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DESIGN, SIMULATION AND TESTING OF A  

COUPLED PLATE-CAVITY SYSTEM TARGETED FOR 

VEHICLE INTERIOR NOISE ANALYSIS AND CONTROL  

ABSTRACT 

 

Nowadays, people are paying more and more attention to the acoustic comfort of vehicles, 

as well as the health issues caused by noise. The various types of vehicles including 

automobiles, trains, aircrafts and ships are all being requested for a better acoustic design, 

where the vehicle interior noise analysis and control are important. Computer-Aided 

Engineering (CAE) tools are now popularly used for these purposes, but engineers are 

always doubtful about their reliabilities. Besides, the currently available vibroacoustic 

methods are still far from satisfactory in terms of capability, accuracy or efficiency, 

especially for the analyses in mid-frequency range. New methods and codes are 

continuously developed, but they are hard to find suitable benchmark cases for assessment 

and validation. Therefore, to facilitate the CAE analysis of vehicle interior noise, this thesis 

presents a benchmarking and testing tool called Noise-Box. 

 

The Noise-Box includes the test equipment and its numerical models, so that it can provide 

both reference measurements and reference computations. The test equipment, designed as 

a plate-cavity system that is easy to model and analyse, can perform vibroacoustic tests that 

can be accurately reproduced by numerical models. Its ability to measure sound 

transmission loss and test noise control measures is also considered. The numerical models 

that simulate the test equipment, should accurately predict its behaviour. Three numerical 

methods are used in order to cover a wide frequency range. While Finite Element Method 

(FEM) and Statistical Energy Analysis (SEA) are respectively for the low- and high- 

frequency ranges, Wave Based Method (WBM) is applied and developed for its potential 

to fill the mid-frequency gap. Commercial software is used for the FEM, and self-developed 

codes are provided for the SEA and the WBM. Concerning the demand for 2D benchmark 

cases in developing new numerical techniques, validated 2D models of FEM and WBM are 

provided for the additional reference results. 

 

To obtain such a tool, this work designs, constructs and characterizes the test equipment, 

and builds, validates and updates the numerical models. It is a big challenge to reach the 



ABSTRACT 

 

 
II 

 

agreement between the numerical models and the test system, and this thesis has overcome 

the difficulties through the following efforts: 

 

(1) When the plate-cavity coupled Noise-Box is designed towards the ideal conditions, its 

modelling considers the uncertainties in materials, manufacture and assembly. Especially, 

the plate edge conditions are modelled by elastic restraints to handle the uncertainty, where 

the stiffnesses can be updated based on test results. 

 

(2) The Noise-Box is comprehensively and accurately characterized through experiments. 

Experiments are performed to the plate, the cavity and the plate-cavity system, respectively, 

covering different issues. Particularly, the modal parameters of the three situations are all 

precisely estimated through Experimental Modal Analysis (EMA), so that they can be the 

reliable reference for FE model updating, where the plate edge conditions are characterized. 

 

(3) The numerical modelling techniques are strictly verified. Since the FEM results are 

important reference, both for updating the physical parameters of the real system and for 

validating the self-developed codes of WBM, the FE modelling techniques are first 

validated by benchmark cases, removing any doubt in element types, mesh control and 

boundary conditions. Then, the FE models are updated, and the updated models match well 

with the test system. Based on the FEM results, the WB models are also validated, during 

which the efficiency of WBM is demonstrated. The SEA models are built for the Noise-

Box system to investigate the structure-borne noise and the airborne noise, respectively, 

and their validations are based on the open source software “SEAlab”. 

 

Finally, with its characteristics well-informed and its matched numerical models prepared, 

the benchmarking and testing tool Noise-Box, is ready for application. The thesis lastly has 

an initial test on this tool for structure-borne and airborne noise investigations, where the 

solutions from the test equipment and the numerical models are presented and compared. 

 

It is considered that this dissertation has the following innovative contributions: 

• Proposes a modified weighted residual formulation to WBM, extending the availability 

of the method for elastically restrained plates; 

• Introduces a way to employ EMA for vibroacoustic systems, through which the modal 

parameters of both plate- and cavity-controlled modes are identified with good accuracy; 

• Presents a novel benchmarking and testing tool that can benchmark different  

techniques for vibroacoustic analysis and test the measures for interior noise control. 

  
  

KEY WORDS: FEM, WBM, SEA, EMA, sound transmission loss, vibro-acoustics 
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PROGETTAZIONE, SIMULAZIONE E TEST DI UN 

SISTEMA ACCOPPIATO PIASTRA-CAVITA' PER 

L'ANALISI E IL CONTROLLO DEL RUMORE 

ALL'INTERNO DI UN VEICOLO 

 

SOMMARIO 

 

Al giorno d'oggi, si presta sempre più attenzione al comfort acustico dei veicoli, nonché ai 

problemi di salute causati dal rumore. I vari tipi di veicoli tra cui automobili, treni, aerei e 

navi richiedono quindi una migliore progettazione acustica, dove l'analisi e il controllo del 

rumore interno al veicolo sono importanti. Gli strumenti di Computer-Aided Engineering 

(CAE) sono ora comunemente usati per questi scopi, ma gli ingegneri restano comunque 

ancora scettici sulla loro affidabilità. Inoltre, i metodi vibroacustici attualmente disponibili 

sono ancora poco soddisfacenti in termini di capacità, accuratezza o efficienza, soprattutto 

per le analisi a medie frequenze. Nuovi metodi e codici vengono continuamente sviluppati, 

ma è difficile trovare casi di riferimento adatti per la loro validazione e valutazione. 

Pertanto, per facilitare l'analisi CAE del rumore interno ai veicoli, questa tesi presenta uno 

strumento di benchmarking e test chiamato Noise-Box. 

 

L’attività svolta sulla Noise-Box include sia prove sperimentali sia modelli numerici, in 

modo che si possano fornire sia misure di riferimento che calcoli di riferimento. Grazie al 

banco prova realizzato, progettato come un sistema piastra-cavità facile da modellare e 

analizzare, si possono eseguire prove vibroacustiche che possono essere accuratamente 

riprodotte da modelli numerici. Inoltre, il banco può essere utilizzato per misure di 

transmission loss e per testare diverse strategie di controllo del rumore. I modelli numerici 

sviluppati riproducono in modo accurato il comportamento vibroacustico del banco. Sono 

stati utilizzati tre diversi metodi numerici per coprire un'ampia gamma di frequenze: il 

metodo degli elementi finiti (FEM) e la Statistical Energy Analysis (SEA) sono stati adottati 

rispettivamente per gli intervalli di bassa e alta frequenza, mentre il Wave Based Method 

(WBM) è stato applicato per colmare il divario alle medie frequenze. Per il FEM è stato 

utilizzato un software commerciale, mentre SEA e WBM sono stati implementati in  codici 

sviluppati autonomamente. Per rispondere alla richiesta di casi di riferimento 2D nello 

sviluppo di nuove tecniche numeriche, vengono forniti modelli validati sia FEM che WBM.  
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In questo lavoro si è progettato, si è costruito e si è caratterizzato il banco prova. Inoltre, 

sono stati implementati e validati  diversi modelli numerici. Nello specifico: 
 

(1)  Il sistema accoppiato piastra-cavità, Noise-Box, è stato progettato per condizioni ideali; 

la sua modellazione considera le incertezze nei materiali, nella fabbricazione e 

nell'assemblaggio. In particolare, le condizioni al contorno della piastra sono modellate da 

vincoli elastici per gestire l'incertezza, dove le rigidezze possono essere aggiornate in base 

ai risultati dei test. 
 

(2) La Noise-Box è stata caratterizzata in modo completo e accurato attraverso prove 

sperimentali. Sono stati eseguiti esperimenti rispettivamente sulla piastra, sulla cavità e sul 

sistema accoppiato piastra-cavità. I parametri modali per le tre configurazioni sono stati 

stimati mediante Analisi Modale Sperimentale (EMA), in modo che questi parametri 

possano essere un riferimento affidabile per l'aggiornamento del modello FEM e, nello 

specifico, per l’identificazione delle condizioni al contorno della piastra. 
 

(3) Le tecniche di modellazione numerica sono state rigorosamente verificate. Poiché i 

risultati FEM sono un riferimento importante, sia per l'aggiornamento dei parametri fisici 

del sistema reale che per la validazione dei codici auto-sviluppati del WBM, le tecniche di 

modellazione a elementi finiti sono state prima convalidate tramite casi di riferimento, 

rimuovendo ogni dubbio su tipi di elementi, controllo della mesh e condizioni al contorno. 

Quindi, sono stati messi a punto i modelli FEM del sistema Noise Box. Sulla base dei 

risultati FEM, sono stati validati anche i modelli WB, dimostrandone l'efficienza. I modelli 

SEA, implementati per il sistema Noise-Box, studiano rispettivamente il rumore structure-

borne e airborne e la validazione di questi modelli si basa su un software open source 

“SEAlab”. 

 

Infine, note le sue caratteristiche e validati i modelli numerici, lo strumento di 

benchmarking e di test (Noise-Box) è pronto per l'applicazione. In conclusione, la tesi 

riguarda la progettazione, la simulazione e la caratterizzazione sperimentale di un banco 

prova dedicato a indagini sul rumore airborne e structure-borne. 

 

Si ritiene che questa tesi fornisca i seguenti contributi innovativi: 

• propone una formulazione modificata del WBM ai residui pesati, estendendo la 

disponibilità del metodo per piastre vincolate elasticamente; 

• introduce un modo per impiegare l'EMA per i sistemi vibroacustici, attraverso il quale 

i parametri modali dei modi controllati sia dalla piastra che dalla cavità sono identificati 

con buona accuratezza; 

• rende disponibile un nuovo strumento di benchmarking e test che permette di 

confrontare diverse tecniche per l'analisi vibroacustica e testare diverse strategie per il 

controllo del rumore interno. 
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 Introduction and state of the art 

1.1 Introduction 

With the development of human society and the improvement of living standard, the public 

are paying more attention to their living and working environment as well as transport 

comfort. Vehicle interior noise is an integral part for the transport comfort and has become 

a competitive selling point for vehicle manufacturers [1]. Though vehicles (e.g., automobiles, 

trains, trams, airplanes and ships) have continuously being quieter, customers are in the 

meantime more sensitive to noise and discomfort [2]. Besides, for vehicle users (passengers, 

drivers or stewards), the noise exposure is not only a travel experience but also a 

nonnegligible health issue [3,4]. It is reported that noise can cause the auditory effects such 

as hearing loss, tinnitus and hyperacusis, and the non-auditory effects like annoyance, 

hypertension, cardiovascular disease, impaired cognitive performance and sleep 

disturbance [5]. The non-auditory effects are hard to be noticed but also prevalent. Therefore, 

the mitigation or control of vehicle interior noise is essential for the vehicle manufacturers, 

the transport companies as well as the final users.  

 

Vehicle interior noise is drawing extensive concern from researchers, and many efforts have 

helped the noise level reduce [1,2,6–10]. However, what has been accomplished so far is still 

far from satisfying. This is on one hand due to the more demanding request from the 

customers, and on the other hand related to the intrinsic complexity of the interior noise 

problem, which is associated with the multiple intricate noise sources and transfer paths [10–

12]. Hence, analysing, predicting and controlling the vehicle interior noise are challenging 

tasks that will last for long, especially when the vehicles are now under the trends of 

lightweight design and new energy replacement due to the issues of fuel economy and 

emissions [13,14].  

 

Apart from finding techniques to mitigate/control the noise, it is also important that the 

technique itself as well as the developing processing of the technique is cost effective [15]. 

Inevitably, the vehicle manufacturers have to consider the costs of time and money for them 

to improve or develop their product, so the costs for developing the acoustic design or the 

noise mitigation/control strategy should be reasonable and match the product’s value. 

Fortunately, the recently rapid-developing Computer-Aided Engineering (CAE) tools 

significantly save the costs of the product development in the design stage. The tools are 

able to simulate the dynamic and acoustic behaviours of the product with virtual prototypes, 

where the design modifications are easy to apply and the added costs are considerably lower 



Chapter 1 Introduction and state of the art 

 

 
2 

 

than the traditional physical prototypes. However, this advantage relies on the availability 

and reliability of the CAE tools for the considered problem.  

 

In terms of the availability, vehicle interior noise is a typical vibroacoustic problem, so the 

CAE tools for vibroacoustic analysis can be used. Though the CAE tools are now widely 

used among vehicle industries, their capability with respect to the vibroacoustic simulations 

is limited [16]. One of the limitations, which is also a matter of concern to this thesis, is the 

so-called ‘mid-frequency gap’ [16]. This issue has been pointed out since 1990s, but has not 

yet been well solved and continuously puzzles the engineers and researchers. For 

vibroacoustic analysis, there have been three mature methods, i.e., Finite Element Method 

(FEM) [17], Boundary Element Method (BEM) [18] and Statistical Energy Analysis (SEA) 
[19]. But they all have their own applicable or suitable frequency ranges. For FEM and BEM, 

the two element-based deterministic approaches, they are generally confined to the low 

frequency range, because the convergence issue requires the element size smaller than a 

certain portion of the characteristic wavelength [20,21], which makes the numerical model 

size dramatically increases with frequency. For SEA, on the contrary, as a statistic approach, 

is applicable for the high frequency range, when the SEA hypotheses should be valid [22,23]. 

Consequently, there is the gap between the two frequency range, where using the element-

based models are computationally intractable and using SEA is not useful. Recently, many 

new vibroacoustic analysis methods have been put forward for this problem [16,24], such as 

hybrid FE-SEA method [25], Energy Finite Element Analysis (EFEA) [26], Wave Based 

Method (WBM) [27], etc. But the problem is still not solved and more efforts are necessary. 

 

With respect to the reliability, it is an important issue whenever we’re developing or using 

a predicting tool. It may draw some attention of the person who develops the tools but is 

easily overlooked by the users. Indeed, both developers and users need to be aware of the 

reliability, since it determines whether they can trust and rely on the results. In this regard, 

benchmarking is one of the most important ways to check the reliability. The importance 

and demand of benchmarks for vibroacoustic software has been raised for long [28–30], as 

more and more in-house or commercial tools are developed but they can hardly find the 

common benchmark cases for validation or calibration. The lack of benchmarks does 

hamper the development of new predicting techniques, hinder the improvement of existing 

numerical methods and waste the time and effort of researchers and engineers. Thus, to 

facilitate the CAE analysis of vehicle interior noise, a benchmarking tool that can validate 

the associated vibroacoustic analysis is very useful and helpful. 

 

In general, a benchmarking tool can possess only the reference computations, only the 

reference measurements, or both [29], and the tool Noise-Box, which will be presented in 

this work, is expected to be the last case, having both the reference numerical and 
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experimental results. Hence, the Noise-Box is going to be a simplified system, whose 

numerical models are built for simulations and test bench is constructed for experiments. 

The benefit of such a Noise-Box is multi-fold. The reference computations present not only 

the results but also its modelling details and computational efficiency, enabling a more 

direct comparison with a new method. The reference measurements are capable of 

validating some problems that the results of the current CAE tools are not reliable and 

checking which models are closer the actual situation. Moreover, they can also help with 

the development of vehicle interior noise control measures. A new control strategy can first 

test through the Noise-Box virtual prototype and the Noise-Box test bench in lab before 

they are applied to a complex real vehicle. A real vehicle will have its own specialties, but 

some features and principles will hold, such as material properties (of acoustic treatments, 

panels, etc.), vibroacoustic mechanisms and active control logics. Besides, the realization 

in a simplified system makes the strategy more likely to be effective in the later formal test. 

So, it is more informative and cost-saving.  

 

Therefore, targeted for vehicle interior noise analysis and control, this thesis presents a 

benchmarking and testing tool called Noise-Box. The tool is prepared with a test bench and 

its matched numerical models. The test bench should be designed as a simplified system 

satisfying the requirements of benchmark cases and fulfilling the expectation of 

investigating the general vibroacoustic problems among different vehicles. Then, the 

constructed system needs to be characterized and validated through experiments, specifying 

its geometry, material and physical parameters for numerical modelling and its critical 

features for some applications. On the other hand, regarding the numerical models, due to 

the limitations of currently available vibroacoustic tools, different numerical methods 

targeted for different frequency ranges are applied, trying best to cover the entire frequency  

range. 

 

1.2 State of the art 

1.2.1 Benchmarks for vibroacoustic problems 

It is not uncommon that engineers or researchers seek benchmarks for analysing a certain 

type of problems, either on computations or measurements. The benchmarks are strong 

tools for validating a new developed code, an implemented simulation technique or a 

conducted experimental procedure. The demand for benchmarks in vibro-acoustics has 

been noticed since 1990s [29], when many researchers started to develop new methods and 

new codes for vibroacoustic analysis. However, after more than 20 years, a well-known and 

authorized benchmark database is not yet established, though the outcomes of some 
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attempts are trackable online [31–33]. In 1995-2003, NASA had 4 workshops on the 

benchmark problems in aeroacoustics [31] and the numerical solutions worked out by 

researchers were finally presented as proceedings [34]. This campaign is shown beneficial 

in promoting the application and development of the numerical methods. Another attempt 

was the benchmark platform on computational methods for architectural or environmental 

acoustic [32], which is seen last updated in 2015. The motivation of the platform is to 

compare different numerical methods (from different contributors) in terms of accuracy and 

efficiency, by analysing the same specified problems. Later, in about 2015, a more recent 

platform was built by European Acoustics Association for benchmark cases in 

computational acoustics [30,33]. Since it is a long term project, the platform is now working 

and being enriched by new benchmark cases. However, the benchmarks currently available 

on the website [33] are only a few. Nevertheless, the importance and significance of 

benchmarks should not be overlooked. As pointed out in [30], the lack of common reference 

results does hinder the validation of new techniques. Without these references, researchers 

need extra time and efforts in finding suitable validation cases and reliable results, and may 

finally make a comparison that is not so appropriate due to the lack of knowledge about the 

reference analysis. One may argue that it can be validated by analytical solutions, but in 

fact, most technically relevant problems don’t have analytical solutions, where numerical 

solutions or measurements are inevitably required, even for the reference results. Besides, 

while more and more new methods, codes and software are being rapidly developed 

nowadays, the new techniques also tend to be aimed at more complex problems, which are 

not suitable to be validated by the simple cases that have analytical solutions. Thus, the 

benchmarks obtained by numerical solutions or experimental measurements are even more 

necessary and demanding. To sum up, the general benchmarks, if available, will definitely 

benefit the related research and booster the developments of new techniques. On the other 

hand, the users of a CAE tool also need the benchmarks. The developers of a method may 

clearly know the specifics and limitations of a method (e.g., mesh quality, convergence 

requirement, boundary conditions modelling, excitation modelling, etc.), but it is often 

difficult for the users to manage all of them. Thus, the engineers who implement the tools 

or methods also need the benchmarks, for knowing that if they are using them in a right 

way. Developers and users, or researcher and engineers are also interested in the difference 

between different methods in accuracy, efficiency and robustness, and this can be available 

from benchmarks. 

 

Therefore, both numerical and experimental benchmarks are important, but we currently 

lack these benchmarking tools. This situation is faced by various acoustic problems, as well 

as the interior vibroacoustic problems that are considered in this work. Thus, it is 

worthwhile to construct the Noise-Box for this purpose. What should be focused on next is 
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the selection of suitable structures, which refers to the design of Noise-Box. Concerning a 

benchmarking tool with computations and experiments, several criteria have been 

mentioned in [29] and they seem straightforward. One says that the test cases should be able 

to pinpoint the pitfalls in the numerical methods. This can be interpretated as representative. 

For instance, in testing a tool for vibroacoustic analysis, the case should demonstrate the 

coupling effect between structural and acoustic fields. The second criterion highlights that 

the structure should be easy to model and analyse. In other words, the geometry is simple, 

the boundary conditions can be modelled and the model size is not too big. Last but not 

least, all geometric, material and physical parameters should be specified. To satisfy these 

criteria, it is necessary to have a simplified system that can be used for vehicle interior noise 

investigations, when the methods to characterize this simplified system and obtain the 

matched numerical models should also bear in mind. 

 

1.2.2 Simplified systems for vehicle interior noise analysis and control 

Vehicle interior noise is a complex problem, where the vehicle’s complicated structure, 

working conditions and air volume inside are involved. When a different vehicle is 

considered, all these properties are changed, and so is the interior noise. Even in a specified 

vehicle, the interior noise is still hard to predict or control, since the noise sources are 

various because of different generation mechanisms and the transmission paths are intricate 

due to many connections and interactions. Nevertheless, some common features are shared 

and some investigation techniques can exchange. Generally speaking, a vehicle 

compartment is an enclosure surrounded by flexible walls and the noise inside is a 

combination of noises from structure-borne and air-borne paths. It is claimed that the 

structure-borne and airborne contributions need to be assessed separately [35]. The former 

results from the part of noise radiation by cabin vibration transmitted from sources through 

solid structures, while the latter means the part of noise, which is already transmitted into 

air or generated in air, transmitted through the cabin structure. Interior noise from different 

sound source or different path has different properties. The structure-borne noise is mainly 

low-to-mid frequency, and the airborne noise is predominant at higher frequencies [36,37]. 

With the trim panels and improvement of pass-throughs, seals, grommets, etc., the airborne 

noise can be significantly reduced [37,38], but it is in many situations accompanied with an 

increasing of weight, which is contrary to trend of lightweight design for fuel-efficiency. 

The trade-off between weight and noise reduction may need some numerical methods to 

evaluate. The introduction of new material helps to address the problem but enhances the 

predicting difficulties. If sticked to the passive noise control, the reduction of structure-

borne noise may involve modifying vehicle structure or adding vibration isolation. Whether 

the approach would work well needs to be tested or verified through simulations. Otherwise, 
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the active structural-acoustic control or the active noise control can be employed. The 

former applies mechanical inputs to the structure to reduce sound radiation or transmission, 

while the latter uses secondary sources to cancel or absorb the noise [39]. The active 

approaches are shown effective for low-frequency noises [1,40]. Apart from the transmission, 

the acoustic modes of the compartment also enhance the low-frequency noise levels, thus 

in an acoustic design, the low-frequency body booms are not trivial. To summarize, though 

the vehicle compartments are various, they possess some common components like panel, 

cavity, structure-borne interior noise, airborne interior noise and noise control measures. 

 

Considering the complexity of vehicle interior noise, simplified systems are always used 

for an instructive investigation. Determined by the final goal of the investigation, different 

levels of simplifications are applied. Limited to the cases that are not targeted for the noise 

generation mechanisms, the simplification of a vehicle compartment can be classified into 

three levels. The first level considers only the simplification on the geometry, so the 

compartment is scaled smaller or reduced to a regular shape, but still surrounded by flexible 

thin walls [41–44]. In this case, the vibration only interacts with the acoustic field, but also 

transmits among panels. Hence, though the system is closer to a specific design, it is too 

complicated as a benchmark tool, since the connection between components is always hard 

to characterized. The second level simplifies it into a plate-cavity system [45–54]. The system 

consists of a rigid box with one flexible panel. Then, without the influence from other 

panels, it is easier to determine how the panel structure affects the acoustic field inside the 

box and reversely, how the cavity influences the panel vibration. The plate-cavity system 

has been widely used for vibroacoustic analysis. For the plate, its structure and boundary 

conditions are not limited. It can be simple as an isotropic thin plate objected to the clamped 

or simply-supported boundary conditions [45–48], or complicated as a laminated plate with 

elastically restrained or non-uniform boundary conditions [49,50]. For the cavity, it can be 

rectangular shaped or irregularly-shaped (e.g. car-like shaped) [51,52], and the wall 

impedance can also be changed [53,54]. The third level simplification considers no flexible 

structure but only the acoustic cavity inside [55–57]. Such a model isolates the cavity from 

the structure vibration and helps to determine its acoustic property affected by its geometry 

and wall impedance. This is preferred when the coupling effect between walls and cavity 

is negligible, and acceptable when the coupling effect is weak or not of interest. However, 

since the simplified system is for vibroacoustic analysis where structure cannot be absent, 

this simplification is not adopted. Therefore, the plate-cavity system is finally selected. 

Besides the advantages mentioned above, it is also available for the key components: panel, 

cavity, structure-borne interior noise, airborne interior noise and noise control measures, 

for interior noise analysis and control. Additionally, if the flexible panel is replaced by a 

thick rigid wall, it can also be used to investigate the uncoupled interior acoustic problems. 
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Under the level of plate-cavity system, the regularity of cavity shape is also an important 

issue. In the literature, it can be noticed that the shape of the cavity may determine whether 

the problem is available for an analytical solution. The analytical solutions have the 

advantage of explicitly displaying the dependence of model behaviour on the physical 

parameters and easily extracting the physical interpretation [58]. The more regular shape is 

more likely to obtain analytical solutions but the acoustic field will be less like a vehicle 

compartment. In fact, the plate-cavity system has been used for interior noise and 

vibroacoustic analysis since 1960s. At the beginning, the plate-cavity system was limited 

to a rigid rectangular box with one flexible plate and the problem was solved by analytical 

methods. Lyon [46] first used this model to study the noise reduction through the flexible 

plate by dividing the problem into three situations according to the resonant behaviour of 

the panel and interior volume at corresponding frequency. Almost at the same time, Dowell 

and Voss [45] investigated the effect of the cavity on the plate by describing the deflection 

of the plate as a series expansion. Pretlove [59,60] derived the exact solution to the free and 

forced vibration of the cavity backed flexible wall with the acoustic velocity potential 

expressed by Fourier series, and according to the results, concluded the two types of plate-

cavity system: one with the acoustic stiffness much less than the plate, where the cavity has 

little influence on the plate dynamics; the other with the acoustic stiffness approaching or 

larger than the plate stiffness, when the effect of the cavity need to be considered. Later, 

the popular modal-interaction theory for vibroacoustic analysis was proposed by a series of 

efforts from different researchers [47,58,61,62], where the coupling between cavity and 

structure is represented by the coupling coefficient. This coefficient is given by the 

uncoupled structural and acoustic mode shape functions, which are respectively used for 

the expansions of structural field and acoustic field. Although this theory can also be 

applied to irregular plate-cavity system other than the simplest rectangular plate-cavity 

system, the former one is hard to obtain analytical solutions, because no simple algebraic 

expression for the natural frequencies and mode shape functions of the uncoupled 

subsystems are available. Nevertheless, the research on the analytical solution or modelling 

for more complicated plate-cavity system is never stopped. The introduced complexity can 

come from the structure of the plate, like double-panel structure [53], laminated structure 
[49,50], orthotropic structure [63] or nonlinearity effective structure [64]. It can also be the 

boundary conditions of plate (e.g., elastic [65,66] or non-uniform [49] support) or of cavity 

(e.g., complex wall impedance [54]). It may even result from the geometry of the cavity, 

such as a trapezoid [51] or an irregular shape that can be divided to rectangular and right-

angled trapezoid [66]. Regarding the last case, it is expected that an analytical method can 

be developed in future for the cavity with only one pair of parallel walls instead of two. 
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1.2.3 Plate-cavity system model updating and EMA 

For accurate predictions of vehicle interior noise, the accurate numerical vibroacoustic 

models of the vehicle compartments are important. But there are always errors in the 

structural and acoustic modelling, and model updating is an effective way to improve the 

accuracy [67]. The errors can come from the modelling of geometry, material, damping, 

joints and boundary conditions. Since most parameters are sensitive in the low frequency 

ranges and FEM is commonly used, a majority of model updating techniques are based on 

FEM, where some intrinsic errors in the FE modelling will also present [68]. The target of a 

model updating is to correct the numerical model so that its predictions match its responses 

obtained through experiment. Hence, it is crucial that the FEM is applied correctly and 

precisely, minimizing the errors from the technique itself. It is also essential that the 

experimental results are trustable. Then, the numerical model can be updated by the 

comparison of FRFs [69–72], natural frequencies or/and mode shapes [73–75]. As reviewed by 

Sehgal and Kumar [68], the updating techniques can be classified as direct and iterative ones, 

and the model adjustment may focus on the matrix elements or the physical properties. 

Most of the direct techniques update the mass and stiffness matrices, which are difficult to 

translate to the physical parameters. The iterative techniques can update the physical 

parameters directly, but have the low-efficiency and divergence problems. In recent years, 

some of the updating techniques, which were proposed for structural dynamic models, have 

been applied to vibroacoustic problems [67,72,73,76,77]. It would be interesting to develop an 

efficient and automatic model updating technique for the vibroacoustic system, but it is out 

of the scope of this thesis. In this work, taking the advantage of the simplicity of the plate-

cavity system, a knowledge-based method will be used. Natural frequencies are mainly 

used as updating reference while FRFs and mode shapes help to validate the results. By 

investigating the sensitivity of the model to the updating parameters, the next set of 

parameters are given manually. Finally, the updating will be stopped when good agreement 

between numerical and experimental results are seen for natural frequencies and FRFs. This 

is not automatically, but more efficient when the system is simple and well investigated, 

especially when not a few modes are considered and the model size is not small. In the 

iteration process, the updating direction of the model is under control. 

 

In the plate-cavity system, the modelling errors are most likely to occur at the material 

properties, boundary conditions and damping of the plate and the sound absorption 

properties of the cavity surfaces [72]. Thus, the parameters related to these factors should 

present in the mathematical model of the system, especially for the plate boundary 

conditions. In the modelling of a plate, the ideal boundary conditions (simply supported, 

clamped and free) are often used, but they are hard to realize in real engineering practice. 

Even for a specially designed mounting in the lab, the ideal situations are still hard to reach 
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[78,79]. So, it is probably the Noise-Box will face this problem and a more realistic model 

should be applied to the plate. Another model, which is popularly investigated model 

recently, considers that the plate edges are elastically restrained against translation and 

rotation [80–83]. Such a model has the advantage of determining the edge conditions by the 

translational and rotational stiffnesses. For the test plates that are designed as clamped, the 

model that depicts the edges as rigidly supported but elastically restrained against rotation 

shows good performance in some research [67,84], where the characterized rotational 

stiffnesses indicate that the edges could be not only imperfectly clamped but also different 

in their stiffnesses. Therefore, this work will consider the general- and partial-elastically 

restrained edge conditions in the modelling of the plate. Especially for the latter case, the 

rotational stiffnesses of the plate edges will be updated so that the models can better match 

the Noise-Box test bench.  

 

Regarding the experimental data for updating the models, Experimental Modal Analysis 

(EMA) will be applied, which is the major technique to obtain the modal parameters (i.e., 

natural frequencies, mode shapes and modal damping ratios). A comprehensive EMA 

includes the modal testing and the subsequent parameter identification. After the point-to-

point FRFs are also obtained from the modal testing, the biggest challenge is to extract the 

system parameters from these FRFs, which is called modal parameter estimation (or 

identification) [85]. When a mathematical function is used to fit the measured FRF (for 

frequency domain, or Impulse Response Function for time domain), the process is referred 

to as curve fitting, which is usually done by minimizing the squared errors [86]. Determined 

by the number of modes and the number of FRF, the algorithms can be categorized into the 

SDOF method, global SDOF method, MDOF method and poly-reference MDOF method 
[87]. For a curve fitting, it is necessary to construct the mathematical model from modal 

parameters, so that the fitting can be performed and after which, the modal parameters are 

available. If the model expression is not available, it is optional to use the peak-picking 

approach for a rough estimation of natural frequencies, which may also yield good results 

if the structure is lightly damped and the frequency resolution is sufficient. When EMA is 

widely used for structures, the acoustic EMA is not so popular. One of the main reasons 

should be the characterization of the acoustic input. The commonly-used theoretical FRF 

of a closed acoustic system is between sound pressure and volume velocity (or acceleration). 

The volume velocity is hard to obtain from a usual loudspeaker [88,89], except a few specially 

designed loudspeakers [90,91]. Whether the input is available determines whether the 

theoretical FRF can be used as the fitting model. The FRFs in modal model formulation are 

straightforward for the uncoupled structures and acoustic cavities [86,87,90,91], since their 

system matrices are symmetric. However, for a vibroacoustic system, if the inputs and 

outputs are represented by measurable quantities (e.g., force, sound pressure, displacement, 



Chapter 1 Introduction and state of the art 

 

 
10 

 

etc.), it is inevitable that the system matrix is unsymmetric. Thus, it may be necessary to 

use the partial fraction expansion to formulate the transfer functions [92–94]. In fact, there are 

very few references talking about how to achieve the EMA of a vibroacoustic system and 

extract the modal parameters, and it is a problem to solve in this work. 

 

1.2.4 Numerical methods for vibroacoustic analysis 

The numerical predicting tools are now indispensable for industries. With these tools, the 

behaviour of products can be simulated in virtual prototypes instead of the physical ones, 

which significantly saves time and cost, and probably leads to a better design. However, a 

single reliable and practical approach to predict the vehicle interior noise for the whole 

frequency range is not available. Different approaches are suitable for different frequency 

ranges, and every approach has its own limitations, therefore it is currently widely accepted 

that different frequency ranges use different numerical methods. If the entire audio-

frequency range is roughly divided into low, middle and high ranges, the difficulties in 

vibroacoustic analysis are especially present in the mid-frequency range, as it has been 

pointed out that FEM and BEM are available for the low frequency range and SEA is 

suitable for the high one. 

 

1.2.4.1 Mid-frequency numerical methods 

Since the mid-frequency difficulty was pointed out at 1990s, many new vibroacoustic 

methods have been raised and developed. As one of the targets of this thesis is to analyse 

the vibroacoustic system in the whole frequency range, various methods for the mid-

frequency ranges have been reviewed in order to select one that is suitable to the Noise-

Box. Meanwhile, attention is also paid to their development history, through which we can 

see how to make our benchmarks more useful. 

 

The advance methods for mid-frequency problems can be classified into three categories: 

• Extension of the deterministic approaches towards higher frequencies. This can be 

an enrichment to the FEM or BEM element-based method, such as Partition of Unity 

FEM (PUFEM) [95], Wave Boundary Element Method (WBEM) [96], Discontinuous 

Enrichment Method (DEM) [97], etc. It can also be a different kind of deterministic 

approaches like Trefftz method [98], which includes the WBM [27], Ultra Weak 

Variational Formulation (UWVF) [99], Variational Theory of Complex Rays (VTCR) 
[100], etc. However, the above subdivision between the enriched element-based 

method and the Trefftz method is not always clear, especially when a Trefftz 

approach includes the division of the problem domain into elements [101]. 

• Extension of the statistical approaches towards lower frequencies. The methods in 

this category are mostly based on the SEA, but try to detail the energy distribution 
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or relax the SEA assumptions, such as the EFEA [26] and Statistical modal Energy 

distribution Analysis (SmEdA) [102,103]. 

• Combination of the deterministic and the statistical approaches. The hybrid FE-SEA 

method [25], which models the long-wavelength deterministic components using FE 

and describes the short-wavelength statistical components as SEA subsystems,  

belongs to this category. Similarly, this category also includes hybrid BE-SEA [104], 

hybrid WBM-SEA [105], hybrid FE-EFEA [106] and so on. 

 

The conventional FEM uses polynomials as shape functions for the field variables. Thus, 

when the field is becoming more oscillating as the frequency increases, the element size 

needs to be reduced, provided that the orders of the polynomials are fixed. For the 

approaches that enrich the FEM, they mostly enrich the field variable approximation with 

some a priori knowledge of the problem. With the enrichment, it is possible to have a 

coarser mesh, reducing the model size and computation burden. However, the enrichment 

may complicate the model construction or worsen the conditioning of the systems of 

equations. This will depend on the feature of the considered problem and how the 

enrichment is applied.  

 

In the PUFEM [95], the enrichment is introduced by multiplying the polynomial shape 

functions with the locally defined basis functions that include a priori knowledge about the 

differential equation. The method illustrates high efficiency for some problems that are hard 

to tackle in the conventional FEM [95,107]. The WBEM [96] is very similar to PUFEM, but 

the enrichment is applied to the shape functions of those boundary elements. Differently, 

the DEM [97] enriches the standard polynomial field in each element by adding a non-

conforming field that contains the homogeneous solutions of the differential equation. Then, 

the enrichment is enforced to be continuous at element interfaces by Lagrange multipliers. 

This method was proved an effective way to obtain accurate results under a coarse mesh [97] 

and considered having a better conditioning than the PUFEM [101].  

 

The Trefftz method is a deterministic approach that is not element-based. It was firstly 

presented by Trefftz in 1926 [98], earlier than the invention of the FEM, but not so popular 

as the FEM. In fact, the Trefftz method needs much more a priori known information, 

which may have somehow prohibited its prevalence. The formulations of this method are 

usually classified into indirect and direct ones [98]. The indirect formulation expresses the 

solution as the weighted superposition of the functions that satisfy the governing equation 

of the problem, and then determines the unknown weighting parameters by enforcing the 

solution to satisfy the boundary conditions in a weak integral form. The direct formulation 

takes the function that satisfies the governing equation as the weighting function to form 

the weighted residual expression of the governing equation, and then transforms the 
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expression to a boundary integral equation. Later, the boundary integral equation can be 

solved numerically by a discretization similar to the BEM.  

 

The indirect formulation is much more widely used. The WBM, the UWVF and the VTCR 

are all indirect Trefftz approaches. The WBM [27] is a typical indirect Trefftz method, whose 

modelling procedures follow the original definition. The functions used to approximate the 

solution are so-called wave functions. In the WBM, it is not always necessary to divide the 

problem domain or just a small number of large subdomains is adequate. However, for the 

requirement of convex subdomains, it may not so powerful when the problem geometry is 

too complicated. The UWVF [99] is developed under the framework of FEM by dividing the 

problem domain into elements. But in each element, discontinuous basis functions (plane 

wave, Bessel or evanescent wave basis functions [108]) are used instead of the polynomial 

shape functions. Then, the ultra weak variation formulation is derived using the solutions 

of the adjoint problem as the test functions, included the governing equation, the boundary 

conditions and the transmission conditions at element interfaces. Compared with the WBM, 

the UWVF is capable of more complex geometry (as well as the FEM), but the modelling 

process is more complicated. Moreover, it is not yet seen the method’s application to 

coupled vibroacoustic problems, though it has been applied in acoustics [99] and elastic wave 

propagation [109]. Differently, the VTCR [110] first writes the variational formulation of the 

problem, and then uses complex rays to describe each subdomain, where two-scale 

approximations are used. Only the slowly-varying scale is discretized, which corresponds 

to the amplitudes of the waves. The rapidly-varying scale for spatial shape of the waves is 

expressed analytically. Finally, the solution yields the wave amplitudes that can reconstruct 

the field [24]. The VTCR has illustrated its efficiency for structural [111–113] and acoustic [114–

116] problems, but its application to vibroacoustic problem is not yet found in literature.  

 

The EFEA is similar to the SEA as an energy based approach, but it is also like the FEM, 

dividing the problem domain into finite elements. The primary variable of EFEA is defined 

as the energy density averaged timely over a period and spatially over a wavelength. 

Specifically, the method derives the governing differential equations in energy variables 

and uses the finite element formulation for numerical solution [16,117–119]. Compared to the 

SEA, it is similar in modelling the system by energy and power flow, but different in the 

type of variable expansion basis. The SEA uses the modal basis and yields a system of the 

lumped parameters of subsystems, while the EFEA is based on the wave basis and 

assembled by finite elements. As a result, the EFEA is able to provide a more detailed 

energy distribution. So far, the method has been successfully applied to many engineering 

problems for the structural, acoustic or vibro-acoustic analysis in the mid- to high- 

frequency range [11,119–121].  

 



Doctoral Dissertation of Politecnico di Milano 

 

 
13 

 

The SmEdA [102] is also based on the energy conservation. But in comparison to SEA, it 

relaxes the assumption of modal energy equipartition. Thus, when describing the power 

exchange between subsystems, the method concerns the couplings between the subsystem 

modes. Hence, the method is applicable when the modal overlap is low, rendering its 

capability for mid-frequency problems. However, the method requires the eigenmodes and 

eigenfrequencies of uncoupled subsystems. When they’re not available from analytical 

solutions, modal analysis may need to be performed via FEM, which will lower 

computation efficiency and hinder its availability to high frequencies. Nevertheless, it is 

possible to link SmEdA with SEA to cover a wide frequency range [102,103]. 

 

The hybrid FE-SEA method [25] in the last category is one of the well-developed approaches 

for mid-frequency vibroacoustic problems. The method is available in the commercial 

software VA One, and has been applied to various vibroacoustic problems [122–126], where 

the results demonstrated good accuracy. As indicated by name, the method combines the 

FEM and the SEA, where the FEM is used for the ‘deterministic’ subsystems and the SEA 

is for the ‘statistical’ subsystems [25]. Since the subsystems with short wavelengths, which 

should be meshed by fine elements in FE model, are considered as SEA subsystems that 

have only one degree of freedom, the total degrees of freedom of the entire model can be 

significantly reduced, making some problems intractable by FEM being solvable by hybrid 

FE-SEA method. Meanwhile, the long-wavelength subsystems that don’t satisfy the SEA 

assumptions are still modelled by FEM. Therefore, it can be noticed that the hybrid FE-

SEA method is extremely suitable for a complex system whose components have very 

different characteristic wavelengths. However, the dilemma could be the case when all 

components are falling into the mid-frequency region.  

 

Throughout all the methods, it can be noticed that in general, a new method is developed 

for 1D or 2D problems before extended to 3D ones. Meanwhile, benchmarks are more from 

the traditional numerical solutions instead of the analytical ones. Hence, it is reasonable to 

provide numerical results of the Noise-Box as part of the benchmarks, and it would better 

also present the numerical benchmark cases for corresponding 2D problems, so that the 

users can get a first check on their approaches in 2D situations before moving to 3D cases.  

 

1.2.4.2 Selection of numerical methods 

Combined the above mid-frequency approaches with FEM, BEM and SEA, a big family of 

numerical methods for vibroacoustic analysis is presented. Then, it’s a matter of selecting 

numerical methods for a given vibroacoustic problem. There are three main considerations: 

geometry, solution frequency range, and application. 
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Geometry is one of the considerations, because different numerical approaches may have 

different requirements on their elements or subdomains. For example, in the element-based 

methods, it is an important step to check the element quality, where the requirements of the 

element are indicated, including aspect ratio, Jacobina ratio, skewness, etc; in the WBM, 

the subdomains are required to be convex and the better close to regular envelopes; and in 

the BEM, the elements are on the surfaces and need to be higher qualified to avoid 

singularity. In these cases, the geometry will influence the discretizing strategy and then 

determine the final model size.  

 

The solution frequency range is undoubtedly an important consideration, due to the fact 

that no method can confidently solve the problem in the entire audio-frequency range. 

However, when it is always mentioning the frequency regions as low, middle or high, the 

division or border lines of these regions are actually undetermined and ambiguous. In fact, 

the low or high standard is relative and related to the dimension of specific system or 

component. In [16], the three frequency ranges are determined by the number of waves 

within a given dimension, which is calculated by kl, where k is the wavenumber relevant to 

the frequency and l is the characteristic length. With this non-dimensional parameter kl, the 

low, mid and high frequency ranges are 0 < kl < ~20π, ~10π < kl < ~40π  and kl > ~20π, 

respectively, and an example also shows [20,1000], [500,2000] and [1000,+∞) as the three 

ranges in Hz for a vehicle passenger compartment [16]. However, for complicated system, k 

and l are difficult to identify, and the classification is according to the estimate kl values or 

other empirical values. Thus, it can approximately know the corresponding frequency 

region of a given frequency range. When a wide frequency range including the three regions 

is considered, it is more often the extend the results of the selected method to a frequency 

range wider than the supposed region. Then, the results in the overlapping frequency region 

can be compared and finally decided. 

 

The application indicates what kind of results is expected to obtain, so that the results will 

be useful in the application. The deterministic methods enable detailed modelling and 

provide response solutions (vibration or sound pressure) that are available for every 

analysed frequency at any point. On the other hand, the statistical methods give broadband 

and spatially averaged responses. Therefore, the former is more suitable for a system whose 

excitation is at discrete frequencies in the low- or mid- frequency and whose modelling or 

response matters at some specified points, while the latter is optimal for a system that cares 

about the frequency-averaged and spatial-averaged responses. 

 

Since it is a target for this thesis to analyse the vibroacoustic system in the whole frequency 

range, several numerical methods are selected for different regions. Considering that the 

analysis object will be a plate-cavity system, which belongs to the interior vibroacoustic 
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problems, the FEM is used for the low frequency range. In the high frequency range, the 

study will concern about the average responses of the plate and the cavity, so the SEA is 

selected. Regarding the mid-frequency range, the WBM is finally chosen, due to the 

following considerations: the problem involves only two subsystems; both plate and cavity 

are of simply geometry; the boundary conditions of the plate and the cavity may need to be 

modelled and characterized; responses at some points of the cavity and the plate may be 

required.  

 

1.2.4.3 Finite element method 

The FEM is the most commonly used numerical prediction technique. It is a deterministic 

and element based approach, and can be characterized by the following two features: 

• transformation of the differential equations into a weak integral formulation; 

• discretization of field variable(s) and geometry into finite number of small 

subdomains (called elements), and within the element, approximating the variable(s) 

and geometry in terms of shape functions and nodal variables. 

These two points highlight the approximations in the modelling process and explain how 

the method works. Since no rigorous requirement about the problem equations and the field 

geometry, the FEM is highly adaptive and flexible. It can be and has already used for 

various kinds of problem and geometry, making it the most popular numerical prediction 

technique after its rapid development in the past half century. For dynamic problems, the 

field approximation is correlated with the element size. In the conventional FEM, 

polynomial shape functions are used. To limit the numerical errors, the maximum element 

size for a given frequency is provided[20,21]. Consequently, the number of elements and the 

corresponding model size increase with higher frequencies. Owing to the heavy 

computational load and long computational time for large FE models, FEM is practical in 

the low frequency range for most applications. 

 

The FEM was invented a long time ago, and started to be popular in the 1960s, with the 

development of computers. It was originally developed to solve static structural analysis 

and later applied to vibroacoustic problems in the 1970s [16]. Nowadays, it is quite mature 

and available in many commercial CAE tools. In this thesis, two of them, i.e., ANSYS 

17.2® and COMSOL 5.4®, will be used for the structural, acoustic and vibroacoustic 

analyses. Except the frequency limitation, the FEM has no problem on these analyses, even 

when the geometry is complicated. However, when the method is implemented by a CAE 

tool, there is always a question whether the particular problem is tractable by the code or 

whether the user uses the tool in a correct way. For instance, concerning the plate that is to 

be modelled in this work, the tools and their users’ guides don’t tell us how to model the 
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elastically restrained edges, which element type to select or whether the results are accurate. 

Therefore, even for well-developed tools, benchmarks are still important. 

 

1.2.4.4 Statistical energy analysis 

The SEA is a statistical and energy based approach. The name itself features the method. 

Statistical indicates that the investigating system is a sample from the population of similar 

design construction. The dynamic parameters are described statistically. Energy is the 

primary variable of interest. The model is established based on the energy flow equilibrium 

between subsystems. Vibration or acoustic response is derived from the energy levels of 

subsystems. Analysis emphasizes that the SEA is a framework of study. The SEA 

parameters (e.g., modal density, damping loss factor, coupling loss factor, etc.), which are 

decisive in the SEA models, are dependent on the geometry, material and connection of 

subsystems, therefore needs particular evaluations [19]. 

 

The SEA was introduced by Lyon and his colleagues [23,127–129] in the 1960s for the high-

frequency vibroacoustic response of complex systems. The SEA is advocated for high-

frequency problems under two considerations: one is the unaffordable computational 

demand of the traditional deterministic methods (i.e., FEM and BEM); the other is the 

unavoidable uncertainty inside the system [130]. The foundations (either the modal approach 
[19] or the wave approach [16]) are complicated, but the implementation is simple. The main 

question is whether the prediction is reliable, and the answer, to a great extent, depends on 

whether the inherent hypotheses are satisfied and whether the SEA parameters are correctly 

evaluated. Until now, the hypotheses are still open for discussion [22,23] and some of the 

SEA parameters (e.g., damping or coupling loss factors) are still hard for a precise 

evaluation in some structures [131]. Nevertheless, the SEA has been successfully applied to 

many vibroacoustic systems for different industries [132–135]. There are also several 

commercial solutions such as Actran SEA module, VA One SEA module, Wave6, etc. In 

fact, different solutions may use different formulations to evaluate the SEA parameters, 

resulting in different outcomes, where we once again see the significance of benchmarks. 

Since the plate-cavity system is simple and the SEA modelling is not difficult, this work 

will use self-developed codes for the SEA solution, so as to master all the details inside the 

model.   

 

1.2.4.5 Wave based method 

The WBM is a deterministic approach but wave based. It is an indirect Trefftz method [98] 

and can be featured by the following two points: 
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• approximation of field solution using the weighted superposition of wave functions 

that satisfy the governing equations; 

• transformation of the boundary conditions into a weak integral formulation. 

The unknowns in the model are the contribution factors of the wave functions. Thus, the 

model size and convergence of WBM are associated with the number of wave functions. 

Though more wave functions are needed for higher frequencies, the number increases not 

so dramatically as the number of degrees of freedom in the FEM. Thus, the WBM is more 

efficient than the FEM, especially at higher frequencies, so it is considered a promising 

numerical technique for mid-frequency analysis.  

 

The WBM was first proposed by Desmet [27] in the 1990s for coupled vibroacoustic analysis 

and then has been continuously developed. The development includes extending its 

appliable fields (e.g., acoustic [136], structural [137] and poroelastic [138] problems), 

overcoming its limitations (e.g., hybrid FE-WBM [139]), promoting its computational 

efficiency (e.g., multi-level WBM [140]) and improving its convergent performance [141]. 

With respect to the structural problems, the WBM has been widely investigated for plate 

vibrations. Vanmaele [137] further studied the WBM for the Kirchhoff plate bending problem 

and proposed to use corner functions to address the convergence problem caused by the 

stress singularities. In the same work, the method was extended to membrane problems and 

flat plate assemblies. Then, Vergote [142] considered the WBM for plate with point 

connections to springs, dampers and masses, and Devriendt et al. [143] and Xia et al [144] 

discussed the WBM for orthotropic plates. For plates under distributed excitations, 

Jonckheere et al. [145] proposed the way to apply the WBM by introducing the particular 

solutions for distributed loads derived by the Hankel-based or the Fourier-based approach. 

Recently, Klanner and Ellermann [146] developed the WBM for the vibrations of thick plates, 

and Chen et al [147] extended the WBM for plates under thermal load. The WBM for plate 

problem is seen being completing. When the above researches have constructed the 

weighted residual formulation for the commonly-used prescribed edge conditions (i.e., 

clamped, simply supported, free or loaded and symmetric boundary conditions, Liu [148] 

introduced the formulation for the general elastically restrained edges. The extension to 

more general edge conditions is valuable, since in practice, the conditions tend to be 

intermediate between the classical ones and sometimes are more appropriate to be modelled 

as elastically restrained against translation and rotation [82,83,149]. However, the formulation 

proposed by Liu [148] is not sufficiently generalized, because it performs not so good for the 

classical boundary conditions and cannot deal with the types of edges that are partial 

elastically restrained, i.e., the edges only elastically restrained against rotation or translation. 

Note that these edge conditions are also popularly used, especially for the plate edges that 

are rigidly supported but elastically restrained against rotation [67] and the plate edges that 
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are resting on elastic supports (with only linear or rotation springs) [150]. Given all this, this 

thesis further improves the weighted residual formulation when implementing the WBM, 

making it available to any type of edge conditions.  

 

As for the acoustic problems, the WBM is now available for interior, exterior and scattering 

problems. In the original work [27], the WBM for 2D and 3D interior acoustic problems has 

been clearly introduced in detail, where the problem geometry is relatively simple, the 

excitation is a harmonic monopole source, and the boundary conditions include prescribed 

pressure, normal velocity and normal impedance. Most interior acoustic problems of simple 

geometry are solvable based on this originally-proposed methodology, as well as the Noise-

Box cavity that will be investigated in the work. Nevertheless, the method was further 

developed to make it available for more general geometry and more stable convergence. 

This process concerns about the division and combination of subdomains in 2D [151] and 3D 
[152] situations, and function enrichment for corner singularities [153]. The WBM for exterior 

acoustic problem was first introduced by Pluymers [152], where the 2D unbounded wave 

function sets were introduced, and further developed and then extended to 3D situation by 

Bergen [136]. Later, the cases with scatterers inside the acoustic field were also included 
[140,154]. 

 

Concerning the vibroacoustic problems, the feasibility of the WBM for them relies on the 

feasibility of the WBM for the corresponding uncoupled structural and acoustic problems, 

since the coupling between the structural and acoustic fields are introduced quite 

straightforward in the WBM. The currently available cases mainly contains the coupling 

between thin plate and interior or exterior acoustic field [27,143,155,156]. Therefore, applying 

the WBM to the plate-cavity coupled Noise-Box will not be a big challenge, but it is still a 

novel thing for modelling the coupled system constituted by a plate with elastically 

restrained edges and a damped cavity. And it needs to make sure the convergence and 

conditioning are not worsened by the introduction of new weighted residual formulation in 

the structural field.  

 

1.3 Objective and scope 

The objective of this dissertation is to present a plate-cavity coupled Noise-Box, which is 

aimed at benchmarking the numerical methods and CAE tools for vibroacoustic analysis, 

and meanwhile considered for its potential capability to test interior noise control measures. 

The Noise-Box is a comprehensive benchmarking and testing tool with a test system and 

some numerical models that can accurately predict its behaviour. To obtain such a tool, this 

work needs to design, construct and characterize the test system, and build, validate and 
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update the numerical models. The design and construction are based on the function of the 

Noise-Box and some background knowledge of plate-cavity systems. The outcome should 

be a simplified system that is easy to model and analyse, and available for structure-borne 

and airborne interior noise investigations. The characterization is intended for the 

parameters that determine the dynamic performance of the system and its components, e.g., 

the modal parameters, material properties, edge conditions of the plate; the modal 

parameters, wall impedance, sound field diffuseness of the cavity; and the modal 

parameters of the plate-cavity system. EMA is the main technique applied to identify the 

modal parameters, while the physical parameters (including material properties and 

boundary conditions) are determined through FE model updating. For the numerical models, 

three numerical methods are used due to the frequency limitation of the currently available 

vibroacoustic tools. While the traditional approaches FEM and SEA are for the low- and 

high- frequency ranges, respectively, the WBM is employed and developed for its potential 

to fill the mid-frequency gap. This work implements FEM in the commercial software 

(COMSOL and ANSYS), and develops the MATLAB codes for SEA and WBM. 

Concerning the demand for 2D benchmark cases in developing new numerical techniques, 

validated 2D models of FEM and WBM are provided for the additional reference results. 

This work finally uses the Noise-Box for structure-borne and airborne noise investigations, 

and checks the performance of the test system and the numerical models. The development 

of interior noise control measures is not covered in this dissertation, though it is one of the 

considerations in the design of Noise-Box. 

 

The biggest challenge is the agreement between the numerical models and the test system. 

This actually related to many issues throughout the research: 

• whether the test system can be comprehensively described by the mathematical 

models; 

• whether the numerical methods are applied correctly and properly to the problems; 

• whether the geometrical, material and physical parameters in the numerical models 

are consistent with the test system; 

• whether the experimental results are reliable and precise, since the numerical 

models are updated based on the experimental data. 

Therefore, this work should take them into consideration. For the first point, in the primary 

mathematical modelling of the plate-cavity system, the non-ideal edge conditions of the 

plate in a real system are considered, and they are modelled by elastic restraints. A lot of 

research has applied the elastically restrained edge conditions but seldom mentioned about 

how they are modelled in the FE models. So, this work will figure how to model them in 

COMSOL and ANSYS. Besides, since these conditions are currently not available in the 

WBM, the conventional WBM needs to be modified for this purpose. For the second point, 
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the numerical modelling techniques are validated through benchmark cases in the process, 

either by analytical solutions or cross validations between models. For the third point, 

model updating is performed based on the results of FE modal analysis and EMA. However, 

this is not an easy task, especially for the plate-cavity coupled case, where the FE modal 

analysis may face an ill-conditioned system matrix and the EMA of structural dynamics 

cannot directly applied. For the last, the uncertainties in the experiment are analysed and 

discussed. 

 

1.4 Outline of the dissertation 

To describe the plate-cavity coupled Noise-Box and its development, this dissertation is 

structured into 9 chapters, covering its design, simulation and testing.  

 

Chapter 2 introduces the basic theories and mathematical models that are involved in a 

plate-cavity system. They include the fundamentals of the flexural vibration of thin plate 

(with arbitrary edge conditions), the interior acoustic problem, the interior vibroacoustic 

problem and the sound transmission loss of panels. Since the numerical models will provide 

benchmark cases for the problems in a lower dimensional space, the mathematical models 

of 1D plate, 2D cavity and 2D vibroacoustic system are defined. 

 

Chapter 3 elaborates the design and construction of the plate-cavity coupled Noise-Box. It 

explains how the Noise-Box reaches the final design, starting from the original 

considerations about a benchmarking and testing tool for vehicle interior noise analysis and 

control. Finally, the Noise-Box test system is obtained with a 4-mm aluminium plate and a 

non-rectangular cavity surrounded by concrete walls. 

 

Chapter 4 investigates the Noise-Box via FEM, respectively for the plate, the cavity and 

the plate-cavity problems. For each problem, it first validates the modelling techniques that 

are employed in ANSYS® and COMSOL® by benchmark cases, removing any doubt in 

element types, mesh control and boundary conditions. Then, the sensitivity of some 

parameters inside the models is investigated. As a result, this chapter will get ready the 

FEM models, accompanied by a group of the initial predictions and some knowledge of the 

model parameter sensitivity. 

 

Chapter 5 characterizes the Noise-Box and its components through experiments and 

numerical simulations, where the FE models prepared in Chapter 4 are used for simulations. 

The Noise-Box cavity is characterized for its modal parameters, sound absorption and 

diffuseness. The mounted panel is identified for modal parameters, material properties, 

thickness and edge conditions. Lastly, modal parameters of the coupled plate-cavity system 
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are estimated, based on which, the edge conditions of the panel are updated again. EMA is 

the main technique employed in this chapter to identify the modal parameters, and how to 

use EMA for vibroacoustic problem is specially considered. 

 

Chapter 6 investigates the Noise-Box using WBM, respectively for the plate, the cavity and 

the plate-cavity problems, based on the mathematical models defined in Chapter 2. All the 

updated parameters are applied. The WBM for each problem is introduced and then 

implemented in MATLAB® by self-developed codes. A new weighted residual 

formulation is proposed, enabling the WBM for elastically restrained plates. The new 

formulation and codes are validated by comparing the results between WBM and FEM. 

 

Chapter 7 investigates the Noise-Box by SEA, for its responses under point force excitation 

and under acoustic excitation, respectively. The SEA method for each case is introduced 

and then implemented in MATLAB by self-developed codes. The new codes are validated 

with reference to the corresponding results by an open-source software named ‘SEAlab’. 

 

Chapter 8 experimentally and numerically investigates the structure-borne and airborne 

interior noises of the plate-cavity coupled Noise-Box. The introduced numerical techniques 

(i.e., FEM, WBM and/or SEA) and a given experimental approach to the test system are 

used for the same structure-borne or airborne noise investigation, when their results are 

converted to the same format for comparison.  

