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Abstract

Lung computed tomography (CT), with established scoring systems, is considered the
reference imaging technique in CF lung disease to detect early structural alterations,
with the advantage over pulmonary function tests (PFTs) to provide information on the
regional distribution of the disease. Nevertheless, scoring systems are semi-quantitative
and are not routinely applied in most clinics because they are time-consuming, subjective
and require training. The aim of this work is to develop an automated algorithm to
detect and quantify structural abnormalities in CT scans in patients affected by cystic
fibrosis lung disease. The target is to distinguish various radiological patterns typical of
this pathology: bronchiectasis, airway wall-thickening and mucus plugging.

To this aim, pathological and healthy patterns were characterized through texture anal-
ysis, and a classifier was trained and tested on a dataset of manually delineated ROIs.
The dataset was composed of 472 ROIs divided in 4 classes as follows: 79 airway wall
thickening, 142 bronchiectasis, 86 mucous plugging, 165 healthy regions. Each ROI has
been described with both standard features, i.e. first and second order statistics, and
features related to the airways morphology and positioning, by implementing a support-
ing UNET for airways segmentation. Both a Bayesian and a Support Vector Machine
(SVM) classifier have been implemented for comparison and different settings (ROIs size,
features, hyper-parameters) have been tested to maximize algorithm performance. Each
pattern was quantified in the whole lung in a group of patients with CF lung disease by
sliding a window of 16x16 pixels and classifying the central 8x8 pixels and the results of
this quantitative analysis were correlated with PFTs.

The best performance was obtained for the SVM classifier (f1 score= 87.06 ± 2.54% on
the test-set). The results over the whole lung showed a significant correlation between
the output of the model (BR%, AWT%, MP%) and the radiological scores. Moreover,
significant correlations were found with PFTs.

Keywords: Cystic Fibrosis, Texture Analysis, UNET, Machine Learning, Computed
Tomography
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Abstract in lingua italiana

La tomografia assiale computerizzata (TAC) toracica, con protocolli di valutazione definiti,
è considerata la tecnica di imaging di riferimento per l’individuazione di anomalie strut-
turali precoci in fibrosi cistica polmonare, con il vantaggio rispetto ai test di funzionalità
polmonare di fornire informazioni riguardo alla distribuzione spaziale della patologia. Tut-
tavia, i protocolli di valutazione sono semi-quantitativi e non sono effettuati regolarmente
nella maggior parte delle cliniche poiché richiedono tempo, allenamento e sono soggettivi.
Lo scopo di questa tesi è d’implementare un algoritmo completamente automatizzato per
identificare e quantificare anomalie strutturali in TAC di pazienti affetti da fibrosi cistica
polmonare. L’obiettivo è quello di distinguere vari pattern radiologici tipici di questa
patologia: bronchiectasia, inspessimento delle pareti delle vie aeree e presenza di muco.

A questo scopo, pattern patologici e fisiologici sono stati caratterizzati tramite analisi di
texture, e un classificatore è stato alleato e testato su un dataset di regioni di interesse
(ROIs) manualmente delineate. Il dataset è composto da 472 ROIs divise in 4 classi come
segue: 79 regioni con inspessimenti delle pareti delle vie aeree, 142 con bronchiectasie,
86 con presenza di muco e 165 sane. Ogni ROI è stata descritta con caratteristiche co-
muni, i.e. statistiche del primo e secondo ordine, e caratteristiche relative alla posizione
e morfologia delle vie aeree, con il supporto di una UNET per la loro segmentazione. Un
modello Bayesiano e uno basato su SVM sono stati implementati per un confronto, e dif-
ferenti configurazioni (dimensione delle ROIs, caratteristiche e iperparametri) sono state
testate per massimizzare la performance dell’algoritmo. Ogni pattern è stato quantificato
all’interno dell’intero polmone in un gruppo di pazienti affetti da fibrosi cistica polmonare
facendo scorrere una finestra di 16x16 pixels e classificando la regione di 8x8 pixels al suo
centro. I risultati dell’analisi quantitativa sono stati correlati con i test di funzionalità
polmonare.

La miglior performance è stata ottenuta dal classificatore basato su SVM (f1 score= 87.06
± 2.54% sul test-set). I risultati dell’analisi sull’intero volume polmonare hanno mostrato
correlazioni significative fra l’output del modello (BR%, AWT%, MP%) e i punteggi
radiologici. Inoltre, sono state individuate correlazioni significative anche con i test di
funzionalità respiratoria.



Parole chiave: Fibrosi Cistica, Texture Analysis, UNET, Machine Learning, Tomografia
Assiale Computerizzata
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1| Introduction

In the first chapter cystic fibrosis lung disease is overviewed. The first chapter covers the
description of the disorder, the alterations occurring in the lungs and the clinical tests and
imaging techniques used for the follow-up of the patients. In the end, a short description
of the texture analysis techniques used in the field of CT lung imaging is provided.

