapping partition of the domain Ω into two subdomains. Source:
Quarteroni and Valli [1999].

5.1.2. Managing interfaces between subdomains

Consider a general differential problem given by

Lu “ f in Ω, (5.1.1)

where L is a partial differential operator, f is a given data, and u is the unknown solution.
To address this problem Eq. (5.1.1), we partition the domain Ω into two separate problems
by considering the disjoint subdomains Ω1 and Ω2 as shown in Fig. 5.1.1. Let’s denote ui
as the part of the solution u that exists in Ωi, where i “ 1, 2. This leads to the following
equations:

$

&

%

Lu1 “ f, in Ω1,

Lu2 “ f, in Ω2.
(5.1.2)

For the above problem to be equivalent to the original problem Eq. (5.1.1), we need
to ensure continuity across the interface Γ between u1 and u2. The specific continuity
conditions depend on the nature of the problem, e.g.,

Φpu1q “ Φpu2q, on Γ. (5.1.3)
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The function Φ is problem-specific and defines the continuity requirements at the inter-
face. These conditions ensure that the solutions u1 and u2 smoothly connect across the
interface and form a consistent overall solution. For example, in acoustic wave problems,
we typically require continuity of the pressure field and the normal component of the
particle velocity field across the interface (Cfr. Kaltenbacher and Floss [2018]).

5.2. Rectangular Domain Decomposition
In the majority of current Domain Decomposition methodologies, particularly for wave
propagation, the primary objective remains the distribution and parallelization of work-
loads across multiple processors. Hence, the essential criterion in such scenarios is to
achieve equal-sized subdomains with minimal interface areas, as this ensures computa-
tional balance and reduces communication costs.
Our approach to domain partitioning is motivated not only by parallelization, but mostly
by a different goal: to obtain subdomains with rectangular shapes, even if it results in
subdomains of varying sizes. This choice yields numerous algorithmic enhancements in
terms of computational efficiency and numerical accuracy during simulations within the
subdomains. Moreover, this approach demonstrates improvements even in sequential per-
formance by employing the Fourier method within a rectangular domain (Raghuvanshi
et al. [2011]).

Figure 5.2.1: Non-overlapping partition of a 2D domain Ω into two rectangular subdo-
mains with a shared boundary Γ (line).

Consider the wave propagation problem 2.1.7 on a domain Ω Ď R3, omitting the initial
conditions and the boundary condition on BΩ for simplicity:

$

&

%

B2pp
¯
x,tq

Bt2
´ c2∆G pp

¯
x, tq “ fp

¯
x, tq, t P R`,

¯
x P Ω,

Bpp
¯
x,tq

B
¯
n

“ 0, t P R`,
¯
x P BΩ,

(5.2.1)

where ∆G is the global Laplacian operator. It is well known that p1 (corresponding to
Ω1) and p2 (corresponding to Ω2) represent the solutions of Eq. (5.2.1) restricted to their
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respective subdomains. This can be stated mathematically as follows:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B2pip
¯
x, tq

Bt2
´ c2∆pip

¯
x, tq “ fip

¯
x, tq, t P R`,

¯
x P Ωi, i “ 1, 2,

p1p
¯
x, tq “ p2p

¯
x, tq, t P R`,

¯
x P Γ,

Bp1p
¯
x, tq

Bn⃗
“

Bp2p
¯
x, tq

Bn⃗
, t P R`,

¯
x P Γ.

(5.2.2)

In simpler terms, the local functions p1 and p2 must satisfy the wave equation within their
respective subdomains and must be consistent at the interface. Since the wave equation
is a second-order partial differential equation, we have two continuity equations on the
interface: one for the unknowns and another for their normal derivatives.
To understand how to impose continuity on the interface, we compute the difference
between Eq. (5.2.1) and Eq. (5.2.2):

ˆ

B2

Bt2
´ c2∆G

˙

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl ´

ˆ

B2

Bt2
´ c2∆L

˙

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl “ c2∆R

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl ,

where ∆L is the local Laplacian operator:

∆L “

»

–

∆ 0

0 ∆

fi

fl ,

and ∆R is the residual operator. This means that the term

c2∆R

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl

can be seen as a residual term, which depends on the boundary conditions assumed for
the interface Γ. We include it in Eq. (5.2.2) as follows:

ˆ

B2

Bt2
´ c2∆L

˙

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl

“

»

–

f1p
¯
x, tq

f2p
¯
x, tq

fi

fl ` c2∆R

»

–

p1p
¯
x, tq

p2p
¯
x, tq

fi

fl , t P R`,
¯
x P Ωi, i “ 1, 2.

In Mehra et al. [2012], it has been proven that, in case of an unbounded domain, it’s
possible to derive the exact residual operator employing an infinite width finite difference
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stencil; however, this approach is unpractical and highly computationally intensive, mean-
ing that it’s desirable to derive compact residual operators. Hence, in the next sections
we’ll derive the residual term with a sixth order of accuracy centered finite difference
stencil to approximate the Laplacian.

5.3. Derivation of RDD for the second order wave

equation
Following Raghuvanshi et al. [2008], we consider a 1D domain Ω “ pa, bq, and define a
set of 2I points txiu

2I
i“1 with grid spacing dh. As derived in Sec. 3.1, the finite difference

scheme equation for the (second order) wave equation is given by Eq. (3.1.3), which we
report below:

¯
pn`1

“
2
¯
pn ´ p1 ´ dt αq

¯
pn´1 `

`

cdt
dh

˘2
rKs

¯
pn ` dt2

¯
fn

1 ` dt α
,

where rKs is the 2I ˆ 2I stiffness matrix defined in Eq. (3.1.4) as

rKs “

»

—

—

—

—

—

—

—

–

. . .

A B C D C B A

A B C D C B A

A B C D C B A
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This represents the FDTD equation for the solution in the entire domain Ω.
For the sake of presentation, we partition the domain into two non-overlapping subdo-
mains of I points. We refer to the left half with x1,i, i “ 1, . . . , I, and to the right half with
x2,i, i “ 1, . . . , I. This means that rKs is decoupled into a block diagonal form matrix
rAs of dimension 2I ˆ 2I, and the off-diagonal entries (residual terms) must be accounted
for properly through a residual matrix rCs of dimension 2I ˆ 2I. Mathematically, this
can be achieved as follows:

rKs “ rAs ` rCs,

where

rAs “

»

–

rAs1 r0s

r0s rAs2

fi

fl ,

rCs “

»

–

rCs11 rCs12

rCs21 rCs22

fi

fl .
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The matrix rAs assumes the homogeneous Neumann boundary conditions at the interface
Γ between the two subdomains (refer to Sec. 3.3):

rAs “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . .

A B C D C B A

A B C D C B ` A

A B C D ` A C ` B

A B ` A C ` B D ` C

D ` C C ` B B ` A A

C ` B D ` A C B A

B ` A C D C B A

A B C D C B A

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the upper-left block corresponds to the left subdomain
¯
p1, and the lower-right block

corresponds to the right subdomain
¯
p2.

rCs is computed by difference:

rCs “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0

. . . ´A A

´A ´B B A

´A ´B ´C C B A

A B C ´C ´B ´A

A B ´B ´A

A ´A . . .

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.3.1)

This represents the imposition of even symmetry about x1,I` 1
2
.

Thus, the FDTD scheme can be rewritten as

¯
pn`1 “

2
¯
pn ´ p1 ´ dt αq

¯
pn´1 `

`

cdt
dh

˘2
rAs

¯
pn ` dt2

¯
fn `

!

`

cdt
dh

˘2
rCs

¯
pn
)

1 ` dt α
, (5.3.2)
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where the term in curly brackets is responsible for the enforcement of the transmission
conditions, which we define as the residual vector

¯
rn:

¯
rn “

∆

ˆ

cdt

dh

˙2

rCs
¯
pn. (5.3.3)

To make the notation uniform, we define the modified residual vector
¯
Rn as

¯
Rn

“
∆
´ c

dh

¯2

rCs
¯
pn. (5.3.4)

To impose
¯
rn we can proceed in two ways:

• Pre-merge (originally proposed in Raghuvanshi et al. [2008]) - The residual (correc-
tion) term is treated as a forcing term:

¯
fn :“

¯
fn

`
1

dt2¯
rn “

¯
fn

`
¯
Rn.

• Post-merge - After the computation of the solution at time tn`1 in each subdomain,
we sum the residual term to obtain a solution which satisfies the wave equation in
the whole domain Ω:

¯
pn`1 :“

¯
pn`1

`
1

1 ` dt α¯
rn “

¯
pn`1

`
dt2

1 ` dt α ¯
Rn.

5.4. Derivation of RDD for the first order wave equa-

tion

Consider again a 1D domain Ω “ pa, bq, and define a set of 2I points txiu
2I
i“1 with grid

spacing dh. We partition the domain into two non-overlapping subdomains of I points. We
refer to the left half with x1,i, i “ 1, . . . , I, and to the right half with x2,i, i “ 1, . . . , I;

¯
p1

and
¯
v1 represent the pressure and the pressure velocity of the first subdomain respectively,

while
¯
p2 and

¯
v2 represent the pressure and the pressure velocity of the second subdomain

respectively. Hence, the state vector
¯
z1 “ r

¯
pT1 ¯

vT1 sT , while
¯
z2 “ r

¯
pT2 ¯

vT2 sT .
In the case of the second order wave equation, the global pressure vector

¯
p was simply

expressed as a concatenation of the local pressure vectors
¯
p1,

¯
p2. In this case, recalling

Sec. 3.2, the solution is expressed as a global state vector
¯
z which cannot be expressed

as a concatenation of the local state vectors
¯
z1,

¯
z2. Nevertheless, it’s useful to define the
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vector r
¯
z obtained from the concatenation of

¯
z1,

¯
z2:

r

¯
z “

∆

»

–¯
z1

¯
z2

fi

fl ,

and, analogously, we define the vector r

¯
f obtained from the concatenation of the force

vectors
¯
f1 and

¯
f2.

We define the permutation matrix rGs:

rGs “
∆

»

—

—

—

—

—

—

–

rIsIˆI r0sIˆI r0sIˆI r0sIˆI

r0sIˆI r0sIˆI rIsIˆI r0sIˆI

r0sIˆI rIsIˆI r0sIˆI r0sIˆI

r0sIˆI r0sIˆI r0sIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

such that

¯
z “ rGsr

¯
z, r

¯
z “ rGs

¯
z,

and

¯
f “ rGs

r

¯
f, r

¯
f “ rGs

¯
f.

It’s trivial to prove that rGs is invertible, orthogonal and symmetric, meaning that rGs “

rGs´1 “ rGsT and that rGsT rGs “ rGsrGs “ rGs´1rGs “ rIs.
The FD scheme for the entire domain can be expressed, recalling Eq. (3.2.6), as

¯
zn`1

“
“

K
‰

¯
zn `

¯
f
n
, (5.4.1)

while the FD schemes for the subdomains can be expressed as

¯
zn`1
1 “

“

A
‰

1¯
zn1 `

¯
f
n

1
,

¯
zn`1
2 “

“

A
‰

2¯
zn2 `

¯
f
n

2
,

which, recalling the definition of r
¯
z, can be rewritten as

r

¯
zn`1

“ r rAs r
¯
zn `

r

¯
f
n

,
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where the block matrix r rAs is defined as

r rAs “
∆

»

–

“

A
‰

1
r0s2Iˆ2I

r0s2Iˆ2I

“

A
‰

2

fi

fl .