 

Finally, Chapter 9 draws the main conclusions and achievements of the dissertation, and 

proposes some future work for this research. 
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 Fundamentals in a plate-cavity system 

 

This chapter introduces the fundamentals of the problems to be solved and investigated in 

later chapters, in the sequence of (1) uncoupled flexural vibration of thin plates, where the 

mathematical models for 2D and 1D plate are determined;(2) uncoupled interior acoustics, 

where the mathematical description for 3D and 2D acoustic cavity are provided; (3) 

coupled interior vibro-acoustics, where the 3D and 2D vibroacoustic problems are 

formulated; (4) sound transmission loss of panels, where different measurement and 

prediction methods are introduced. 

 

2.1 Problems in a plate-cavity system 

The investigation of a plate-cavity system is to know the vibration of the plate and 

meanwhile the sound pressure inside the cavity. The results are expected to be dependent 

on the following factors: 

• the thin plate with its thickness, material properties and edge conditions; 

• the acoustic cavity with its fluid properties, and surrounding wall conditions; 

• the fluid-structure interactions, including the acoustic field influenced by the motion 

of the plate and the plate vibration perturbed by the fluid pressure loading; 

• the excitation type and waveform, e.g., mechanical point force, monopole sound 

source or incident sound wave excitation; sinusoidal, impulse or white noise signal. 

 

Therefore, we need the accurate models of the plate, the cavity, the coupling between plate 

and cavity, and the interaction between the excitation and the plate-cavity system. Thus, in 

the following sections, the related fundamentals are introduced, as the basics for later design, 

simulation and testing. The analyses are currently limited to the frequency domain, 

targeting to obtain the frequency response functions, which provide significant information 

for the response of a linear system. 

 

2.2 Flexural vibration of thin plate 

A plate is a special case of solid whose thickness is so small compared to the other 

dimensions that it can be studied using the two-dimensional models that are described in 

terms of its mid-plane. Kirchhoff-Love plate theory is the classical one for plate bending 

problems, whose fundamental assumptions are [157]: 

• The plate is made of elastic, homogeneous and isotropic material. 
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• The plate is flat before deflection. 

• The deflection of the mid-plane is small in comparison with the thickness. Hence, 

the slope of the deflected mid-surface is small, and its square is negligible compared 

with unity. 

• The straight lines normal to the mid-plane before deformation suffer no change in 

length and remain straight and normal to the mid-surface during deformation. This 

indicates that the normal strain may be negligible and the transverse shear strains 

can be omitted. This assumption is known as hypothesis of straight normals or 

Kirchhoff-Poisson hypothesis. 

• The stress normal to the mid-plane, small compared to other stress components, may 

be neglected in the stress-strain relationships. 

• The mid-surface is assumed to be unstrained under the small transverse 

displacement of the plate. 

 

The assumptions indicate some important issues need extra attention when the theory is 

utilised to model a plate. For example, regarding the Kirchhoff-Poisson hypothesis, there is 

a doubt whether the shear deformation effect or the thickness stretch effect [158] is small 

enough to be negligible. Especially for the shear deformation effect, it is found becoming 

more and more important as the thickness of the plate increases. Therefore, the more 

sophisticated two-dimensional plate theories, referred to as Shear Deformation Theories, 

were proposed. They are based on the hypotheses more realistic than the Kirchhoff-Poisson 

hypothesis, and extendable to anisotropic homogeneous or arbitrarily laminated anisotropic 

plates. Among the several Shear Deformation Theories, the First-order Shear Deformation 

Theory (also called the moderately thick plate theory or Reissner-Mindlin plate theory) is 

most popularly used. With respect to the hypothesis of straight normals, this theory states 

that “Normals to the mid-plane of the undeformed plate suffer no change in length and 

remain straight, but not necessarily normal to the deformed mid-surface.” [158] In other 

words, the transverse shear strains are not equal to zero. As a result, when the Reissner-

Mindlin plate theory is used for the plate flexural vibration, the rotary inertia and shear 

deformation take effects, while they are neglected in the Kirchhoff-Love plate theory. There 

are also higher order theories, but they are not in favour for isotropic homogeneous plates 

because of the higher algebraic complexity and computational efforts.  

 

Owing to the assumptions, both the Kirchhoff-Love and the Reissner-Mindlin theories have 

certain geometrical and frequency limits for accurate results. In general, the Kirchhoff-Love 

theory is sufficiently accurate for ‘thin’ plates and for not very elevated frequencies, while 

the Reissner-Mindlin theory can be applied to moderately thick plates and higher 

frequencies. The geometrical limit is often provided by the ratio of the plate thickness h to 
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the smaller lateral dimension l (thickness-to-span ratio), and the frequency limit can be 

represented by the ratio of the bending wavelength λb to the plate thickness h. There is no 

precise definition of the limits, since it is related to the requirement of accuracy and the 

accuracy may also be affected by other factors like the boundary conditions, the ratio of 

lateral dimensions, etc. [159] However, it can be summarized from different literature [160–164] 

that the recommended limits for the Kirchhoff plate could be h/l < 1/20~1/10 and λb/h > 6, 

and that the counterparts for the Mindlin plate may be h/l < 1/5 and λb/h > 2. In [158], it is 

proved that the Kirchhoff-Love theory is very accurate if h/l ≤ 1/25, and that the Reissner-

Mindlin theory yields excellent results for h/l ≤ 1/10. Furthermore, Klanner investigated the 

useful ranges of validity for these two theories in his PhD thesis [159], which may provide 

more detailed information. His investigation indicates that if the plate is thinner, the effects 

of the rotary inertia and shear deformation are smaller, and therefore the two theories reach 

more identical results.   

 

Nevertheless, in this thesis as well as the fundamentals that will be introduced in the 

following subsections, the discussion is limited to thin plates, where the Kirchhoff-Love 

theory is applicable. Consequently, the assumptions, applicable ranges and limitations have 

been specified here before the theory is to be applied. Meanwhile, it is worthwhile to notice 

that the Kirchhoff plate theory underestimates deflections and overestimates natural 

frequencies for the moderately thick plates due to the neglect of shear deformation [162]. 

This may be informative when thicker plates or higher frequencies are considered.  

 

In the following subsections, the 2D mathematic model for the flexural vibration of thin 

plate with arbitrary edge restraints is introduced at first. This model can represent a real 

finite plate that is vibrating in the 3D space. Meanwhile it is further used to build up the 3D 

coupled vibro-acoustic model in Section 2.4. Since the 2D coupled vibro-acoustic problem 

is also considered in this work, the 2D plate model is reduced to 1D in Section 2.2.2, so that 

the plate can couple with 2D acoustic fields. 

 

2.2.1 Two-dimensional thin plate model 

In this subsection, the flexural vibration problem is discussed for a general convex thin 

plate Ωs, as shown in Fig. 2-1. It is excited by the normal harmonic point force Fe jωt at 

rF(xF, yF) and vibrates transversely in the 3D space, without interaction with any fluid.  

Based on the Kirchhoff plate theory [40], the transverse displacement w(r) at r (x, y)  is 

governed by the equation 

 4 4( ) ( ) ( , ),b F s

F
w k w

D
 − =  ，r r r r r  (2.1) 

with the flexural rigidity 
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2

1 )
,

12(1 )

j Eh
D





+
=

−

（
 (2.2) 

the bending wavenumber 

 
2

4 ,b

h
k

D

 
=  (2.3) 

and 

 4 2 2 , =   (2.4) 

where, ∇2 is the Laplacian operator, equal to (∂2/∂x2 + ∂
2/∂y2) for cartesian coordinate system; 

ρ, E and ν denotes, respectively, the density, the Young’s modulus and the Poisson’s ratio 

of the plate material; h is the plate thickness; η is loss factor of the plate if the effect of 

structural damping is taken into account [58]. In the case when the internal damping of plate 

is not considered, η = 0 can be applied to Eq. (2.2).  
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Fig. 2-1. A convex plate domain with various edge restraints: (a) prescribed non-elastic restraints; (b) 

partially or generally elastic restraints. 

 

Along the plate edge (i.e., r ∈ Γ), the rotational displacement, the bending moment, the 

twisting moment and the effective shear force [161] (also called Kirchhoff’s shear force [158]) 

can, respectively, be expressed as 

 
( )

[ ( )],
n

w
L w




= − =



r
r  (2.5) 

 
2 2

2 2

( ) ( )
[ ( )],n m

n s

w w
M D L w

 

  
= − + = 

  

r r
r  (2.6) 

 
2 ( )

(1 ) [ ( )],ns ms

n s

w
M D L w

 


= − − =

 

r
r  (2.7) 

 
3 3

3 2

( ) ( )
(2 ) [ ( )],n Q

n n s

w w
Q D L w

  

  
= − + − = 

   

r r
r  (2.8) 

where Lθ, Lm, Lms and LQ are the corresponding differential operators. 

 



Doctoral Dissertation of Politecnico di Milano 

 

 
27 

 

Then, determined by the restraint, an edge (r ∈ Γ) may satisfy two of following boundary 

conditions: 

  (2.9) 

 [ ( )]L w = ,r  (2.10) 

 [ ( )]mL w m= ,r  (2.11) 

 [ ( )] ,QL w Q=r  (2.12) 

 ( )[ ( )] [ ( )],mL w k j c L w  = − +r r  (2.13) 

 ( )[ ( )] ( ).Q w wL w k j c w= − +r r  (2.14) 

 

One condition should be Eq. (2.9), Eq. (2.12) or Eq. (2.14), associated with the translation. 

The other should be E ( )w w= ,r q. (2.10), Eq. (2.11) or Eq.(2.13), involving the rotation. 

Eqs. (2.9)-(2.12) are the prescribed boundary conditions, where w̅, 𝜃̅ , m̅ and Q̅ are the 

corresponding prescribed values or functions. In the case of prescribed functions, they can 

be functions of the edge coordinates r (x, y) ∈ Γ but not of the displacement w(r). Eqs. (2.13) 

and (2.14) are the boundary conditions for the elastic (cw = cθ = 0) or viscoelastic restraints. 

A combination of Eqs. (2.13) and (2.14) leads to the general elastically restraint (shown in 

Table 2-1 for r (x, y) ∈ Γm*Q*). The model of this restraint type is shown in Fig. 2-1(b) at the 

edge Γi. As is illustrated, the restraint is modelled with linear and rotational springs and 

dampers for the translational and rotational displacements of the edge. The coefficients kw 

and cw are respectively the translational spring constant per unit length and the translational 

damping coefficient per unit length. Similarly, the coefficients kθ and cθ are respectively 

the rotational counterparts. The viscoelastic restraint can be considered as an extension of 

the elastic restraint, where the spring constant contains a frequency-dependent imaginary 

part, i.e., k'i = ki + jωci, i = w or θ.  

 

For all the possible combinations out of Eqs. (2.9)-(2.14), Table 2-1 lists the corresponding 

restraint types and their examples. The first four restraint types possess the prescribed 

boundary conditions, while the rest five types are partial- or general- elastically restrained. 

The illustrations of these two sets can be found in Fig. 2-1(a) and Fig. 2-1(b), respectively. 

When corners are presents as shown in Fig. 2-1(b), additional conditions for the corners 

may be indispensable for some situations [165]. The reason is related to the different normal 

(γn
+ and γn

−) and tangential (γs
+ and γs

−)  directions between the two intersecting edges (Γ+ 

and Γ− ), which results in a concentrated force Fc at the corner, in the process of 

incorporating the twisting moment to the effective transverse shear force [160]. The 

supplemented conditions are given by  

• for rigidly supported corners rc∈(Γw̅θ̅ or Γw̅m̅ or Γw̅m*): 
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 ( )  ;cw w=r  (2.15) 

• for other corners rc∉(Γw̅θ̅ or Γw̅m̅ or Γw̅m*) when force conditions of the intersecting 

edges are known: 

 [ ( )] [ ( )] [ ( )] ( ) ( ),F c ms c ms c ns c ns cL w L w L w m m+ − + −= − = −r r r r r  (2.16) 

where, LF is the differential operator for the concentrated force Fc; Lms
+  and Lms

−  are the 

differential operators for the torsional moment with respect to γn
+ , γs

+  and γn
− , γs

− , 

respectively; and m̅ns(rc
+) and m̅ns(rc

−) are the prescribed torsional moments next to the 

corner rc on edge Γ+ and Γ−, respectively. 

 

Table 2-1. Restraint types and their boundary conditions [151,161,162] 

Restraint type Boundary conditions Examples 

Kinematic prescribed: wr  ( ) ,  [ ( )]w w L w = =r r  Clamped: 0w = =  

Mechanical prescribed: mQr   [ ( )] ,  [ ( )]m QL w m L w Q= =r r   Free: 0m Q= =   

Mixed prescribed type 1: wmr   ( ) ,  [ ( )]mw w L w m= =r r  Pinned: 0w m= =  

Mixed prescribed type 2: Qr   [ ( )] ,  [ ( )]QL w L w Q = =r r  Symmetric: 0Q = =  

Rotational elastic type 1: *wmr  
( )

( )

[ ( )] [ ( )]m

w w

L w k j c L w  

=

= − +

r

r r
 

Rigidly supported and elastically 

restrained against rotation: 0, 0w k=   

Rotational elastic type 2: *Qmr  
( )

[ ( )] ,

[ ( )] [ ( )]

Q

m

L w Q

L w k j c L w  

=

= − +

r

r r
  

Resting on a rotational spring: 

0,  0Q k=   

Translational elastic type 1: *Qr  
( )

[ ( )] ,

[ ( )] ( )Q w w

L w

L w k j c w

 



=

= − +

r

r r
 

Clamped by transversely elastic support:

0,  0wk =   

Translational elastic type 2: *mQr  
( )

[ ( )] ,  

[ ( )] ( )

m

Q w w

L w m

L w k j c w

=

= − +

r

r r
 

Resting on a linear spring: 

0, 0wm k=   

General elastic: * *m Qr    
( )
( )

[ ( )] [ ( )],

[ ( )] ( )

m

Q w w

L w k j c L w

L w k j c w

  



= − +

= − +

r r

r r
 

Elastically restrained against rotation and 

translation: 0,  0wk k    

 

 

2.2.2 One-dimensional thin plate model 

The 1D thin plate model is proposed for solving 2D problems. Besides, it can serve as an 

efficient tool to validate a developing approach before the approach is extended to the 

higher dimension. When reduced to one dimension, the Kirchhoff plate is similar to a thin 

beam based on the Euler-Bernoulli beam theory [161], but the propagating waves are plane 

bending waves [58], because the length in y direction (as shown in Fig. 2-2) is regarded as 

infinite. Correspondingly, the harmonic force excitation Fe jωt is a line force, where F is the 

amplitude per unit length. The other parameters ρ, E, ν, h, η, D and kb are the same as they 

are defined in Section 2.2.1 for the 2D model. The governing equation is also identical to 

Eq. (2.1) with y removed: 
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4

4

4

( )
( ) ( , ) (0, ).Fb

d w x F
k w x x x x l

dx D
− = ,  (2.17) 

Similarly, the operators Lθ, Lm and LQ are respectively given by 

 0: ;   : , 
d d

x L x l L
dx dx

 = = = = −  (2.18) 

 
2 2

2 2
0: ;   : , m m

d d
x L D x l L D

dx dx
= = = = −  (2.19) 

 
3 3

3 3
0: ;   : .Q Q

d d
x L D x l L D

dx dx
= = = = −  (2.20) 

Then, the possible boundary conditions are presented from Eq. (2.9) to Eq. (2.14), where r 

represents the 1D vector r(x). Accordingly, the various restraint types for this 1D model are 

also listed by Table 2-1. Fig. 2-2 includes the illustration of the general elastic restraint type 

in the 1D model. The springs and dampers work the same as they are in the 2D model. 
 

F

x

z

kw2 ,cw2 

kθ2  ,cθ2kθ1  ,cθ1

kw1 ,cw1 

l

 
Fig. 2-2. 1D thin plate with general elastic edge restraints. 

 

When compared with the Euler-Bernoulli beam model [58]: 

 
4 2

4

( )
( ) ( , ) (0, ),F

d w x A F
w x x x x l

EI EIdx

 
− = ,  (2.21) 

the 1D thin plate model represented by Eq. (2.17) is different in two folds: it uses the mass 

per unit area ρh instead of the mass per unit length ρA, and the bending rigidity is 

D=Eh3/12(1−ν2) instead of EI=Eh3/12. This is important if beam elements are used to 

model the 1D plate in FEM. 

 

2.3 Interior acoustic problem 

The uncoupled interior acoustic problem considers the steady-state pressure field inside a 

cavity domain, induced by a harmonic point source excitation. Meanwhile, if any wall of 

the cavity is vibrating, its velocity is prescribed without the fluid-structure coupling effect, 

in consistent with the word ‘uncoupled’. In this section, both the 3D and 2D acoustic models 

for the problem are introduced. Although for most cases, the 3D acoustic model is more 

appropriate, introducing the 2D model is worthwhile and even necessary. The 2D model 

requires relatively small amount of work to set up and significantly shorter time to solve 

and study. In the development of numerical techniques, its validity in 2D model is often an 
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important milestone before the extension to 3D. Meanwhile, for calculating the acoustic 

modes, a 2D model may be able to represents a 3D cavity if there are two opposite sides 

parallel.  

 

2.3.1 Three-dimensional interior acoustic model 

As shown in Fig. 2-3, consider a general convex cavity volume V, under the harmonic 

monopole source excitation qe jωt, where q (SI unit: m3/s) is the amplitude of the volume 

flow rate. The source is located at rq(xq,yq,zq) , and the acoustic pressure p at any position 

r(x,y,z) is unknown but satisfies the inhomogeneous Helmholtz equation [27] 

 2 2
0( ) ( ) ( , ), ,qp k p j q  + = − Vr r r r r  (2.22) 

with the acoustic wavenumber 

 ,k
c


=  (2.23) 

where, ρ0 is fluid density and c is thermodynamic speed of sound of the fluid. In the case 

when air is the fluid (approximate to a perfect gas), the density can be expressed as a 

function of the absolute temperature TA and absolute pressure pA [166]: 

 0

gas

;
A d

A

p M

R T
 =  (2.24) 

and the sound speed is dependent upon the absolute temperature TA [166]: 

 1.4
.

gas A

d

R T
c

M
=  (2.25) 

In Eq. (2.24) and Eq. (2.25), Md = 0.02897 kg/mol is the molar mass of dry air and Rgas = 

8.314 J/(K∙mol) is the universal gas constant. 

 

Ωp  

ΩZ  

Ωv  

V

x

yz
q

( )p r

n

 
Fig. 2-3. A general convex acoustic cavity. 

 

For a unique solution to Eq. (2.22), the conditions along the boundary a p v Z =    

should be specified: 

 ( ) , ,pp p= r r  (2.26) 
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0

1 ( )
, ,n v

p
v

j n


− = 



r
r  (2.27) 

 
0

1 ( ) ( )
, ,Z

p p

j n Z


− = 



r r
r  (2.28) 

where, n is normal direction of the boundary surface, p̅, v̅n   and 𝑍̅ are respectively the 

prescribed acoustic pressure, surface normal velocity and surface acoustic impedance, or 

their corresponding functions of the boundary coordinates r(x,y,z). The rigid/reflecting wall 

condition can be regarded as a special case of Eq. (2.27) with v̅n = 0 or of Eq. (2.28) with 

𝑍̅ = ∞, simply applying the condition ∂p(r)/∂n = 0. 

 

2.3.2 Two-dimensional interior acoustic model 

The 2D model is normally applied to the problems with a planar symmetry or a cylindrical 

symmetry. In this work, only the planar symmetry is considered, where the dimension y (as 

shown in Fig. 2-3) is extended to infinite. As a result, the coordinates are given by r (x, z). 

Correspondingly, the monopole excitation is a line source, where q is the amplitude of 

volume flow rate per unit length out from the source. Then, with the coordinate y eliminated, 

the governing equations and boundary conditions are the same as shown in Eqs. (2.22)-

(2.28). However, if the sound wave is considered also propagating in the out-of-plane 

direction, i.e., ky ≠ 0. The wavenumber shown by Eq. (2.23) should be replaced by  

 2 ,yk k
c


= −  (2.29) 

where, ky is the out-of-plane wavenumber. 

 

2.4 Coupled vibroacoustic problem 

Regarding the coupled vibroacoustic problem, the plate introduced in Section 2.2 is now a 

boundary surface of the interior acoustic field considered in Section 2.3. From the above 

two sections, it can be noticed that there is no dramatic difference in mathematically 

modelling the 3D and the 2D problems. Similar modelling techniques can be applied to the 

vibroacoustic situation. In the following introduced 3D vibroacoustic model, the cavity and 

the plate are respectively 3D and 2D models, while in the 2D vibroacoustic model, the 2D 

cavity is coupled with the 1D plate.  

 

2.4.1 Three-dimensional vibroacoustic model 

As illustrated by Fig. 2-4(a), the plate-cavity system now has three possible excitations, i.e., 

the exterior sound wave excitation pext (r), the point force excitation F, and the monopole 
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source excitation q. Though the three excitations are presented together in the mathematical 

model, only one excitation is considered to be effective in one case. The given excitation is 

still harmonic and the unknowns are the displacement field w of the plate and the pressure 

field p of the cavity.  
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Fig. 2-4. Three-dimensional coupled vibroacoustic system: (a) acoustic field affected by plate vibration; 

(b) structural field influenced by acoustic pressure. 

 

Concerning the acoustic field inside volume V, it is like the uncoupled case governed by 

inhomogeneous Helmholtz equation Eq. (2.22), but the boundary Ωa has additional effect 

coming from the flexible plate Ωs. The boundary condition is given by 

 
0

1 ( )
( ), .s

p
j w

j n





− = − 



r
r r  (2.30) 

In this boundary surface Ωs, the normal plate displacement w(r) is also unknown and 

meanwhile directly influenced by the acoustic pressure field coming from the cavity as 

shown in Fig. 2-4(b). 

 

For directly utilizing the 2D plate model, a local coordinate system (x', y') is set up as shown 

by Fig. 2-4. It is defined in the mid-plane of the flat thin plate and any point in the plate is 

represented by r' (x', y') in the local coordinate system. The coordinate transformation from 

the local system to the global system r (x, y, z) be expressed in a bilinear parametric way as 

follows: [27] 

 

,0 , ,

,0 , ,

,0 , ,

( , )

( , , ) : ( , ) ,

( , )

x x x x x y

s y y y x y y

z z z x z y

x u x y u u x u y

x y z y u x y u u x u y

z u x y u u x u y

 

 

 

   = = + +


     = = + +
    = = + +

r  (2.31) 

where, ui,0, ui,x' and ui,y' (i = x, y, z) are constant values, depending on the position and 

orientation of the local system (x', y'). 

 

Then, expressed in the local coordinate system, the governing equation of plate is given by 

 ext4 4
( ) ( )

( ) ( ) ( , ) , ,F sb

F p p
w k w

D D D


 
     − = + − 

r r
r r r r r  (2.32) 
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where, p(r') is derived from p(r) based on Eq. (2.31). The edge conditions are identical to 

the uncoupled case as discussed in Section 2.2.1, since they are not affected by the fluid 

fields. 

 

Finally, the 3D vibroacoustic problem is defined mathematically by combining the cavity 

governing equation Eq. (2.22) and the plate governing equation Eq. (2.32), utilizing the 

coordinate relationship Eq. (2.31), and accordingly applying the cavity boundary 

conditions Eqs. (2.26)-(2.28), (2.30) and the plate boundary conditions Eqs. (2.9)-(2.14). 

 

2.4.2 Two-dimensional vibroacoustic model 

As shown by Fig. 2-5, the considered 2D vibroacoustic problem is defined in the x-z plane. 

Both the cavity V and the thin plate Ωs are considered infinite length in the y dimension. 

This is consistent with the two subsystems in their uncoupled models. Correspondingly, the 

three possible excitations pext, F and q are defined for unit length. Then, except the 

difference in dimension, all the others are the same as the problem in the 3D case. Therefore, 

the 2D model can be derived by a dimension reduction from the 3D vibroacoustic model.  
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Fig. 2-5. Two-dimensional coupled vibroacoustic system. 

 

In the global coordinate system (x, z), any point at the plate-cavity system can be 

represented by r(x, z). A line source is exciting at r(xq, zq). Then, the governing equation of 

the interior acoustic field p(r) is given by Eq. (2.22) and the corresponding boundary 

conditions are provided by Eqs. (2.26)-(2.28) and (2.30). The local coordinate system built 

up for the flexible plate Ωs is (x'), with the local origin at one vertex the 1D plate line. Hence, 

any point in the plate can also be represented by r'(x') and the line force F is imposed at 

r'F(x'F). Suppose that the origin r'(0) is at r(x0, z0) and that the angle between x'-axis and x-

axis is α0, the relationship between the two coordinate systems can be expressed by 

 0 0

0 0

cos
( , ) : .

sin
s

x x x
x z

z z x





= +
  

= +
r  (2.33) 

Using the local coordinate system, the plate’s governing equation can be given by Eq. 

(2.32), or rewritten as follows: 
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( ) ( ) ( )
( ) ( , ) (0, ).Fb

d w x F p x p x
k w x x x x l

dx D D D


  
   − = + − 


,  (2.34) 

With the updated operator for x' given by Eqs. (2.18)-(2.20), the boundary conditions of the 

plate can be expressed as one of the restraint types listed in Table 2-1. The 2D vibroacoustic 

model is finally mathematically determined by combining all the equations mentioned in 

this subsection. 

 

2.5 Sound transmission loss of isotropic panels 

When airborne noise is considered, sound transmission of the intermediate structure (e.g., 

panel/partition) is important. The sound transmission ability can be evaluated by the 

transmission coefficient τ, defined as the ratio of the transmitted power Πtr to the incident 

power Πin: 

 tr

in

.


=


 (2.35) 

From another point of view, if the capability of the structure to avoid the power transmission 

is to be assessed, the transmission loss, TL (also referred to as ‘sound reduction index’, R) 

is often used, which is defined by the logarithmic form of the power transmission 

coefficient: 

 in

tr

1
TL 10lg =10lg   [dB].




=


 (2.36) 

 

Because τ and thus TL depend on the direction of incidence (incident angle θin and azimuth 

angle ϕin as shown in Fig. 2-6), there are three terms about τ or TL that are commonly 

referred to. They are respectively for normal incidence (τN or TLN), diffuse field or random 

incidence (τd or TLd) and field incidence (τF or TLF). While the diffuse field incidence 

considers that the incident plane waves are coming from all directions with random phase 

and equal probability, the field incidence limits the incident angle to θin ≤ θL. Precisely, it 

means that the field incidence transmission coefficient is obtained from [167] 

 

in in

in in

in in

in in

2

in in in in in in
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in in in in
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.
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L
F
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 
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 

      


   

= =

= =

= =

= =

=
 

 
 (2.37) 

There is no rigorous justification of θL, but it is found that θL ≈ 78° makes the predictions 

agree well with the experimental results [58]. In this regard, the field incidence transmission 

loss TLF is used in this thesis, representing the sound insulation characteristic of the 

considered thin isotropic panel. 
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Fig. 2-6. Oblique incidence of plane wave. 

 

Considering a single uniform isotropic panel with finite dimensions, the transmission loss 

is affected by four factors: size, stiffness, mass and damping [168]. A typical field incidence 

TL curve in the broad audio-frequency range is shown in Fig. 2-7 [169]. At very low 

frequencies below the frequency of first panel resonance f1, the TL is stiffness controlled. 

It decreases as the frequency increases and the decreasing rate is reported to be -6 dB/octave 
[168,170]. If the stiffness of the panel increases, the TL within this region increases regardless 

of the mass or damping. Then, the first valley is seen at the first panel resonance. Since the 

panel is finite and bounded, several valleys may appear next to the first one, corresponding 

to the first several natural frequencies of the panel. In this region, the TL is partly influenced 

by the damping in the system and the region is sometimes called resonance controlled 
[168,170]. Subsequently, there is a relatively broad frequency region that is mass controlled. 

In this region, the relationship between TL and frequency f satisfies the mass law, where 

TL increases with f by 6 dB per octave and doubling the panel mass indicates a 6 dB 

increase in TL. Later, the frequency gradually enters the coincidence region. A sharp drop 

is seen just below the critical frequency fc, which is the lowest coincidence frequency of the 

panel. Then, coincidence occurs and the panel radiates sound efficiently, leading to the 

locally small TL. The TL has been affected by the damping since the coincidence region. 

Finally, as the frequency further increases, the damping effect dominates and the TL 

increases at the rate of 9 dB/octave. 
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Fig. 2-7. Typical TL of single-layer isotropic panels under field incidence[169]. 
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The specific function of TL (or denoted as TLF) verses f can be derived based on Eqs. (2.35)

-(2.37), where τ (θin,ϕin) is calculated based on Eq. (2.35) with Πtr and Πin out of plane sound 

wave from a single direction (θin,ϕin). The analytical solution for a panel of finite size is not 

directly available but can be approximated by that for an infinite panel in practice, as long 

as the frequencies are above 1.5f1 and the panel is limp. The transmission coefficient of an 

infinite isotropic panel is given by [169] 
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where, Zb is the bending wave impedance of the panel, expressed as 
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In Eq. (2.39), m = ρh is the panel surface density, and fc is the critical frequency: 
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From Eq. (2.38), it can be noticed that τ is independent of the azimuth angle ϕin. This is 

reasonable since the formula is for the infinite panel. Thus, Eq. (2.37) can be simplified 

with angle ϕin integrated separately. Furthermore, to ease the tedious calculation of Eq. 

(2.37), several approximate expressions are derived under different schemes. Meanwhile, 

the TL in the low frequency range f < 1.5f1 are also provided by incorporating the stiffness 

and natural frequencies or forced transmission of the partition. In [169], the three schemes 

for approximate TL estimations respectively from Sharp, Davy and EN 12354-1(2000) are 

introduced. Since these schemes will be applied in later investigations on the test panel, 

their derived formulae are respectively listed in Appendix B: Panel transmission loss 

approximate predictions, where the Sharp’s scheme and the Davy’s scheme are excerpted 

from [169] and the EN 12354-1(2000) has been updated by ISO 12354-1(2017) [171].  

 

Apart from the theoretical calculations, the sound transmission loss (or airborne sound 

insulation of partitions) can also be measured in laboratory [172–175] or field [176,177]. In 

general, there are two standardized approaches. One is based on the difference of sound 

pressure levels (SPLs) in the two rooms separated by the partition [173,175,177], while the other 

is distinguished from the former by directly measuring the sound intensity in the radiating 

side to obtain the sound power transmitted by the element [172,174,176].  

 

As for the measurement in laboratory, Fig. 2-8 shows the schematic test suites. Fig. 2-8(a) 

is for the first option based on SPLs (also referred to as two-room method). As the figure 

shows, the test partition is fixed in the window between two reverberation rooms. Then, the 

sound transmission loss TL is given by [173] 
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A f
= − +  (2.41) 

where, LS and LR are the average SPLs in the source room and the receiving room, 

respectively; S is the area of the test element that is exposed in the receiving room; AR is 

the sound absorption of the receiving room with the test element in place. 

 

 
Fig. 2-8. The schematic diagrams and test suites for sound transmission loss measurement: (a) two-room 

method (or sound pressure measurement method); (b) sound intensity measurement method. 

 

Fig. 2-8(b) is for the latter option using sound intensity. In this configuration, only one 

reverberation room is needed, serving as the source room. In the receiving side, it can be a 

not too reverberant room or space, though the ideal circumstance is a free field. The 

calculation of sound transmission loss is based on Eq. (2.36), where Πin is evaluated from 

the measured average SPL in the source room considering that the sound field is diffuse, 

and Πtr is determined by the product of the average normal sound intensity level over 

measurement surface and the area of the measurement surface. Hence, the intensity 

transmission loss ITL is obtained from [174] 

 ( ) [ ( ) 6 10lg ] [ ( ) 10lg ],S In mITL f L f S L f S= − + − +  (2.42) 

where, 𝐿̅𝐼𝑛  represents the average normal sound intensity level over the measurement 

surface, and Sm is the total area of the measurement surface.  Due to the bias between two 

methods [174], the transmission loss measured by this method is named intensity 

transmission loss for distinction. In [169], it is stated that the latter method is more accurate 

and is becoming more accepted recently. However, it is still unclear which method is better, 

but undoubtfully the latter approach is especially useful when the receiving room is not 

satisfying the reverberant requirement.  

 

In the standard measurements [172–175], there is always requirement on the volume of the 

reverberation room, whose minimum value is either 50 m3 or 80 m3. However, non-

standardized rooms can also be used for the TL measurement. Indeed, some small 

reverberation cabins have been developed for this purpose in the recent few decades. 

Featured by the small space occupancy and good mobility [88,178], these cabins are 

appreciated for testing small elements. For example, Fig. 2-9 shows a small reverberation 
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cabin called Alpha cabin, which has been widely used in the automotive industry [179]. The 

cabin has a cavity volume of 6.44 m
3, and it is irregularly shaped with no walls parallel to 

each other for the utmost diffuseness in a limited space [180]. When used for TL 

measurement, the Alpha Cabin is coupled with an emission chamber to approximate the 

two-room method [173,175] , forming a system named Isokell, as shown by Fig. 2-10. This 

system is claimed to be well-performed from 125 Hz to 6300 Hz [179]. Besides, there are 

other proposals that use sound intensity method [172,174]. The small cabin (also referred to as 

PMA Soundbox) introduced by Vivolo [88] is constructed by five reinforced concrete walls, 

providing a reverberation room of 0.83 m
3 volume. When used for sound transmission 

measurement, the small cabin was placed to an open field. For another case, the small 

mobile cabin used by Piollet et al. [178] is internally a 0.8 m
3 volume surrounded by plywood 

walls. In this case, the small light cabin showed its convenience to move into an anechoic 

chamber, where the sound transmission loss measurements were performed following the 

ASTM E2249 (2002) standard. Therefore, small reverberation cabins can be used to 

characterize the sound TL of panels, using either the two-room or the one-room (i.e., sound 

intensity) approach. However, this needs special design of the cavity and attention to the 

effectiveness in the low frequency range.  

 
(a)  (b)  

Fig. 2-9. Alpha Cabin: (a) a photo of test rig [179]; (b) a sketch of inner volume [180]. 

 
(a) (b)  

Fig. 2-10. Isokell: (a) a photo of the system [179]; (b) a sketch of its constitution [181]. 
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2.6 Summary 

Four problems are involved in the plate-cavity system: flexural vibration of the plate, 

acoustic response of the cavity, plate-cavity coupled vibro-acoustics and sound 

transmission loss of the panel. This chapter introduces the fundamentals of these problems 

and the corresponding mathematic models or formulations for each of them. They are the 

basics for later chapters, including the background theory for the Noise-Box design, the 

differential equations to be solved using different numerical methods and the problems to 

be investigated through experiment.  

 

Firstly, for the flexural vibration of a thin plate, Kirchhoff plate theory is introduced. Based 

on the theory, the mathematical model is proposed for a general convex plate under a 

harmonic point force excitation and with arbitrarily restrained edges. A wide range of 

restraint types are considered, and their boundary conditions are summarized in Table 2-1. 

It is worthwhile to mention that the model is feasible for various types of elastic or 

viscoelastic restraints. Secondly, for the interior acoustic problem, the mathematical model 

is given by considering a general convex acoustic cavity with various boundary conditions, 

and under a harmonic monopole source excitation. The fluid (air) properties are considered 

dependent on the ambient environment, especially the temperature. Thirdly, in the coupled 

vibroacoustic problem, the two uncoupled fields defined previously are considered 

interacting with each other. The acoustic field enriches the inhomogeneous part of the plate 

governing equation, while the structural field adds a flexible structural boundary surface. 

Corresponding to the three models mentioned above, three reduced models in 2D space are 

also provided by extending the y dimension to infinite. 

 

Finally, the sound TL of isotropic panels is introduced. The figure of the typical TL curve 

for a field incidence indicates that a complete TL curve, as the frequency increases, will 

present the stiffness controlled, resonance controlled, mass controlled, coincidence and 

damping controlled regions. For an approximate prediction to the TL, three prediction 

schemes can be used, respectively from Sharp, Davy and ISO 12354-1. For measuring the 

TL in laboratory or field, two standardized approaches, respectively by sound pressure level 

and sound intensity level, are summarized. In addition, some alternative solutions using 

small reverberation cabins are reviewed. 
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 Design and construction of plate-cavity 

coupled Noise-Box 

 

Noise-Box is a benchmarking and testing tool for vehicle interior noise analysis and control. 

It is going to be a simplified interior noise investigation system coupled by a plate and a 

cavity. The tool consists of a test bench and its numerical models. This chapter involves the 

design and construction of the test bench. The set-up principle is first introduced, 

explaining how it relates to a vehicle compartment, why it is originated as a plate-cavity 

system, and what functions it can perform. Then, the next section elaborates on its design 

process, including the determination of cavity shape and dimensions, the strategy for wall 

constructions, some details for experimental installation, etc. Finally, the complete plate-

cavity coupled Noise-Box is presented.  

 

3.1 Set-up principle 

The target of the design is to get a test bench that can benchmark the CAE tools for vehicle 

interior noise analysis and test the materials, structures or control strategies for vehicle 

interior noise mitigation. Under these instructions, Chapter 1 has raised some 

considerations through the literature review, where it is highlighted that 

• the system should be representative, with access to panel, cavity, structure-borne 

noise, airborne noise and noise control measures; 

• the system should be easy to model and analyse, with simple geometry and 

identifiable boundary conditions; 

• all geometric, material and physical parameters should be specified. 

In addition, through different types of simplified systems, the plate-cavity system of a rigid 

box with one flexible panel is selected. Therefore, the following work is to design a plate-

cavity coupled Noise-Box based on the above three considerations. 

 

However, there are still too many possibilities, especially for the shape of the cavity. 

Therefore, though the Noise-Box is considered for the vehicles in general, a passenger car 

is used as reference here for illustrating the correlation between the plate-cavity system and 

a vehicle compartment, and later for the geometric design of Noise-Box. The vehicle 

interior noise considers all noises transmitted into the cabin. The noise sources are various. 

For a road vehicle, they include the noises from power unit, tire-road interaction, intake 

system, exhaust system, wind and other ancillary components. The noise from these sources 

is transmitted inside the cabin through the structure-borne path or the airborne path, as 
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shown in Fig. 3-1. The panel-cavity system simplifies the car body and the acoustic filed 

inside. The cavity represents the vehicle compartment, and the panel represents the 

vibrating car body. When the panel is excited by a mechanical force, the noise inside the 

cavity is structure-borne and the panel is the only transfer path. When there is a sound 

excitation outside, the interior noise is airborne and transmitted through the panel. The 

coupling between structure and enclosed acoustic field is revealed by the coupling between 

the panel and the cavity.  

 

The panel-cavity simplification also enables the test bench to be more adaptable and multi-

functional. On one hand, there are only two components inside the system, it is the simplest 

case for a vibroacoustic system, so it is the best option for benchmark cases of vibroacoustic 

problems, revealing the coupling mechanism or validating the numerical methods for 

interior noise prediction. On the other hand, various noise mitigation measures can be tested 

in such a test bench. For example, as shown in Fig. 3-2, structural optimized panel can be 

mounted for vibroacoustic test to validate its performance; soundproofing structure can 

cover the opening of the cavity to check its sound transmission loss; the wall impedance is 

changeable with acoustic treatment; and by placing sound sources inside it can help to 

develop the active noise control strategies. 

 

A B

CD

E

Structure-borne noise transmission path

Airborne noise transmission path

Car body noise emission

Rigid wall of cavity

Flexible panel

 
Fig. 3-1. Vehicle interior noise principle and the panel-cavity system. 

 

 
Fig. 3-2. Schematic diagram of the test bench for noise mitigation measures. 
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3.2 Design of Noise-Box test bench 

3.2.1 Cavity acoustic design and optimization 

To determine the shape and dimensions of cavity, two criteria are raised: 

• the cavity should be easy to build, model and analyse; 

• the acoustic field inside the cavity should be able to represent the acoustic field 

inside the vehicle compartment. 

 

For the first criterion, simple geometry and physics are preferred. Flat walls are considered, 

and the walls (except the flexible panel) can be built by thick reinforce concrete to 

approximate the acoustically and mechanically rigid boundary conditions. With respect to 

the second criterion, the Noise-Box cavity is actually different from a real cabin of any 

vehicle. On one hand, the Noise-Box, as a test rig in lab, has to limit its size and weight. 

Accordingly, the cavity volume is smaller and the first natural frequency of the acoustic 

volume is higher. One the other hand, in accordance with the first criterion, the cavity is 

geometrically simpler and with fewer diffusers. Hence, the sound field diffuseness will not 

as good as a real compartment. The design should try to optimize the diffuseness under the 

constraint of size. The methods used to design small reverberation cabins [88,182,183] are 

employed to the optimization. In fact, the methods are trying to make the cavity less 

dominant by a single acoustic mode by adjusting the mode shapes and natural frequency 

spacing. Moreover, increasing the diffuseness of the cavity sound field also help to extend 

the function of the Noise-Box as a small reverberation cabin for TL measurement of panels, 

like the examples introduced in Section 2.5. 

 

Considering an analogue to the vehicle compartments, a car-like shape is adopted. The 

preliminary shape was designed as shown in Fig. 3-1. In view of the diffuseness, a 

rectangular cavity was avoided and a pentagonal shape was used. Two side walls were 

simplified to be parallel to each other and perpendicular to the bottom panel. The bottom 

was selected as the flexible panel, which is rectangular shaped and larger than other 

rectangular walls. As the boundary conditions of the flexible panel may be one source of 

uncertainty to the system, the larger size can make it less significant. The simplification of 

two side walls is also reasonable. On one hand, the two sides of the car body are symmetric 

and close to vertical. On the other, the simplification make it possible to build the 

corresponding two-dimensional (2D) model of the cavity [1]. In the numerical simulations, 

the 2D model is much more efficient than the three-dimensional (3D) one. 

 

With the shape determined, the next is to settle the ratios of lateral dimensions. In the low 

frequency region, the modal density is low. The method to improve the diffuseness is to 
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optimize the geometry to achieve a homogeneous distribution of the natural frequencies. 

For rectangular reverberation rooms, the ratio 1:1.26:1.59 is recommended [173,184], since it 

avoids modal degeneracy in the wide frequency range. Although cavity is not rectangular, 

the ratio was used as a start point for searching the optimized geometry. As shown in Fig. 

3-3, the initial dimensions of the rectangular that encloses the cavity satisfy that the ratio 

Lx : Ly: Lz equals to 1.59:1.26:1. Then, the dimensions were adjusted as indicated by the 

arrows shown in Fig. 3-3, including Lx, Ly, Lz and the coordinates of corners A, B, C, D and 

E. For each case, the eigenfrequencies and mode shapes of the acoustic field in the low 

frequency range were computed and analysed in order to seek the best option. 
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Fig. 3-3. Schematic diagram for optimizing the cavity geometry. 

 

To quantifying the uniformity of the eigenfrequency distribution, the frequency spacing 

index (ψ) proposed by Bolt [185] was used. This index evaluates the mean square of the 

deviations of the distances between subsequent modes, which is given by [182,185] 
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where, n is the total number of modes, δi denotes the distance between (i+1)th natural 

frequency fi+1 and ith natural frequency fi+1, 𝛿̅ is the mean value of the distances δi, and εi is 

the deviation of δi from the mean value 𝛿̅.  

 

A smaller value of ψ means a better uniformity of the eigenfrequency distribution. In Eq. 

(3.1), the number n, which determines the upper bound frequency, is also important. One 

choice of the upper bound frequency is the low-frequency limit of the diffuse field. Blaszak 
[182] proposed to use the Schroeder frequency [186] 
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where T60 is the reverberation time and V is the volume of the room.  

 

However, since T60 is unknown in the design stage and the Schroeder frequency fsch is too 

restrictive from the application point of view (maybe much higher than the upper bound of 

modal region), another commonly-used cut-off frequency was adopted. This cut-off 

frequency corresponds to the modal density of 20 modes per third-octave band and is given 

by [187] 
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where c denotes the sound velocity. 

 

Due to the irregular shape of the acoustic field, the eigenfrequencies were computed using 

FEM. With all the eigenfrequencies below the cut-off frequency fcut, the index ψ 

corresponding to each geometry was obtained. Fig. 3-3 shows the adjustments that were 

used to search the minimum index ψ, and the final geometry of the Noise-Box cavity is 

corresponding to this minimum ψ. However, as the index ψ doesn’t bring complete 

information on the non-uniformity [182], the designer still needs to check the exact 

eigenfrequency distribution in the process. 

 

3.2.2 Construction and mould design 

With the cavity design settled, the next step is to determine how to construct such a small 

room. Considering that it is a concrete box without a completely regular shape, the selected 

strategy is to pour the concrete into a shaped steel mould. Then, after the concrete dries up, 

the mould is taken off and the concrete box shows up. The designed steel mould is shown 

in Fig. 3-4.  

 

As shown in  Fig. 3-4(a), the mould has two parts: the inner part shapes the inner cavity; 

the outer part determines the shape outside. On the front is a steel frame that will be 

imbedded to the concrete for other purpose, which is introduced in Section 3.2.3. For 

pouring inside the concrete, four rectangular holes are kept in the steel frame as 

demonstrated in Fig. 3-4(b). Fig. 3-4(c) shows the way to place the mould in construction. 

Four square feet (Fig. 3-4(e)) are supporting the outer part and four cylindrical pillars (Fig. 

3-4(d)) are holding the inner part. In order to enforce the strength of the concrete walls, a 

rebar cage was designed as shown in Fig. 3-4(f). It is to be put between the inner and outer 

parts before pouring process. From the outer part of the mould, it can be seen that the Noise-

Box has two walls horizontal outside, while the walls on the back keep paralleling the inner 
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walls. The horizontal top and bottom are to help the front of the Noise-Box keep vertical 

when it is lifted up or placed on the floor. Meanwhile, paralleling to the inner walls lower 

the overall weight of the facility while the wall thickness has to be guaranteed. During the 

consideration of the outer shape, the centre of gravity was also checked to keep the facility 

stable and safe. 

 

(a) (b) (c)

(f)(e)(d)

 
Fig. 3-4. Mould and skeleton design for the concrete construction of Noise-Box: (a) mould disassembly; 

(b) mould assembly; (c) placement mode for construction; (d) inner part holders; (e) outer part supports; 

(f) rebar cage reinforce. 

 

3.2.3 Installation and functioning design 

To ease the assembly and disassembly of the flexible panel as well as to stiffen the contact 

area, a steel frame is embedded to the concrete walls around the opening of the cavity, as 

shown in Fig. 3-5 (a). The steel mounting frame is able to mount the panel in two ways: 

rigidly supported and elastically supported. The two mounting types correspond to two 

different detail views of the circle area at the point B of Fig. 3-5(a). Fig. 3-5(b) shows the 

detail view for the rigid mounting. To approximate the clamped boundary conditions, a 

steel clamping frame is placed on the flexible panel and fixed with two circumferential rows 

of screws. Fig. 3-5(c) is the detail view of the elastic mounting. Different rubber mounts 

result in different restraint stiffness and damping. Soft material is needed for approximating 

the free boundary conditions. Nevertheless, to be exact, this design leads to (visco)elastic 

supports. Though two mounting strategies are considered in the design, this thesis focuses 

on the former strategy, and the latter is prepared as an option for future investigation.  

 

Diffuse sound field is an ideal sound field that never exists but commonly used in research. 

In experiment, the diffuse sound field can be approximated by reverberation chamber. 
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Considering the investigation of airborne noise, where may need the diffuse sound field 

excitation, the test bench was designed to be able to mount on the window of the 

reverberation chamber. As shown in Fig. 3-6, with the help of a concrete frame, the flexible 

panel is excited by the diffuse sound field, while the test bench is outside the reverberation 

chamber. Therefore, thread holes for fastening the test bench to the concrete frame were 

designed approximate to the edges on the front. Meanwhile, thread holes for the eyebolts 

were prepared on the top concerning the lifting and moving of the test bench. 

 

(a) (b) (c)
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Fig. 3-5. Design for the mounting of flexible panel: (a) a steel mounting frame in the front; (b) realization 

of the rigid mounting; (c) realization of the elastic mounting. 

 

Reverberation 

chamber
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Fig. 3-6. Schematic diagram for the test under exterior diffuse sound field excitation. 

 

3.2.4 Overview of the final design 

Taken into account the issues of size, weight and manufacture, the final design was 

determined, as shown in Fig. 3-7. The equipment occupies around 2 m3 and weighs about 

2.5 tons. The rigid walls are constructed out of reinforced concrete with the thickness no 

less than 200 mm. The cavity inside the facility is 0.596 m3, shaped like a pentagonal prism. 

It is similar to the one shown in Fig. 3-3, but has a small flat step of 40 mm around the 

opening of the cavity, which is modified for the manufacture. All dimensions of the cavity 

are annotated in Fig. 3-3.  
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The shape was optimized according to Section 3.2.1. In the optimization, the air density 

and the sound speed were assumed to be ρ0 = 1.2 kg/m3 and c = 343 m/s. For computing the 

frequency spacing index ψ, the cut-off frequency fcut = 647 Hz (based on Eq. (3.5)) was used. 

The natural frequencies were obtained from the modal analysis using the FEM by 

COMSOL. After the optimization, the final frequency spacing index is given by ψ = 1.57, 

smaller than the value (ψ = 1.71) of a rectangular room with the same volume and the 

recommended ratios 1:1.26:1.59. Comparison of their eigenfrequency distributions is 

shown in Fig. 3-8, which also illustrates that the first eigenfrequency of the final design is 

around 160 Hz. 

 

 
Fig. 3-7. Overview of the final design of Noise-Box and the cavity dimensions. 

 

 
Fig. 3-8. Distribution of the cavity natural frequencies up to 650 Hz.Comparison between the rectangular 

cavity with the initial ratios 1:1.26:1.59 and the final design in simulation. 

 

In addition to the dimensions of the cavity, as shown in Fig. 3-7, on the front steel mounting 

frame and around the opening of the cavity are 80 thread holes for the rigid mounting shown 

in Fig. 3-5(b), and 8 holes for the rubber mounts of the elastic mounting shown in Fig. 

3-5(c). The other 8 thread holes around the outer edges of the steel mounting frames are for 

the fastening shown in Fig. 3-6.   
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3.3 Construction of Noise-Box test bench 

Based on all the details considered in the design process, the manufacture started from the 

steel mounting frame in the front of the Noise-Box. The completed frame is shown in Fig. 

3-9(a) with all the holes prepared. The two additional bars on top were used to aid the 

construction process. Mould and rebar cage (Fig. 3-9(b)-(c)) were then prepared for the 

concrete pouring in. After the concrete had been dry, the mould was taken off and the 

concrete Noise-Box was built. Fig. 3-9(d) showing the Noise-Box moving inside the lab 

and rotating to its vertical working condition. As can be observed from Fig. 3-9(e) the steel 

mounting frame has been embedded to the concrete box. Later, one hole through the back 

wall was kept in order to pass through the cables, as shown in Fig. 3-9(f). The hole is sized 

20 mm. Finally, the surface finishes were done, because row concrete surfaces tend to be 

porous and the steel part is easy to be corrupted. The inner and front wall surfaces were 

specially polished and painted. While the inner walls are intended to be highly reflected 

and acoustically rigid, the front wall is wanted to be flat and corrosion-resistant. 

Corresponding functional painting were used for these walls. Additionally, to isolate the 

Noise-Box from the laboratory floor, four isolators (VIBROSTOP MOPLA 5/BY 650) 

have been placed under the Noise-Box. The elastic constant of the isolator is 44.8 daN/mm. 

When holding the Noise-Box, its natural frequency is around 4 Hz, which is considered low 

enough to avoid affecting the experiments.  

 

 
Fig. 3-9. The Noise-Box test bench built-up process: (a) steel mounting frame; (b) inner mould; (c) outer 

mould and rebar cage; (d) Noise-Box transportation; (e) Noise-Box before improvement; (f) Noise-Box 

after improvement 
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3.4 The plate-cavity coupled Noise-Box 

The Noise-Box functions with the opening covered by a flexible panel when the system 

raises a plate-cavity problem. The plate can be of different structures and thicknesses, but 

this thesis considers only a flat thin plate made of aluminium. As for the two mounting 

approaches shown in Fig. 3-5, only the rigid mounting (Fig. 3-5(b)) is applied. Thus, the 

flexible region of the plate is overlapped with the opening of the cavity, whose dimensions 

are 0.825 m × 1.018 m. The selected thickness of the plate is 4 mm, so that the first several 

structural natural frequencies are not far away from the acoustic ones (as shown by Table 

4-10). This was checked using the FEM introduced in Chapter 4. The plate was 

manufactured and its CAD drawing is shown in Appendix A.5. The plate was also proved 

thin enough to satisfy the Kirchhoff plate theory in the wide frequency range. The exact 

shape of the Noise-Box cavity is shown in Fig. 3-10. For modelling this cavity, the acoustic 

field can be of the exact geometry or simplified to a pentagonal prism, since the steps with 

40 mm on the top and bottom are very small. However, it should be noticed that in the 

simplification, the plate-cavity coupling face is unchanged but the slopes of two walls are 

slightly modified, as shown in Fig. 3-11.  

 

 
Fig. 3-10. The plate-cavity coupled Noise-Box and its exact cavity geometry. 

 

 
Fig. 3-11. The plate-cavity coupled Noise-Box and the simplified cavity geometry. 
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3.5 Summary 

The Noise-Box targeted for benchmarking vehicle interior noise analysis and testing 

vehicle interior noise control strategies has been designed and constructed. It simplifies the 

vehicle cabin into a plate-cavity system composed of six rigid concrete walls and one 

flexible panel. The motivations of the simplification are introduced. That is, the plate-cavity 

system is available for the common components in the vehicle interior noise investigation, 

such as panel, cavity, structure-borne noise, air-borne noise and noise control measures; it 

is easier to model and analyse than other vibroacoustic system; its function can be extended 

without much modification.  

 

Then, the design and construction of the Noise-Box are presented. The shape of the cavity 

is inspired from a real car compartment and simplified as a pentagonal prism. The two 

pentagonal side walls are parallel while the others are rectangular. This design enables the 

3D numerical model to be reduced to 2D if necessary. The dimensional ratios of the cavity 

have been specially determined and optimized by the frequency spacing index to realize a 

more diffuse sound field under a limited acoustic volume. For constructing the Noise-Box 

walls, pouring concrete is used, with the aid of the customized mould and rebar cage. 

Besides, the front surface of the Noise-Box is embedded a steel frame for mounting purpose. 

On the frame, different holes are prepared for the rigid and elastic supports of the test 

element. Considering the possibility for exterior diffuse sound field excitation, the Noise-

Box is also prepared for mounting to the window of a reverberation chamber. Finally, 

limited by size and weight, the final design as well as its dimensions are determined. All 

details are shown in Appendix A: CAD drawings.  

 

After construction, the Noise-Box test bench is obtained. It occupies around 2 m3, weighs 

about 2.5 tons and provides a cavity of 0.596 m3 surrounded by its concrete walls that are 

at least 200 mm thick. There is an opening of  0.825 m × 1.018 m in front of the test bench. 

The final plate-cavity coupled Noise-Box is assembled by mounting a 4-mm aluminium 

plate to the opening, and this is the system to be investigated in the following chapters. 
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 Numerical investigation using finite element 

method 

 

This chapter uses FEM to solve the problems involved in the Noise-Box, corresponding to 

the plate, acoustic and vibro-acoustic problems that have been modelled in Chapter 2. The 

general steps of FEM are first illustrated. Then, commercial software that implements this 

method is used to analyse the three problems, respectively. After the FE models are proved 

accurate, the parameters or conditions that affect the numerical results are investigated. 

The target of this chapter is to obtain reliable FE models for the considered problems, and 

meanwhile to provide informative initial predictions. 

 

4.1 General procedures for FEM 

Consider a generic problem defined by  

 
( )      

.
( )     

vu F

u F

= 


= 

D

C

r

r
 (4.1) 

where, D and C are differential operators; u is the unknown variable; Fv and 𝐹̅ are load 

functions independent of u; r is the vector of global coordinates; the problem domain is 

denoted as Ω with the boundary ∂Ω. 

 

There are generally seven basic steps to analyse it using FEM [188]: 

(1) Writing the weak integral form of the problem 

In this process, various methods can be used to construct the integral formulation, e.g., 

method of weighted residuals (including collocation method, least-square method, 

Galerkin’s method, etc.), variational method and Raleigh-Ritz’s method.  

 

For Eq. (4.1), the weak integral formulation in Galerkin’s form is given by: 

 
( , ) ( , ) ( , ) 0

,
( )     

n

e e e

W u u W u u W u u

u F

   = + =


= C r
 (4.2) 

where, W(u, δu) can be derived from ∫
Ω

(D(u) − Fv)dΩ using the rules of integration by 

parts to reduce the order of differentiation and incorporating the natural boundary 

conditions over ∂Ωn. The essential boundary conditions over ∂Ωe are keeping enforced. δu 

is the test function in Galerkin’s form. It is arbitrary but admissible variation of u under the 

enforced essential boundary conditions.  
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(2) Meshing the problem domain into subdomains/elements 

The elements are selected with certain shape, order, nodal arrangement and therefore shape 

functions. The meshing rule is provided considering the convergence, accuracy and model 

size. In this step, it is a common practice to associate the elements to the corresponding 

reference element(s), where the shape functions are known or can be derived a priori.  

 

This step can be denoted as  

 
1

,
en

e

e=
  =   (4.3) 

where ne is the total number of elements. As aforementioned, consider a reference element 

Ωr with a local coordinate system. r' is the vector of local coordinates. The shape functions 

of the reference element are known as 𝑁1
𝑒(r′),…, 𝑁𝑛𝑛𝑒

𝑒 (r′), with nne denoting the number 

of nodes in a single element. Then, by comparing Ωr and Ωe  the local coordinates can 

always map to the global coordinates with 

 Tr = r  (4.4) 

where T is the transformation matrix.  

 

(3) Approximating variable(s) and calculating elementary matrices 

The variable(s) and geometry of each element are approximated using their nodal 

correspondences with the aid of shape functions, and the elementary matrices are calculated 

based on the weak integral formulation. In most cases, the elementary integrals need to be 

calculated numerically, and the Gauss quadrature rules are usually used in the numerical 

integration.  

 

Thus, for each element Ωe, the nodal variables ui
e and nodal coordinates  ri

e are used (for 

iso-parametric elements): 

 
1

( ) ,
enn

e e
i i

i

u N u
=

= r  (4.5) 

 
1

( ) .
enn

e e
i i

i

N
=

r = r r  (4.6) 

 

By instituting Eq. (4.5) into Eq. (4.2) for Ωe and utilizing the relationship between r and r' 

indicated by Eqs. (4.4) and (4.6), the following expression is obtained: 

 { } ([ ]{ } { }) 0,e e e eu u F  − =A  (4.7) 

where, [Ae] is the elementary matrix, and {F 

e} is the elementary load vector. With respect 

to the dynamic or acoustic problems in frequency domain, the elementary dynamic matrix 
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[Ae(ω)] dependent on frequency can be expressed as a combination of the elementary mass 

[Me], stiffness [Ke] and damping [ ]e
dC  matrices:  

 2[ ( )] [ ] [ ] [ ].e e e e
dj  = − + +A M C K  (4.8) 

 

(4) Assembling the elementary matrices for global matrices 

With this step, the continuity between elements is guaranteed. The assembling starts from 

the integral of Eq. (4.2) over Ω. Thus,  

 
1

( , ) { } ([ ]{ } { }) 0.
en

e e e e

e

W u u u u F  

=

= − = A  (4.9) 

 

According to the elements’ locations, Eq. (4.9) can be rewritten as  

 ( , ) { } ([ ]{ } { }) 0,W u u u u F  = − =A  (4.10) 

where, {u}is the vector of nodal variables, [A] is the global matrix and {F} is the global 

load vector. Under the same situation in introducing Eq. (4.8), the global dynamic matrix 

[A(ω)]  is a combination of the global mass [M], stiffness [K] and damping [Cd] matrices:  

 2[ ( )] [ ] [ ] [ ].dj  = − + +A M C K  (4.11) 

 

(5) Imposing constraints or essential boundary conditions 

There are three basic techniques to do this: Lagrange’s multiplier method, partitioning 

method and penalty method. After the essential boundary conditions in Eq. (4.2) is imposed. 