1.1. Cystic Fibrosis Lung Disease

Cystic fibrosis (CF) is an autosomal recessive disease caused by the mutation of the Cys-
tic fibrosis transmembrane conductance regulator (CFTR) protein, a ionic channel that
modulates the secretion of chloride inside of the body. In general, the CFTR mutations
affect the epithelial cells of an organ, and the defects in organ function are diverse, de-
pending on their native function. In this chapter, we will focus on the lung disease in
CF, which represents the major site of mortality and morbidity in this disease. For a
more exhaustive description of CF pathogenesis, the reader can refer to recent reviews
[1–4]. At birth, lungs of CF patients are apparently normal, before the onset of chronic,
unrelenting bacterial infections of the airways in the first few years of life [5]. What is
the relationship between the genetic defect and the clinical manifestations of the disease
that leads to chronic respiratory infection? The CFTR ionic channel is of utmost im-
portance to guarantee the correct mucociliary clearance of the lungs, as it acts on the
equilibrium between chloride secretion and sodium absorption [4], as shown in Figure 1.1.
The presence of a mutation in the CFTR protein leads to the disruption of this balance:
while there is a healthy path for the sodium, the chloride secretion is compromised, caus-
ing fluid hyper-absorption due to the generated osmotic pressure. In healthy subjects,
a well-balanced epithelial sodium absorption and secretion of chloride anions lead to the
correct hydration of mucus and airways surface, promoting a proper mucociliary activity.
In CF patients affected, the defective CFTR channel and increased activity of the epithe-
lial sodium channel generates dehydrated mucus, which adheres to the airways surfaces
and limits the mucociliary clearance. The mucin plugs and plaques that are formed with
this process not only lead to air-flow obstruction, but they also become site of chronic
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cycles of infections and inflammations, which result in damages of the structural integrity
of the airways and lead to the development of bronchiectasis [4]. On high resolution com-
puted tomography (HRCT) bronchiectasis, airway wall-thickening and mucus plugging
are recognizable. Bronchiectasis is defined as an irreversible and abnormal dilation of the
airways with reduced tapering in comparison to healthy airways and it is caused by the
cycles of inflammations and infections described above [6, 7]. Airway wall-thickening is a
condition in which the airway wall widens until it overcomes the 20% of the outer airway
diameter or it is more than the 33% of the relative artery diameter [7]. Mucus plugging
happens when the airways lumen is filled with mucus.

Figure 1.1: (a) The presence of normal mucous is maintained by the correct activity
of CFTR, (b) therefore the airway surface is properly hydrated. (c) The lack or mal-
functioning of the CFTR lead to ionic imbalance, (d) that manifest as dense mucus and
reduced airway surface hydration [8].

1.2. Pulmonary Function Tests in CF Lung Disease

Pulmonary function tests (PFTs) are routinely performed in the clinical management of
CF lung disease, to assess the severity of lung disease and monitor disease progression
and response to therapy.
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1.2.1. Static Lung Volumes Measurement

Static lung volumes are important for the evaluation of obstructive as well as restrictive
ventilatory defects. The volume of gas in the lungs at a given time during the respiratory
cycle are commonly referred to as "lung volumes". Figure 1.2 summarizes the standard
lung volumes and capacities.

Figure 1.2: IVC: inspiratory vital capacity; FRC: functional residual capacity; ERV:
expiratory reserve volume; IC: inspiratory capacity;. IRV: inspiratory reserve volume; ;
RV: residual volume; ; TV: tidal volume; TLC: total lung capacity [9].

Functional residual capacity (FRC) is the amount of gas which is present inside of the
lungs at the end of the normal expiration. The volume that can be forcefully inhaled
from this condition is called inspiratory capacity (IC), while the one that can be exhaled
is called expiratory reserve volume (ERV). After a forced expiration, the volume of gas
remaining in the lung is known as reserve volume (RV). At the end of normal inspiration,
the volume of gas that can still be inhaled is called inspiratory reserve volume (IRV).
The volume of gas that is normally exchanged during the respiratory cycle is known as
tidal volume (TV). Inspiratory vital capacity is the maximum volume of gas that can be
inhaled after a complete exhalation.

The inhaled and exhaled lung volumes can be used to detect and evaluate the progres-
sion of disease. The measurement of the volumes can be done with various techniques:
body plethysmography, nitrogen washout, gas dilution, radiographic imaging methods
and spirometry [9].
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1.2.2. Spirometry

Spirometry is the most common pulmonary function test performed in the clinical setting.
It measures the rate of change of lung volumes during forced breathing maneuvers. To
perform the test, a maximum inspiration followed by a forced exhalation is performed
through a spirometer. The spirometer measures the airflow generated by the patient and
derive the lung volume by integration. The outcomes are:

• Forced Vital Capacity (FVC): is the amount of gas that the patient is able to blow
starting in a condition of full inspiration.

