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Abstract

This thesis aims to address a current gap in the field of recommender systems. While
numerous techniques leverage user reviews as additional information to enhance recom-
mendations, they often yield unsatisfactory results, leading to a decline in research interest
in this direction. Conversely, there is a growing interest in utilizing Large Language Mod-
els (LLMs), a family of models born after 2017 and based on the Transformer architecture,
demonstrating remarkable results across a variety of tasks. Although there are existing
methods applying LLMs to recommender systems, literature currently lacks any tech-
nique focused on using an LLM to process user reviews for enriching recommendations.
The underlying hypothesis of this work is that LLMs exhibit exceptional abilities in un-
derstanding human language and should, therefore, efficiently process user reviews, since
written in natural language. To validate this hypothesis, seven new models are introduced
in this thesis, ranging in complexity from simple content-based methods to neural mod-
els employing attention mechanisms with different settings. All models outperform the
existing state-of-the-art models that leverage reviews for recommender systems. Notably,
the final model, a straightforward hybrid ItemKNN incorporating both content-based
and collaborative filtering, even outperforms effective collaborative filtering baselines like
RP3Beta. These results confirm the validity of the hypothesis, paving the way for poten-
tial future developments in this direction.

Keywords: Recommender Systems, Large Language Models, Attention, Reviews





Sommario

Questa tesi ha lo scopo di riempire un’attuale lacuna nel mondo dei recommender sys-
tems. Esistono infatti numerose tecniche che sfruttano le recensioni lasciate da utenti a
prodotti come informazione aggiuntiva per arricchire le raccomandazioni. Tuttavia questi
metodi ottengono risultati spesso insoddisfacenti, portando a un declino dell’interesse per
la ricerca in questa direzione. Al contrario, è sempre maggiore l’interesse verso l’utilizzo
dei Large Language Models (LLMs), una famiglia di modelli nati dopo il 2017 e basati
sull’architettura del Transformer, che stanno mostrando risultati incredibili in una grande
varietà di task. Sebbene esistano metodi che applicano LLM ai recommender systems, al
momento non esiste in letteratura nessuna tecnica basata sull’utilizzo di un LLM per pro-
cessare le recensioni degli utenti e sfruttarle per arricchire le raccomandazioni. L’ipotesi
alla base di questo lavoro è che i LLM dimostrano abilità eccezionali nel comprendere il lin-
guaggio umano, e di conseguenza dovrebbero essere in grado di processare in modo molto
efficace le recensioni degli utenti, in quanto composte da linguaggio umano. Per validare
questa ipotesi, 7 nuovi modelli sono presentati in questa tesi, con un grado di complessità
che va da semplici metodi content-based a modelli neurali che utilizzano meccanismi di at-
tention con diverse configurazioni. Tutti i modelli ottengono risultati nettamente migliori
rispetto ai modelli costituenti l’attuale stato dell’arte nell’utilizzo di recensioni in rec-
ommender systems. In particolare, l’ultimo modello (un semplice ItemKNN ibrido che
utilizza sia content-based filtering che collaborative filtering) riesce persino a superare
efficaci baseline di collaborative filtering come RP3Beta. Questi risultati confermano la
veridicità dell’ipotesi, aprendo la strada a possibili futuri sviluppi in questa direzione.

Parole chiave: Recommender Systems, Large Language Models, Attention, Recensioni
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1

1| Introduction

The world of recommender systems constitutes a continuously evolving field of research,
captivating the interest of both academia and industry. The constant development of
novel algorithms aims to enhance the existing state-of-the-art models to obtain improved
results in real-world applications like social networks, streaming platforms and booking
services. Recommender systems exploit any kind of collateral information to enhance the
quality of recommendations provided, like user demographics, item attributes, temporal
and location information, and contextual information.

Among these, also reviews given by users to items can be used as side information, as they
are commonly found across various contexts. Whether as reviews of products purchased
online, restaurant reviews, or movie feedback, users frequently leave reviews within plat-
forms implementing recommender systems. These reviews can serve as supplementary
information to enhance recommendations for the same users. Over the years, researchers
have devised numerous techniques to harness user reviews in recommender systems [11].
Current state-of-the-art methodologies involve utilizing reviews to enrich both user and
item profiles within the system. Examples of these techniques are HFT[34], NARRE[10],
and HRDR[33]. However, as shown in Chapter 4, none of these methods has actually
proven truly effective, as they struggle to achieve results comparable to simple collabo-
rative filtering methods. Consequently, interest among researchers in utilizing reviews as
additional information has waned.

Nevertheless, the world of artificial intelligence is undergoing a profound revolution,
marked by the advent of a new class of models known as Large Language Models (LLMs).
Emerging after 2017 and based on the Transformer architecture introduced in the paper
"Attention is all you need" [56], LLMs represent a groundbreaking development in arti-
ficial intelligence, thanks to the introduction of the attention mechanism. The fusion of
Transformer-based architectures and the continuous development of hardware technolo-
gies, particularly hardware accelerators enabling models with tens of billions of parame-
ters (hence, "Large"), has led to the creation of increasingly powerful models. Models like
ChatGPT[9] are now ubiquitous and employed across a myriad of artificial intelligence
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tasks.

Given the remarkable capabilities demonstrated by these models, researchers are now ex-
ploring the application of LLMs to recommender systems. These techniques, however, are
currently still in an experimental phase, as they are mainly based on prompt engineering
techniques and they are hardly applicable in large-scale real-world scenarios; yet they
exhibit promising results. Furthermore, at the time of writing of this thesis, there is no
existing study in the literature about the use of LLMs on recommender systems based
on user reviews. The aim of this thesis is to explore this new field and try to bridge the
existing gap. The motivation behind this work lies in the fact that LLMs are designed
with the primary aim of understanding human language, and they perform exceptionally
well in this task. Consequently, they may effectively process user reviews, composed in
human language, and use this processed information to enhance the recommendation pro-
cess. Thus, the objective of this thesis is to evaluate this hypothesis for confirmation or
refutation.

The structure of the thesis is as follows. In Chapter 2, current state of the art is presented,
regarding both recommender systems, highlighting those that leverage user reviews, and
LLMs, with a focus on models that use LLMs to produce recommendations. A brief
discussion on evaluation techniques is also present. In Chapter 3, a detailed description
of all models presented in the thesis is provided, covering both the theoretical description
and the implementation details. In Chapter 4, all results are presented, comparing model
performances against several baseline models on three different datasets, both from the
perspective of pure metrics values and from the scalability side. Finally, in Chapter 5, the
conclusions are drawn, highlighting novel results and possible directions for future works.
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2| State of the art

This chapter will offer a comprehensive overview of the current state-of-the-art technolo-
gies relevant to the topics discussed in this thesis. It starts with an overview of Rec-
ommender Systems and of the most common and effective techniques used in the field,
focusing then on the subsets of existing models that exploit reviews to enhance recom-
mendations. The second part of the chapter will then focus on Large Language Models,
which are the foundation of current top-performing AI models. After a description of the
basic architecture on which these models are based, an overview of the applications of
these models on recommender systems will be provided, highlighting the lack of methods
based on LLMs that exploit reviews, which is the gap that this thesis aims to fill.

2.1. Recommender Systems

The term "Recommender Systems" refers to a vast and highly significant domain within
the field of Artificial Intelligence, continually evolving and of profound interest to both
researchers and companies. A recommender system is an algorithm with the main goal of
suggesting to each user new items they have not yet interacted with. This broad definition
basically finds practical application in every contemporary digital service. Streaming
platforms, e-commerce websites, travel booking platforms, social networks, and so on are
all examples of services that employ recommender systems. Depending on the context,
the ’item’ may be a movie, a product, or a hotel, and ’interaction’ refers to actions such as
viewing, purchasing, listening, or booking. Consequently, the efficacy of a recommender
system holds paramount importance for businesses, as recommending the right products to
users can lead to substantial growth in profits. It suffices to consider that 35% of Amazon’s
sales and 75% of what users watch on Netflix come from product recommendations based
on their recommender systems[27].

A recommendation algorithm filters and analyses input data in order to provide rec-
ommendations, so the quality and variety of such data deeply affect the quality of the
outcome. Input data can be divided into three categories: user data, item data, and
interaction data. The information concerning users and items can be helpful in acquiring
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valuable knowledge that can lead to higher-quality personalized recommendations, but
interaction data are the foundation upon which a recommender system relies. Given a
set of users and a set of items, it is possible to construct the so-called User Rating Matrix
(URM), which is a matrix having users as rows, items as columns and every intersection
ru,i between a row and a column represents the rating given by user u to item i. It is
possible to distinguish between implicit ratings, representing just the presence or absence
of interaction between a user and an item (so ru,i will be only either 0 or 1); and explicit
ratings, where ru,i represents the actual rating given by u to i, for instance on a scale from
1 to 5 (1 means that the user didn’t like at all the item, 5 means that he/she loved it).
The URM is by nature very sparse, meaning that the great majority of the elements (more
than 99%) will be 0. The reason is very easy to understand, considering for example that
a Netflix user on average has watched between tens to a few hundred movies/tv series,
which is just a very small fraction of the millions of products available on the catalogue.
The main goal of the recommendation algorithm is to fill this sparse matrix, by assigning
to each element the probability that a user will interact with each item, as shown in the
example in Figure2.1. Therefore, if the goal of the system is to recommend n items to
a user u, it will take the n items with the highest probability from the row of the URM
representing u.

Figure 2.1: From sparse to dense URM.

2.2. Basic Recommenders

In this section, an overview of the main families of recommender systems is provided.

2.2.1. Non-personalized recommenders and global effects

The simplest approach to perform recommendations for items is to exploit interactions
data considering only items, without any form of personalization for the different users, so
that the same items will be recommended to all users. Possible options are to recommend
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the top popular items (the ones with more interactions) or the best-rated ones (the items
with higher average ratings). A step forward from non-personalized recommenders is to
consider interactions data to identify global effects of both items and users. The predicted
rating is computed through the formula ru,i = µ+ bi + bu, where µ is the global bias (the
average rating of the whole system), bi is the item bias, so the average rating obtained by
item i, and bu is the user bias, so the average rating given by user u (since some users are
more prone to give higher ratings than others).

2.2.2. Content-based recommenders

A step forward is to consider not only item interactions but also item attributes, in order
to exploit the similarity between items and recommend items that are similar to the ones
a user has interacted with[55]. These methods are based on the Item Content Matrix
(ICM), which is a matrix having items as rows and attributes as columns. For each
item, there is a 1 if the item has that attribute, 0 otherwise. Therefore, it is possible
to compute the similarity between an item i and an item j (si,j) as the scalar product
(possibly normalizing it and adding a shrink term) between the two vectors which are the
rows of i and j in the ICM. Computing the similarity between all items, it is possible to
obtain a similarity matrix S, that multiplied by the URM R gives the estimated URM
R̃ (R̃ = R · S). This family of methods can be very effective with multiple and detailed
attributes but often presents several issues: the similarity matrix is often too dense and
therefore too much memory is needed; similarity values are often very small, so a popular
solution is to take the k most similar items (K-Nearest Neighbours - KNN ); the similarity
matrix is only binary while it would be useful to weight attributes, which is a complex
feature engineering task.

2.2.3. Collaborative Filtering

A more effective technique which is the main idea behind the most popular recommender
systems is Collaborative Filtering (CF)[50]. This method doesn’t exploit any side in-
formation about items or users, but it is entirely based on the information coming from
interactions between users and items, based on the assumption that it is possible to under-
stand what a user likes based on the similarity with the behavior of other users. Therefore,
one great advantage of this method is that only the URM is needed, and the method is
independent of item characteristics.

The simplest CF techniques, often referred to as "neighborhood methods", make recom-
mendations by comparing a user’s behavior and preferences with those of other users.
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These methods compute a similarity matrix between elements, based on the URM, and
use the similarity to predict the ratings for items the user has not interacted with. De-
pending on whether the similarity is computed between users or items, we can distinguish
between user-based CF and item-based CF. They both exploit the same similarity func-
tions, differing on whether it is computed between rows or columns of the URM. In case
of implicit ratings, given two users u and v, it is possible to compute the cosine similarity
between the two users as

suv =
u⃗ · v⃗

|u⃗|2 · |v⃗|2 + C
(2.1)

where u⃗ and v⃗ are the vectors containing all interactions for users u and v, while C is
the shrink term to take into account the support. The same similarity can be computed
between two items i and j exploiting the vectors i⃗ and j⃗. In the case of explicit ratings,
other similarity functions can be used, like the Pearson correlation coefficient[41]. Once
the similarity is computed, it is possible to use it to compute the predicted ratings just
as mentioned in the previous section for content-based methods. The main difference
between a content-based method and an item-based CF is that in the first case, the
similarity is computed on the ICM, while in the second it is computed on the URM. To
overcome the problem that most of the similarity values are very small, it is possible to
take into account just the K nearest neighbors. To sum up:

• Item-based KNN

r̂u,i =

∑
j∈KNN(i) ru,j · sij∑

j∈KNN(i) sij
(2.2)

• User-based KNN

r̂u,i =

∑
v∈KNN(u) rv,i · suv∑

v∈KNN(u) suv
(2.3)

These methods excel in capturing immediate user feedback and often perform well in
scenarios with a rich dataset and well-defined user patterns, but they struggle in cases of
big sparsity or, in case of user-based models, with the cold-start problem (when a new
user enters the system).