The problem is then well-posed and can be solved in the next step.  

 

Implemented the arbitrariness of δu, Eq. (4.10) yields the system of equations for solution: 

 ˆ ˆˆ[ ]{ } { },u F=A  (4.12) 

where, the head ‘^’ denotes that the constraints have been imposed. 

 

(6) Solution 

The FE model are established after step (5), and the solving method relies on the specific 

analysis (e.g., stationary, modal, harmonic, random, transient, etc.) and the model size. 

 

(7) Convergence study and postprocessing.  

The last step is to make sure the results accurate and precise as expected, and to obtain other 

required physical indicators. In the convergence study, three types of errors should be 

noticed: modelling, discretization and numerical errors [188]. The modelling error comes 

when we try to describe the problem using a mathematical model. In other words, it happens 

before the numerical approach is applied, in the process of establishing the governing 
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equation(s) and boundary conditions. The latter two are directly related to the numerical 

technique. The error caused by the discretization of the problem domain is categorized as 

the discretization error, and the remaining is called numerical error including the round-off, 

truncation, integration, matrix-conditioning in normal numerical calculations. While the 

errors induced by FEM for dynamic/acoustic problems are discussed, they are also referred 

to as interpolation and pollution errors [20,21,152]. The former results from the polynomial 

approximation of variables in the elements, and the latter is due to the different 

wavenumbers between the FE model and the exact problem. Both are related to the element 

size, the analysis frequency and the order of the polynomial shape functions. The 

relationships are given by [20,21] and summarized in [152] and [159]. The errors increase if the 

elements enlarge or the frequency rises. Therefore, it is necessary to reduce the element 

size as the frequency increases. There is a rule of thumb stating that at least six elements 

per wavelength for linear elements or alternatively at least four elements for quadratic 

elements. However, this simple rule of thumb is proposed based on the interpolation error, 

while the pollution error is more complicated. In comparison, the interpolation error 

dominates at low frequencies, while the pollution error increases fast at high frequencies 

and becomes predominant. Nevertheless, the simple rule of thumb is adequate in general 

practice, since the FEM is hardly implemented to very high frequencies limited by the 

affordable computational burden. To ensure a reliable solution, it is recommended in both 

ANSYS® and COMSOL® by their user’s manuals using at least either 10 linear or 5 

quadratic elements per wavelength. This is the rule of thumb implemented in this thesis. 

Even so, finer mesh is considered for more accurate results or checking the convergence 

performance.  

 

4.2 FEM for flexural vibration of thin plate 

The mathematical model based on the Kirchhoff-Love plate theory has been introduced in 

Section 2.2, where the governing differential equation and boundary conditions are 

provided. To analysis the flexural vibration of the plate with any restraint types (see Table 

2-1), we can use FEM following the steps as mentioned in Section 4.1. The seven steps are 

also implemented in the commercial software, where the steps (1)-(2) are part of the 

preprocessing, and step (7) corresponds to the postprocessing. While commercial software 

is used to solve the problem, all the routine parts are done automatically by the computer 

and the interactions from users are to help clarify the problem and the meshing and solving 

strategies. Since the FE analyses in this thesis are achieved via commercial software, the 

implementation of the basic steps for a specific problem is not further introduced here and 

in the following sections. For different problems and different types of elements, the 
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elementary matrices are different, but the FE modelling procedures are the same. 

Concerning the formulating of thin plate elements, a comprehensive introduction can be 

found in [17]. 

 

Before the FEM is used to analyse a plate, it is here to clarify the discrepancies between the 

FE model that should be built up based on the mathematical model introduced in Section 

3.2 and the final FE models established the two commercial software environments. The 

discrepancies rely on the element types that are available in the software or the selection of 

element type in practice.  In commercial software, shell elements are imbedded instead of 

plate elements. The shell elements are extensions of plate elements. In shells, the mid-

surface can be curved and the membrane (or in-plane) forces or displacements are 

considered. If a shell is flat without in-plane force or motion, the model developed 

according to the shell theory is equivalent to the model from the corresponding plate theory. 

Therefore, it is feasible to use shell elements to model the plates in the software 

environments. Moreover, while in ANSYS, it is able to select either the thin shell element 

based on Kirchhoff-Love shell theory or the moderately-thick shell element based on 

Mindlin-Reissner shell theory, the former is not directly available in COMSOL. The 

difference between Kirchhoff-Love and Mindlin-Reissner theories has been discussed at 

the beginning of Section 2.2. As mentioned previously, the Mindlin-Reissner theory is more 

precise, considered the effects of rotary inertia and transverse shear strain. With respect to 

thin plates (or shells), the two plate (or shell) models are comparable, and the thinner the 

structure is (in terms of the thickness-to-span ratio h/L), the better the models match. The 

two theories are compared for this issue using FEM in [159], where plates with 230 different 

ratios of h/L from 1/500 to 1/10 are analysed to compare the first 100 bending modes, 

proving the foregoing statement and also showing that the relative error is meanwhile 

related to the frequency and boundary conditions. Nevertheless, for the considered plate in 

this section, the FE models based on these two theories will be considered in ANSYS, using 

the SHELL63 and the SHELL181 elements, respectively. In COMSOL, the default shell 

element is used, which is a second-order element and of the Mindlin-Reissner type.  

 

4.2.1 Problem definition 

An aluminium thin plate, which will be mounted to the Noise-Box for experiment, is 

considered. The plate’s 2D engineering drawing can be found in Appendix A.5. With the 

perimeter clamped to the test bench, the vibrating part should overlap with the opening of 

the Noise-Box. Therefore, it is a rectangular plate with dimensions a × b = 0.825m × 1.018m, 

as shown in Fig. 4-1. The plate’s thickness and material properties are given as  

 3 90.004 m, 2700 kg/m , 70 10  Pa, 0.33.h E = = =  =  (4.13) 
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Then, the plate is very thin, with the thickness-to-span ratio h/a = 0.0048 < 1/200 ≪ 1/20. 

Regarding the condition λb/h > 6, the upper frequency limit is 67941 Hz. As discussed in 

Section 2.2, concerning this plate, the Kirchhoff-Love theory is very accurate. However, 

there is also a drawback that the plate may be sensitive to the membrane forces as h/a < 

1/100 [157]. Nevertheless, since it is assumed that no initial tension exists and the plate is 

vibrating under small deflection, the membrane forces can be considered negligible.  

 

F

w1

x

y

1 2

34

a = 0.825 m

w2

Γ1: kw1 ,cw1 ,kθ1 ,cθ1 

Γ3: kw3 ,cw3 ,kθ3 ,cθ3 

w3

 
Fig. 4-1. Rectangular plate for FEA 

 

Moreover, as Fig. 4-1 shows, the translational and rotational spring constants and damping 

coefficients for the four edges are given by kwi, kθi and cwi, cθi (r ∈ Γi, i = 1,2,3,4). This means 

that the elastically restrained or supported edge conditions will be considered. In other 

words, like the model introduced in Section 2.2 being available for any type of edge 

conditions, the FE modelling strategy introduced here is also adaptable to all those types. 

Although the plate edges are designed to be clamped when it is rigidly supported, the ideally 

clamped boundary conditions are hard to be guaranteed in practice. As can be found in the 

literature [48,67,78,84,189–193], it is very common to utilize a rigid mounting frame (as shown in 

Fig. 3-5(a)) to reach the fully clamped boundary conditions. However, the outcome is not 

always satisfying, especially for the first several modes. Some research [67,84,194] suggests 

that the conditions may between the clamped and the simply supported, with an unknown 

rotational stiffness. This is also the case for the panel that will be examined in this work. 

The real boundary conditions can relate to the stiffness of the support, the local stiffness or 

bending rigidity of the plate, the perfectness of the attachment, meteorological conditions, 

etc. Similar difficulty is also faced when the simply supported boundary conditions are to 

be replicated in experiment. Some research finds good approximation with the plate simply 

bolted close to the edges [56,195,196], while others propose particular designs with shims [197], 

adapters [78], rollers[189], spring-steel-skirt [198] or v-grooves [199]. Therefore, the elastically 

restrained/supported models are helpful in case that the restraints/supports are not 

sufficiently rigid or free.  
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In this section, the plate will be considered for four types of edge restraints (see Table 2-1): 

clamped, simply supported, rigidly supported with elastic restraint against rotation, and 

general-elastically restrained against rotation and translation. The consideration of the third 

type also includes the influence of the rotational stiffness or damping. For each situation, 

modal analysis (and/or harmonic analysis) is performed, where we can see how the modal 

parameters (or the resonance frequencies and amplitudes) are affected. In the harmonic 

analysis, as indicated by Fig. 4-1, the harmonic point force is acting at point rF (0.385m, 

0.533m), with the amplitude F = 1 N, and the frequency responses are measured at r1 (0.31m, 

0.8055m), r2 (0.11m, 0.8755m) and r3 (0.16m, 0.6555m), whose displacements are 

respectively provided by w1,w2 and w3. 

 

4.2.2 ANSYS model 

In ANSYS, linear elements are used to discretize the plate domain: SHELL63 based on 

Kirchhoff-Love (thin shell) theory and SHELL181 based on Mindlin-Reissner 

(moderately-thick shell) theory. Both are four-node elements, and each node has six 

degrees of freedom (DOF): 3 translations and 3 rotations. Regarding the boundary 

conditions, the non-elastic or non-viscoelastic ones can be imposed by constraining the 

corresponding DOF along the plate edges, while the (visco)elastic ones can be simulated 

with the nodal-based spring-damper elements COMBIN14. Then, if an edge is elastically 

restrained, all nodes on the edges should be associated with one or two COMBIM14 

elements, where one element for translational stiffness (and damping) or/and one element 

for rotational stiffness (and damping). Every COMBIN14 element is defined by one spring 

constant knode (and one damping coefficient cnode) with its DOF specified. One end of the 

COMBIN14 element is fixed, while the other is connecting to one of the nodes on the plate 

edges. Since the coefficients kw, cw, kθ, and cθ are defined per unit length and linear elements 

are used for the connected plate model, for an element edge with length le, the spring 

constant knode and damping coefficient cnode allocated to its two ends are 

 
node node,       , .

2 2

i e i ek l c l
k c i w = = =  (4.14) 

Besides, if the plate is in the x-y plane, the model size can be reduced by prescribing the 3 

DOF – translations in x and y direction and rotation about z-axis – of all nodes to be zero. 

 

Additionally, SHELL281 is also applicable to the plate bending problems. It is based on 

Mindlin-Reissner (moderately-thick shell) theory like SHELL181, but a quadratic element 

with 8 nodes, i.e., one mid-side node for each side of the element. Because ANSYS suggests 

not to define nodal-based elements at faces with mid-side nodes, SHELL281 is not used for 

simulating the cases associated to elastic restraints/supports but only for the clamped and 

simply supported cases, which are targeted to demonstrate the influence caused by the 
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element orders with the software unchanged or by the software environments (ANSYS and 

COMSOL) with the element type (quadratic element of the Mindlin-Reissner type) 

unchanged.  

 

4.2.3 COMSOL model 

In COMSOL, the model is built in 3D space under the ‘Shell’ physics. As set by default, 

the shell elements are quadratic and of the Mindlin-Reissner type. Meanwhile, the MITC 

interpolation is selected. It is claimed that the MITC formulation [200] enables the elements 

for both thin (Kirchhoff theory) and thick (Mindlin theory) shells. Unlike in ANSYS, the 

shell elements in COMSOL use the 3 DOF – shell normals in the x, y and z directions – 

instead of the customary rotations against the x, y and z-axes. Furthermore, the approach to 

modelling the elastic restraint/support is different. Instead of the spring-damper elements, 

edge loads are implemented based on Eq. (2.13) or Eq. (2.14). The geometry is meshed 

using the ‘Mapped’ method, hence the elements are rectangularly shaped. 

 

4.2.4 Analytical solutions  

Analytical solutions are available (based on the Kirchhoff-Love plate theory) for 

rectangular plates with simple boundary conditions, such as clamped, simply supported, 

free and their combinations [201]. As will be used to compare with the numerical results, the 

analytical formulae for the natural frequencies ωs and mode shapes Wmn(x,y) of uniformly 

clamped and simply supported plates are explicitly given as follows, where the indicators 

m and n are the mode order in the x and y directions, respectively.  

(a) Simply supported plates: 
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(b) Clamped plates [201]: 
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with Gx and Hx  are listed in Table 4-1, and Gy and Hy  are determined by substituting y for 

x and n for m; 

 

 ( , ) ( ) ( ),mn mn m nW x y A X x Y y=  (4.18) 

where 
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with γ obtained as the mth root of tan( /2) ( 1) tan( /2) 0m − − = , and Yn(y) are obtained from 

replacing x by y and m by n. 

 

Equations (4.17)-(4.19) were proposed by Warburton [202]. He used the Rayleigh method to 

obtain the solutions. As commented by Leissa in [201], the frequency values calculated from 

Eq. (4.17) yield the upper bounds and the accuracy will decrease for higher order modes. 

 

Table 4-1. Frequency coefficients in Eq. (4.17) for clamped-clamped edges 

m Gx Hx 

1 1.506 1.248 

2, 3, 4, … 
1

2
m +  

2
1 2

1
12

2

m

m 

   
+ −      

 + 
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4.2.5 Numerical results 

In the following cases, the computational results through all the introduced models are 

discussed and compared under different edge conditions. The maximum frequency is set as 

1000 Hz. The mesh of the FE models is based on the rule of thumb, i.e., no less than either 

10 linear or 5 quadratic elements per wavelength. Then, with bending wavelength 

calculated by 

 
1/4

2
2 ,b

D

h
 

 

 
=  

 
 (4.20) 

the element size is set as 0.02 m for linear elements and 0.04 m for quadratic elements. As 

an illustration, the FE model with 0.02m-sized elements (ANSYS example) and the FE 

model with 0.04m-sized elements (COMSOL example) are shown in Fig. 4-2. 

 

 
Fig. 4-2. FE models of the rectangular plate: (a) 0.02m-sized linear elements in ANSYS; (b) 0.04m-sized 

quadratic elements in COMSOL. 
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4.2.5.1 Simply supported 

At first, computations were conducted for the plate with simply supported edges to check 

the accuracy of different FE models. The natural frequencies were compared for the first 

100 modes, of which those smaller than 1000 Hz are listed in Table 4-2. Mode shapes are 

indicated by m and n, which are the mode order (or the number of antinodes) respectively 

in the x and y directions. The analytical results based on Eq. (4.15) are used as reference, 

denoted as fs
(Ana). Then, the error in natural frequency for numerical prediction is defined 

by 

 (Num) (Num) (Ana) ,s sfEr f f= −  (4.21) 

where, ‘Num’ is given as ‘Com’, ‘S63’, ‘S181’ or ‘S281’, corresponding to results from 

the FE models of COMSOL, ANSYS SHELL63, ANSYS SHELL181 or ANSYS 

SHELL281, respectively.  

 

Fig. 4-3 shows the errors of different numerical predictions vs the predicting mode order, 

where the 60th natural frequency is closest to 1000 Hz. Through the figure, it can be noticed 

that the ANSYS model using SHELL181 is problematic, its prediction has been obviously 

larger than the others since the 20th mode and the gap is even manifested as the frequency 

increases. This phenomenon is caused by the shear locking effect that occurs in FEA when 

linear elements of regular shape are used. Because the linear element cannot model the 

curvature inside under bending, a shear stress is introduced, making it appear to be stiffer. 

But beyond that, the other models yield rather accurate predictions below the upper limit 

1000 Hz. When the element size meets the rule of thumb, the results from COMSOL and 

SHELL281 match very well, and both are very close to the analytical curve. However, if 

the element density is not sufficient, the COMSOL predictions are shown relatively more 

accurate than the other. The SHELL281 model tends to overestimate the natural frequencies 

as the frequency increases, while the SHELL63 model underestimates them. Although 

SHELL63 is also linear element, stress stiffening and large deflection capabilities are 

included in default, so unlike the SHELL181 model, the SHELL63 model does not 

overestimate the natural frequencies. 

 

To sum up, in this case, by comparing the numerical results with the exact solution out of 

the analytical formula, we can conclude that  

• the rule of thumb suggested by the CAE tools is credible; 

• the COMSOL model and the ANSYS SHELL281 model yield very accurate 

predictions, where the former may be better if the elements are not sufficient; 

• the ANSYS SHELL63 model yields acceptable accuracy, using instead linear 

elements and based on the Kirchhoff-Love shell theory. 
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Fig. 4-3. Difference between numerical results and the analytical predication of the first 100 natural 

frequencies of the simply supported plate 

 

Table 4-2. Natural frequencies of the simply supported plate predicted by different models and the 

difference between numerical and analytical results. 

Order 
Mode Analytic COMSOL SHELL63 SHELL181 SHELL281 

m n fs (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

1 1 1 23.8 23.8 -0.002 23.8 -0.003 23.8 0.000 23.8 -0.044 

2 1 2 52.1 52.1 -0.008 52.1 -0.013 52.2 0.043 52.1 -0.085 

3 2 1 66.9 66.9 -0.013 66.9 -0.017 67.1 0.124 66.9 -0.073 

4 2 2 95.3 95.2 -0.027 95.2 -0.052 95.4 0.111 95.1 -0.195 

5 1 3 99.3 99.3 -0.027 99.3 -0.036 99.6 0.292 99.2 -0.117 

6 3 1 138.8 138.8 -0.049 138.8 -0.049 139.5 0.721 138.7 -0.109 

7 2 3 142.5 142.4 -0.062 142.3 -0.122 142.7 0.278 142.2 -0.312 

8 1 4 165.4 165.4 -0.063 165.4 -0.073 166.4 0.997 165.3 -0.163 

9 3 2 167.1 167.1 -0.080 167.0 -0.130 167.8 0.630 166.8 -0.290 

10 2 4 208.5 208.4 -0.116 208.3 -0.216 209.4 0.884 208.1 -0.416 

11 3 3 214.3 214.2 -0.133 214.1 -0.263 215.0 0.667 213.8 -0.503 

12 4 1 239.4 239.3 -0.119 239.3 -0.129 241.8 2.351 239.3 -0.169 

13 1 5 250.4 250.3 -0.128 250.2 -0.148 252.9 2.522 250.2 -0.208 

14 4 2 267.8 267.6 -0.160 267.5 -0.260 269.9 2.160 267.4 -0.380 

15 3 4 280.4 280.2 -0.217 280.0 -0.467 281.5 1.093 279.7 -0.717 

16 2 5 293.5 293.3 -0.201 293.2 -0.361 295.8 2.279 293.0 -0.521 

17 4 3 315.0 314.7 -0.243 314.5 -0.493 317.0 2.027 314.3 -0.673 

18 1 6 354.2 354.0 -0.194 354.0 -0.254 359.6 5.336 354.0 -0.234 

19 3 5 365.4 365.0 -0.342 364.7 -0.732 367.7 2.278 364.5 -0.902 

20 5 1 368.8 368.6 -0.197 368.5 -0.267 374.6 5.833 368.6 -0.187 

21 4 4 381.0 380.7 -0.377 380.2 -0.827 383.3 2.223 380.1 -0.987 

22 5 2 397.1 396.9 -0.269 396.6 -0.479 402.3 5.181 396.7 -0.429 

23 2 6 397.4 397.1 -0.307 396.8 -0.567 402.6 5.283 396.8 -0.587 

24 5 3 444.3 443.9 -0.391 443.5 -0.831 449.5 5.179 443.5 -0.781 

25 4 5 466.0 465.4 -0.562 464.7 -1.272 469.1 3.098 464.7 -1.282 

26 3 6 469.2 468.7 -0.498 468.1 -1.088 473.9 4.672 468.2 -1.048 

27 1 7 477.0 476.7 -0.232 476.6 -0.412 487.0 10.028 476.8 -0.172 

28 5 4 510.4 509.8 -0.585 509.1 -1.325 515.5 5.075 509.2 -1.185 
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Table 4-2 (Continued). Natural frequencies of the simply supported plate predicted by different models 

and the difference between numerical and analytical results. 

Order 
Mode Analytic COMSOL SHELL63 SHELL181 SHELL281 

m n fs (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

29 2 7 520.1 519.7 -0.374 519.3 -0.834 529.5 9.446 519.5 -0.564 

30 6 1 526.9 526.7 -0.184 526.4 -0.504 539.2 12.246 526.9 -0.034 

31 6 2 555.2 554.9 -0.295 554.4 -0.805 567.0 11.785 554.9 -0.305 

32 4 6 569.8 569.1 -0.788 568.0 -1.838 575.0 5.122 568.3 -1.508 

33 3 7 592.0 591.3 -0.626 590.4 -1.546 600.8 8.874 590.9 -1.086 

34 5 5 595.4 594.5 -0.840 593.4 -1.990 600.9 5.560 593.8 -1.550 

35 6 3 602.4 602.0 -0.478 601.1 -1.298 613.6 11.182 601.7 -0.708 

36 1 8 618.6 618.4 -0.140 617.9 -0.640 635.9 17.280 618.7 0.110 

37 2 8 661.7 661.4 -0.323 660.5 -1.183 678.2 16.497 661.4 -0.313 

38 6 4 668.5 667.8 -0.742 666.5 -2.002 679.2 10.708 667.4 -1.152 

39 4 7 692.6 691.6 -1.005 690.0 -2.535 701.5 8.895 691.0 -1.565 

40 5 6 699.2 698.1 -1.156 696.4 -2.826 706.3 7.114 697.4 -1.796 

41 7 1 713.8 713.9 0.091 712.9 -0.869 736.7 22.921 714.4 0.581 

42 3 8 733.6 732.9 -0.654 731.5 -2.104 749.1 15.566 732.7 -0.864 

43 7 2 742.1 742.1 -0.051 740.8 -1.271 764.2 22.109 742.4 0.269 

44 6 5 753.5 752.4 -1.087 750.6 -2.927 764.4 10.893 752.0 -1.527 

45 1 9 779.1 779.3 0.221 778.1 -0.939 807.0 27.951 779.9 0.811 

46 7 3 789.3 789.0 -0.303 787.4 -1.933 810.7 21.377 789.1 -0.163 

47 5 7 821.9 820.5 -1.484 818.1 -3.834 832.3 10.316 820.2 -1.794 

48 2 9 822.2 822.2 -0.022 820.6 -1.632 849.1 26.918 822.5 0.358 

49 4 8 834.2 833.1 -1.134 830.8 -3.384 849.3 15.086 832.9 -1.324 

50 7 4 855.4 854.7 -0.657 852.5 -2.877 869.0 13.643 854.8 -0.597 

51 6 6 857.3 855.8 -1.523 853.3 -4.073 875.9 18.527 855.7 -1.683 

52 3 9 894.1 893.6 -0.443 891.3 -2.773 919.7 25.597 893.9 -0.193 

53 8 1 929.4 930.4 0.997 928.0 -1.403 960.3 30.887 931.5 2.127 

54 7 5 940.4 939.2 -1.132 936.3 -4.102 968.9 28.528 939.5 -0.892 

55 8 2 957.7 958.5 0.796 955.8 -1.914 979.4 21.696 959.5 1.796 

56 1 10 958.4 959.5 1.060 957.1 -1.330 994.3 35.840 960.7 2.230 

57 5 8 963.6 961.8 -1.752 958.5 -5.042 996.4 32.798 962.2 -1.372 

58 6 7 980.1 978.1 -1.990 974.6 -5.460 1001.4 21.340 978.6 -1.450 

59 4 9 994.7 993.6 -1.053 990.3 -4.383 1019.2 24.527 994.1 -0.553 

60 2 10 1001.6 1002.3 0.747 999.4 -2.183 1042.3 40.747 1003.3 1.747 

 
 

4.2.5.2 Clamped 

Secondly, the plate with clamped edges is analysed, with also the first 100 natural 

frequencies and mode shapes are compared. Table 4-3 lists natural frequencies that smaller 

than 1000 Hz. Similarly, the analytical results are used as reference, but in contrast to the 

simply supported case, Eq. (4.17) is an approximate solution and probably overestimates 

the true values. However, we can still use Eq. (4.21) with the same denotations to calculate 

the difference between numerical and analytical results.  
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Fig. 4-4 shows the comparison among different models. Through the figure, it can be seen 

that the three models, COMSOL, SHELL63 and SHELL281, agree very well in the first 30 

modes, where the analytical results are seen overestimated. Afterwards, the three curves 

separate under the same trend as they are presented in the previous case (see Section 4.2.5.1, 

Fig. 4-3).  

 

 
Fig. 4-4. Difference between numerical results and the analytical prediction for the first 100 natural 

frequencies of the clamped plate. 

 

Table 4-3. Natural frequencies of the clamped plate predicted by different models and the difference 

between numerical and analytical results. 

Order 
Mode Analytic COMSOL SHELL63 SHELL181 SHELL281 

m n fs (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

1 1 1 44.1 43.9 -0.188 43.9 -0.192 44.0 -0.137 43.9 -0.187 

2 1 2 78.2 77.8 -0.413 77.8 -0.425 78.0 -0.245 77.8 -0.410 

3 2 1 100.5 100.0 -0.495 100.0 -0.495 100.4 -0.105 100.1 -0.485 

4 2 2 132.1 131.3 -0.779 131.2 -0.829 131.7 -0.389 131.3 -0.769 

5 1 3 133.5 132.8 -0.745 132.8 -0.755 133.4 -0.105 132.8 -0.735 

6 2 3 184.7 183.6 -1.075 183.5 -1.175 184.4 -0.345 183.7 -1.035 

7 3 1 186.7 185.9 -0.845 185.9 -0.845 187.4 0.675 185.9 -0.825 

8 1 4 208.6 207.4 -1.151 207.4 -1.161 209.2 0.649 207.4 -1.121 

9 3 2 217.2 215.9 -1.299 215.8 -1.389 217.3 0.111 215.9 -1.259 

10 2 4 258.1 256.4 -1.656 256.3 -1.806 258.1 0.064 256.5 -1.566 

11 3 3 267.7 266.3 -1.354 266.1 -1.554 267.8 0.186 266.4 -1.244 

12 4 1 301.8 300.6 -1.204 300.6 -1.224 304.7 2.936 300.6 -1.144 

13 1 5 302.8 301.3 -1.492 301.3 -1.512 305.3 2.538 301.4 -1.422 

14 4 2 331.9 329.9 -2.007 329.8 -2.157 333.9 1.913 330.1 -1.887 

15 3 4 338.9 337.2 -1.659 336.9 -2.019 339.5 0.601 337.5 -1.429 

16 2 5 351.3 349.0 -2.366 348.8 -2.596 352.8 1.424 349.2 -2.176 

17 4 3 381.3 379.3 -1.997 378.9 -2.357 383.1 1.813 379.6 -1.747 

18 1 6 416.0 414.2 -1.829 414.1 -1.919 422.0 6.021 414.3 -1.679 

19 3 5 430.5 428.2 -2.272 427.7 -2.832 432.2 1.758 428.7 -1.832 

20 5 1 445.6 444.1 -1.492 444.0 -1.642 453.0 7.318 444.3 -1.332 
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Table 4-3 (Continued). Natural frequencies of the clamped plate predicted by different models and the 

difference between numerical and analytical results. 

Order 
Mode Analytic COMSOL SHELL63 SHELL181 SHELL281 

m n fs (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

21 4 4 450.9 448.7 -2.152 448.1 -2.782 453.3 2.388 449.2 -1.652 

22 2 6 464.1 461.0 -3.027 460.7 -3.397 468.5 4.403 461.4 -2.667 

23 5 2 475.8 473.1 -2.643 472.8 -2.973 481.9 6.147 473.4 -2.363 

24 5 3 524.6 521.8 -2.813 521.2 -3.443 530.2 5.637 522.3 -2.283 

25 4 5 540.8 538.3 -2.534 537.3 -3.504 543.9 3.036 539.2 -1.604 

26 3 6 542.0 539.0 -3.047 538.1 -3.867 546.3 4.303 539.7 -2.257 

27 1 7 548.2 546.1 -2.062 545.8 -2.342 560.0 11.788 546.4 -1.742 

28 5 4 593.1 590.3 -2.889 589.2 -3.929 598.7 5.591 591.2 -1.909 

29 2 7 595.9 592.3 -3.671 591.6 -4.311 605.5 9.569 592.9 -3.031 

30 6 1 618.2 616.6 -1.620 616.1 -2.150 634.2 16.010 617.0 -1.220 

31 6 2 648.5 645.3 -3.156 644.5 -3.966 656.1 7.614 645.9 -2.546 

32 4 6 650.9 647.8 -3.121 646.4 -4.501 662.5 11.649 649.3 -1.551 

33 3 7 673.1 669.2 -3.890 667.9 -5.130 681.9 8.870 670.5 -2.590 

34 5 5 681.8 678.6 -3.128 677.1 -4.678 688.0 6.262 680.4 -1.378 

35 6 3 697.0 693.5 -3.500 692.4 -4.680 710.1 13.020 694.6 -2.470 

36 1 8 699.2 697.1 -2.099 696.4 -2.819 719.8 20.581 697.8 -1.489 

37 2 8 746.9 742.8 -4.076 741.6 -5.256 764.6 17.774 743.9 -2.996 

38 6 4 765.0 761.3 -3.694 759.6 -5.434 777.4 12.456 763.1 -1.904 

39 4 7 780.8 776.8 -4.000 774.8 -6.020 790.1 9.350 779.3 -1.460 

40 5 6 790.5 786.7 -3.728 784.5 -5.938 798.4 7.882 789.6 -0.838 

41 7 1 819.5 818.2 -1.322 816.7 -2.812 840.0 20.438 819.1 -0.442 

42 3 8 823.4 818.9 -4.500 817.0 -6.410 849.0 25.610 821.0 -2.410 

43 7 2 849.9 846.8 -3.063 845.0 -4.863 865.2 15.277 848.0 -1.863 

44 6 5 852.7 848.7 -3.988 846.2 -6.438 877.0 24.302 851.7 -0.958 

45 1 9 869.2 867.4 -1.758 865.8 -3.368 902.5 33.312 868.5 -0.658 

46 7 3 898.4 894.6 -3.780 892.3 -6.100 923.8 25.430 896.5 -1.930 

47 2 9 916.8 912.7 -4.081 910.5 -6.241 930.6 13.809 914.5 -2.311 

48 5 7 919.1 914.7 -4.456 911.6 -7.496 946.5 27.374 919.3 0.154 

49 4 8 930.2 925.4 -4.792 922.5 -7.702 946.7 16.478 929.4 -0.882 

50 6 6 960.3 955.8 -4.480 952.5 -7.800 973.9 13.590 960.8 0.500 

51 7 4 966.0 961.8 -4.194 958.8 -7.224 990.3 24.246 964.9 -1.164 

52 3 9 993.0 988.1 -4.831 985.1 -7.871 1020.9 27.949 991.3 -1.631 

 

So far, the simply supported and clamped cases may prove that using the default shell 

elements in COMSOL and the SHELL63 and SHELL281 elements in ANSYS will obtain 

consistent results as long as the mesh density is sufficient and the frequency is not too high. 

In addition, the two cases also demonstrate the discrepancy in the values of natural 

frequencies between the simply supported and clamped boundary conditions, as shown by 

Table 4-2 and Table 4-3. The discrepancy is not so small and about 20 Hz for the first mode. 

The absolute discrepancy and relative difference (limited for the first 50 modes) are plotted 

in Fig. 4-5, where the clamped results are obtained from COMSOL and used as 

denominators in the calculation of relative values. By comparison, it can be observed that 
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the absolute value increases with the mode order while the relative value is decreasing. 

Meanwhile, it should be noticed that for most modes, the combinations of m and n are the 

same for the same mode order, but there are some modes whose combinations (m,n) are 

different between two cases. In Table 4-2 and Table 4-3, these modes are bolded, i.e., 6th-

7th, 22nd-23rd, 47th-48th, 50th-51st modes. 

 

 
Fig. 4-5. Absolute and relative differences in natural frequencies between the simply supported and the 

clamped boundary conditions. 

 

4.2.5.3 Rigidly supported but elastically restrained against rotation 

With the above validations of the FE models, the plate with the partial-elastically restrained 

edge conditions, i.e., rigidly supported but elastically restrained against rotation, is analysed 

via COMSOL using the default shell elements and via ANSYS using SHELL63, 

respectively. The modelling techniques are introduced in Sections 4.2.2-4.2.3. At the 

beginning, damping effect is ignored, and three rotational stiffnesses are considered:  

 3 4 50, 10 , 10  or 10  N/rad.c k = =  (4.22) 

 

The first 50 modes are listed in Table 4-4. The difference in natural frequencies between 

SHELL63 model and COMSOL model is determined by 

 , , ,f s S s CEr f f= −  (4.23) 

where, fs,S and fs,C denote the natural frequencies predicted by the SHELL63 ANSYS model 

and the COMSOL model, respectively. As can be seen from the table, though the modelling 

strategies of the elastic restraints are different in ANSYS and COMSOL. The difference 

between two predictions is very small, which is less than 1 Hz for the first 30 modes. The 

prediction from SHELL63 is slightly smaller, and as the frequency increases, the 

discrepancy enlarges, which are the same phenomena as we observed in the previous two 

cases. Accordingly, it is probably that the discrepancy is mainly raised by the shell elements 

that model the plate instead of the different strategies that model the edge conditions. To 

confirm the hypothesis that the results from SHELL63 model with finer mesh will better 
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matches the COMSOL results, an additional modal analysis was performed using 0.015m-

sized SHELL63 elements for the case kθ = 104 N/rad. The errors of the SHELL63 models 

before and after refinement are compared in Fig. 4-6, which validates the hypothesis. This 

further confirms that the COMSOL model has better convergence, while it can be indicated 

from Fig. 4-3 and Fig. 4-4. 

 

 
Fig. 4-6. Difference of natural frequencies between SHELL63 and COMSOL models for the plate with 

edge restraint stiffness kθ = 104 N/rad. 

 

For comparing changes of natural frequencies caused by different restraint stiffness kθ, all 

predictions from SHELL63 (0.02m-sized) and COMSOL models are subtracted by the 

analytical results of the simply supported plate (kθ = 0): 

 , ,0.s s k sf f f = −  (4.24) 

Included the clamped case kθ = ∞, the subtracted natural frequencies ∆fs are plotted for the 

plate with  kθ = 0, 103, 104, 105 or ∞ N/rad in Fig. 4-7. The figure clearly demonstrates that 

the natural frequencies increase with the edge restraints becoming stiffer.  

 

 
Fig. 4-7. Natural frequencies subtracted by the analytical prediction of the simply supported plate (kθ = 

0), respectively for the plate with kθ = 0, 103, 104, 105 or ∞ N/rad. Results are from two FE models: 

COMSOL (solid lines);  SHELL63 (dotted lines). 
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Table 4-4. Natural frequencies of the plate with different rotational stiffness along the restrained edges, 

and the difference (Erf) between SHELL63 (fs,S) and COMSOL (fs,C) predictions. 

Order 
kθ = 103 N/rad kθ = 104 N/rad kθ = 105 N/rad 

m n fs,C (Hz) fs,S (Hz) Erf (Hz) m n fs,C (Hz) fs,S(Hz) Erf (Hz) m n fs,C (Hz) fs,S(Hz) Erf (Hz) 

1 1 1 27.9 27.9 0.006 1 1 38.1 38.1 -0.001 1 1 43.1 43.1 -0.004 

2 1 2 56.2 56.3 0.010 1 2 68.9 68.9 -0.004 1 2 76.5 76.5 -0.010 

3 2 1 71.7 71.7 0.009 2 1 87.6 87.6 0.000 2 1 98.2 98.2 -0.004 

4 2 2 99.8 99.8 0.010 2 2 116.6 116.6 -0.020 2 2 129.0 128.9 -0.040 

5 1 3 103.5 103.5 0.010 1 3 119.2 119.2 0.000 1 3 130.7 130.7 -0.010 

6 3 1 143.8 143.8 0.010 3 1 164.8 164.8 0.010 2 3 180.6 180.5 -0.090 

7 2 3 146.9 146.9 0.000 2 3 165.2 165.2 -0.050 3 1 182.4 182.4 0.000 

8 1 4 169.6 169.6 0.010 1 4 188.0 188.0 0.000 1 4 204.2 204.2 -0.010 

9 3 2 172.0 172.0 0.000 3 2 193.1 193.0 -0.040 3 2 212.0 211.9 -0.080 

10 2 4 212.9 212.8 -0.030 2 4 233.0 232.9 -0.080 2 4 252.3 252.2 -0.140 

11 3 3 218.9 218.9 -0.050 3 3 240.6 240.5 -0.110 3 3 261.7 261.5 -0.180 

12 4 1 244.5 244.5 0.000 4 1 269.5 269.4 -0.010 4 1 295.0 295.0 -0.020 

13 1 5 254.6 254.6 0.010 1 5 275.4 275.4 0.000 1 5 296.7 296.7 -0.020 

14 4 2 272.7 272.6 -0.050 4 2 297.5 297.4 -0.090 4 2 324.0 323.9 -0.130 

15 3 4 284.8 284.7 -0.130 3 4 307.4 307.2 -0.210 3 4 331.7 331.3 -0.330 

16 2 5 297.7 297.6 -0.080 2 5 319.6 319.5 -0.130 2 5 343.5 343.3 -0.220 

17 4 3 319.6 319.5 -0.140 4 3 344.6 344.3 -0.210 4 3 372.7 372.4 -0.330 

18 1 6 358.4 358.4 -0.040 1 6 381.2 381.1 -0.050 1 6 408.0 407.9 -0.080 

19 3 5 369.6 369.3 -0.240 3 5 393.3 392.9 -0.350 3 5 421.4 420.9 -0.510 

20 5 1 373.9 373.9 -0.060 5 1 402.0 401.9 -0.090 5 1 436.0 435.9 -0.130 

21 4 4 385.4 385.1 -0.280 4 4 410.7 410.3 -0.400 4 4 441.2 440.6 -0.570 

22 2 6 401.5 401.3 -0.180 2 6 425.0 424.8 -0.240 2 6 454.0 453.7 -0.340 

23 5 2 402.1 401.9 -0.160 5 2 430.0 429.8 -0.210 5 2 464.7 464.4 -0.300 

24 5 3 449.0 448.7 -0.320 5 3 476.8 476.4 -0.410 5 3 512.7 512.1 -0.580 

25 4 5 470.1 469.6 -0.500 4 5 495.9 495.3 -0.640 4 5 529.6 528.7 -0.890 

26 3 6 473.2 472.8 -0.430 3 6 498.1 497.6 -0.540 3 6 530.6 529.8 -0.750 

27 1 7 481.1 481.0 -0.170 1 7 505.6 505.4 -0.200 1 7 538.0 537.7 -0.260 

28 5 4 514.7 514.2 -0.560 5 4 542.5 541.8 -0.700 5 4 580.3 579.3 -0.950 

29 2 7 524.1 523.7 -0.380 2 7 549.2 548.7 -0.460 2 7 583.4 582.8 -0.600 

30 6 1 532.1 531.8 -0.310 6 1 562.8 562.4 -0.390 6 1 605.5 605.0 -0.500 

31 6 2 560.2 559.8 -0.460 6 2 590.7 590.1 -0.560 6 2 633.9 633.1 -0.740 

32 4 6 573.6 572.8 -0.810 4 6 600.2 599.2 -0.970 4 6 637.5 636.3 -1.290 

33 3 7 595.8 595.0 -0.730 3 7 621.8 620.9 -0.880 3 7 659.0 657.9 -1.140 

34 5 5 599.3 598.4 -0.900 5 5 627.3 626.2 -1.080 5 5 667.5 666.1 -1.420 

35 6 3 607.1 606.4 -0.710 6 3 637.4 636.5 -0.840 6 3 681.5 680.4 -1.100 

36 1 8 622.9 622.4 -0.490 1 8 648.8 648.2 -0.570 1 8 686.9 686.2 -0.690 

37 2 8 665.8 665.0 -0.780 2 8 692.1 691.3 -0.890 2 8 731.8 730.7 -1.110 

38 6 4 672.8 671.7 -1.060 6 4 702.9 701.6 -1.240 6 4 748.4 746.8 -1.600 

39 4 7 696.0 694.8 -1.260 4 7 723.4 721.9 -1.450 4 7 764.9 763.0 -1.860 

40 5 6 702.7 701.3 -1.360 5 6 731.0 729.5 -1.570 5 6 774.2 772.2 -2.020 

41 7 1 719.3 718.4 -0.980 7 1 752.1 750.9 -1.140 7 1 803.7 802.3 -1.420 

42 3 8 737.3 736.1 -1.260 3 8 764.4 763.0 -1.430 3 8 806.8 805.0 -1.780 

43 7 2 747.4 746.2 -1.180 7 2 780.0 778.6 -1.360 7 2 832.0 830.3 -1.700 

44 6 5 757.2 755.7 -1.550 6 5 787.3 785.5 -1.770 6 5 834.7 832.5 -2.250 

45 1 9 783.7 782.6 -1.160 1 9 810.9 809.6 -1.310 1 9 854.9 853.3 -1.540 

46 7 3 794.2 792.7 -1.520 7 3 826.6 824.8 -1.740 7 3 879.2 877.0 -2.170 

47 5 7 825.0 823.0 -1.990 5 7 853.8 851.6 -2.230 2 9 899.4 897.4 -2.040 

48 2 9 826.6 825.1 -1.530 2 9 854.1 852.4 -1.710 5 7 900.5 897.7 -2.800 

49 4 8 837.4 835.5 -1.940 4 8 865.6 863.4 -2.170 4 8 911.6 908.9 -2.690 

50 7 4 859.8 857.8 -2.010 6 6 890.7 888.2 -2.440 6 6 940.5 937.4 -3.070 
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Next, the damping effect cw ≠ 0 is considered. Based on the models with k𝜃 = 104
 N/rad,  c𝜃 

= 0, 0.1 or 1 N∙s/rad is introduced. The natural frequencies fs and modal damping ratios ζs 

of the first 50 modes are listed in Table 4-5. The case k𝜃 = 104
 N/rad, c𝜃 = 1 N∙s/rad is 

simulated both in COMSOL and ANSYS SHELL63 for modal analysis, validating that the 

two models yield consistent results in the damped situations. Meanwhile, a trend can be 

observed that the modal damping ratios are increasing with the frequency. To be more 

precise, the increase is not monotonous but with fluctuations related to the mode shape. For 

example, at the 17th mode, the damping ratio reaches a local maximum.  

 

Then, the case k𝜃 = 104
 N/rad, c𝜃 = 1 N∙s/rad is further analysed in COMSOL. Comparison 

of the two cases in the table illustrates that the natural frequencies fs have quite limited 

change and slightly increase as the damping coefficient c𝜃 increases. Besides, the change 

of modal damping ratios ζs is almost proportional to the variation of the rotational damping 

coefficient c𝜃. Furthermore, in order to demonstrate the damping effect on the frequency 

response of the plate, the FRFs w1/F are calculated via COMSOL by frequency domain 

analysis for k𝜃 = 104
 N/rad and c𝜃 respectively equals to 0, 0.1 and 1 N∙s∙rad-2. The excitation 

is given by F = 1 N at intervals of 1 Hz within 10-900 Hz. Fig. 4-8 shows the comparison 

of the frequency responses.  Through the figure and the damping ratios ζs in Table 4-5, it is 

found that the damping effect becomes noticeable from the frequency response function 

since ζs ≈ 0.01. 

 
 

 
Fig. 4-8. FRFs of plate with kθ = 104 N/rad and different cθ. 
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Table 4-5. Natural frequencies and modal damping ratios of plate with kθ = 104 N/rad and different cθ. 

Order 
Mode 

cθ = 0.1 N⋅s/rad cθ = 1 N⋅s/rad 

SHELL63 COMSOL COMSOL 

m n fs (Hz) ζs fs (Hz) ζs fs (Hz) ζs 

1 1 1 38.1 2.55E-04 38.1 2.55E-04 38.1 2.55E-03 

2 1 2 68.9 3.63E-04 68.9 3.63E-04 69.0 3.63E-03 

3 2 1 87.6 4.87E-04 87.6 4.87E-04 87.7 4.87E-03 

4 2 2 116.6 5.45E-04 116.6 5.46E-04 116.7 5.45E-03 

5 1 3 119.2 5.11E-04 119.2 5.12E-04 119.2 5.11E-03 

6 3 1 164.8 7.41E-04 164.8 7.41E-04 164.8 7.40E-03 

7 2 3 165.2 6.41E-04 165.2 6.43E-04 165.3 6.41E-03 

8 1 4 188.0 6.68E-04 188.0 6.68E-04 188.1 6.66E-03 

9 3 2 193.0 7.69E-04 193.1 7.71E-04 193.2 7.68E-03 

10 2 4 232.9 7.60E-04 233.0 7.62E-04 233.1 7.58E-03 

11 3 3 240.5 8.22E-04 240.6 8.25E-04 240.8 8.21E-03 

12 4 1 269.5 9.83E-04 269.5 9.83E-04 269.6 9.78E-03 

13 1 5 275.4 8.21E-04 275.4 8.22E-04 275.5 8.17E-03 

14 4 2 297.4 9.94E-04 297.5 9.96E-04 297.7 9.90E-03 

15 3 4 307.2 8.99E-04 307.4 9.03E-04 307.6 8.97E-03 

16 2 5 319.5 8.85E-04 319.7 8.88E-04 319.9 8.81E-03 

17 4 3 344.3 1.02E-03 344.6 1.02E-03 344.9 1.02E-02 

18 1 6 381.1 9.63E-04 381.2 9.64E-04 381.5 9.55E-03 

19 3 5 392.9 9.90E-04 393.3 9.95E-04 393.7 9.85E-03 

20 5 1 401.9 1.20E-03 402.0 1.20E-03 402.5 1.19E-02 

21 4 4 410.3 1.06E-03 410.7 1.07E-03 411.1 1.06E-02 

22 2 6 424.8 1.01E-03 425.1 1.01E-03 425.5 1.00E-02 

23 5 2 429.8 1.20E-03 430.0 1.21E-03 430.5 1.19E-02 

24 5 3 476.4 1.21E-03 476.8 1.22E-03 477.4 1.20E-02 

25 4 5 495.3 1.12E-03 495.9 1.13E-03 496.6 1.12E-02 

26 3 6 497.6 1.09E-03 498.1 1.09E-03 498.7 1.08E-02 

27 1 7 505.4 1.09E-03 505.6 1.09E-03 506.2 1.08E-02 

28 5 4 541.8 1.24E-03 542.5 1.24E-03 543.4 1.22E-02 

29 2 7 548.7 1.13E-03 549.2 1.13E-03 550.0 1.11E-02 

30 6 1 562.4 1.39E-03 562.8 1.40E-03 563.7 1.38E-02 

31 6 2 590.1 1.39E-03 590.7 1.40E-03 591.8 1.37E-02 

32 4 6 599.2 1.19E-03 600.2 1.20E-03 601.1 1.18E-02 

33 3 7 620.9 1.18E-03 621.8 1.19E-03 622.8 1.17E-02 

34 5 5 626.2 1.27E-03 627.3 1.28E-03 628.4 1.26E-02 

35 6 3 636.5 1.39E-03 637.4 1.40E-03 638.6 1.37E-02 

36 1 8 648.2 1.21E-03 648.8 1.21E-03 649.9 1.19E-02 

37 2 8 691.3 1.23E-03 692.2 1.24E-03 693.4 1.21E-02 

38 6 4 701.7 1.40E-03 702.9 1.41E-03 704.4 1.38E-02 

39 4 7 721.9 1.27E-03 723.4 1.28E-03 724.8 1.25E-02 

40 5 6 729.5 1.31E-03 731.1 1.33E-03 732.5 1.29E-02 

41 7 1 751.0 1.56E-03 752.1 1.57E-03 753.9 1.54E-02 

42 3 8 763.0 1.28E-03 764.5 1.29E-03 766.0 1.26E-02 

43 7 2 778.7 1.56E-03 780.0 1.57E-03 781.9 1.53E-02 

44 6 5 785.6 1.42E-03 787.3 1.43E-03 789.1 1.39E-02 

45 1 9 809.6 1.31E-03 810.9 1.32E-03 812.7 1.29E-02 

46 7 3 824.9 1.55E-03 826.6 1.56E-03 828.7 1.53E-02 

47 5 7 851.6 1.37E-03 853.8 1.38E-03 855.8 1.34E-02 

48 2 9 852.4 1.33E-03 854.1 1.34E-03 856.1 1.31E-02 

49 4 8 863.5 1.34E-03 865.6 1.36E-03 867.6 1.32E-02 

50 6 6 888.2 1.44E-03 890.7 1.46E-03 893.0 1.41E-02 
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4.2.5.4 Elastically restrained against translation and rotation 

As the last case considering the 2D plate model, the plate with general-elastically restrained 

edge conditions is analysed. The translational and rotational restraint stiffnesses are 

respectively given by kw = 106 N/m2 and k𝜃 = 104 N/rad. On one hand, this case is to validate 

the edge modelling strategy in the ANSYS and COMSOL FE models, referring to the 

translational stiffness. As shown by Table 4-6, the natural frequencies predicted by the two 

models agree well, and the difference is less than 1 Hz for the first 60 modes. The 

denotations fs,S, fs,C and Erf have been defined in Eq. (4.23), where fs,S is for the ANSYS 

model with SHELL63 elements, and fs,C is for the COMSOL model. On the other hand, the 

influence by the flexibility of the edge supports can be illustrated. Compared with the case 

k𝜃 = 104 N/rad in Section 4.2.5.3, the translational stiffness kw in this case is reduced from 

∞ to 106 N/m2. Correspondingly, the natural frequencies decrease. As illustrated by Table 

4-6 and Table 4-4, the first natural frequency is reduced from 38.1 Hz to 35.3 Hz. For 

comparison, the variations are calculated for each mode and plotted in Fig. 4-9. The higher 

the mode order is, the larger the variation becomes. Moreover, the mode shape is visually 

changed more significant as the mode order increase. The first 4 mode shapes are compared 

in Fig. 4-10 as examples, where the displacement along the plate edges is clearly observed 

in the latter case. 

 
 

 
Fig. 4-9. Variation of natural frequencies between the plate with kw = 106 N/m2, k𝜃 = 104 N/rad and the 

plate with kw = ∞, k𝜃 = 104 N/rad. 
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Table 4-6. Natural frequencies of the plate with edges elastically restrained against translation (kw = 106 

N/m2) and rotation (k𝜃 = 104 N/rad), and the difference (Erf) between SHELL63 (fs,S) and COMSOL (fs,C) 

predictions. 

Order fs,C (Hz) fs,S (Hz) Erf (Hz) Order fs,C (Hz) fs,S (Hz) Erf (Hz) Order fs,C (Hz) fs,S (Hz) Erf (Hz) 

1 35.3 35.3 -0.001 21 261.9 261.9 0.020 41 506.9 506.8 -0.160 

2 60.8 60.8 -0.002 22 274.0 274.0 -0.020 42 514.0 513.8 -0.190 

3 74.3 74.3 0.000 23 283.9 283.9 0.000 43 519.4 519.3 -0.100 

4 94.1 94.1 -0.012 24 300.9 300.8 -0.030 44 522.0 522.0 -0.050 

5 97.9 97.9 -0.001 25 314.7 314.6 -0.060 45 548.3 548.1 -0.130 

6 123.7 123.7 0.000 26 323.5 323.5 -0.030 46 570.6 570.4 -0.270 

7 125.5 125.5 -0.030 27 342.2 342.2 -0.060 47 589.2 589.0 -0.210 

8 138.4 138.4 -0.010 28 350.4 350.4 0.020 48 590.6 590.4 -0.200 

9 143.5 143.5 -0.010 29 366.4 366.4 -0.030 49 593.3 592.9 -0.330 

10 165.6 165.6 -0.030 30 371.0 371.1 0.020 50 593.9 593.7 -0.240 

11 166.8 166.8 -0.040 31 380.6 380.6 -0.020 51 608.6 608.5 -0.080 

12 181.4 181.4 0.000 32 386.9 386.8 -0.080 52 650.8 650.6 -0.180 

13 194.5 194.5 0.000 33 399.9 399.8 -0.100 53 657.5 657.1 -0.420 

14 197.0 197.0 -0.020 34 408.8 408.7 -0.040 54 678.6 678.0 -0.590 

15 204.6 204.5 -0.050 35 412.2 412.2 -0.020 55 684.2 683.7 -0.460 

16 215.2 215.2 -0.020 36 452.6 452.5 -0.090 56 690.5 689.9 -0.530 

17 224.3 224.3 -0.050 37 460.1 460.0 -0.030 57 690.6 690.1 -0.440 

18 254.7 254.7 -0.040 38 476.0 475.8 -0.170 58 718.3 717.9 -0.480 

19 259.4 259.3 -0.010 39 478.1 478.0 -0.120 59 721.0 720.5 -0.440 

20 260.8 260.7 -0.050 40 479.4 479.4 0.020 60 738.6 737.9 -0.650 

 

 

(b)

(a)

 
Fig. 4-10. The first 4 mode shapes of the plate with: (a) kw = ∞, k𝜃 = 104 N/rad; (b) kw = 106 N/m2, k𝜃 = 

104 N/rad. 
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4.2.6 One-dimensional plate model validation 

The 1D model assumes that the plate is extended to infinite in the direction perpendicular 

to the propagating plane bending wave. Using FEM, the plate can be modelled in two ways: 

one is similar to the 2D situation, continuously using shell elements but only one layer in 

the infinitely extended direction; the other is instead utilizing beam elements with area h 

and area moment of inertia I = h
3/12(1−ν2), as discussed in Section 2.2.2.  

 

For validating the equivalence of the two FE modelling approaches, a 1D thin plate bending 

problem is proposed for analysis. Based on the problem defined in Section 4.2.1, a reduced 

1D problem is raised: referring to Section 2.2.2 and Fig. 2-2, now consider a thin aluminium 

plate with length l = 1.018 m and boundary conditions cw1 = cw2 = cθ1 = cθ1 = 0, kw1 = kw2 = 

106
 N/m2, k𝜃1 = k𝜃2 = 104

 N/rad. Other parameters are the same as all the other cases 

discussed in this chapter, given by Eq. (4.13). Then, the problem is analysed via ANSYS. 

One FE model is built up by SHELL63 elements, and one FE model is established by 

BEAM3 elements. The maximum element size is set as 0.01m, so that the highest frequency 

can reach 2000 Hz. The results obtained through modal analysis are listed in Table 4-7 for 

the first 16 modes, including natural frequencies and the corresponding mode shapes. As 

expected, the two models yield good matching results. 

 

 

Table 4-7. Natural frequencies and mode shapes of the 1D thin plate with kw1 = kw2 = 106 N/m2, k𝜃1 = k𝜃2 

= 104 N/rad. 

Order Mode shape 
SHELL63 BEAM3 

Order Mode shape 
SHELL63 BEAM3 

fs (Hz) fs (Hz) fs (Hz) fs (Hz) 

1 
 

18.2 18.2 9  587.0 586.8 

2 
 

48.3 48.3 10  738.2 738.0 

3 
 

88.4 88.4 11 
 

908.7 908.4 

4 
 

133.9 133.9 12 
 

1098.4 1097.8 

5 
 

186.9 186.9 13 
 

1306.9 1306.2 

6 
 

255.3 255.3 14 
 

1534.4 1533.3 

7 
 

344.7 344.6 15 
 

1780.7 1779.3 

8 
 

455.6 455.5 16 
 

2045.7 2043.9 
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4.3 FEM for acoustic cavity 

The mathematical model for an uncoupled interior acoustic problem has been introduced 

in Section 2.3, where the governing differential equation and boundary conditions are 

provided. In this section, the corresponding problem to the Noise-Box is solved using FEM 

via COMSOL. Before the implementation to Noise-Box, a validation has been conducted 

over a rigid-walled rectangular cavity, by comparing the modal analysis results with the 

analytical solutions [166]. The validation proves the reliability of the tool for acoustic 

problem and the correct implementation by the user. For acoustic problem, the problem 

domain is discretized by acoustic/fluid elements, and the DOF of each node is acoustic 

pressure p. 

 

4.3.1 Problem definition 

An air volume surrounded by rigid walls is considered. As shown by Fig. 4-11, geometry 

of the volume is the cavity of the Noise-Box, whose detailed dimensions are shown in Fig. 

3-10. The cavity can also be simplified as a pentagonal prism as shown in Fig. 3-11. 

Influence of the simplification will be discussed. The meteorological conditions are 

changeable. The temperature is influential, determining the air properties according to Eqs. 

(2.24)-(2.25), which is also the definition of air material in COMSOL. Assumed that the 

static pressure remains 1 atm, then the air properties are given by ρ0 = 1.2043 kg/m3, c = 

343.2 m/s at 20℃, and given by ρ0 = 1.1841 kg/m3, c = 346.12 m/s at 25℃. With respect to 

the boundary conditions, all the surrounding walls are assumed to be acoustically rigid v̅n 

= 0 or with the same acoustic impedance 𝑍̅ = ∞. Then, modal analysis can be conducted, 

obtaining the eigenfrequencies and eigenmodes of the system. Regarding the case with a 

harmonic monopole source excitation, the excitation and measurement positions are shown 

in Fig. 4-11. The unit input volume flow rate is given by q = 1 m3/s at intervals of 1 Hz 

within 100-700 Hz. 

 

q

p1

p2p3

p4

p5

p6

x

y
z

1(0.424,0.151,0.321)r

(1.150,0.065,0.595)qr

2 (0.721,0.242,0.238)r

3 (0.737,0.430,0.224)r

4 (0.900,0.528,0.373)r

6 (0.384,0.631,0.321)r

5 (0.741,0.699,0.352)r

(a) (b)

(c)

Unit: m

 
Fig. 4-11. Acoustic cavity for FEA. 
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In addition, the coordinate system is arranged consistent with the one utilized in Section 

3.2.1, where the origin is at one corner of the enclosing rectangular and the x-y plane 

overlaps with the mid-plane of the plate, as shown by Fig. 3-3. The coordinate system can 

ease the process to derive the 2D model (used for modal analysis), as illustrated from Fig. 

4-11(b) to Fig. 4-11(c). Correspondingly, the enclosing rectangular shown in Fig. 3-3 is 

defined by Lx × Ly × Lz = 1.2 m × 0.825 m × 0.72 m. 

 

4.3.2 Three- and two- dimensional FE models 

The FE models are built up in COMSOL as shown in Fig. 4-12. The default quadratic 

tetrahedral element is used in the 3D model, whose maximum element size is controlled as 

0.056 m, corresponding to 6 elements per wavelength at 1000 Hz. The default quadratic 

triangular element is used in the 2D model with maximum element size 0.034m 

corresponding to 10 elements per wavelength at 1000 Hz.  

 

(a) (b)

xy

z

x

z

 
Fig. 4-12. Acoustic cavity FE models: (a) 3D; (b) 2D. 