We now convert r
¯
z to

¯
z and r

¯
f to

¯
f in the following way:

rGs
¯
zn`1

“ r rAsrGs
¯
zn ` rGs

¯
f
n
,

¯
zn`1

“ rGsr rAsrGs
¯
zn `

¯
f
n
,

¯
zn`1

“
“

A
‰

¯
zn `

¯
f
n
,

where the matrix rAs is defined as

“

A
‰

“
∆

rGsr rAsrGs “ rGs

»

–

“

A
‰

1
r0s2Iˆ2I

r0s2Iˆ2I

“

A
‰

2

fi

fl rGs

“ rGs

»

—

—

—

—

—

—

—

–

rIsIˆI`c2 dt2

dh2
rAs1

1`2dt α

c2 dt
dh2

rAs1

1`2dt α
r0sIˆI r0sIˆI

dtrIsIˆI rIsIˆI r0sIˆI r0sIˆI

r0sIˆI r0sIˆI
rIsIˆI`c2 dt2

dh2
rAs2

1`2dt α

c2 dt
dh2

rAs1

1`2dt α

r0sIˆI r0sIˆI dtrIsIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

rGs

“

»

—

—

—

—

—

—

—

–

rIsIˆI`c2 dt2

dh2
rAs1

1`2dt α
r0sIˆI

c2 dt
dh2

rAs1

1`2dt α
r0sIˆI

r0sIˆI
rIsIˆI`c2 dt2

dh2
rAs2

1`2dt α
r0sIˆI

c2 dt
dh2

rAs2

1`2dt α

dtrIsIˆI r0sIˆI rIsIˆI r0sIˆI

r0sIˆI dtrIsIˆI r0sIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The global system matrix
“

K
‰

in Eq. (5.4.1) can be expressed, similarly to the second
order case, as

“

K
‰

“
“

A
‰

`
“

C
‰

,

so that Eq. (5.4.1) becomes

¯
zn`1

“
“

A
‰

¯
zn `

¯
f
n

`
␣“

C
‰

¯
zn
(

, (5.4.2)
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where the term in curly brackets is responsible for the enforcement of the transmission
conditions.
To simplify the calculation of

“

C
‰

, we express
“

K
‰

as

“

K
‰

“

»

–

rIsIˆI`c2 dt2

dh2
rKs

1`2dt α

c2 dt
dh2

rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl

“

»

—

—

—

—

—

—

—

–

rIsIˆI`c2 dt2

dh2
rKs11

1`2dt α

c2 dt2

dh2
rKs12

1`2dt α
c2 dt

dh2 rKs11 c2 dt
dh2 rKs12

c2 dt2

dh2
rKs21

1`2dt α

rIsIˆI`c2 dt2

dh2
rKs22

1`2dt α
c2 dt

dh2 rKs21 c2 dt
dh2 rKs22

dtrIsIˆI r0sIˆI rIsIˆI r0sIˆI

r0sIˆI dtrIsIˆI r0sIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

We can now compute
“

C
‰

:

“

C
‰

“
“

K
‰

´
“

A
‰

“

»

—

—

—

—

—

—

—

–

rIsIˆI`c2 dt2

dh2
rKs11

1`2dt α

c2 dt2

dh2
rKs12

1`2dt α
c2 dt

dh2 rKs11 c2 dt
dh2 rKs12

c2 dt2

dh2
rKs21

1`2dt α

rIsIˆI`c2 dt2

dh2
rKs22

1`2dt α
c2 dt

dh2 rKs21 c2 dt
dh2 rKs22

dtrIsIˆI r0sIˆI rIsIˆI r0sIˆI

r0sIˆI dtrIsIˆI r0sIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

–

rIsIˆI`c2 dt2

dh2
rAs1

1`2dt α
r0sIˆI

c2 dt
dh2

rAs1

1`2dt α
r0sIˆI

r0sIˆI
rIsIˆI`c2 dt2

dh2
rAs2

1`2dt α
r0sIˆI

c2 dt
dh2

rAs2

1`2dt α

dtrIsIˆI r0sIˆI rIsIˆI r0sIˆI

r0sIˆI dtrIsIˆI r0sIˆI rIsIˆI

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

–

“

C
‰

11

“

C
‰

12

r0s2Iˆ2I r0s2Iˆ2I

fi

fl ,

(5.4.3)
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where

“

C
‰

11
“

1

1 ` 2dt α
c2
dt2

dh2
rCs

“
1

1 ` 2dt α
c2
dt2

dh2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0

. . . ´A A

´A ´B B A

´A ´B ´C C B A

A B C ´C ´B ´A

A B ´B ´A

A ´A . . .

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

(5.4.4)

where the matrix rCs is defined in Eq. (5.3.1), while

“

C
‰

12
“ c2

dt

dh2
rCs

“ c2
dt

dh2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0

. . . ´A A

´A ´B B A

´A ´B ´C C B A

A B C ´C ´B ´A

A B ´B ´A

A ´A . . .

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.4.5)

We now express the term in curly brackets in Eq. (5.4.2) as a residual vector
¯
rn. Recalling

the definition of rCs11 in Eq. (5.4.4), of rCs12 in Eq. (5.4.5), and of rCs in Eq. (5.4.3), we
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can express it as

¯
rn “

∆
rCs

¯
zn “ rCs11

¯
vn ` rCs12

¯
pn “

1

1 ` 2dt α

ˆ

c2
dt2

dh2
rCs

¯
vn ` c2

dt

dh2
rCs

¯
pn
˙

“
1

1 ` 2dt α
c2
dt

dh2
rCs

`

dt
¯
vn `

¯
pn
˘

“
1

1 ` 2dt α
c2
dt

dh2
rCs

¯
pn`1.

To make the notation uniform, we employ the modified residual vector
¯
Rn defined in

Eq. (5.3.4):

¯
Rn`1

“

´ c

dh

¯2

rCs
¯
pn`1.

Again, to enforce the transmission conditions we need to impose the residual vector, and
we can proceed in two ways:

• Pre-merge - We treat the residual (correction) term as a forcing term:

¯
fn`1 :“

¯
fn`1

`
1 ` 2dt α

dt ¯
rn “

¯
fn`1

`
¯
Rn`1.

• Post-merge - After the computation of vn`1 in each subdomain, we sum the residual
term to the pressure velocity to obtain a solution which satisfies the wave equation
in the whole domain Ω:

¯
vn`1 :“

¯
vn`1

`
¯
rn “

¯
vn`1

`
dt

1 ` 2dt α ¯
Rn`1.

5.5. RDD algorithm
In this subsection, we present Alg. 5.1, an algorithm for the solution of the one di-
mensional wave equation in domains of arbitrary shapes exploiting rectangular domain
decomposition. This algorithm, which is focused on the solution update and correction
steps, is general: we can choose different interface handling methods (pre-merge or post-
merge), different simulation methods for the subdomains (FDTD or the Fourier method),
and different orders (first or second). The preprocessing steps (rectangular decomposition
and interface inference) will be explained in more detail in Sec. 7.1.
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Algorithm 5.1 RDD Algorithm
1: Input: Initial conditions of pressure and pressure velocity, and geometry of the room.
2: Rectangular Decomposition: Decompose the domain into rectangular subdomains

Ωk. The subdomains data structure stores, for each subdomain, the force, the
pressure, the pressure velocity, the residual, and the corrected force, accessed through
dot indexing (e.g., Ωk.

¯
pn).

3: Interfaces Inference: Determine the interfaces Γm between subdomains by exam-
ining their adjacency relationships. The interfaces data structure stores, for each
interface, the reference to the two subdomains Ω1 and Ω2 associated with it, accessed
through dot indexing.

4: Initialize: Set n “ 0.
5: repeat
6: for each subdomain Ωk in subdomains do
7: Update the pressure
8: Ωk.

¯
pn`1 Ð update_pressure()

9: end for
10: for each interface Γm in interfaces do
11: if interface handling method is post-merge and simulation method is second

order then
12: Correct the pressure
13: Γm.Ω1.

¯
pn`1 `“ dt2

1`dtα
Γm.Ω1.

¯
Rn

14: Γm.Ω2.
¯
pn`1 `“ dt2

1`dtα
Γm.Ω2.

¯
Rn

15: end if
16: end for
17: for each Ωk in subdomains do
18: Compute the residual
19: Ωk.

¯
Rn`1 Ð

`

c
dh

˘2
rCsΩk.

¯
pn`1

20: end for
21: for each Γm in interfaces do
22: if interface handling method is pre-merge then
23: Correct the force
24: Γm.Ω1.

¯
fn`1
R Ð Γm.Ω1.

¯
fn`1 ` Γm.Ω1.

¯
Rn`1

25: Γm.Ω2.
¯
fn`1
R Ð Γm.Ω2.

¯
fn`1 ` Γm.Ω2.

¯
Rn`1

26: end if
27: end for
28: for each Ωk in subdomains do
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29: Update the velocity
30: Ωk.

¯
vn`1 Ð update_pressure_velocity()

31: end for
32: for each Γm in interfaces do
33: if interface handling method is post-merge and simulation method is first order

then
34: Correct the velocity
35: Γm.Ω1.

¯
vn`1 `“ dt

1`2dtα
Γm.Ω1.

¯
Rn`1

36: Γm.Ω2.
¯
vn`1 `“ dt

1`2dtα
Γm.Ω2.

¯
Rn`1

37: end if
38: end for
39: Increment n by 1.
40: until termination condition is met

Notice that, for the first step (n “ 0), we must compute the solution at time t1 using a
first order simulation method (the first order Fourier method or first order FDTD), as
the solution at time t´1 (needed for second order simulation methods) is not defined.
We now show the simulation methods we can use to update the solution in each subdo-
main. Again, we refer to the pressure in the left subdomain as

¯
p1 and to that of the right

subdomain as
¯
p2, and analogously for the pressure velocity.

♣ ♣ ♣

Second order FDTD. Recalling Eq. (3.1.3) and Eq. (3.1.5), we obtain the pressure update
algorithm

#

¯
pn`1
k “

2
¯
pnk ´ p1 ´ dt αq

¯
pn´1
k `

`

cdt
dh

˘2
rAsk

¯
pnk ` dt2

¯
fn
k

1 ` dt α
,

+

and the pressure velocity update algorithm
#

¯
vn`1
k “ ¯

pn`1
k ´

¯
pnk

dt

+

in the subdomain Ωk.