More complex techniques can be used to build predictive models using machine learning
or statistical algorithms. These models are trained on user-item interaction data and learn
patterns and relationships between users and items. Model-based approaches are typically
more complex and can often offer better performance. Examples include matrix factor-
ization models, like Singular Value Decomposition (SVD) or Alternating Least Squares
(ALS). These methods decompose the user-item interaction matrix into latent factors.
These factors capture hidden patterns in the data and are used to make recommenda-
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tions. Netflix’s movie recommendation system, for instance, uses matrix factorization[53].

Other examples are graph-based algorithms, which are based on the construction of a
weighted bipartite graph based on user-item interaction data and item-item relationships.
This graph connects users to items through edges, with edge weights determined by the
interaction ratings. In P3 algorithms, like RP3Beta[14], the probability of the interaction
between user u and item i is computed by performing 3 jumps on the bipartite graph,
leveraging both on user-user similarity and on item-item similarity, as shown in Figure2.2.

1. The first jump is from user u to a seen item j, with the probability of this jump
computed as Pu,j =

ru,j
Nu

, with ru,j being the rating by u to j and Nu being the
number of ratings given by u.

2. The second jump is from item j to a user v that has interacted both with j and i,
with the probability of this jump being Pj,v =

rv,j
Nj

, where rv,j is the rating given by
v to j and Nj is the number of ratings received by j.

3. The last jump is from user v to item i, with probability Pv,i =
rv,i
Nv

, where rv,i is the
rating given by v to i and Nv is the number of ratings given by v.

The final predicted rating is then computed as

r̂u,i =
∑
j

∑
v

Pu,j × Pj,v × Pv,i (2.4)

RP3Beta introduces two hyperparameters, α and β: α is a hyperparameter that controls
the weight of user-item interactions. A higher α value assigns more importance to user-
item interactions. β is a hyperparameter that regulates the incorporation of item-item
relationships in the recommendation process. It determines the influence of the item-item
similarity matrix on the recommendations. A higher β value increases the significance of
item associations, making recommendations more focused on suggesting items that are
related to those a user has interacted with. The complete equation for RP3Beta is:

r̂u,i =
∑
j

∑
v

Pu,j ×
(Pj,v)

α × (Pv,i)
α

(Nj)β
(2.5)
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Figure 2.2: Example of 3 steps on the bipartite graph. To predict the interaction between
user u and item i, the interactions between u and j, j and v and v and i are used

2.2.4. Hybrid recommenders

Hybrid recommender systems combine the strengths of different recommendation tech-
niques to provide users with more accurate and diverse recommendations. These systems
leverage both collaborative filtering and content-based filtering. By integrating these ap-
proaches, hybrid recommenders aim to mitigate the limitations of each method while
capitalizing on their respective advantages. It is possible to combine multiple models in
different ways:

• Linear combination: the resulting predicted ratings are a linear combination of
the ratings predicted by different models

• Pipelining: a first model is used to enrich the URM that is used as input to a
second model

• Merging models: different models are merged in some way before computing the
predicted ratings. An example is to use as a similarity matrix the weighted average
of the similarity matrices produced by different models.

2.3. Review-based recommenders

Reviews provided by users represent a rich source of additional information that can be
harnessed. Consequently, over the years, numerous studies have been conducted on how
to leverage this information to enhance recommender systems[11]. Various techniques
have been employed to make use of reviews:

• Term-based profile: use TF-IDF[49] give weights to words and decide which are
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the most relevant to use as attributes to a user/item and use them to recommend[17].
Based on the conclusions from Chen et al. in the survey [11], compared to traditional
rating-based CF, these methods perform slightly worse but recommend new and
unpopular items more often.

• Ratings inference: use reviews to infer item ratings given by users. Some tech-
niques use aggregation[58] or machine learning[42] to perform sentiment analysis on
reviews. In this way, it is possible to discern whether a review refers to a positive
or negative rating, in order to build the URM used for CF techniques. Results are
comparable with CF using real ratings [11].

• Ratings enhancing: reviews can still be exploited in the presence of ratings, as
an auxiliary resource to weight them. These methods exploit reviews considering
their helpfulness[44], their topics[36], their contexts[24] or the emotions expressed
in them[35], using this information to improve the quality of the ratings. All of
these methods show an overall improvement in performance, especially regarding
the cold-start and the data sparsity problems.

• Item profile enriching: these methods aim to enrich the item profile rather than
the user profile. Some extract opinions on an item from different users, taking into
account also the expertise of the reviewer or the popularity of the item, or use them
together with the item specifications[4]. Others use reviews to rank items so that
opinions on two comparable items are used to decide which is better[20].

Despite the large number of research on how to exploit reviews, these methods’ popularity
has significantly decreased, because of the unsatisfactory results. The majority of these
techniques date back more than ten years, and the application of reviews has received less
and less attention over time. Currently, only a few methods actively harness user reviews
in the recommendation process, and many struggle to outperform basic collaborative
filtering baselines[47]. In the following sections, the three models that currently represent
the state-of-the-art recommender systems that leverage reviews will be described. These
models will serve as baselines for the proposed model.

2.3.1. HFT

Hidden Factors and Hidden Topics [34], is a model based on the combination of two main
techniques.

The first is a ’standard’ latent-factors model[31], which exploits latent representations of
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users and items to predict the rating ru,i for a user u and item i, according to

r̂u,i = α + βu + βi + qu · pi (2.6)

where α is an offset parameter, βu and βi are user and item biases, and qu and pi are
K-dimensional user and item factors (respectively).

The second technique is Latent Dirichlet Allocation (LDA)[7], which aims to uncover
hidden dimensions in review texts. Each document d is associated with a K-dimensional
topic distribution θd, which is a stochastic vector that encodes the fraction of words in
d that discuss each of the K topics. So, words in the document d discuss topic k with
probability θd,k. Each topic k also has an associated word distribution, ϕk, which encodes
the probability that a particular word is used for that topic. Finally, the topic distributions
themselves (θd) are assumed to be drawn from a Dirichlet distribution.

The goal of HFT is not to treat these two latent dimensions independently but to link
them together, based on the idea that the latent representations derived from ratings are
somehow based on properties from users and items, and these properties can be enriched
by the latent dimensions obtained by the textual reviews. It is not trivial to link pi and θi,
as the first is a rating factor in the domain RK while the second is a probability between
0 and 1. Therefore, the mapping is defined by the following transform:

θi,k =
exp(κpi,k)∑
k′ exp(κpi,k′)

(2.7)

where κ is an hyperparameter with the intuition that a large κ means that users only
discuss the most important topics, while small κ means that users discuss all topics
evenly. For the final model, both latent factors are used, as the rating factor is used to
predict the real rating while the latent review factors, which are used to define the corpus
likelihood, are used as a regularization term in the loss function chosen to learn how to
predict the real ratings:

arg min
θ,ϕ,k,z

∑
ru,i∈T

( ˆru,i − ru,i)
2 − µl(T |θ, ϕ, z) (2.8)

where the first part is the rating error, l is the likelihood for corpus T , θ, ϕ, z, k are
parameters and µ is an hyperparameter.

As described in the paper that presents it[34], HFT has been tested using three datasets,
two of which are used in this thesis as well and will be described accurately in section
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4.1.1. The model outperforms recommender systems based on either of the two techniques
which are instead combined in HFT (latent factor model and LDA), by obtaining better
results in terms of Mean Squared Error (MSE) (squared version of eq. 2.19).

2.3.2. NARRE

Neural Attentional Regression model with Review-level Explanations [10], is a neural
network model with the aim to exploit reviews not only to improve ratings prediction but
also to use them as explanations for users recommendations. By learning the usefulness of
each review, it is possible to select highly useful ones to improve both recommendations
and explainability.

Figure 2.3: NARRE model architecture[10].

As shown in Figure2.3, the architecture of the model is based on two parallel networks, one
for user modeling and one for item modeling. When predicting a rating ru,i, all reviews
from user u are processed by the user network and all reviews for item i are processed
by the item network; then the outputs of the two networks are merged together in a
last prediction layer. Each network starts with a CNN text processor to process reviews,
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already used in previous state-of-the-art models like DeepCoNN [60]. In this processor, a
word is mapped into an embedding vector of dimension d, so each review composed of n
words is transformed in an embedding matrix of dimension n× d. Then a convolutional
neural network transforms each matrix into a feature vector O, so that an item i (or
similarly an user u) will be represented by the vectors Oi,1, Oi,2, ... Oi,j, with Oi,j the
feature vector of the j-th review associated to item i. The biggest novelty introduced by
NARRE is the way these vectors are aggregated together: it is in fact the first model to
introduce an attention mechanism in this context. For each review, an attention score is
computed through the following formula:

ai,j = SOFTMAX(hTReLU(WOOi,j +Wuui,j + b1) + b2) (2.9)

where WO ∈ Rt×k1 , Wu ∈ Rt×k2 , b1 ∈ Rt, h ∈ Rt, b2 ∈ R1 are model parameters, t denotes
the hidden layer size of the attention network, and ReLU[37] is a nonlinear activation
function. Once obtained the attention weight of each review, the feature vector of item i

is calculated as the following weighted sum:

Oi =
k∑

j=1

aij ·Oij (2.10)

To obtain the final representation Yi of item i, Oi is sent to a fully connected layer. The
same pipeline is applied in parallel to user and item, to obtain Xu and Yi respectively.
Finally, the outputs of the two networks are merged together using a neural form [26] of
Latent-Factors Models (equation 2.6). First, the interaction between user u and item i is
modeled as

h0 = (qu +Xu)⊙ (pi + Yi) (2.11)

where qu and pi are user preferences and item features based on ratings, as in equation
2.6, Xu and Yi are user preferences and item features mentioned above, and ⊙ denotes
the element-wise product of vectors. Finally, the predicted rating r̂u,i is computed as:

r̂u,i = W T
1 h0 + bu + bi + α (2.12)

where W1 ∈ Rn denotes the edge weights of the prediction layer, and bu, bi, and α

represent the user bias, item bias, and global bias, respectively. The model is trained
to optimize the square loss between the real and the predicted ratings. The datasets
used to test NARRE, as reported in the paper[10], are the same described in Section
4.1.1. As baselines, both methods that do not include reviews (like Matrix Factorization
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techniques[32]) and methods that leverage reviews (HFT[34] and DeepCoNN[60]) were
used. As reported in its paper[10], NARRE outperforms all baselines in terms of Root
Mean Square Error (RMSE)(2.19).

2.3.3. HRDR

Hybrid Neural Recommendation with joint Deep Representation learning of ratings and
reviews [33], is a deep learning model with the unique intuition of combining information
coming from both ratings and reviews, in order to exploit ratings to understand the
different usefulness of reviews.

Figure 2.4: HRDR model architecture.

The model is an evolution of NARRE, as the architecture is very similar (Figure2.4).
The main differences are in the attention mechanism and how rating embeddings are
computed. In order to compute the latent features describing the rating patterns, a
Multi-Layer Perceptron (MLP) network is used, where the output of the k-th layer is

xu = σ(W (k)x(k−1) + b(k)) (2.13)
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where the input x is the normalized rating pattern of user u (i.e., the row in rating matrix
R of user u ), δ is an activation function, W , b are the parameters in hidden layers.
Reviews are processed in the same way described in NARRE, obtaining latent feature
vectors describing each review belonging to a user/item. The biggest novelty introduced
by HRDR lies in the way attention scores are computed, as the rating embeddings are used
inside the attention computation, based on the idea that there’s a correlation between
ratings and reviews and ratings can help to understand reviews better. For a user u, given
the latent feature vector Ou,m obtained from the m-th review, the attention score au,m

can be computed as:
au,m = SOFTMAX(Ou,m ⊙ qr)

qr = W qxu + bq
(2.14)

where qr is the attention query vector derived from the rating-based representation xu via
a linear transformer, ⊙ denotes the dot product operator, W q and bq are the parameters.
Then, the review-based representation of user u is obtained through a weighted sum and
then passed through a linear layer, just as in NARRE. The final predicted rating r̂u,i is
computed as in equation 2.12, with h0 being the product of two vectors containing rating-
based representation, review-based representation and ID embedding of user and item
respectively. The model is trained to optimize the square loss between the real and the
predicted ratings. As reported in its paper[33], the datasets used to test HRDR are the
same described in Section 4.1.1. Baselines for this method include both Matrix Factoriza-
tion techniques[32] and methods previously described (HFT and NARRE). According to
[33], HRDR outperforms all baselines in terms of Root Mean Square Error (RMSE)(2.19).

2.4. Large Language Models

Traditional language models have served as foundational tools in natural language process-
ing for decades. These models, often based on techniques like N-grams[8] and statistical
language models, aimed to capture the essence of language through patterns and prob-
abilities. Their main goal was to predict the likelihood of a sequence of words given
the preceding context. While effective for certain applications like spell-checking and
speech recognition, traditional language models had notable limitations. They strug-
gled with contextual understanding and could not capture the rich semantic nuances of
human language. Additionally, these models often failed to generate coherent and con-
textually relevant text beyond simple sentence completions. Their limited training data
and smaller model sizes constrained their capacity to handle the complexities of language
and resulted in often rigid and occasionally incomprehensible outputs. These constraints
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led to the evolution of Large Language Lodels (LLMs), which aimed to overcome these
limitations. Large language models are a new family of language models with two main
characteristics: they are composed of billions of learning parameters, trained using mas-
sive amounts of data; and are based on the Transformer[56], an architecture introduced
in 2017 by Vaswani et al. that has led to a massive revolution in the field of artificial in-
telligence, especially in Natural Language Processing (NLP). A more detailed description
of the Transformer follows.