 

Thanks to the two parallel walls, the 2D model is available and can be used to represent the 

3D cavity. In the modal analysis, if the cavity is considered as a rigid-walled cavity, its 

modes satisfy [1]  

 ( , , ) ( , )cos ,
y

y

n y
p x y z p x z

L

 
=  

 
 (4.25) 

and its natural frequencies are given by 
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3D 2 ,  0,1,...,
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D y

y

c n
f f n

L
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 

 (4.26) 

where, ny is the order of the standing wave in y direction, f3D denotes the natural frequency 

of the 3D cavity, f2D is the natural frequency of the 2D model, p(x,y,z) is the pressure 

distribution. Though it is optional to directly use the 3D model, the build-up and proof of 

the 2D model is meaningful, since using the 2D model significantly saves the computational 

time and memory, especially for the higher frequencies.  
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4.3.3 Numerical results 

At first, modal analysis is performed. Under the temperature 20℃ and the rigid-walled 

boundary condition v̅n= 0, the 2D acoustic model is validated by comparing the natural 

frequencies and mode shapes with the 3D analysis. Table 4-8 lists the natural frequencies 

of the acoustic cavity obtained from the 3D COMSOL model fa, the natural frequencies 

obtained from the 2D COMSOL model  f2D and the natural frequencies of the cavity f3D 

calculated by Eq.(4.26). The table verifies that fa = f3D, and correspondence of the mode 

shapes from 2D to 3D is indicated by Fig. 4-13 with the examples of the first 8 modes. 

Therefore, the 2D model can be used to predict the acoustic modes of the 3D cavity. Besides, 

the 2D model is more efficient. With only 3344 DOF, its solution time is 6 sec, while the 

3D model has 78806 DOF and uses 146 sec. 

 

Table 4-8. The first 38 natural frequencies of the uncoupled cavity at 20°C. 

Mode 

order 

COMSOL 

3D 

fa (Hz) 

COMSOL 2D* 

Mode 

order 

COMSOL 

3D 

fa (Hz) 

COMSOL 2D* 

2D modes 
ny 

f3D 

(Hz) 

2D modes 
ny 

f3D 

(Hz) Order f2D (Hz) Order f2D (Hz) 

0 0 0 0 0 0 19 536.9 4 339.46 2 536.9 

1 161.9 1 161.91 0 161.9 20 542.7 8 542.72 0 542.7 

2 208.0 0 0 1 208.0 21 549.5 7 508.64 1 549.5 

3 257.8 2 257.82 0 257.8 22 566.3 9 566.31 0 566.3 

4 263.6 1 161.91 1 263.6 23 581.2 8 542.72 1 581.2 

5 297.1 3 297.09 0 297.1 24 590.8 5 419.5 2 590.8 

6 331.3 2 257.82 1 331.3 25 597.4 10 597.4 0 597.4 

7 339.5 4 339.46 0 339.5 26 603.3 9 566.31 1 603.3 

8 362.7 3 297.09 1 362.7 27 615.9 6 454.08 2 615.8 

9 398.1 4 339.46 1 398.1 28 624.0 0 0 3 624.0 

10 416.0 0 0 2 416.0 29 632.6 10 597.4 1 632.6 

11 419.5 5 419.5 0 419.5 30 644.7 1 161.91 3 644.7 

12 446.4 1 161.91 2 446.4 31 657.1 7 508.64 2 657.1 

13 454.1 6 454.08 0 454.1 32 660.9 11 660.89 0 660.9 

14 468.2 5 419.5 1 468.2 33 675.2 2 257.82 3 675.2 

15 489.4 2 257.82 2 489.4 34 683.1 12 683.09 0 683.1 

16 499.5 6 454.08 1 499.5 35 683.9 8 542.72 2 683.8 

17 508.7 7 508.64 0 508.6 36 691.2 3 297.09 3 691.1 

18 511.2 3 297.09 2 511.2 37 692.9 11 660.89 1 692.8 

*f3D is the natural frequency of the 3D cavity derived from the numerical result of 2D model using Eq.(4.26). 
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1st mode
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COMSOL 3D COMSOL 2D

4th mode

Rigid mode

Rigid mode

1st mode

2nd mode

Rigid mode

 
Fig. 4-13. First 8 mode shapes of the uncoupled 3D cavity and their counterparts in the 2D model. 

 

Next, the influences of temperature, cavity shape simplification (see Section 3.4 from Fig. 

3-10 to Fig. 3-11) and wall impedance are analysed respectively through modal analysis 

and harmonic excitation analysis, using the above case as reference. All analyses are 

performed on the 3D model. The four cases (including the reference one) are specified as 

follows: 

• Case R(Reference): 20℃, exact geometry, reflecting walls v̅n= 0; 

• Case T(Temperature): 25℃, exact geometry, reflecting walls v̅n= 0; 

• Case S(Simplification): 20℃, simplified geometry, reflecting walls v̅n= 0; 

• Case I(Impedance): 20℃, exact geometry, wall impedance 𝑍̅  = 32233 Pa∙s/m, 

corresponding to absorption coefficient 𝛼̅ = 0.05. 

 

Natural frequencies of the new cases T, S and I are listed in Table 4-9, up to 700 Hz. In 

Case I, when wall impedance is included, the system is damped and the modal damping 

ratios ζa are listed alongside. It is shown that the wall absorption 𝛼̅ = 0.05 leads to a modal 

damping ratio between 0.005 and 0.02 for the first 38 modes. The modal damping ratio is 

mode-dependent but has a decreasing tendency as the frequency increases. To illustrate the 



Doctoral Dissertation of Politecnico di Milano 

 

 
79 

 

effect caused by the three factors Temperature, Simplification, Impedance on natural 

frequencies, their differences ∆fa to the reference case fa,R, i.e., fa in Table 4-8, are plotted 

in Fig. 4-14. As shown by the figure, the temperature is most influential. With 5℃ higher 

than Case R, Case T has higher natural frequencies and the difference is monotonously 

larger for higher mode orders. The influence on the frequency response, represented by the 

p1/q, is similar. As shown by Fig. 4-15(a), the discrepancy is larger at higher frequencies. 

The next is the simplification. It enlarges the air volume, so the natural frequencies are 

smaller. However, the difference depends on how much the simplification affects the mode 

shape. For example, at the 3rd mode (as shown by Fig. 4-13), which is an axial mode in y 

direction, the simplification effect is negligible. Nevertheless, the FRFs p1/q are close 

between Case S and Case R, as shown by Fig. 4-15(b). Therefore, the difference caused by 

the simplification is small in general, and it is acceptable to use the simplified cavity shape 

if necessary. The last is the wall impedance. Since the impedance 𝑍̅ only contains real part, 

its influence on the natural frequencies very small, but the damping effect is not negligible. 

As indicated from Fig. 4-15(c), the amplitudes around natural frequencies are significantly 

reduced under the current damping ratios.  

 

Table 4-9. Natural frequencies fa of the uncoupled acoustic cavity in Case T, Case S and Case I, and 

modal damping ratios ζa of Case I. 

Order 
Case T Case S Case I 

Order 
Case T Case S Case I 

fa (Hz) fa (Hz) fa (Hz) ζa fa (Hz) fa (Hz) fa (Hz) ζa 

0 0 0 0 ---- 19 541.5 536.4 536.9 0.0084 

1 163.3 161.1 161.9 0.0195 20 547.3 539.9 542.8 0.0073 

2 209.8 208.0 208.0 0.0161 21 554.2 549.4 549.6 0.0077 

3 260.0 257.7 257.8 0.0132 22 571.1 566.4 566.3 0.0069 

4 265.8 263.1 263.6 0.0152 23 586.2 578.6 581.3 0.0083 

5 299.6 296.3 297.1 0.0122 24 595.8 589.9 590.8 0.0085 

6 334.1 331.2 331.3 0.0128 25 602.5 595.9 597.5 0.0062 

7 342.4 338.6 339.5 0.0108 26 608.4 603.4 603.3 0.0079 

8 365.7 362.0 362.7 0.0123 27 621.1 615.0 615.9 0.0073 

9 401.5 397.4 398.1 0.0113 28 629.3 624.0 624.1 0.0054 

10 419.5 416.0 416.0 0.0081 29 638.0 631.1 632.6 0.0072 

11 423.1 418.2 419.5 0.0099 30 650.2 644.5 644.7 0.0062 

12 450.2 446.1 446.4 0.0090 31 662.7 657.0 657.1 0.0064 

13 457.9 452.9 454.1 0.0080 32 666.5 660.5 660.9 0.0059 

14 472.2 467.1 468.3 0.0107 33 680.9 675.2 675.2 0.0063 

15 493.6 489.4 489.4 0.0087 34 688.9 678.8 683.1 0.0055 

16 503.7 498.4 499.5 0.0090 35 689.7 681.6 683.9 0.0070 

17 513.0 508.5 508.7 0.0067 36 697.0 690.8 691.2 0.0065 

18 515.5 510.8 511.2 0.0088 37 698.8 692.4 692.9 0.0068 
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Fig. 4-14. Difference in natural frequencies between Case T, S or I and Case R. 

 

 
Fig. 4-15. Comparisons of FRFs p1/q between Case R and (a) Case T; (b) Case S; (c) Case I. 
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4.4 FEM for plate-cavity system 

The mathematical model of a coupled plate-cavity system has been introduced in Section 

2.4, where the cavity is generally shaped. In this section, the problem is targeted to the 

Noise-Box and solved via FEM. FE modelling of the rectangular plate has been discussed 

in Section 4.2, and that of the Noise-Box cavity has been mentioned in Section 4.3. The 

complete modelling of the system involves coupling between the two components, i.e., the 

Acoustic-Shell Interaction or Fluid-Structure Interaction (FSI). In ANSYS, the strongly 

coupled FSI interface should be specified, while in COMSOL it is to define the acoustic-

structure boundary. With the specification or definition, the normal velocity of the plate 

and the particle velocity of the fluid is matching on the coupled surface. Concerning the 

two-way coupling between two fields, a conforming mesh between the acoustic and 

structural elements over the coupled surface is recommended.  

 

4.4.1 Problem definition 

The plate-cavity coupled Noise-Box is shown as Fig. 4-16. The plate is the one discussed 

in Section 4.2, that is, a × b = 0.825 m × 1.018 m, h = 4 mm, ρ = 2700 kg/m3, E = 70 GPa, ν = 

0.33. The edge conditions are assumed to be ideally clamped. The cavity is the one 

considered in Section 4.3. Its geometry is defined in Fig. 3-10. The air inside is under 

temperature 20℃ and the standard atmosphere 1 atm. Consequently, by ρ0 = 1.2043 kg/m3 

and c = 343.2 m/s. The walls except the flexible plate are acoustically rigid v̅n= 0. For this 

plate-cavity system, its modal property is to be analysed and then compared with the 

uncoupled plate and cavity modes. Later, its frequency response will be investigated. While 

three types of input are mentioned in Section 2.4, only harmonic point force excitation with 

amplitude F = 1 N on the plate is applied in this section.  
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Fig. 4-16. Plate-cavity system for FEA. 

 

The excitation F and measurement points w1, w2, w3 on the plate are at the same positions 

as the uncoupled plate in Section 4.2 (see Fig. 4-1). However, under the new coordinate 
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system shown by Fig. 4-16, their new coordinates are r'F (0.485m, 0.44m) and r'1 (0.2125m, 

0.515m), r'2 (0.1425m, 0.715m) and r'3 (0.3625m, 0.665m). The measurement inside the 

cavity for acoustic pressure p7 is located at r7 (0.342m, 0.15m, 0.464m). The harmonic 

response analysis is performed every Hz within 10-700 Hz to obtain the FRFs w1/F and 

p7/F. 

 

4.4.2 COMSOL model 

The 3D problem introduced above is solved using COMSOL. The bottom surface of the 

cavity shown by Fig. 4-16(a) is defined as shell with four edges fixedly constrained. Then, 

with the Multiphysics ‘Acoustic-Structure Boundary’ applied, the overall physics of the 

problem is settled. Later, the same rule of mesh as the previous two sections is used, where 

the maximum element sizes of the plate and the cavity are respectively set as 0.04 m and 

0.056 m. Since the mesh of the plate should overlap with the bottom surface of the cavity, 

the element size gradually grows from the bottom part of the cavity to the top. However, 

due to the small difference between 0.056 m and 0.04 m, the meshed FE model of the plate-

cavity system looks like that of the uncoupled cavity (see Fig. 4-12(a)). On the other side, 

the plate here is meshed by triangular elements instead of the rectangular ones in the 

uncoupled situation. 

 

4.4.3 Numerical results 

Considering that the modification of mesh may affect the results, especially for the plate, 

where rectangular elements are replaced by triangular ones, the uncoupled natural modes 

and frequencies are analysed again based on the current mesh. Consequently, the difference 

between the coupled and uncoupled systems illustrated by the following comparison is 

raised solely by the coupling effect. Table 4-10 compares the coupled and uncoupled natural 

modes and frequencies. In the table, the modes of the plate are expressed in the same way 

as Section 4.2. Whereas, due to the different coordinate system in this section, the 

denotations are changed to nx and ny, respectively indicating the mode orders in x and y 

directions of the new coordinate system. With respect to the modes of the cavity, they are 

denoted by the orders in the 2D model n2D and the orders in y direction ny, expressed as 

(n2D,ny). This part is in accord with Table 4-8. As for the coupled plate-cavity system, the 

natural modes and frequencies are highly related to the uncoupled plate and cavity. As 

shown by Table 4-10, the natural frequencies fsa are close to either the structural frequency 

fs or the acoustic frequency fa. Correspondingly, the modes are plate-controlled, cavity-

controlled or strongly influenced by both plate and cavity modes. For instance, the first 5 

modes are plate-controlled. As they are shown in Fig. 4-17, the plate modes are like they 

are in vacuo, while the acoustic modes are slightly perturbed in the region close to the plate. 
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The 6th mode is cavity-controlled, where the plate mode is distorted to fit the acoustic mode. 

Under the plate-controlled modes, sometimes the plate vibration can excite a nearby cavity 

mode that matches itself, like in the 12th coupled mode, and vice versa for the cavity-

controlled modes, such as the 15th coupled mode. There are also cases when the uncoupled 

plate and cavity natural frequencies are very close to each other. In these cases, the 

‘frequency-splitting’ happens, where the coupled modes have one frequency above and one 

frequency below the uncoupled values, e.g., the 17th and 18th coupled modes.  

 

Table 4-10. Natural modes and frequencies of the in-vacuo clamped plate, the rigid-walled cavity and 

the plate-cavity system coupled by them. 

In-vacuo clamped plate Rigid-walled cavity Coupled plate-cavity 

Mode 
fs (Hz) 

Mode 
fa (Hz) 

Modes involved 
fsa (Hz) 

Order (ny,nx) Order (n2D,ny) Order (ny,nx)-(n2D,ny) 

   0 (0,0) 0    

1 (1,1) 43.8    1 (1,1)-(0,0) 45.9 

2 (1,2) 77.6    2 (1,2)-(0,0) 76.7 

3 (2,1) 99.6    3 (2,1)-(0,0) 98.7 

4 (2,2) 130.6    4 (2,2)-(0,0) 129.7 

5 (1,3) 132.2    5 (1,3)-(0,0) 131.4 
   1 (1,0) 161.9 6 (1,0) 162.2 

6 (2,3) 182.5    7 (2,3)-(0,1) 181.2 

7 (3,1) 184.7    8 (3,1)-(0,0) 183.6 

8 (1,4) 206.0    9 (1,4)-(1,0) 205.2 
   2 (0,1) 208.0 10 (0,1) 208.7 

9 (3,2) 214.3    11 (3,2)-(2,0) 213.3 

10 (2,4) 254.3    12 (2,4)-(1,1) 252.4 
   3 (2,0) 257.8 13 (3,3)-(2,0) 258.5 

11 (3,3) 264.0    14 (3,3)-(2,0) 263.3 

   4 (1,1) 263.6 15 (2,4)-(1,1) 264.6 

12 (4,1) 297.7    16 (4,1)-(2,1) 295.9 

13 (1,5) 298.6 5 (3,0) 297.1 17 (1,5)-(3,0) 296.1 

13 (1,5) 298.6 5 (3,0) 297.1 18 (1,5)-(3,0) 299.0 

14 (4,2) 326.6    19 (4,2)-(2,1) 325.0 

15 (3,4) 333.7    20 (3,4)-(4,0) 332.2 
   6 (2,1) 331.3 21 (2,1) 332.3 
   7 (4,0) 339.5 22 (4,0) 340.6 

16 (2,5) 345.4    23 (2,5)-(2,1) 344.5 
   8 (3,1) 362.7 24 (3,1) 363.1 

17 (4,3) 374.9    25 (4,3)-(3,1) 373.6 
   9 (4,1) 398.1 26 (4,1) 399.0 

18 (1,6) 409.4    27 (1,6)-(4,1) 407.9 
   10 (0,2) 416.0 28 (0,2) 415.5 

   11 (5,0) 419.5 29 (3,5)-(5,0) 419.2 

19 (3,5) 422.9    30 (3,5)-(5,0) 422.8 
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Next, if focusing on the plate-controlled modes, we can gain some knowledge about how 

the backed cavity alters the plate modes. As indicated from Table 4-10, 1st natural frequency 

of the plate is increased due to the Noise-Box cavity, while all the other natural frequencies 

are decreased. The variations are small for all, with the maximum absolute value around 2 

Hz. By contrast, most of the cavity-controlled modes have the natural frequencies slightly 

larger than the uncoupled cavity. 

 

1st 2nd 3rd 4th 5th 

6th 7th 8th 9th 10th 

11th 12th 13th 14th 15th 

16th 17th 18th 19th 20th 

 
Fig. 4-17. Coupled modes of the plate-cavity system. 

 

Fig. 4-18 shows the FRFs w1/F and p7/F of the plate-cavity system. Resonances are 

observed at the coupled natural frequencies either from the plate displacement or from the 

cavity pressure. For the plate, the FRFs are compared with (coupled plate) and without (in 

vacuo plate) the backed Noise-Box cavity. Tiny change of the natural frequencies related 

to the plate-controlled modes and additional emergence of the cavity-controlled modes are 

highlighted. In Fig. 4-18, some of the additional peaks are circled out for examples. 

Nevertheless, the two FRFs are not significantly different. Some of the cavity-controlled 

modes are even hard to be noticed in the coupled FRF w1/F, such as the circled-out peaks 
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at 162 Hz and 363 Hz. By contrast, in the FRF p7/F of the coupled cavity, both the plate-

controlled and cavity-controlled modes can raise similarly influential resonance peaks. 

From another point of view, the FRF with output as the acoustic pressure at a measurement 

point inside cavity may be preferred the detect the resonance/natural frequencies of the 

coupled system. 

 

 
Fig. 4-18. FRFs of the plate-cavity system and the in vacuo plate. The input and output points are shown 

by Fig. 4-16. 

 

4.4.4 Two-dimensional plate-cavity model validation 

The 2D vibroacoustic model has been introduced in Section 2.4.2. According to the 

description of the 2D model, the problem to be solved here is not able to build an equivalent 

2D model, but a similar 2D vibroacoustic problem can be raised to test the 2D modelling 

strategies.  
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Fig. 4-19 shows the 2D vibroacoustic problem. Geometry of the cavity is the simplified 

Noise-Box geometry in x-z plane (a pentagonal whose detailed dimensions shown by Fig. 

3-11). The rigid walls can be assigned with different impedances 𝑍̅, and the bottom flexible 

can be of any type of edge conditions (see Table 2-1). Though, the 2D problem cannot 

replace the 3D one, it is very useful for code testing or parametric study owing to its small 

model size, low computation load, short computation time and simple physical 

interpretation. For instance, if this 2D problem is used to investigate the influence rules of 

the parameters 𝑍̅, kw, kθ, cw and cθ, it will be much more efficient. In the following, it is to 

introduce the approach to FE model of the 2D vibroacoustic problem through a simple case 

that possesses the same materials and boundary conditions (kw = kθ = ∞) as the 3D system 

defined in Section 4.4.1. Besides, y dimension is eliminated, l = 1.018 m, and F = 1 N/m is 

forcing at x'F = 0.485 m.  
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Fig. 4-19. Two-dimensional plate-cavity system for FEA. 

 

This problem can be solved using FEM in ANSYS via two different modelling strategies. 

One is to use the reduced 3D FE model with only one layer of elements, where the plate is 

modelled using SHELL63 element and the cavity is modelled using FLUID30, the element 

for 3D acoustic fluid. The other option is to model the plate with BEAM3 element and the 

cavity with FLUID29, the element for 2D acoustic fluid. Both models are built with the 

conform element size 0.01 m. Modal analysis for the first 10 modes and harmonic analysis 

at 100 Hz are conducted.  

 

Table 4-11 shows the natural frequencies obtained from modal analysis. ‘S63+F30’ 

indicates the former model using SHELL63 and FLUID30 elements, and ‘B3+F29’ 

represents the latter option utilizing BEAM3 and FLUID29 elements. If compared with 

Table 4-8, where lists the natural frequencies of the 2D cavity, the 4th, 6th, 8th and 9th can be 

noticed as the cavity-controlled modes. Presented as examples for the plate-controlled and 

cavity-controlled modes of the 2D vibroacoustic problem, the 2nd and 4th mode shapes are 

shown in Table 4-12. Through the natural frequencies and mode shapes, it can be found 

that the two FE models yield good matching results. Additionally, the field response raised 
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by the force excitation at 100 Hz is provided in Table 4-12, further comparing and 

validating the two models. While both models are small-sized and efficient, the latter 

performs better in this aspect, since the acoustic elements are 2D, resulting in just one layer 

of nodes in y direction. 

 

Table 4-11. The first 10 natural frequencies of the 2D plate-cavity system 

Order 
S63+F30 B3+F29 

Order 
S63+F30 B3+F29 

fsa (Hz) fsa (Hz) fsa (Hz) fsa (Hz) 

0 0 0 5 190.73 190.73 

1 27.58 27.58 6 258.82 258.82 

2 58.203 58.204 7 284.54 284.53 

3 115.06 115.06 8 297.16 297.16 

4 161.36 161.36 9 339.69 339.69 

 
 

Table 4-12. The 2nd and 4th mode shapes of 2D plate-cavity system and the forced response at 100 Hz. 

FE model 2nd mode: 58.2 Hz 4th mode: 161.4 Hz Harmonic force: 100 Hz 

S63+F30 

 

B3+F29 

 

 

4.5 Summary 

This chapter builds and validates the FE models for the plate bending problem, the interior 

acoustic problem and the plate-cavity vibroacoustic problem, respectively. The models are 

built in their designed geometries, with the commonly used parameters for the materials, 

and the assumed boundary conditions that are intended for investigation.  

 

At the beginning, the seven steps for employing the method are illustrated. They are 

instructive, no matter using a commercial CAE tool or developing our own FEA program. 

When convergence issue is considered for the numerical technique, the rule of thumb for 



Chapter 4 Numerical investigation using finite element method 

 

 
88 

 

element size is discussed. As the FEM is implemented in ANSYS or COMSOL, the thumb 

of rule recommended by them are adopted. They both recommend at least either 10 linear 

or 5 quadratic elements per wavelength. 

 

The rectangular plate mounted on the Noise-Box is first analysed. Four types of boundary 

conditions are considered: simply supported, clamped, rigidly supported but elastically 

restrained against rotation, and elastically restrained against both translation and rotation. 

The methods to build the corresponding models in ANSYS and COMSOL are introduced, 

especially for the elastically restrained edges. Then, the models are validated and compared 

by their predicted natural frequencies. According to the results in simply supported and 

clamped cases, the COMSOL model with default element type has best performance for 

accuracy, and the ANSYS model with SHELL63 is a good option if it is necessary to use 

linear elements or Kirchhoff-Love shell elements. For the other two cases associated with 

elastic restraints, the COMSOL and ANSYS SHELL63 models yield consistent results, 

which increases the credibility of the results, as well as the modelling methods applied to 

the software. Besides, the numerical results are also compared among different boundary 

conditions, demonstrating how the natural frequencies of the plate will be influenced by the 

boundary conditions. Additionally, two FE modelling approaches for 1D plate are provided 

via ANSYS. One uses SHELL63 element and the other uses BEAM3 element. 

 

Next, the uncoupled interior acoustic problem is solved in COMSOL, targeted to the Noise-

Box cavity. This section first proves that the 2D FE model of the Noise-Box cavity is 

applicable to the prediction of the natural frequencies and modes of the 3D Noise-Box 

cavity, and it is much more efficient than the 3D FE model. Later, the research focuses on 

how the natural frequencies and frequency response are influenced by the change of 

temperature, the simplicity of cavity shape and the increase of wall absorption coefficient. 

The numerical results indicate that increasing temperature (from 20℃ to 25℃) will increase 

the natural frequencies (by 1.4 Hz for 1st mode); the cavity simplification reduces the 

natural frequencies at some modes; and the wall absorption coefficient mainly enhances the 

damping effect.   

 

For the coupled plate-cavity system, the 3D FE model is built in COMSOL. With the modal 

analysis results, the coupled natural frequencies and modes are compared with the 

uncoupled ones that are obtained previously. The natural frequencies of the system are very 

close to the natural frequencies of the plate or the cavity (within ±2Hz for most of them). 

It is also found that the Noise-Box cavity will increase the first natural  frequency of the 

plate but decreases all the others. Additionally, two FE modelling approaches for 2D plate-

cavity problem are provided via ANSYS. One uses SHELL63 and FLUID30 elements and 

the other uses BEAM3 and FLUID29 elements. 
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 Noise-Box test system characterization 

 

This chapter is aimed at characterizing the Noise-Box test system through experiments. The 

complete work is divided into three parts. At first, the Noise-Box cavity is characterized for 

its modal property, sound absorption and sound field diffuseness. Secondly, for the mounted 

test panel, its modal parameters are identified through EMA, while its thickness, material 

parameters and boundary conditions are further characterized with the aid of additional 

tests and numerical simulations. Thirdly, the plate-cavity system is characterized by its 

coupled modal parameters. In each of the three parts, the corresponding FE model is 

updated based on the characterization results. Therefore, this chapter also provides the 

updated FE models that match the experimental results. 

 

5.1 Noise-Box cavity characterization 

This section characterizes the modal property, the sound absorption and the spatial 

variation/diffuseness of the interior cavity of Noise-Box. The characterization includes two 

parts. One is the measurement over the physical test bench, and the other is the prediction 

by the numerical model. Indeed, both solutions have certain assumptions and 

simplifications. In order to have a better knowledge of the test bench, the two sets of results 

are obtained and compared. Meanwhile, the numerical model is updated according to some 

of the parameters obtained from the experiment. 

 

5.1.1 Experimental set-up 

The same experimental set-up was used for the following three tests to characterize the 

cavity inside the Noise Box: 

• experimental modal analysis, 

• reverberation time measurement, 

• inner pressure field spatial variation measurement. 

 

Fig. 5-1 shows the photograph and schematic of the set-up. The opening of the Noise-Box 

is closed with a transparent plexiglass plate. The plate is 25 mm thick and fixed to the 

Noise-Box with 80 screws. At the right corner of the cavity is the loudspeaker (FaitalPRO 

3FE22) that is used to excite the sound field. Six microphones (Brüel & Kjær Type 4188) 

are placed at six different positions inside the cavity. They are neither too close to each 

other nor too close to the walls. On the floor inside the cavity is also a thermo-hygrometer 

(INKBIRO IBS-TH1 Mini). It is 35 mm × 10.5 mm in white and used for monitoring the 
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temperature and humidity inside the cavity.  As shown in the schematic, the signal 

generated by the waveform generator (KEYSIGHT 33500B) is output to two instruments. 

One is to the power amplifier (Brüel & Kjær Type 2716C) so as to provide a desired input 

to drive the loudspeaker. The other is to the acquisition system (NI cDAQ), so that the input 

signal is recorded. The signals from the microphones are also acquired with the aid of the 

sensor signal conditioner (PCB 483C). 

 

Microphones 
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Type 4188)
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(FaitalPRO 3FE22) 

Conditioner 
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Amplifier 
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Fig. 5-1. Photograph and schematic of the experimental set-up for Noise-Box cavity characterization 

 

5.1.2 Numerical model and predicting approach 

The experimental tests can also be simulated using numerical models. Concerning the 

investigated approach FEM, the corresponding FE models have been introduced in Section 

4.3 – FEM for acoustic cavity. As shown by Fig. 4-11, rq and r1 to r6 are respectively the 

position of the loudspeaker and the measuring locations of the 6 microphones. The meshed 

FE models are shown in Fig. 4-12. They are achieved in COMSOL. Both the 3D and 2D 

models can be used for modal analysis, predicting the natural frequencies of the Noise-Box 

cavity, while the 2D model is much more efficient and able to reach a very high number of 

modes. The 3D model can also be used to predict the frequency response at any point inside 

the cavity. All these results can be compared with the experimental measurements, and after 

which, the models can be further updated to match the experimental environment and the 

cavity boundary conditions (e.g., acoustic impedance of walls). 

 

Regarding the prediction of FRFs from the 3D COMSOL model, the input source amplitude 

q can be the unit volume flow rate 1 m3/s or instead use the value corresponding to a unit 

input power [203] 

 0 rms

0

4

2

cP
q

j

 

 
= ， (5.1) 

with Prms = 1 W. The latter proposal is based on the fact that the input power to the 

loudspeaker is easier to obtain in the experiment. In COMSOL, the monopole source is able 

to prescribe the unit power input Prms = 1 W directly. 
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5.1.3 Modal characteristics of Noise-Box cavity 

Experimental and numerical approaches are combined together to identify the modal 

characteristics of the interior acoustic field. The experimental modal analysis was 

performed using the experimental set-up shown in Fig. 5-1, where the loudspeaker was 

driven by a white noise signal up to 3000 Hz. According to the transfer functions between 

sound pressure measured by the microphones and the input signal, the first 31 natural 

frequencies of the interior acoustic field were identified by peak-picking method. They are 

listed as fexp in Table 5-1. During the test, the temperature and humidity inside the cavity 

were recorded as (24.16±0.01)℃ and (75.5%±0.13%)RH, respectively.  

 

Table 5-1. Numerically and experimentally determined acoustic natural frequencies 

Mode 

order 

Experiment 

fexp(Hz) 

COMSOL 3D 

fa (Hz) 

COMSOL 2D 

f3D (Hz) 

exp

exp

100%
af f

f

−
  

0 0 0 0 -- 

1 162.87 163.05 163.05 0.11% 

2 208.93 209.47 209.47 0.26% 

3 259.47 259.65 259.65 0.07% 

4 265.53 265.45 265.45 -0.03% 

5 300.03 299.19 299.19 -0.28% 

6 333.67 333.61 333.61 -0.02% 

7 342.60 341.86 341.86 -0.22% 

8 366.07 365.23 365.23 -0.23% 

9 401.40 400.94 400.93 -0.11% 

10 418.93 418.95 418.95 0.00% 

11 423.17 422.47 422.46 -0.16% 

12 450.27 449.56 449.56 -0.16% 

13 459.60 457.29 457.29 -0.50% 

14 471.93 471.55 471.54 -0.08% 

15 494.50 492.89 492.88 -0.33% 

16 505.07 502.99 502.98 -0.41% 

17 512.13 512.24 512.24 0.02% 

18 516.40 514.82 514.81 -0.31% 

19 542.70 540.74 540.73 -0.36% 

20 549.40 546.57 546.56 -0.52% 

21 551.87 553.42 553.42 0.28% 

22 570.07 570.32 570.31 0.04% 

23 586.90 585.34 585.33 -0.27% 

24 594.73 594.99 594.97 0.04% 

25 604.93 601.64 601.63 -0.54% 

26 606.33 607.58 607.56 0.21% 

27 623.00 620.20 620.19 -0.45% 

28 630.93 628.44 628.42 -0.40% 

29 638.83 637.07 637.05 -0.28% 

30 651.63 649.25 649.23 -0.37% 
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Correspondingly, numerical modal analyses were conducted respectively based on the 

COMSOL 3D and COMSOL 2D finite element models, as shown by Fig. 4-12(a) and Fig. 

4-12(b). According to the experimental temperature 24.16℃, the air density and acoustic 

speed were given by ρ0 = 1.1875 kg/m3 and c = 345.63 m/s. For the results from COMSOL 

2D model, Eq. (4.26) was used to calculate the eigenfrequencies from f2D to f3D. In order to 

distinguish the two sets of natural frequencies, the set of COMSOL 3D is denoted as fa and 

the other is denoted as f3D. The two sets of numerical results are listed in Table 5-1, and a 

good agreement can be observed between them, verifying the equivalence in accuracy for 

the two numerical models in modal analysis.  

 

When the numerical results are compared with the experimental results, Table 5-1 shows 

that the relative prediction error in natural frequency is less than 0.6%. The good agreement 

indicates that the results from both the experiment and the simulation can be used to 

represent the modal characteristics of the Noise-Box cavity. 

 

5.1.4 Sound absorption of the room inside Noise-Box 

Regarding the sound absorption of a room, two parameters are commonly used: the 

reverberation time T60 and the average absorption coefficient 𝛼̅. The two parameters are 

closely related to each other, and the relationship given by Sabine formula is [166] 

 60

0.161
,

V
T

S
=


 (5.2) 

where, V is the volume of the room, S' is the total surface area. With respect to the room 

inside Noise-Box, the reverberation time T60 was obtained from measurement, and the 

absorption coefficient 𝛼̅ was derived according to Eq. (5.2), with the volume of the cavity 

V = 0.596 m3 and surface area of the cavity S' = 4.26 m2. The considered frequencies are 

all the one-third octave bands within 141 - 7080 Hz. 

 

The interrupted noise method was used to measure the reverberation time, following the 

instructions of ISO 3382-2 [204]. For each measurement, white noise covering the bands of 

interest was generated as input to build a steady-state acoustic field inside the cavity. The 

excitation had lasted for 10 seconds before it was stopped. Then, after the signal switched 

off, the responses were continuously recorded for 20 seconds, so that the cavity reached the 

background noise level for sure. Totally 20 measurements were performed, and the 

averaging of measurements was made in the preferred way [204], where the ensemble 

average of the squared sound pressure decays is used. Due to the relatively low Sound 

Pressure Level (SPL) in the low frequency range, the T20 measurement method was used. 

In this case, the decay curves start at least 35 dB above the background noise for all the 

one-third octave bands of interest. The reverberation time is given by 
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 60 60 / ,T d=  (5.3) 

where d is the decay rate in decibels per second. It is determined from the slope of the least-

squares fit line of the decay curve from 5 dB to 25 dB below the steady-state level. Fig. 5-2 

shows an example (measured by p1, 1000 Hz one-third octave band) in the data processing 

for applying the T20 measurement method.  

 

Steady-state level

5 dB

25 dB

Evaluated range

Background level

 
Fig. 5-2. Decay curve measured by p1 for 1000Hz 1/3 octave band, using the T20 measurement method. 

 

For every 1/3 octave band whose central frequency is between 160 Hz and 6300 Hz, the 

reverberation time corresponding to each of the six microphones (from p1 to p6 as shown in 

Fig. 5-1 and Fig. 4-11) were obtained following the same procedures, respectively. The 

results are listed in Table 5-2, where fm denotes the 1/3 octave mid-band frequency, and T60, 

Mi denotes the reverberation time measured by ith microphone (corresponding to p1 at 

position ri). The average and standard deviation of the reverberation time are calculated 

over the six microphone positions for each band using the equations 

 ( )
2

60 60, M 60, M 60

1 1

1 1
  and  ,

1

M Mn n

i T i

i iM M

T T T T
n n


= =

= = −
−

   (5.4) 

with the number of microphone positions nM = 6. 

 

Fig. 5-3 shows the change of the reverberation time T60 with the increase of band frequency, 

where the standard deviation σT is also plotted using error bar. As the figure shows, except 

the first two bands, the reverberation time tends to decrease when the frequency increases, 

which indicates a higher energy dissipation.  

 

In addition, the sound absorption coefficient 𝛼̅ has also been calculated according to Eq. 

(5.2) and listed in Table 5-2. Fig. 5-4 shows the comparison between the absorption 

coefficient 𝛼̅ of the Noise-Box and the corresponding upper limit of reverberation test room 

in ISO 3471 [184] and ASTM C423-17 [205]. It can be observed that the sound absorption of 

the Noise-Box interior is much smaller than the upper limit of the standard reverberation 
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room. On the other hand, the absorption coefficient 𝛼̅  can be used to update the wall 

impedance of the numerical models. Under the assumptions that all the sound absorption is 

uniformly caused by the walls and the sound transmission through walls are negligible, the 

wall impedance of all the cavity boundaries can be updated with 

 
0

1 1
.

1 1
Z c






+ −
=

− −
 (5.5) 

Then, the updated numerical model can be used to analyse the frequency response of the 

cavity with the damping effect considered.  

 

Table 5-2. Reverberation time T60 and average absorption coefficient 𝛼̅ of Noise-Box for 1/3 octave 

bands 

fm (Hz) 
Reverberation time (sec) 

  
T60, M1 T60, M2 T60, M3 T60, M4 T60, M5 T60, M6 T60 σT 

160 2.02 2.02 2.02 2.02 2.02 2.02 2.02 0.00 0.011 

200 2.05 2.05 2.03 2.04 2.05 2.05 2.04 0.01 0.011 

250 3.30 4.10 5.13 3.14 3.47 3.11 3.71 0.71 0.006 

315 2.69 2.65 3.33 3.01 2.73 3.03 2.90 0.24 0.008 

400 2.57 3.02 3.09 3.00 3.03 2.61 2.89 0.21 0.008 

500 2.37 2.79 2.52 2.59 2.69 2.49 2.58 0.13 0.009 

630 1.98 1.99 1.89 2.11 2.06 1.93 1.99 0.07 0.011 

800 1.47 1.50 1.43 1.72 1.42 1.44 1.50 0.10 0.015 

1000 1.17 1.23 1.15 1.28 1.21 1.19 1.20 0.04 0.019 

1250 1.14 1.15 1.07 1.04 1.03 1.03 1.08 0.05 0.021 

1600 1.10 1.12 1.12 1.15 1.09 1.07 1.11 0.03 0.020 

2000 1.12 1.12 1.10 1.19 1.15 1.15 1.14 0.03 0.020 

2500 1.07 1.06 1.03 1.08 1.12 1.02 1.06 0.03 0.021 

3150 1.02 1.05 0.96 1.00 1.03 1.03 1.02 0.03 0.022 

4000 0.86 0.92 0.90 0.92 0.84 0.92 0.89 0.03 0.025 

5000 0.82 0.82 0.83 0.86 0.77 0.82 0.82 0.03 0.028 

6300 0.69 0.72 0.71 0.71 0.67 0.70 0.70 0.02 0.032 

 

 
Fig. 5-3. Reverberation time T60 of the Noise-Box in 1/3 octave bands with the error bars representing 

the standard deviation σT over the 6 microphone positions.  
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Fig. 5-4. Average absorption coefficient 𝛼̅ of the Noise-Box for 1/3 octave bands and the corresponding 

upper limits of the ISO 3741 and the ASTM C423-17 for qualified reverberation rooms. 

 

5.1.5 Diffuseness of the sound field inside Noise-Box 

Fig. 5-5 shows the experimental transfer function between the sound pressure measured by 

one of the microphones (p1 in Fig. 4-11) and the input signal generated by the waveform 

generator (see Fig. 5-1). It could be noticed that the natural frequencies of the acoustic field 

start getting very close to each other above the defined cut-off frequency fcut ≈ 650 Hz. As 

the frequency increases, the modal density and the modal overlap increase. Meanwhile, the 

sound field inside becomes more diffused or spatially uniform. Therefore, in the higher 

frequency range, the diffusivity characteristics of the inner acoustic field becomes more 

important. It determines whether or from which frequency we can consider the sound field 

inside to be uniform or use the Noise-Box as a reverberation room. It also relates to the 

division of solution frequency range for acoustic/vibroacoustic problems [16]. 

 

There are several quantifiers for the field diffuseness [206]. Two quantifiers are used here to 

characterize the inner sound field of the Noise Box. One of the quantifiers is the mode count 

in 1/3 octave band or the modal overlap in 1/3 octave band. Regarding the higher modal 

overlap at higher frequencies, counting the modes with the experimental transfer function 

becomes impractical. Accordingly, the proven numerical models (as shown in Fig. 4-12 but 

smaller element size is used) were used to identify the modes by studying the 

eigenfrequencies in COMSOL. Since the increase of frequency requires a much larger 

model size (to keep at least 6 elements per wavelength) and much more extracting modes 

(up to 7080 Hz), the 2D model was used for saving simulation memory and time. Table 5-3 

lists the mode count Nm, the modal density n and the modal overlap M in each 1/3 octave 

band centred from 160 Hz to 6300 Hz. The modal density n is defined as number of modes 

per Hz and computed with the mode count divided by the corresponding bandwidth. The 
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modal overlap M is evaluated with M = 2.2n/T60, using reverberation time T60 from 

experiment (as listed in Table 5-2).  

 

 
Fig. 5-5. FRF of the Noise-Box cavity in experiment (see Fig. 5-1), where the input is the voltage out of 

the waveform generator and the output is the sound pressure measured by the microphone whose position 

is corresponding to p1 in Fig. 4-11. 

 

Table 5-3. Mode count, modal density and modal overlap in 1/3 octave bands of the Noise-Box 

fm (Hz) Mode count Nm Modal density n (Hz -1) Modal overlap M 

160 1 0.027 0.03  

200 1 0.022 0.02  

250 2 0.034 0.02  

315 3 0.041 0.03  

400 4 0.043 0.03  

500 10 0.087 0.07  

630 17 0.116 0.13  

800 31 0.169 0.25  

1000 55 0.240 0.44  

1250 106 0.366 0.75  

1600 204 0.551 1.09  

2000 392 0.852 1.65  

2500 761 1.312 2.72  

3150 1476 2.022 4.38  

4000 2908 3.161 7.79  

5000 5663 4.924 13.23  

6300 11238 7.697 24.16  
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Then, the criteria are considered. The less rigorous one defines the limit to diffuse sound 

field as more than 20 modes per band. It can be observed from Table 5-3 that the cut-off 

frequency is between 630 Hz to 800 Hz. Thus, it is valid to use Eq. (3.5) to evaluate the 

cut-off frequency with fcut = 650 Hz. The restrictive one known as the Schroeder frequency 

corresponds to the modal overlap no less than 3. Table 5-3 indicates that the frequency is 

between 2500 Hz to 3150 Hz, which in conform with the calculation based on Eq. (3.4), 

where the Schroeder frequency fsch = 2669 Hz. There is a wide frequency range between fcut 

and fsch. It may be reasonable to consider this range as a transition between the modal region 

( f < fcut ) and the highly diffuse Schroeder region ( f > fsch ). The parameters listed in Table 

5-3 also provides a reference for considering whether to use FEM or Statistical Energy 

Analysis (SEA) methods to analyse the acoustic field. If 1M   is considered as a 

prerequisite for applying SEA, the frequency range will be larger than 1250 Hz. 

 

The other quantifier is the sound pressure field uniformity. To evaluate the pressure field 

uniformity, in other words, is to check the spatial variation. In the experiment, sound 

pressures at the six microphone positions were measured while the inner acoustic field was 

at the steady state excited by the white noise input signal up to 8000 Hz. The SPLs among 

microphone positions are compared for each 1/3 octave band as shown in Fig. 5-6.  

 

 

Fig. 5-6. SPLs at the 6 microphone positions inside Noise-Box for 1/3 octave bands. 

 

Corresponding standard deviations σM over the six positions can be used for the 

quantification and these results for the Noise Box are shown in Fig. 5-7. The standard 

deviation σM ≤ 1.5 dB is acceptable in some cases for the sound field to be considered as 

uniform [206], while the ISO 3471 [184] has a more precise limit to qualify the reverberation 

test room. Fig. 5-7 includes the maximum allowable lines from both the 1.5 dB limit and 

the qualification limit from the ISO 3471. However, it should be noticed that the provided 

qualification limit from the ISO 3471 is originally for the standard deviation over different 

source locations and also that the other matched requirements with respect to the 
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microphone and sound source positions are not able to fulfil due to the small size of the 

Noise Box. According to these criteria, it can be found from Fig. 5-7 that the starting 

frequency for the diffused field is between 1000 Hz to 1250 Hz, or between 2500 Hz to 

3150 Hz. The limit frequency satisfied the ISO 3471 is consistent with the Schroeder 

frequency fsch = 2669 Hz. Therefore, it is believed that the sound field is sufficiently diffuse 

in the frequency range higher than the 2500 Hz 1/3 octave band. Nevertheless, it is also 

practical to consider the Noise Box as a small reverberation room when the frequencies are 

higher than the 1000 Hz 1/3 octave band. 

 

 

Fig. 5-7. Standard deviation of the SPLs over the 6 microphone positions inside Noise-Box for 1/3 octave 

bands and the corresponding suggested limits of 1.5 dB and of the ISO 3471 reverberation room 

qualification. 

 

5.1.6 Model update and frequency response analysis 

In the Experimental Modal Analysis (EMA), since the recorded signal was from the 

waveform generator, the obtained transfer function actually results from three component 

in series, i.e., the amplifier, the loudspeaker and the cavity, as shown in Fig. 5-1. Hence, 

the transfer functions have following relationship: 

 EMA cavity loudspeaker amplifier( ) ( ) ( ) ( ).H f H f H f H f=  (5.6) 

 

However, what is in interest is the frequency response of the cavity Hcavity, which is one of 

the characteristics of the test bench and meanwhile able to be compared with the numerical 

results. Considering the utilized numerical approach as well as the increase of modal 

overlap and sound field diffuseness/uniformity over frequency, this section focuses the 

frequency response analysis on the frequency range up to the cut-off frequency 650 Hz, 

covering the region dominated by the cavity modal properties. 
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Since Hloudspeaker and Hamplifier are not directly available, the frequency response of the cavity 

is at first predicted using the updated numerical model. The 3D FE model shown in Fig. 

4-12 was updated with the wall impedance determined by Eq. (5.5). For each frequency, 

the value of the absorption coefficient 𝛼̅ is shown in Fig. 5-4, and as is illustrated by the 

curve, the linear interpolation (with the frequency in log scale) is used for the frequencies 

between the adjacent central frequencies of the 1/3 octave bands. Frequency domain 

analysis was performed in COMSOL from 141 to 650 Hz at 1 Hz intervals. A monopole 

sound source with the root mean squared power Prms = 1 W was applied at the point q 

(shown in Fig. 4-11). Then, the sound pressures at the microphone positions (p1 to p6) were 

computed and the frequency response of the acoustic field was obtained. Hcavity is 

represented by the output sound pressure at one of the microphone positions over the input 

power in the sound source position. The estimated 𝐻̂cavity from simulation is shown in Fig. 

5-8, using the response at p1 as an example. The experimental transfer function is also 

presented for comparison. The two curves have similar shapes, especially the peaks and 

valleys, which are partly due to the accurate predictions of natural frequencies, as proved 

in Section 5.1.3. However, the amplitude levels are different. Theoretically, this difference 

in response level should result from the frequency response of the loudspeaker and the 

amplifier in chain, between the power input to the acoustic field and the voltage generated 

by the waveform generator. Therefore, it is able to estimate the transfer function Hloudspeaker 

∙Hamplifier by estimating the difference. 

 

 
Fig. 5-8. Simulated transfer function of the cavity between p1 and the input power generated by q (see 

Fig. 4-11), and experimental transfer function of the system between p1 and the input voltage from the 

waveform generator (see Fig. 5-1) 

 

Suppose that  

 LA loudspeaker amplifier( ) ( ) ( ),H f H f H f=  (5.7) 

the experimental Hcavity is then given by  
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 1
cavity EMA LA( ) ( ) ( ).H f H f H f−=  (5.8) 

Conversely, the transfer function 𝐻LA
−1 is available if HEMA and Hcavity are known, calculated 

by 

 1 1
LA EMA cavity( ) ( ) ( ).H f H f H f− −=  (5.9) 

 

So far, six transfer functions HEMA have obtained corresponding to the six microphones, 

but Hcavity are unknown. Only the simulation results 𝐻̂cavity have been estimated from the 

numerical model. In order to obtain 𝐻LA
−1, the functions 𝐻̂LA

−1 = 𝐻EMA
−1 𝐻̂cavity are calculated 

and depicted in Fig. 5-9, respectively for the six microphones M1 to M6 (corresponding to 

p1 to p6). Considering that 𝐻LA
−1 is independent of the microphone positions and should 

change slowly and continuously with the frequency, a curve best fitting the six 𝐻̂LA
−1

 

functions is computed and the fitting outcome is expressed as 

 1
LA10lg( ) 0.02715 28.77.H f− = − +  (5.10) 

This fitting curve is plotted in companion with the 𝐻̂LA
−1

 functions in Fig. 5-9, showing how 

it follows the variation trend of every 𝐻̂LA
−1 even if the 𝐻̂LA

−1
 functions are clearly different 

from each other.  

 

From Fig. 5-9, it can be noticed that, to generate the same power from the loudspeaker, a 

larger voltage should be assigned from the waveform generator as the frequency decreases. 

This is reasonable and it may result from two aspects. On one hand, the impedance of the 

loudspeaker increases when the frequency approximates 110 Hz; and on the other, the 

efficiency of the loudspeaker significantly decreases at lower frequency because it is placed 

inside the cavity unbaffled [207]. However, it is worth noting that the expression Eq. (5.10) 

is only effective within the frequency range under consideration. For higher frequencies, 

the relationship may change because the aforementioned two aspects are under different 

situations. 

 

Then, based on Eq. (5.10), the transfer function 𝐻LA
−1 is obtained. Substitution of the 𝐻LA

−1  

and utilization of the experimental results HEMA, the Hcavity out of experiment are derived. 

These estimations based on the experimental results are shown in Fig. 5-10, compared with 

the simulation results 𝐻̂cavity . A good agreement is seen from the figure between the 

numerical and experimental results, even though there some unavoidably discrepancies 

between the simulation and the experiment. For example, the loudspeaker is not an ideal 

monopole source and its location cannot be exactly identified. Similarly, the microphone 

positions are approximate.  
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Fig. 5-9. Comparison between the best fitting 𝐻LA
−1 (see Eq. (16)) and the estimated 𝐻̂LA

−1 of different 

microphones from M1 to M6 (i.e., p1 to p6). 

 

Fig. 5-10. FRFs (solid: COMSOL 𝐻̂cavity; dashed: Experiment Hcavity) of the Noise Box cavity within 141 

to 650 Hz at 1 Hz intervals. Input power is from q (see Fig. 4-11) and output pressure is: (a) p1; (b) p2; 

(c) p3; (d) p4; (e) p5; (f) p6. 
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5.2 Test panel characterization 

The test panel to be mounted on the Noise-Box for structure-born and airborne noise 

investigations is a 4-mm thick aluminium plate, whose CAD drawing is shown in Appendix 

A.5 Clamped panel. This section is to characterize the mounted test panel on its own, 

without the coupling effect coming from the Noise-Box cavity. The targets are to obtain its 

modal parameters and meanwhile to identify its material properties and boundary 

conditions for model updating. The requiring modal parameters, including natural 

frequencies, mode shapes and modal damping ratios are obtained through EMA. Later, the 

parameters for model updating are identified with additional measurements and analyses. 

These parameters can be divided into two parts. One is the geometric and material 

parameters of the panel itself regardless of boundary conditions; the other is edge conditions 

of the test panel when it is mounted on the Noise-Box. 

 

5.2.1 EMA of mounted test panel 

5.2.1.1 Experimental set-up 

The practice of modal testing is about obtaining FRFs of the structure. Aimed at this, an 

experimental system was set up as shown in Fig. 5-11. Input excitation is the impact of 

hammer (PCB 086C03). Response of panel is the acceleration measured by accelerometer 

(PCB 333B30). Acquisition system (NI cDAQ) and sensor signal conditioner (PCB 483C) 

are the same instruments used in the cavity characterization. Test panel has been mounted 

on the Noise-Box test bench with the steel clamped frame and 80 screws (see Fig. 3-5(b)). 

The screws were fixed under controlled torque 17 N⋅m. Besides, the inner walls of the 

Noise-Box have been covered with absorbing materials to minimize the back effect from 

the acoustic cavity. The thermo-hygrometer (INKBIRO IBS-TH1 Mini) is kept inside, 

monitoring the temperature and humidity.   

 

As shown by Fig. 5-12, a grid was labelled on the panel. It consists of 80 points arranged 

as 10 × 8 in a quarter of the panel. They are the positions where the hammer should hit. In 

other words, roving hammer strategy was used to obtain the FRFs at different positions, for 

obtaining the mode shapes. The advantages are that mass loading of the accelerometers on 

the panel is minimized and that roving hammer is more convenient than roving 

accelerometers. Meanwhile, the grid was designed based on the mode shapes planned to 

identify. Considering the minimum as 5 points per wavelength, the current setting can reach 

to around the 48th mode. Moreover, six accelerometers were glued: 3 inside the first quarter 

and 3 inside the rest three quarters. As indicated from the figure, the accelerometers A2, 

A4, A5 and A6 are approximately symmetric about the central lines of the panel. In fact, 
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they were designed to be symmetric. Such an arrangement of hitting points and 

accelerometer locations is intended to take the advantage of the symmetry of the panel. 

Therefore, the grid is only on one quarter of the vibrating area of the plate, and A4-A6 are 

used to validate the symmetricity and identify if the monitoring quarter is in phase or out 

of phase compared with A2. Then, the mode shape of the whole panel can be interpreted 

from the single quarter. This significantly reduces the number of hitting points. 

 

 
Fig. 5-11. Experimental set-up for mounted panel characterization 
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Fig. 5-12. Mounted test panel configuration: arrangement of accelerometers and hammering grid. 

 

5.2.1.2 Hammer test procedures 

At first, the frequency range of interest was determined. The frequency range to obtain all 

the modal parameters was proposed to reach the upper limit around 650 Hz, which is also 

the upper limit for the identified acoustic cavity modes in Section 5.1.3. However, the FRFs 



Chapter 5 Noise-Box test system characterization 

 

 
104 

 

can cover a wider frequency range, so that more natural frequencies can be identified from 

the resonance peaks. Then, the medium tip (in white) was selected and installed to the 

hammer. The resulting impulse can guarantee a sound spectrum till 1000-1500 Hz. 

Sampling frequency should be larger than 2 times of the maximum frequency of interest, 

and it was set as 5120 Hz in the experiment. The response duration was 15 sec, depending 

on the decay of the system.  

 

Next, the grid points on the panel were hit by the hammer one by one. Each point was hit 

10 times in succession, and the interval between two hits should larger than 15 sec. In the 

process, the time history of the signals generated from the hammer and accelerometers was 

acquired and stored.  

 

Then, the signals were processed in MATLAB. Double hits were removed if any. FRF of 

every pair of output acceleration and input force was obtained using H1 estimator [208], 

accompanied with the corresponding coherence function. Fig. 5-13 shows an example of 

the measured FRFs, whose output is acceleration at A1 and input is the force at Point 80 

(refer to Fig. 5-12 for input-output locations).  

 
Fig. 5-13. Measured transfer function and coherence function of the uncoupled panel (see Fig. 5-12) 

between acceleration at A1 and force at Point 80. 
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5.2.1.3 Modal parameters identification 

Modal parameters are identified based on the data acquired from modal testing. In our case, 

they were determined by the FRFs obtained from the hammer test, using the least-squares 

best fitting approach [87].  

 

Theoretically, the FRF in terms of receptance between points j and k is given by (for N 

modes) 
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where, ωr are the natural frequencies, ζr are the non-dimensional modal damping ratios, and 

Cjk,r are modal constants or modal residues. Meanwhile, the relationship Cjk,r = ϕj,r ϕk,r 

indicates the principle of reciprocity: αkj = αjk. For the receptance function in a frequency 

range that includes only n1
th to n2

th modes, Eq. (5.11) can be rewritten as [85,87] 
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where, R
jkM  and R

jkK  are respectively the coefficients of the lower and upper residuals, 

which compensate for the out-of-band effects. According to the relationship between 

accelerance (m⋅s-2/N) and receptance (m/N), i.e., Ajk(ω) = -ω2αjk(ω), the FRFs of the modal 

model are eventually given by 
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Since FRFs are known from the hammer test, the unknown parameters ωr, ζr, Cjk,r, 
R
jkM and

R
jkK  can be determined through an optimization algorithm that makes the model FRFs 

mod ( )jkA   best fit the experimental FRFs exp ( )jkA  . In other words, it is to solve the problem: 
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= −  (5.14) 

Practically, the solution was obtained in MATLAB by implementing the function 

‘lsqnonlin’, which is a nonlinear least-square solver. As shown by Eqs. (5.13)-(5.14), the 

number of modes in one solution is dependent, determined by the user. However, it is worth 

noting that the fitting frequency range should include only the identifying modes. Besides,  

the number of optimizing parameters will increase with the number of included modes. 

Consequently, the function is more complex and the first guess of those parameters 

becomes more essential for convergence or reaching the desire minimum. Furthermore, 

while Eq. (5.14) is expressed for a single FRF, it can also be expanded to multiple FRFs, 

where the functional for minimization is the square error of all the considered FRFs. 
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Since ˆr  and ˆ
r  should respectively reach consistent values among different FRFs 

(provided that the system is linear and stable), the strategy implemented was to include the 

total 80 FRFs A1k(ω) and only one or several modes in one optimization. The first guess of 

natural frequency ωr was peak-picked from one of the experimental FRFs. Then, the best 

fitting results provided the modal parameters of the considered mode(s). ˆr  and ˆ
r  are the 

natural frequency and the damping ratio, while 1 ,
ˆ

k rC  can be used to derive the mode shape. 

After the repetitions to other modes, all modal parameters within frequency range of interest 

were obtained (except that the 25th mode was identified from A2k(ω)). The identified natural 

frequencies and damping ratios through this process are listed in Table 5-4, denoted as 

‘global best fitting for 80 FRFs’. The FRF mod
1 ( )80A   reconstructed according to the modal 

model, using these globally identified natural frequencies and damping ratios is shown in 

Fig. 5-14. The reconstructed curve shows a good agreement with the experimental one.  

 

On the other hand, it is practical to fit the whole curve (e.g., exp
1 ( )80A  ) in one shot, 

identifying the 36 natural frequencies and damping ratios. However, this case requires the 

initial values of the optimizing parameters very close to the final results. In consequence, it 

was implemented for exp
1 ( )80A   using the primary fitting results as the initial values. Then, 

the further optimized results are shown in Table 5-4, denoted as ‘best fitting for A180’. As 

shown by Fig. 5-15, this optimization makes the model curve better match the experimental 

one, especially for in the low frequency region around the first four resonances.  

 

If the results of the two fittings in Table 5-4 are compared, it can be noticed that the two 

sets of natural frequencies are very close for each mode but still slightly different. Though 

very small, the difference indicates the variation of natural frequencies among FRFs. 

Relatively, the low frequency region is more affected, and 1st mode is the most. To check 

the utmost variation, the 80 FRFs were analysed, by which, it was found that first natural 

frequency ranges between 37.6 Hz and 38.2 Hz. The main cause should the long time span 

for the hammer test, where totally 80 points were respectively hit 10 times one by one. 

From morning to the afternoon, the environment was changed and the boundary conditions 

of the panel might be affected without notice. Due to the shift of natural frequencies, the 

damping ratios are overestimated in the global best fitting. Therefore, as for natural 

frequencies and damping ratios, the outcome of the single curve best fitting is preferred and 

adopted. 
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Table 5-4. Two sets of identified modal parameters for the uncoupled panel through EMA. The set on 

the right is the final decision for natural frequencies fr and damping ratios ζr. 