♣ ♣ ♣

Second order Fourier method. Recalling Eq. (4.2.3) we obtain the pressure update algo-
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rithm
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’

%

¯
P n
k “ DCTt

¯
pnku,

¯
F n
k “ DCTt

¯
fn
k u,

P n`1
k,1 “ 2P n

k,1 ´ P n´1
k,1 ` dt2F n

k,1,

P n`1
k,i “ 2P n

k,i cospωk,idtq ´ P n´1
k,i `

2

ω2
k,i

F n
k,ip1 ´ cospωk,idtqq, i “ 2, . . . , I,

¯
pn`1
k “ iDCTt

¯
P n`1
k u,

,

/

/

/

/

/

/

/

/

/
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/

.
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/

/

/

/

-

and, recalling Eq. (4.2.4), we obtain the pressure velocity update algorithm

$
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’
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%

¯
P n
k “ DCTt

¯
pnku,

¯
P n`1
k “ DCTt

¯
pn`1
k u,

¯
V n
k “ DCTt

¯
vnk u,

¯
F n
k “ DCTt

¯
fn
k u,

V n
k,1 “

P n`1
k,1 ´ P n

k,1

dt
,

V n
k,i “

ωk,i

sinpωk,idtq
pP n`1

k,i ´ cospωk,idtqP
n
k,iq ´

1

ωk,i

tan

ˆ

ωdt

2

˙

F n
k,i, i “ 2, . . . , I,

¯
vn`1
k “ iDCTt

¯
V n`1
k u

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

in the subdomain Ωk, where i is used as an index for the DCT coefficients. The set of
DCT coefficients has the same cardinality I as the set of spatial samples.

♣ ♣ ♣

First order FDTD. Recalling Eq. (3.2.6), we obtain the pressure and pressure velocity
update algorithm

!

¯
zn`1
k “ rAks

¯
znk `

¯
f
n`1

k

)

in the subdomain Ωk, which can be analogously expressed as the pressure update algorithm

␣

¯
pn`1
k “ dt

¯
vnk `

¯
pnk ,

(
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and the pressure velocity update algorithm
#

¯
vn`1
k “ ¯

vnk ` c2 dt
dh2 rAs

¯
pn`1
k ` dt

¯
fn`1
k

1 ` 2dt α

+

in the subdomain Ωk.

♣ ♣ ♣

First order Fourier method. Recalling Eq. (4.3.3), we obtain the pressure update algorithm
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k “ DCTt

¯
pnk u,
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¯
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¯
Fn
k “ DCTt

¯
fn
k u,

Pn`1
k,1 “ Pn

k,1 ` dt V n
k,1,

Pn
k,i,e “

Fn
k,i

ω2
k,i

, i “ 2, . . . , I,

Pn`1
k,i “ Pn

k,i,e ` e´dt α

ˆ

pPn
k,i ´ Pk,i,eq

ˆ

cospωk,idtq `
α

ωk,i
sinpωk,idtq

˙

`
sinpωk,idtq

ωk,i
V n
k,i

˙

, i “ 2, . . . , I,

¯
pn`1
k “ iDCTt

¯
Pn`1
k u,
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and, recalling Eq. (4.3.4), we obtain the pressure velocity update algorithm
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¯
Pn
k “ DCTt

¯
pnk u,

¯
V n
k “ DCTt

¯
vnk u,

¯
Fn`1
k “ DCTt

¯
fn`1
k u,

V n`1
k,1 “

V n
k,1 ` dtFn`1

k,1

1 ` 2dt α
,

Pn`1
k,i,e “

Fn`1
k,i

ω2
k,i

, i “ 2, . . . , I,

V n`1
k,i “ e´dt α

ˆ

V n
k,i

ˆ

cospωk,idtq ´
α

ωk,i
sinpωk,idtq

˙

´

ˆ

ωk,i `
α2

ωk,i

˙

pPn
k,i ´ Pn`1

k,i,eq sinpωk,idtq

˙

, i “ 2, . . . , I,

¯
vn`1
k “ iDCTt

¯
V n`1
k u,
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in the subdomain Ωk, where i is used as an index for the DCT coefficients.

5.5.1. Stability

It’s trivial to prove that the stability condition of the handling algorithm corresponds
to the stability condition of the FDTD method. In the 1D case this corresponds to
|λ| ă 0.8135 . . . for both the second order wave equation (see Eq. 3.1.12) and the first
order wave equation (see Eq. 3.2.18).
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5.5.2. Numerical errors

The interface handling algorithm is built on the FDTD method, meaning that there’s no
additional numerical error if we employ this method also to update the local solutions:
in particular, the coupling is perfect also if we mix second order FDTD and first order
FDTD, or if we mix pre-merge and post-merge. However, we’ve extended the applicability
of this algorithm to the Fourier method, which is able to eliminate numerical dispersion
errors (see Subsec. 4.2.2 and Subsec. 4.3.2) inside each subdomain: this comes at a cost.
The coupling, in this latter case, is not perfect, which leads to erroneous reflections at the
interface.
When a wave packet encounters the interface between the subdomains, spurious reflections
occur. To evaluate the quality (amount of spurious reflections) of RDD for these four cases,
we consider the 1D propagating wave test case discussed in Subsec. 2.1.7, with parameters
dh “ 0.01, λ “ 0.8, and µ “ 2.5. The domain Ω “ r0, 10s is divided into two subdomains:
Ω1 “ r0, 5s and Ω2 “ r5, 10s. To emphasize the errors, the pressure values are expressed
in decibels.
In practical cases, as we will see in Ch. 7, we use the four following combinations:

1. Undamped air-air interfaces. We employ the second order Fourier method for both
subdomains for the simulation, and pre-merge as interface handling method. In Fig.
5.5.1 we present some snapshots of a numerical simulation using this configuration
for different accuracy orders. The amplitude of these reflections remains relatively
low, ranging from 50 dB (for an accuracy order of 2) to 80 dB (for an accuracy order
of 8) below the amplitude of the incoming wave packet. This highlights a trade-off
between computational efficiency and the attenuation of spurious reflections.

2. Damped air-air interfaces. We employ the first order Fourier method in both sub-
domains for the simulation, and post-merge as interface handling method. In Fig.
5.5.2 we present some snapshots of a numerical simulation using this configuration
for accuracy order 6. The amplitude of these reflections remains relatively low,
about 55 dB below the amplitude of the incoming wave packet.

3. PML†-undamped air interfaces. For simplicity, we consider an analogous case: we
employ second order FDTD on the left and the second order Fourier method on the
right for the simulation, and pre-merge as interface handling method. In Fig. 5.5.3
we present some snapshots of a numerical simulation using this configuration for
accuracy order 6. The amplitude of these reflections remains relatively low, about
80 dB below the amplitude of the incoming wave packet.

†Cfr. Sec. 5.6 and Ch. 6.
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4. PML-damped air interfaces. For simplicity, we consider an analogous case: we
employ second order FDTD on the left and the first order Fourier method on the
right for the simulation, and post-merge as interface handling method. In Fig. 5.5.4
we present some snapshots of a numerical simulation using this configuration for
accuracy order 6. The amplitude of these reflections remains relatively low, about
60 dB below the amplitude of the incoming wave packet.

Although the errors in all four cases are not audible, it is important to note that in
practical situations, where there are multiple subdomains, the errors can accumulate.
Furthermore, we notice that, if at least one of the two subdomains is simulated with
a first order method, the amplitude of the spurious reflections is a bit higher than the
remaining cases: this means that, in these cases, it would be better to employ higher
orders of accuracy.
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(a) Order of accuracy 2, snapshot at t “ 4. (b) Order of accuracy 2,
space-time snapshot.

(c) Order of accuracy 4, snapshot at t “ 4. (d) Order of accuracy 4,
space-time snapshot.

(e) Order of accuracy 6, snapshot at t “ 4. (f) Order of accuracy 6,
space-time snapshot.

(g) Order of accuracy 8, snapshot at t “ 4. (h) Order of accuracy 8,
space-time snapshot.

Figure 5.5.1: Snapshots of a numerical simulation in one dimension using Rectangular
Domain Decomposition: the simulation domain Ω is divided into two subdomains, Ω1 “

r0, 5s and Ω2 “ r5, 10s, and we use pre-merge with different orders of accuracy. The
simulation methods used are the second order Fourier method for both subdomains, with
a grid spacing of dh “ 0.01, a Courant number of λ “ 0.8. The specific test case used
is the wave propagation scenario described in Subsec. 2.1.7, with µ “ 2.5. To emphasize
the errors, the pressure values are expressed in decibels.
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(a) Snapshot at t “ 4. (b) Space-time snapshot.

Figure 5.5.2: Snapshots of a numerical simulation in one dimension using Rectangular
Domain Decomposition: the simulation domain Ω is divided into two subdomains, Ω1 “

r0, 5s and Ω2 “ r5, 10s, and we use post-merge with order of accuracy 6. The simulation
methods used are the first order Fourier method for both subdomains, with a grid spacing
of dh “ 0.01, a Courant number of λ “ 0.8. The specific test case used is the wave
propagation scenario described in Subsec. 2.1.7, with µ “ 2.5. To emphasize the errors,
the pressure values are expressed in decibels.

(a) Snapshot at t “ 4. (b) Space-time snapshot.

Figure 5.5.3: Snapshots of a numerical simulation in one dimension using Rectangular
Domain Decomposition: the simulation domain Ω is divided into two subdomains, Ω1 “

r0, 5s and Ω2 “ r5, 10s, and we use pre-merge with order of accuracy 6. The simulation
methods used are second order FDTD on the left and the second order Fourier method
on the right, with a grid spacing of dh “ 0.01, a Courant number of λ “ 0.8. The specific
test case used is the wave propagation scenario described in Subsec. 2.1.7, with µ “ 2.5.
To emphasize the errors, the pressure values are expressed in decibels.
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(a) Snapshot at t “ 4. (b) Space-time snapshot.

Figure 5.5.4: Snapshots of a numerical simulation in one dimension using Rectangular
Domain Decomposition: the simulation domain Ω is divided into two subdomains, Ω1 “

r0, 5s and Ω2 “ r5, 10s, and we use post-merge with order of accuracy 6. The simulation
methods used are second order FDTD on the left and the first order Fourier method on
the right, with a grid spacing of dh “ 0.01, a Courant number of λ “ 0.8. The specific
test case used is the wave propagation scenario described in Subsec. 2.1.7, with µ “ 2.5.
To emphasize the errors, the pressure values are expressed in decibels.

5.6. Absorbing boundary conditions
The objective of this section is to provide insights on the implementation of partially or
fully absorbing boundary conditions for the FDTD or the Fourier method using Rectan-
gular Domain Decomposition.
To achieve absorption of outgoing waves within the computational domain, we introduce
a specialized technique called the Perfectly Matched Layer (PML), which will be discussed
in detail in Ch. 6. The computational domain, denoted as Ω, consists of two distinct sub-
domains. The first subdomain, Ω1, represents the air region, while the second subdomain,
Ω2, serves as the PML layer. This PML subdomain acts as an absorbing layer, effectively
attenuating the waves passing through it (see Fig. 6.1.1).
In Sec. 5.3, we have introduced the residual vector

¯
rn. As suggested in Raghuvanshi et al.

[2011], to model partial absorption, we can multiply the residual term by a dimensionless
coefficient, namely the virtual boundary absorption coefficient 0 ď βB ď 1.
Ideally, we would obtain full absorption by imposing βB “ 1, full reflection with βB “ 0

(which reduces to imposing the homogeneous Neumann boundary conditions), and partial
absorption (partial reflection) in the range s0, 1r. In practice, neither the PML is perfect
nor the handling algorithm, thus the achieved physical boundary absorption coefficient αB

is less than the imposed value of βB; furthermore, the PML is generally more efficient in
attenuating waves with perpendicular incidence compared to oblique incidence. Finally,
we have that αB Ñ βB if we choose a finer grid and a higher value of the PML thickness.