2.4.1. Transformer

The Transformer is an encoder/decoder architecture based on self-attention. The encoder
is a stack of six identical layers, where each layer has two sub-layers: a multi-head self-
attention mechanism followed by a simple fully connected feed-forward network. The
decoder is also a stack of six identical layers, each composed of three sub-layers: two
are the same as the encoder plus another multi-head self-attention layer that takes as
input the output of the encoder. Before the encoder/decoder part, inputs and outputs
are embedded in vectors of fixed dimension, to which positional encoding vectors are
summed in order to account for the relative or absolute position of the tokens in the
sequences. Finally linear transformation and a softmax function are used to map the
output of the decoder to probabilities of predicted next-token. The full architecture is
shown in Figure2.5.
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Figure 2.5: Transformer architecture[56].

Attention mechanism

Attention is a core concept in neural network models, enabling selective focus on specific
input elements while dynamically weighting their importance. This mechanism allows
models to capture contextual information, adapt to variable-length sequences, and signif-
icantly enhance performance in various tasks, particularly in natural language processing.
While the concept of Attention was already introduced in previous works[22], the attention
mechanism inside the Transformer was the biggest breakthrough in the field.

The foundation of this mechanism is the Scaled Dot-Product Attention. This type of
Attention takes three inputs:

• Queries (Q): represent the elements in the input sequence that the model wants to
focus on or retrieve information about.

• Keys (K): help establish relationships between the queries and the elements in the
input sequence.

• Values (V): represent the actual information associated with the elements in the
input sequence. They are used to construct the output based on the attention
scores computed from the queries and keys.
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Queries and keys have dimension dk, values have dimension dv. Given as input the
matrices Q,K and V , the Scaled Dot-Product Attention is computed as:

Attention(Q, K, V) = Softmax
(
QKT

√
dk

)
V (2.15)

Instead of performing a single attention function, queries, keys and values are linearly
projected h times to dimensions dk, dk and dv, so that attention is performed in parallel
on different learned linear projections. The outputs are then concatenated and linearly
projected again, to obtain the final output (Figure 2.6). This is called Multi-Head At-
tention, and is how attention layers inside the Transformer work. Here is the complete
formula:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh) ·WO (2.16)

where

headi = Attention(Q ·WQi , K ·WKi , V ·W Vi) (2.17)

Where the projections are parameter matrices: WQi ∈ Rdmodel×dk , WKi ∈ Rdmodel×dk , W Vi ∈
Rdmodel×dv and WO ∈ Rh·dv×dmodel .

In the decoder part of the Transformer, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder.

Figure 2.6: Multi-Head Attention.

The encoder contains self-attention layers, which are layers where queries, keys and values
all come from the same output of the previous encoder layer. Self-attention has many ben-
efits compared to previous attention techniques, as it allows a lower total computational
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complexity, a greater amount of computation that can be parallelized, and shorter paths
between long-range dependencies. This last aspect represents the biggest improvement
from self-attention, as it allows to understand important relationships between elements
that are very far in a sequence.

2.4.2. Main LLMs

In this section some of the current most powerful LLMs are described. It is interesting to
notice how recent all these models are, and how a model can greatly evolve in a matter
of a couple of years within the same company.

1. GPT-3: released in 2020 by OpenAI, GPT-3 [9] (GPT stands for Generative Pre-
trained Transformer) was the first widely popular LLM, showcasing the enormous
capabilities of LLMs. It can generate human-like text, answer questions, translate
languages, and perform a wide range of language-related tasks. The greatest inno-
vation of this model is its ability to achieve high performances on all tasks without
requiring specialized fine-tuning for each different activity. When given challenging
tasks like one-shot or zero-shot learning, which require performing a task with ei-
ther one or zero examples, it demonstrates exceptional ability. It was trained using
the Common Crawl dataset[1], composed of petabytes of data from page crawling
collected over 12 years.

2. GPT-4: released in 2023 by OpenAI[39], it is the evolution of GPT-3. It shows great
improvements in performance compared to its predecessor, thanks to its fine-tuning
using Reinforcement Learning from Human Feedback (RLHF)[13]. The primary is-
sue with reinforcement learning is defining a practical reward function. Human
feedback works incredibly well as reward functions, but the number of feedbacks
needed is massive. In traditional reinforcement learning, an agent is given an ob-
servation, acts upon it, and is rewarded accordingly. With this technique, a human
agent evaluates two sets of observations-actions through brief videos to determine
which is better, rather than awarding a reward for each action. The optimization
function receives the outcome. The main drawback of GPT-4 is that it lacks knowl-
edge of events happened after September 2021 (when its pre-training ended), and it
does not learn from experience.

3. PaLM 2: released in 2023 by Google, it’s the evolution of PaLM[12], outperforming
it in many aspects. Its performance is possible thanks to an enormous amount of
training data as well as trainable parameters (340 billion), trained thanks to highly
efficient parallelization. It is based on Google’s Pathways architecture[6], which aims
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to develop a versatile model capable of excelling in a wide range of tasks, resembling
the way humans learn new skills by building upon prior knowledge instead of starting
from scratch. This architecture creates a sparse model, activating only the necessary
neurons for specific tasks, similar to the way the human brain works, allowing it to
have a much lower energy cost.

4. LLaMA: released in 2023 by Meta[52], is a group of LLMs with different sizes of
trainable parameters. According to Meta, these models take the best intuitions from
the best other existing models in order to outperform SOTA baselines, enabling even
smaller versions to achieve impressive results. The main architecture is a "simple"
Transformer with many little improvements.

5. MT-NLG: developed in collaboration by Nvidia and Microsoft, the Megatron-
Turing Natural Language Generation model[51] is a huge LLM with 540 billion pa-
rameters. It exploits latest-generation GPUs produced by Nvidia to enable training
with massive amounts of data and numerous parameters. Rather than impress-
ing with its effectiveness, it demonstrates the utility of highly powerful hardware
accelerators in the realm of LLMs.

Model Company Year #Parameters

GPT-4 OpenAI 2023 Unknown

PaLM 2 Google 2023 340B

LLaMA Meta 2023 7-65B

MT-NLG Nvidia/Microsoft 2021 530B

GPT-3 OpenAI 2020 175B

Table 2.1: Overview of the main LLMs

2.4.3. LLMs to generate embeddings

Embeddings obtained from text are numerical representations of words, phrases, or sen-
tences that capture their semantic and contextual information in a dense vector space of
fixed dimension.
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Figure 2.7: Embedding generation process (from [23])

The underlying intuition is that by mapping two embeddings as points within the vec-
tor space of their embedding dimension, they will be close if they correspond to two
words/phrases with similar meanings; otherwise, they will be distant. Thanks to the
strong ability to understand and interpret text, LLMs have also shown great versatility
in generating embeddings. These embeddings capture intricate semantic relationships,
enabling them to represent textual information in a dense, high-dimensional space. LLMs
leverage their pre-trained knowledge to transform words, phrases, or sentences into con-
tinuous vectors, offering a rich source of contextual information. Current state-of-the-art
embedding models[38] are pre-trained LLMs with slight modifications and fine-tuned to
produce better results. In particular, these models are based on a Transformer encoder,
which maps the input to a dense vector representation. Two special tokens, [SOS] and
[EOS], are inserted to the start and end of the input sequence respectively. When given
the sequence as input to the encoder, the last layer hidden state corresponding to the
token [EOS] is extracted as the output embedding of the input sequence. The best em-
bedding model currently available through OpenAI’s APIs is text-embedding-ada-002 [23].
It replaces five separate models for text search, text similarity, and code search, and out-
performs OpenAI’s previous most capable model, with a much lower price. According to
the company, the model outperforms all other models in almost all baselines, has a longer
context length and a smaller embedding size (1536).

2.4.4. LLMs for Recommender Systems

As demonstrated in the previous section, the development of Large Language Models is
highly dynamic and continuously evolving. Each year, new models are released, improv-
ing upon the previous state-of-the-art. Consequently, the use of LLMs in recommender
systems is still a relatively new yet highly fascinating area of study. Researchers are con-
tinually investigating the optimal approaches to leverage the vast potential of LLMs to
enhance recommendation systems. Some of the popular techniques used in this field at
the moment are described here:
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1. P5 model: Pretrain, Personalized Prompt and Predict Paradigm[21] is a text-to-
text paradigm to develop recommender systems. The model is able to unify five
types of recommendation tasks: Sequential Recommendation, Rating Prediction,
Explanation Generation, Review Summarization, and Direct Recommendation. All
accessible data sources, including user profiles, item details, user feedback, and inter-
actions, are transformed into natural language sequences. This extensive dataset in
a multitasking setup enables P5 to acquire the semantic knowledge necessary for gen-
erating personalized recommendations. The features input is fed to the model using
adaptive personalized prompt templates. P5 generates recommendations treating all
personalized tasks as a conditional text generation problem and solving them using
an encoder-decoder Transformer model pre-trained with instruction-based prompts.
The model exhibits great zero-shot and few-shots capabilities.

Figure 2.8: P5 model[21].

2. M6-Rec: developed using Alibaba’s M6 LLM, M6-rec[15] is a recommendation
model that uses textual prompt as inputs to perform several recommendation tasks,
which are converted to either language understanding or generation. To train the
model, only a negligible amount (1%) of task-specific parameters were added, with-
out making changes to the original M6 Transformer model.

3. LMRecSys: Language Model Recommender Systems[59] uses the user’s past inter-
action history (watched movies), taken from the MovieLens-1M dataset, to predict
the next movie that the user would watch, with a textual prompt-based input.
The primary objective is to employ Pretrained Language Models (PLMs) for zero-
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shot recommendations, as these models come with pre-existing knowledge of various
items and do not need to rebuild it based on past interactions. This proves to be
highly advantageous, but overall this model shows quite poor performance[59].

4. NIR: Zero-Shot Next-Item Recommendation[57] is a model based on a three-steps
prompting strategy to perform next-item recommendations in a zero-shot setting.
First, they prompt GPT-3 to summarize the user’s preferences using the items from
the watch history. Next, they use GPT-3’s response and the candidate movies
in a prompt to request GPT-3 to select representative movies in descending or-
der of preference. Finally, they create a recommendation prompt to guide GPT-3
to recommend 10 movies from the candidate set that are the most similar to the
representative movies. It is the only model explicitly built to perform top-n recom-
mendation, which is the most common task with Recommender Systems.

It is interesting to notice how none of these methods focuses on the use of reviews to
exploit LLMs’ great capability to understand human language. The models presented in
the next chapter aim to fill this gap.

2.5. Evaluation

To evaluate recommendation models, it is possible to use two different groups of metrics

2.5.1. Regression metrics

This family of metrics aims to evaluate the ability of a model to reconstruct the real
ratings given to each user-item interaction. Therefore these metrics measure the distance
between the ground truth value and the predicted value. Some of the most popular are:

• MAE: Mean Absolute Error, measure the mean absolute distance between the real
ratings and the predicted ones, through the following formula:

MAE =
1

n

∑
u,i

|ru,i − r̂u,i| (2.18)

• RMSE: Root Mean Squared Error, measure the square root of the squared of the
distance between the two values. It gives higher weight to larger error and is more
sensitive to outliers.

RMSE =

√
1

n

∑
u,i

(ru,i − r̂u,i)2 (2.19)
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In both equations ru,i is the real rating while r̂u,i is the predicted rating.

Regression methods like HFT, NARRE and HRDR aim to minimize the values of these
metrics

2.5.2. Ranking metrics:

Ranking metrics are more often used in the field of recommender systems as they are able
to assess whether a model is recommending the right items to a user, regardless of the
predicted rating. Once computed the probabilities for each item to be liked by each user,
the top k items with higher probabilities are taken for each user to compute the following
metrics:

• Precision@k: measures the proportion of relevant items (recommended items that
correspond to an interaction in the test set) among the top-k recommendations.

Precision@k =
Number of relevant items in the top-k recommendations

k
(2.20)

• Recall@k: assesses the ability of the recommendation system to retrieve relevant
items within the top-k positions, considering all relevant items in the dataset.

Recall@k =
Number of relevant items in the top-k recommendations

Total number of relevant items
(2.21)

• MAP@k: Mean Average Precision, takes into account also the order of the recom-
mended items. It is the mean of the Average Precision at k (AP@k), which is the
average of the precision computed for every element in the top-k list.

MAP@k =
1

Nu

∑
u∈U

AP@ku (2.22)

where

AP@k =
1

m

∑
k

P (k) · rel(k) (2.23)

whit Nu being the number of items, m being the number or relevant items for each
user and rel(k) tells whether the recommendation at position k is relevant (1) or
not (0).

• NDCG@k: Normalized Discounted Cumulative Gain, measures the usefulness, or
gain, of a recommendation based on its position in the recommendation list. The
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gain is accumulated from the top of the list to the bottom, with the gain of each
recommendation discounted at lower ranks.[29] The normalized version corrects for
the fact that different users may have different numbers of relevant items.

NDCG@k =
DCG@k

IDCG@k
(2.24)

where

DCG@k =
k∑

i=1

reli − 1

log2(i+ 1)
(2.25)

reli represents the relevance score of the item at position i in the list. DCG@k
calculates the cumulative gain of the top-k items in a ranked list, giving higher
importance to relevant items at higher positions. IDCG@k represents the theoretical
maximum DCG@k achievable for a set of items and their relevance scores, reflecting
the ideal ranking order.
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3| Models and methods

In this chapter, an overview of the models presented in this thesis is provided. The struc-
ture and the theoretical foundations underlying the decision-making choices are described,
as well as implementation aspects. The work in this thesis is based on seven different
models, each adding a degree of complexity to the previous one, to clearly understand
the effect of single modifications on the model performance. All models are based on the
use of embeddings obtained from user reviews through an LLM. The focus of the models
was chosen to address the current gap in the literature. As outlined in Chapter 2, there
are existing models for making recommendations that either utilize reviews or are based
on LLMs. However, no existing model combines these two characteristics. Therefore, the
hypothesis is that the combination of these two aspects may yield promising results, given
that LLMs are designed to effectively understand human language, and reviews consist
of human language. Therefore, the aim of this thesis is to empirically validate or refute
this hypothesis.