Order 
Global best fitting for 80 FRFs A1k  Best fitting for A180 

Mode fr (Hz) ζr  fr (Hz) ζr 

1 (1,1) 37.86 0.00920  38.10 0.00462 

2 (1,2) 65.03 0.00355  65.14 0.00176 

3 (2,1) 88.69 0.00433  88.93 0.00157 

4 (2,2) 116.14 0.00224  116.21 0.00141 

5 (1,3) 117.62 0.00430  117.64 0.00278 

6 (2,3) 164.51 0.00192  164.50 0.00137 

7 (3,1) 171.04 0.00336  171.29 0.00282 

8 (1,4) 188.85 0.00366  188.88 0.00297 

9 (3,2) 197.42 0.00202  197.55 0.00149 

10 (2,4) 233.08 0.00327  233.09 0.00242 

11 (3,3) 243.65 0.00235  243.67 0.00200 

12 (1,5) 278.71 0.00200  278.63 0.00173 

13 (4,1) 280.42 0.00466  280.70 0.00446 

14 (4,2) 305.63 0.00292  305.74 0.00274 

15 (3,4) 309.70 0.00192  309.75 0.00140 

16 (2,5) 321.69 0.00216  321.59 0.00204 

17 (4,3) 351.00 0.00145  351.00 0.00123 

18 (1,6) 385.73 0.00193  385.77 0.00164 

19 (3,5) 395.80 0.00194  395.74 0.00178 

20 (4,4) 414.83 0.00167  414.85 0.00142 

21 (5,1) 418.69 0.00261  418.84 0.00233 

22 (2,6) 428.68 0.00165  428.72 0.00104 

23 (5,2) 442.66 0.00347  443.51 0.00360 

24 (5,3) 487.02 0.00155  487.01 0.00142 

25 (4,5) 499.75 0.00144  499.80 0.00097 

26 (3,6) 500.52 0.00179  500.62 0.00182 

27 (1,7) 511.93 0.00194  511.79 0.00181 

28 (5,4) 550.32 0.00159  550.36 0.00139 

29 (2,7) 553.20 0.00171  553.04 0.00155 

30 (6,1) 584.63 0.00215  584.65 0.00195 

31 (4,6) 602.43 0.00158  602.45 0.00149 

32 (6,2) 608.40 0.00186  608.42 0.00181 

33 (3,7) 624.10 0.00187  623.97 0.00176 

34 (5,5) 633.87 0.00108  633.82 0.00101 

35 (6,3) 651.32 0.00175  651.30 0.00160 

36 (1,8) 656.78 0.00208  656.55 0.00197 
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Fig. 5-14. Comparison of the uncoupled panel accelerance A180 (ω) between experiment and the modal 

model with parameters from the global best fitting of 80 FRFs A1k (see Table 5-4). 

 
Fig. 5-15. Comparison of the uncoupled panel accelerance A180 (ω) between experiment and the modal 

model with parameters from the single curve best fitting of the entire FRF A180 (see Table 5-4). 

 

As indicated from the subscripts of A1k(ω) and 1 ,
ˆ

k rC , this identification is based on the 

acceleration measured by A1 (see Fig. 5-12). According to the principle of reciprocity, 

A1k(ω) = Ak1(ω) and 1 , 1,
ˆ ˆ

k r k rC C= , the process is equivalent to hit the panel at A1 and measure 

the responses of the 80 grid points. Thus, the ratios of modal constants 1 ,
ˆ , 1,...,80k rC k =

approximate to the ratios of the plate displacements at those points for rth mode. Fig. 5-16 



Doctoral Dissertation of Politecnico di Milano 

 

 
109 

 

shows an identified mode shape at 414.83 Hz (the 20th mode), normalized by the maximum 

amplitude, where Fig. 5-16(a) illustrates the non-dimensional displacement within the grid 

of 80 points at one quarter of the panel, and Fig. 5-16(b) depicts the mode shape of the 

whole panel. In Fig. 5-16(b), the rest three quarters were derived based on the first quarter 

by symmetricity or anti-symmetricity, according to the accelerations at A4, A5 and A6, 

respectively, compared with A2 (see Fig. 5-12 for A4, A5, A6 and A2). Concerning other 

mode shapes, the denotation (m,n) is used for listing them in Table 5-4, accompanied with 

other modal parameters. m and n are respectively the mode order (or the number of anti-

nodes) in x and y directions. For example, the mode in Fig. 5-16 is represented by (4,4). 

 

(a) (b)

 
Fig. 5-16. Mode shape of the 20th mode of uncoupled panel represented by the non-dimensional 

displacement of: (a) the experimental grid in one quarter of the panel; (b) the whole panel. 

 

5.2.1.4 Discussion 

In Section 5.2.1.3, it is mentioned that the panel’s natural frequencies were changed over 

time. Indeed, this is a problem that had been noticed during the experiments and was tried 

to be addressed by controlling and monitoring the temperature. Before the test that has been 

introduced, there was another complete EMA, where the shift of natural frequencies is too 

serious to yield a correct mode shape because of the significant change of ambient 

temperature. Learned from that experience, the second EMA, as described from Section 

5.2.1.1 to Section 5.2.1.3, has shorten the experimental time span and kept the environment 

stable (temperature: 24.2±0.1℃). Nevertheless, it is interesting to figure out the real 

reasons why the panel’s modal properties were changed. It is also very important to know 

how to stabilize or control the properties, so that we can make sure that the service panel is 

equivalent to the one we have characterized.  
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Table 5-5. Identified natural frequencies fr and damping ratios ζr from the besting fitting of experimental 

FRF A180. Three measurements correspond to three different ambient temperatures TA in the preliminary 

test. (T0 is an unknown original temperature.)

Order 
Meas. 1 (TA = T0)  Meas. 2 (TA > T0)  Meas. 3 (TA < T0) 

fr (Hz) ζr  fr (Hz) ζr  fr (Hz) ζr 

1 39.08 0.00640  36.45 0.00572  43.09 0.00487 

2 66.71 0.00254  62.90 0.00273  71.81 0.00287 

3 89.41 0.00185  86.73 0.00191  94.19 0.00189 

4 ---- ----  ---- ----  ---- ---- 

5 119.17 0.00292  115.10 0.00283  124.62 0.00301 

6 166.07 0.00183  162.16 0.00177  171.44 0.00210 

7 171.35 0.00275  168.74 0.00322  176.46 0.00341 

8 190.58 0.00322  186.37 0.00341  196.10 0.00317 

9 198.13 0.00194  194.81 0.00214  203.37 0.00162 

10 234.85 0.00292  230.69 0.00283  240.59 0.00313 

11 244.65 0.00213  240.98 0.00222  250.08 0.00188 

12 280.19 0.00221  276.15 0.00284  285.77 0.00313 

13 ---- ----  ---- ----  ---- ---- 

14 305.92 0.00315  302.62 0.00315  311.51 0.00311 

15 311.01 0.00204  307.16 0.00202  316.62 0.00212 

16 323.37 0.00220  319.10 0.00269  329.18 0.00213 

17 351.61 0.00172  348.16 0.00173  357.17 0.00156 

18 387.88 0.00190  383.53 0.00204  393.77 0.00171 

19 396.85 0.00213  392.72 0.00208  402.64 0.00190 

20 
417.80 0.00310 

 411.84 0.00210  421.45 0.00168 

21  415.28 0.00278  423.59 0.00301 

22 430.99 0.00095  426.64 0.00056  436.75 0.00112 

23 443.41 0.00266  439.72 0.00285  449.30 ---- 

24 487.07 0.00185  483.77 0.00193  492.84 0.00194 

25 500.26 0.00139  496.33 0.00141  506.06 0.00122 

26 501.81 0.00171  497.68 0.00165  507.78 0.00200 

27 513.73 0.00208  509.35 0.00234  519.87 0.00203 

28 549.99 0.00172  546.47 0.00180  555.83 0.00164 

29 555.52 0.00197  551.15 0.00193  561.60 0.00178 

30 583.03 0.00221  580.31 0.00218  589.06 0.00199 

31 602.65 0.00161  598.71 0.00181  608.66 0.00178 

32 607.82 0.00246  604.46 0.00331  613.90 0.00206 

33 625.31 0.00203  621.06 0.00211  631.47 0.00200 

34 633.62 0.00120  629.88 0.00132  639.52 0.00107 

35 650.94 0.00172  647.65 0.00161  656.97 0.00177 

36 658.45 0.00195  654.49 0.00238  664.59 0.00187 

Time 2020/6/25 12:41  2020/6/29 17:46  2020/6/30 11:02 

 
 

Table 5-5 lists the natural frequencies and damping ratios identified from the experimental 

FRFs exp
1 ( )80A  of three measurements in the preliminary unrecorded test. The first 

measurement was performed immediately after the panel had been mounted. Then, the 

panel was kept mounted, and the second and third measurements were done respectively 

under higher and lower temperature. Unfortunately, the temperatures TA were unmeasured 
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but they should be at least some degrees Celsius different from each other, since the 

experimenters remember the hot afternoon of Meas. 2 when the air conditioner was 

malfunctional and the cold morning of Meas. 3 when the air conditioner was just repaired 

and worked too hard. As shown by the table, the natural frequencies increase if the ambient 

temperature increases, and vice versa. The temperature may be influential in two ways: one 

is the thermal expansion and the other is the change of material properties. With reference 

to a paper on similar problem [147], the former is considered dominant.  

 

The thermal expansion is effective through several aspects. First and foremost, it leads to 

thermal stress in the panel, since the constrained edges avoid the panel expanding or 

contracting freely. If the plate is heated or cooled uniformly throughout the thickness, 

additional membrane forces are introduced. The heated case corresponds to in-plane 

compression that decreases the natural frequencies, while the cooled case corresponds to 

in-plane tension that functions inversely [147,157,161]. Moreover, due to its small thickness and 

wide span, the panel is rather sensitive to the membrane forces [157]. For validating such 

thermal effects, simulations were performed in COMSOL, comparing the natural 

frequencies of a clamped panel before and after the temperature is changed by 1℃. The 

original case (±0℃) is the one analysed in Section 4.2.5.2. Table 5-6 lists simulation results. 

The decrease and increase of natural frequency are presented as expected, but the variations 

are larger than the experiments. This is reasonable, because in experiment, the temperature 

changed very slowly, during which the thermal stress was also releasing. Secondly, the 

thermal expansion could also affect the panel’s edge conditions. For example, the 

deformation of screws might influence the clamping force.  

 

Table 5-6. Numerical natural frequencies fs of the ideally clamped panel without thermal expansion 

(±0℃) and with thermal expansion caused by increase (+1℃) or decrease (−1℃) of temperature. 

Mode 

order 

fs (Hz) 
 

Mode 

order 

fs (Hz)  Mode 

order 

fs (Hz) 

±0℃ +1℃ −1℃ ±0℃ +1℃ −1℃  ±0℃ +1℃ −1℃ 

1 43.9 35.5 50.8  13 301.3 291.0 311.2  25 538.3 527.7 548.7 

2 77.8 68.4 86.2  14 329.9 319.8 339.8  26 539.0 528.4 549.3 

3 100.0 90.8 108.5  15 337.2 326.8 347.3  27 546.1 535.6 556.4 

4 131.3 121.6 140.3  16 349.0 338.6 359.1  28 590.3 579.7 600.6 

5 132.8 122.9 142.0  17 379.3 369.0 389.3  29 592.3 581.7 602.7 

6 183.6 173.6 193.2  18 414.2 403.8 424.4  30 616.6 606.2 626.8 

7 185.9 176.2 195.1  19 428.2 417.7 438.5  31 645.3 634.9 655.6 

8 207.4 197.3 217.1  20 444.1 433.9 454.1  32 647.8 637.1 658.2 

9 215.9 205.9 225.4  21 448.7 438.3 459.0  33 669.2 658.5 679.7 

10 256.4 246.1 266.3  22 461.0 450.5 471.3  34 678.6 668.0 689.1 

11 266.3 256.1 276.1  23 473.1 462.8 483.2  35 693.5 683.0 703.9 

12 300.6 290.6 310.3  24 521.8 511.4 532.0  36 697.1 686.5 707.6 
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For demonstrating how the temperature affects the natural frequencies of different modes, 

the variations Erf  from the original values (fr of Meas. 1 for experimental cases and fs of 

±0℃ for simulation cases) are computed and plotted in Fig. 5-17. Two main conclusions 

can be drawn from the figure. For one thing, from the experimental results (Fig. 5-17(a)), 

it can be noticed that the difference of natural frequencies between measurements is quite 

consistent among different modes. It seems slowly increase with the mode order, but the 

slope is very small, except the first several modes. For the other, a similar tendency is 

observed from the simulation results. Therefore, the frequency shift in experiment could 

mainly result from the thermal stress. 

 

 
Fig. 5-17. Difference of natural frequencies between the temperature -increased or -decreased case and 

the original case: (a) three measurements in the preliminary test (Table 5-5); (b) three simulations for an 

assumed clamped panel (Table 5-6). 

 

5.2.2 Free panel geometric and material properties 

The geometric and material parameters are inherent properties of the panel itself, and thus 

unrelated to the boundary conditions or edge restraints. Hence, they can be identified either 

the panel is clamped or free. In this subsection, the panel is investigated under free-free 

boundary conditions to characterise these parameters. 

 

Besides the modal parameters obtained in the previous subsection, the other pre-

acknowledged information about the test panel is shown by its CAD drawing in Appendix 

A.5 Clamped panel. The material is known as aluminium, and all dimensions are specified. 

Particularly, thickness of the test panel is 4 mm. It is well-known to all that there are 

tolerances to the specified dimensions. Among them, the small deviation in thickness has 

the greatest impact on the test panel’s vibroacoustic performance. Besides, though it is 

claimed to be made of aluminium, the material properties are not guaranteed as the pure 
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aluminium. When alloyed and treated differently, the aluminium product results in different 

properties. Therefore, the density, Young’s modulus and Poisson’s ratio are not going to be 

the same as what we assumed in Chapter 4. Since they are all decisive parameters for the 

plate model, all mentioned above, i.e., the thickness h, density ρ, Young’s modulus E and 

Poisson’s ratio ν are determined at first. Later, the boundary conditions of the mounted plate 

will be characterized in the next subsection.  

 

5.2.2.1 Parameter value ranges 

As a start point to updating the geometric and material parameters, their possible ranges are 

proposed based on a priori knowledge from simple measurements or literature review. The 

ranges of dimensions are provided based on repeated measurements using meter or calliper. 

Two 4-mm panels were manufactured and they were cut from one aluminium plate. One 

panel is the test panel with 80 holes, drawn in Appendix A.5 Clamped panel, and the other 

has 8 holes, shown by Appendix A.6 Free panel. They can be considered have the same 

material properties and the same tolerance of thickness. Since the latter is not used for the 

vibroacoustic investigation, it is called substitute panel to distinguish it from the test panel. 

Based on the measurement, it is confident that the errors of lateral dimensions are less than 

1 mm and that the error of thickness is less than 0.1 mm. The ranges are, respectively, 

[954,955] mm, [1147,1148] mm and [3.9,4] mm. These are slightly enlarged ranges. The 

probability is higher that the real values are located close to the designed values. The ranges 

of material parameters are concluded from the ASM handbook [209], focusing on the 

aluminium alloys that are commonly used for aluminium sheet or plate. The density can be 

[2590, 2730] kg/m3, but tends to be within [2630, 2700] kg/m3, as will be discussed later 

with the panel weight. Meanwhile, since the panel is observed soft and bright, we tend to 

believe that the aluminium has a relatively high purity. For another, the moduli of elasticity 

are also dependent mainly on the composition [209]. It is stated that the moduli in 

compression are approximately 2% higher than the tension situation. However, they are not 

distinguished here and both are claimed as Young’s modulus. According to the handbook, 

the Young’s modulus should within the range [68,79] GPa. Regarding the Poisson’s ratio, 

a good agreement is seen among different aluminium alloys and it is approximately 0.33. 

 

5.2.2.2 Panel surface density 

For identification of the aluminium density, the two panels are weighed by the balance 

Sartorius CP34001 S-0CE, as shown in Fig. 5-18. The test panel with 80 holes is 11.49671 

kg, and the substitute panel with 8 holes is 11.52617 kg. According to their designed areas 

(1.09125 m2 and 1.09607 m2) and the area error limit raised by lateral dimensions (-0.0021 

m2), the surface densities should limit to [10.5354, 10.5557] kg/m2 and [10.5159, 10.5361] 
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kg/m2, respectively. Then, corresponding to a given aluminium density within the possible 

range, the plate thickness is obtained as listed in Table 5-7. The final thickness is 

determined by a comprehensive consideration of both panels. As shown by the table, the 

test panel can be considered in its designed lateral dimensions, with the tolerances neglected. 

In this case, the surface density is ρh known and equal to 10.5354 kg/m2. However, to 

determine respectively the material density ρ and the panel thickness h still needs more 

information, which can be obtained through experiments. 

 
(a)    (b)  

Fig. 5-18. Panel weighing: (a) Sartorius CP34001 S-0CE; (b) weighing process. 

 

Table 5-7. Paring the aluminium density and the panel density based on the surface densities ρh, which 

belong to [10.5354, 10.5557] kg/m2 and [10.5159, 10.5361] kg/m2, respectively for the test and the 

substitute panels. 

Density ρ 

(kg/m3) 

Thickness h (mm) 

Test panel Substitute panel 
Final 

min. max. min. max. 

2700 3.902 3.910 3.895 3.902 3.90 

2680 3.931 3.939 3.924 3.931 3.93 

2660 3.961 3.968 3.953 3.961 3.96 

2632 4.003 4.011 3.995 4.003 4.00 

 

 

5.2.2.3 Natural frequencies of free-free plates 

With the above discussions, we can say that the lateral dimensions, surface density and 

Poisson’s ratio of the test panel are settled. The following is to determine the panel thickness, 

material density and Young’s modulus according to its natural frequencies under a certain 

type of boundary conditions. Among the simply types of boundary conditions, the free-free 

one may be the easiest to approximate. The most popular strategy is to suspend the 

component with long strings or soft springs.  

 

For free-free rectangular plates, there is also analytical formula to calculate the natural 

frequencies ωs. It is like Eq. (4.17), reformulated here referring to [201]: 



Doctoral Dissertation of Politecnico di Milano 

 

 
115 

 

 
4 24

2 4 4

4
2 (1 )s x y x y x y

D a a
G G H H J J

b ba h


 



    
= + + + −       

    
， (5.15) 

with Gx, Hx and Jx are listed in Table 5-8, and Gy, Hy and Jy are determined by substituting 

y for x and n for m. The indicators m and n are respectively the mode orders in x and y 

directions. 

 

According to Eq. (5.15), when lateral dimensions a, b, surface density ρh, Poisson’s ratio ν 

and plate boundary conditions are fixed, the natural frequency is proportional to the flexural 

rigidity D, which is further in proportion to E and h3. Therefore, if natural frequencies of 

the panel are known, the best fitting D is available. Then, based on the definition D = 

Eh3/12(1- ν2), the reasonable E and h within their possible ranges are determined.  

 

Table 5-8. Frequency coefficients in Eq. (5.15) for free-free edges[201]. 

m Gx Hx Jx 

1 0 0 0 

2 0 0 12/π2 

3 1.506 1.248 5.017 
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However, the challenge aspects are from two sides. For one thing, the panel is thin and 

large, making it difficult to reach the ideal free-free boundary conditions. Consequently, 

the experimental natural frequencies in the low frequency region may be significantly 

influenced by the suspension. For the other, the results determined from Eq. (5.15) will 

decrease in accuracy for higher order modes. Therefore, FEM is adopted to compute the 

natural frequencies. As proved in Section 4.2.5, the accuracy of COMSOL model is 

guaranteed for higher order modes. Thus, if the first several modes are significantly 

influenced by the boundary conditions, the higher order natural frequencies can be utilised.  

 

5.2.2.4 Experimental analysis of free-free panel 

Aiming at the experimental natural frequencies of the panel under free-free boundary 

conditions, two tests were performed on the two panels, respectively, using two different 

suspension strategies. Since the three parameters (i.e., ρ, h and E) to be obtained are 

identical for both panels, the substitute panel is also used, taking the advantage of fewer 

holes around the perimeter, which is closer to the plate model without inner holes. 

 

As shown by Fig. 5-19, the first test uses the substitute panel with three accelerometers 

(PCB 333B30) glued. The panel is hanged up with thin nylon rope through the hole at one 
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of its corners. This suspension strategy is based on the fact that the free-free modes are less 

affected with fewer suspension points. However, the drawback is that the suspension point 

is far from the nodal lines of most modes as shown in Fig. 5-20. Under the same 

configuration, four measurements were done. Each measurement (with several hits at 

intervals of 45 sec) corresponds to one hitting position on the plate by the force hammer. 

Such a multi-input multi-output approach ensures that all the flexural modes can be 

identified from the FRFs processed by the output accelerations and the input forces. Then, 

the natural frequencies are recognized from the resonance peaks. 

 

 
Fig. 5-19. Suspended panel test 1 configuration. 

 

1st mode 2nd mode 3rd mode 4th mode

5th mode 6th mode 7th mode 8th mode

 
Fig. 5-20. The first 8 numerical mode shapes (except the six rigid body modes) of the test panel under 

free-free boundary conditions: contour colours black to red for normalized displacements from 0 to 1; x 

for suspension points in test 2. 
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As shown by Fig. 5-21, the second test uses the test panel itself. The test was performed 

after the mounted panel tests introduced in Section 5.2.1. Six accelerometers are on the test 

panel as they were used in the mounted panel tests. Hanged up by the steel wire rope, the 

test panel is constrained by two suspension points. Considering the nodal lines of the modes 

shown in Fig. 5-20, three configurations were implemented. The suspension points of 

Configuration 1 (see Fig. 5-21) are next to the nodal lines of 1st mode (see Fig. 5-20), and 

so on for Configurations 2 and 3. For each configuration, two measurements (several hits 

at intervals of 20 sec for each one) are made, corresponding to two hitting positions, 

respectively. Then, the natural frequencies are identified in the way similar to test 1. 

 

 

Fig. 5-21. Suspended panel test 2 configurations. 

 

Under the same configuration, the natural frequencies are independent of the hitting 

positions but relevant to the excited modes. This is acknowledged and also observed in the 

test. Thus, as a summary, Table 5-9 lists the experimental natural frequencies of the two 

tests under different configurations. Indeed, the results of Test 2 have removed the natural 

frequencies that will not exist in the free-free panel and are for sure raised by the suspension. 

Then, for each flexural mode listed, the natural frequencies are compared among 

configurations or between tests, and they are shown in good agreement. In test 2, very small 

variations are seen among the three configurations, indicating that the three types of 

suspensions lead to similarly increases of the natural frequencies. By comparison, the first 

10 modes may be affected the most, but still have the maximum absolute discrepancy ∆ft2 

less than 0.6 Hz. Concerning the differences between Test 2 and Test 1, they may result 

from the additional small holes in the test panel and the stiffening effect out of an additional 

suspension point. The former regarding details of the panel should be more effective at high 

frequencies, while the latter  related to the boundary conditions should be more influential 

at low frequencies. As shown by Table 5-9, the outcome is that the natural frequencies 

obtained from Test 2 is larger than those from Test 1 for most modes.  
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Table 5-9. Natural frequencies of the suspended (free-free) panels. Experimental results: Tests 1 and 2. 

Numerical results: Cases L, U, A and B. 

Mode 

order 

Test 1 

ft1 (Hz) 

Test 2 (Hz) ft2 - ft1 

(Hz) 

Case L 

fLow (Hz) 

Case U 

fUp (Hz) 

Case A 

fA (Hz) 

Case B 

fB (Hz) 

fB - fA 

(Hz) Conf. 1 Conf. 2 Conf. 3 ∆ ft2 Ave., ft2 

1 14.71 15.2 15 15.05 0.2 15.1 0.4 11.44 12.82 11.66 14.58 2.92 

2 17.24 17.9 18.05 17.6 0.45 17.9 0.6 15.10 16.92 15.39 18.98 3.59 

3 29.07 30.05 30.2 30.25 0.2 30.2 1.1 23.49 26.31 23.93 25.90 1.97 

4 33.09 34.55 34.3 34.55 0.25 34.5 1.4 27.98 31.34 28.51 31.15 2.64 

5 36.67 36.85 37.25 37.35 0.5 37.2 0.5 31.99 35.83 32.59 40.47 7.88 

6 45.69 46.85 46.9 47.15 0.3 47 1.3 44.35 49.68 45.19 49.53 4.34 

7 61.02 62 61.9 62.15 0.25 62 1 54.95 61.54 55.98 56.06 0.08 

8 62.84 66.65 66.3 66.3 0.35 66.4 3.6 55.08 61.69 56.11 62.45 6.33 

9 69.71 69.8 70 69.65 0.35 69.8 0.1 63.48 71.10 64.68 68.45 3.78 

10 77.02 78.1 78.65 78.1 0.55 78.3 1.3 72.96 81.72 74.33 81.18 6.85 

11 88.64 89.7 89.5 89.7 0.2 89.6 1 86.20 96.55 87.82 88.06 0.23 

12 94.33 96.8 96.5 96.6 0.3 96.6 2.3 86.90 97.34 88.54 94.75 6.21 

13 103.5 104.3 104.4 104.5 0.2 104.4 0.9 93.90 105.17 95.67 95.73 0.06 

14 105.3 108.2 108.1 108.2 0.1 108.2 2.9 100.76 112.85 102.65 115.11 12.46 

15 130.6 130.7 130.7 130.6 0.1 130.7 0.1 124.13 139.04 126.47 126.71 0.24 

16 137.4 139.2 139.3 139.1 0.2 139.2 1.8 131.22 146.97 133.69 134.01 0.32 

17 138.5 140.8 140.8 140.8 0 140.8 2.3 131.71 147.52 134.19 134.69 0.50 

18 140.9 142.7 142.7 142.7 0 142.7 1.8 132.58 148.49 135.08 141.30 6.22 

19 146.3 146.8 146.6 146.9 0.3 146.8 0.5 143.97 161.25 146.68 149.86 3.18 

20 160.2 160.9 160.9 161.1 0.2 161 0.8 153.64 172.09 156.54 158.56 2.02 

21 166.5 168.9 168.8 168.8 0.1 168.8 2.3 157.96 176.92 160.94 168.25 7.31 

22 187.4 189.6 189.6 189.8 0.2 189.7 2.3 179.56 201.11 182.94 185.09 2.15 

23 194.2 196.8 196.6 196.7 0.2 196.7 2.5 186.17 208.51 189.67 190.89 1.22 

24 204.6 206.1 206 206.2 0.2 206.1 1.5 196.87 220.50 200.58 204.34 3.76 

25 213.5 213.9 214.1 214 0.2 214 0.5 206.39 231.17 210.28 211.01 0.73 

26 218.2 218.6 218.6 218.8 0.2 218.7 0.5 213.80 239.47 217.83 217.87 0.04 

27 221.9 221.7 221.8 221.7 0.1 221.7 -0.2 213.90 239.58 217.93 220.30 2.37 

28 231.6 232.1 232 232.4 0.4 232.2 0.6 223.50 250.33 227.71 229.09 1.38 

29 246.2 248.3 248.2 248.3 0.1 248.3 2.1 238.80 267.46 243.30 243.74 0.44 

30 248.5 250.6 250.5 250.7 0.2 250.6 2.1 239.94 268.74 244.46 247.06 2.60 

31 254.1 256.1 256.1 256.1 0 256.1 2 245.01 274.42 249.63 251.78 2.15 

32 265.4 267.7 267.5 267.7 0.2 267.6 2.2 257.83 288.78 262.68 264.93 2.25 

33 287.1 288.2 288.2 288.4 0.2 288.3 1.2 277.29 310.57 282.52 283.67 1.15 

34 304.2 304.8 304.7 305 0.3 304.8 0.6 297.84 333.59 303.45 303.54 0.09 

35 315.3 x 316.3 316.6 0.3 316.5 1.2 306.23 342.98 311.99 312.30 0.31 

36 317.5 317.5 317.4 317.8 0.4 317.6 0.1 308.84 345.91 314.66 315.01 0.35 

37 318 318.7 318.7 318.8 0.1 318.7 0.7 309.71 346.89 315.55 315.61 0.06 

38 318.5 320 319.9 320.4 0.5 320.1 1.6 309.87 347.06 315.71 317.28 1.57 

39 325.9 326 326 326.1 0.1 326 0.1 316.98 355.03 322.95 324.26 1.31 

40 338.4 339.4 339.4 339.6 0.2 339.5 1.1 329.53 369.07 335.73 336.92 1.19 

41 350.8 352.9 352.7 353 0.3 352.9 2.1 340.18 381.01 346.59 347.00 0.41 

42 351.7 353.7 353.6 353.8 0.2 353.7 2 342.53 383.64 348.98 350.09 1.11 

43 390.4 390.4 390.2 390.7 0.5 390.4 0 379.74 425.32 386.89 387.21 0.32 

44 390.4 391.4 391.3 391.6 0.3 391.4 1 380.63 426.31 387.80 388.64 0.84 

45 401.7 401.9 401.8 402 0.2 401.9 0.2 390.95 437.86 398.31 398.38 0.07 

46 404.2 405.2 405.2 405.5 0.3 405.3 1.1 396.80 444.42 404.27 404.99 0.72 

47 405.4 405.9 405.8 406.1 0.3 405.9 0.5 398.33 446.14 405.84 406.32 0.48 

48 417.3 417.3 417.2 417.6 0.4 417.4 0.1 406.18 454.93 413.83 414.11 0.28 

49 441.8 443.1 443.3 443.2 0.2 443.2 1.4 430.90 482.61 439.01 439.21 0.20 

 



Doctoral Dissertation of Politecnico di Milano 

 

 
119 

 

Table 5-9 (Continued). Natural frequencies of the suspended (free-free) panels. Experimental results: 

Tests 1 and 2. Numerical results: Cases L, U, A and B. 

Mode 

order 

Test 1 

ft1 (Hz) 

Test 2 (Hz) ft2 - ft1 

(Hz) 

Case L 

fLow (Hz) 

Case U 

fUp (Hz) 

Case A 

fA (Hz) 

Case B 

fB (Hz) 

fB - fA 

(Hz) Conf. 1 Conf. 2 Conf. 3 ∆ ft2 Ave., ft2 

50 443.5 444.2 444.3 444.3 0.1 444.3 0.8 433.01 484.98 441.17 441.36 0.19 

51 450.6 450.5 450.7 450.6 0.2 450.6 0 438.83 491.49 447.09 447.41 0.32 

52 451.5 452.5 452.4 452.7 0.3 452.5 1 442.00 495.04 450.32 450.97 0.65 

53 475.6 476.8 476.8 477 0.2 476.9 1.3 461.81 517.23 470.50 470.55 0.05 

54 476.6 477.8 477.7 478 0.3 477.8 1.2 467.02 523.05 475.81 476.06 0.25 

55 478 479 479 479.2 0.2 479.1 1.1 469.40 525.72 478.24 478.80 0.56 

56 504.1 505.1 505 505.4 0.4 505.2 1.1 495.08 554.48 504.40 504.70 0.30 

57 507.6 507.3 507.1 507.4 0.3 507.3 -0.3 496.67 556.26 506.02 506.35 0.33 

58 514 514.6 514.5 514.8 0.3 514.6 0.6 500.46 560.51 509.88 510.02 0.14 

59 520 520.3 520.1 520.6 0.5 520.3 0.3 511.86 573.28 521.49 521.65 0.16 

60 532.2 532.1 532 532.4 0.4 532.2 0 521.09 583.62 530.90 531.11 0.21 

61 564.2 565.6 565.5 565.9 0.4 565.7 1.5 552.74 619.06 563.14 563.22 0.08 

62 566.3 566.8 566.6 567 0.4 566.8 0.5 554.40 620.91 564.83 565.02 0.19 

63 566.9 567.6 567.6 567.9 0.3 567.7 0.8 557.26 624.10 567.74 568.03 0.29 

64 576.7 577.3 577.3 577.5 0.2 577.4 0.7 565.50 633.34 576.14 576.20 0.06 

65 585.1 584.4 584.3 584.8 0.5 584.5 -0.6 573.30 642.08 584.09 584.14 0.05 

66 590.4 590 590.1 590.1 0.1 590.1 -0.3 578.39 647.79 589.28 589.59 0.31 

67 597.8 596.6 596.6 596.7 0.1 596.6 -1.2 582.53 652.43 593.49 593.64 0.15 

68 617.6 619.1 619 619.4 0.4 619.2 1.6 605.44 678.08 616.83 616.92 0.09 

69 621.6 623.2 623.1 623.3 0.2 623.2 1.6 606.60 679.38 618.02 618.09 0.07 

70 632.5 632.3 632.2 632.4 0.2 632.3 -0.2 621.42 695.97 633.12 633.35 0.23 

71 649.7 648.9 648.9 649.3 0.4 649 -0.7 639.66 716.41 651.70 651.75 0.05 

72 659.5 659.1 659 659.5 0.5 659.2 -0.3 643.69 720.92 655.81 655.85 0.04 

73 661.1 660.2 660.1 660.6 0.5 660.3 -0.8 646.58 724.15 658.75 658.77 0.02 

74 667.6 667.8 667.9 668.3 0.5 668 0.4 658.43 737.41 670.82 670.97 0.15 

75 674.4 674.9 674.8 675.3 0.5 675 0.6 664.65 744.37 677.16 677.29 0.13 

76 691.9 692.3 692.2 692.9 0.7 692.5 0.6 680.05 761.63 692.85 692.87 0.02 

77 692.9 694.3 694.1 695 0.9 694.5 1.6 681.60 763.36 694.43 694.59 0.16 

 
 

5.2.2.5 Numerical analysis of free-free panel 

FEM is used to compute the natural frequencies of the free-free panel. The modelling 

approach has been introduced in Section 4.2. Here, COMSOL is used and the maximum 

shell element size is 0.02 m. Rectangular elements are used because of higher accuracy. 

Since the small holes, even if their total number is 80, have little influence on the natural 

frequencies within the considered frequency region, such details are ignored in the FE 

models. In fact, it is also proved that adding the holes will decrease the mesh quality, 

reducing the predicting accuracy, which may exceed the influence of the holes themselves. 

Therefore, the geometry of the analysing panel is a rectangular plate of a×b = 

0.955m×1.148m without any holes. Thickness and material parameters are assumed based 

on ρh = 10.5354 kg/m2, ρ ∈ [2630, 2700] kg/m3, h ∈ [3.9,4] mm, E ∈ [68,79] GPa and ν = 

0.33. With an initial set of assumed parameters, a set of natural frequencies is obtained. 

These natural frequencies can compare with the experimental results. Then, according to 
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the errors between the numerical and experimental sets, the next set of assumed parameters 

can be proposed. The proposal can incorporate the analytical formula Eq. (5.15) or utilise 

an optimization algorithm. The experimental natural frequencies of Test 1 (see Table 5-7) 

are used as the target.  

 

However, as previously mentioned in Section 5.2.2.3, the boundary conditions in the 

experiment are probably not ideally free. If the constraint raised by suspension affects the 

flexural modes of the panel, it is important and beneficial to figure out the cut-off mode 

order. Then, the parameter updating or optimizing process can refer to a certain frequency 

range higher than the cut-off mode order. To check if the suspension condition matters, two 

sets of parameters were implemented to draw the lower and upper limits of the numerical 

natural frequencies: Case L with ρ = 2700 kg/m3, h = 3.9 mm, E = 68 GPa for the lower 

limit and Case U with ρ = 2630 kg/m3, h = 4 mm, E = 79 GPa for the upper limit. As 

shown in Table 5-7, the experimental natural frequencies of the first 5 modes are larger 

than the upper limits of numerical ones. Hence, the boundary conditions of the FE model 

are probably not consistent with the experimental ones. For further confirmation, spring 

foundation was added at the suspension point in the FE model according to Test 1. The 

change rule of natural frequencies can somehow prove the hypothesis. In this investigation, 

the implemented parameters are ρ = 2680 kg/m3, h = 3.93 mm, E = 69 GPa. Case A is the 

original without spring foundation, and Case B includes the spring foundation at the 

suspension point with stiffness in the normal direction kz = 105 N/m. 

 

Numerical natural frequencies of all above cases are listed in Table 5-7 alongside the 

experimental ones. As indicated from the table, the first five natural frequencies of the 

numerical model will always smaller than the experimental results, if the plate is completely 

free in the model. However, enforcing a soft restraint at the suspension point successively 

increases the natural frequencies to reach or surpass the experimental ones. Since this trial 

restraint is not conform to the real suspension, it is not able to correct the error between 

numerical and experimental results, but it highlights the modes that are significantly 

influenced by the suspension. As shown by fB - fA, the influence is decreasing as the 

frequency increases. Four regions are divided for the influence: 1st to 5th modes are 

generally affected; within 6th to 24th modes, the effect is still significant but dependent on 

the mode shape; higher than the 24th mode, the increase is less than 3 Hz; higher than the 

42nd mode, the difference is less than 1 Hz. The values should rely on other parameters of 

the panel, but the change rule is instructive.  
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5.2.2.6 Determination of parameters 

Based on the parameters updating approach introduced in Section 5.2.2.5, the final 

parameters are determined as ρ = 2680 kg/m3, h = 3.93 mm, E = 69 GPa and ν = 0.33. These 

are the parameters of Case A, whose natural frequencies are listed in Table 5-7. Fig. 5-22 

shows the difference between the predicting results fA to the test results ft1. Similarly, other 

cases are also depicted for comparison. As shown by the figure, the natural frequencies of 

Case A (i.e., fA) are very close to the results of Test 1 (i.e., ft1), especially when the mode 

order is higher than 42. Besides, it can be seen that there is a wider difference between the 

lower limit fL and the upper limit fU as the mode order increases. Using the same parameters 

as Case A, Case B (i.e., fB) better matches the test results in the low frequency range due to 

a small modification to boundary conditions. Overall, the updated parameters should match 

well with the test panel. 

 

 
Fig. 5-22. Change of the difference between numerical (Cases L, U, A and B) and experimental (Test 1) 

natural frequencies over mode order, for the free-free test panel. 

 

There are also other factors that may cause the numerical model different from the 

experimental settlement. For example, the membrane forces raised by gravity can increase 

the flexural natural frequencies. By simulation in COMSOL about this effect, the increase 

has been proved tiny and even smaller as the frequency increases. The mass of the 

accelerometers will slightly reduce the natural frequencies and be more influential in the 

high frequency range. This is also investigated in the FEA and proved not important in the 

considered frequency range. Similarly, air loading and small variation of lateral dimensions 

are also considered. The combination of all these effects is very small and makes no 

difference to the determination of parameters. 
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5.2.3 Mounted panel edge conditions 

With all the geometric and material parameters determined, the only uncertainties are the 

edge conditions. In Section 5.2.1, the uncoupled dynamic properties of the mounted panel 

have been characterized, which should depend on the panel’s edge conditions. Hence, they 

also provide important information to update the panel’s model. Ideally, the panel should 

be clamped or simply supported. However, the simulations via FEM (COMSOL), where 

the updated panel thickness and material properties have been implemented, demonstrate 

that both conditions cannot model the test panel well. As shown by Table 5-10 and Fig. 

5-23, the disagreement in natural frequencies points out the discrepancy. Note that, those 

highlighted in red in the table have exchanged the order to match the vibrating mode.  

 

 
Fig. 5-23. Scatter plot for natural frequencies of the mounted plate from numerical simulation vs from 

experimental measurement. Corresponding data are listed in Table 5-10. ‘Elastic restrained 1’ is for k𝜃x 

= 8 kN/rad,  k𝜃y = 14 kN/rad; ‘Elastic restrained 2’ is for k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad, E = 76 GPa. 

 

Aimed at yielding the natural frequencies and modes consistent with the experimental 

results, a more precise edge model is applied. As shown in Fig. 5-24, it is assumed that the 

edges are rigidly supported but elastically restrained against rotation. The two horizontal 

edges possess the same rotational stiffness kθx, and the two vertical ones are kθy. The 

assumption proposes a condition between the clamped (kθx = kθy = ∞) and the simply 

supported (kθx = kθy = 0) cases. The different stiffnesses between horizontal and vertical 

edges are based on the fact that they are constrained by different number of bolts and that 

the gravity of the test panel as well as the mounting frame may take effect. The test panel 
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for EMA, also as the mounted panel for modelling, is shown in Fig. 5-12 for its 

configuration in experiment. 

 

Table 5-10. Natural frequencies and modes of the mounted test panel in experiment and simulations. 

Order Mode 
EMA 

fr (Hz) 

Simulation fs (Hz) 

Clamped 

E = 69 GPa 

Simply 

supported 

E = 69 GPa 

k𝜃x = 8 kN/rad 

k𝜃y = 14 kN/rad 

E = 69 GPa 

k𝜃x = 5 kN/rad 

k𝜃y = 9 kN/rad 

E = 76 GPa 

1 (1,1) 38.10 43.01 23.33 38.15 37.73 

2 (1,2) 65.14 76.24 51.06 67.64 67.52 

3 (2,1) 88.93 98.00 65.56 88.31 88.49 

4 (2,2) 116.21 128.61 93.29 116.01 116.91 

5 (1,3) 117.64 130.08 97.28 116.23 117.18 

6 (2,3) 164.50 179.88 139.50 162.80 165.10 

7 (3,1) 171.29 182.05 135.92 165.58 167.38 

8 (1,4) 188.88 203.16 161.97 183.11 186.13 

9 (3,2) 197.55 211.44 163.64 192.67 195.48 

10 (2,4) 233.09 251.16 204.16 228.43 233.01 

11 (3,3) 243.67 260.86 209.83 238.41 242.97 

12 (1,5) 278.63 295.05 245.10 268.12 274.25 

13 (4,1) 280.70 294.35 234.38 269.74 274.51 

14 (4,2) 305.74 323.12 262.08 296.67 302.62 

15 (3,4) 309.75 330.31 274.47 302.97 310.09 

16 (2,5) 321.59 341.78 287.27 312.61 320.43 

17 (4,3) 351.00 371.48 308.24 341.96 349.90 

18 (1,6) 385.77 405.47 346.65 371.22 381.52 

19 (3,5) 395.74 419.40 357.54 386.25 396.81 

20 (4,4) 414.85 439.50 372.84 405.85 416.61 

21 (5,1) 418.84 434.73 360.89 400.96 410.18 

22 (2,6) 428.72 451.39 388.80 415.17 427.22 

23 (5,2) 443.51 463.16 388.57 427.86 438.38 

24 (5,3) 487.01 510.83 434.69 472.99 485.65 

25 (4,5) 499.80 527.19 455.86 488.42 502.84 

26 (3,6) 500.62 527.74 459.02 488.08 503.04 

27 (1,7) 511.79 534.35 466.60 492.46 507.95 

28 (5,4) 550.36 577.93 499.24 536.54 552.19 

29 (2,7) 553.04 579.61 508.71 536.00 553.3 

30 (6,1) 584.65 603.07 515.39 559.37 574.59 

31 (4,6) 602.45 634.29 557.29 589.61 608.58 

32 (6,2) 608.42 631.24 543.05 586.30 602.88 

33 (3,7) 623.97 654.98 578.88 608.36 628.66 

34 (5,5) 633.82 664.49 582.20 618.64 638.14 

35 (6,3) 651.30 678.52 589.13 631.38 650.20 

36 (1,8) 656.55 681.61 604.90 631.85 653.55 
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Fig. 5-24. Rotational stiffness along panel edges. 

 

Based on the new model, the edge conditions can be updated via the two parameters kθx and 

kθy. However, the analysis on the influence of the two parameters finds that the accuracy 

can be further improved if Young’s modulus E is included as an updating parameter. 

Though Young’s modulus of the panel has been identified in Section 5.2.2, it is still 

considered as an updatable parameter here for obtaining a better model that matches the 

test case. This does not mean that the material property has changed. The necessity may be 

related to the installation of the panel, which can raise unknown in-plane tension or 

compression. Since the membrane forces are not introduced to the plate model, they may 

be compensated by Young’s modulus, even resulting in anisotropic Ex and Ey. In [84], a panel 

(aluminium plate) with similar installation has been implemented an advance approach to 

update the numerical model. In that case, the numerical model with Ex = 66 GPa and Ey = 

81 GPa matches the test system very well. In the paper, it is not explained why the best 

model holds such an anisotropic behaviour, where Ey is 22.7% larger than Ex and even out 

of the range of common values for aluminium. Referring to this, we suggest that it may be 

associated with the membrane forces and will be less significant if the thickness-to-span 

ratio (h/l) is higher. In fact, the panel in that paper is of ‘A2’ dimensions (international 

paper sizes 420mm × 594mm) with 3-mm thickness, i.e., h/l ≈1/200 < 1/100, which 

indicates that it is sensitive to the membrane forces [157]. Similarly, our mounted panel has 

h/l ≈ 1/250 ~ 1/200 < 1/100. Moreover, the reference [84] indicates that the rotational 

stiffness is not uniformly distributed in every imperfectly clamped edge. However, such 

details are not discussed in this thesis.  

 

Table 5-10 and Fig. 5-23 show the estimated results out of two updated numerical models 

with elastic edge restraints. The first model keeps the Young’s modulus identified by 

Section 5.2.1, E = 69 GPa. With the rotational edge stiffnesses k𝜃x = 8 kN/rad,  k𝜃y = 14 

kN/rad, the numerical results reach a good agreement with the experimental ones in the first 

several modes, but the discrepancy increases as the frequency increases. As can be observed 

from Fig. 5-23, if there is a fitting curve for the results of ‘Elastic restrained 1’, its slope is 
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smaller than the desire value. Raising the rotational edge stiffnesses can increase the slope, 

but it also increases the natural frequencies of the first several modes, breaking the 

previously reached agreement. By contrast, the second model has the Young’s modulus 

updated, in addition to the rotational edge restraints. For simplicity, the mechanical 

behaviour is assumed to be isotropic, even though an orthotropic model should be better. 

This model has the updated parameters: k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad and E = 76 GPa. Its 

natural frequencies are listed in the last column of  Table 5-10 and plotted in Fig. 5-23 as 

‘Elastic restrained 2’. As the figure shows, the natural frequencies estimated by this model 

are in line with the results of EMA. This is the final updated model for the test panel in the 

uncoupled mounted situation.  

 

However, the natural frequencies estimated from the final model still have small deviations 

from the experimental ones. As shown in Fig. 5-23, the estimation fluctuates around the 

expected line. The relationship between the deviation ( fs− fr ) and the corresponding mode 

(m,n) is analysed, which is also an important basis for updating the parameters. For a better 

understanding of the rules, three groups of the panel modes are distinguished from the 

others, as illustrated in Table 5-10 using the three shading colours: 

• green. This group includes the 2nd, 5th, 8th, 12th, 18th, 27th and 36th modes, they can 

be regarded as the axial modes in y direction; 

• blue. This group includes the 3rd, 7th, 13th, 21st and 30th modes, they can be regarded 

as the axial modes in x direction; 

• grey. This group includes the 1st, 4th, 11th, 20th and 34th modes, they can be regarded 

as the oblique modes. 
 

Then, focusing on the final model, we can notice some rules. At first, for the green group, 

from the 2nd to the 12th mode, the deviation between the estimated and the measured 

frequencies changes from positive (2.4 Hz) to negative (-4.2 Hz), after which, the deviation 

is about -4 Hz for the other modes. Since this is the group concerning the axial modes in y 

direction, it is highly related to k𝜃x and Ey. The current combination of k𝜃x and E 

demonstrates a not bad outcome. Secondly, in the blue group, the estimated natural 

frequencies are always smaller than the measured ones and the absolute deviation s rf f−

increases with the frequency. At 3rd mode, it is 0.4 Hz, while at 30th mode, it is 10 Hz. Since 

this group of axial modes in x direction is more relevant to k𝜃y and Ex, the current 

combination of k𝜃y and E underestimates the increasing slope of natural frequency over 

mode order in x direction. Accordingly, Ex is expected higher than the assigned value E = 

76 GPa. Thirdly, attention is paid to the grey group. In the previous two groups, the 

estimated natural frequencies are smaller than the measured values since the 5th mode, but 

in the grey group (for the oblique modes), the estimated results are shown even larger than 
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the measured ones as the frequency increases. Hence, it is considered that there is a 

stiffening effect when the wavelengths in x and y directions are close to each other. This 

could be also related to the non-uniformity of rotational stiffness along a single edge, as 

mentioned previously, which is noticed from [84]. To sum up, the final updated parameters 

are determined with a comprehensive consideration over the above three points, reaching 

the best agreement in natural frequencies with a trade-off among different modes.  

 

Finally, the updated model (implemented in COMSOL) is used to predict the frequency 

response of the mounted uncoupled test panel. For simulating the one of the measurements 

in the hammer test, a unit normal force is imposed at the location of Point 80 (see Fig. 5-12), 

and the acceleration at A1 position is evaluated. In addition, the numerical model is 

assigned with the damping loss factor η = 2ζr ≈ 0.003 according to the damping ratios ζr 

obtained from EMA listed in Table 5-4 for A180. The simulation results and the 

measurement results of the accelerance A180 are shown and compared in Fig. 5-25. As 

expected, the FRFs between test and simulation match well if the natural frequencies nearby 

have a good agreement, e.g., around the first four resonances.  

 

 
Fig. 5-25. Measured and simulated FRFs of the mounted panel, represented by the accelerance A180 , 

whose input location Point 80 and output location A1 are shown in Fig. 5-12. 

 

5.3 Plate-cavity system characterization 

When the previous two Sections 5.1 and 5.2 characterize the Noise-Box cavity and the 

mounted panel separately and try to avoid the coupling effect, this section considers them 

together, fully coupled with each other. Like the EMA of structures (introduced and utilized 

in Section 5.2.1), EMA is here applied to an interior vibroacoustic system, i.e., the plate-
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cavity coupled Noise-Box, to obtain the modal parameters. Later, the results are compared 

between the coupled system and the uncoupled components, and between experiment and 

simulation. Due to the unknown change of plate mounting conditions between the coupled 

and uncoupled case, the plate-cavity system model is updated based on the identified 

coupled modes. Finally, the influence of the cavity on the plate is revealed from the updated 

FE model. 

 

5.3.1 Improved EMA for plate-cavity system 

EMA has been widely used for structural dynamics. As for interior acoustics, though EMA 

is applicable due to the existence of acoustic modes [210], it is much less popular because of 

the difficulty in the characterization of the acoustical excitation sources. Concerning the 

EMA for vibroacoustic systems, it is even less discussed and only investigated in a very 

limited number of papers [93,94,211,212]. The tricky issue is that the coupled vibroacoustic 

problem is non-symmetric when formulated using the measurable variables: structural 

displacement w and the acoustic pressure p. A typical formulation, which can be derived 

from the FEM, is given by [188] 

  2

T

ˆˆ[ ] [0][ ] [ ] { } { }
,

ˆ[0] [ ] { }[ ] [ ] {0}

wp

wp

MK C w F
H pC Q


 −   

− =           
 (5.16) 

where the first and second lines are respectively for the structural and acoustic fields. [K], 

[M], ˆ{ }w  and ˆ{ }F  are, respectively, the mass matrix, stiffness matrix, nodal unknown 

displacement vector and nodal force vector of the structure. [H], [Q] and ˆ{ }w  are, 

respectively, the kinetic energy matrix, compressional energy matrix and nodal unknown 

sound pressure vector of the fluid. [Cwp] is the coupling matrix between two fields, derived 

from the fluid-structure interface.  

 

From Eq. (5.16), it is clear that the system matrix is non-symmetric, so whether the model 

formulation expressed like Eq. (5.12) is still applicable to this case is not sure. The 

vibroacoustic system defined by Eq. (5.16) has two groups of FRFs, respectively for the 

two unknown variables w and p over a point force F. This subsection will prove in practice 

that the formula Eq. (5.12) derived from the modal model of a structure is still feasible to 

the FRFs between w and F in the coupled system, but for the FRFs between p and F, another 

expression should be used.  

 

In fact, about the FRFs in the vibroacoustic system, Wyckaert [94] has proved the formulae 

theoretically using the right and left eigenvectors of the non-symmetric system. The right 

eigenvector ψ(r) and left eigenvector ψ(l) for the eigenvalue λr of the system are related by  
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with subscripts s and f denoting the structure and the fluid, respectively. Suppose that the 

displacement of the plate at point j is wj, that the sound pressure at point l inside the cavity 

is pcl, and that the force at point k of the plate is denoted as Fk, the FRFs can be written as 
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and 
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where, (λr, λr
*) are the pairs of eigenvalues of the corresponding characteristic problem, and 

ψsrj, ψsrk and ψfrl are elements in the corresponding right eigenvectors. Given the residuals 

Clk,r = Pr ψfrl ψsrk, Eq. (5.19) can be expressed as 
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However, this is not a complete expression for a fitting model when the lower and upper 

residuals outside the fitting band are significant. Besides, it is not specified about how to 

extract the modal parameters from the outcome.  

 

Thus, in this subsection, to identify the modal parameters of the vibroacoustic system using 

the best fitting approach, like Section 5.2.1.3, an improved fitting curve model of Hlk is 

proposed:  

 
2

1

*

mod , ,1 1
( ) ,

( ) ( )
r

r n
lk r lk r

lk R R

r n r rlk lkr r

C C
H

i i i ii M K
 

     

=



=

= + + +
− − + − − −

 
 
 

  (5.21) 

with the lower and upper residuals added to Eq. (5.20), for the truncation of frequency range. 

Eigenvalues λr are replaced by -σr+iω, so that the damping ratios can be estimated through 

ζr = σr/ωr. The mode shapes are considered relying on the imaginary parts of Clk,r. Actually, 

if the terms in the middle of Eq. (5.21) are summed up for each mode, a formula similar to 

the middle term of Eq. (5.12) will come out. However, numerator of the formula is no 

longer a single real number but includes an additional term related to iω, which is due to 

the fact that the modal residuals Clk,r in Eq. (5.21) are complex numbers with nonzero real 

parts. Besides, the lower and upper residuals for the out-of-band compensation are different 

between Eq. (5.21) and Eq. (5.12). There is no reference for these out-of-band residuals, 

but the practice shows that the two terms in Eq. (5.21) work instead of the counterparts in 

Eq. (5.12).  
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Then, the modal parameters of the system can be identified from two groups of FRFs. The 

measured FRFs between w and F are fitted using the model expressed by Eq. (5.12), while 

the measured FRFs between p and F are approached by Eq. (5.21). Even if only one group 

can reflect all the modes (with respect to the natural frequencies and damping ratios), it is 

recommended to use both groups. As is indicated from the simulation outcome (see Fig. 

4-18), the response of the plate at the cavity-controlled modes could be not significant 

enough to distinguish the resonance, so it is hard to identify all modes from the first group. 

On the other hand, the second group will lack the information of the plate mode shapes. 

When both groups are applied, the information of the vibroacoustic system will be more 

complete, and the agreement between the two sets of results can improve the credibility. 

 

Therefore, in the following EMA of the plate-cavity coupled Noise-Box, the two groups of 

FRFs are measured and then used to estimate the modal parameters. 

 

5.3.1.1 Hammer testing 

To obtain the FRFs, this test keeps using the hammer excitation. Consequently, the testing 

procedures are identical to the EMA of uncoupled panel in Section 5.2.1. Experimental set-

up is also not much different. As shown by Fig. 5-26, the main difference (compared to Fig. 

5-11) is the Noise-Box cavity, where the absorbing materials have been removed and six 

microphones (Brüel & Kjær Type 4188) are installed to detect the sound pressure inside. 

The locations of the microphones are specified in Fig. 5-27 with their coordinates under the 

depicted coordinate system. This coordinate system is used whenever the Noise-Box cavity 

is involved, in consistence with other chapters (e.g., see Fig. 3-3, Fig. 4-11 or Fig. 4-16). 

Besides, one more sensor signal conditioner (PCB 483C) is used for conditioning the 

microphone signals. The test panel configuration is the same as the uncoupled case, as 

shown by Fig. 5-12. Corresponding to the new coordinate systems, the accelerometers A1, 

A2 and A3 are respectively specified as w1, w2 and w3 with coordinates r'1, r'2 and r'3 in Fig. 

5-27, and Point 80 is associated with F80 and r'F80. 

 

Next, for the hammer test procedures, we can refer to Section 5.2.1.2. In this case, 

determined by the module (NI 9239 instead of NI 9234) used in the acquisition (NI cDAQ), 

the sampling frequency is 5000 Hz. Totally 13 channels are active, acquiring the time 

history of signals from hammer, accelerometers and microphones. Using the input force F80 

at r'F80, the output acceleration a1 at r'1 and the output pressure pc1 at rc1 as examples (see 

Fig. 5-27 for the input-output locations), the measured FRFs a1/F80 and pc1/F80 are 

respectively presented in Fig. 5-28 and Fig. 5-29.  
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Fig. 5-26. Experimental set-up for plate-cavity system characterization 
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Fig. 5-27. Coordinates of input and output locations. 

 

 
Fig. 5-28. Measured transfer function a1/F80 and coherence function of the plate-cavity system (see Fig. 

5-27) between acceleration at w1 and force at F80. 
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Fig. 5-29. Measured transfer function pc1/F80 and coherence function of the plate-cavity system (see Fig. 

5-27) between sound pressure at pc1 and force at F80. 

 

5.3.1.2 Modal parameters estimation 

The modal parameters can be identified from the FRFs using the best curve fitting approach, 

similarly to Section 5.2.1.3. For the FRFs between panel acceleration (or displacement) and 

force, the formula Eq. (5.13) (or Eq. (5.12)) applied in the uncoupled case is continuously 

used in this case. For the FRFs between cavity pressure and force, the expression proposed 

in Eq. (5.21) is adopted. They will be seen performing well in the following results. 

 

Two curve fitting strategies have been mentioned in Section 5.2.1.3, and they are used in 

this coupled case in the same way. Regarding the global best fitting approach that fits 

multiple FRFs simultaneously, the two groups of FRFs, i.e., Ajk = aj/Fk and Hlk = pcl/Fk, are 

considered separately. As a result, two sets of modal parameters will be obtained based on 

the two groups of FRFs. Since the structural field and the acoustic field may be more 

sensitive to different modes, the natural frequencies and damping ratios can be chosen from 

the two sets dependently. As for mode shapes, the former set can only represent the panel, 

while the latter is for the cavity. Considering the different orders of amplitude, two fields 

are scaled independently. Fig. 5-30 shows an example of the identification results of mode 

shapes. The two modes are estimated together since they should interact with each other 

with so close the natural frequencies.   
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(a)        

(b)     

Fig. 5-30. Mode shapes of (a) 30th and (b) 31st modes of the plate-cavity system (see Table 5-11 for 

mode order and modal parameters). Plate is represented by the 1/4 panel grid (see Fig. 5-12), and cavity 

is by the 6 microphones (see Fig. 5-27).  