111

6| Perfectly matched layer

conditions
The following disseration is based on Grote and Sim [2010] and Duru [2012].
The perfectly matched layer (PML) conditions provide a flexible and accurate way to
simulate wave propagation on an unbounded domain. With the PML conditions, one has
to consider a computational domain surrounded by an absorbing layer, which generates
no reflections between them. Inside the absorbing layer, a damping term is added to the
wave equation such that the pressure decays rapidly; the absorption effect acts only in
the direction perpendicular to the layer. This approach, suggested in Raghuvanshi et al.
[2011], is analogous to the physical treatment of the walls of an anechoic chamber and
provides an alternative to absorbing or nonreflecting boundary conditions.
At the discrete level, once truncated at a finite thickness, the layer is no longer perfectly
absorbing and the optimal damping parameters need to be determined via numerical
experiments.

6.1. PML formulation
Let’s examine a scenario where an acoustic wave field denoted by p propagates through an
unbounded three-dimensional space over time. The propagation speed of the wave field
is c. We make the assumption that all sources and initial disturbances are restricted to a
rectangular domain Ω defined as

Ω “
∆
␣

¯
x “ px, y, zq P R3 : |x| ď ax, |y| ď ay, |z| ď az

(

,

where ax, ay, and az are positive real numbers. Consequently, all waves outside this re-
gion, in the unbounded space R3zΩ, are purely outgoing.
Within Ω, the wave field pp

¯
x, tq obeys Eq. (2.1.7), which we rewrite neglecting the bound-
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ary conditions:

$
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%

B2pp
¯
x,tq

Bt2
´ c2∆pp

¯
x, tq “ fp

¯
x, tq, t P R`,

¯
x P R3,

pp
¯
x, 0q “ p0p

¯
xq,

¯
x P R3,

Bp
Bt

p
¯
x, 0q “ v0p

¯
xq,

¯
x P R3.

(6.1.1)

To solve equation Eq. (6.1.1) numerically within the domain Ω, we must consider a finite
computational domain. Additionally, we need to ensure that waves propagating outward
from Ω do not generate undesired reflections. Therefore, we enclose Ω with a perfectly
matched layer (PML) that has a thickness denoted by L1

x, L1
y, and L1

z in each coordi-
nate direction. The PML is specifically designed to absorb waves leaving Ω without any
reflections. Refer to Fig. 6.1.1 for an illustration of this configuration. Within the ab-
sorbing layer, the wave field p obeys a modified wave equation, and its solutions decay
exponentially as they move away from the computational domain.

Figure 6.1.1: Temporal snapshots of the numerical solutions for a point source in two
dimensions (Ω “ r´0.5, 0.5s2) within a PML of width L “ 0.1. Source: Grote and Sim
[2010].

6.2. Derivation of PML equations
In this section we derive PML equations using the complex coordinate stretching tech-
nique, which was first presented in Chew and Weedon [1994] in the context of Maxwell’s
equations. In this technique, a modified set of equations is presented, which incorporates
complex coordinate stretching along the three Cartesian coordinates. By introducing com-
plex coordinates into the wave equation, we introduce additional degrees of freedom into
the equations. These added degrees of freedom provide us with a greater level of control
over the behavior of waves near boundaries. In particular, we apply this technique to the
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Laplace transformed wave equation.
We let p̂ denote the Laplace transform in time of p:

p̂ “
∆ p̂p

¯
x, sq “

ż 8

0

estpp
¯
x, tq dt, Retsu ă 0.

In R3zΩ, p̂ satisfies the Helmholtz equation:

s2p̂ “
B2p̂

Bx2
`

B2p̂

By2
`

B2p̂

Bz2
. (6.2.1)

By considering the x direction, we introduce the coordinate transformation

x ÞÑ rx “ x `
1

s

ż x

0

ζxpxq dx, (6.2.2)

where the damping profile ζxpxq is positive inside the absorbing layer, |x| ą ax, but
vanishes inside Ω. Analogous coordinate transformation are defined for the two remaining
space coordinates: y ÞÑ ry, z ÞÑ rz.

Figure 6.2.1: Example of the damping profile ζxpxq with varying ζx values, where c “ 1

and Lx “ 0.1. The profile is depicted based on the equation Eq. (6.2.3). Source: Grote
and Sim [2010].

The damping profile ζxpxq ě 0 can be chosen arbitrarily and can take various forms, such
as constant, linear, or quadratic. An example of such a profile is given by

ζxpxq “

$

’

&

’

%

0, |x| ă ax,

ζx

ˆ

x´ax
Lx

´
sinp

2πpx´axq

Lx
q

2π

˙

, ax ď |x| ď ax ` L1
x.

(6.2.3)
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Since the damping profile ζxpxq is twice continuously differentiable at the interface x “ ax,
no special transmission conditions are required there. The constant ζx depends on the
discretization and the thickness of the layer. In practice, the layer is truncated using
a homogeneous Dirichlet (or Neumann) boundary condition. Fig. 6.2.1 illustrates the
damping profile obtained with different values of ζx.
The relative reflection R, which is a measure of the amount of reflection that occurs when
a wave encounters an interface (ratio of the reflected wave intensity to the incident wave
intensity), is related to ζx through the equation:

ζx “
c

Lx

log

ˆ

1

R

˙

,

which holds for all the space coordinates.
We now require p̂ to satisfy the modified Helmholtz equation in those stretched coordi-
nates,

s2p̂ “ c2
ˆ

B2p̂

Brx2
`

B2p̂

Bry2
`

B2p̂

Brz2

˙

. (6.2.4)

The above equation ensures that the variable p remains unchanged within the domain Ω,
while decaying exponentially fast within the layer. Consequently, the absorbing layer will
be perfectly matched. Our objective is to convert equation Eq. (6.2.4) back to the time
domain without introducing excessive high-order derivatives or auxiliary variables.
From equation Eq. (6.2.2), we observe that the partial derivative with respect to rx can
be related to the partial derivative with respect to the physical coordinate x using the
following formula:

B

Brx
“

s

s ` ζx

B

Bx
. (6.2.5)

We not let γx “ γxpζx; sq denote

γx “ 1 `
ζx
s
, (6.2.6)

and the same holds for the two remaining space coordinates.
Then, by replacing partial derivatives according to Eq. (6.2.5) and multiplying the result-
ing expression by γxγyγz, we rewrite Eq. (6.2.4) in physical coordinates as

s2γxγyγzp̂ “ c2
ˆ

γyγz
γx

B2p̂

Bx2
`
γxγz
γy

B2p̂

By2
`
γxγy
γz

B2p̂

Bz2

˙

. (6.2.7)
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From Eq. (6.2.6) we derive after some algebra the following identities:

γyγz
sγx

“ 1 `
pζy ` ζz ´ ζxqs ` ζyζz

ps ` ζxqs
,

γxγz
sγy

“ 1 `
pζx ` ζz ´ ζyqs ` ζxζz

ps ` ζyqs
,

γxγy
sγz

“ 1 `
pζx ` ζy ´ ζzqs ` ζxζy

ps ` ζzqs
.

(6.2.8)

By using Eq. (6.2.8) in Eq. (6.2.7) we find

`

s2 ` spζx ` ζy ` ζzq ` pζyζz ` ζxζz ` ζxζyq
˘

p̂

“ c2
„ˆ

B2p̂

Bx2
`

B2p̂

By2
`

B2p̂

Bz2

˙

`
B

Bx

ˆ

pζy ` ζz ´ ζxqs ` ζyζz
ps ` ζxqs

Bp̂

Bx

˙

`
B

By

ˆ

pζx ` ζz ´ ζyqs ` ζxζz
ps ` ζyqs

Bp̂

By

˙

`
B

Bz

ˆ

pζx ` ζy ´ ζzqs ` ζxζy
ps ` ζzqs

Bp̂

Bz

˙ȷ

.

(6.2.9)

Next, we introduce the auxiliary functions ψ and
¯
ϕ “ pϕx, ϕy, ϕzqT :

ψ̂ “
1

s
p̂

ϕ̂x “ c2
ˆ

pζy ` ζz ´ ζxqs ` ζyζz
ps ` ζxqs

˙

Bp̂

Bx
,

ϕ̂y “ c2
ˆ

pζx ` ζz ´ ζyqs ` ζxζz
ps ` ζyqs

˙

Bp̂

By
,

ϕ̂z “ c2
ˆ

pζx ` ζy ´ ζzqs ` ζxζy
ps ` ζzqs

˙

Bp̂

Bz
,

or equivalently
sψ̂ “ p̂

ps ` ζxqϕ̂x “ c2
ˆ

pζy ` ζz ´ ζxqs ` ζyζz
s

˙

Bp̂

Bx
,

ps ` ζyqϕ̂y “ c2
ˆ

pζx ` ζz ´ ζyqs ` ζxζz
s

˙

Bp̂

By
,

ps ` ζzqϕ̂z “ c2
ˆ

pζx ` ζy ´ ζzqs ` ζxζy
s

˙

Bp̂

Bz
.

Finally, using the above relations in Eq. (6.2.9) and transforming the resulting equations
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back to the time domain, it yields the PML modified wave equation:
$

’

’

’

’

&

’

’

’

’

%

ptt ` pζx ` ζy ` ζzqpt ` pζyζz ` ζxζz ` ζxζyqp “ c2∆p` ∇ ¨
¯
ϕ´ ζxζyζzψ, in R3,

¯
ϕt “ Γ1

¯
ϕ` c2Γ2∇p` c2Γ3∇ψ, in R3,

ψt “ p, in R3,

(6.2.10)

where

Γ1 “

»

—

—

—

–

´ζx 0 0

0 ´ζy 0

0 0 ´ζz

fi

ffi

ffi

ffi

fl

,

Γ2 “

»

—

—

—

–

ζy ` ζz ´ ζx 0 0

0 ζx ` ζz ´ ζy 0

0 0 ζx ` ζy ´ ζz

fi

ffi

ffi

ffi

fl

,

Γ3 “

»

—

—

—

–

ζyζz 0 0

0 ζxζz 0

0 0 ζxζy

fi

ffi

ffi

ffi

fl

.

Within the domain Ω, the damping profiles ζx, ζy, and ζz, as well as the auxiliary variables

¯
ϕ and ψ, all become zero. As a result, equation Eq. (6.2.10) simplifies to Eq. (6.1.1) within
Ω. The advantage of this simplified form is that the PML formulation in Eq. (6.2.10) only
requires the computation of four auxiliary scalar variables (ϕx, ϕy, ϕz, and ψ) within the
layer. Consequently, the implementation of this formulation is not only straightforward
but also inexpensive.