To generate embeddings, OpenAI’s text-embedding-ada-002 model (see Section 2.4.3)
was used. Therefore, all reviews were embedded in a vector of fixed dimension d = 1536.
All models have the same basic structure. They are based on the same intuition used in
NARRE (Section 2.3.2) and HRDR (Section 2.3.3) to use reviews to model users and items
separately and then merge the information coming from both in the final layer. Hence,
all models are two-tower models, with a tower responsible for computing the user profile
given all the information associated with the user, and the other to compute the item
profile in the same way. Both towers are identical, thus, for each model, the description
of just one tower will be provided, as the other works the same way. Compared to the
previously mentioned baselines, the last layer is a simple linear layer, without considering
any external bias, to keep the structure as simple as possible. Therefore, calling the
output of the user tower pu and the output of the item tower qi, the resulting predicted
rating is

r̂u,i = W (pu × qi) + b (3.1)

where W and b are parameters of the linear layer.
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Figure 3.1: Basic structure for every model.

In the following sections, each model is described.

3.1. Model 1 - Review Embeddings only (RE)

3.1.1. Aim of the model

The first model focuses entirely on the effect generated by the review embeddings, without
any kind of collaborative filtering information. The aim of this model is to understand
whether the sole information coming from embedded reviews can be meaningful enough
to build a valid user/item profile, aggregating all reviews associated with the user/item.
Therefore, for each user-item interaction, the model only takes as input all the embedded
reviews given by that user and all the embedded reviews for that item.

3.1.2. Architecture

Each tower takes a matrix as input. For the user tower, the matrix has dimension
nrev_u× d, with nrev_u being the number of reviews given by the user; for the item tower,
the matrix has dimension nrev_i× d, with nrev_i being the number of reviews received by
the item. In both matrices, d is the embedding dimension (1536 in this case). Each group
of embeddings is processed through a Multi-head Attention layer (see Equation 2.16) in
a self-attention manner (so embedded reviews are used as keys, queries and values). The
attention layer maps a set of embeddings into another set with the same cardinality, which
models the interrelationship among reviews referring to the same user/item. This new
set is then aggregated through a pooling layer to obtain the user/item embedding. The
pooling strategy can be either the sum or the mean of all reviews after being processed by
the multi-head attention. The decision on the pooling strategy was taken in the hyperpa-
rameter tuning phase (see Section 4.3), where the sum turned out to be the most effective
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choice, while the mean led to very poor results. This result already highlights a potential
bias towards more active users and popular items, whose embeddings, after aggregation,
will have a very high norm. This provides an initial indication that embeddings alone
may not be sufficient to generate effective recommendations for every user.

The result of the aggregation is then given to a linear layer, that produces pu for the user
tower and qi for the item tower. These embeddings are then grouped together as shown
in Figure 3.1.

3.1.3. Hyperparameters

The only hyperparameters for this model are the dropout rate in the attention layer and
in the linear layer, the number of heads for the multi-head attention, and the pooling
strategy.

Figure 3.2: Model RE architecture.
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3.2. Model 2 - Aggregation of Review and Collabo-

rative Embeddings (RE+CE)

3.2.1. Aim of the model

The second model introduces collaborative filtering information, taking into account not
only embedded reviews but also ratings assigned to user-item interactions. The purpose of
this model is to understand how much an embedding generated from information extracted
from interactions can enrich the user/item profile resulting from the embedded reviews.
Therefore the input is composed of both embedded reviews and ratings information.

3.2.2. Architecture

For each user, all ratings given by them are taken (the corresponding row in the URM) and
stored in a vector of dimension nitems. Similarly, for each item, the corresponding column
in the URM is taken to store the ratings in a vector of dimension nusers. Each vector is then
processed by a Multi-Layer Perceptron(MLP) that maps it from the original dimension to
a smaller dimension nfactors. The reason behind this choice is to learn embeddings that can
carry useful information from the rating patterns. Each MLP is composed of three linear
layers, each followed by a ReLU [37] activation function. The final layer conducts batch
normalization[28], which standardizes the activations from the preceding layer to have a
mean of around 0 and a standard deviation of approximately 1 within the mini-batch.
This layer introduces two learnable parameters, γ and β, which allow the network to scale
and shift the normalized activations adaptively. These parameters are learned during
training. The final user profile pu and item profile qi are the concatenation of the resulting
collaborative filtering embeddings from this part and the vectors obtained from embedded
reviews, processed as Model 1. Both profile vectors have dimension dcollab+dreviews, where
dcollab = nfactors and dreviews = d(1536). The two vectors are then merged together, as
described at the beginning of the chapter.

3.2.3. Hyperparameters

The hyperparameters for this model are the number of nodes in the hidden layers for both
the user and the item MLP, and the dimension of the collaborative filtering embedding
nfactors, as well as the dropout rate for all linear layers and for the attention layer, the
number of heads for the multi-head attention, and the pooling strategy to aggregate the
embedded reviews.
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Figure 3.3: Model RE+CE architecture.

3.3. Model 3 - RE+CE with Transformer Encoder

(RE+CE TE)

3.3.1. Aim of the model

The purpose of this model is to investigate the effects of a more intricate attention mech-
anism, increasingly similar to the Transformer’s implementation which is showing to be
so successful in currently existing AI models. The idea is to understand to what extent
a more complex architecture can improve the quality of the produced information before
potentially confusing the model due to an excessive number of parameters. Since the
attention mechanism aims to map one set of embeddings to another set with the same
cardinality, the Transformer’s encoder block, designed for this purpose, is used in place
of the multi-head attention layer.
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3.3.2. Architecture

The architecture of this model is the same as the model employing collaborative filtering
information merged with information obtained through self-attention (Model RE+CE),
employing a more complex processing of the embedded reviews instead of a single attention
layer. This processing is performed using the encoder part of the Transformer, described
in Subsection 2.4.1. The encoder is a stack of nlayers identical sub-layers. Each sub-layer
performs the operations described in the following function:

Algorithm 3.1 Encoder sub-layer
0: function sub_layer(Q,K, V )
0: att← multiheadattention(Q,K, V )

0: x← norm(V + att)

0: ff ← feed_forward(x)
0: x2← norm(ff + x)

0: return x2

where norm is layer normalization and feed_forward is a feed-forward neural network,
composed of two linear layers with a ReLU[37] activation function.

The result of each sub-layer is used as Q, K, and V as input for the subsequent sub-layer.
The result of the last sub-layer is then aggregated with a pooling strategy, which is the
mean of all reviews. This choice was made since using the sum caused infinities during
training. The rest of the model is identical to Model RE+CE. Maintaining the same
structure across the rest of the model allows to identify the precise improvement — if
any — provided by this one alteration. It is significant to note that this model has many
more parameters and is far heavier than the preceding models. There will be a discussion
on whether using such a sophisticated model is worthwhile in Chapter 4.

3.3.3. Hyperparameters

The hyperparameters are the same as Model RE+CE, with the addition of the num-
ber nlayers of sub-layers in the decoder and dff , which is the number of nodes in the
intermediate layer of the feed-forward network.
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Figure 3.4: Model RE+CE TE architecture.

3.4. Model 4 - Collaborative Embeddings as Atten-

tion Queries (CE+AQ)

3.4.1. Aim of the model

This model focuses on the use of collaborative filtering information in the attention mech-
anism. The idea behind the model is to more closely connect the collaborative embedding
and the information produced from embedded reviews. Specifically, the goal is to in-
troduce the embedding produced by processing information obtained from interactions
into the attention mechanism, to focus on reviews more consistent with the collaborative
filtering profile and give them more importance. The hope is that this type of processing
can yield a more significant result compared to self-attention.

3.4.2. Architecture

The structure is just like Model RE+CE, still with two separate towers for user and item
that are then merged at the end, and with information from both ratings and reviews as



32 3| Models and methods

input for each tower.

Ratings are processed with the same collaborative MLP as Model RE+CE, while embed-
ded reviews are processed with a different attention mechanism. In this model, embedded
reviews are just used as keys and values in Equation 2.15, while collaborative filtering
embeddings (the output of the collaborative MLP) are used as queries.

In order to compute the attention, queries, keys, and values must have the same dimen-
sion, so it is necessary to map embedded reviews from d = 1536 to nfactors, which is
the dimension of the collaborative filtering embedding. Therefore, the reviews MLP is
employed. It is an MLP with three linear layers followed by ReLU activation, mimicking
the structure of the collaborative MLP.

The processing after the attention layer is the same as in Model RE+CE. The only
difference lies in the dimension of the profiles pu and qi, since both dcollab and dreviews are
equal to nfactors.

3.4.3. Hyperparameters

The hyperparameters for this model are the same as Model RE+CE, with the introduction
of the number of nodes in the hidden layers for the reviews MLP.
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Figure 3.5: Model CE+AQ architecture.

3.5. Model 5 - CE+AQ with Transformer Encoder

(CE+AQ TE)

3.5.1. Aim of the model

Model 5 employs the most complex processing of embedded reviews, combining the in-
tuitions of the previous models. In theory, this model should be the one achieving the
best results, as it combines the power of the Transformer’s encoder with the rich infor-
mation coming both from rating embeddings and review embeddings for the attention
mechanism, where collaborative filtering embeddings are used as queries.
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3.5.2. Architecture

This model has the same architecture as the model exploiting collaborative filtering em-
beddings inside the multi-head attention layer (Model CE+AQ), employing a more com-
plex attention mechanism. The architecture of this model indeed uses the same encoder
block described in Model RE+CE TE, with the substantial difference of using embedded
reviews only as keys (K) and values (V ), while using rating embeddings as queries (Q).
For each sub-layer in the encoder, the result of the previous layer is used as keys and
values while the same rating embedding is used as query, to ensure that its effect doesn’t
vanish after the first sub-layer. This is the pseudo-code for the encoder block:

Algorithm 3.2 Encoder block structure
1: layer_result = embedded_reviews
2: for sub_layer in encoder_layers do
3: layer_result=sub_layer(rating_embedding, layer_result, layer_result)
4: end for=0

where sub_layer performs the operations described in Algorithm 3.1.

3.5.3. Hyperparameters

The hyperparameters are the same as Model RE+CE TE, with the addition of the number
of nodes in the hidden layers of the MLP used to map the dimension of the embedded
reviews to dcollab
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Figure 3.6: Model CE+AQ TE architecture.

3.6. Implementation

In this section, the implementation details for the presented models are described, includ-
ing coding aspects and considerations on hardware resources.

3.6.1. Embeddings retrieval

One of the core aspects in this work is the use of embeddings generated by an LLM, more
specifically OpenAI’s text-embedding-ada-002 model[23]. This model can be accessed
through OpenAI’s API, which allows to send requests containing review texts and get
responses with the corresponding embeddings. The API is accessed thanks to a private
key, which can be generated from the personal OpenAI account. The model has a cost
per token of $0.0001 / 1K tokens, which guarantees the possibility of embedding a whole
dataset with just a few dollars (more details on the specific cost for each dataset will
be provided in Section 4.1.1). Each request to the model cannot exceed the maximum
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token size of 8191, and there are rate limits of a maximum of 3 requests per minute and
200 requests per day. Therefore a script was created to automatically send requests until
the daily limit was reached. First, the number of tokens for each review in the dataset
is computed, using the tiktoken library, then a batch of reviews is created, sequentially
appending reviews in a list and ensuring that the total number of tokens doesn’t exceed
the maximum size. Next, a request containing the batch of reviews is sent to the API. The
embeddings contained in the response are sequentially stored in a dictionary containing
the user ID, the item ID, the rating associated with the interaction and the embedding
corresponding to the associated review. Finally, the dictionary is appended in a pickle file,
and the script waits for 60 seconds before repeating the whole process, which is repeated
200 times each day.

3.6.2. Code details

All models are implemented using the Neural Network library from Pytorch[43], which
is one the most popular and commonly used frameworks to build neural network models
in Python. It provides pre-implemented modules that cover the majority of the most
common layers used deep learning models, including most layers necessary for the imple-
mentation of the models in this thesis. To speed up the computation, batched data was
given as input to the model. Batches couldn’t be too large (>32) because of GPU mem-
ory constraints. Before applying multi-head attention to embedded reviews, a padding
mask was necessary to account for different review numbers in batches. In fact, a batch
is made of different users/items, and each user/item is associated with a different number
of total reviews given/received. Therefore, the maximum number of reviews in the batch
was taken as a dimension for the shape of the tensor containing the batch ([batch_size,
max_num_reviews, d]). For each user/item in the batch, if the total number of associ-
ated reviews was lower than the maximum for the batch, tensors containing all zeros were
added to pad each element in the batch to the same dimension. These tensors were then
ignored by the attention mechanism thanks to a padding mask. Pytorch neural models
are based on two methods for the training phase: forward and backward. The forward
method defines how input data flows through the neural network, while the backward
method, often referred to as the "backward pass," is responsible for computing gradients
and facilitating backpropagation. During the forward pass, the forward method specifies
the operations that transform input data into output. The backward method, on the other
hand, computes gradients of the model’s parameters with respect to a given loss function.
This is crucial for optimizing the model using gradient-based techniques like stochastic
gradient descent. Together, these methods simplify both model architecture design and
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the training process.