 

After the global best fitting, which yields the modal parameters mode(s) by mode(s), the 

single curve best fitting for all modes is achievable by applying the previously estimated 

modal parameters as initial values. Table 5-11 lists the estimate results corresponding to 

the case when point force is acting on Point 80 (i.e., F80 as shown in  Fig. 5-27). Changing 

hitting position will see difference in modal residuals Cjk,r and Clk,r, but marginal difference 

in natural frequencies and damping ratios. For validating the results, the estimate FRFs are 

reconstructed based on the listed modal parameters and compared with the measured ones, 

as illustrated in Fig. 5-31 and Fig. 5-32. As noticeable from the numerical investigation into 

the plate-cavity system (Section 4.4), the coupled modes can be categorized as plate 

controlled or cavity controlled. Bothe plate and cavity controlled modes have strong impact 

on the cavity’s response, but the cavity controlled modes have much less influence on the 

plate. Sometimes, the cavity controlled modes are even too weak to observe or identify 

from the structural FRFs. Therefore, for the modal parameters in Table 5-11 that are 

identified from the panel accelerance A180 = a1/F80, some modes are missing. However, 

since they are cavity controlled, they can be estimated from the FRF related to the acoustic 

field, such as H180 = pc1/F80. Note that the input and output points are also important. For 

instance, at the 34th mode, when the exciting position is very close to a nodal line of plate, 
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both structural and acoustic fields are hardly excited. Since it is a plate controlled mode and 

the structural itself is barely vibrating, the acoustic field does even less resonance. 

Consequently, the parameters for this mode are hard to identified from H180, and the natural 

frequency and damping ratio listed (italic and red) are estimated through H170 instead. 

 

What’s more, in Table 5-11, for the parameters that are available from both FRFs, most of 

them are in good agreement. This indicates that the two models, Eq. (5.13) for Ajk and Eq. 

(5.21) for Hlk, yield consistent natural frequencies and damping ratios, which are the 

expected outcomes if the models are accurate. It can also be found in Table 5-11 that the 

damping ratios of cavity controlled modes are usually smaller than 0.001 and the 

counterparts of the plate controlled ones tend to be larger. However, the discrepancy of the 

damping ratios between the two groups fades away as the frequency increases. It has been 

tried to distinguish the cavity controlled modes in Table 5-11 by shading grey and the basis 

of selection is the uncoupled acoustic modes (see Table 5-1). In particular, some rows are 

shading orange because there are two modes very close to one acoustic mode. They can be 

of two situations: (1) it is clear that one is cavity controlled and the other is plate controlled; 

(2) frequency splitting happens, while both are fully coupled by the plate and cavity. To 

determine the corresponding situation, it may be necessary to compare the coupled and 

uncoupled, plate and cavity responses. Such comparison is going to be discussed in the next 

subsection 5.3.2. 

 

 
Fig. 5-31. Comparison of the coupled panel accelerance A180 (ω) between experiment and the modal 

model estimation. The modal model uses the parameters listed in Table 5-11. 
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Fig. 5-32. Comparison of the transfer function H180 = pc1/F80 between experiment and the modal model 

estimation. The modal model uses the parameters listed in Table 5-11. 

 

Table 5-11. Two sets of identified modal parameters for the plate-cavity system. One set is estimated 

from the A180 = a1/F80, and the other is by H180 = pc1/F80. 

Order 
Best fitting for A180  Best fitting for H180 

fr (Hz) ζr C180,r  fr (Hz) 𝜎r ζr Re[C180,r] Im[C180,r] 

1 41.4 0.0037 -0.254  41.4 -0.957 0.0037 24.446 -21.026 

2 69.0 0.0015 -0.069  69.0 -0.763 0.0018 -0.329 0.406 

3 92.5 0.0013 -0.054  92.5 -0.707 0.0012 0.285 -0.539 

4 120.1 0.0012 0.111  120.2 -0.875 0.0012 -0.115 0.801 

5 121.7 0.0027 0.352  121.6 -2.193 0.0029 -2.971 6.012 

6 163.6 0.0007 -0.002  163.6 -0.668 0.0007 3.568 -9.372 

7 168.7 0.0010 0.087  168.7 -1.098 0.0010 -0.539 1.537 

8 175.1 0.0027 -0.052  175.2 -2.935 0.0027 -4.521 11.866 

9 193.3 0.0016 0.107  193.3 -2.037 0.0017 -1.527 4.775 

10 201.5 0.0014 -0.014  201.5 -1.868 0.0015 -0.400 0.937 

11 210.4 0.0006 -0.001  210.4 -0.740 0.0006 -0.722 2.195 

12 237.5 0.0011 0.006  237.5 -2.599 0.0017 -0.115 0.374 

13 247.6 0.0013 0.126  247.6 -2.014 0.0013 3.883 -12.626 

14 260.2 0.0007 -2E-5  260.1 -0.995 0.0006 -0.630 1.129 

15 263.7 0.0038 0.005  263.7 -4.953 0.0030 2.327 -5.030 

16 266.8 0.0013 -0.006  266.8 -2.155 0.0013 -2.309 6.508 

17 282.9 0.0012 -0.127  282.9 -2.029 0.0011 -1.056 4.126 

18 284.9 0.0018 -0.092  284.9 -3.220 0.0018 2.535 -8.491 

19 300.1 0.0007 -0.003  300.1 -1.161 0.0006 -0.711 2.436 

20 309.9 0.0012 -0.020  309.9 -2.547 0.0013 0.236 -0.555 

21 314.1 0.0011 0.033  314.2 -3.617 0.0018 0.088 0.276 

22 325.1 0.0011 -0.006  325.2 -2.176 0.0011 -1.896 7.470 
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Table 5-11 (continued). Two sets of identified modal parameters for the plate-cavity system. One set is 

estimated from the A180 = a1/F80, and the other is by H180 = pc1/F80. 

Order 
Best fitting for A180  Best fitting for H180 

fr (Hz) ζr C180,r  fr (Hz) 𝜎r ζr Re[C180,r] Im[C180,r] 

23 334.9 0.0006 -2E-6  334.9 -1.880 0.0009 -0.171 0.300 

24 342.7 0.0006 0.002  342.7 -1.182 0.0005 1.187 -4.350 

25 355.2 0.0010 0.171  355.1 -1.977 0.0009 0.072 -0.207 

26 366.1 0.0006 0.001  366.1 -1.592 0.0007 1.029 -3.550 

27 390.2 0.0011 0.082  390.3 -2.839 0.0012 -0.217 1.042 

28 400.0 0.0011 -0.054  400.0 -2.587 0.0010 1.296 -3.261 

29 401.0 0.0015 0.005  401.1 -1.616 0.0006 -3.318 11.543 

30 418.4 0.0007 0.047  418.4 -1.620 0.0006 -5.767 32.572 

31 419.6 0.0010 0.031  419.6 -2.054 0.0008 0.397 -0.909 

32     422.9 -1.659 0.0006 -3.348 15.703 

33 425.1 0.0010 0.093  425.1 -2.822 0.0011 7.601 -39.105 

34 433.4 0.0010 0.004  433.0 -3.023 0.0011   

35 445.7 0.0008 0.002  445.5 -3.757 0.0013 -0.584 0.518 

36 451.9 0.0007 0.002  451.8 -2.240 0.0008 0.143 -0.605 

37     459.3 -1.432 0.0005 1.589 -5.888 

38     471.2 -2.034 0.0007 1.665 -7.173 

39 490.7 0.0010 -0.159  490.8 -3.151 0.0010 -3.474 13.399 

40 494.7 0.0006 -0.047  494.7 -1.981 0.0006 4.613 -18.280 

41 503.7 0.0007 -0.007  503.8 -2.581 0.0008 -3.154 28.899 

42 504.9 0.0009 0.021  505.1 -3.154 0.0010 1.275 -21.736 

43 511.7 0.0005 -0.026  511.7 -1.548 0.0005 -2.070 16.642 

44 515.8 0.0010 -0.194  515.9 -2.808 0.0009 1.549 -32.896 

45 516.6 0.0009 -0.097  516.5 -3.136 0.0010 1.324 12.691 

46 542.0 0.0007 -0.001  542.0 -1.984 0.0006 0.243 -0.780 

47 547.8 0.0006 -0.003  547.8 -1.873 0.0005 -0.024 1.095 

48 551.3 0.0007 0.001  551.4 -1.877 0.0005 -0.309 1.842 

49 555.6 0.0009 -0.015  555.6 -3.108 0.0009 0.051 -2.339 

50 557.8 0.0011 -0.054  557.8 -3.747 0.0011 -0.207 2.913 

51 569.9 0.0005 -0.003  569.9 -1.744 0.0005 -1.567 8.447 

52 585.8 0.0009 -0.007  585.7 -2.365 0.0006 -0.166 -0.910 

53 588.9 0.0009 -0.097  589.0 -4.225 0.0011 0.440 1.179 

54 595.6 0.0005 -0.003  595.6 -2.294 0.0006 1.203 -6.604 

55     604.0 -1.753 0.0005 -1.059 5.474 

56 605.2 0.0007 0.015  605.3 -2.718 0.0007 0.506 -4.566 

57 608.0 0.0009 0.022  608.0 -3.557 0.0009 -0.240 3.225 

58 613.3 0.0009 -0.016  613.2 -3.606 0.0009 0.412 -1.627 

59 622.0 0.0006 -0.006  622.0 -2.222 0.0006 -1.122 8.325 

60 629.1 0.0010 -0.142  629.0 -3.468 0.0009 -0.770 -0.267 

61     630.9 -1.674 0.0004 1.727 -4.090 

62     638.0 -2.558 0.0006 1.405 -15.738 

63 638.3 0.0007 0.018  638.3 -2.581 0.0006 -3.960 29.025 

64     651.4 -2.171 0.0005 -0.016 0.145 

65 655.8 0.0011 0.176  655.8 -4.517 0.0011 3.047 -16.134 

66 659.8 0.0012 -0.191  659.8 -4.723 0.0011 1.934 -12.414 

67     661.2 -1.927 0.0005 1.058 -1.485 

68     665.0 -2.113 0.0005 -2.490 12.710 
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5.3.2 Comparison between coupled and uncoupled situations 

For understanding the modes of the plate-cavity system, it is worthwhile to compare them 

with the uncoupled plate and cavity. Combination of the three parts of EMA results that are 

respectively obtained in Section 5.1.3 (Table 5-1), Section 5.2.1.3 (Table 5-4) and Section 

5.3.1.2 (Table 5-11) yields a summary shown in Table 5-12.  

 

Table 5-12. Summary of experimental results on natural modes and frequencies of the uncoupled plate 

and cavity and the coupled plate-cavity system. 

Uncoupled panel  Uncoupled cavity  Plate-cavity system 

Order Mode fr,s (Hz) ζr,s  Order (n2D,ny) fr,a (Hz)  Order fr,sa (Hz) ζr,sa 
     0 (0,0) 0     

1 (1,1) 38.1 0.0046      1 41.4 0.0037 

2 (1,2) 65.1 0.0018      2 69.0 0.0018 

3 (2,1) 88.9 0.0016      3 92.5 0.0012 

4 (2,2) 116.2 0.0014      4 120.2 0.0012 

5 (1,3) 117.6 0.0028      5 121.6 0.0029 
     1 (1,0) 162.9  6 163.6 0.0007 

6 (2,3) 164.5 0.0014      7 168.7 0.0010 

7 (3,1) 171.3 0.0028      8 175.2 0.0027 

8 (1,4) 188.9 0.0030      9 193.3 0.0017 

9 (3,2) 197.6 0.0015      10 201.5 0.0015 
     2 (0,1) 208.9  11 210.4 0.0006 

10 (2,4) 233.1 0.0024      12 237.5 0.0017 

11 (3,3) 243.7 0.0020      13 247.6 0.0013 
     3 (2,0) 259.5  14 260.1 0.0006 
         15 263.7 0.0030 
     4 (1,1) 265.5  16 266.8 0.0013 

12 (1,5) 278.6 0.0017      17 282.9 0.0011 

13 (4,1) 280.7 0.0045      18 284.9 0.0018 
     5 (3,0) 300.0  19 300.1 0.0006 

14 (4,2) 305.7 0.0027      20 309.9 0.0013 

15 (3,4) 309.8 0.0014      21 314.1 0.0011 

16 (2,5) 321.6 0.0020      22 325.2 0.0011 
     6 (2,1) 333.7  23 334.9 0.0009 
     7 (4,0) 342.6  24 342.7 0.0005 

17 (4,3) 351.0 0.0012      25 355.1 0.0009 
     8 (3,1) 366.1  26 366.1 0.0007 

18 (1,6) 385.8 0.0016      27 390.3 0.0012 

19 (3,5) 395.7 0.0018      28 400.0 0.0010 

     9 (4,1) 401.4  29 401.1 0.0006 

     10 (0,2) 418.9  30 418.4 0.0006 

20 (4,4) 414.8 0.0014      31 419.6 0.0010 

     11 (5,0) 423.2  32 422.9 0.0006 

21 (5,1) 418.8 0.0023      33 425.1 0.0011 

22 (2,6) 428.7 0.0010      34 433.4 0.0010 

23 (5,2) 443.5 0.0036      35 445.7 0.0008 

     12 (1,2) 450.3  36 451.8 0.0008 
     13 (6,0) 459.6  37 459.3 0.0005 
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Table 5-12 (continued). Summary of experimental results on natural modes and frequencies of the 

uncoupled plate and cavity and the coupled plate-cavity system. 

Uncoupled panel  Uncoupled cavity  Plate-cavity system 

Order Mode fr,s (Hz) ζr,s  Order (n2D,ny) fr,a (Hz)  Order fr,sa (Hz) ζr,sa 
     14 (5,1) 471.9  38 471.2 0.0007 

24 (5,3) 487.0 0.0014      39 490.8 0.0010 
     15 (2,2) 494.5  40 494.7 0.0006 

25 (4,5) 499.8 0.0010         

26 (3,6) 500.6 0.0018      41 503.8 0.0008 

     16 (6,1) 505.1  42 505.1 0.0010 
     17 (7,0) 512.1  43 511.7 0.0005 

27 (1,7) 511.8 0.0018      44 515.9 0.0009 
     18 (3,2) 516.4  45 516.5 0.0010 
     19 (4,2) 542.7  46 542.0 0.0006 
     20 (8,0) 549.4  47 547.8 0.0005 
     21 (7,1) 551.9  48 551.4 0.0005 

28 (5,4) 550.4 0.0014      49 555.6 0.0009 

29 (2,7) 553.0 0.0016      50 557.8 0.0011 
     22 (9,0) 570.1  51 569.9 0.0005 
     23 (8,1) 586.9  52 585.7 0.0006 

30 (6,1) 584.7 0.0020      53 589.0 0.0011 
     24 (5,2) 594.7  54 595.6 0.0006 
     25 (10,0) 604.9  55 604.0 0.0005 
     26 (9,1) 606.3  56 605.3 0.0007 

31 (4,6) 602.5 0.0015      57 608.0 0.0009 

32 (6,2) 608.4 0.0018      58 613.2 0.0009 
     27 (6,2) 623.0  59 622.0 0.0006 

33 (3,7) 624.0 0.0018      60 629.0 0.0009 
     28 (0,3) 630.9  61 630.9 0.0004 
     29 (10,1) 638.8  62 638.0 0.0006 

34 (5,5) 633.8 0.0010      63 638.3 0.0006 
     30 (1,3) 651.6  64 651.4 0.0005 

35 (6,3) 651.3 0.0016      65 655.8 0.0011 

36 (1,8) 656.5 0.0020      66 659.8 0.0011 
     31 (7,2) 661.4  67 661.2 0.0005 
     32 (11,0) 664.9  68 665.0 0.0005 

 
 

In Table 5-12, the coupled modes are listed in the same rows of its corresponding uncoupled 

controlling plate or cavity modes. As the table shows, the cavity controlled coupled modes 

have their natural frequencies approximated to the uncoupled situation, which indicates that 

vibration of the flexible plate has tiny influence on those modes. This is in consistence with 

what has been observed through the FE simulations (see Table 4-10 in Section 4.3.3). 

However, for the plate controlled coupled modes, the difference to the uncoupled panel is 

unlike the rule that was found from the simulations. In Section 4.3.3, the similar comparison 

was done on the simulation results out of the initial numerical models. The summary Table 

4-10 indicates that the panel natural frequencies are slightly decreased by the backed cavity 
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except the first and the thirteenth modes. Therefore, the coupling between the panel and the 

cavity is not strong. Either the stiffening or mass effect from the cavity to the panel is 

limited. Even though the models that yield the simulation results have not yet been updated, 

the coupling mechanism should hold. 

 

While looking back to the experiment on the uncoupled panel, it is found that the panel’s 

natural frequencies are not stable and very sensitive to the mounting boundaries and 

temperature. Therefore, it can be expected that the boundary conditions of the panel in the 

coupled case are different from the identified uncoupled case. Limited to the plate 

controlled modes, their differences in natural frequencies to the uncoupled panel (the 

identified case listed in Table 5-12) ∆fsa = fr,sa – fr,s, are plotted in Fig. 5-33, versus the panel 

mode order. Meanwhile, the counterparts of simulations (∆fsa = fsa – fs, based on Table 4-10) 

are plotted as reference. Then, it can be noticed that the difference in the experimental case 

too much exceeds the coupling effect that can be raised by the Noise-Box cavity. Instead, 

its relationship to the mode order is similar to the frequency shift observed in the discussion 

about different measurements of the uncoupled panel (see Section 5.2.1.4 and Fig. 5-17). 

Therefore, in the model updating of the plate-cavity system, the panel should be focused 

and the strategy could be similar to the uncoupled case in updating the mounting edge 

conditions (i.e., Section 5.2.3). 

 

 
Fig. 5-33. Difference in natural frequencies of the mounted panel between the cavity backed case and in 

vacuo case. Experimental results correspond to Table 5-12: ∆fsa = fr,sa – fr,s; simulation results correspond 

to Table 4-10: ∆fsa = fsa – fs. 

 

Besides, Table 5-12 highlights two exceptions in red. One is the 15th coupled mode. It is 

not related to a plate or cavity mode in the table. Indeed, it was thought as a miss fitting but 

the double check found that this frequency is necessary for a perfect fitting. While checking 

its mode shape, it is noticed that the acoustic field is similar to the 16th mode but opposite 

in phase. Therefore, it may have a close relationship to the 4th cavity mode, but it is still not 
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rashly considered as controlled by that cavity mode, since the damping ratio is much larger 

than other cavity controlled modes. The reason for its presence is not yet figured out, but it 

is considered necessary to list as it is. The other is the 25th panel mode. The frequency of 

this mode is very close to the 26th panel mode. The 25th panel mode is hard to be identified. 

While it is slightly noticeable in the coupled case, it is even harder to find in the coupled 

case, since the next cavity mode better fits the 26th mode.  

 

At last, one more important point is that, in the experiment, the uncoupled panel is not 

ideally in vacuo, but approximated by covering the cavity walls with sound absorbing 

materials. This may lead to some errors, especially for the first several modes. However, 

the influence can be investigated through numerical simulations. In this sense, the 

comparison between coupled and uncoupled cases is indeed between two coupled cases 

with the cavity in different boundary conditions, where one is enclosed by highly reflected 

walls and the other is surrounded with highly damped walls. If the modal damping ratios in 

Table 5-12 are compared between the two cases, it is observable that the coupled case has 

lower damping ratios in general. This is reasonable, because the absorbing materials do 

raise the damping of the whole system.  

 

5.3.3 Plate-cavity system model updating 

As mentioned above, the plate-cavity system model updating will focus on the structural 

part. Following Section 5.2.3 about panel model updating, the updating parameters are the 

edge rotational stiffnesses kθx and kθy (see Fig. 5-24) and the panel Young’s modulus E. Air 

properties of the cavity are updated based on the experimental temperature: TA = 23.8℃. 

That is, ρ0 = 1.1889 kg/m3 and c = 345.42 m/s. As for the panel, the fixed parameters are ρ 

= 2680 kg/m3, h = 3.93 mm, ν = 0.33, which are the updating results of the test panel under 

the uncoupled situation (outcome of Section 5.2). As a first attempt, the initial values of kθx, 

kθy and E are set as k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad and E = 76 GPa, which are also the 

outcome of the uncoupled panel test. After the optimizing process for the least errors of 

natural modes and frequencies between numerical and experimental results, the updated 

parameters are determined as k̂𝜃x = 9 kN/rad,  k̂𝜃y = 16 kN/rad and 𝐸̂ = 77 GPa. The results 

before and after this optimization are listed in Table 5-13, where the cavity controlled 

modes are shaded and numerical predicting errors Erf are presented alongside. For a 

graphical comparison, the scatter plot of simulation frequency fs vs experimental frequency 

fr is shown in Fig. 5-34. Since the predictions of both models are close to the expected 

results, an alternative plot is also provided in the figure, illustrating the prediction errors.  
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Table 5-13. Natural frequencies and modes of the plate-cavity system in experiment (EMA) and 

simulations(Initial model: k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad and E = 76 GPa; Updated model: k𝜃x = 9 kN/rad,  

k𝜃y = 16 kN/rad and E = 77 GPa). 

Order 
EMA Initial model Updated model 

fr (Hz) Mode fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

1 41.4 (1,1) 40.7 -0.7 43.0 1.6 

2 69.0 (1,2) 66.5 -2.5 70.5 1.4 

3 92.5 (2,1) 87.3 -5.2 92.2 -0.3 

4 120.2 (2,2) 115.6 -4.6 121.3 1.1 

5 121.6 (1,3) 116.2 -5.5 121.7 0.1 

6 163.6  162.8 -0.8 163.1 -0.6 

7 168.7 (2,3) 163.3 -5.5 170.1 1.4 

8 175.2 (3,1) 165.7 -9.5 173.2 -1.9 

9 193.3 (1,4) 184.8 -8.5 192.0 -1.4 

10 201.5 (3,2) 193.7 -7.8 201.7 0.3 

11 210.4  210.0 -0.4 210.0 -0.4 

12 237.5 (2,4) 230.3 -7.2 238.5 0.9 

13 247.6 (3,3) 240.2 -7.4 249.0 1.4 

14 260.1  260.4 0.3 260.8 0.7 

15 263.7      

16 266.8  265.6 -1.1 265.8 -0.9 

17 282.9 (1,5) 271.9 -11.0 280.4 -2.5 

18 284.9 (4,1) 271.3 -13.6 281.6 -3.2 

19 300.1  299.2 -0.9 299.7 -0.5 

20 309.9 (4,2) 299.5 -10.3 309.9 0.0 

21 314.1 (3,4) 306.7 -7.5 316.4 2.3 

22 325.2 (2,5) 316.4 -8.7 325.7 0.6 

23 334.9  334.8 -0.1 335.4 0.5 

24 342.7  342.6 0.0 342.7 0.0 

25 355.1 (4,3) 345.7 -9.4 356.7 1.6 

26 366.1  365.6 -0.5 365.8 -0.3 

27 390.3 (1,6) 377.2 -13.1 387.6 -2.7 

28 400.0 (3,5) 391.7 -8.3 402.6 2.6 

29 401.1  401.2 0.1 401.5 0.3 

30 418.4  404.1 -14.3 415.3 -3.1 

31 419.6 (4,4) 411.4 -8.2 423.3 3.7 

32 422.9  423.0 0.1 423.2 0.4 

33 425.1 (5,1) 419.8 -5.2 421.8 -3.3 

34 433.4 (2,6) 422.2 -11.2 433.2 -0.2 

35 445.7 (5,2) 432.0 -13.8 444.2 -1.5 

36 451.8  450.1 -1.8 451.1 -0.7 

37 459.3  457.3 -1.9 457.5 -1.8 

38 471.2  471.8 0.6 471.9 0.7 

39 490.8 (5,3) 478.6 -12.2 491.4 0.6 

40 494.7  493.5 -1.3 494.7 0.0 
  (4,5) 495.8  502.8  
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Table 5-13 (continued). Natural frequencies and modes of the plate-cavity system in experiment (EMA) 

and simulations (Initial model: k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad and E = 76 GPa; Updated model: k𝜃x = 9 

kN/rad,  k𝜃y = 16 kN/rad and E = 77 GPa). 

Order 
EMA Initial model Updated model 

fr (Hz) Mode fs (Hz) Erf (Hz) fs (Hz) Erf (Hz) 

41 503.8 (3,6) 496.0 -9.1 507.9 2.8 

42 505.1  503.0 -2.2 508.8 3.7 

43 511.7  513.0 1.3 512.0 0.2 

44 515.9 (1,7) 501.1 -14.8 513.9 -2.0 

45 516.5  515.1 -1.4 515.5 -1.0 

46 542.0  540.6 -1.5 541.3 -0.8 

47 547.8  548.4 0.6 546.5 -1.4 

48 551.4  552.9 1.6 553.2 1.8 

49 555.6 (5,4) 543.2 -12.4 558.9 3.3 

50 557.8 (2,7) 545.3 -12.5 558.1 0.2 

51 569.9  570.9 1.0 570.9 1.0 

52 585.7  585.2 -0.5 585.6 -0.2 

53 589.0 (6,1) 566.5 -22.5 581.8 -7.1 

54 595.6  595.0 -0.6 595.1 -0.4 

55 604.0  601.4 -2.6 601.5 -2.6 

56 605.3  608.3 3.1 606.0 0.7 

57 608.0 (4,6) 599.4 -8.7 613.2 5.2 

58 613.2 (6,2) 592.9 -20.3 611.4 -1.8 

59 622.0  620.7 -1.3 620.0 -2.0 

60 629.0 (3,7) 618.5 -10.5 632.7 3.7 

61 630.9  628.4 -2.5 628.5 -2.4 

62 638.0  636.1 -2.0 636.7 -1.3 

63 638.3 (5,5) 627.9 -10.4 642.9 4.6 

64 651.4  649.3 -2.1 649.3 -2.0 

65 655.8 (6,3) 640.2 -15.6 655.9 0.0 

66 659.8 (1,8) 643.2 -16.7 656.5 -3.3 

67 661.2  662.0 0.8 662.0 0.8 

68 665.0  666.0 1.0 666.1 1.1 

 
 

The natural frequencies of cavity controlled modes have a good agreement between the 

numerical and experimental results, no matter the numerical model is before or after model 

updating. This is easy to learn from Table 5-13, and the outcome has benefited from the 

accurate acoustic model. In comparison, the prediction for plate controlled modes has 

observable improvement in accuracy due to the mode updating. From Fig. 5-34, it can be 

seen that, for the initial model, the numerical results are smaller than the experimental ones 

and the errors will increase if the frequency goes higher. However, if the updated model is 

considered, the outcome is fluctuating around the reference line and the errors are reduced 

from all perspectives.  

 



Chapter 5 Noise-Box test system characterization 

 

 
142 

 

 
Fig. 5-34. Scatter plot for natural frequencies of the plate-cavity system or their difference between 

numerical simulation and experimental measurement. Corresponding data are listed in Table 5-13.  

 

For further demonstrating the performance of the updated FE model of the plate-cavity 

system, the FRFs are also compared between numerical predictions and experimental 

outcomes. The FE model set-up in COMSOL has already been introduced in Section 4.4. 

The differences in this case are the updated parameters. Apart from the parameters 

introduced in the beginning of this subsections, which are necessary for the ‘eigenfrequency’ 

analysis, the parameters relevant to damping are also included in this ‘frequency domain’ 

analysis. For the cavity, wall impedances are applied, according to the sound absorption 

identified in the Noise-Box cavity characterization (Section 5.1.4) and using the 

relationship between wall impedance and sound absorption coefficient (Eq. (5.5)). 

Regarding the panel, approximating damping loss factor η = 2ζr ≈ 0.003 is used (like 

predicting the FRFs of the uncoupled test panel in Section 5.2.3). Then, the harmonic 

analysis of the coupled system was conducted from 10 Hz to 700 Hz at intervals of 1Hz. 

The results obtained from COMSOL are compared with the experimental ones in Fig. 5-35 

and Fig. 5-36, respectively for the acceleration at a point of the panel A180 = a1/F80 and for 

the pressure at a location inside the cavity H280 = pc2/F80. It can be seen that the curves are 

not perfectly matched, but the errors are within an acceptable range.  Besides, the good 

match of the FRFs H280 shown in Fig. 5-36 indicates that, even though the modal parameters 

used for model updating is principally identified from H180, the updated model has an 

accurate prediction for any other FRFs.  
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Fig. 5-35. Measured and simulated FRFs A180 = a1/F80 of the plate-cavity system. The locations of the 

input force F80 and the output acceleration a1 (corresponding to displacement w1) are shown in Fig. 5-27. 

 

 
Fig. 5-36. Measured and simulated FRFs H280 = pc2/F80 of the plate-cavity system. The locations of the 

input force F80 and the output acoustic pressure pc2 are shown in Fig. 5-27. 

 

5.3.4 Influence of cavity on plate vibration 

With the updated plate-cavity vibroacoustic model available, this subsection investigates 

the effects of the Noise-Box cavity on the test panel through both the experimental 

outcomes and the numerical simulations.  While Section 5.3.2 compares the coupled and 

uncoupled modal parameters, this investigation directly compares the FRFs.  
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Fig. 5-37 shows the measured FRFs A180 = a1/F80 of the hammer tests. One measurement 

(denoted as ‘without cavity’) is obtained in Section 5.2, where the inner walls of the cavity 

are covered with sound absorbing materials to avoid the feedback from cavity to the 

mounted panel. The other measurement (denoted as ‘with cavity’) is obtained in this section, 

where the cavity walls are highly reflected without covered by any other material. Three 

points can be learned from the discrepancy between the two FRFs. Firstly, lower peak 

amplitudes are observed in the ‘without cavity’ case, verifying the fact that the system 

damping is higher in the ‘without cavity’ situation. This is caused by the limitation of the 

experimental set-up, where the absorbing materials cannot realize a free field indeed. 

Secondly, cavity modes are only observable from the ‘with cavity’ curve. This is consistent 

with the simulation results in Section 4.4.3, pointing out one of major effects of the backed 

cavity. Thirdly, the two curves indicate a frequency shift that seems not raised by the 

coupling between plate and cavity but related to the boundary conditions of the test panel. 

However, it is hard to guarantee the same boundary conditions among different tests, 

especially when the mounting and dismounting processes are necessary between the two 

required measurements. 

 

 
Fig. 5-37. The measured FRFs A180 = a1/F80 of the mounted test panel with and without the backed Noise-

Box cavity. 
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Fig. 5-38. The predicted FRFs A180 = a1/F80 by COMSOL for the mounted test panel with and without 

the backed Noise-Box cavity. 

 

By contrast, the numerical simulations have the advantage of controlling variables. In 

Section 5.3.3, the FE model of the plate-cavity coupled system has been updated and is 

available to predict the FRF A180 = a1/F80 of the panel backed by the Noise-Box cavity. 

Starting from the same model, it is convenient to keep all the other setting and just remove 

the Noise-Box cavity. Then, the corresponding FRF A180 of the in vacuo mounted panel is 

available from analysis, where the boundary conditions and the material properties of the 

test panel are the same as the coupled situation. Fig. 5-38 shows the comparison of the 

simulation results. In the figure, ‘with cavity’ is predicted from the updated plate-cavity 

model, the same curve that is presented in Fig. 5-35 as ‘COMSOL simulation’; ‘without 

cavity’ is predicted from the same model but with the acoustic field and the Multiphysics 

coupling disabled. The simulation results demonstrate that the influence of the cavity on 

the panel is small and less significant than it is observed in experiment. To sum up, the 

cavity does influence the vibration of the panel, but the effect is quite limited. 
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5.4 Summary 

Three experiments were performed for characterizing the Noise-Box cavity, the mounted 

test panel, and the coupled plate-cavity system, respectively. The characterization on one 

hand provides some important information of the component, and on the other hand 

identifies the necessary parameters to update the component’s mathematical or numerical 

models.  

 

In the experiment of Noise-Box cavity characterization, the opening of the cavity was 

covered by a 25-mm-thick plexiglass plate for an uncoupled acoustic field. Three 

measurements were done respectively for three characteristics: 

(1) For modal characteristics, the natural frequencies of the Noise-Box are identified from 

the measured FRFs of the cavity by peak-picking approach, while the mode shapes are 

known from the FEA results, since the numerical natural frequencies agree well with 

the experimental ones. 

(2) The average sound absorption coefficient is evaluated by the reverberation time 

measurement. The reverberation time of the Noise-Box cavity in 1/3 octave bands 

within 160~6300 Hz are within 0.7~3.71 sec. Corresponding the average sound 

absorption coefficient is between 0.006 and 0.032, which is small and meets the 

requirement of a reverberation room.  

(3) The sound field diffuseness is checked by several quantifiers. The mode count of 20 

modes per third octave band accords with the cut-off frequency 650 Hz. Below this 

frequency, the acoustic field is dominated by the modal properties. The modal overlap 

factor no less than 1 and 3 respectively advocates the lower limit larger than 1250 Hz 

and 2500 Hz, where the latter agrees with the Schroeder frequency 2669 Hz, above 

which the sound field is ideally diffuse. Besides, the spatial standard deviation of the 

sound pressure levels indicates two other limits, i.e., 1000 Hz and 2500 Hz. By 

comparison, it can be concluded that there is a transition for the diffuse level from 650 

Hz to 2500 Hz.  

With respect to cavity model update, the air density and speed can be updated by 

temperature, and the wall impedance can be updated according to the sound absorption 

coefficient (Fig. 5-4). 

 

The test panel characterization is for a 4-mm aluminium plate mounted on the Noise-Box. 

The panel is mounted as it would be in a formal test but the inner walls of the cavity are 

covered by sound absorbing material to avoid the cavity effect. Analyses were performed 

for three groups of parameters. The first group is obtained by EMA, where modal 

parameters of the first 36 modes were identified, using the best curving fitting approach. 

These parameters were later used as reference for plate model updating. However, the 
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mounted panel is found significantly influenced by the experimental environment, 

especially the change of temperature. This should be blamed on the thermal expansion and 

the large span-to-thickness ratio of the panel. The former causes thermal stress in plane 

because of the restrained plate edges, while the latter renders the panel sensitive to the 

membrane forces. Therefore, it would like to say that these modal parameters are for this 

specific mounting case. Secondly, it is a group of physical parameters: panel thickness h, 

material density ρ, Young’s modulus E and Poisson’s ratio ν. Through the weight of the 

panel and it’s natural frequency measured in free-free boundary conditions, they are finally 

settled as ρ = 2680 kg/m3, h = 3.93 mm, E = 69 GPa and ν = 0.33. Thirdly, they are the edge 

condition parameters, which rely on the model of the edge conditions. Since it is found by 

comparing the FEA and EMA results that the real boundary of the mounted panel is not 

ideally clamped or simply supported but a status in between, the model for condition 

‘rigidly supported but elastically restrained against rotation’ is proposed. The rotational 

stiffnesses along width and length are considered different, denoted as kθx and kθy, 

respectively. Meanwhile, as a compensate for no consideration of membrane forces in the 

plate model, E is also considered as an updating parameter. Finally, the parameters best 

matching the test in EMA of the uncoupled mounted panel are k𝜃x = 5 kN/rad,  k𝜃y = 9 

kN/rad, E = 76 GPa. In the model that includes structural damping, the damping loss factor 

of the plate can be approximated by η = 2ζr ≈ 0.003. 

 

The characterization of the plate-cavity system is about the modified EMA for an interior 

vibroacoustic system. In the experiment, the absorbing material had been removed away 

from the walls, and six microphones were positioned inside the cavity. During the hammer 

test, acceleration at the panel and sound pressure in the cavity were acquired. Then, the 

modal parameters of the system were identified through the transfer functions Hlk (between 

sound pressure and force) and Ajk (between acceleration and force). Comparison between 

the coupled and uncoupled modes through experiments reveals that the boundary conditions 

and membrane forces in this case are different from the previous mounting case. Therefore, 

the conditioned parameters are updated again for this coupled plate-cavity case for better 

matching the experimental results. The updated parameters are k𝜃x = 9 kN/rad,  k𝜃y = 16 

kN/rad and E = 77 GPa. If damping is considered, the cavity walls can be assigned with 

frequency-dependant impedance according to the sound absorption coefficient (Fig. 5-4) or 

a given value averaged over the frequency range of interest; and the plate can adopt the 

approximating damping loss factor η = 2ζr ≈ 0.003. 
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 Numerical investigation using wave based 

method 

 

This chapter develops and validates the wave based (WB) models that can be used to 

investigate the Noise-Box and its components. The problems that have already been 

investigated via FEM are solved here by WBM, with the parameters identified or updated 

in Chapter 5 applied. Corresponding results obtained from FEM will serve to validate the 

WB models, when the WBM will show more efficient than the FEM. Firstly, the general 

procedures of WBM for all problems is introduced. The next is the WBM for flexural 

vibration of thin plates, where a new weighted residual formulation is proposed for all types 

of restraints along the plate edges. Then, the WBM for interior acoustic problem is 

illustrated and applied to the Noise-Box cavity. Finally, the plate-cavity coupled Noise-Box 

is analysed by WBM, where the proposed formulation for elastically restrained plate is 

proved applicable to the plate-cavity problems. 

 

6.1 General procedures for WBM 

Though the final wave based (WB) models depend on the problem types, the modelling 

procedures are identical. The following summarizes the general four steps [101] of WBM 

with respect to the generic steady-state dynamic problem given by Eq. (4.1): 

(1) Partitioning the problem domain into convex subdomains:  

 
1

.
n



=
  =   (6.1) 

The field variables are approximated by expansions inside each subdomain (Ωα), and 

convexity of the subdomain is a sufficient condition for their convergence [27]. 

Therefore, if the considered domain is nonconvex, it is necessary to partition it to 

convex subdomains. While it is an unbounded problem, there can be an additional 

unbounded subdomain enclosing all the others. Once the subdivision is performed, it 

is necessary to impose the continuity conditions between adjacent subdomains. The 

techniques about how to  partition the domain and enforce the continuity conditions 

can be found in [136,151,152]. However, this step is not necessary, provided that the 

considered problem domain is originally convex. 

(2) Selecting a suitable set of wave functions for each subdomain and forming the field 

variable expansions: 

 ( )( ) ( ) ( ) ( )

1

ˆ ˆ( ) ( ) ( ) ( )    .
s

v

n

s s F
s

u u u u     
=

= + r r r r r  (6.2) 



Chapter 6 Numerical investigation using wave based method 

 

 
150 

 

This step enforces the governing equation with the wave functions ( ) ( )s
 r  coming 

from a complete set of functions that satisfies the homogeneous part of the equation 

and the function ( )ˆ ( )
vFu  r  being a particular solution of the inhomogeneous part. The 

factors ( )
su   to the wave functions are called wave function contribution factors. They 

are independent unknowns that determine the final expression of ( )ˆ ( )u  r . The number 

ns denotes the total number of wave functions in the expansion. For convergence issues, 

there are truncation rules that relate the highest wavenumber of the wave functions to 

the physical wavenumber of the considered problem. The relationship is usually 

expressed with the aid of a user-defined truncation factor, which can be used for 

balancing the computational cost and the prediction accuracy.  

(3) Constructing the WB system of equations: 

 ,=Au f  (6.3) 

where, A is the ns by ns system matrix; u is the vector of the ns unknown wave function 

contribution factors; and f is the vector related to the forcing terms. This step needs to 

impose the boundary conditions and the interface conditions. In case that the expanded 

field variable ˆ( )u r  may violate these conditions, the system is constructed using the 

weighted residual approach to minimize the errors. The weighted residual formulation 

can be derived based on a variational analysis and/or using the collocation, the least 

squares or the Galerkin method. 

(4) Solution and postprocessing. The wave function contribution factors are first obtained 

by solving the system of equations Eq. (6.3). Then, field variables are derived by back-

substituting the contribution factors into the field variable expansions Eq. (6.2). 

 

In this chapter, the WBM will be used to investigate the test panel, the Noise-Box cavity 

and the plate-cavity coupled Noise-Box. Since for all of them, the problem domains are 

convex, the first step can be skipped. Then, the steps (2) and (3) are predominant, 

determining the final WB model. Particularly, the field variable expansion in step (2) and 

the weighted residual formulation in step (3) are dependent on the considered problem. 

Thus, their expressions are introduced in the following sections respectively for the three 

problems corresponding to the three investigating targets. For every numerical case in the 

following problems, the WBM is implemented via MATLAB and their codes are provided 

in the database [213]. 

 

6.2 WBM for flexural vibration of thin plate  

In this section, a modified WBM for flexural vibration of thin plates is proposed and then 

used to analyse the mounted test panel and a 1D case. The new method extends the treatable 
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boundary conditions of the plate from the classical boundary conditions to any type of edge 

restraints. At first, the proposed WBM is detailly introduced following the WB modelling 

procedures, in considering the flexural vibration of a general convex thin plate, whose 

problem definition has been clarified in Section 2.2. Then, the method is utilized to analyse 

the uncoupled mounted test panel that has been identified in Section 5.2. In this part, the 

WBM results are compared with the corresponding results from FE simulation for 

validation. The reference FEM results have compared with the experimental ones in Fig. 

5-25. At last, the proposed method is validated for 1D thin plates using a numerical case 

with FEM results.  

 

6.2.1 Field variable expansion 

Considering the flexural vibration problem defined in Section 2.2.1 of a 2D thin plate, the 

field variable, transverse displacement w(x,y) is first expanded using the wave functions ψs: 

 
1

ˆ ˆ( , ) ( , ) ( , ) ( , ),
sn

s s F

s

w x y w x y w x y w x y
=

 = +   (6.4) 

where, ψs satisfy the homogeneous part of Eq. (2.1), ws are the contribution factors, ns is 

the total number of wave functions, and ˆFw  is the particular solution of Eq. (2.1), which is 

given by [214] 

  (2) (2)
0 02

ˆ ( , ) ( | |) ( | |) ,
8

F b F b F

b

jF
w x y H k H jk

k D
= − − − − −r r r r  (6.5) 

where, 2 2| |= ( ) ( )F F Fx x y y− − + −r r  and (2)
0H  is the zero-order second kind Hankel 

function.  

  

For the wave functions ψs, two different sets have been proposed [141,146,215]. The first set 

uses cosine functions and is given by 

 1 1 1 1

2 2 2 2

, , 1

, , 2

( , ) cos( )exp( ),  1,2,3,4,  0,1,2, , , 

( , ) cos( )exp( ),  1,2,3,4,  0,1,2, , .

xs q xs ys q

ys q ys xs q

x y k x k y q s n

x y k y k x q s n





= = =

= = =
 (6.6) 

The second set uses sine functions and is expressed as 

  1 1 1 1

2 2 2 2

, , 1

, , 2

( , ) sin( )exp( ),  1,2,3,4,  1,2, , ,  

( , ) sin( )exp( ),  1,2,3,4,  1,2, , .

xs q xs ys q

ys q ys xs q

x y k x k y q s n

x y k y k x q s n





= = =

= = =
 (6.7) 

In both sets, kxs1 and kys2 are determined by the Lx × Ly rectangle that encloses the convex 

plate (see Fig. 2-1): kxs1 = s1π/Lx and kys2 = s2π/Ly, while kys1,q and kxs2,q, are defined as  

 1 1

2 2

2 2
,

2 2
,

( ) ,  1,2,3,4,

( ) ,  1,2,3,4.

q q
ys q b xs

q q
xs q b ys

k j k j k q

k j k j k q

 = − + =


= − + =

 (6.8) 

The numbers n1, n2, n'1, n'2 are recommended to follow the truncation rule [101]: 
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 1 21 2
,

b

x y x y

n n n n Tk

L L L L 

 
      (6.9) 

where the truncation factor T is a user-defined value, which is usually between 1 to 6. 

 

However, only the first wave function set Eq. (6.6) is used in this work. The reason is 

twofold. On one hand, the first set guarantees the convergence of the WBM [27], while the 

second set is supplementary, which proved to be beneficial for non-convex plate problems 

but showed little improvement on the convex problem [141]. Since the considered plate is 

assumed to be convex, it is not advisable to include the additional second set. On the other 

hand, for rectangular plates and when the enclosing rectangular overlaps with the plate, 

using the second set will be problematic. Because the wave functions in the second set have 

the factors sin(s1πx/Lx) or sin(s2πy/Ly), which are always zero along the plate edge (x = 0, 

Lx or y = 0, Ly), they cannot provide sufficient information for constructing the weighted 

residual formulation of boundary conditions (discussed in Section 6.2.2). If the wave 

functions from second set are added, even if a few of them, it will find in practice that the 

system matrix tends to be singular. Therefore, the second set is not used, especially in the 

condition that rectangular plates are discussed in this work. Then, the total number of wave 

functions is given by 

 ( ) ( )1 24 1 4 1 .sn n n= + + +  (6.10) 

However, at some frequencies, the number ns could be slightly smaller with the wave 

functions that are not linearly independent to the others, in order to avoid the model 

singularity. Besides, for relieving the ill condition of the WB model, the wave function 

scaling [27] is also implemented in this work: 

  1 1 1 1

2 2 2 2

, , , ,

, , , ,

( , ) ( , )exp( ),  if  Re[ ,

( , ) ( , )exp( ),  if  Re[ .

] 0

] 0

xs q xs q ys q ys q

ys q ys q xs q xs q

y

x

x y x y k L k

x y x y k L k

 

 

 −

 −




 (6.11) 

 

Additionally, limiting the scope to rectangular plates also avoid the convergence issue 

raised by the problem of corner stress singularities. It was found that, if there are stress 

singularities at the corners, the WBM will reduce its accuracy and convergence rate [215]. 

Introducing the special-purposed corner functions to the field variable expansion Eq. (6.4) 

can solve the problem [141]. However, the corner functions should be incorporated only 

when stress singularities appear, which means that identifying the corner stress singularities 

in advance is necessary. The stress singularity at a corner is determined by the angle of the 

corner and the boundary conditions of the intersecting edges. Vanmaele [137] summarized 

the characteristic equations and critical angles for different combinations of the classical 

boundary conditions (i.e., simply supported, clamped and free). Among those critical angles, 

the smallest one is 90°, which means if the angle is not larger than 90°, stress singularity 

will not appear regardless of the boundary conditions. Although the conclusion is for 
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classical boundary conditions, it can be extrapolated to the elastic restraints, since the 

classical ones are extreme cases for the elastic restraints. Thus, when the considered plate 

is rectangular, the special-purposed corner functions are not needed.  

 

6.2.2 Weighted residual formulation for boundary conditions 

The boundary conditions are satisfied in an approximate way using the weighted residual 

formulation, which can be constructed using variational principle [148,151]. The conventional 

formulation proposed by Desmet [27] can be applied for prescribed boundary conditions and 

was used widely for later researches [27,141,147,215,216]. Recently, Liu [148] modified the 

formulation for the general elastic restraints and proved its effectiveness. In this paper, an 

integrated formulation is proposed: when the restraints along edges belong to the first four 

types in Table 2-1 (i.e., ( )wmw mQ Q     r  with the prescribed conditions), it 

turns out to be equivalent to the conventional formulation; when the edges are elastically 

restrained ( * *m Qr ), it can be reduced to the formulation proposed in [148].  Meanwhile, it 

is available for the partially elastic restraints ( ( )* * * *wm Qm mQ Q    r ), which are 

not considered in the two available formulations. The proposed weighted residual 

formulation of boundary conditions is given by 

 

1 1

[ ] d [ ] d [ ] d d

[ ( )] ( ) ( ) ( ) 0
w F

w Q w m m m Q Q

n n

c F c cw c c cF c

c c

L w R L w R L w R wR

L w R w R

     


= =

 +  −  − 

 
+ − = 

 

   

 r r r r

  (6.12) 

where, Rw, Rθ, Rm, RQ, Rcw and RcF are the residuals of the boundary conditions Eqs. (2.9)-

(2.14) , and  their corresponding expressions are listed in Table 6-1. 𝐿𝑄[𝑤̃], 𝐿𝑚[𝑤̃], 𝐿𝜃[𝑤̃], 

𝑤̃ and 𝐿𝐹[𝑤̃] are weighting functions, and 𝑤̃ can have any functional form. βw, βθ, βm, βQ 

and βc are new proposed activation coefficients, where βw, βθ, βm and βQ are for the weighted 

residuals of the transverse displacement Rw, the rotational displacement Rθ, the bending 

moment Rm, and the generalized shear force RQ, respectively, and βc is the activation 

coefficient for the corner residuals Rcw and RcF. Each of the activation coefficients is equal 

to 1 or 0, determining whether the corresponding term exists or not. How to pre-set the 

values of the activation coefficients are determined by the type of edge restraints. For the 

restraint types mentioned in Table 2-1, the recommended values are listed in Table 6-2.   

 

Unlike the other weighted residual formulations in WBM [27,148], Eq. (6.12) introduces the 

activation coefficients βw, βθ, βm, βQ and βc. For the plate with only the ideal restraint types 

( wmw mQ Q    r ), the introduction is not necessary since a corresponding 

weighted residual term can only be used when it is available. Therefore, in the conventional 

WBM [27], βw = βθ = βm = βQ = βc = 1, which is equivalent to the proposals of βw, βθ, βm, βQ 
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and βc in Table 6-2 for the first four types. Regarding the WBM for the general elastically 

restrained case proposed in [148], its weighted residual formulation is proposed as 

 [ ] d d 0,m QwL w R wR 

 

 +  =   (6.13) 

where, Rmθ and RQw respectively have the same expressions as Rm*(r) and Rw*(r) in Table 

6-1.  By comparison, it corresponds to Eq. (6.12) with βm = βQ = 1, βw = βθ = βc = 0. It 

considers the boundary conditions of elastic restraints Eqs. (2.13)-(2.14) as the mechanical 

type and doesn’t include the corner residuals. The counterpart in Table 6-2 is the nineth 

restraint type, where the corner residuals are considered. 

 

Table 6-1. Residuals for the boundary conditions (BCs) of a plate edge r ∈ Γ. 

 Prescribed BCs Elastically restrained BCs 

wR  ˆ( ) ( ) ( )wR w w= −r r r  *
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w w
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
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mR  ˆ( ) [ ( )] ( )m mR L w m= −r r r  ( )* ˆ ˆ( ) [ ( )] [ ( )]mmR L w k j c L w  = + +r r r  

QR  ˆ( ) [ ( )] ( )QQR L w Q= −r r r  ( )* ˆ ˆ( ) [ ( )] ( )Q w wQR L w k j c w= + +r r r  

cwR  ˆ( ) ( ) ( )cw c c cR w w= −r r r  when wk = , * ˆ( ) ( ) 0c ccwR w= −r r  

cFR  ( )ˆ( ) [ ( )] ( ) ( )cc F c ns c ns ccFR L w m m+ −= − −r r r r  when wk   , * ˆ( ) [ ( )] 0cc F ccFR L w= −r r a 

a 
Without a rigorous proof, it is considered that, for the corner intersecting by elastically restrained edges, the 

corner force vanishes, balanced by the springs.  

 

Table 6-2. Restraints that can be considered by the proposed formulation Eq. (6.12), with their 

corresponding activation coefficients and case figure indicators. 

No. Restraint type Prescribed values w    m  Q  c  

1 wr  (clamped) 0w = = , wk k= =  1 1 0 0 1 ( *cwR ) 

2 mQr  (free) 0m Q= = , 0w wk k c c = = = =  0 0 1 1 1 ( *cFR ) 

3 wmr  (pinned) 0w m= = , wk = , 0k c = =  1 0 1 0 1 ( *cwR ) 

4 Qr  (symmetric) 0Q = = , k = , 0w wk c= =  0 1 0 1 1 ( *cFR ) 

5 *wmr  0w= ,  or w wk c = , 0 k   1 0 1 0 1 ( *cwR ) 

6 *Qmr  . 0Q = ., 0w wk c= = , 0 k   0 0 1 1 1 ( *cFR ) 

7 *Qr  0 = ,  or k c  = , 0 wk   0 1 0 1 1 ( *cFR ) 

8 *mQr  0m = , 0k c = = , 0 wk   0 0 1 1 1 ( *cFR ) 

9 * *m Qr  0 wk  , 0 k   0 0 1 1 1 ( *cFR ) 
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However, Eqs. (2.13)-(2.14) can also be expressed in their kinematic forms. Since kθ and 

kw are not equal to zero, Eqs. (2.13)-(2.14) are equivalent to (r ∈ Γ) 

 
[ ( )]

[ ( )] ,
mL w

L w
k j c



 
= −

+

r
r  (6.14) 

 
[ ( )]

( ) .
Q

w w

L w
w

k j c
= −

+

r
r  (6.15) 

Therefore, the corresponding residuals can be Rm*(r), RQ*(r) or Rθ*(r), Rw*(r), as expressed 

in  Table 6-1. With this possibility, the formulations for partially elastic restraint types (r ∈ 

Γw̅m*, r ∈ ΓQ̅m*, r ∈ Γθ̅Q* and r ∈ Γm̅Q*) are obtained intuitively, i.e., Eq. (6.12) with the 

activation coefficients in Table 6-2 for the fifth to eighth restraint types. 

 

Besides, Table 6-1 reveals the relationships between the prescribed and elastically 

restrained boundary conditions. The prescribed w̅ = 0 corresponds to kw = ∞. Using either 

Rw̅ (r) or Rw*(r) yields the same formulation, and Rm̅ (r) or Rm*(r) should not be used. 

Corresponding relationship is similar for 𝜃̅ = 0 versus kθ = ∞, 𝑚̅ = 0 versus kθ = cθ = 0,  and 

𝑄̅ = 0 versus kw = cw = 0. Hence, the residuals for elastically restrained boundary conditions 

actually include the residuals of the prescribed boundary conditions as long as the 

prescribed values are zero. Then, for a plate with any type of restraint listed in the examples 

of Table 2-1, it is possible to simply apply Rw*(r), Rθ*(r), RQ*(r), Rm*(r), Rcw*(rc), and RcF*(rc) 

for the residuals in Eq. (6.12). βw, βθ, βm, βQ and βc are used to control and indicate which 

terms are used for the formulation.  

 

Table 6-2 lists the recommended settings for the restraint types mentioned in Table 2-1. It 

suggests including corner residuals whenever it is possible. βw and βQ are not equal to 1 or 

0 at the same time. βw = 1 only when kw = ∞, otherwise βQ = 1. In the case of 0 < kw < ∞, 

although Rw*(r) = 0 is equivalent to RQ*(r) = 0, the latter is used, i.e., βQ = 1. The reason is 

twofold. Firstly, in the formulation Eq. (6.12), the term activated by βQ is more stable than 

the term activated by βw provided that kw is not extremely large. The difference in stability 

is related to the different weighting functions 𝑤̃ and 𝐿𝑄[𝑤̃]. Secondly, the edge residual and 

the corner residual should be in conformity. In other words, it is necessary to use RQ*(r) 

instead of Rw*(r) if RcF*(rc)  is effective. The values of βθ and βm are determined in a similar 

way. However, since the corner residuals are not related to the edge rotation, when 0 < kθ 

< ∞, the values of  βθ and βm can exchange on most occasions, while βm = 1 is slightly better 

than βθ = 1. With regard to the corner residuals, under the column of βc indicates the corner 

residual that is available if the two edges are under the corresponding restraint type. 

However, it is possible that a corner is formed by two different edges that correspond to 

different corner residuals. When this happens, Rcw* is used, because the displacement of the 

corner is known by one of the two edges, which should have prescribed displacement.  
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Following the above discussions, especially Table 6-1 and Table 6-2, the activation 

coefficients βw, βθ, βm, βQ, βc and the residuals Rw, Rθ, Rm, RQ, Rcw, RcF are determined. Then, 

the WB model is built according to the weighted residual formulation Eq. (6.12). 

Concerning the weighting functions 𝐿𝑄[𝑤̃], 𝐿𝑚[𝑤̃] , 𝐿𝜃[𝑤̃] , 𝑤̃  and 𝐿𝐹[𝑤̃] , an approach 

similar to the Galerkin method can be used. The weighting function 𝑤̃ is expanded as 𝑤̃ =

∑ 𝑤̃𝑠𝜓𝑠
𝑛𝑠
𝑠=1 , where 𝑤̃𝑠 are arbitrary. Then, after substituting the expansions of ŵ and 𝑤̃ into 

Eq. (6.12), and considering the arbitrariness of 𝑤̃𝑠, the WB model is obtained. It is a square 

system of equations that can be expressed as 

 ss s s=A w f ， (6.16) 

where, Ass is the ns by ns system matrix, ws is the vector of the ns unknown contribution 

factors ws, and fs is the vector related to the external force. 

 

6.2.3 Model solution and postprocessing 

Model solution is to solve the Eq. (6.16) and obtain the ns unknown contribution factors ws. 

The contribution factors need to be substituted back to Eq. (6.4) to obtain the approximated 

field variable, i.e., the transverse displacement ˆ ( , )w x y . This is the unavoidable 

postprocessing for WBM.  For other field variables (e.g., the rotational displacement, the 

bending moment, etc.), they can all be easily derived, since the differential operators are 

applying to the wave functions. Similar to the element based methods, it is also necessary 

for WBM to check the convergence of the results by increasing degrees of freedom of the 

model. The strategy normally used for WBM is to increase the truncation factor T in Eq. 

(6.9). Then, according to the truncation rule, the number of wave functions (i.e., the degrees 

of freedom of the WB model) is increased. 

 

6.2.4 Harmonic analysis on the mounted test panel 

The new weighted residual formulation Eq. (6.12) enables the WBM to analyse a thin plate 

with any of the restraint types that are listed in Table 6-2. This has been validated with a 

series of numerical cases in our paper [217] that proposes the formulation, covering all the 

restraint types under uniform or non-uniform situations. The paper also discusses the 

method’s accuracy, efficiency and convergence rate. The results show that the WBM is 

more efficient than FEM. In other words, with limited computation memory and time, the 

WBM enables the analysis to a higher frequency. 

 

In this subsection, the proposed WBM is used to analyse the frequency response of the 

mounted test panel. As introduced and characterized in Section 5.2, this is a rectangular 

aluminium panel with  
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• dimensions: a × b × h = 0.825 m × 1.018 m × 3.93 mm; 

• material properties: ρ = 2680 kg/m3, E = 76 GPa, ν = 0.33 and η = 0.003; 

• edge conditions: rigidly supported ( 0w = , kw = ∞) and elastically restrained against 

rotation (k𝜃x = 5 kN/rad,  k𝜃y = 9 kN/rad, as shown in Fig. 5-24), corresponding to 

the restraint type *wm
r . 

In order to obtain the results that are directly comparable to the available results in Section 

5.2.3, where a harmonic analysis on the update panel was performed via FEM, an identical 

simulation is conducted here with the harmonic force acting at Point 80. Note that the 

notations of the points and the coordinate system of the panel are unchanged and in 

consistence with those in Fig. 5-12.  Therefore, the WBM is used to analyse the response 

of the above defined panel under a harmonic force excitation acting at the point rF 

(0.385m,0.533m). The analysing frequency range is from 10 Hz to 700 Hz at intervals of 

1Hz. 

 

Then, to do the targeted analysis, the WBM introduced from Section 6.2.1 to Section 6.2.3 

are coded in MATLAB [213]. In default, the truncation factor that controls the number of 

wave function is set as T = 2. After the solution, the wave function contribution factors will 

be saved to the database. Then, in the later postprocessing, the users can derive the field 

variables they want with the contribution factors and the wave functions. Two 

postprocessing scripts are provided: one for the FRF A180 (output acceleration at A1, i.e., r1 

(0.31m,0.8055m)) and the other for the field displacement at 415 Hz. With a few 

modifications, other outputs can be processed.  