6.3. Simulation of the PML through the FDTD

method
In Sec. 6.1, we derived the PML modified wave equation Eq. (6.2.10). In this section, we
will focus on discretizing this equation using the Finite-Difference Time-Domain (FDTD)
method. Accurately modeling various levels of reflection and absorption is often neces-
sary, and we will explain how to achieve this. The approach described here is based on
the work by Grote et al. Grote and Sim [2010].
The spatial and temporal discretization follows a similar approach as described in Sub-
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sec. 2.3.2. However, within the absorbing layer, we introduce a staggered grid in both
space and time at positions xi` 1

2
, yj` 1

2
, zk` 1

2
, and times tn` 1

2
. Consequently, the numerical

solution pni,j,k satisfies

pn`1
i,j,k ´ 2pni,j,k ` pn´1

i,j,k

dt2
` pζx,i ` ζy,j ` ζz,kq

pn`1
i,j,k ´ pn´1

i,j,k

2dt

` pζy,jζz,k ` ζx,iζz,k ` ζx,iζy,jqp
n
i,j,k “ c2

„

pni`1,j,k ´ 2pni,j,k ` pni´1,j,k

dh2
`

pni,j`1,k ´ 2pni,j,k ` pni,j´1,k

dh2
`
pni,j,k`1 ´ 2pni,j,k ` pni,j,k´1

dh2

ȷ

`

rϕn
x,i` 1

2
,j,k

´ rϕn
x,i´ 1

2
,j,k

dh
`

rϕn
y,i,j` 1

2
,k

´ rϕn
y,i,j´ 1

2
,k

dh

`

rϕn
z,i,j,k` 1

2

´ rϕn
z,i,j,k´ 1

2

dh
´ ζx,iζy,jζz,k

ψ
n` 1

2
i,j,k ` ψ

n´ 1
2

i,j,k

2
, (6.3.1)

where the cell averages of the auxiliary functions ϕx, ϕy and ϕz are defined as

rϕn
x,i` 1

2
,j,k

“
∆ 1

4

´

ϕn
x,i` 1

2
,j´ 1

2
,k´ 1

2
` ϕn

x,i` 1
2
,j´ 1

2
,k` 1

2
` ϕn

x,i` 1
2
,j` 1

2
,k´ 1

2
` ϕn

x,i` 1
2
,j` 1

2
,k` 1

2

¯

,

rϕn
x,i,j` 1

2
,k

“
∆ 1

4

´

ϕn
x,i´ 1

2
,j` 1

2
,k´ 1

2
` ϕn

x,i´ 1
2
,j` 1

2
,k` 1

2
` ϕn

x,i` 1
2
,j` 1

2
,k´ 1

2
` ϕn

x,i` 1
2
,j` 1

2
,k` 1

2

¯

,

rϕn
x,i,j,k` 1

2
“
∆ 1

4

´

ϕn
x,i´ 1

2
,j´ 1

2
,k` 1

2
` ϕn

x,i´ 1
2
,j` 1

2
,k` 1

2
` ϕn

x,i` 1
2
,j´ 1

2
,k` 1

2
` ϕn

x,i` 1
2
,j` 1

2
,k` 1

2

¯

.

Concurrently with the above discretized wave equation, we also advance the (scalar) aux-
iliary variables ψ, ϕx, ϕy, ϕz inside the absorbing layer by using standard finite differences.
For ψ, we use

ψ
n` 1

2
i,j,k

dt
“ pni,j,k,

whereas for ϕx we u

ϕn`1
x,i` 1

2
,j` 1

2
,k` 1
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where

Dh
xp
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Here, the cell averages of p and ψ are defined as

rpn
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2
,k` 1

2
“
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`
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¯
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The finite difference approximations for ϕy and ϕz are analogous.
Eq. (6.3.1) can be rewritten making explicit pn`1

i,j,k as

pn`1
i,j,k “ 2pni,j,k ´ pn´1

i,j,k ´ dt2pζx,i ` ζy,j ` ζz,kq
pn`1
i,j,k ´ pn´1

i,j,k

2dt

´ dt2pζy,jζz,k ` ζx,iζz,k ` ζx,iζy,jqp
n
i,j,k ` dt2c2

„

pni`1,j,k ´ 2pni,j,k ` pni´1,j,k

dh2
`
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dh2
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ψ
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2
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.
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Decomposition
In this chapter we will present the Adaptive Rectangular Decomposition (ARD), a parallel
algorithm designed for conducting acoustic simulations.
The following dissertation is based on Raghuvanshi et al. [2011], Mehra et al. [2012] and
Savioja et al. [2010].

7.1. ARD algorithm
In this section we present the Adaptive Rectangular Decomposition algorithm, an evo-
lution of the RDD algorithm presented in Sec. 5.5 which supports partially and fully
absorbing boundary conditions. Furthermore, we describe in more details the Preprocess-
ing stage, including the rectangular decomposition and interface inference steps.
We define two types of subdomains:

• Air subdomains - Subdomains where we model sound propagation in air employing
the Fourier method (Ch. 4).

• PML subdomains - Subdomains where we model boundary (e.g., a wall) absorption.
We attenuate incoming sound waves employing a Perfectly Matched Layer (Ch. 6).

As interface handling method, we can use either pre-merge or post-merge. As explained
in Sec. 5.6, in the case of air-PML interfaces, we model partial absorption by multiplying
the residual by a virtual boundary absorption coefficient βB.
An ARD solver consists of two primary stages, Preprocessing and Simulation.

• Preprocessing.

1. Voxelization. The input scene is voxelized † into grid cells at grid resolution dh
determined by the relation

dh “
λmin

s
“

c

fmax s
,

†Voxelization is the process of discretizing an object into a 3D matrix, where each cell represents a
voxel. A voxel is the equivalent three-dimensional unit element of a pixel (Bacciaglia et al. [2019]).



120 7| Adaptive Rectangular Decomposition

where λmin is the minimum simulation wavelength, s is the number of samples
per wavelength, c is the speed of sound, and fmax is the maximum usable
simulation frequency (delimiting a bandwidth where dispersion is negligible).

2. Rectangular decomposition. This is followed by a rectangular decomposition
step in which grid cells generated during voxelization are grouped into rect-
angles corresponding to air subdomains. PML subdomains are generated for
each boundary. Both types of subdomain have the same grid resolution dh.
Throughout this step, we perform any necessary precomputation for the DCTs
to be performed at runtime to implement the Fourier method.

3. Interface inference. The interfaces between adjacent air-air and air-PML sub-
domains are created. This represents a one-time pre-computation.

• Simulation. We employ Alg. 5.1 (except the rectangular decomposition and inter-
face inference steps) to perform the simulation. In air subdomains we employ the
Fourier method, either the first (α ą 0) or the second order one (α “ 0). In PML
subdomains, we employ the FDTD scheme derived in Sec. 6.3.

These steps are summarized in Fig. 7.1.1.

7.2. Parallelization
Mehra et al. [2012] presented a GPU-based acoustic solver which exploits parallelization
based on the previously defined numerical simulation algorithm. In particular, the under-
lying algorithm exploits two levels of parallelism: coarse grained and fine grained.
Coarse grained parallelism is due to the fact that each of the subdomains (air or PML)
solves the wave equation in an independent manner. Fine grained parallelism is achieved
because, within each subdomain, all the grid cells are independent of each other with
regards to solving the wave equation at a particular time-step. Therefore, within each
subdomain, all the grid cells can run in parallel exhibiting fine grained parallelism.
The resulting GPU-based solver exploits both these levels of parallelism. It launches as
many threads in parallel as there are subdomains. Each of these threads performs the
computations to solve the wave equation for a particular subdomain. All these threads are
grouped into blocks and grids, and scheduled by the runtime environment on the GPU.
It is able to compute accurate impulse responses for complex scenes using single precision
arithmetic.
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(a) Preprocessing.

(b) Simulation.

Figure 7.1.1: (a) In the preprocessing stage, the input domain is voxelized into grid
cells and adaptively decomposed into rectangular subdomains. Artificial interfaces and
PML absorbing layers are created between neighboring subdomains and on the scene
boundary respectively. (b) During the simulation stage, we update the pressure field in
each subdomain and perform interface handling between neighboring subdomains. Source:
Mehra et al. [2012].

7.3. Implementation
In this section, we present our implementation of the Adaptive Rectangular Decomposition
(ARD) algorithm in C++, which is based on an existing GitHub project by the user jinnsjj
called ARD simulator, available at https://jinnsjj.github.io/ARD-simulator/.
This section presents the architecture of ARD simulator, outlines the modifications we
made, and highlights the enhanced capabilities that we have introduced.

Libraries and dependencies

In our implementation of the ARD algorithm, we utilize several libraries and dependen-
cies which provide various functionalities and support for different aspects of the program.
Below, we introduce the key libraries used in our implementation and discuss their im-
portance.

• SDL: SDL (Simple DirectMedia Layer) is used as the interface to visualize and

https://jinnsjj.github.io/ARD-simulator/
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display the wave propagation in the ARD simulator. It provides a convenient and
efficient way to create graphical user interfaces (GUI) and handle multimedia ele-
ments. The integration of SDL allows us to present the ARD algorithm’s results in
an intuitive and visually appealing manner.

• SDL_ttf : SDL_ttf is an extension library for SDL that enables the rendering of
TrueType fonts. We utilize this library to display text and annotations within the
ARD simulator. It provides us with the flexibility to present additional information
and details to the user during the simulation.

• OpenMP: OpenMP is an API that supports parallel programming in shared-
memory systems. We incorporate OpenMP into our implementation to leverage
the power of multi-core processors and enhance the performance of the ARD algo-
rithm. By parallelizing certain computations (see Sec. 7.2), we can speed up the
execution and improve the overall efficiency of the algorithm.

• FFTW: FFTW (Fastest Fourier Transform in the West) is a library for computing
discrete Fourier transforms (DFT) efficiently. We utilize FFTW to perform the
necessary Discrete Cosine Transform (see Subsec. 2.2.2) within the ARD algorithm.
Specifically, we use the provided functions for real-to-real (r2r) transforms, such
as FFTW_REDFT10 and FFTW_REDFT01, to transform the input values and
modes. FFTW’s optimized algorithms help us achieve faster and more accurate
computations.

7.3.1. Initialization and simulation loop

In this subsection, we provide description of the initialization and simulation phases of
our implementation. We also include relevant snippets of the C++ code.
Initialization:

1. Initialize simulation parameters, propagation speed c0, grid spacing dh, time step
dt, air absorption coefficient α, virtual boundary absorption coefficient βB, number
of PML layers.

2. Build air subdomains reading their position, geometry, and air absorption coefficient
from file.

3. Initialize sources and recorders reading their location from file.

4. Build PML subdomains to model the boundaries.

5. For each subdomain, initialize the variables to perform simulation. For air subdo-
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mains, we employ the Fourier method: second order Fourier if there’s no damping,
first order Fourier if there’s damping. For PML subdomains, we employ second
order FDTD.