3.6.3. Hardware resources

Since all models contain neural network components, a hardware accelerator is necessary
to greatly speed up the computation. A single GPU is enough to train and evaluate all
models with low computational time, needing around one minute per epoch, with small
variations depending on the complexity of the model and the size of the dataset. The
computation of matrices inside the attention mechanism is the part of the model that
needs more memory allocation. The multiplications of parameter matrices of dimension
[d× d] for each element in the batch require the batch size not to exceed 32, to guarantee
that the model could fit in the GPU memory. The GPU used to train and evaluate the
models and to perform hyperparameter tuning is the Nvidia GeForce RTX 3090.

One of the key factors that significantly increases the computational time when using
hardware accelerators is the data transfer between the CPU and GPU. Therefore, the
code was optimized to minimize the frequency of these transfers, enhancing computational
efficiency. More details are provided in Subsection 3.7.1.

3.6.4. BPR loss

All models were trained to optimize the Bayesian Personalized Ranking (BPR) loss [46],
which is often used in recommender systems to optimize ranking problems. The primary
objective of BPR is to optimize the ranking of items for each user based on their historical
interaction data. It is designed to model the preference of a user for one item over another
by maximizing the likelihood that the user would prefer the observed positive item over
a randomly sampled negative item. In this work, the focus is on the ability of models to
recommend to a user new items, regardless of the ratings from past interactions, so the
positive item is any item the user has interacted with, while a negative item is any item
without interaction. Therefore, all the feedback in the datasets was made implicit, as the
focus is solely on the presence or absence of interaction. This assumption makes perfect
sense when considering the context in which these models are applied. If users purchase
a product on Amazon, it’s likely because they are interested in that type of product. If
they are unsatisfied with the product and write a negative review, they probably still
have an interest in buying a similar product, as they were not content with the first one.
Similarly, if a user negatively reviews a restaurant, it may still imply that the user is likely
interested in that type of restaurant and may wish to try similar ones (hopefully better).
On the opposite, a vegetarian would never leave a review, even a negative one, at a steak
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house.

The loss is computed through the following formula:

BPR Loss = −
∑

(u,j,k)∈B

ln(σ(r̂u,j − r̂u,k)) + λ||Θ||2 (3.2)

where u is the user, j is the sampled positive item and k in the sampled negative item; B
is the batch; r̂u,j and r̂u,k are the predicted ratings for the interactions between the user
and the two items; σ(z) is the sigmoid function, defined as σ(z) = 1

1+e−z , which maps a
real number ’z’ to the range [0, 1]; λ is the regularization hyperparameter; ||θ||2 is the L2
norm (Euclidean norm) of the model’s parameter vector θ, squared.

3.7. Experimental pipeline

In this section, the whole pipeline for the models proposed is described, ranging from data
preparation to how evaluation is performed to obtain the results that will be discussed in
the next chapter.

3.7.1. Data preparation

All models require, as input, a tensor containing the embeddings of the reviews for both
the user and the item, which are used in their respective towers. With the exception
of the simplest model, all models also require information about the ratings. There-
fore, starting from the user/item IDs, it is necessary to create a two-dimensional vector
of size batch_size × nitems (in the case of users) or batch_size × nusers (in the case of
items). In this vector, for each element in the batch, a value of 1 indicates interac-
tion, while 0 indicates no interaction. Additionally, a three-dimensional vector of size
[batch_size,max_num_reviews, embedding_dim] needs to be created, as described in
the section 3.6.2. To obtain these tensors, the following pipeline was excecuted:

1. Embedding list: as first step, a list containing all review embeddings was created
and saved directly on the GPU memory, to guarantee that all embeddings were
always already on the GPU and didn’t have to be transferred from CPU to GPU
for each batch. To link each interaction to the right embedding, a column was
added to the dataset containing for each interaction the index of the corresponding
embedding in the list.

2. URM creation: starting from the whole dataset, URM matrices containing rating
information for training, validation, and testing were created, as further described
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in sec. 4.1.2. Each URM was saved as a Compressed Sparse Row (CSR) matrix,
which is a data format that guarantees memory efficiency for sparse matrices.

3. Training dictionary: to quickly retrieve all reviews for each user/item without
scanning the whole dataset every time, two dictionaries were created (one for the
users and one for the items), containing all the user/item IDs in the training set as
keys, and all the indices of the corresponding review embeddings in the embedding
list as values.

4. Review and rating tensors: finally, to train/evaluate the model, it was possible
to create the previously described tensors needed as input in a very efficient way.
The rating vector is just a row/column of the URM, so it is extremely fast to
retrieve, while the review vector can be created directly on the GPU memory by
accessing the training dictionary and retrieve the corresponding embeddings, which
are already on the GPU memory.

As highlighted in the Section 3.6.3, with this pipeline the data transfer between CPU and
GPU is minimized.

3.7.2. Training

The models are trained to optimize the BPR Loss, using Adam[30] as optimization al-
gorithm. The choice of the right learning rate was crucial in the hyperparameter op-
timization, as "large" values (> 10−3) led to gradient explosion with consequent poor
results. Early stopping was implemented to prevent overfitting, and monitoring values of
ranking metrics on the validation set. Since the computation of these metrics requires a
non-negligible amount of time, it was chosen to evaluate the model on the validation set
every 5 epochs, stopping the training of the model whenever the value of NDCG@10 had
stopped increasing for more than 5 monitoring (so 25 epochs).

3.7.3. Evaluation procedure

All models are trained through the basic forward function for Pytorch models, which
updates weights based on the value of the BPR loss. In addition, they implement two
functions that are used for evaluation: compute_item_info and predict.

To evaluate the models, it is necessary to compute scores for all items for each user.
Unlike the training phase, where the loss is calculated on a batch of users and items,
during evaluation scores must be computed for a single user across all nitems items. In
this process, the part related to item embeddings (qi in Figure 3.1) can be computed only



40 3| Models and methods

once since it remains constant, while the user’s embedding (pu) needs to be computed
every time. To compute qi, the first function, compute_item_score, is called, which
activates only the item tower of the model and returns the embedding vector qi before it
is processed alongside pu. Since calculating qi for all items at once would be too memory-
intensive, the total number of items is divided into batches of the same size as those in
training, and the function is called multiple times. The results are stacked to obtain the
total qi for all items. Once qi is obtained, it is possible to calculate the score for each user
using the predict function. This function takes the information of a single user as input
and processes it through the user tower of the model. The result is an embedding vector
for the individual user. To obtain scores for all items, it is necessary to replicate the user’s
pu vector nitems times to match dimensions. The function then returns a vector of nitems

scores. Once the scores are obtained, they are sorted in descending order, and the top-k
scores are selected and compared with the interactions of each user present in the test set,
to calculate ranking metrics. This evaluation process allows for the assessment of how
well the model’s recommendations align with the actual interactions of users, providing
insights into the model’s performance and its ability to make relevant recommendations.

3.8. Content-based models

After the complete description of the 5 complex models that employ neural techniques with
the same intuitions of state-of-the-art methods like NARRE[10] and HRDR[33], in this
section two more models are introduced, which substantially differ from the previous ones.
These models are based on simple content-based techniques, with the specific purpose of
simply understanding the quality of the embeddings generated by the LLM.

3.8.1. Model 6 - Content-based with review embeddings (CB-
KNN)

This model is a simple KNN content-based recommender (see Section 2.2.2), where for
each item, the mean of the corresponding embedded reviews is taken as features. There-
fore, the ICM is a matrix of shape [nitems×d], where each feature is the mean value in that
dimension of the embedding space. The similarity between items is then computed using
adjusted cosine similarity, which is a variation of cosine similarity described in Equation
2.1, where the deviation from the average embedding is considered when computing the
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similarity between two items, through the formula:

Adjusted Cosine Similarity(i, j) =
∑

k(Eik − Ēi)(Ejk − Ēj)√∑
k(Eik − Ēi)2 ·

∑
k(Ejk − Ēj)2

(3.3)

Where Eik and Ejk are the values of the embeddings for items i and j at dimension k, and
Ēi and Ēj are the average embeddings for items i and j respectively. Hyperparameters
for this model are the k value for the k-nearest neighbors, the shrink term described in
Equation 2.1, and whether or not to normalize the similarity (as in Equation 2.1).

3.8.2. Model 7 - Hybrid ItemKNN with CF and content-based

(CFCB-KNN)

This model aims at understanding whether content-based information can enrich a sim-
ple collaborative filtering technique like ItemKNN. In item-item collaborative filtering,
the similarity is computed among columns of the URM, to understand how similar are
items based on the interaction information. In content-based methods, the similarity is
computed among rows of the ICM, to understand how similar are items based on their
features. This model aims at combining these two sources of information. To do so, the
URM is transposed and stacked horizontally together with the ICM, to obtain a new
ICM having as columns not only features information (the d average values of the review
embeddings), but also interaction information (users of the URM). Therefore, if the ICM
has dimension [nitems × d] and the URM has dimension [nusers × nitems], the new matrix
used for this model will have dimension [nitems× (d+nusers)]. The similarity is computed
on this new matrix, just as described in Model CB-KNN. The hyperparameters are the
same as Model CB-KNN, plus a weight to give to elements of the ICM to give less or
more importance with respect to interaction data.

3.9. Implementation details for KNN models

Models CB-KNN and CFCB-KNN are just content-based methods with a simple similarity
to be computed, without any neural technique that requires a training phase to upgrade
weights. The input for Model CB-KNN is a simple ICM where each row is obtained by
averaging the embedded reviews associated with each item, while for Model CFCB-KNN
the ICM is stacked horizontally with the URM obtained from the dataset. To evaluate the
models, each row in training URM is multiplied by the similarity matrix computed by the
models through a dot product, to obtain a vector of scores associated with items. This
vector is sorted in descending order, and the top-k items are taken to compute ranking
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metrics, by comparing them with seen items in the validation/test URM.
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4| Results

In this chapter, a discussion on the results obtained by different models is provided,
highlighting performances against the chosen baselines.

4.1. Data

To train and evaluate the models, data containing both reviews and ratings are required.
Not many publicly available datasets contain both types of information, as the majority
of users are already reluctant to rate products, so it is even more uncommon to find
contexts where users are eager to write reviews. Therefore, most of the data containing
reviews is too sparse to be effectively utilized by recommender systems, and only very
few datasets are genuinely useful. A piece of evidence is the fact that basically all the
methods developed in recent years that leverage reviews for recommendations use the
same datasets. Consequently, the methods presented in this thesis also rely on these
common datasets.

4.1.1. Datasets

In this section, the three datasets chosen to train and evaluate the models are accurately
described. They are all available for free and easy to download, as data are stored in
json format. All datasets are 5-core versions, which guarantees that there are at least 5
interactions for each item and for each user. This characteristic enables models to have
enough information to build a meaningful user/item profile.

Amazon Music

The first dataset is the Digital Music category from Amazon Reviews Dataset[25]. This
dataset is an extensive collection of customer reviews and ratings for products available
on the Amazon platform. It includes unstructured textual reviews, numerical ratings,
and associated metadata, like the helpfulness of each review or the summary, as well as
additional product data (descriptions, category information, price, brand, and image fea-
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tures). It was created by Julian McAuley at the University of California, San Diego. The
presented models only need four features from the data: the user ID (called reviewerID
in the dataset), the item ID (called asin), the textual review (called reviewText) and the
rating (called overall). The data is saved in a json file; this is an example of an entry:

{

"reviewerID": "A2SUAM1J3GNN3B",

"asin": "0000013714",

"reviewerName": "J. McDonald",

"helpful": [2, 3],

"reviewText": "I bought this for my husband who plays the piano. He is having a..."

"overall": 5.0,

"summary": "Heavenly Highway Hymns",

"unixReviewTime": 1252800000,

"reviewTime": "09 13, 2009"

}

A built-in version of this dataset is available in the Cornac library [48] and was hence
used. It refers to the 5-core version from 2014, including data collected from May 1996
to July 2014. The dataset is composed of a total of 64706 interactions, with 5541 unique
users, 3568 unique items and a sparsity of around 99.67%. The total number of tokens is
17208197, therefore the cost to embed the whole dataset, as described in Section 3.6.1, is
roughly 1.72$.