 

Fig. 6-1 shows the FRF in terms of the accelerance A180 predicted by the proposed WBM, 

compared with its counterpart obtained by FEM. The two curves agree well, indicating that 

the two approaches are alternative for the analysis. However, the computational efforts are 

different. The WBM is much more efficient [217]. In this case, when the two analyses are 

operating in the same computer, the FEA in COMSOL occupies 842 sec for the 691 

frequencies, while the WB analysis costs only 23.4 sec. This is a rough comparison to 

demonstrate the efficiency of the WBM. For a more rigorous validation, the readers can 

refer to the paper [217]. In addition, Fig. 6-2 plots and compares the displacement fields (in 

their real parts) at 415 Hz, further verifying the agreement between the two methods. In a 

nutshell, the developed WBM and codes are validated. They can be used to analyse the 

forced vibration of the test panel, and the predicting results match the results from FEM. 
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Fig. 6-1. FEM and WBM predictions on the FRF A180 of the mounted panel, whose input harmonic force 

and output acceleration are respectively located at Point 80 and  Point A1 of Fig. 5-12. 

 
 

(a) (b)

 
Fig. 6-2. Real parts of the displacement fields of the mounted panel at 415 Hz predicted by: (a) FEM; 

(b) WBM. 

 

In view of the computational efficiency of WBM, the harmonic analysis is extended to 1500 

Hz. Then, the FRFs are compared between the experiment and the WBM simulation in the 

frequency range 700-1500 Hz, as illustrated in Fig. 6-3. Due to the good matching between 

FEM and WBM simulations, comparison lower than 700 Hz should be identical to Fig. 

5-25. Combining Fig. 5-25 and Fig. 6-3, we can find that the discrepancy between the 

measured and simulated curves becomes more apparent as the frequency increase. This 

outcome demonstrates the limitation of the updated model. If the model is extended to 

higher frequency range, the accuracy will decrease. However, the modal density and modal 

overlap also increase with the frequency. Hence, if the average response over space and 

frequency is considered, the predicting error will be more acceptable.  
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Fig. 6-3. Measured and WBM simulated FRFs A180 of the mounted panel , whose input harmonic force 

and output acceleration are respectively located at Point 80 and  Point A1 of Fig. 5-12. 

 

6.2.5 Validation for one-dimensional plates 

For the 1D thin plate governed by Eq. (2.17), the transverse displacement w(x) can be 

expressed as 

 
4

1

ˆ( ) ( ) ( ),s s F

s

w x w x w x
=

= +  (6.17) 

where, the wave functions ψs(x) are given by  

 ( ) , 1,2,3,4,
s

bj k x
s x e s −= =  (6.18) 

and the particular solution function ˆ ( )Fw x  uses the expression for an infinite plate under 

the same line force excitation F [58]: 

 
3

ˆ ( ) ( ).
4

b F b Fjk x x k x x
F

b

jF
w x e je

Dk

− − − −−
= −  (6.19) 

In applying the WBM, the proposed weighted residual formulation Eq. (6.12) is 

continuously used, but the operators are instead defined by Eqs. (2.18)-(2.20) and the corner 

residuals never exist (βc = 0). Then, similarly, after introducing the weighted function 
4

1
s s

s
w w

=
= , the 4 by 4 square system equation like Eq. (6.16) can be derived. Finally, 

the displacement w(x) is obtained after solution and postprocessing.  

 

For validating the method, a 1D thin plate under harmonic line force excitation is now 

considered. The plate is the same as the one analysed in Section 4.2.6 for FE model 

validation. As shown by Fig. 2-2, the plate is in the x-z plane with infinite length in y 

direction. The basic parameters are given by l = 1.018 m, h = 4 mm, ρ = 2680 kg/m3, E = 
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69 GPa, ν = 0.33, cw1 = cw2 = cθ1 = cθ1 = 0, kw1 = kw2 = 106 N/m, k𝜃1 = k𝜃2 = 104 N/rad. The 

simulation case considers a line force F acting at xF = 0.533 m from 10 Hz to 700 Hz at 

intervals of 1 Hz. Then, the displacement at x1 = 0.8055m is measured. The predicted FRF 

x1/F is later compared with the results obtained from the validated FE model. As shown in 

Fig. 6-4, the two FRFs reach a good agreement. The WB model is proved. Interrelating the 

natural frequencies and mode shapes listed in Table 4-7, the FRFs show resonance peaks 

next to the natural frequencies, and the displacement fields are consistent with the mode 

shapes. The corresponding code for this case is also provided in [213]. 

 

 
Fig. 6-4. FEM (in ANSYS, modelled by BEAM3 elements) and WBM predictions on the FRF w1/F of 

the 1D thin plate with kw1 = kw2 = 106 N/m, k𝜃1 = k𝜃2 = 104 N/rad. 

 

6.3 WBM for acoustic cavity  

In this section, the traditional WBM [27] for uncoupled acoustic cavity is introduced and 

used to analyse the uncoupled Noise-Box cavity. It will concentrate on the 3D acoustic 

problem, with a simple validation for the 2D case. The WBM is implemented in MATLAB, 

and the self-developed codes are shared in [213].  

 

6.3.1 Field variable expansion 

Considering the interior acoustic problem for a general convex cavity, which is defined in 

Section 2.3.1, the solution to the governing equation Eq. (2.22) can be expressed as 

 
1

ˆ ˆ( ) ( ) ( ) ( ).
an

a a q

a

p p p p
=

 = +r r r r  (6.20) 
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In this field pressure expansion Eq. (6.20), ϕa and pa are respectively the wave functions 

and their corresponding contribution factors. ˆqp is a particular solution of the governing 

equation due to the inhomogeneous part. na is the total number of wave functions. 

 

For 3D problems, where r corresponds to (x,y,z) and q is a monopole source at rq, the 

particular solution ˆqp  can use the following expression: 

 
0ˆ ( ) .

4

qjk

q

q

j q e
p





−

=
−

r r

r
r r

 (6.21) 

The acoustic wave functions ϕa, as proposed in [27] are given by 
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with 
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 (6.23) 

where, kxa1, kya2, kxa3, kza4, kya5, kza6 are determined by the Lx × Ly × Lz cuboid that encloses 

the convex cavity: kβai = ai π /Lβ (β = x, y or z; i = 1, 2, 3, 4, 5 or 6; ai = 0, 1, 2, …, nai); the 

numbers nai are recommended to follow the truncation rule [101]: 

 
1 2 3 4 5 6

.
a a a a a a

x y x z y z

n n n n n n Tk

L L L L L L 
       (6.24) 

In Eq. (6.24), T is the truncation factor that controls the least number of wave functions. It 

is usually set within 1 to 6 and set as 2 in this work. Then, the total number of wave 

functions is settled by na = 2[(na1 + 1)(na2 + 1) + (na3 + 1)(na4 + 1) + (na5 + 1)(na6 + 1)]. 

However, at some special frequencies, it is necessary to remove some wave functions to 

keep them linearly independent and avoid model singularity, leading to a total number na 

smaller than the above calculation result. Meanwhile, the wave function scaling is applied 

to the wave functions that comply with the given conditions, as follows 
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 (6.25) 

 

6.3.2 Weighted residual formulation for boundary conditions 

The weighted residual formulation of this interior acoustic problem is given by [27] 

 
0

d d d 0,
p v Z

p v Z

j p
R pR pR

n   

− 
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where, Rp, Rv and RZ are the residuals of the boundary conditions Eqs. (2.26)-(2.28). The 

weighting function p  is expanded as 
1

an

a a
a

p p 
=

= , where ap  are arbitrary. Then, after 

substituting the expansions of p̂  and p  into Eq. (6.26), and considering the arbitrariness 

of ap , the WB model is obtained. It is a square system of equations that can be expressed 

as 

 aa a aA p = f ， (6.27) 

where, Aaa is the na by na  system matrix, pa is the vector of the na unknown contribution 

factors pa, and fa is the vector related to the external monopole source. 

 

Finally, solution of Eq. (6.27) yields the contribution factors pa. By substituting pa to the 

expansion Eq. (6.20), the acoustic pressure field is obtained.  

 

6.3.3 Harmonic analysis on the Noise-Box cavity 

The above described formulae and approach are implemented in MATLAB [213] and used 

to analyse the Noise-Box cavity. In this case, the simplified cavity geometry illustrated by 

Fig. 3-11 is used, whose cross section in x-z plane is a pentagon. Inside the cavity, the 

monopole source and microphones are positioned at the same coordinates of the FEA 

simulation and the EMA experiment, as shown in Fig. 4-11. For a better demonstration of 

the WBM, the simplified cavity geometry, the source position rq and the microphone 

position r1 are replicated in Fig. 6-5, enclosed by the rectangular box Lx × Ly × Lz. 

 

xy

z

L
z

q

p1

 
Fig. 6-5. Noise-Box cavity for WB analysis. 

 

The simulation considers a harmonic monopole source at rq (1.15m, 0.065m, 0.595m) with 

the input amplitude q = 1 m3/s and the frequency changing from 100 to 700 Hz at intervals 

of 1 Hz step by step.  Under the experimental temperature 24.16℃, the air properties are 

given by ρ0 = 1.1875 kg/m3 and c = 345.63 m/s. According to the measured sound 

absorption 𝛼̅, as given in Table 5-2 and Fig. 5-4, a constant value 𝛼̅ = 0.01 is applied to the 

wall impedance, for the measured results are not much different among different frequency 
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ranges below 700 Hz. Then, based on Eq. (5.5), the wall impedance 𝑍̅ = 163350 kg/m2/s is 

obtained and used for the boundary conditions of the cavity. For validating the WB model, 

the comparative simulation is also conducted in COMSOL, following the modelling 

approach introduced in Section 4.3. 

 

After the solution and postprocessing, acoustic pressure fields are available for every 

simulated frequency. A comparison between the WBM and FEM results at 415 Hz is shown 

in Fig. 6-6, represented by their imaginary parts. The agreement between the two contour 

plots validates the effectiveness of the WBM and the correctness of the MATLAB codes. 

Besides, after the calculation of the sound pressure at r1 (0.424m, 0.151m, 0.321m) for all 

the analysed frequencies, the FRFs in terms of p1/q is obtained. As Fig. 6-7 shows, the FRFs 

from WBM and FEM also match well as expected. Concerning the relative larger 

discrepancies around 590 Hz, they actually result from the simplification of the geometry. 

This can be observed from Fig. 6-6, where the cavity in FEM keeps the two slender vertical 

walls around the bottom surface. For validating this claim, the simplified geometry, as used 

in the WB model, is also analysed by FEM and compared with the WBM results in Fig. 6-8. 

As shown by the figure, the two curves match very well for all frequencies if the two 

cavities are identical. Therefore, in terms of accuracy, comparable results are obtained from 

the two methods. Whereas, for the efficiency and computational burden, the WBM is 

preferred in the frequency domain (harmonic) analysis. For example, in this considered 

case, the FE model has totally 79104 DOF and cost 2670 sec for the solutions of the 601 

frequencies, while the WB model contains 442 wave functions for the highest frequency 

and utilized 178 sec in the same computer and operating conditions. 

 

(a) (b)Pressure (Pa) Pressure (Pa)

 
Fig. 6-6. Imaginary part of the acoustic pressure field over the surface of the Noise-Box cavity at 415 

Hz predicted by: (a) FEM; (b) WBM. A monopole source is acting at rq (1.15m, 0.065m, 0.595m) of Fig. 

6-5 with amplitude q = 1 m3/s. 
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Fig. 6-7. FEM (detailed geometry) and WBM predictions on the FRF p1/q of the Noise-Box cavity, 

whose input volume flow rate and output acoustic pressure are respectively located at rq (1.15m, 0.065m, 

0.595m) and r1 (0.424m, 0.151m, 0.321m) of Fig. 6-5. 

 

 
Fig. 6-8. FEM (simplified geometry) and WBM predictions on the FRF p1/q of the Noise-Box cavity, 

whose input volume flow rate and output acoustic pressure are respectively located at rq (1.15m, 0.065m, 

0.595m) and r1 (0.424m, 0.151m, 0.321m) of Fig. 6-5. 

 

6.3.4 Validation for two-dimensional cavities 

For 2D cavities, where r corresponds to (x,z) and q is a line source at rq, the wave functions 

of Eq. (6.20) are changed as 
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and the particular solution can be expressed as 
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The wavenumbers kxa1, kza2 are determined by the Lx × Lz rectangular that encloses the 

convex cavity: kxa1 = a1 π /Lx (a1 = 0, 1, 2, …, na1) and kxa2 = a2 π /Lz (a2 = 0, 1, 2, …, na2). 

Thus, the total number of wave functions is initially na = 2[(na1 + 1)+(na2 + 1)], significantly 

less than the 3D situation. Then, after removing the dependent wave functions and applying 

the wave function scaling, the final set of wave functions are determined. Finally, as 

described in Section 6.3.2, the WB model is built based on the weighted residual 

formulation Eq. (6.26) with only the difference in eliminated the y coordinate.  

 

Accordingly, the WBM for 2D acoustic problem as introduced above is coded and 

implemented in MATLAB. The scripts are provided in [213], and the validation is provided 

here in considering a 2D pentagonal cavity.  The cavity is shown in Fig. 6-9, with all the 

coordinates of the critical points alongside. The numerical case considers a harmonic line 

source at rq (1.15m, 0.595m) with the input amplitude q = 1 m2/s and the frequency 

changing from 100 to 700 Hz at intervals of 1 Hz step by step.  Under the temperature 

24.16℃, the air properties are given by ρ0 = 1.1875 kg/m3 and c = 345.63 m/s. The wall 

impedance is assumed the same as the 3D case, i.e.,  Z  = 163350 kg/m2/s. For validating 

the WB model, the same geometry and set-up is built in COMSOL and analysed by FEM. 

Fig. 6-11 shows the FRFs p1/q predicted by the two models, where a good agreement is 

observed, validating the MATLAB codes of WBM for 2D interior acoustic problems. Fig. 

6-10 further illustrates their agreement in predicting the entire acoustic fields, using the 

imaginary parts at 415 Hz as an example. 
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Fig. 6-9. 2D cavity for WB analysis. 

 

(a) (b)Pressure (Pa) Pressure (Pa)

 
Fig. 6-10. Imaginary part of the acoustic field of 2D cavity at 415 Hz predicted by: (a) FEM; (b) WBM. 
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Fig. 6-11. FEM and WBM predictions on the FRF p1/q of the 2D cavity shown in Fig. 6-9. 

 

6.4 WBM for plate-cavity system 

In this section, the traditional WBM is modified for the vibroacoustic analysis of a convex 

cavity bounded by a flexible panel with elastically restrained edges. The modification 

makes it possible to analyse the plate-cavity coupled Noise-Box with the updated restraint 

stiffnesses along panel edges. Firstly, the method is introduced by considering a general 

plate-cavity system, where the flexible structure is a general convex plate with any restraint 

types and the acoustic field is a general convex cavity with arbitrary boundary conditions. 

The comprehensive definition of the problem is described in Section 2.4. As it is mentioned 

in the definition that only one form of excitation is effective in one case, this section 

considers only the case when the plate is under point force excitation F (in other words, pext 

= q = 0). Then, the method is applied to the Noise-Box test system for validation, compared 

with FEM. At last, the proposed WBM is also proved for its availability in 2D vibroacoustic 

problem.  

 

6.4.1 Field variable expansion 

Considering the vibroacoustic problem defined in Section 2.4 with only external force 

excitation F,  the governing equation of the acoustic and the structural fields are 

respectively given by Eq. (2.22) with q = 0  and Eq. (2.32) with pext = 0. Accordingly, the 

sound pressure field can be expanded as 

 
1

ˆ( ) ( ) ( ),
an

a a

a

p p p 
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 =r r r  (6.31) 

and the plate displacement field can be expressed by 
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The acoustic wave functions ϕa and the structural wave functions ψs are respectively given 

by Eq. (6.22) and Eq. (6.6), as they are used in the uncoupled situations. ws and pa are the 

contribution factors of the wave functions, and thus (ns + na) are the total number of wave 

functions. In this coupled situation, the truncation rule for the wave functions is given by 
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The number of structural wave functions ns = 4[(n1 + 1) + (na2 + 1)], and the number of 

acoustic wave functions na = 2[(na1 + 1)(na2 + 1) + (na3 + 1)(na4 + 1) + (na5 + 1)(na6 + 1)]. 

 

The particular solution ˆFw is defined by Eq. (6.5) where r' corresponds to (x', y'), the local 

coordinates of the plate. The term 
1

ˆ ( )
an

a a
a

p w
=

 r  results from the term related to p(r') in the 

inhomogeneous part of Eq. (2.32). Since p(r') is also expanded by the acoustic wave 

functions ϕa, each function ˆ ( )aw r  is a particular solution in response to one of the wave 

functions ϕa: 
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−
  = − −  (6.34) 

with 2 2( ) ( )x y   = − + − and the coordinate transformation functions ux, uy, uz defined 

by Eq. (2.31). 

 

Regarding Eq. (6.34), if the integral surface is flat, alternative expressions for ˆ ( , )aw x y   are 

available to avoid the surface integral evaluation. In [27], a group of the alternative 

expressions have been proposed, based on the three different wave function expressions in 

Eq. (6.22). They are long expressions but helpful for efficient calculation. The readers can 

refer to [27] for more details. Though not explicitly listed here, these alternative expressions 

are actually adopted in our codes for the WBM.  

 

6.4.2 Weighted residual formulation for boundary conditions 

The boundary conditions of the plate are the same as the previous uncoupled situation in 

Section 6.2, hence the weighted residual formulation is unchanged provided by Eq. (6.12). 

Regarding the acoustic field, the boundary condition Eq. (2.30) is introduced due to the 

plate’s flexural vibration. Correspondingly, the weighted residual formulation for the 

coupled acoustic field is given by  
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with one more term added to the uncoupled situation (Eq. (6.26)) for the residual Rs of the 

boundary condition Eq. (2.30). 

 

Then, by expressing the weighted residual formulations with the field variable expansions 

Eqs. (6.31)-(6.32) and the weight expansions  
1

an

a a
a

p p 
=

=  and 
1

sn

s s
s

w w
=

= , the WB 

model of the vibroacoustic system can be obtained, represented by the following matrix 

form equation [27]: 

    .ss sa s s

as aa aa a a

 
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A C w f

C A + C p f
 (6.36) 

The first line of Eq. (6.36) is expressed in view of the structural field. ws is the vector of 

the ns unknown contribution factors ws. The (ns × ns) matrix Ass is completely structural 

determined, the same as it is in the uncoupled situation, involving the multiplication of two 

structural wave functions. The (ns × na) coupling matrix Csa is related to the functions ˆ ( )aw r  

in the structural field expansion. The (ns × 1) vector fs is related to the function ˆ ( )Fw r  raised 

by the external force. The second line is instead from the acoustic perspective. pa is the 

vector of the na unknown contribution factors pa. The (na × ns) coupling matrix Cas is caused 

by the boundary coupled with the flexible plate, involving the multiplication of the acoustic 

and structural wave functions. The (na×na) matrix Aaa is completely acoustic determined, 

the same as it is in the uncoupled situation, containing the multiplication of two acoustic 

wave functions. The (na × na) matrix Caa is caused by the functions ˆ ( )aw r  in the structural 

field expansion. The (na × 1) vector fa involves from the function ˆ ( )Fw r  in the structural 

field expansion.  

 

Finally, solution of Eq. (6.36) yields the contribution factors ws and pa. By substituting ws 

and pa to Eqs. (6.31)-(6.32), the acoustic pressure field and structural displacement field are 

obtained.  

 

6.4.3 Harmonic analysis on the Noise-Box test system 

As characterized by Chapter 5, the Noise-Box test system consists of an elastically 

restrained panel and a cavity with light sound absorption. According to the model updated 

in Section 5.3.3, the test panel is defined by 

• geometry: thin rectangular plate, a × b × h = 0.825 m × 1.018 m × 3.93 mm; 

• material properties: aluminium, ρ = 2680 kg/m3, E = 77 GPa, ν = 0.33 and η = 0.003; 
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• edge conditions: rigidly supported ( 0w = , kw = ∞) and elastically restrained against 

rotation (k𝜃x = 9 kN/rad,  k𝜃y = 16 kN/rad, as shown in Fig. 5-24), corresponding to 

the restraint type *wm
r . 

The Noise-Box cavity is updated as 

• geometry: cavity shown by Fig. 3-10; 

• material properties: air at 23.8℃, ρ0 = 1.1889 kg/m3 and c = 345.42 m/s; 

• boundary conditions: wall impedance caused by sound absorption, Eq. (5.5), Table 

5-2 and Fig. 5-4. 

 

The above vibroacoustic model has been analysed using FEM in Section 5.3.4, and the 

numerical results can be used for comparison in validating the WBM. However, the WB 

model built in this section slightly simplifies the Noise-Box cavity, like its WB modelling 

for the uncoupled case in Section 6.3.3. Precisely, the cavity geometry adopts the simplified 

one shown in Fig. 3-11, and the sound absorption coefficient is considered independent of 

the frequency and fixed as   = 0.01. 
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Fig. 6-12. The plate-cavity coupled Noise-Box for WB analysis. 

 

As shown by Fig. 6-12, the WBM simulation considers a harmonic force acting at r'F 

(0.485m,0.44m), corresponding to the Point 80 of Fig. 5-12 and F80 of Fig. 5-27 in hammer 

tests. All procedures of the WBM are implemented in MATLAB with the codes provided 

in [213]. At first, a single frequency, 415 Hz, is considered. The cavity pressure field and the 

plate displacement field are plotted in Fig. 6-13(a). Corresponding results by the FEM 

COMSOL model updated in Section 5.3.4 are plotted in Fig. 6-13(b). This FE model is 

meshed under the rule introduced in Section 5.3.3: free mesh with the maximum element 

sizes of the plate and the cavity respectively set as 0.04 m and 0.056 m. Sound absorption 

coefficient of walls is defined according to Fig. 5-4. As the figure shows, the predictions 

from the two numerical models have similar field distributions but the contour values don’t 
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match very well. This mismatch can be reasoned from the fact that 415 Hz is close to one 

of the natural frequencies of the coupled system. In Table 5-13, where lists the natural 

frequencies of the updated FE model, the 30th mode is 415.3 Hz. However, in the WB model, 

the natural frequency of this mode may be slightly father away from 415 Hz. This can be 

further checked by the next frequency response analysis that covers a range of frequencies. 

 

freq = 415 Hz Displacement (m)

freq = 415 Hz Pressure (Pa)

(a)

(b)

freq = 415 Hz Displacement (m)

freq = 415 Hz Pressure (Pa)(c)

 
Fig. 6-13. Real parts of the field predictions at 415 Hz for Noise-Box under unit point force excitation 

at r'F (0.485m,0.44m) of Fig. 6-12: (a) WBM (simplified model); (b) FEM 1 (detailed geometry, original 

mesh); (c) FEM 3 (simplified geometry, finer mesh). 
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Next, the exciting frequency changes from 10 Hz to 700 Hz at intervals of 1Hz to obtain 

the FRFs a1/F and pc1/F. They respectively correspond to A180 = a1/F80 and H180 = pc1/F80 

of Section 5.3 (e.g., Fig. 5-27). The acceleration a1 is evaluated at r'1 (0.2125m, 0.515m), 

and the pressure pc1 is probed at rc1(0.342m, 0.150m, 0.464m). The results predicted from 

the two numerical models described above are plotted and compared in Fig. 6-14. The FRFs 

match quite well at low frequencies but start to separate as the frequency increases, unlike 

the uncoupled cases (see Fig. 6-1 and Fig. 6-7), where a good agreement is observed in the 

whole frequency range. Further investigating the difference between two comparing FRFs 

(e.g., in Fig. 6-14(a)), we can find that the curves look alike in shape, but the WBM curve 

seems be shifted towards rightwards from the FEM one, and the deviation increases with 

the frequency. Besides, in a detail view of the range approximating to 415 Hz, it can be 

seen that there is a resonance at 415 Hz in the FEM curve, while for WBM, the resonance 

is at 417 Hz. This is an explanation for the discrepancy in the contour values of the variable 

fields in Fig. 6-13. However, the primary cause that leads to the difference in natural 

frequencies should be investigated, and this should attribute to the numerical models. To 

know if it is related to the simplification of cavity geometry and wall impedance, a new FE 

model  is built in COMSOL with the same simplification and analysed for the FRFs. While 

the new simulation results (‘FEM 2’) are compared with their counterparts from the 

previous FE model (‘FEM 1’), as shown in Fig. 6-15, the differences are marginal. Hence, 

the simplification is not the main issue. Meanwhile,  it is also proved that the simplification 

is feasible. Then, the attention is paid to the convergence of the two numerical approaches. 

For the WBM, the truncation factor T has tried to be raised from 2 to 3, and the results are 

little changed by the increasing the number of wave functions. Concerning the FEM, a finer 

mesh is applied to the simplified FE model (‘FEM 2’), where the maximum plate element 

size is reduced from 0.04 m to 0.02 m. Since it is a conform mesh between plate and cavity, 

the finer mesh in the plate also forces a finer mesh in the cavity, the DOF of the FE model 

is significantly increased, as well as the computation time. This refined FE model can be 

referred to as ‘FEM 3’. Thanks to the finer mesh, the FEM results are now closer to the 

WBM ones, as demonstrated by Fig. 6-16. In addition, Fig. 6-13(c) shows the plate 

displacement field and the cavity sound pressure field predicted by the refined FE model. 

As expected, the two fields better match the two predicted by WBM in Fig. 6-13(a). Thus, 

we can deduce that the predictions from FEM converge to the WBM results. Therefore, the 

WBM is validated, and the provided codes for the WBM are proved effective. Furthermore, 

the above investigation reveals that that the results from the WB model with T = 2 are 

converged and accurate. 
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Fig. 6-14. FEM 1 (detailed geometry, original mesh) and WBM predictions on  FRFs of the Noise-Box 

system. Input and outputs are located at r'F (0.485m,0.44m), r'1 (0.2125m, 0.515m) and rc1 (0.342m, 

0.150m, 0.464m) of Fig. 6-12. 

 

 
Fig. 6-15. FEM 1 (detailed geometry, original mesh) and FEM 2 (simplified geometry, original mesh) 

predictions on FRFs of the Noise-Box system. Input and outputs are located at r'F (0.485m,0.44m), 

r'1(0.2125m, 0.515m) and rc1 (0.342m, 0.150m, 0.464m) of Fig. 6-12. 
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Fig. 6-16. FEM 3 (simplified geometry, finer mesh) and WBM predictions on FRFs of the Noise-Box 

system. Input and outputs are located at r'F (0.485m,0.44m), r'1 (0.2125m, 0.515m) and rc1 (0.342m, 

0.150m, 0.464m) of Fig. 6-12. 

 

In addition to the accuracy, the WBM is advocated for its low demand for computation 

memory and time. In other word, it is much more efficient than the FEM. In this section, 

for analysing the Noise-Box system, three FE models were built. The first two were meshed 

under the same mesh setting, so their model sizes are roughly equal, which is about 105469 

DOF. The computation times are also close, approximating to 1h 30min for the 691 

frequencies from 10 Hz to 700 Hz. The third one with finer mesh has 253712 DOF and 

occupies totally 4h 45min for the same analysis. From the first FE model to the third FE 

model, the predictions are more accurate, but the model size and computation time surge. 

By contrast, the WBM with T = 2 possesses no more than 1698 DOF (the number of wave 

functions), and the overall time of modelling and solution for the 691 frequencies is 30min 

28sec. 

 

Finally, as a by-product in this validation for WBM, the most precise FE model for the 

plate-cavity system in this thesis is proposed. In this model, there is no simplification in the 

cavity geometry and wall impedance, but the mesh density is increased. In other words, the 

decrease of plate element size from 0.04 m to 0.02 m is directly based on ‘FEM 1’. Fig. 

6-17 illustrates the geometry of mesh of this FE model. For the convenience to mention this 

specific model, it is denoted as ‘FEM 4’. As a comparison between this model and the WB 

model, their predictions of the FRFs a1/F and pc1/F are plotted in Fig. 6-18. The agreement 

between FEM 4 and WBM is similar to its counterpart between FEM 3 and WBM, as shown 
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by Fig. 6-16. The difference caused by the simplification is marginal, in consistence with 

the comparison between ‘FEM 1’ and ‘FEM 2’, as shown by Fig. 6-15. 

 

Therefore, through the analyses in this subsection, it is validated the WBM is accurate and 

efficient. Meanwhile, the proposed simplification in cavity geometry and wall impedance 

is reasonable and has marginal impact on the final results. 

 

 

 
Fig. 6-17. FE model of the plate-cavity system with finer plate mesh, referred to as ‘FEM 4’. 

 

 
Fig. 6-18. FEM 4 (detailed geometry, finer mesh) and WBM predictions on FRFs of the Noise-Box 

system. Input and outputs are located at r'F (0.485m,0.44m), r'1 (0.2125m, 0.515m) and rc1 (0.342m, 

0.150m, 0.464m) of Fig. 6-12. 
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6.4.4 Validation for two-dimensional plate-cavity systems 

In the 2D plate-cavity vibroacoustic problem, whose mathematical model is introduced in 

Section 2.4.2, the coordinates r corresponds to (x,z) and r' corresponds to x'. Accordingly, 

the field variable expansions can be represented by Eqs. (6.31)-(6.32), but the exact 

expressions of the imbedded functions are reduced by eliminating the y or y' coordinate. 

Three of them can be directly obtained from their correspondences in uncoupled situations: 

the acoustic wave functions ϕa are defined as Eq. (6.28); the structural wave functions ψs 

are given by Eq. (6.18); and the particular solution function ˆ ( )Fw x due to the line force 

excitation F is expressed as Eq. (6.19). Then, the total number of wave functions is equal 

to (na + ns) = 2[(na1 + 1)+(na2 + 1)] + 4, where na1 and na2 are determined by the truncation 

rule: 

 1 2
.

a a b

x z

n n Tk

L L 
   (6.37) 

 

Specially, the functions ˆ ( )aw r  are additionally introduced in the coupled situation. Each 

function ˆ ( )aw r is a particular solution of the 1D plate governing equation in response to 

one of the wave functions ϕa: 

 0 0
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 = + + −  (6.38) 

where, one end of the plate, i.e., r'(0), is at r (x0, z0); α0 is the angle between x'- and x-axes. 

Since the plate is flat, a less computational demanding expression can be used, which is 

given by  
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 − + − +
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+ −
 (6.39) 

where kxa and kza are wavenumber components of the acoustic wave functions. 

 

Later, implemented the weighted residual formulations following Section  6.4.2, the WB 

model in form of Eq. (6.36) is obtained for solution. Then, with the contribution factors ws 

and pa, the structural and acoustic variables can be derived.  

 

To validate the WBM for a cavity coupled with an elastically restrained plate in the 2D 

situation, a vibroacoustic problem is raised, considering the interaction between the 1D 

plate discussed in Section 6.2.5 and the 2D cavity investigated in Section 6.3.4. To be 

specific, the 2D coupled vibroacoustic problem is depicted in Fig. 6-19.  
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Fig. 6-19. Two-dimensional plate-cavity system for WB analysis 

 

The plate is defined by l = 1.018 m, h = 4 mm, ρ = 2680 kg/m3, E = 69 GPa, ν = 0.33, cw1 

= cw2 = cθ1 = cθ1 = 0, kw1 = kw2 = 106 N/m, kθ1 = kθ2 = 104 N/rad. The cavity is a pentagon 

confined by its vertices A-B-C-D-E, and its interior air properties are given by ρ0 = 1.1875 

kg/m3 and c = 345.63 m/s. This case considers the damping loss factor of the plate, i.e., η = 

0.003, but neglects the sound absorption of walls, i.e., Z = . In the steady state analysis, 

a line force F is acting at x'F = 0.485 m harmonically with a given frequency within 10-700 

Hz. From the analysis of a single frequency, the responses of the structural and acoustic 

fields are obtained. In terms of a wide frequency range, e.g., 10-700 Hz, the FRFs w1/F and 

pc1/F are evaluated. The displacement w1 is measured at x'1 = 0.2125 m, and the pressure 

pc1 is probed at (x'1, z'1) = (0.342m, 0.464m). 

 

As a reference to validate the WBM, corresponding FE model is built in ANSYS, utilizing 

BEAM3 and FLUID29 elements. Note that the FE modelling approach has been validated 

in Section 4.4.4. Then, the WBM implemented in MATLAB (codes provided in [213]) and 

the FEM achieved by ANSYS are used to analyse the 2D vibroacoustic problem. The field 

responses at 415 Hz are compared in Fig. 6-20. The FRFs are compared in Fig. 6-21. They 

reveal that the predictions by the two numerical models meet a good agreement. As a result, 

the WBM for 2D plate-cavity vibroacoustic problems are proved accurate.  

 

-0.3941      -0.2484          -0.1026          0.0431            0.1889
          -0.3212           -0.1755         -0.0298         0.1160          0.2617

(a) (b)Pressure (Pa) Pressure (Pa)

 
Fig. 6-20. Real parts of the field predictions at 415 Hz for the 2D plate-cavity system in Fig. 6-19: (a) 

FEM (ANSYS); (b) WBM. 
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Fig. 6-21. FEM (ANSYS) and WBM predictions on FRFs of the 2D plate-cavity system in Fig. 6-19. 

 

6.5 Summary 

This chapter has successfully developed a group of WB models that can be used to analyse 

the Noise-Box and its components. All the MATLAB codes for these models as well as the 

solution and postprocessing are available in the database online [213]. 

 

The WB model for flexural vibration of thin plate is able to investigate a plate with various 

types of edge conditions (all the 9 types shown in Table 2-1). Thanks to the new proposed 

weighted residual formulation, the WBM is available for the edge conditions that are 

partially or fully (visco)elastically restrained. When the WBM is used to analyse the 

mounted test panel, the obtained FRFs and variable field distributions are shown consistent 

with the FEM results, which validates the effectiveness of the model. Meanwhile, the WBM 

is proved more efficient, so that it can be used to analyse the problem to higher frequencies 

without significantly increasing its model size and computation time. For completeness, the 

WB model for a 1D thin plate is also provided. It is validated that the proposed formulation 

is applicable to the 1D plate problem. 

 

The WB model for uncouple acoustic cavity is able to apply different wall impedance. In 

the chapter, it is used to analyse the Noise-Box in its simplified geometry. The WBM results 

agree well with the FEM predictions. However, a better agreement is obtained, when the 

FE model also uses the simplified geometry. Therefore, the WB model for the Noise-Box 
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cavity under monopole source excitation is validated. Similarly, the WB model for 2D 

cavity is built and validated. 

 

The development of the WB model for a vibroacoustic plate-cavity system is in fact about 

how to combine the two uncoupled models and introduce the coupled terms. So, once the 

previous two uncoupled models are verified, the couple model doesn’t need too much effort. 

Similarly, the WB model is validated by analysing the Noise-Box test system in frequency 

domain. The predicted FRFs and variable fields for either the plate or the cavity are 

compared with their corresponding results of the updated FE model (‘FEM 1’). Within the 

frequency of interest, from 10 Hz to 700 Hz, it is found that the WBM and ‘FEM 1’ results 

may not reach a sufficient agreement within 500 to 700 Hz. But when the element size in 

the FE model, especially for the plate, is reduced (e.g., ‘FEM 4’, where plate element size 

is reduced from 0.04 m to 0.02 m), a better agreement is observed, which indicates that the 

previous discrepancy is raised by the not sufficiently fine elements in the FE model. This 

further reflects the efficiency of the WBM, for when ‘FEM 4’ occupies about 5 hours, the 

WBM uses about 30 min to complete the computation of 691 frequencies. In the end, the 

WB model for 2D plate-cavity system is also presented and validated by comparing the 

results with the FEA predictions. 
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 Numerical investigation using statistical 

energy analysis 

 

This chapter develops SEA models for vibroacoustic analysis on the plate-cavity coupled 

Noise-Box. It starts with the general procedures for SEA, and then applies the SEA to the 

plate-cavity system, where two vibroacoustic problems are investigated. One problem has 

the system under a point force excitation, and the other considers the exterior acoustic 

excitation. For each problem, details about how to establish and validate the SEA models 

are illustrated; and as the investigation results, responses of the plate and cavity are 

presented, especially for the high frequency range. 

 

7.1 General procedures for SEA 

The SEA is normally performed under the following procedures: 

(1) Definition of subsystems 

The overall system is divided into subsystems. Each subsystem is like a tank that can store 

energy. Since one subsystem is represented by the same group of dynamic parameters, it is 

important that the subsystem contains only ‘similar modes’. Characterized as ‘similar’, 

these modes are usually of the same type (flexure, extension, shear, acoustic, etc.) and in a 

separable component of the system (a beam, a plate, a cavity, etc.). The selection and 

definition of these subsystems should follow the criteria of similarity and significance [19]. 

(2) Formulation of SEA equations based on energy or power flows 

The connection among subsystems can be represented by energy or power flows. For 

example, as shown by Fig. 7-1, in a general SEA model of N subsystems, the energy flow 

equilibrium of subsystem i gives 

 
1, 1,

.
N N

ji i ij id

j j i j j i

P P P P
=  = 

+ = +   (7.1) 

where, Pij denotes the power transmitted from subsystem i to subsystem j; Pi is the external 

power input to subsystem i; and Pid is the power dissipated by subsystem i. 

 

In the SEA, the dissipated and transmitted powers are considered proportional to the 

frequency and the dynamic energy, like they are in the modal resonators or reverberant 

fields. The dissipated power Pid is given by 

 ,id id iP E=  (7.2) 
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with ηid defined as damping loss factor and Ei as the dynamic energy of subsystem i at 

frequency ω. The transmitted power Pij is given by  

 ,ij ij iP E=  (7.3) 

with ηij defined as the coupling loss factor between subsystems i and j. 

 

Ei, ni
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P1d
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Fig. 7-1. SEA model of N subsystems 

 

Then, rewriting Eq. (7.1) with Eqs. (7.2)-(7.3) for all the subsystems yields the system of 

equations: 
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 (7.4) 

where ηi (i = 1, 2, …, N) are given by 

   ( 1,2,..., ).i id ij

j i

i N  


= + =  (7.5) 

With ni defined as the modal density of subsystem i, Eq. (7.4) can also be expressed as 
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 (7.6) 

This equation shows that the matrix is symmetric provided that the reciprocity relationship  

niηij = njηji is satisfied [16,19,218]. In this case, only the upper or lower triangular side of the 

matrix needs to be calculated. 

(3) Evaluation of SEA parameters 

In the SEA model, represented by Eq. (7.5) or (7.6), most of the parameters are 

preliminarily unknown and need to be evaluated. Typically, the needed parameters for each 

subsystem include the modal density ni, the damping loss factor ηid, the coupling loss factors 

ηij (i ≠ j), and the input power from external sources Pi. There are no universal techniques 

to determine these parameters, and they rely on the properties of the subsystem and/or its 
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connections to the others. The modal density is dependent on the geometry and material 

properties and can be evaluated by theoretical, numerical or experimental method. The 

damping loss factor is usually obtained through measurement or predicted by empirical 

formulas. It is a synthetic parameter that incorporates various damping losses, e.g., the 

internal dissipation related to structure and material, the damping at connecting joints, the 

loss due to surface absorption or damping treatment, etc. The coupling loss factor can be 

evaluated by theoretical, empirical and/or numerical methods. The derivations are usually 

based on modal approach, wave approach, mobility approach or their combinations [19,219]. 

Experimental methods are also available but quite hard for accurate results. The external 

input power is sometimes measured but more often calculated based on the subsystem 

parameters and the source type and amplitude.  

(4) Solution of energy and calculation of response 

After the SEA parameters are evaluated, the unknowns left in Eq. (7.5) or (7.6) are the N 

subsystem energies. The SEA model turns out to a set of linear algebraic equations, whose 

DOF equals to the number of subsystems. The solution yields the primary variable, i.e., 

dynamic energy, of each subsystem. Then, according to the relationship between energy 

and other variables such as velocity, displacement, pressure, etc., the spatially averaged 

response on any subsystem is available.  

 

This chapter develops the SEA models that can be used to investigate the vibroacoustic 

problems related to the plate-cavity coupled Noise-Box. Two scenarios are considered. The 

first scenario involves a force excitation, which may be informative for the structure-borne 

noise investigation. The second scenario focuses on acoustic excitation, so it is for the air-

borne noise. In the SEA models of these scenarios, the SEA parameters are evaluated 

theoretically or partially from the experimental results. Then, all the formulae and equations 

are calculated and solved in MATLAB. The codes are available in the database [213]. For 

validating the analysing approach and programmed codes, an open source tool called 

‘SEAlab’ [220] was found online and is used in this section to analyse the same cases for 

comparison. 

 

7.2 SEA for plate-cavity system under force excitation 

This scenario considers the Noise-Box under an external point forcing, as illustrated by Fig. 

7-2. The system is divided into two subsystems:  

• subsystem 1 for flexural wave of the test panel; 

• subsystem 2 for acoustic wave in the Noise-Box cavity. 

 



Chapter 7 Numerical investigation using statistical energy analysis 

 

 
182 

 

x
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Fig. 7-2. Subsystems of the SEA model for the plate-cavity system with point force excitation. 

 

The two subsystems are of the exact geometry (as Fig. 3-10), and the material parameters 

are set as the update ones (by Section 5.3.3). Specifically, the thin panel is defined by a × 

b × h = 0.825 m × 1.018 m × 3.93 mm, ρ = 2680 kg/m3, E = 77 GPa, ν = 0.33 and η = 0.003; 

the cavity is determined by volume V = 0.596 m, total surface area S' = 4.26 m2, total length 

of all edges L' = 10.123 m, ρ0 = 1.1889 kg/m3 and c = 345.42 m/s. A point force with unit 

root-mean-square (RMS) value is acting on the panel, i.e., Frms = 1 N. The results to obtain 

are the energies of the two subsystems, the average velocity of the panel and the average 

acoustic pressure of the cavity. They should be solved for every 1/3 octave band from 100 

Hz to 20 kHz. 

 

 

7.2.1 Evaluation of SEA parameters 

Modal density of the panel (subsystem 1) is given by 

 1( ) ,
2

b

g

k S
n

c



=  (7.7) 

where, S = ab is the area of the panel; kb is the bending wavenumber determined by Eq. (2.3); 

cg = 2ω/kb is group velocity of the flexural wave. Modal density of the cavity (subsystem 

2) is evaluated by 
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Damping loss factor of the plate is defined as η1d = η = 0.003. For the cavity, the damping 

loss factor is calculated by 

 2 ( ) ,
8

d

c S
f

fV







=  (7.9) 

where   is the average absorption coefficient of the cavity. For simplicity, a constant 

damping loss factor η2d = 0.002 is used. This value is the calculated result for f = 1000 Hz 
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with   = 0.019, which corresponds to the measured average absorption coefficient listed 

in Table 5-2. However, it is expected that the damping loss factor of this cavity closed by 

flexible plate is different from the measurement result, because in that measurement, the 

opening of the cavity was covered by a thick plexiglass plate instead of the thin aluminium 

panel, which may reduce the sound absorption, and one corner of the cavity was added the 

loudspeaker and its support, which may increase the sound absorption. Nevertheless, this 

parameter can be updated in future investigations.  

 

The coupling loss factor η12 denotes the coupling strength between a plate and a cavity. It 

can be evaluated based on its relationship to the plate’s radiation efficiency σ, which is 

given by[16,58] 
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c 
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=  (7.10) 

Then, the other coupling loss factor η12 is available according to reciprocity relationship 

n1η12 = n2η21. For calculating the radiation efficiency in Eq. (7.10), a number of 

approximate expressions have been proposed. The formulation proposed by the 

international standard BS EN ISO 12354-1 is presented in the Appendix B.3 from Eq. (B.14) 

to Eq. (B.16), which is claimed based on [131]. In addition, the asymptotes formulated by 

Leppington [221] are also adopted in parallel for comparison: 
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 (7.11) 

where μ = kb/k is the ratio between plate bending wavenumber and acoustic wavenumber; 

a and b are respectively the smaller and greater dimensions of the panel. As mentioned in 
[221], when  μ ≈ 1, the results are complicated, but the expression is not specified. Hence, in 

this work, provided that 0.2 < a/b < 1.0, σ is evaluated for a range of frequencies and μ ≈ 1 

is satisfied in the only frequency range that includes the coincidence frequency (μ = 1), the 

radiation efficiency σ for the only band that satisfies μ ≈ 1 is approximated by 

 0.4      1.ka =   (7.12) 

 

Input power to the panel is evaluated by 
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where Y(ω) is the point mobility of an infinite plate, which is given by 
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7.2.2 Matrix form equation and solution 

As a two-subsystem SEA model with only input to the subsystem 1, i.e., N = 2 and P2 = 0, 

the matrix form equation like Eq. (7.6) is given by  

    1 1 1 12 1 12 1 1

2 21 2 2 21 2 2

( ) /
.

0 ( ) /

d

d

P n n E n

n n E n

  


  

+ − 
=  − + 

 (7.15) 

With all the evaluated SEA parameters substituted to Eq. (7.15), the energies E1 and E2 are 

then solved for every 1/3-octave band, where ω corresponds to the central frequency. 

Afterwards, the root-mean-square velocity vrms averaged over the panel surface area S and 

root-mean-square sound pressure prms averaged over the cavity volume V can be estimated 

respectively based on the following relationships 

 2
1 rmsE hSv=  (7.16) 

and 
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7.2.3 Results and discussion 

According to the method and procedures introduced above, two SEA models are developed 

in MATLAB. The difference between the two models is the evaluation of panel radiation 

efficiency σ. Model 1 is calculated from the equations in BS EN ISO 12354-1 (Eqs. (B.14)

-(B.16)), while Model 2 adopts Leppington’s formulation (Eqs. (7.11)-(7.12)). The primary 

variables, i.e., the subsystem energies E1 and E2 for 1/3-octave bands, of the two models 

are plotted in Fig. 7-3(a) and Fig. 7-3(b). Comparable results predicted via SEAlab are 

shown in Fig. 7-3(c). The three plots show consistent results, except for the frequencies 

lower than 200 Hz and at 3150 Hz. The two reasons for the discrepancies are known. One 

reason has been mentioned previously, i.e., the different formulations for the panel radiation 

efficiency σ that are applied to Model 1 and Model 2, respectively. The formulation in the 

SEAlab tool [219] is the same as Model 1, i.e., the Eqs. (B.14)-(B.16) from BS EN ISO 

12354-1. Consequently, as shown by Fig. 7-3(d), the radiation efficiencies agree well 

between Model 1 and the SEAlab model in the whole frequency range. Whereas, Model 2 

adopts Leppington’s formulation, and Fig. 7-3(d) indicates that this formulation yields 

different radiation efficiencies from the others at the frequencies lower than 630 Hz and at 

3150 Hz. Since Model 1 and Model 2 are only different in the radiation efficiency σ, the 

outcome of this reason is observable from Fig. 7-3(a) and Fig. 7-3(b), where they show very 

small variations for the subsystem energy levels. The other reason is related to the 

difference between Model 1 (Fig. 7-3(a)) and SEAlab model (Fig. 7-3(c)) at the frequencies 

lower than 200 Hz. It actually results from the fact that in SEAlab, the cavity is treated as 
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2D cavity when the acoustic wavelength in z direction is larger than the cavity’s dimension 

in z direction (i.e., λz > Lz). This will lead to the different modal densities of the cavity, and 

thus different results are obtained. However, this is not necessary for the considered plate-

cavity system, because the situation (λz > Lz) corresponds to a frequency range too low to 

apply the SEA mothed. Therefore, it can be deduced that both Model 1 and Model 2 are 

correct and applicable. In comparison, Model 2 that uses Leppington’s formulation 

provides the upper limit of σ near the critical frequency when σ > 1 [222].  

 

 
Fig. 7-3. Subsystem energy levels predicted by the SEA models of the plate-cavity system under the 

point force excitation Frms = 1 N: (a) Model 1 – σ from BS EN ISO 12354-1; (b) Model 2 – σ from 

Leppington’s formulation; (c) SEAlab model; (d) comparison of the radiation efficiencies σ among the 

SEA models. 

 

Apart from validating the SEA models, Model 1 and Model 2, Fig. 7-3 also indicates that 

the coincidence between bending and acoustic waves happens at around 3150 Hz. In the 

coincidence region, it is possible that the vibration energy of the plate is smaller than the 

sound energy in the cavity, even though the external power is input directly to the plate.  

 

Next, the plate and cavity energies obtained from Model 2 are used to derive the average 

velocity of the plate and the average SPL of the cavity. Calculated based on Eq. (7.16) and 

Eq. (7.17), the results are shown in Fig. 7-4. The corresponding results provided by SEAlab 

are plotted alongside for comparison. Since in each subsystem, the relationship between 
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response and energy is fixed, the agreement in energy predictions is propagated to the 

response variable predictions.  

 

 
Fig. 7-4. Responses of the plate-cavity system under the point force excitation Frms = 1 N: (a) average 

velocity of the plate; (b) average SPL of the cavity. 

 

Though the above results are obtained for a very wide frequency range from 100 Hz to 20 

kHz, the reliability or accuracy of them is still a question. It depends on whether the 

assumptions used in SEA are valid. It is well-known that the SEA is particularly well suited 

for complex systems at high frequencies, where the subsystems will have large modal 

overlap and large numbers of modes in band that make the results more reliable. Thus, the 

modal overlap or number of modes in band is often used as an indicator for the lower 

frequency limit of SEA. However, the lower frequency limit is not a line saying whether 

the SEA model is correct. The fact is that the error will increase with the frequency 

decreasing. Therefore, for the knowledge about how much the SEA is suitable to the plate-

cavity system, the modal overlap and the number of modes in each 1/3-octave band of the 

two subsystems are presented in Fig. 7-5.  

 

 
Fig. 7-5. Modal overlap and number of modes in 1/3-octave bands for the plate and cavity subsystems 

in their SEA models. 
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The modal overlap is calculated based on its definition as the ratio of the half-power 

bandwidth to the local natural frequency spacing, which is expressed as M = ηωn(ω). The 

number of modes in the bandwidth Δω is given by Nm = Δωn(ω). According to Fig. 7-5, the 

lower limit frequency can be considered by referring to different criteria [22,23,218]. For 

example, the requirement 1M   yields f > 1000 Hz for the cavity and f > 3150 Hz for the 

plate; Nm > 20 requires f > 630 Hz and f > 1250 Hz for the cavity and the plate, respectively; 

and Nm > 10 corresponds to f > 500 Hz. 

 

7.3 SEA for plate-cavity system under acoustic excitation 

This scenario considers the Noise-Box under the external acoustic excitation. It corresponds 

to the design shown in Fig. 3-6, where one side of the panel is facing the diffuse sound field 

produced by a reverberation chamber. For simulating the excitation, the reverberation 

chamber is considered as an additional subsystem. Then, the SEA model turns out to be 

composed of three subsystems, as shown in Fig. 7-6: 

• subsystem 1 for acoustic wave in the reverberation chamber; 

• subsystem 2 for flexural wave of the test panel; 

• subsystem 3 for acoustic wave in the Noise-Box cavity. 

 

Subsystem 1

Subsystem 2

Subsystem 3

 
Fig. 7-6. Subsystems of the SEA model for the plate-cavity system under the acoustic excitation 

generated by a reverberation room. 

 

The Noise-Box cavity and the test panel are the same as they are defined in Section 7.2. 

The additional subsystem 1 in this case is a rectangular cavity with the three dimensions 

given by 3.7 m × 4.05 m × 3.35 m. Air properties and damping loss factor are considered 

identical to the Noise-Box cavity. The excitation is a monopole source at a corner of the 

reverberation room with unit power input, i.e., P1 = 1 W. Then, according to the equations 

provided in Section 7.2.1, the SEA parameters n1(ω), n2(ω), n3(ω), η1d, η2d, η3d, η12, η21, η23 

and η32 are available. Regarding the estimation of the panel’s radiation efficiency σ, the 
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Leppington’s formulation is used. With respect to η13 and η31, they are the coupling loss 

factors between two cavities and can be related to the transmission coefficients τ13 and τ31. 

For instance, the relationship between η13 and τ13 is given by 

 13
13
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.
4
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
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
=  (7.18) 

In Eq. (7.18), the transmission coefficient τ13 denotes the acoustic transmission through the 

non-resonant transmission path, which can be evaluated by the mass law [16]: 
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Once η13 is obtained, η31 is available according to the reciprocity relationship n1η13 = n3η31. 

 

Finally, the SEA model of this cavity-plate-cavity system is ready for solution: 
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 (7.20) 

with ηi = ηid + ηij + ηik (i, j, k = 1, 2, 3 and i ≠ j ≠ k). 

 

Implemented in MATLAB, the above evaluations and solution yields the energies E1, E2 

and E3 of the three subsystems. Fig. 7-7 shows their values, compared with the 

corresponding results obtained in SEAlab. Some disagreement is seen between the two sets 

of results, especially for cavity 2 in f ≤ fc. Therefore, which one should be more accurate is 

checked. In Section 7.2.3, two differences have already been mentioned between the SEA 

model in this work (using Leppington’s formulation) and the model in SEAlab. But those 

two points alone will not cause the discrepancy in the frequency range between 630 Hz and 

2500 Hz, so there should be other reasons. Then, it is found that the main cause is the 

evaluation of the transmission coefficient τ13. In SEAlab, τ13 is estimated according to EN 

12354-1(2000) for f < fc, as given by Eq. (B.11) in the footnote, and τ13 = 0 is applied for f 

≥ fc. However, τ13 is calculated by Eq. (7.19) in this work. Finally, it is concluded that using 

Eq. (7.19) is more accurate. In  Eq. (B.11), the expression for f < fc includes two terms: the 

first for the forced waves and the second for the free waves. In fact, the one for free waves 

has actually incorporated in the couplings between plate and cavity, i.e., η12, η21, η23 and 

η32. So, if it is considered again in τ13, which determines η13 and η31, the power transmitted 

to subsystem 3 will be overestimated. Thus, as observed in Fig. 7-7, the SEAlab model 

yields higher energy in the subsystem Cavity 2 for f < fc. Regarding f ≥ fc, calculating τ13 

by Eq. (7.19) or simply setting τ13 = 0 makes little difference, for the results out of Eq. (7.19) 

are very small. This is the reason why the two models reach good matching results in the 

range f > fc. All in all, the SEA model developed in this subsection for a cavity-plate-cavity 

system should be correct. 
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Next, based on the validated energies in Fig. 7-7, the subsystem response variables are 

determined. The average sound pressure of the two cavities and the average velocity of the 

vibrating plate are presented by Fig. 7-8. At last, the transmission loss TL of the panel is 

evaluated using Eq. (2.41), where LS and LR are respectively the average SPLs of Cavity 1 

and Cavity 2 in this case, S is the area of the test panel, AR =  S' is the sound absorption of 

Cavity 2. The outcome is plotted in Fig. 7-9. The TL curve evaluated by the SEA model is 

shown in accord with the typical TL curve shown in Fig. 2-7. In this case, the first structural 

resonance of the panel is lower than 100 Hz and the coincidence region is around 3150 Hz.  

 

 
Fig. 7-7. Subsystem energies of the SEA models for the Noise-Box under acoustic excitation. 

 

 
Fig. 7-8. Average response variables of the subsystems in the SEA model built in MATLAB for the 

Noise-Box under acoustic excitation. 

 

 
Fig. 7-9. Sound transmission loss of the test panel predicted from the SEA model built in MATLAB for 

the Noise-Box under acoustic excitation. 
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7.4 Summary 

This chapter uses the SEA method to investigate the structure-borne and airborne noise of 

the plate-cavity coupled Noise-Box. The structure-borne noise problem considers an 

external point force acting on the plate; and the airborne noise problem analyses the sound 

transmission loss of the plate when the plate is excited by an exterior acoustic field. With 

the self-programmed codes implemented in MATLAB, SEA solutions of the two problems 

are respectively obtained. For validating the applied approach and codes, an open source 

software called ‘SEAlab’ is used to analyse the same problems for comparing the results. 

Finally, the response variables of the plate-cavity system are evaluated from the validated 

solutions. Results are provided for a wide frequency ranges from 100 Hz to 20 kHz at 1/3 

octave bands, but the effective frequency range may be better limited to the frequencies 

higher than 1000 Hz or 1250 Hz, as a proposal after checking the modal overlap and number 

of modes in band. Note that the MATLAB codes for the SEA models introduced in this 

chapter are available in the database [213]. 

 

The SEA tools for the two problems are developed following the general procedures: (1) 

defining subsystems; (2) formulating SEA equations; (3) evaluating SEA parameters; (4) 

solving for subsystem energies and then evaluating the response variables.  In the first 

scenario, two subsystems are defined, respectively for the mounted panel and the Noise-

Box cavity. When evaluating SEA parameters, it is found that the radiation efficiency σ of 

the panel is decisive for the coupling loss factors. As there are two popularly-used 

formulations in literatures for σ, two models are built. Model 1 uses the formulation from 

ISO12354-1, while Model 2 employs the formulation from Leppington. It is thought both 

models are applicable, when Model 1 better matches with the software ‘SEAlab’ for using 

the same σ.  In the second scenario, three subsystems are defined, where the additional 

subsystem is a large cavity to simulate a reverberation room for the diffuse sound field 

excitation. Apart from σ, which determines the coupling loss factors panel and cavity, the 

transmission between two cavities should be considered. The developed SEA tool takes it 

as acoustic transmission through the non-resonant transmission path and evaluates it by 

mass law, which is different from the software ‘SEAlab’ but is found more accurate. 
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 Structure-borne and airborne interior noise 

investigation 

 

This chapter investigates the structure-borne and airborne interior noise of the plate-cavity 

coupled Noise-Box through experiments and numerical simulations. The structure-borne 

interior noise is analysed for the case when a point force is acting on the plate, and the 

required results are the average SPLs of the Noise-Box cavity in 1/3 octave bands. The 

experimental results and the numerical outcomes from FEM, WBM and SEA are processed 

to the required ones for comparison. The airborne noise investigation focuses on the sound 

TL of the mounted plate. Different methods to obtain the TL are introduced and employed, 

including a non-standardized TL measurement, four analytical predictions through 

different approximate formulas and two numerical simulations respectively via FEM and 

SEA. Finally, the TL curves from different methods are compared and discussed. 

 

8.1 Structure-borne noise investigation 

This section investigates the noise inside the Noise-Box cavity, originated from the 

structural vibration. The investigation involves experimental and numerical parts. In the 

experiment, the plate vibration is excited by a point force (or more exactly, an impulse), 

and the sound pressure inside the cavity is measured at six different positions. The 

numerical part uses the three numerical methods, i.e., FEM, WBM and SEA, to study the 

same cases that are performed through experiments. Corresponding to the different 

properties of these methods, the results may be presented in different ways. Both the 

experimental and numerical analyses are in the frequency domain and mainly focus on the 

frequency range below 1000 Hz. Only when the SEA model is discussed, the largest 

analysing frequency is raised to 1780 Hz, which is approximately the highest frequency for 

the reliable experimental results and the upper bound of the 1/3 octave band centred at 1600 

Hz. 

 

8.1.1 Experimental set-up and results 

The experimental set-up is identical to the characterization experiment of the coupled plate-

cavity system, as introduced in Section 5.3.1.1. The microphone positions are the same as 

shown in Fig. 5-27, while the hitting location is not just limited to r'F80(0.485m, 0.44m), 

but changeable to another point for investigating the influence of input force location. The 

additional input point selected is r'F18(0.135m, 0.74m), where the notation 18 indicates that 
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it is Point 18 in the grid demonstrated by Fig. 5-12. It can be seen that this input point is 

next to the accelerometer A2. 

 

After performing the hammer tests, two groups of FRFs were estimated based on the 

experimental data. Each group corresponds to one of the input points, r'F80 or r'F18, and 

contains 6 FRFs for the 6 microphones, respectively. Using the denotation Hlk = pcl/Fk, the 

obtained FRFs are Hlk, l = 1, 2, …, 6 and k = 80, 18. The FRFs illustrates the harmonic 

responses at a specific point of the cavity when the panel is under unit point force excitation. 