6. Infer the boundaries (interfaces, both Air-Air and Air-PML) from geometry.

7. Initialize rendering engine with SDL.

In particular, we show a code snippet used to perform the initialization of the variables
needed for the Fourier method:

alpha_ = alpha_abs ;
alpha2_ = alpha_ ∗ alpha_ ;
eatm_ = exp(−alpha_ ∗ dt_) ;

lx2_ = width_ ∗ width_∗dh_∗dh_;
ly2_ = height_ ∗ height_∗dh_∗dh_;
lz2_ = depth_ ∗ depth_∗dh_∗dh_;

for ( int i = 1 ; i <= depth_ ; i++)
{

for ( int j = 1 ; j <= height_ ; j++)
{

for ( int k = 1 ; k <= width_ ; k++)
{

int idx = ( i − 1) ∗ height_ ∗ width_ + ( j − 1) ∗ width_ +
(k − 1) ;

double w = c0_ ∗ M_PI ∗ sq r t ( ( i − 1) ∗ ( i − 1) / lz2_ + ( j
− 1) ∗ ( j − 1) / ly2_ + (k − 1) ∗ (k − 1) / lx2_ ) ;

cwt_ [ idx ] = cos (w ∗ dt_) ;
swt_ [ idx ] = s i n (w ∗ dt_) ;
w_omega_[ idx ] = w;
w2_[ idx ] = w ∗ w;
inv_w_ [ idx ] = 1 / w;
inv_w2_ [ idx ] = inv_w_ [ idx ] ∗ inv_w_ [ idx ] ;

}
}

}

The following snippet represents the simulation loop (Cfr. Sec. 5.5):
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// update pre s sure
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>Update_pressure ( ) ;
// s t d : : cout << "update pre s sure p a r t i t i o n " << par t i t i on −>

info_ . id << " ";
}

// post−merge phase 1 ( co r r e c t pre s sure )
i f ( ! is_pre_merge ) {

#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>PostMerge (1 ) ;
}
// s t d : : cout << s td : : end l ;

}

// r e s e t r e s i due
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>re s e t_r e s i due s ( ) ;
}

// compute r e s i due
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < boundaries_ . s i z e ( ) ; i++)
{

boundaries_ [ i ]−>ComputeResidues ( ) ;
}
// s t d : : cout << s td : : end l ;

// r e s e t f o r c e
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
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{
par t i t i on s_ [ i ]−>re s e t_ f o r c e s ( ) ;

}

// compute f o r c e
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>ComputeSourceForcingTerms ( time_step ) ;
// s t d : : cout << "impose f o r c e p a r t i t i o n " << par t i t i on −>info_ .

id << " ";
}

// pre−merge ( co r r e c t f o r c e )
i f ( is_pre_merge ) {

#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>PreMerge ( ) ; // use co r r e c t ed f o r c e
}
// s t d : : cout << s td : : end l ;

}
else {

#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>NoPreMerge ( ) ; // use not co r r e c t ed f o r c e
}
// s t d : : cout << s td : : end l ;

}

// update pre s sure v e l o c i t y
#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>Update_velocity ( ) ;
// s t d : : cout << "update pre s sure v e l o c i t y p a r t i t i o n " <<
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pa r t i t i on −>info_ . id << " ";
}

// post−merge phase 2 ( co r r e c t pre s sure v e l o c i t y )
i f ( ! is_pre_merge ) {

#pragma omp p a r a l l e l for
for ( int i = 0 ; i < par t i t i on s_ . s i z e ( ) ; i++)
{

par t i t i on s_ [ i ]−>PostMerge (2 ) ;
}
// s t d : : cout << s td : : end l ;

}

In particular, we show two code snippets respectively used to update the pressure and
the pressure velocity with the Fourier method:

// prev_pressure_modes_ prev ious pre s sure
pressure_ . ExecuteDct ( ) ; // curren t pre s sure
ve loc i ty_ . ExecuteDct ( ) ; // curren t pre s sure v e l o c i t y
force_ . ExecuteDct ( ) ; // curren t f o r c e
force_r_ . ExecuteDct ( ) ; // curren t co r r e c t ed f o r c e

for ( int i = 0 ; i < depth_ ; i++)
{

for ( int j = 0 ; j < height_ ; j++)
{

for ( int k = 0 ; k < width_ ; k++)
{

int idx = i ∗ height_ ∗ width_ + j ∗ width_ + k ;

i f ( idx == 0) {
i f ( second_order_ )
next_pressure_modes_ [ idx ] = (1 − 1e−10) ∗ ( 2 .0 ∗

pressure_ . modes_ [ idx ] − prev_pressure_modes_ [ idx ] +
dt_ ∗ dt_ ∗ force_r_ . modes_ [ idx ] ) ;

else {
next_pressure_modes_ [ idx ] = (1 − 1e−10) ∗ ( pressure_ .

modes_ [ idx ] + dt_ ∗ ve loc i ty_ . modes_ [ idx ] ) ;



7| Adaptive Rectangular Decomposition 127

}
} else {

i f ( second_order_ )
next_pressure_modes_ [ idx ] = (1 − 1e−10) ∗ ( 2 .0 ∗

pressure_ . modes_ [ idx ] ∗ cwt_ [ idx ] −
prev_pressure_modes_ [ idx ] + (2 . 0 ∗ force_r_ . modes_ [
idx ] ∗ inv_w2_ [ idx ] ) ∗ ( 1 . 0 − cwt_ [ idx ] ) ) ;

else {
double xe = force_ . modes_ [ idx ] ∗ inv_w2_ [ idx ] ;
next_pressure_modes_ [ idx ] = (1 − 1e−10) ∗ ( xe + eatm_

∗ ( ( pressure_ . modes_ [ idx ] − xe ) ∗ (cwt_ [ idx ] +
alpha_ ∗ inv_w_ [ idx ] ∗ swt_ [ idx ] ) + swt_ [ idx ] ∗
inv_w_ [ idx ] ∗ ve loc i ty_ . modes_ [ idx ] ) ) ;

}
}

}
}

}

memcpy( ( void ∗) prev_pressure_modes_ , (void ∗) pressure_ . modes_ ,
depth_ ∗ width_ ∗ height_ ∗ s izeof (double ) ) ;

memcpy( ( void ∗) pressure_ . modes_ , (void ∗) next_pressure_modes_ ,
depth_ ∗ width_ ∗ height_ ∗ s izeof (double ) ) ;

pressure_ . ExecuteIdct ( ) ;

♣ ♣ ♣

i f ( second_order_ ) // pre s sure v e l o c i t y i s not cons idered in the
second order case

return ;

// prev_pressure_modes_ current pre s sure
ve loc i ty_ . ExecuteDct ( ) ; // curren t pre s sure v e l o c i t y
force_ . ExecuteDct ( ) ; // next f o r c e
force_r_ . ExecuteDct ( ) ; // next co r r ec t ed f o r c e

for ( int i = 0 ; i < depth_ ; i++)
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{
for ( int j = 0 ; j < height_ ; j++)
{

for ( int k = 0 ; k < width_ ; k++)
{

int idx = i ∗ height_ ∗ width_ + j ∗ width_ + k ;

i f ( idx == 0) {
next_velocity_modes_ [ idx ] = ( ve loc i ty_ . modes_ [ idx ] + dt_

∗ force_r_ . modes_ [ idx ] ) / (1 + 2 ∗ dt_ ∗
air_absorption_ ) ;

}
else {

double xe = force_r_ . modes_ [ idx ] ∗ inv_w2_ [ idx ] ;
next_velocity_modes_ [ idx ] = eatm_ ∗ ( ve loc i ty_ . modes_ [

idx ] ∗ (cwt_ [ idx ] − alpha_ ∗ inv_w_ [ idx ] ∗ swt_ [ idx ] )
− (w_omega_[ idx ] + alpha2_ ∗ inv_w_ [ idx ] ) ∗ (

prev_pressure_modes_ [ idx ] − xe ) ∗ swt_ [ idx ] ) ;
}

}
}

}

memcpy( ( void ∗) prev_velocity_modes_ , (void ∗) ve loc i ty_ . modes_ ,
depth_ ∗ width_ ∗ height_ ∗ s izeof (double ) ) ;

memcpy( ( void ∗) ve loc i ty_ . modes_ , (void ∗) next_velocity_modes_ ,
depth_ ∗ width_ ∗ height_ ∗ s izeof (double ) ) ;

ve loc i ty_ . ExecuteIdct ( ) ;

7.3.2. Bugfixes and new features

We made several contributions to the original implementation, including:

• Improved code readability.

• Added support for air damping using the first order Fourier method.

• Fixed the normalization of the inverse Discrete Cosine Transform (iDCT) result,
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ensuring that the solution is not doubled as a result of the concatenation of the
Discrete Cosine Transform (DCT) and the inverse DCT (iDCT) operations.

• Implemented post-merge.

These contributions enhance the overall functionality and reliability of the implementa-
tion.

7.4. Numerical simulation of a test scenario

Figure 7.4.1: Test scenario for ARD simulator: minimalistic hall. Source: noa.

We have conducted experiments using the ARD simulator in a simplified hall environ-
ment depicted in Fig. 7.4.1. The hall has a volume of 7600 m3 and a surface area of
760 m2, partitioned into three rectangles. The simulation parameters we have chosen are
as follows: the propagation speed c0 is 343.5 m/s, the grid spacing dh is 0.2, and the time
step dt is 2e ´ 4.
For the first case, where the air absorption coefficient is α “ 0 and the boundaries ab-
sorption coefficient is αB “ 0.5, we present snapshots of the simulation at different time
points in Fig. 7.4.2. Conversely, for the second case, where the air absorption coefficient
is α “ 10 and the boundaries absorption coefficient is αB “ 0.5, we display snapshots
in Fig. 7.4.3. In both cases, the applied force is modeled as in Sec. 2.1.5, so the force
envelope fenvp

¯
xq is a Gaussian, and the time evolution term ftimeptq is a Gaussian too (see

Fig. 7.6.4). The interface handling method chosen is pre-merge for both cases, and the
thickness of the perfectly matched layer (PML) is set to 5.
It is worth noting that the second solution is identical to the first one, except for the
decaying pressure caused by air damping.
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(a) t “ 0.01 s. (b) t “ 0.03 s. (c) t “ 0.05 s.

(d) t “ 0.07 s. (e) t “ 0.09 s. (f) t “ 0.11 s.

Figure 7.4.2: Snapshots of ARD simulator at different time instants of a test case with
propagation speed c0 “ 343.5m{s, grid spacing dh “ 0.2, time step dt “ 2e ´ 4, air ab-
sorption coefficient α “ 0, boundaries absorption coefficient αB “ 0.5, pre-merge interface
handling method, and PML thickness 5.
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(a) t “ 0.01 s. (b) t “ 0.03 s. (c) t “ 0.05 s.

(d) t “ 0.07 s. (e) t “ 0.09 s. (f) t “ 0.11 s.