Amazon Toys and Games

The second dataset is the Toys and Games from the Amazon Reviews Dataset. The de-
scription is the same as the previous dataset, with the only difference in the category of
reviewed products. Many previous works ([10], [33]) use different categories of products
from the Amazon Reviews Dataset, as it represents the largest and richest source of infor-
mation with reviews currently available. Using different categories of the same dataset is
totally reasonable, as reviews have completely different topics and it is likely that the user
demographics for these two product categories are substantially different. The dataset
contains a total of 167597 interactions, with 19412 unique users and 11924 unique items,
for a data sparsity of 99.93%. The total number of tokens is 20479777, therefore the whole
dataset can be embedded with a cost of around 2.05$.
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Yelp

The third dataset used is the Yelp Reviews Dataset[2]. This dataset is a comprehensive
collection of user-generated reviews and ratings from the Yelp platform, covering a wide
range of businesses, such as restaurants, bars, and retail establishments. This dataset
includes textual reviews, star ratings, and lots of metadata about the businesses and
users. It comprises different json file, but the information used by the models is all inside
the review.json file, where each query is as follows:

{

// string, 22 character unique review id

"review_id": "zdSx_SD6obEhz9VrW9uAWA",

// string, 22 character unique user id, maps to the user in user.json

"user_id": "Ha3iJu77CxlrFm-vQRs_8g",

// string, 22 character business id, maps to business in business.json

"business_id": "tnhfDv5Il8EaGSXZGiuQGg",

// integer, star rating

"stars": 4,

// string, date formatted YYYY-MM-DD

"date": "2016-03-09",

// string, the review itself

"text": "Great place to hang out after work: the prices are decent, and the ambience is fun. It’s a bit loud, but very lively. The staff is friendly, and the food is good. They have a good selection of drinks.",

// integer, number of useful votes received

"useful": 0,

// integer, number of funny votes received

"funny": 0,

// integer, number of cool votes received

"cool": 0

}

The only features used are: user_id, business_id, text and stars. This dataset is much



46 4| Results

larger than the previous ones, including almost 7 million interactions and more than
150000 businesses. This amount of data is too large to be processed by the models,
mainly due to hardware constraints (size limit of the GPU memory) and massive expected
computational time, therefore a sub-sampling was performed to obtain a dataset size
comparable to the other two datasets used. Since the dimension of the sub-sampled
dataset is expected to be approximately 1% of the original dimension, it is impossible
to ensure that the data distribution is preserved. Therefore, it was decided to perform
a subsampling that not only reduces the dataset’s size but also transforms it into a 5-
core dataset, aligning it with the characteristics of the other two datasets employed. The
subsampling was composed of different steps:

• First, the json file was loaded into a Pandas dataframe and a random subsampling
of rows was performed. Several attempts were made to find the best percentage of
interactions to take in the subsampling, with 18% being the value that led to the
best final size and that was hence chosen.

• Then, a graph was built from the subsampled data, using the networkx library. In
the graph, user ids and item ids are used as nodes, and each interaction between a
user and an item is an edge of the graph, carrying as information the rating value
and the review associated to the interaction.

• From this graph, the 5-core subgraph[16] was extracted. This subgraph includes
only nodes (both users and items) that have at least 5 interactions.

• Extracting the 5-core subgraph doesn’t guarantee that all nodes in the subgraph
will still have at least 5 connections, so the subgraph was transformed again in a
Pandas dataframe and from it users and items with less than 5 interactions were
iteratively removed, according to the following algorithm:

Algorithm 4.1 Iterative removal of users and items
1: u_less_5 = get user ids with less than 5 interactions
2: i_less_5 = get item ids with less than 5 interactions
3: while u_less_5 ̸= 0 and i_less_5 ̸= 0 do
4: df = df[user ids with at least 5 interactions]
5: df = df[item ids with at least 5 interactions]
6: u_less_5 = get user ids with less than 5 interactions
7: i_less_5 = get item ids with less than 5 interactions
8: end while=0

After the preprocessing, the new dataset obtained has a total dimension of 83505 in-
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teractions, with 9224 unique users and 9093 unique businesses. The average number of
interactions per user is 9.05, the average number of interactions per item is 9.18, for a
data sparsity of 99.90%. The total number of tokens in the whole dataset is 15321800,
thus requiring around 1.53$ to be entirely embedded.

4.1.2. Data splitting

In the process of training, evaluating, and testing the models, the dataset was divided
into three distinct sets with a predetermined ratio of interactions of 80% for training, 10%
for evaluation, and 10% for testing. The randomization of this split was carried out to
prevent any inherent biases in the data distribution. However, a critical consideration in
this randomization process was the necessity to ensure that each user and each item had
at least one interaction included in the training set. This choice was made to guarantee
that the trained models could effectively process information related to every user and
item present in the evaluation and test sets. By having this foundational interaction data,
the models are equipped to make informed predictions and recommendations for all users
and items in the dataset, minimizing the potential challenges of dealing with entirely
unseen users or items during the evaluation and testing phases. To ensure consistency
among results, the split was performed just once for each dataset, storing data in files
that were used by all models.

4.2. Baselines

To compare the performance of the proposed models, 5 models have been chosen as
baselines:

• HFT, NARRE, HRDR: these methods, presented in Section 2.3, are the current
state-of-the-art models that leverage user reviews to make recommendations.

• ItemKNN, RP3Beta: as described in Section 2.2.3, these are popular collaborat-
ing filtering techniques that lead to excellent results in many contexts.

The first group of methods was implemented using the Cornac library[48], which is one
of the frameworks recommended by ACM RecSys 2023[3] for the evaluation and repro-
ducibility of recommendation algorithms. This library provides the implementation of
many popular recommender systems, including the three mentioned models, as well as a
complete pipeline for data loading and splitting and model evaluation. The pipeline is
based on three objects:

• ReviewModality : is the object designed to incorporate textual reviews as part of the
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recommendation process. It takes the reviews as input and applies different prepro-
cessing steps to create a vocabulary of words from the reviews. First, reviews are
tokenized, with different possible tokenization choices. The base English tokenizer
was employed for the baseline models, which excludes common English stop words,
such as "the," "and," and "is," which are often considered noise in natural language
processing tasks. Then, words are filtered based on two parameters: the maximum
vocabulary size m, which allows only the m most frequent words in the reviews
to be considered during analysis; and the maximum document frequency f , which
guarantees that words appearing in more than f% of the reviews are excluded, to
remove very common words that may not carry much discriminatory information.
f and n were both hyperparameters to be tuned.

• RatioSplit : is the object that takes as input both interaction and review data (the
ReviewModality object) and splits it to obtain training, validation, and testing sets
to be used in the experiments.

• Experiment : is the object performing training and evaluation of the model(s). It
takes as input the RatioSplit object, one or more models to be trained and evaluated
on the input data, and the metrics to be used to evaluate the model(s). The object
outputs the results of each model both on the validation and on the test set in all
metrics.

Hyperparameters tuning was performed on all models in order to find the best sets of
hyperparameters to maximize NDCG@10, as described in Section 4.3. The collabora-
tive filtering methods were implemented using the official repository of the Recommender
Systems course at Politecnico di Milano[19], which provides the implementation of many
recommendation algorithms, including these two. As pure collaborative filtering tech-
niques, these two methods only require the URM as input data. The URM is stored
as a Compressed Sparse Row (CSR) matrix, which is split into training, validation and
testing URMs. During training, both models compute the similarity matrix of dimension
[nitems×nitems], which is used during evaluation. Hyperparameters tuning was performed
on these models as well, maximizing NDCG@10 as described in Section 4.3. Since the
models presented focus on the impact of LLMs in recommender systems based on reviews,
one would expect to include recommender systems based on LLMs among the baselines.
However, as outlined in Section 2.4.4, currently, all LLM-based methods are primarily
prompt engineering techniques that leverage interactions with models such as OpenAI’s
GPTs to provide specific recommendations for individual users, given the provided con-
text. However, so far none of these methods is yet really applicable to large-scale datasets
like those used to evaluate the methods in this study, as the number of queries to the
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LLM would be excessive, and automating the process for such intricate data would be too
challenging. Moreover, these approaches frequently emphasize their efficacy in situations
like the cold-start problem, zero-shot recommendation, or recommendation explanation
rather than predicting top-k suggestions. Consequently, it was decided not to implement
any LLM-based method as a baseline. Still, these approaches have a potentially promising
future, and it is likely that even these kinds of procedures will soon be able to be used as
baselines.

4.3. Hyperparameter tuning

Hyperparameter tuning is a crucial aspect when using deep learning models, as it strongly
influences the performance and effectiveness of recommendation algorithms. All presented
models involve a multitude of hyperparameters, such as learning rates, batch sizes, and
network architectures, which need to be optimized to achieve the best results. Optuna[5],
a popular Python library for hyperparameter optimization, was used to perform hyperpa-
rameter tuning. Optuna is an open-source hyperparameter optimization framework that
uses a Bayesian optimization approach to efficiently search the hyperparameter space and
identify the optimal configuration for a given deep learning model. It adopts state-of-
the-art algorithms for sampling hyperparameters and pruning unpromising trials. This
helps to speed up optimization time and performance greatly compared to traditional
methods such as grid-search or random-search. Optuna relies on the TPESampler, or
Tree-Structured Parzen Estimator, which is a Bayesian optimization algorithm that it-
eratively selects, evaluates, and refines hyperparameters to find the best configuration
for the given model. It does so by randomly selecting a subset of hyperparameters and
sorting them based on their performance scores. These hyperparameters are divided into
two groups and modeled using Parzen Estimators[40] to estimate their densities. The
algorithm then identifies the hyperparameters with the highest expected improvement,
evaluates them, and repeats the process until a predefined budget is exhausted. Ul-
timately, the TPESampler returns the best hyperparameters for the task. In Python,
Optuna is based on the study object, which allows to perform hyperparameter optimiza-
tion on a predefined set of hyperparameters for a given model. The key element of a
study is the objective function, which is used to evaluate and score the performance of a
particular set of hyperparameters for a given model. The goal is to find the set of hyper-
parameters that maximizes or minimizes the objective function, depending on whether it
represents a maximization or minimization problem (minimization if the value to optimize
is a regression metric, maximization if it is a ranking metric). When defining a study, the
number of trials to perform must be specified. A trial represents a single execution of
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the objective function with a specific set of hyperparameters. Optuna performs a series
of trials, each with a different combination of hyperparameter values, to systematically
search for the best configuration. The objective function is called for each trial, and it
returns a score that quantifies the performance of the model with those hyperparameters.
Optuna then uses the results of these trials to decide how to explore the hyperparameter
space more effectively in subsequent trials. For each of the presented models, 50 trials of
optimization were performed in order to find the best hyperparameter configuration. In
addition to the model-specific hyperparameters, all neural models shared three additional
hyperparameters: the batch size for the batches of samples in the training and evaluation
phase, the learning rate for the Adam optimizer and the λ parameter in the loss function.
Depending on the dataset, the batch size may have a maximum value that should not
be exceeded. If it surpasses this limit, it can lead to the model not fitting within the
GPU’s memory capacity, typically not exceeding 24GB. The last two hyperparameters
are especially crucial because incorrect values, particularly when set too high, can result
in gradient explosions and substantially degrade the model’s performance.

4.4. Baselines results

Before analyzing the results of different models against the baselines, the results of all
baselines are described in this section, divided for each dataset.

Amazon Music

Precision@10 Recall@10 MAP@10 NDCG@10

RP3Beta 0.0337 0.2652 0.1241 0.1629

ItemCFKNN 0.0304 0.2394 0.1156 0.1500

HFT 0.0024 0.0071 0.0048 0.0047

NARRE 0.0004 0.0011 0.0021 0.0008

HRDR 0.0055 0.0194 0.0092 0.0113

Table 4.1: Results on Amazon Music dataset
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Amazon Toys

Precision@10 Recall@10 MAP@10 NDCG@10

RP3Beta 0.0137 0.1251 0.0636 0.0791

ItemCFKNN 0.0129 0.1180 0.0602 0.0748

HFT 0.0003 0.0013 0.0011 0.0008

NARRE 0.0002 0.0009 0.0009 0.0005

HRDR 0.0001 0.0005 0.0008 0.0004

Table 4.2: Results on Amazon Toys dataset

Yelp

Precision@10 Recall@10 MAP@10 NDCG@10

RP3Beta 0.0062 0.0569 0.0214 0.0301

ItemCFKNN 0.0060 0.0548 0.0209 0.0286

HFT 0.0003 0.0015 0.0013 0.0008

NARRE 0.0003 0.0014 0.0012 0.0008

HRDR 0.0002 0.0011 0.0014 0.0008

Table 4.3: Results on Yelp dataset

Tables 4.1, 4.2 and 4.3 clearly highlight an interesting result: state-of-the-art methods
leveraging user reviews obtain performances that are by far worse than collaborative fil-
tering techniques, even simple ones like ItemKNN. It is important to remember that HFT,
HRDR and NARRE are explicitly trained to minimize the error between the real and the
predicted rating, so they aim at optimizing regression metrics rather than ranking met-
rics, which are instead used to compare models in this thesis. This significant difference
in results clearly demonstrates that these methods are not suitable for ranking recom-
mendations, highlighting the current lack of appropriate methods based on reviews that
can actually bring effective results in real-world applications. This evidence therefore
justifies the increasing lack of interest by researchers in this kind of methods. Moreover,
it is possible to observe the significant difference in performance among the datasets:
the top-performing baseline models obtain neatly better results on the Amazon Music
dataset, with values for all metrics being five times higher than the ones on the Yelp
dataset; while results on the Amazon Toys dataset lie in between the other two. These
results can be explained by various differences in the data distribution among datasets,
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as well as characteristics on the items inside the datasets. It is likely more difficult to
understand the similarity among businesses in the Yelp dataset (both using review-based
and collaborative filtering information) rather than among products on Amazon.

4.5. Results Model RE

In this section, results for the first model are described. Model RE leverages only em-
bedded reviews, without considering any kind of collaborative filtering information, being
the simplest neural model among the ones proposed. The results on all datasets against
the baselines are shown in Table 4.4.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model RE 0.0112 0.0459 0.0030 0.0143 0.0027 0.0130

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.4: Precision@10 and NDCG@10 of Model RE against the baselines

The results of Model RE already yield interesting conclusions. Firstly, despite its sim-
plicity, the model outperforms review-based baselines significantly, with an NDCG value
four times higher than the best baseline model (HRDR). This surprising outcome leads
to two conclusions: embeddings generated by the LLM are meaningful and can help to
achieve satisfactory results, and creating an embedding for each review, rather than each
word in the dictionary, yields higher-quality outcomes. As expected, on the other hand,
compared to collaborative filtering baselines this model struggles to achieve comparable
results. The sole information from reviews helps to construct a user and item profile,
but it fails to capture enough information on user-item interactions to provide quality
recommendations. The detailed results for all metrics are shown in Section 4.12.