Since the acquisition time for each impulse is 15 sec, the frequency resolution of the 

spectrum is 1/15 Hz. Fig. 8-1 and Fig. 8-2 show some of the measured FRFs in the 

frequency range of interest (0~1000 Hz).  

 

Fig. 8-1 compares the responses at two different microphone positions for the same input 

point, i.e., H280 and H480. The figure demonstrates that the responses inside the cavity are 

quite uniform around and lower than the first resonance. Then, the two curves separate as 

the frequency increases. Though only two FRFs are used in this comparison, the 

conclusions should be similarly obtained from the other FRFs in the same group. The 

uniformity of the acoustic fields in the frequency range around the first resonance can be 

further observed from the system mode shape shown in Fig. 4-17. However, in checking 

all the other FRFs by similar comparison, it is found that the microphone at rc1 behaves 

abnormally in the low frequency range. Since it is finally concluded as a problem raised by 

the instrument, the experimental data measured by this microphone is later not used as a 

benchmark or used for calculating the average SPL inside the cavity.  

 

On the other hand, Fig. 8-2 compares the responses at the same microphone position but 

with two different input points. From the figure, it is observable that the FRF H218 is noisy 

in the low frequency range. This is highly related to the location of the input impulse. Point 

18 is close to the edges of the mounted test panel, and thus very hard to excite the first 

several plate modes. Consequently, the response in the cavity is small. Meanwhile, it is the 

fact that inside the Noise-Box, the background noise is higher in the low frequency range.  

 

The FRFs clearly inform us of the sound pressure amplitude at a specific position provided 

that the panel is excited by a harmonic point force. However, it is often the case that the 

excitation is not of a single frequency or the sound pressure is to be evaluated for a given 

bandwidth. In such a case, we can still use the FRFs to derive the required responses with 

the input informed. 
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Fig. 8-1. Comparison of experimental FRFs in the plate-cavity system (for different microphone 

positions): H280 = pc2 /F80 and H480 = pc4 /F80. Input and output locations are shown in Fig. 5-27. 

 

 
Fig. 8-2. Comparison of experimental FRFs in the plate-cavity system (for different force excitation 

positions): H280 = pc2 /F80 and H218 = pc2 /F18. Output positions are shown in Fig. 5-27, and input location 

is r'F18(0.135m, 0.74m). 

 

Now, consider the case in Section 7.2 that is used for SEA, a point force with uniform 

distribution in a 1/3 octave band is exciting the panel. The RMS value of the force is given 

by Frms = 1 N. Then, it is able to derive the measured SPLs in this case based on the FRFs, 

by calculating the power sum over the 1/3 octave band. For each discrete frequency fi within 
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the 1/3 octave band of the central frequency fm (flow ≤ fi < fup, i = N, with flow, fup and N 

respectively the lower bound, upper bound and the number of discrete frequencies), the 

response is given by  

 rms
rms ( ) ( ) .i lk i

F
p f H f

N
=  (8.1) 

Then, the SPL at rcl in the 1/3 octave band of fm is calculated by 
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where pref = 2×10-5 Pa is the reference sound pressure. The average SPL over different 

microphone positions can be further calculated by 
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Correspondingly, the standard deviation is 
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Based on the measured FRFs and Eqs. (8.1)-(8.2), the SPLs in the 1/3 octave bands at rc2 to 

rc6 were calculated. The results are shown in Fig. 8-3 and Fig. 8-4, respectively for point 

force excitation at r'F80 and r'F18. Meanwhile, the average values and standard deviations of 

the SPLs over different microphone positions, which are calculated according to Eq. (8.3) 

and Eq. (8.4), are shown in Fig. 8-5 and Fig. 8-6.  

 
 

 
Fig. 8-3. SPLs in 1/3 octave bands at different positions inside the cavity of the plate-cavity system, 

when the plate is excited by force Frms = 1 N at r'F80 (see Fig. 5-27). The SPLs Lp,2 to Lp,6 correspond to 

microphones at rc2 to rc6. 
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Fig. 8-4. SPLs in 1/3 octave bands at different positions inside the cavity of the plate-cavity system, 

when the plate is excited by force Frms = 1 N at r'F18(0.135m, 0.74m) (see Fig. 5-27). The SPLs Lp,2 to 

Lp,6 correspond to microphones at rc2 to rc6. 

 

 
Fig. 8-5. Average SPLs of the five measuring points rc2 to rc6 inside the cavity (see Fig. 5-27), when the 

plate is excited by force Frms = 1 N at r'F80 or r'F18(0.135m, 0.74m), with error bars representing the 

standard deviation σM. 

 

 
Fig. 8-6. Standard deviation of the SPLs over the five measuring points rc2 to rc6 inside the cavity (see 

Fig. 5-27), when the plate is excited by force Frms = 1 N at r'F80 or r'F18(0.135m, 0.74m). 
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From Fig. 8-3 to Fig. 8-6, in addition to the variables of interest, we can also raise several 

viewpoints of the sound pressure field in the plate-cavity system. Firstly, it can be noticed 

that the acoustic field is quite uniform in the first four 1/3 octave bands (i.e., fm = 25, 31.5, 

40, 50 Hz), which are the frequency bands below the second natural frequency (see Table 

5-12) of the system.  Regarding the bands of 63 Hz and 100 Hz, the uniformity is highly 

related how well the 2nd and 3rd modes are excited. Point 80 is close to the nodal lines of 

these modes, thus the acoustic field is more uniform than the case of forcing Point 18. 

Secondly, Fig. 8-5 indicates that excitation position is decisive for the average SPL in the 

low frequency range, but its importance is decreasing as the frequency increases. Based on 

these available results, when frequency larger than 500 Hz, the difference in average SPL 

is less than 2 dB. As we known that the exact exciting position in a subsystem is not 

considered for SEA, similar analyses may be used to check the SEA assumptions. At last, 

considering the standard deviations with respect to the microphone positions, as shown by 

Fig. 8-6, they are lower than 3.2 dB when the frequency is larger than 500 Hz. As the 

standard deviation can indicate whether the average SPL can fully represent the response 

of the cavity, 3.2 dB might not low enough. Therefore, increasing the frequency or the 

number of microphones may be necessary. 

 

8.1.2 Numerical results of FEM and WBM 

The analyses in Section 8.1.1 are repeatable with the numerical models. Particularly, the 

FE and the WB models are available for the FRFs between two points, which are 

comparable with the measured FRFs of the experiment. Then, if it is necessary to obtain 

the response in a 1/3 octave band or for a spatial average, it is optional to apply the 

derivations introduced in Section 8.1.1, based on the predicted FRFs. On the other hand, 

the SEA model directly provides the results in 1/3 octave bands, but it is not available for 

a single-frequency response or the response at a specific point. 

 

At first, the plate-cavity system is considered under harmonic point force excitation, and 

the structure-borne noise at a single position inside the cavity is predicted by FEM and 

WBM. With the same input and output positions that are fixed in the experiment, the 

predicted FRFs should agree with the measured FRFs. Therefore, the FRFs Hlk, l = 2, 3, 4, 

5, 6 and k = 80, 18 are evaluated using FEM and WBM, respectively, and then compared 

with the experimental results that are obtained in Section 8.1.1. The FE model uses the most 

accurate one that is mentioned in Section 6.4.3 denoted as ‘FEM 4’, which is the updated 

COMSOL model with a finer mesh. The WB model is the one developed in Section 6.4.3. 

The analyses are from 10 Hz to 1000 Hz at intervals of 1 Hz. As an example, the predicted 

and measured H218 = pc2 /F18 are shown and compared in Fig. 8-7. Note that there is already 

a comparison for H280 in Fig. 5-36. A good agreement is seen at low frequencies. The 
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agreement is meaningful, indicating that the numerical models can be used to predict the 

response at any other point inside the cavity, without repeating the experiment. Considering 

the example shown by Fig. 8-7, it demonstrates the possibility to reproduce the FRFs at low 

frequencies when the signals are polluted by noise. However, the numerical and 

experimental curves don’t match very well in the higher frequency part. Nevertheless, Fig. 

8-7 also shows that when the frequency goes higher, the modal density increases and curves 

are smoother, so it is possible that the bandwidth or spatial average responses may have a 

good agreement between prediction and measurement. This is analysed in the next case. 

 

 
Fig. 8-7. Measured and predicted FRFs of the plate-cavity system under force excitation at Point 18: 

H218 = pc2/F18. The input and output are located at r'F18(0.135m, 0.74m) and rc2 (0.636m, 0.222m, 0.338m) 

of Fig. 5-27. The models of FEM 4 and WBM are defined in Section 6.4.3. 

 

Next, consider the case when a point force of Frms = 1 N with uniform distribution in a 1/3 

octave band is exciting the panel. As numerical results, the local and average SPLs in the 

1/3 octave band are estimated here based on the predicted FRFs from FEM and WBM. The 

calculations are expressed by Eqs. (8.1)-(8.4).  

 

For the circumstance when the force is at r'F80 (0.485m,0.44m), the estimated SPLs at the 

measuring positions are shown in Fig. 8-8 for the FEM results and in Fig. 8-9 for the WBM 

results. They are comparable to the experimental results in Fig. 8-3. The average SPLs over 

the five positions are demonstrated in Fig. 8-10(a). Except at 40 Hz, where is next to the 

first resonance of the system, the WBM predictions are generally closer to the experimental 

results, especially for higher frequencies. The agreement shown in the band-limited SPLs 

(shown as Fig. 8-10) can be considered as another interpretation of the agreement in the 
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original FRFs (as exemplified by Fig. 8-7). However, in the high frequency range, thanks 

to the wider bandwidth and larger modal density and overlap, the discrepancy between 

numerical and experimental results is not bound to increase even though the FRF curves 

are not matched very well. Additionally, Fig. 8-10(b) compares the standard deviations, 

which indicate the spatial variations of the sound fields. The numerical model works well 

if both the average SPLs and their standard deviations are consistent with experimental 

results. In fact, deriving the band-limited spatially averaged SPLs from the numerical FRFs 

has its pros and cons. For example, in this case, the frequency resolution of numerical FRFs 

is 1 Hz, which is much less than the value 1/15 Hz in the experimental FRFs. Then, in the 

low-frequency bands, the derived values from numerical FRFs may not accurate enough 

due to the limited number of data points within range. However, it is feasible to include 

plenty of measurements points in the numerical model to estimate the spatial average, while 

in the experiment, it is hard to manage.  

 

 
Fig. 8-8. SPLs predicted by FEM for different positions inside the cavity of the plate-cavity system, 

when the plate is excited by force Frms = 1 N at r'F80 (see Fig. 5-27). The SPLs Lp,2 to Lp,6 correspond to 

microphones at rc2 to rc6. 

 

 
Fig. 8-9. SPLs predicted by WBM for different positions inside the cavity of the plate-cavity system, 

when the plate is excited by force Frms = 1 N at r'F80 (see Fig. 5-27). The SPLs Lp,2 to Lp,6 correspond to 

microphones at rc2 to rc6 
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Fig. 8-10. Experimental, FEM and WBM results on (a) spatial average and (b) standard deviation of the 

SPLs at points rc2 to rc6 inside the cavity (see Fig. 5-27), when the plate is excited by force Frms = 1 N at 

r'F80. 

 

For the other circumstance when the force is acting at r'F18(0.135m, 0.74m), the spatially 

averaged SPLs in every 1/3 octave band and their standard deviations are shown in Fig. 

8-11. As expected, the results are different from the previous ones due to the change of 

exciting position. The numerical SPLs more or less follow the change caused by input force 

position as they are shown in the experiment (see Fig. 8-5), but the agreement between 

numerical and experimental results shown in Fig. 8-11 is not so good as their counterparts 

shown in Fig. 8-10 for the previous circumstance. The most significant differences are in 

four bands. For the first two bands centred at 25 Hz and 31.5 Hz, the experimental SPLs 

have larger values are due to the noise in the FRFs. Regarding 63 Hz and 80 Hz, the main 

issue is that the bound between the two bands is very close to one of the natural frequencies 

of the plate-cavity system. As can be indicated by Table 5-13, the resonance peak in the 

numerical model is 71 Hz, belonging to the band of 80 Hz, while in the experimental FRFs, 

it is 69 Hz, one of the frequencies in the band of 63 Hz. Consequently, at 63 Hz, the 

experimental SPL is larger, but at 80 Hz, the numerical SPLs are larger. Such a discrepancy 

is not demonstrated by Fig. 8-10, because when r'F18 is forced, the mode around 70 Hz is 

hardly excited. Therefore, for the numerical results, it is important to have an accurate 

prediction on the resonance frequencies in the low frequency range, and in the calculation 
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of band-limited SPLs, special attention should be paid to the resonances around the 

boundary of each band. 

 

 
Fig. 8-11. Experimental, FEM and WBM results on (a) spatial average and (b) standard deviation of the 

SPLs at points rc2 to rc6 inside the cavity (see Fig. 5-27), when the plate is excited by force Frms = 1 N at 

r'F18(0.135m, 0.74m). 

 

Finally, considering the above two circumstances synthetically and laying focus on Fig. 

8-10 and Fig. 8-11, we can conclude that it is applicable to use the proposed method to 

estimate the SPLs in a given bandwidth based on the previously updated FE and  WB 

models. In comparison, the WBM yields the estimations that better match the experimental 

results than FEM in the higher frequency part of the considered region. 

 

In addition, since it is convenient to add measuring points to the numerical model, a 

comparison is made based on the WB model to analysing the difference in the calculated 

results of the 1/3-octave-band SPLs in terms of spatial average and standard deviation, 

between 6 and 5 microphones. Thus, the previously omitted response at rc1 is evaluated. 

Fig. 8-12 shows the new calculated results with 6 microphones and their comparison to 

experimental and WBM outcomes of 5 microphones. It can be seen from the figure that 

adding one more microphone makes little difference on the average SPLs, but slightly 

reduces the standard deviations. 
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Fig. 8-12. WBM results on (a) spatial average and (b) standard deviation of the SPLs at 6 microphone 

positions (rc1 to rc6, see Fig. 5-27), compared with original experimental and WBM results of 5 

microphone positions (rc2 to rc6). 

 

8.1.3 Numerical results of SEA 

In this subsection, the results obtained by SEA for the same case are incorporated for 

comparison. The SEA model is introduced in Section 7.2 and the results of the average 

SPLs inside the cavity is shown in Fig. 7-8(b). The curve of ‘Leppington’ in Fig. 7-8(b) is 

replicated here to compare with the experimental results and the simulation results of 

numerical methods. Considering the uncertainty of cavity damping as mentioned in Section 

7.2.1, an additional simulation is performed with the only modification of the damping loss 

factor from η2d = 0.002 to η2d = 0.001. In fact, the latter is corresponding to the average 

absorption coefficient   = 0.01 at f = 1000 Hz, which is consistent with the WB model. 

Concerning the experimental results, the calculation in Section 8.1.1 is extended to the 

higher frequencies until the largest frequency can reach the upper bound of the 1600 Hz 1/3 

octave band. For the numerical results mentioned in Section 8.1.2, the results out of WBM 

are used for comparison. Then, all these results are plotted in Fig. 8-13. As shown by the 

figure, the SEA results start to be consistent with experimental ones at around 630 Hz. At 

the frequency bands lower than 400 Hz, the SEA model significantly over-estimates the 
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SPLs. The figure also indicates that the damping loss factor of the cavity is better 

approximated by η2d = 0.001.  

 

Besides, through the additional experimental results at 1000 Hz, 1250 Hz and 1600 Hz 1/3 

octave bands, it can be seen that they tend to be independent of the force exciting position. 

When comparing the standard deviations of the five SPLs Lp,2 to Lp,6 again, as shown in Fig. 

8-14, we can find that the standard deviations further decrease as the frequency increases. 

At 1600 Hz, the standard deviations are about 1 dB, smaller than the 1.5 dB limit. Therefore, 

the sound field has a good uniformity at this 1/3 octave band.  

 
 

 
Fig. 8-13. Experimental, WBM and SEA results on the average SPLs inside the cavity of the plate-cavity 

system, when the plate is excited by force Frms = 1 N at r'F80 or r'F18(0.135m, 0.74m) of Fig. 5-27. 

 
 

 
Fig. 8-14. Standard deviation of the experimental SPLs over the five microphones rc2 to rc6 inside the 

cavity (see Fig. 5-27), when the plate is excited by force Frms = 1 N at r'F80 or r'F18(0.135m, 0.74m). 

 



Doctoral Dissertation of Politecnico di Milano 

 

 
203 

 

8.2 Airborne noise investigation 

This section focuses on the airborne noise, i.e., the portion of noise inside a cabin that is 

originated from an exterior acoustic field. In this case, how much sound can be insulated 

by the partition in between is important. Therefore, in this section, using the Noise-Box, 

the sound transmission loss of the mounted test panel is investigated. The investigation is 

experiment-based and supplemented by analytical predictions and numerical simulations. 

 

8.2.1 Experimental set-up 

As mentioned in Section 2.5, the measurement of sound transmission loss in laboratory can 

be conducted using two standardized methods. The two methods are illustrated in Fig. 2-8, 

where the diagrams indicate that one or two reverberation rooms are necessary. Since the 

Noise-Box cavity can be regarded as a reverberation room, it is possible to apply the sound 

intensity measurement method shown by Fig. 2-8(b) without transporting the facilities and 

the test element to another reverberation room. Regarding this one-reverberation-room 

method, it is an important issue about how to accurately estimate the transmitted power Πtr, 

since it is hard to avoid the reflection from the environment in the receiving side. Therefore, 

the best condition is an anechoic chamber, but some other space is still optional, provided 

that the requirements for background noise, field indicators and associated field criteria are 

satisfied [174]. 

 

There are standardized procedures to measure the airborne transmission loss using sound 

intensity [172,174,176]. However, this section proposes an approach that is practicable in an 

ordinary laboratory and uses only the microphones instead of the sound intensity probes. 

Nevertheless, it is similar to the sound intensity measurement method. Concerning the 

calculation of TL based on Eq. (2.36), the input power Πin is still informed by the SPL in 

the source room LS, but the transmitted power Πtr is evaluated according to ISO 3744 (2010) 
[223] instead of measuring the sound intensity nearby. Fig. 8-15 shows the overall 

experimental set-up. It can be considered as a detailing of Fig. 2-8(b) for a specific 

measurement. Noise-Box cavity serves as the reverberant source room, inside which is a 

loudspeaker (FaitalPRO 3FE22), 6 microphones (Brüel & Kjær Type 4188) and the thermo-

hygrometer (INKBIRO IBS-TH1 Mini). The loudspeaker is placed next to a corner, used 

for exciting the sound field in the source room. The 6 microphones are located at the 

positions that depicted in Fig. 5-27, aimed at measuring the SPL in the source room. The 

thermo-hygrometer is recording the temperature and humidity inside the cavity during 

experiment. The test panel is mounted on the Noise-Box normally, by the steel clamping 

frame and 80 screws. The 6 accelerometers (PCB 333B30) on the test panel are at the 

positions shown by Fig. 5-12, which are unchanged throughout all the experiments related 



Chapter 8 Structure-borne and airborne interior noise investigation 

 

 
204 

 

to the mounted panel. In this experiment, the response of the panel is not required for the 

sound transmission loss, but the accelerations are still measured, in case that they will be 

helpful for future data processing or analysis.  

 

Noise-Box

Thermo-hygrometer 

Test panel

Microphone array

Sound absorbing panels

6 microphones (Brüel 

& Kjær Type 4188)

Loudspeaker 
(FaitalPRO 3FE22) 

19 microphones 

(PCB 130D20)

6 accelerometers 

(PCB 333B30)

Conditioner 
(PCB 483C)

Amplifier 
(Brüel & Kjær 
Type 2716C)

Acquisition 
(NI cDAQ)

PC

Waveform 
generator 

(KEYSIGHT 
33500B)

 
Fig. 8-15. Photograph and schematic of experimental set-up for sound transmission loss of test panel 

 

Regarding the measurement of the sound power transmitted through the panel, a 

hemispherical microphone array with 19 microphones is used, as shown in Fig. 8-15, fixed 

by a wooden frame. Fig. 8-16 defines the positions of the microphones in the array, which 

is proposed in the international standard ISO 3744 (2010) [223] for determining the sound 

power level of a broadband noise source. Specifically, the radius of the measurement 

surface r = 1 m, and only one microphone is placed at the coincident positions 10 and 20 

(but its output will be used twice for representing different microphone). The standard 

allows the test environment to be a laboratory room or a flat open field, but it is important 

to make sure that the space is adequately isolated from the background noise and provides 

an acoustic free field [223]. As shown by Fig. 8-15, the experiment is performed in a large 

laboratory room, which may not satisfy the requirement, but sound absorbing panels are 

employed to minimize the reflections from surrounding objects. The pyramidal sound-

absorbing panels are efficient sound absorbers made of open cell polyurethane foam, with 

the sound absorption coefficient α ≥ 0.4 for 250-8000 Hz (α ≥ 1.0 at 500 Hz). Though may 

be affected by the reverberant field inside, the room has an advantage of the stable 

meteorological conditions.  
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Fig. 8-16. Microphone positions on the hemispherical measurement surface[223]. 

 

8.2.2 Experiment and results 

During the measurement, all the instruments are connected as illustrated in Fig. 8-15. A 

waveform generator (KEYSIGHT 33500B) and a power amplifier (Brüel & Kjær Type 

2716C) are used to provide a desired input to drive the loudspeaker. The signal generated 

by the waveform generator is a white noise up to 13 kHz. The data acquisition is supported 

by signal conditioners (PCB 483C) and acquisition modules NI 9239 in a CompactDAQ 

platform. Totally 32 channels are used: 6 for accelerometers, 19 for outer microphones, 6 

for inner microphones and 1 for input signal generated by the waveform generator. The 

sampling frequency is 25 kHz. While the loudspeaker is continuously radiating noise, 20 

measurements are done, and each of them lasts for 30 seconds. Afterwards, for evaluating 

the background noise, measurements are repeated with the loudspeaker turned off. The 

temperature and humidity recorded by the thermo-hygrometer are respectively 23℃ and 

58%RH. 

 

Then, the experimental data are processed and the results are presented for discretized 

frequencies or 1/3 octave bands within 100-10000 Hz. Because one of the microphones 
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inside the Noise-Box cavity (which measures pc1 in Fig. 5-27) didn’t function well in the 

test, the SPL in the source room LS is calculated by the power average of the sound pressures 

measured by the other 5 microphones. Fig. 8-17 shows all the results related to the sound 

field inside the Noise-Box cavity (i.e., the source room). In the sound power spectrum 

(Power Spectrum Density, PSD) shown by Fig. 8-17(a), the resonances at cavity modes are 

clearly observed in the low frequency range. Fig. 8-17(b) shows that the SPL is larger than 

90 dB in the 1/3 octave bands larger than 125 Hz. Fig. 8-17(c) indicates the standard 

deviation σM of the SPLs over the 5 microphone positions is less than 2 dB when the central 

frequency fm ≥ 500 Hz and less than 1.5 dB when fm ≥ 1250 Hz. This parameter is used to 

check the uniformity of the sound field inside the cavity. Though slightly different from the 

results shown in Fig. 5-7 for the uncoupled cavity, Fig. 8-17(c) agrees with Fig. 5-7 that the 

sound field in the source room reaches an acceptable diffuseness since 1250 Hz.  

 

 
Fig. 8-17. Sound field inside the Noise-Box measured by 5 microphones: (a) averaged sound power 

spectrum density, pref = 2×10-5 Pa; (b) averaged sound pressure level in 1/3 octave band; (c) standard 

deviation of the five SPLs in 1/3 octave band. 

 

For the receiving side, the surface average SPLs are calculated for every frequency or each 

1/3 octave band. The results are plotted in Fig. 8-18. Note that the average is over 20 

microphones, as indicated by Fig. 8-16. The distribution of the SPLs over the measurement 

surface is also estimated, based on the signals acquired by the microphone array. The results 

are obtained for every 1/3 octave band, and Fig. 8-19 shows the distribution at 1000 Hz 1/3 

octave band as an example.  
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Fig. 8-18. Average SPL measured by the hemispherical microphone array (L'sm) presented in: (a) power 

spectrum density; (b) 1/3 octave bands. 

 

 
Fig. 8-19. Measured SPL distribution on the hemispherical measurement surface for the 1000 Hz 1/3 

octave band. 

 

The distribution in Fig. 8-19 indicates that the sound radiated from the plate-cavity system 

is directional. At 1000 Hz 1/3 octave band, the surface average shown by Fig. 8-18(b) is 

60.2 dB, and Fig. 8-19 shows a distribution between 54.9 dB and 66.2 dB. The distribution 

can help to analyse some errors that are introduced due to the limitations of the applied 

approach. For example, the higher SPLs measured by the microphones close to the floor, is 

partially influenced by the reflection from the floor and the front surface of the Noise-Box 

(see Fig. 8-15), where the former is unwanted and the latter, serving as the reflecting plane, 

is required. In [223], it is required that the reflecting plane shall be at least 0.5 m larger than 

the flat bottom of the hemisphere, but this is not the case in the experiment. Fortunately, 
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with the panel imbedded in the reflecting plane, the sound is mostly propagating forward. 

Furthermore, in checking the criteria for background noise, the surface average SPLs are 

compared between the conditions of noise source ‘on’ and noise source ‘off’, as shown in 

Fig. 8-20. A relative criterion is defined by the difference between the measured surface 

average SPL when the noise source is on (denoted as L'sm) and the background noise SPL 

when the noise source is off (denoted as Lsm,B). Fig. 8-20 shows that this criterion is better 

satisfied as the frequency increases. The requirement of 6 dB difference starts to be satisfied 

at 200 Hz. Starting from 500 Hz, the difference is larger than 10 dB, and at 1250 Hz, it’s 

already larger than 15 dB. Depending on the difference ∆Lsm = L'sm − Lsm,B, corrections for 

the background noise are applied [223] by Lsm = L'sm – K1, where the correction K1 = 0 if 

∆Lsm > 15 dB; K1 = -10lg(1-10-0.1∆Lsm) if 6 dB ≤ ∆Lsm ≤ 15 dB; and K1 = 1.3 dB if ∆Lsm < 6 

dB. For comparison, the corrected surface average SPL Lsm is also plotted in Fig. 8-20. 

Then, the later data processing is based on the Lsm, incorporated the correction for 

background noise. 

 

 
Fig. 8-20. Comparison of the surface average SPL in experiment L'sm (Source on), the background noise 

Lsm,B (Source off) and the surface average SPL corrected for background noise Lsm (Source on, corrected). 

All of them are measured by the hemispherical microphone array. 

 

Finally, the sound transmission loss is calculated based on Eq. (2.36). Supposed that the 

Noise-Box cavity is diffused, the incident sound power is given by 
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where pc is the sound pressure inside the Noise-Box cavity, and S is the area of the test 

element. Meanwhile, measured by the hemispherical microphone array, the transmitted 

sound power is expressed as 
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where pm is the sound pressure corresponding to the surface average SPL of the 

measurement surface (with the correction for background noise), and Sm is the area of the 
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measurement surface. Then, the sound transmission loss of the test element can be 

calculated by 

 

2
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10lg 10lg4 10lg .

c

mm

p S
TL

Sp
= − +  (8.7) 

This equation is very close to the expression for the intensity transmission loss, which is 

given in Eq. (2.42). In this case, the test panel area is S = ab = 0.825m×1.018m; the 

hemispherical surface area is Sm = 2πr2 = 2π m2; and the first term in Eq. (8.7) can be 

equivalently obtained by the subtraction of the SPL in the source room LS and the corrected 

surface average SPL Lsm. The results computed from the experimental data are plotted in 

Fig. 8-21. The two TL curves are respectively computed from the sound pressures in narrow 

bands and in 1/3 octave bands. For the frequencies lower than 500 Hz, the 1/3-ocatve-band 

TLs are not provided, since the Noise-Box cavity is highly controlled by modes and the 

standard deviations σM (as shown by Fig. 8-17(c)) are far over the 1.5dB limit. Fig. 8-21 

shows that the TL of the test panel is between 20-30 dB within 500 Hz and 10 kHz. However, 

as aforementioned, considering the sound diffuseness inside the Noise-Box cavity, the 

results at fm ≥ 1250 Hz are more credible. Besides, it can be concluded that the coincidence 

region is around 3150 Hz.  

 

  
Fig. 8-21. Experimental TL curves in narrow bands and 1/3 octave bands. 

 

8.2.3 Analytical predictions 

Section 2.5 has mentioned about three schemes for estimating the TL analytically. Now, 

these schemes are applied to the test panel, and their results are compared among 

themselves as well as the experimental ones. Their equations for estimating TL are specified 

in Appendix B. Note that in the analytical models, the parameters are given by l1 = 1.018 

m,  l2 = 0.825 m,  h = 3.93 mm, ρ = 2680 kg/m3, E = 69 GPa, ν = 0.33, η = 0.003, ρ0 = 

1.1921 kg/m3, c = 344.96 m/s and f1 = 40.6 Hz, where the Young’s modulus is the one 
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updated in free-free conditions, the air properties correspond to the experimental 

temperature 23℃, and the first resonance of the panel is provided according to the panel 

acceleration measured in the experiment. Fig. 8-22 shows the analytical estimations, 

compared with the experimental results obtained in Section 8.2.2 (shown by Fig. 8-21).  

 

  
Fig. 8-22. Comparison of the analytical solutions and experimental results on sound transmission loss of 

the test panel. 

 

As shown in Fig. 8-22, the experimental results are provided in 1/3 octave bands. While 

compared with formular predictions, the experimental results show the agreement on two 

points: the critical frequency fc ≈ 3150 Hz and the slope from 630 Hz to 1600 Hz. As 

discussed in Section 5.1.5, 630 Hz is about the cut-off frequency for the modal region of 

the cavity. The frequency 1600 Hz is approximate to fc/2.  

 

However, the disagreement is also obvious. In 500 Hz ≤ f < fc, all the estimations are larger 

than the experimental ones. After analysing the results showed in Section 8.2.2, it is assured 

that the experimental results underestimate the TL of the test panel in this region. The 

underestimation is related to the measurement approach and set-up. As illustrated by Fig. 

8-19, the transmitted sound power is over-estimated due to the sound reflected from the 

floor to the measurement surface. Besides, owing to the shape and size of the panel, the 

hemisphere with r = 1 m may not sufficiently ensure most sound energy passing though the 

measurement surface with normal incidence. Possible leakage and flacking noise exist. All 

these factors lead to a higher sound power level measured by the measurement surface. 

Meanwhile, when the incident sound field to the panel is not guaranteed completely 

diffused, this factor influences both the incident sound measurement and the sound 

transmission. In this regard, it seems the former is more affected. Since the sound field in 
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the source room is considered diffused, the sound power incident to the panel is divided by 

4 in Eq. (8.5) for the equability of all directions. However, as shown in Fig. 8-15, the 

loudspeaker is not so far away facing the test panel, so it is probable that most sound is 

propagating towards the panel and thus we underestimate the incident power.  

 

On the other hand, regarding the frequency range higher than the critical frequency, i.e., f > 

fc ≈ 3150 Hz, the incidence can be confidently considered as a diffuse sound field 

(according to the conclusion of Section 5.1.5). The measurement is also less affected by the 

reflection from floor, since the majority of sound energy is not anymore concentrated to the 

area next to the floor, as exemplified by Fig. 8-23, indicating the reflected sound power is 

only a small portion of the overall. For the frequency range from 3150 Hz to 6300 Hz, the 

experimental results are between Sharp’s predictions and the others. Meanwhile the slope 

is in accord with the Sharp’s curve. The errors in this range are considered mainly from two 

sides. For one thing, as aforementioned, the measurement surface leads to the over-

estimation of transmitted sound power in the receiving side, which will reduce the TL; for 

the other, two factors may make the limit angle of the field incidence θL smaller, even less 

than 78°, and this will result in larger fc larger TL at f = fc but smaller TL in f > fc. One 

factor is the small size of the source room, because of which, the loudspeaker is not far 

from the test panel (see Fig. 8-15). The second factor considers that the edges of the test 

panel are directly on the surrounding walls of the source room. Lastly, an abnormal thing 

is the reduction of TL at 8000 Hz. While checking all the experimental details for the reason, 

it was noticed that the specification of the sound absorbing materials, which are used to 

avoid sound reflections, indicates that the sound absorption is guaranteed only for 250-8000 

Hz with α ≥ 0.4. Therefore, if the sound absorbing panels don’t function well above 8000 

Hz, it can explain why the measured TL is reduced.  

 

 
Fig. 8-23. Measured SPL distribution on the hemispherical measurement surface for the 6300 Hz 1/3 

octave band. 
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Fig. 8-22 also compares the estimations from different prediction schemes. The Sharp’s 

scheme was proposed earliest. In this case, its prediction of three straight lines within 100-

10000 Hz. The slopes of the curve in the mass-law and damping-controlled regions are 

consistent with the theoretical curve shown in Fig. 2-7. In comparison, the slopes of the 

other three prediction, Davy’s scheme, EN 12354-1(2000) and ISO 12354-1(2017), are 

smaller in f < fc/2, but larger in f > fc. For the region 100 Hz < f < fc/2, their slopes are around 

4.5 dB/octave, and the discrepancy in TLs between any two of them increases as the 

frequency decreases. Davy’s prediction is larger than EN 12354-1(2000) and ISO 12354-

1(2017). It is larger than EN 12354-1(2000) by 2~5 dB, and the latter is larger than ISO 

12354-1(2017) by 1~5 dB. In the region fc/2 < f < fc, they have smoother transition than 

Sharp’s. When keeping the relative relationship from fc/2 to fc, the three curves coincide for 

f > fc. The Sharp’s prediction is larger than the others from fc/2 to 10000 Hz. It is claimed 

in [169] that the Sharp’s method provides better prediction around fc. Fig. 8-22 also shows 

that the result of Sharp’s scheme is closest to the experimental result at 3150 Hz, which is 

about the critical frequency. Even so, it should be known that the results around fc are highly 

related to the panel loss factor η or ηtot, but this parameter is often difficult to have an 

accurate determination. 

 

8.2.4 Numerical simulations and results 

The TL of the test panel is also analysed using the numerical approaches FEM and SEA, 

respectively. The FE model for sound transmission loss is built in COMSOL using the same 

techniques introduced in [224]. As shown by Fig. 8-24, for FEM, a TL measurement using 

sound intensity method is simulated in COMSOL. The diffuse sound field provided by 

reverberation room is simulated by a large number of uncorrelated plane waves in random 

direction, and the perfectly matched layers are to fulfil the free field condition in the 

receiving side. After the frequency domain analysis, the sound powers incident to the front 

face of the panel and transmitted out from the back face of the panel are computed. Then, 

the two sound powers are used to calculate the TL according to on Eq. (2.36). Material 

properties are the same as they are set for the analytical solutions. The analysed frequencies 

are from 100 Hz to 1280 Hz in 1/24 octave bands and the results are shown in Fig. 8-25. 

There are also the SEA results in 1/3 octave bands. The SEA model is obtained by 

modifying the model built via MATLAB in Section 7.3. Three subsystems are used, but the 

source room is switched from the large cavity to the small Noise-Box cavity to be consistent 

with the experiment. Since the receiving side is a large reverberation room, the SEA 

simulates the TL measurement by the two-room method. Besides, the material properties 

of the panel and cavities are also modified accordingly. Afterwards, without any other 
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change, the analysis can be performed and the results are plotted in Fig. 8-25 to compare 

with the experimental ones. 

 

Aluminium panel 

(structural field)

Perfectly matched layers

Diffuse sound field

(100 uncorrelated plane waves 

in random directions)

Air

(acoustic field)

 
Fig. 8-24. FE model for the analysis of sound transmission loss of the test panel. 

 

  
Fig. 8-25. Comparison of the numerical solutions and experimental results on sound transmission loss 

of the test panel. 

 

The FEM and SEA results are shown together in Fig. 8-25, compared with experimental 

curves. Their relative relationship to the analytical results can be estimated by incorporating 

Fig. 8-22 for comparison. Firstly, the FEM results are discussed. The FEM curve is 

fluctuating when the frequency changes. This is a normal thing, since in FEA, the result at 

each frequency is obtained with a single frequency excitation. When the frequency is close 

to a panel resonance, the TL will be smaller than the general trend; and conversely, when 

it is about an anti-resonance, the TL will be larger than the nearby frequencies. The limited 

number of random waves and directions should be partially responsible. One way to smooth 

the curve is to average the results for wider bands. Nevertheless, the fluctuating range will 

decrease as the frequency increases, for the response is less influenced by the panel size 
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and boundary conditions. Within 100-200 Hz, the TL varies a lot with the frequency. In 

fact, this range is within the first ten modes of the panel (see Table 5-10), where the TL 

may be still in the resonance region or not completely enter the mass controlled region. 

From 500 Hz to 1250 Hz, a fitting curve to the FEM results can be expected between the 

SEA curve and the ‘Experiment’ curve. Next, concerning the SEA results, it would be better 

to compare them with the analytical results in Fig. 8-22. For f < fc, the SEA results agree 

well with Davy’s estimations, while in f ≥ fc, they better agree with the Sharp’s. However, 

the correlations rely on the methods that have been used to determine the SEA parameters. 

 

8.3 Summary 

This chapter uses experimental and numerical approaches to investigate the structure-borne 

and airborne interior noise of the plate-cavity coupled Noise-Box. The structure-borne path 

considers the excitation originated from a normal force with uniform spectrum acting at a 

given point of the plate, and the airborne path focuses on the sound TL of test panel.  

 

The structure-borne noise investigation covers an experiment and three numerical 

simulations, respectively by FEM, WBM and SEA. In the experiment, the plate was excited 

by hammer impulse, while the sound pressure inside the cavity was measuring with 5 

microphones. The output points were fixed, and the input point changed for different groups 

of FRFs. The average SPLs of the cavity in 1/3 octave bands are calculated from the FRFs. 

Different input point yields different outcome, indicating the influence of the input location. 

The results show that it is less significant as the frequency increases. The spatial variation 

inside the cavity was also checked by the standard deviations of the local SPLs. The results 

indicate a better uniformity when the frequency is larger than 500 Hz. In the numerical 

simulations, FE and WB analyses were performed respectively for the FRFs, while SEA 

was conducted directly for the average SPLs. The process from numerical FRFs to average 

SPLs is the same as the experimental ones, thus the final results should match well with the 

experimental ones if it is the case for every FRF. All the experimental and numerical results 

are finally compared in a single figure. While the experiment, FEM and WBM results are 

not available for high frequencies and SEA results are not accurate at low frequencies, they 

reach an agreement in the range between 500 Hz and 1600 Hz.  

 

The sound TL of the mount test panel is measured, analytically estimated and numerically 

computed in the airborne noise investigation. For measuring the TL, an experimental set-

up was designed with reference to the guidelines for one-reverberation-room measurement. 

In the set-up, the Noise-Box cavity serves as the source reverberation room, and the 

transmitted sound power is measured by a hemispherical microphone array. The 
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experimental TL was obtained for the 1/3 octave bands from 500 Hz to 10 kHz, based on 

the SPL inside the cavity and the radiated sound power measured by the microphone array. 

Then, for the approximate estimation by analytical formulae, three prediction schemes were 

employed. They are respectively the formulations from Sharp, Davy and EN 12354-1(2000) 

or ISO 12354-1(2017). Unsurprisingly, the prediction results are not well agreed for all 

frequencies. Discrepancies at f < fc can reach several decibels. Through the comparison 

between the experimental results and the analytical predictions, accompanied by the 

experimental error analysis, it is considered that the experimental results have under-

estimated the TL from 500 Hz to 2000 Hz. The main reason is attributed to the 

overestimated sound power in the receiving side, caused by the sound reflections. 

Meanwhile, the cavity resonances are shown influential at frequencies lower than 630 Hz 

and 1250 Hz, respectively for two levels of cavity diffuseness. In the end, the TL is analysed 

via FEM and SEA, respectively. At low frequencies (less than 200 Hz), the FEM results 

are highly fluctuating due to the resonance of the panel. For the range from 500 Hz to 1280 

Hz, the TLs of FEM are concentrated in a strip about 1 to 5 dB over the experimental curves. 

On the other hand, the SEA results are larger than the FEM results and experimental results 

for most frequencies. They are close to Davy’s formulation for f < fc, and Sharp’s 

formulation for f ≥ fc. Throughout all the results, the consistency is seen for the variation 

trend of TL over frequency: from 500 Hz to 1600 Hz, the TL increases by about 4.5 

dB/octave; from 4 kHz to 10 kHz, the TL increases by about 9 dB/octave; and a dip presents 

at 3150 Hz, where should be a region of coincidence.  
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 Conclusions and future perspectives 

9.1 Conclusions 

Nowadays, the public are paying more attention to the transport comfort and the risk of 

noise to their health and safety. Interior noise has becoming one of the most important 

issues for vehicle industry. In fact, engineers and researchers are facing a big challenge in 

further mitigating the interior noise of traditional vehicles and handling the different noise 

features in new vehicles. To overcome the difficulties, it is essential to have more 

investigations on the problem, where we need the test equipment and reliable CAE tools. 

Therefore, this dissertation designs, constructs and validates a benchmarking and testing 

tool Noise-Box for interior vibroacoustic problems. Experimental and numerical techniques 

(e.g., EMA, FEM, WBM and SEA) with necessary adaptations or modifications are used 

to characterize and investigate the plate-cavity coupled Noise-Box. Consequently, a 

benchmarking and testing tool for vehicle interior noise is developed and ready for 

application, with the following identified characteristics and validated analysis tools at hand: 

• characteristics of the Noise-Box cavity, including natural frequencies and modes, 

reverberation time and sound absorption in different 1/3 octave bands, sound field 

diffuseness represented by mode count, modal density or modal overlap in different 

1/3 octave bands; 

• EMA for a test panel mounted on the Noise-Box. The associated techniques include 

the developed codes for modal parameters estimation using the single-DOF/multi-

DOF local and global curve fittings, which ensure a good matching between the 

experimental and modal-model FRFs; 

• EMA for the plate-cavity vibroacoustic system. The associated techniques involve 

the new codes different from the curve fittings employed in the uncoupled situation, 

for the modal-model polynomials of transfer functions are different; 

• FEM for analysing the plate-cavity system or its components via ANSYS or 

COMSOL, with the knowledge about how to select the element types, determine 

the mesh style, model different boundary conditions, etc.; 

• WBM for predicting the steady-state response of the plate-cavity system or its 

components in low to mid frequency ranges efficiently. This technique is 

implemented in MATLAB by the self-developed codes, whose accuracy and 

efficiency are validated; 

• SEA for studying the plate-cavity system under force or acoustic excitation. This 

technique is implemented in MATLAB by validated self-developed codes; 
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• techniques for measuring sound TL of panels using the Noise-Box, and for 

predicting the sound TL using analytical approximations, FEM or SEA. 

 

Throughout the design, the characterization and the investigations of the Noise-Box system 

in this work, we can draw the conclusions from the following four aspects: 

(1) Characteristics of the Noise-Box test bench 

• The Noise-Box test bench is finally built up as an approximately pentagonal prism 

with six rigid concrete walls and one opening. With two sidewalls parallel, it is able 

to use a 2D model to analyse the cavity, which has been proved in the modal 

analyses of the Noise-Box cavity. Except for them, all the other walls are unparallel, 

for the utmost diffuseness inside. Besides, the only opening side is ready for the 

mounting of a test panel by elastic or rigid supports, forming a panel-cavity coupled 

system for investigations. Such a simple system was designed for benchmark 

purpose and for its potential to be used to develop a variety of noise mitigation 

measures. 

• The concrete walls of the Noise-Box are no less than 200 mm in thickness, enclosing 

a small of 0.596 m3. The entire facility occupies around 2 m3 and weighs about 2.5 

tons. It can be moved with eyebolts and mounted to the window of a standard 

reverberation chamber. 

• The natural frequencies and modes of the Noise-Box cavity has been characterized 

through experiment and FEA, where the two sets of results match very well. The 

first five non-zero natural frequencies are 163 Hz, 209 Hz, 259 Hz, 266 Hz and 300 

Hz at the room temperature 24℃.  

• The 1/3-octave-band reverberation times in 160 - 6300 Hz (obtained by T20 

measurement) are within 0.7 - 3.71 sec. Correspondingly, the average sound 

absorption coefficients are between 0.006 and 0.032, which are small and meet the 

requirement of a reverberation room. 

• The quantifiers of sound field diffuseness indicate that the low-frequency modal 

region should be cut off at about 650 Hz, while the fully diffuse sound field is 

available at higher than 2500 Hz. In the middle is a transition for the diffuse level, 

where a division can also add at around 1000~1250 Hz. 

• When a flexible panel is mounted onto the Noise-Box, the vibroacoustic coupling 

effects can be investigated. In the presented case when mounted on it the thin 

aluminium panel with the first resonance at around 40 Hz, the cavity is seen not so 

strongly influencing the vibration of the panel except that the cavity is resonant. The 

cavity has a stiffening effect on the panel’s first resonance, but has a small mass 

effect on the others. Besides, the coupled natural frequencies are very close to either 
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the structural ones or the acoustic ones. Therefore, it is a weak coupling between 

the panel and the cavity.  

(2) Mathematical models of the plate-cavity system 

• The thin aluminium panel considered in this work can be modelled as a Kirchhoff 

plate or a Mindlin plate with little difference in final results, due to its small 

thickness-to-span ratio h/a <  1/200 ≪ 1/20. 

• The material parameters and thickness of the plate are easier to determine based on 

the dynamic test of the plate under free-free conditions. The parameters best 

matching the experimental and numerical natural frequencies yields ρ = 2680 kg/m3, 

h = 3.93 mm, E = 69 GPa and ν = 0.33. 

• The mounted test panel is harder to have an accurate model for two reasons. Both 

are related to the size of the panel, which has been identified as 0.825 m × 1.018 m 

× 3.93 mm. This size indicates an extremely small thickness-to-span ratio h/a <  

1/200 < 1/100. In this case, the membrane forces may not be negligible, for their 

effects on the plate bending vibration. Theoretically, the membrane forces are zero 

if no tensions are normal to the plate edges, but in the experiment, it is hard to know 

the initial tensions raised by installation and they will also be dependent on the 

temperature due to thermal expansion. This is one of the findings during the 

characterization of the mounted test panel, and the first hard point in modelling the 

test panel. Secondly, it is difficult to achieve perfectly clamped boundary conditions. 

This is on one hand related to the rigidity of the supports and on the other hand 

associated with the bending stiffness of the panel. The smaller thickness-to-span 

ratio may indicate harder to resist rotation along the plate edges, provided that the 

supports are rigid enough to fix the displacement. Consequently, the boundary 

conditions can be at a stage between the clamped and the simply supported.  

• Despite the two modelling difficulties of the plate, the thesis finds out that 

introducing rotational stiffnesses on the plate edges and performing model updating 

for these stiffnesses and the Young’s modulus can yield a plate model that matches 

well with the test panel. For the uncoupled case, the updated model has k𝜃x = 5 

kN/rad,  k𝜃y = 9 kN/rad, E = 76 GPa; and for the coupled cases, k𝜃x = 9 kN/rad,  k𝜃y 

= 16 kN/rad and E = 77 GPa. In both cases, the rotation stiffness k𝜃x of the shorter 

edges is smaller than k𝜃y of the longer ones. The damping loss factor is not updated, 

approximated by the identified modal damping ratios in EMA, i.e., η = 2ζr ≈ 0.003. 

• The model of the cavity is only updated for the air properties and the wall impedance, 

respectively relying on the temperature and the average sound absorption 

coefficient.  
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(3) Numerical methods for the plate-cavity system 

• In the FEM implemented in ANSYS or COMSOL, the thumb of rule for mesh 

should follow the instruction, i.e., at least either 10 linear or 5 quadratic elements 

per wavelength. 

• For elastically restrained edge conditions, they can be modelled by nodal-based 

spring-damper elements in ANSYS, and by edge loads in COMSOL. 

• The COMSOL models and ANSYS models yield consistent results for the same 

problem. COMSOL is more convenient for using the default element type can yield 

the results with good accuracy, while ANSYS is more flexible in selecting different 

element types and imposing some special boundary conditions. Thus, this thesis 

finally uses COMSOL for the 3D problems and ANSYS for the 2D problems. 

• The new weighted residual formulation proposed in the WBM for flexural vibration 

of plates with arbitrary edge conditions is proved effective. And this formulation 

still works well when the plate is coupled with an acoustic field. 

• The MATLAB codes of WBM are validated. The WBM is shown more efficient 

than the FEM for analysing the harmonic steady-state problems. It can be used to 

extend the FRFs to the frequencies higher than those analysed in FEM without a 

huge increase of model size and computation time. 

• The MATLAB codes for SEA are verified by comparing with the open source 

software ‘SEAlab’. The comparison reveals that the analytical formulae for the 

panel’s sound radiation efficiency and the non-resonant transmission coefficients in 

SEAlab are different from our codes. When different formulae are used, the results 

will be slightly different. The SEA models can be used for a wide-frequency-range 

prediction, but the effective frequency range should be checked with the SEA 

assumptions. 

(4) Experimental techniques for the plate-cavity system 

• Modal parameters of the coupled system and the uncoupled components are 

obtained through EMA. For different analysis objects, the techniques to extract the 

modal parameters are different. For the uncoupled cavity, due to the lack of 

information in the signal transfer path, peak picking technique is used to identify 

the natural frequencies. For the uncoupled panel and the coupled plate-cavity 

system, the modal parameters are similarly estimated by least-squares besting curve 

fitting approach, but the fitting polynomials are different.  While the typical modal 

model of a multi-DOF dynamic system can be applied to the FRFs between 

acceleration and input force, the FRFs between sound pressure and the input force 

need to be modelled by more general polynomial. The curve fitting approach works 

well, for the reconstructed FRFs have a good agreement with the measured FRFs.  
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• In the experimental investigation of structure-borne interior noise, the panel is 

excited by hammer impulse with a flat spectrum up to 1780 Hz. The data processing 

demonstrates how to convert the raw data to the FRFs comparable with the FEM or 

BEM results, and to band-limited average responses comparable with the SEA ones.  

• In the experimental investigation of airborne interior noise, a measurement method 

implemented on the Noise-Box for sound TL of the test panel is proposed. The 

Noise-Box cavity serves as the source reverberation room, when the transmitted 

power to the receiving side is measured by a hemispherical microphone array. The 

experimental arrangement has some drawbacks for the reflectors in the receiving 

side and the inadequately diffuse field at low frequencies in the source side. 

Nevertheless, the variation trend of TL over frequency is in accordance with the 

theoretical results, and the coincidence at about 3150 Hz is accurately predicted. 

The results have been compared with the counterparts estimated by different 

approximate formulations and numerical simulations. It is deduced that the 

measurement underestimates the TL from 500 Hz to 2000 Hz and that the Noise-

Box has the potential for being the source room for frequencies higher than 630 Hz. 

 

Though the dissertation is sort of applying the existing methods to develop a vibroacoustic 

investigation system that are equipped with matched test equipment and numerical models, 

several innovative points can be highlighted: 

• The Noise-Box for benchmarks and investigations of interior noise problems is a 

new tool. It will be useful and helpful for developing experimental and numerical 

techniques in acoustics or vibro-acoustics, and can be used for developing interior 

noise mitigation measures. 

• An improved EMA for plate-cavity vibroacoustic systems is presented, so that the 

modal parameters of both plate- and cavity-controlled modes are identified with 

good accuracy. While the modal parameters are estimated by best curve fitting 

approach, the FRFs Ajk = aj/Fk and the FRFs Hlk = pcl/Fk are modelled by different 

polynomials. Two groups of modal parameters are obtained, respectively based on 

Ajk and Hlk. The final modal parameters can be determined through a comparison 

between the two groups, where it should be noticed that most of them are agreed.  

• A modified weighted residual formulation in the WBM for plate bending problems 

is proposed. The formulation can be used to build the WB model of a plate under 

any type of edge restraints, including the prescribed restraints (i.e., clamped, simply 

supported, free and symmetric), the general (visco)elastic restraints with 

translational and rotational stiffnesses (and damping coefficients), and the partially 

(visco)elastic restraints with either translational or rotational stiffness (and 

damping), which is an extension of the classical WBM that considers only the 

prescribed restraints. 
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9.2 Future perspectives 

This dissertation is only a start point for the Noise-Box, and there will be much future work 

on the device. The following raises some proposals from three perspectives.  

 

The first perspective concerns some unsettled problems that are noticed during this research. 

Problem 1: effect of in-plane forces or thermal load on the vibration behaviour of the 

mounted thin plate. To solve this problem needs to establish another mathematical model 

for the plate, included the membrane forces and thermal expansion of the material. The 

FEM and the WBM can be used to solve this problem, and a new corresponding experiment 

should be designed and performed. 

Problem 2: a well-developed technique to use the Noise-Box for sound TL measurement. 

This requires not a little improvement on the currently used method, and there are several 

improving directions. For the receiving side, two options are considered. One uses the 

microphone array and the other utilises sound intensity probes. Under the first option, we 

need to avoid the unexpected reflections and improve the microphone array arrangement. 

The second option can follow the standard requirements defined in ASTM E2249-19 or 

ISO 15186. For the source side, regarding the lack of sound field diffuseness in low 

frequency range, we can develop some corrections through some numerical and 

experimental investigations. In this process, it is necessary to obtain the benchmarks from 

a standard TL measurement. 

 

The second perspective regards the further investigations on several points that have been 

started in this work. 

Point 1: extending the experimental structure-borne noise investigation to higher 

frequencies. In this case, the panel can be excited by a shaker. If the response of the panel 

is also considered, it would be a better choice to use the laser doppler velocimeter. 

Point 2: changing the cavity wall impedance to see its influence and validate the related 

modelling in the numerical models. This can be achieved by gluing the sound absorbing 

panels to the concrete walls. 

Point 3: changing for another test panel. There is a thinner aluminium panel prepared. The 

tests on this panel can reveal the effects of panel thickness on many characteristics, such as 

modal properties, edge conditions, damping loss factor, sound TL, sensitivity to membrane 

forces and thermal load, etc. 

Point 4: changing the boundary conditions of the panel. This can be done in two ways. One 

is to remove some screws. The more screws are removed, the edges will be less firmly 

clamped. The other way recalls the design of the Noise-Box, where it points out that the 
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Noise-Box is also available for the elastic mounting. In both ways, the influence of 

boundary conditions can be studied.  

Point 5: experimental investigation on the response of the plate-cavity system under 

exterior acoustic excitation. This thesis has presented this case in the SEA. It can be a 

validation of the numerical models, and a test for the difference between force and acoustic 

excitation, or between the noise reduction and the sound transmission loss. 

Point 6: being benchmarks or setting benchmark cases for other numerical techniques. The 

discussed cases may be already able to serve as benchmarks. Other numerical methods can 

be used to analyse the same cases for comparison. Similarly, experimental and numerical 

results can be prepared for other benchmark cases.  

 

The third perspective considers the applications of the Noise-Box. 

Application 1: measuring the sound absorption of small elements. With the opening closed 

by a rigid and highly reflected wall, the Noise-Box can be used as a small reverberation 

room for the sound absorption measurement. If necessary, diffusers can be added inside. 

Application 2: vibroacoustic characterization of different panel structures. The Panel 

structure can be optimized based on the experimental results, and the optimized structure 

can be tested again on the Noise-Box. 

Application 3: testing active noise control logics. The active noise control reduces the 

interior noise by introducing secondary sound sources into the system, which is functioning 

with a certain logic. To know whether a new developed logic will work, it may need 

repeatedly test and debug, the Noise-Box can provide a platform for the test and final 

validation.  Meanwhile, the simple and well-known features of the test bench may help to 

speed up the process. 

Application 4: testing an active structural-acoustic control. This control technique reduces 

the radiated sound by applying mechanical inputs to the structure. The flexible panel 

mounted on the noise box can be the controlling object for testing this control technique.  
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Appendix A: CAD drawings 

 

A.1 Assembly drawing 

 

 



Appendix A: CAD drawings 
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A.2 Exploded drawing 
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A.3 Noise-Box concrete walls 

 

 



Appendix A: CAD drawings 
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A.4 Noise-Box steel mounting frame 
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A.5 Clamped panel 

 

 



Appendix A: CAD drawings 
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A.6 Free panel 
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A.7 Steel clamping frame 
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Appendix B: Panel transmission loss approximate 

predictions 

 

B.1 Sharp’s prediction scheme 

In Sharp’s prediction for f > 1.5f1, the field incidence transmission loss, TL, should be 

calculated with θL = 78° in Eq. (2.37). For f < 1.5f1, the analysis of [58] is adopted, where the 

panel is considered rigid but resting on flexible supports and s is the stiffness per unit area 

of the support. However, for a rigidly supported finite panel, the parameter s is not available 

from the support. The solution in this scheme is to corelate the first resonance modes. 

Therefore, for a simply supported panel, the stiffness is expressed as 
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where l1 and l2 are panel dimensions and satisfy that l1 ≥ l2. 

 

Then, the formulae for different frequency ranges in 1/3 octave bands are proposed as 

follows [169]: 

(a) f < f1 
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(b) 0.5f1 < f < 1.5f1 
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(c) 1.5f1 < f < fc 
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(d) f ≈ fc and f > fc 
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B.2 Davy’s prediction scheme 

In Davy’s prediction, only the frequency range above 1.5f1 is considered. The limiting angle 

θL proposed by [225] is 
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where, λ is the acoustic wavelength at corresponding frequency, and S is the area of the 

panel. 

 

Then, Davy’s prediction of field incidence transmission loss is provided as follows [169]: 

(a) 1.5f1 < f ≤ 0.8fc 
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with 
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(b) 0.95fc ≤ f ≤ 1.05fc 
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where ∆b is the ratio of bandwidth with centre frequency. For 1/3-octave band, ∆b = 0.236. 

(c) f > 1.7fc 
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(d) 0.8fc < f < 0.95fc 

The larger value of the two calculated by Eq. (B.7) and Eq. (B.9). 

(e) 1.05fc < f < 1.7fc 

The larger value of the two calculated by Eq. (B.9) and Eq. (B.10). 

 

B.3 BS EN ISO 12354-1 (2017) prediction scheme 

In the standard [171], the formula for estimating the sound reduction index R (equivalent to 

TL) is provided. The field incidence transmission loss is calculated based on Eq. (2.36) with 

the field incidence transmission coefficient τ obtained according to the following equation 
[171]: 
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where, ηtot is the total loss factor including the losses from the panel’s material, radiation 

and mounting, σf is the radiation factor for forced transmission, and σ is the radiation factor 

for free bending waves. 

 

The two radiation factors σf and σ are critical. The former related to forced waves is given 

by [171]: 

 ( )f 1 2 f0.5 ln ; 2,k l l  = −    (B.12) 
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The latter radiation factor for free waves σ is calculated as follows [171]: 

(a) determine the values of σ1, σ2, σ3 and f11:  
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(b) if f11 ≤ fc / 2 then: 
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(c) if f11 > fc / 2  then: 
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(d) in all case, σ ≤ 2. 

 

 
1 The expression for f < fc in this equation is modified because it is considered that the original expression has 

a typal mistake, where (
1−𝑓2

𝑓𝑐
2 )

-2

 should be (1 −
𝑓2

𝑓𝑐
2)
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, which is referred to [226]. Note that the expression in 

EN 12354-1 (2000) is given by (
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In Eq. (B.15), the unknowns δ1 and δ2 are given by 
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with cf / fb = . 
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