Figure 7.4.3: Snapshots of ARD simulator at different time instants of a test case with
propagation speed c0 “ 343.5m{s, grid spacing dh “ 0.2, time step dt “ 2e ´ 4, air
absorption coefficient α “ 10, boundaries absorption coefficient αB “ 0.5, pre-merge
interface handling method, and PML thickness 5.
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7.5. Numerical errors
Numerical errors in ARD are introduced mainly through two sources: boundary approx-
imation and interface errors. The following dissertation is based on Raghuvanshi et al.
[2011].
By employing voxelization to approximate the simulation domain, staircasing errors oc-
cur near the boundary (see Fig. 7.5.1). Voxelization, in fact, entails shape representation
approximations, leading to a slight alteration of the external shape of a part based on
the voxel dimensions (Bacciaglia et al. [2019]). Luckily, geometric features comparable or
smaller than the wavelength of sound (34 cm at 1 kHz) lead to very small variations in
the overall acoustics of the scene due to the presence of diffraction.
The net effect of staircasing error is that for frequencies with wavelengths comparable to
the cell size (1 kHz), the walls act as diffuse instead of specular reflectors. For frequencies
with large wavelengths (500 Hz and below), the roughness of the surface is effectively
"invisible" to the wave, and the boundary errors are small with near-specular reflections.
Therefore, the perceptual impact of boundary approximation is lesser in acoustic simula-
tion.
However, if very high boundary accuracy is critical for a certain scene, this can be achieved
by coupling our approach with a high-resolution grid near the boundary, running FDTD
at a smaller time step. In Borrel-Jensen et al. [2023], instead, it’s suggested to couple the
Fourier method with the Spectral Element Method. Of course, this would create extra
computational overhead, so its an efficiency-accuracy trade-off.

Figure 7.5.1: Voxelization and rectangular decomposition of a Cathedral. Source: Raghu-
vanshi et al. [2011].

As explained in Sec. 5.5.2, coupling the Fourier method with interface handling based
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on p2, 6q FDTD creates interface errors. These errors increase with increasing frequency,
but it stays « ´40 dB for most of the spectrum. To sum up, ideal numerical dispersion
is traded off for very small spurious reflections which are imperceptible.

7.6. Reverberation analysis
The following dissertation is based on Kuttruff and Everton [2010].
Within an enclosure, from the geometrical acoustics point of view, each sound reflection
is characterized by the time of arrival, its amplitude, and its direction. We can plot these
reflections as perpendicular dashes over a horizontal time axis, whose weight depends on
the amplitude: we call this plot reflection diagram or echogram, and an example is shown
in Fig. 7.6.1.

Figure 7.6.1: Schematic reflection diagram. Source: Kuttruff and Everton [2010].

Analyzing the figure, we notice the direct response (DR), the early response (ER), and
the late response (LR). The DR is the direct sound from the source to the receiver, the
ER is typically the sound reaching the receiver within the first 80´100 ms, and the LR is
the sound reaching the receiver after 100 ms of being emitted from the source (Chandak
et al. [2011]). Usually, the early reflections are strong and distinguishable, while the later
reflections (which constitute the reverberation tail) are denser and weaker.
In general, from the wave based acoustics point of view, the same information can be
inferred from the room’s impulse response. When a room is excited by a very short sound
impulse emitted at time t “ 0, we obtain, in the limit of vanishing pulse duration, the
impulse response gptq: an example is shown in Fig. 7.6.2. In general, we have a different
impulse response for each combination of source and listener position, that’s why it’s also
called point-to-point impulse response.
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Figure 7.6.2: Impulse response of a room for a given source and listener position. Source:
Kuttruff and Everton [2010].

Making a huge simplification, we can say that the echogram contains the peaks of the
room’s impulse response.
Typically, reverberation analysis is performed on a decay level curve Lr (i.e., the sound
pressure level of the decaying sound field), defined as

Lrptq “
∆ 10 log10

ˆ

wptq

wp0q

˙

“ 20 log10

ˆ

pptq

pp0q

˙

,

where w is the energy density, while p is the pressure.
This means that the decay level curve Lr does not only depend on the enclosure geometry
and absorption characteristics, but also on the excitation provided to the room. In fact, an
expression proportional to the energy density w (also known as energy decay) is obtained
by squaring the room’s response:

wptq 9 h2ptq,

where hptq is given by the convolution between the room’s impulse response gptq and a
given stationary signal sptq which is switched off at t “ 0, i.e.,

hptq “ gptq ˚ sptq “

ż 0

´8

gpτqspt ´ τqdτ.

The best known and most important quantity in room acoustics is the reverberation time
T60, introduced by Sabine, and defined as the time interval in which the decay level drops
down by 60 dB. Typical values of reverberation times range from 0.3s in living rooms
to 10s in large churches and empty reverberation chambers. Usually, large halls have
reverberation times in the range r0.7, 2ss.
The reverberation time can be either measured or estimated. The most general and simple



7| Adaptive Rectangular Decomposition 135

formula is the modified † Sabine’s reverberation time:

T60 « 0.161
V

A ` 4mV
, (7.6.1)

where V is the room’s volume, m “
∆ α{c is the dimensionless air absorption coefficient

(which can be neglected for small rooms), and A is the equivalent absorption area, defined
as

A “
∆ αavS,

where αav is the average boundary absorption coefficient of the boundaries, while S is the
room’s surface.
Eq. (7.6.1) fails for αav Ñ 1: it predicts a finite reverberation time, but an enclosure
whose walls are perfectly reflecting cannot generate a reverberating field. A more accurate
formula is the modified Eyring’s reverberation time:

T60 « 0.161
V

S |lnp1 ´ αavq| ` 4mV
. (7.6.2)

Let’s now consider the measurement of reverberation. Usually, the energy decay curves
have quasi-random fluctuations: one possibility to attenuate them would be to average
over a great number of individual decay curves, each of which obtained by random noise
excitation of the room. A more elegant approach was proposed by Schroeder, which
invented a technique called backward integration used to compute the ensemble average
of all possible energy decay curves:

xwptqy “ xh2ptqy “
∆

ż 8

t

g2pτqdτ “

ż 8

0

g2pτqdτ ´

ż t

0

g2pτqdτ. (7.6.3)

Of course, the upper limit 8 must be replaced with a finite value. If this limit is too long,
we pick up too much noise (in our case, numerical error); instead, if the limit is too short,
we notice an early downward bend of the curve.
The theoretical energy decay curve can be expressed as

wptq “ wp0qe´p cA
4V

`2αqt. (7.6.4)

Notice that this is an approximation valid under the Sabine’s continuity hypothesis ; in
practice, as Eyring first discovered, the energy decay is a step-wise process. In Fig. 7.6.3
we compare the two energy decay models.

†It’s "modified" because it also depends on the dimensionless air absorption coefficient m.
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Figure 7.6.3: Sabine’s versus Eyring’s energy decay process. Source: Diffuse Field Model
slide from the course "Room Acoustics" (2022-2023) by Maria Cairoli and Livio Maz-
zarella.

Expressing xwptqy in decibel we obtain the ensemble average of all possible decay level
curves:

xLrptqy “ 10 log10

ˆ

xwptqy

wp0q

˙

.

Starting from the ensemble average of the decay level curves, we measure T60, recalling
the definition, as

T60 “ t2 ´ t1,

where t2 “ t s.t. xLrptqy “ ´60 dB, while t1 is the time instant when the sound source is
turned off.
We also define another related parameter, T30:

T30 “ 2pt2 ´ t1q,

where t2 “ t s.t. xLrptqy “ ´30 dB, while t1 is the time instant when the sound source
is turned off. This parameter is used to provide an estimation of the reverberation time
over a shorter range.
Up to now we have only considered time domain analysis of reverberation. Useful insight
is obtained by analyzing the reverberation in the frequency domain: we obtain the room’s
frequency response by taking the Fourier transform of the room’s impulse response. It
provides a way to detect the most prominent modes of oscillation within a room and,
as we’ll see in Sec. 7.7, it makes possible to efficiently simulate the acoustics of the
environment through frequency domain filtering.
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7.6.1. Algorithm to compute Room’s Impulse Response

A commonly used method to measure the impulse response of a room, denoted as hptq,
involves applying a known input signal, denoted as sptq, measuring the room’s response,
denoted as gptq, and then performing deconvolution (Stan et al. [2002]). There are different
approaches to obtain the room’s response:

1. One approach is to provide the input signal to a real room using a loudspeaker and
measure the response using a microphone.

2. Another approach is similar to the first one, but instead of a real room, the response
is measured in a scale model of the room. This requires appropriate scaling of the
response.

3. A numerical simulation can also be performed, where the receiver is modeled by the
pressure measured at specific grid points, analogous to a microphone.

In our case, we choose the numerical simulation approach. This method has the advantage
of only requiring a computer and does not involve measurement noise, unlike the other
approaches. In this chapter, we have presented the ARD algorithm, which is well-suited
for numerical acoustics simulations due to its characteristics, such as no dispersion and
high efficiency. Therefore, it is a suitable choice for measuring the impulse response.

Figure 7.6.4: Excitation signal in the time domain and associated FFT for dt “ 2e ´ 4.
The dashed vertical red line represents the cutoff frequency 750 Hz, which is lower than
the Nyquist frequency 1{dt “ 5000 Hz.

To ensure accurate measurements, it is important to use an omnidirectional sound source
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with a flat frequency response within the desired range. Various source signals have been
proposed in the literature (Murphy et al. [2014]). In our study, we employ a force whose
envelope fenvp

¯
xq is a Gaussian, and whose time evolution term ftimeptq is a Gaussian too,

as described in Sec. 7.4. Fig. 7.6.4 shows the excitation signal in the time domain and its
associated FFT. The dashed vertical red line represents the cutoff frequency of 750 Hz,
which is lower than the Nyquist frequency of 5000 Hz, determined by the simulation
parameter dt.
After executing ARD, we employ the following algorithm to perform the measurement
and the upsampling of the room’s impulse response, which is based on the one proposed
in Raghuvanshi et al. [2011]:

1. Data loading and preprocessing.

• Load Source and Response: The code loads the source (excitation) signal
¯
s and

the room’s response signal
¯
g at listener location in the desired environment

obtained through simulation. Based on the dh and dt parameters employed,
it computes the sampling rate fs of the signals and the cutoff frequency fc for
the impulse response.

• Truncation of Response: The response
¯
g is truncated before it contains only

noise. The truncation time corresponds to Sabine’s reverberation time esti-
mated with Eq. (7.6.1).

2. Impulse Response Computation: The impulse response
¯
h is computed through

deconvolution. Following the procedure described in Havelock et al. [2008], which
is valid in case of white excitation, the deconvolution is executed by performing the
cross-correlation between the room’s response

¯
g and the time-reversed excitation

signal
¯
s. The code performs cross-correlation between the truncated response and

the source signal, followed by low pass filtering with cutoff frequency fc.

3. Impulse Response Upsampling.

• Upsampling : The computed impulse response
¯
h is upsampled to a desired

higher sampling rate fnew
s , obtaining

¯
hnew.

• Cleaning through Peak Detection: The code performs peak detection on the
upsampled impulse response

¯
hnew to identify the significant peaks. By retaining

only the significant peaks, we obtain a cleaner version of the upsampled impulse
response, denoted by

¯
hclean.

• High-pass Filtering : The process of cleaning reduces the accuracy of the im-
pulse response. As for the low frequencies we already have an accurate impulse
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response, i.e.,
¯
h, the clean upsampled impulse response is high-pass filtered

with cutoff frequency fc, obtaining
¯
hhigh.

• Summation of Impulse Responses : The accurate low-frequency impulse re-
sponse

¯
h and the estimated high-frequency impulse response

¯
hhigh are summed

to create the final impulse response
¯
hup for auralization.