This model is also the simplest in terms of hyperparameters, which are quite similar for
all datasets. After hyperparameter tuning (described in Section 4.3), for all models, the
best pooling strategy turns out to be the sum and the best number of heads is 2. The
other hyperparameters are reported in Table 4.5.
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Amazon Music Amazon Toys Yelp

Dropout rate 0.4 0.21 0.4

Learning rate 1.9e-5 1.9e-5 1.3e-4

Batch size 6 19 20

λreg 4e-6 1.2e-4 7.1e-6

Table 4.5: Model RE hyperparameters

4.6. Results Model RE+CE

Model RE+CE extends Model RE introducing collaborative filtering information from
interactions between users and items. Therefore, the results are expected to be better
than those from Model RE. This hypothesis is indeed confirmed, as shown in Table 4.6.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model RE+CE 0.0248 0.1191 0.0072 0.0397 0.0060 0.0280

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.6: Precision@10 and NDCG@10 of Model RE+CE against the baselines

Collaborative filtering shows an impressive contribution to the model, as results are greatly
enhanced in all datasets. In fact, all metric values are more than doubled. The per-
formance, however, still falls short of collaborative filtering baselines, even though the
NDCG value obtained in the Yelp dataset is very close to that of ItemKNN. This finding
demonstrates that processing information obtained from interactions using neural tech-
niques is not as effective as the use of simpler algorithms that do not employ any learning
mechanisms, as already evidenced in [18]. The knowledge gained through the processing
of embedded reviews fails to enrich collaborative filtering information to the extent of
surpassing the baselines.

In contrast, compared to review-based baselines, this model also highlights significantly
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improved results, confirming the conclusions drawn from the previous model. The detailed
results for all metrics are shown in Section 4.12.

In addition to the hyperparameters already present in Model RE, this model introduces
new hyperparameters mainly related to the architecture of the MLP processing the rat-
ings. These include the number of nodes in the first layer of the MLP in the user
tower (n_user_mlp_factors), those in the first layer of the MLP in the item tower
(n_item_mlp_factors), and the final dimension nfactors. Hyperparameters are signifi-
cantly different between datasets, confirming the differences evidenced by the results. It
is interesting to notice the large values in the MLP architecture, meaning that it is pos-
sible to obtain a high-dimensional latent representation of the interaction pattern. The
full list of hyperparameter values is provided in Table 4.7.

Amazon Music Amazon Toys Yelp

Dropout rate 0.61 0.35 0.37

Learning rate 6.3e-7 2e-6 5.8e-5

Batch size 5 5 15

λreg 4.5e-4 2.4e-6 0.01

nfactors 1475 1483 348

n_user_mlp_factors 2951 2967 949

n_item_mlp_factors 2951 2967 884

nheads 2 2 4

Pooling sum mean sum

Table 4.7: Model RE+CE hyperparameters

4.7. Results Model RE+CE TE

Model RE+CE TE has the same structure as Model RE+CE, with the only difference in
the way embedded reviews are processed: instead of a single multi-head attention layer,
the encoder block of the Transformer is employed. The aim of this model is to understand
whether adding more complexity in the way embeddings are interpreted by the model can
lead to an improvement in performance or not. Therefore, the model has been evaluated
on all datasets. The results are shown in Table 4.8.
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Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model RE+CE TE 0.0218 0.1035 0.0069 0.0375 0.0071 0.0346

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.8: Precision@10 and NDCG@10 of Model RE+CE TE against the baselines

The results lead to interesting considerations. While for the first two models results were
coherent among all datasets, this is the first model where a discrepancy in performance
between datasets is evidenced. Specifically, the outcomes diverge between the Amazon
datasets and the Yelp dataset. In the case of Amazon, the increased complexity of Model
RE+CE TE does not yield better results than Model RE+CE, for both Amazon Music
and Amazon Toys. Conversely, for the Yelp dataset, the results are significantly superior
to those of Model RE+CE. Moreover, while all other models failed to surpass collabora-
tive filtering baselines on all datasets, this model on the Yelp dataset is the first to obtain
the best metric values among all models considered, including popular collaborative fil-
tering methods like RP3Beta. These results allow for reasoning on two aspects. First,
differences in datasets translate into strong differences in results when comparing different
models; in particular, more complex processing of the LLM-produced embeddings results
in degraded performances on the Amazon datasets while it benefits the results on the
Yelp dataset. Second, this model is the first to fully confirm the hypothesis underlying
this thesis. In fact, this model is able (under certain data characteristics) to overcome not
only review-based baselines (which are consistently outperformed across all datasets) but
also to outperform collaborative filtering methods like RP3Beta, indicating a potential
advancement in the state-of-the-art. The detailed results for all metrics are shown in
Section 4.12.

In addition to the hyperparameters in Model RE+CE, two new hyperparameters are
introduced for this model: the number of sub-layers inside the encoder block, and the
number of nodes dff in the hidden layer of the feed-forward neural network in each sub-
layer. All hyperparameters are provided in Table 4.9.
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Amazon Music Amazon Toys Yelp

Dropout rate 0.5 0.69 0.2

Learning rate 7.4e-6 2.7e-6 3.6e-6

Batch size 17 14 5

λreg 1e-4 8.1e-4 4.8e-4

nfactors 727 1361 1197

n_user_mlp_factors 1478 2723 2395

n_item_mlp_factors 1486 2723 2395

nheads 2 1 6

dff 984 4254 2822

num_layers 6 5 2

Table 4.9: Model RE+CE TE hyperparameters

4.8. Results Model CE+AQ

Model CE+AQ focuses on the introduction of the rating pattern inside the attention
mechanism, to evaluate whether it can carry more information rather than using self-
attention. Therefore, the output of the collaborative MLP used to process the ratings
is used as query in the multi-head attention layer. The trade-off for this new attention
mechanism is a compression of the dimension of the embeddings produced by the LLM.
The results on all datasets are shown in Table 4.10.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model CE+AQ 0.0197 0.0921 0.0059 0.0326 0.0066 0.0316

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.10: Precision@10 and NDCG@10 of Model CE+AQ against the baselines

The results lead to interesting considerations. The most noticeable observation is the dis-



4| Results 57

crepancy in results across datasets. Specifically, once again the outcomes diverge between
the Amazon datasets and the Yelp dataset. Indeed, for the Amazon datasets (Music and
Toys) the results from this model are worse than those from Model RE+CE, highlighting
that self-attention provides a more accurate processing on embedded reviews rather than
introducing external information, and that the compression of the dimension of embedded
reviews can degrade the performance. Therefore, this model is not to be preferred when
compared with Model RE+CE. On the other hand, on the Yelp dataset, results from
this model are better than those from Model RE+CE, even outperforming collaborative
filtering methods like RP3Beta, highlighting a great benefit from embedding compres-
sion and collaborative information in the attention. It can be concluded once again
that distinct dataset characteristics, despite similar sparsity and number of interactions,
translate into different outcomes among models. Nevertheless, all results are satisfying
and markedly outperform review-based baselines, just as all previous models. In one case,
the performance even surpasses effective collaborative filtering techniques like RP3Beta,
representing a tangible enhancement of the current state-of-the-art. The detailed results
for all metrics are shown in Section 4.12.

The hyperparameters for this model are the same as for Model RE+CE, with the addition
of the number of nodes of the MLP used to reduce the dimension of the embedded reviews
(embedding_mlp_factors). All hyperparameters are listed in Table 4.11.

Amazon Music Amazon Toys Yelp

Dropout rate 0.56 0.4 0.2

Learning rate 2e-6 2.5e-6 3e-6

Batch size 6 13 4

λreg 4.6e-6 6.8e-5 0.0095

nfactors 609 552 664

n_user_mlp_factors 1335 1265 1384

n_item_mlp_factors 1391 1374 1398

embedding_mlp_factors 1485 1395 1390

nheads 1 2 1

Pooling mean sum mean

Table 4.11: Model CE+AQ hyperparameters
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4.9. Results Model CE+AQ TE

Model CE+AQ TE has the same structure as Model CE+AQ, employing the same at-
tention mechanism as Model RE+CE TE. Hence, embedded reviews are not processed
through a single multi-head attention layer but are passed through the encoder block of
the Transformer. For each sub-layer in the block, the output of the previous layer is used
as key and value to compute attention, while the output of the MLP processing ratings
is used as query. Results on all datasets are shown in Table 4.12.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model CE+AQ TE 0.0211 0.0991 0.0072 0.0399 0.0065 0.0323

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.12: Precision@10 and NDCG@10 of Model CE+AQ TE against the baselines

Results on all datasets highlight an interesting evidence: this model is able to perform
better than Model CE+AQ, meaning that a more complex processing allows to better
incorporate the collaborative filtering information inside the attention mechanism rather
than employing just a single multi-head attention layer. On all datasets, results are
comparable with those of Model RE+CE TE, demonstrating coherence when using more
complex architectures. As in all previous models, this model consistently outperforms
review-based baselines. Coherently with previous models, there is a discrepancy among
datasets for this model as well, which is able to outperform also collaborative filtering
baselines on the Yelp dataset, while it fails to reach comparable performances on the
Amazon datasets. The detailed results for all metrics are shown in Section 4.12.

The hyperparameters are the same as Model RE+CE TE, with the addition of embed-
ding_mlp_factors from Model CE+AQ. Given the strong similarity between models, it
was chosen to use the same hyperparameters as Model RE+CE TE, with the value of
embedding_mlp_factors from Model CE+AQ.
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4.10. Results Model CB-KNN

Model CB-KNN is the simplest model to be tested on all datasets, to assess the pure
quality of the embeddings provided by the LLM. The results are shown in Table 4.13.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model CB-KNN 0.0255 0.1216 0.0079 0.0401 0.0001 0.0006

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.13: Precision@10 and NDCG@10 of Model CB-KNN against the baselines

Despite the simplicity of this model, the performance achieved on two of the three datasets
is unexpectedly impressive, as the model is able to obtain results that are not that dis-
tant from collaborative filtering baseline results, despite being a content-based model.
These methods notoriously perform much worse than collaborative filtering techniques,
except for rare situations in which the content information associated with each item is
so rich to allow a strong understanding of the hidden patterns in the data. Therefore, the
fact that content information is entirely extracted from embeddings obtained through an
LLM clearly demonstrates that the LLM is indeed able to understand human text well
and generate meaningful embeddings. Results are instead very poor on the Yelp dataset,
especially compared to other baselines. These results can be explained by the inherent
nature of reviews. Since the model’s similarity is entirely based on the content of the
reviews, asserting that two items are similar requires the extraction of sufficient infor-
mation about the characteristics of the items from the reviews. In the case of the Yelp
dataset, where items are primarily restaurants or bars, most reviews are likely focused
on aspects such as service quality or the taste of a specific dish, rather than providing
a more generic description that would enable the extraction of information about the
place’s overall features. In Amazon datasets, on the other hand, a review is more likely
to contain a comprehensive and all-encompassing description of the item, thus allowing
a more direct assessment of how similar two objects are. The quality of the embeddings
reflects this difference in datasets. The detailed results for all metrics are shown in Section
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4.12.

4.11. Results Model CFCB-KNN

Model CFCB-KNN combines content-based information with collaborative filtering to
create a hybrid model without employing any neural techniques. Among all the proposed
models, it achieves the best results, as demonstrated in the Table 4.14.

Music Toys Yelp

Prec NDCG Prec NDCG Prec NDCG

RP3Beta 0.0337 0.1629 0.0137 0.0791 0.0062 0.0301

ItemCFKNN 0.0304 0.1500 0.0129 0.0748 0.0060 0.0286

Model CFCB-KNN 0.0336 0.1638 0.0138 0.0782 0.0064 0.0313

HFT 0.0024 0.0047 0.0003 0.0008 0.0003 0.0008

NARRE 0.0004 0.0008 0.0002 0.0005 0.0003 0.0008

HRDR 0.0055 0.0113 0.0001 0.0004 0.0002 0.0008

Table 4.14: Precision@10 and NDCG@10 of Model CFCB-KNN against the baselines

These results are truly remarkable and provide a definitive answer to the hypothesis under-
lying this thesis: applying LLMs to process reviews significantly enhances the performance
of recommender systems. In two of the three datasets, this model not only substantially
improves performance compared to neural baselines but even surpasses RP3Beta, the
baseline that yields the best results and represents an effective and widely used collabora-
tive filtering technique. Even on the Amazon Toys dataset, it achieves a result very close
to RP3Beta and still outperforms ItemKNN, showcasing the efficacy of the approach. It
is interesting to note that, although Model CB-KNN performs poorly on the Yelp dataset,
the content-based information is still effectively utilized by this model. The addition of
this information enables it to surpass the best baseline. Furthermore, the weight assigned
to the ICM after hyperparameter tuning is not insignificantly low (approximately 0.5),
demonstrating that superior results are obtained by assigning non-negligible weight to
content-based information.

This model demonstrates that while the information contained in the embeddings of
reviews alone can lead to satisfactory results (as shown in Model CB-KNN), associating
this information with that obtained from interactions in a collaborative filtering approach
can yield truly astonishing results, concretely improving the current state of the art. The
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detailed results for all metrics are shown in Section 4.12.

4.12. Comparison among all models

To summarize, Tables 4.15, 4.16 and 4.17 show the comparison of results among all
presented models for the three datasets.

Amazon Music

Models Precision@10 Recall@10 MAP@10 NDCG@10

(1) RE 0.0112 0.0864 0.0310 0.0459

(2) RE+CE 0.0248 0.1982 0.0895 0.1191

(3) RE+CE TE 0.0218 0.1774 0.0765 0.1035

(4) CE+AQ 0.0197 0.1532 0.0691 0.0921

(5) CE+AQ TE 0.0211 0.1693 0.0733 0.0991

(6) CB-KNN 0.0255 0.2056 0.0907 0.1216

(7) CFCB-KNN 0.0336 0.2657 0.1255 0.1638

Table 4.15: Results on Amazon Music dataset

Amazon Toys

Precision@10 Recall@10 MAP@10 NDCG@10

(1) RE 0.0030 0.0278 0.0010 0.0143

(2) RE+CE 0.0072 0.0672 0.0307 0.0397

(3) RE+CE TE 0.0069 0.0641 0.0288 0.0375

(4) CE+AQ 0.0059 0.0545 0.0255 0.0326

(5) CE+AQ TE 0.0072 0.0662 0.0312 0.0399

(6) CB-KNN 0.0079 0.0728 0.0295 0.0401

(7) CFCB-KNN 0.0131 0.1194 0.0622 0.0757

Table 4.16: Results on Amazon Toys dataset



62 4| Results

Yelp

Precision@10 Recall@10 MAP@10 NDCG@10

(1) RE 0.0027 0.0252 0.0009 0.0130

(2) RE+CE 0.0060 0.0549 0.0193 0.0280

(3) RE+CE TE 0.0071 0.0664 0.0245 0.0346

(4) CE+AQ 0.0066 0.0611 0.0223 0.0316

(5) CE+AQ TE 0.0065 0.0597 0.0234 0.0323

(6) CB-KNN 0.0001 0.0012 0.0004 0.0006

(7) CFCB-KNN 0.0064 0.0587 0.0224 0.0313

Table 4.17: Results on Yelp dataset

As described in previous sections, the most impressive result is that a relatively simple
model like ItemKNN, constructing the similarity matrix on a hybrid matrix containing
both collaborative filtering and content-based information (Model CFCB-KNN), achieves
excellent results across all datasets. It even emerges as the best-performing model for the
two Amazon datasets. This clearly demonstrates the significance of embeddings produced
by the LLM, providing an effective contribution when used straightforwardly. However,
across all datasets, using only these embeddings in neural models, without any collabo-
rative filtering information, proves less effective, as Model RE consistently yields inferior
results.

Once again, there is a notable discrepancy among datasets. In Amazon datasets neural
methods struggle to outperform simpler methods, whereas on the Yelp dataset, employ-
ing a more complex architecture ensures superior performance, with Model RE+CE TE
achieving the overall best results.

4.13. Datasets comparison

Given the observed discrepancies in the results, this section provides a more in-depth
comparative analysis of the three datasets to understand if there are any characteristics
that can unequivocally justify the different behavior of the models. Table 4.18 shows some
basic statistics for the three datasets.
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Amazon Music Amazon Toys Yelp

Num users 5541 19412 9224

Num items 3568 11924 9093

Num interactions 1485 1395 1390

Sparsity 0.9967 0.9993 0.9990

Average user interactions 11.68 8.63 9.05

Average item interactions 18.13 14.05 9.18

Average rating 4.22 4.35 3.96

Average token length 265.95 122.26 183.48

Table 4.18: Datasets basic statistics

Analyzing these basic statistics, it can be observed that all datasets have relatively simi-
lar characteristics, with no clear differences that could immediately explain variations in
results. One possible explanation for the greater effectiveness of the two-tower models
proposed in the thesis on the Yelp dataset may be due to the greater symmetry in the
number of users and items. In the Yelp dataset, the number of users and items is very
similar, as is the average number of interactions per user/item. Therefore, it is plausi-
ble that the two-tower models, being symmetric for users and items, can generate more
effective information. Conversely, in both Amazon datasets, the number of users is sig-
nificantly higher than the number of items, resulting in a much higher average number of
interactions for items. This asymmetry may likely lead to less effective performance in
symmetric models like the two-tower models proposed in this thesis.

To analyze the embeddings, t-distributed stochastic neighbor embedding (t-SNE) [54] was
employed. It is a machine learning technique used for visualizing high-dimensional data
in a lower-dimensional space, two dimensions in this case. It is particularly useful for
exploring the inherent structure or patterns within the data. Results are shown in Figure
4.1, where ratings are used as labels to distinguish different points.
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Figure 4.1: t-SNE of the three datasets.

The three plots do not provide any clear conclusion about the behavior in the various
datasets, as they do not show any evident difference. It can be observed that in the
Amazon datasets, the embeddings appear more clustered towards the center, especially
those associated with rating 5 (the darker points in the plots), which seem to concentrate
around 0. In contrast, in the Yelp dataset, the points appear more distributed in space,
and the embeddings associated with the maximum rating do not seem to concentrate in
any specific area. However, these observations do not allow for any definitive conclusions
about the differences between datasets.
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4.14. Scalability of experiments

When comparing different models, it is meaningful not only to evaluate them using met-
rics that assess their ability to perform the required task, but also to consider the time
complexity and the memory allocation required. If two models perform similarly but the
first requires 10 times the training and evaluation time needed by the second, it probably
makes sense to prefer the second one, even if with slightly worse results. In this section,
time complexity and memory constraints are discussed for each model. Collaborative fil-
tering baselines and content-based methods (models CB-KNN and CFCB-KNN) are not
deep learning models and they don’t need any parameter to be trained; therefore they
are much faster than all other methods, requiring less than a minute to compute the sim-
ilarity matrix necessary to produce results. Neural baseline models like HFT, NARRE
and HRDR, on the other hand, are extremely time-consuming and require hours to be
trained. This time complexity is mainly due to the large parameter matrices that are
necessary to process the word embeddings, as these methods don’t create embeddings on
entire reviews but on single words, therefore needing a much larger space. This aspect,
together with the unsatisfactory results on ranking metrics, makes these models truly
unpractical and ineffective in real-world scenarios, and by far the worst to be considered
among all models compared in this thesis. The 5 neural models proposed in this thesis
require a non-negligible amount of time to be trained, as they have many parameters to be
learned. Particularly noteworthy is a clear difference in computation times between the
three models which use a single multi-head attention layer and models RE+CE TE and
CE+AQ TE, which instead employ the Transformer’s encoder block composed of multiple
sub-layers with numerous additional parameters. Still, the time complexity is lower than
compared with the neural baselines aforementioned. This is due to the main innovation
within the proposed models: embeddings are generated by an external model and just
processed inside the model, and not single words but entire reviews are embedded in the
latent space. The most time-consuming operation is the computation of the attention,
so the average time needed for each epoch increases as the complexity of the attention
mechanism grows. The complete overview of the average training time for all models,
depending on the dataset, is provided in Table 4.19.



66 4| Results

Amazon Music Amazon Toys Yelp

RP3Beta 0.73 s 2.90 s 3.10 s

ItemCFKNN 0.68 s 4.89 s 3.96 s

HFT 15.7 s/e 206 s/e 157 s/e

NARRE 172 s/e 385 s/e 194 s/e

HRDR 112 s/e 249 s/e 120 s/e

(1) RE 13.41 s/e 39.8 s/e 14 s/e

(2) RE+CE 24 s/e 125 s/e 18.4 s/e

(3) RE+CE TE 82.5 s/e 316 s/e 75 s/e

(4) CE+AQ 17.2 s/e 48 s/e 43.4 s/e

(5) CE+AQ TE 41 s/e 304.2 s/e 72 s/e

(6) CB-KNN 5.39 s 53.26 s 36.02 s

(7) CFCB-KNN 5.19 s 53.90 s 47.95 s

Table 4.19: Average training time for each model for all datasets. Time is expressed in
seconds (s) or seconds per epoch (s/e).

The difference in times within the same model between datasets reflects the different
sizes of datasets. In collaborative filtering and content-based methods, for instance, the
time to compute the similarity matrix with Amazon Toys data is much longer than using
Amazon Music data, because of the higher number of unique users/items within the
dataset, resulting in a bigger URM/ICM.

From a scalability perspective, it can be concluded that Model CFCB-KNN is the best
model to consider. Indeed, on the Amazon datasets, it outperforms all other models with
a significantly lower time requirement compared to neural models. On the Yelp dataset,
although it achieves slightly worse results than some neural models, the drastic reduction
in the time needed justifies its use over other proposed models.
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The work presented in this thesis aims at filling an existing gap in the state of the art
of recommender systems. Indeed, there are many existing methods leveraging reviews
provided by users to items to enhance recommendations, but none of these methods seems
to have resulted in a significant breakthrough in the field of recommender systems. The
performances of the considered state-of-the-art models (HFT, NARRE, and HRDR) are
rather disappointing when compared to popular collaborative filtering techniques such
as ItemKNN and RP3Beta, as demonstrated in Section 4.4. As a result, interest in
these methods has waned over the years. On the contrary, there is a growing interest in
the application of Large Language Models (LLMs) to recommender systems, given the
outstanding capabilities these methods are showcasing across various artificial intelligence
tasks.

However, despite the exceptional ability of LLMs to comprehend and process natural
language, there is currently no method that employs LLMs to enhance a recommender
system by leveraging user reviews. Since these reviews are composed in natural language,
it is expected that LLMs could process them very effectively. Therefore, the aim of this
thesis is to verify this hypothesis, by presenting seven different models that, at different
levels of complexity, exploit the power of an LLM to process user reviews.

All models are based on the use of embeddings obtained from reviews using an LLM, in
particular OpenAI’s text-embedding-ada-002 model[23]. These embeddings are then used
as features describing items in a content-based method (Model CB-KNN), are combined
with collaborative filtering information in a hybrid ItemKNN model (Model CFCB-KNN),
are processed using multi-head attention in a neural model (Models RE, RE+CE and
CE+AQ), and are processed using the Transformer’s encoder in a more complex neural
model (Models RE+CE TE and CE+AQ TE). All models produce different results but
they all lead to the same conclusion: LLMs can indeed improve the performance of a
recommender system that uses reviews. As shown in Sections from 4.5 to 4.9, neural
models with the same structure of NARRE and HRDR obtain results that are by far
more satisfactory on ranking metrics and are much closer to the results obtained by
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collaborative filtering baselines. The impressive improvement in results demonstrates the
quality of the embeddings produced by the LLM and the effectiveness of embedding the
entire review rather than single words.

The differences in data characteristics between the datasets translate into a discrepancy
in results among different models. The fact that neural models fail to perform as well as
collaborative filtering baselines on two of the three datasets can be attributed not to the
quality of the embeddings produced by the LLM but rather to the inherent architecture
of the models themselves. Models CB-KNN and CFCB-KNN, in fact, demonstrate that
the embeddings contain a substantial amount of meaningful information. For instance,
a simple content-based method like Model CB-KNN, which would typically yield poor
results when compared to collaborative filtering methods, manages to achieve outcomes
that are not so distant from those of ItemKNN and RP3Beta in those datasets. More-
over, utilizing embeddings as features combined with collaborative filtering information,
as demonstrated in Model CFCB-KNN, even leads to results surpassing those of effective
models such as RP3Beta in some cases. This shows that, in the Amazon datasets, the
primary issue causing the performance decline lies in the use of complex neural mod-
els, which often fail to deliver satisfactory results in the world of recommender systems,
as evidenced in [18]. On the other side, this also demonstrates that, if employed in a
straightforward manner without excessive processing, the information provided by the
embeddings generated by the LLM can effectively enrich the recommendation model and
yield results sometimes superior to the current state of the art. On the Yelp datasets, on
the other hand, models from 3 to 5 as well as Model CFCB-KNN all outperform collabo-
rative filtering baselines, highlighting how, under certain circumstances, straightforward
methods as well as complex neural methods succeed in obtaining results that improve the
current state of the art, fully confirming the hypothesis underlying this thesis.

The promising results presented in this thesis pave the way for numerous potential di-
rections in future research. Firstly, only one model for generating embeddings has been
employed, making it worthwhile to showcase the outcomes achieved by employing other
LLMs to compare the quality of the produced embeddings. At the moment, Google’s
PaLM model can be used through an API that is very similar to OpenAI’s API, both
in pricing and in model capabilities. Therefore, it could be easily used for comparison.
Other directions include exploring alternative techniques for processing reviews through
LLMs, beyond utilizing models specialized in embedding generation. One possibility could
involve employing a chat model (such as ChatGPT) to obtain a summary of the review
or a set number of adjectives that can encapsulate its essence. This approach would then
provide a representation in a latent space of a different dimension. Given the impres-
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sive results obtained by Model CFCB-KNN, another direction could be the exploration
of more complex hybrid techniques, still without employing neural models, which may
struggle to achieve comparable results, as demonstrated by the first 5 models. Examples
can be some hybrid techniques described in Subsection 2.2.4, or the use of models like
Factorization Machines[45]. Finally, another direction to expand the scope of this thesis
is a more detailed exploration and analysis of the embeddings produced by the LLM.
This involves spatial analyses to understand which dimensions are most significant and
potentially extract them. Given the demonstrated quality of the generated embeddings,
they could be utilized not only to enhance the results of tasks like top-k recommendations
but also for more intricate and delicate tasks such as explainable recommendations.

To conclude, every day new applications of large language models are being released,
showcasing the limitless potential of these models. Consequently, endless directions can
be explored to harness reviews and enhance recommender systems. This thesis represents
just the initial step, demonstrating that the path forward is promising.
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