The Impulse Response Upsampling step is a signal enhancement strategy performed
on the impulse response to extend its bandwidth while retaining the accuracy given by
simulation in the low-frequency band. Directly simulating in a higher bandwidth would
be too computationally expensive. A more accurate approach would be to combine our
technique with a Geometrical Acoustic simulator for the higher frequency range.

7.6.2. Reverberation analysis on a test scenario

We now show the results of reverberation analysis (impulse response, frequency response,
energy decay curve, measured T30 and T60) for the test scenario in Sec. 7.4. We also plot
the theoretical energy decay curve given by Eq. (7.6.4).
We consider the following cases:

• Air absorption coefficient α “ 0, PML thickness 25, and virtual boundary absorption
coefficient βB “ 1 ÝÑ αB “ 0.20247 - The impulse response, frequency response,
and energy decay curve are shown in Fig. 7.6.5, while the measured reverberation
time parameters are T30 “ 2.0168s and T60 “ 1.9884s.

• Air absorption coefficient α “ 0, PML thickness 5, and virtual boundary absorption
coefficient βB “ 0.9 ÝÑ αB “ 0.08724 - The impulse response, frequency response,
and energy decay curve are shown in Fig. 7.6.6, while the measured reverberation
time parameters are T30 “ 5.2192s and T60 “ 4.9282s. Notice that, in this case, the
measured value of T60 is not valid because the energy decay curve has a downward
bend near t “ 5.

• Air absorption coefficient α “ 10, PML thickness 5, and virtual boundary absorption
coefficient βB “ 0.9 ÝÑ αB “ 0.08724 - The impulse response, frequency response,
and energy decay curve are shown in Fig. 7.6.7, while the measured reverberation
time parameters are T30 “ 0.7732s and T60 “ 0.6494s.

Notice that the values of αB associated to the selected values of βB are the values such that
the expected value of reverberation time (computed with the modified Eyring’s formula
in Eq. (7.6.2)) most closely matches the measured value.
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(a) Original. (b) Upsampled.

(c) Energy decay curve.

Figure 7.6.5: Point-to-point impulse response and frequency response before (a) and after
upsampling (b) for the test scenario in Sec. 7.4 with air absorption coefficient α “ 0,
virtual boundary absorption coefficient βB “ 1, and 25 PML layers. The frequency
response magnitude is plotted in logarithmic scale. In (c) we plot the numerical and
theoretical energy decay curve, both in linear scale and in decibels.
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(a) Original. (b) Upsampled.

(c) Energy decay curve.

Figure 7.6.6: Point-to-point impulse response and frequency response before (a) and after
upsampling (b) for the test scenario in Sec. 7.4 with air absorption coefficient α “ 0,
virtual boundary absorption coefficient βB “ 0.9, and 5 PML layers. The frequency
response magnitude is plotted in logarithmic scale. In (c) we plot the numerical and
theoretical energy decay curve, both in linear scale and in decibels.
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(a) Original. (b) Upsampled.

(c) Energy decay curve.

Figure 7.6.7: Point-to-point impulse response and frequency response before (a) and after
upsampling (b) for the test scenario in Sec. 7.4 with air absorption coefficient α “ 10,
virtual boundary absorption coefficient βB “ 0.9, and 5 PML layers. The frequency
response magnitude is plotted in logarithmic scale. In (c) we plot the numerical and
theoretical energy decay curve, both in linear scale and in decibels.
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7.7. Auralization
Auralization is the process of rendering audible, by physical or mathematical modeling,
the sound field of a source in a space, in such a way as to simulate the listening experience
at a given position in the modeled space. The aim is not primarily to recreate the sen-
sation of the speech of music per se, but to recreate the aural impression of the acoustic
characteristics of a space, be it outdoors or indoors (Kleiner et al. [1993]).
Another aspect which is strictly related to auralization, and which can be consider a
subset of it, is that of spatialization. The purpose of this technique is to emulate the
differences in sound heard at each ear, which is important for localization and immersion.
If only auralization is performed, the user using headphones perceives the sound as being
inside its head; through spatialization, the sound is externalized. This process involves
filtering the monaural signal at the listener position with the HRTF (head-related trans-
fer function), which models the scattering process from the user’s body, head and ears
(Kosikowski [2018], Zotkin et al. [2002]).
There are different types of auralization. The most important step is, indeed, the compu-
tation of the room’s impulse response; thus, we can categorize auralization methods by
the chosen simulation technique. We’ll consider the algorithm presented in Sec. 7.6.1 to
perform fully computed room’s impulse measurement.
A second categorization is between Real-time calculation and Pre-calculated approaches.
As the name suggests, in the former approach, the entire room acoustic simulation and the
spatialization are computed in real-time; wave-based methods as Adaptive Rectangular
Decomposition are ruled out because of their large computational overhead. This means
that we need to go for a Pre-calculated approach: in a pre-calculation stage, we calculate
the room impulse response for all possible positions of the source and the receiver. Of
course, in the SS-SR case, this is trivial; however, expecially in the MS-MR case, it’s
clear that the computational effort to perform the pre-calculation step and the storage
resources needed will be really demanding (Kosikowski [2018]).
Another categorization is given by the movement of the source and/or of the receiver:

• SS-SR - Static Source - Static Receiver ;

• SS-MR - Static Source - Moving Receiver ;

• MS-SR - Moving Source - Static Receiver ;

• MS-MR - Moving Source - Moving Receiver.

We’ll now present some techniques to perform auralization in these four scenarios which
are based on Chandak et al. [2011].
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In the SS-SR case, the propagation from the source to the receiver can be modeled by a
linear, time-invariant (LTI) system. This means that the propagation effects are com-
pletely characterized by the source-to-listener impulse response. Hence, to perform aural-
ization in the SS-SR case, we only need to compute the room’s impulse response for the
given source-receiver configuration and filter the dry (anechoic) signal with it. Filtering
is achieved through convolution; to perform this operation efficiently, one may employ
the overlap-and-add method: an extensive explanation of this technique can be found in
Diniz et al. [2010].
Assuming that the propagation from the source to the receiver can be modeled as an LTI
system is appropriate only for SS-SR scenarios. For the more general MS-MR scenarios,
we need to consider the room’s impulse response as time-varying. We’ll work on short
and constant duration frames of the dry signal: let skptq be the k-th frame of the signal
sptq. Furthermore, let Sk (Rk) be the position of the source (receiver) at frame k, and
let gk1,k2ptq be the impulse response between Rk1 and Sk2 . The sound reaching Rk ar-
rives from many previous source positions tSk, Sk´1, . . . , Sk´L`1u, as the sound emitted
by previous source positions propagates through the scene before arriving at the receiver.
For any previous source position Sk´i, the sound reaching the listener can be obtained by
convolving sk´iptq, the sound emitted from the source in frame k ´ i, with gk,k´iptq, the
room’s impulse response between Sk´i and Rk. Hence, the signal received by receiver in
frame k can be expressed as

rkptq “

L´1
ÿ

i“0

gk,k´iptq ˚ sk´iptq. (7.7.1)

Usually, to avoid discontinuities between frames, we multiply each frame by a window
function wptq † before computing the output signal. The signal processing pipeline to
perform MS-MR is illustrated in Fig. 7.7.1. The approach described for the MS-MR
scenario can be particularized to the simpler scenarios of SS-MR and MS-SR. In particular,
in the former case, we have that S1 “ S2 “ . . . “ Sk. Therefore, gk,k´iptq “ gk,kptq, and
Eq. (7.7.1) reduces to

rkptq “ gk,kptq ˚

L´1
ÿ

i“0

sk´iptq.

Notice that, employing Adaptive Rectangular Decomposition for the simulation (or any
other wave-based method), we directly obtain the room’s response at all listener positions
for a fixed source, meaning that the SS-MR scenario is clearly favored.

†A window function is a mathematical function that smoothly transitions from high values at the
center to low values at the edges, typically symmetrically.
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Figure 7.7.1: Signal processing pipeline for MS-MR auralization. Source: Chandak et al.
[2011].

A simpler approach to perform SS-MR auralization was proposed in Raghuvanshi et al.
[2011]. Current game and simulation engines, to perform an approximate auralization,
employ manually configured reverb filters whose parameters depend on the listener loca-
tion. The room’s impulse response can be used to precompute high-quality reverb filters,
removing the need of human intervention. Hence, we set physically motivated parameters
to the reverb filters, improving the auralization quality and, at the same time, ensuring
that the audio pipeline remains unchanged. This approach can be easily extended to
the MS-MR case by performing numerical simulations of the acoustic response of a scene
from several sampled source positions; to perform auralization, these responses will be
interpolated according to the actual position of the source.
In the MS-SR case, instead, we have that R1 “ R2 “ . . . “ Rk. Therefore, gk´i,kptq “

gk,kptq, and Eq. (7.7.1) reduces to

rkptq “

L´1
ÿ

k“0

rk,k´iptq,

rk,k´iptq “ gk,k´iptq ˚ sk´iptq.

Finally, the quality of the auralization depends on how accurate the simulated room’s
impulse response is. The ARD algorithm, while being accurate in simulating sound prop-



146 7| Adaptive Rectangular Decomposition

agation, fails in realistically modeling the boundary conditions. Recent developments
in frequency dependent absorbing and diffusive boundaries would offer a more accurate
simulation. Furthermore, it could be possible to increase the auralization quality by
considering source directivity and by employing a personalized HRTF function.



147

8| Conclusion and future work
In this study, we have introduced Adaptive Rectangular Decomposition (Ch. 7) as a
computation- and memory-efficient technique for accurate numerical acoustic simulations
on large and complex domains. This approach surpasses traditional methods like the
Finite-Difference Time-Domain (FDTD) method.
In fact, by employing the Fourier method (Ch. 4) for updating the solution in each
subdomain, it does not introduce dispersion (as demonstrated in Subsec. 4.2.2 and Sub-
sec. 4.3.2), making it well-suited for simulating acoustics in expansive environments and
capturing high-order reflections. Furthermore, we achieve a remarkable enhancement in
efficiency, with a minimum ten-fold reduction (Raghuvanshi et al. [2011]) in computa-
tional and memory requirements compared to the FDTD method (Ch. 3).
While our implementation showcases notable improvements, there are areas that war-
rant further refinement. One such area involves integrating a fine-grid simulation near
the boundaries to mitigate errors caused by boundary reflections, as proposed in Borrel-
Jensen et al. [2023]. The inclusion of a fine-grid simulation enables the reduction of
artifacts resulting from reflections, leading to improved overall accuracy in the simulated
acoustic environment.
Additionally, future research can explore the integration of geometric techniques to sim-
ulate wave (ray) propagation in the high-frequency range, going beyond the sole reliance
on the upsampling technique utilized in computing the room’s impulse response (Subsec.
7.6.1), which produces realistic but inexact results. By combining the ARD approach
with geometric techniques, we could enhance the fidelity of the simulations in the high-
frequency range.
Lastly, there is room for improvement in the modeling of boundaries: our ARD algorithm
only supports non frequency dependent boundary absorption. Recent developments in
frequency dependent absorbing and diffusive boundaries would offer a more complete
simulation framework for room acoustics.
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