• Forced Expiratory Volume (FEV): is the volume of air exhaled by the patient in a
defined period of time (e.g.: 1, 2, 3, ... seconds), and generally FEV1 is used.

• FEV1/FVC ratio.

• Forced Expiratory Flow (FEF): are the flow measured when FVC is equal to 25%,
50% and 75%.

The Figure 1.3 and Figure 1.4 show examples of data that can be obtained from of a
spirometric test.

Figure 1.3: Spirometric measurement. Please note that y-axis (exhaled volume) goes from
top to bottom and x-axis goes from right to left [10].

The outcomes of PFTs are strictly related to the subject which is performing the tests as
lung function is affected by his age, sex, ethnicity, etc. . . [11]. Thus, spirometric results
are compared with predicted values which are used to evaluate the health of the lungs.
The predicted values are computed with the help of reference equations. These models
are built on the assumption that PFTs outcomes of healthy and non-smoking subjects
can be used to distinguish normal and pathological condition [11]. The normal range is
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Figure 1.4: Flow-Volume curve. Please note x-axis (lung volume) goes from right to left
[10].

built around the predicted value because it must reflect the variability within the healthy
population. A value of 10% is often accepted as "normal" variation coefficient, therefore
values in the range 80% - 120% of the predicted values are considered normal [11].

In CF lung disease, the decline rate of FEV1 has been considered one of the most important
outcomes to monitor and evaluate the progression of lung disease [12].

FEV1 is considered in the normal range if it is more than the 80% of the predicted value.
Lung disease is commonly defined mild (>60% or 70% of predicted), moderate, and severe
(<40% or 30%). Moreover, FEV1 can be used to evaluate the severity of obstructive lung
disease, and in combination with FVC also restrictive lung disease. In obstructive lung
disease, FEV1 is more sensitive to changes of airway resistance in the expiratory phase
than FVC. Thus, a reduced FEV1 in presence of almost normal FVC leads to FEV1/FVC
ratio lower than 70%. Instead, in restrictive lung disease FVC is more affected than FEV1,
and this leads to a FEV1/FVC ratio higher than 70%. FEV1 is expected to rise during the
growth and reaches a maximum around 20-25 years, and a plateau during the adulthood.
Then, as a person ages, FEV1 starts to decline which accelerates with age [13]. The FEV1

decline process is shown in Figure 1.5.

FEV1 is not easily measured in young patients because they can’t easily sustain the effort
which spirometry requires [15, 16], and it is not sensible to lung abnormalities in the early
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Figure 1.5: %FEV1 predicted decline in patients affected by cystic fibrosis (95% CI). The
graph shows also the number of patients by age [14].

stages of disease [4].

In recent years FEF25%-75% has gained attention as a marker of early lung disease, as
more sensitive than FEV1 to small airways obstruction [17]. FEF25%-75% is considered an
indicator of small airways obstruction [18] as it is abnormal in the early stage of cystic
fibrosis lung disease [19]. In Figure 1.6 is shown the comparison of FEF25%-75% decline in
two cohorts of patients affected by cystic fibrosis from 10 to 15 years of age.

Figure 1.6: FEF25%-75% decline in two cohorts of patients from 10 to 15 years of age [20].



1| Introduction 7

Spirometry is an easy clinical test to monitor cystic fibrosis lung disease. However, spiro-
metric results can remain within the normal range even in presence of anomalies in lung
structure [21] and they provide a global value of lung function, without giving any infor-
mation about the distribution of the abnormalities inside of the lungs.

1.2.3. Multiple Breath Washout Test

Another technique that has shown promising results in the early detection of lung disease
is the multiple breath washout test (MBW). The test is composed of two phases: the wash-
in phase, and the wash-out phase. In the first part of the test, the subject is required
to inhale a test gas so that the air inside of his lungs reach a defined composition. The
test gas can be either extrinsic, if it is not usually present inside of the lungs (SF6 and
He), or intrinsic (N2). The wash-in stops once the gas concentration in the exhaled air is
the same at which the gas is delivered. Then, during the wash-out phase, another gas is
provided to the subject and it is used to "wash-out" the test gas from the lungs until it
reaches 1/40 of the initial concentration as shown in Figure 1.7.

Figure 1.7: Example of wash-out phase with an intrinsic (a) and extrinsic (b) gas [21].

At the end of the test the lung clearance index (LCI) can be calculated as:

LCI =
Vce

FRC

where Vce is the volume expired in order to reach 1/40 of the test gas concentration and
FRC is the functional residual capacity [21].

LCI is a measure of ventilation inhomogeneity as it represents the relative ventilation
needed to free the lungs from a tracer gas [22] and it increases in presence of a patho-
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logical condition. As the washout phase is slower in the presence of mucus retention or
inflammation, in CF lung disease LCI increases with disease severity, thus it helps to
assess changes in small airways that are not visible while using spirometry [23]. In Fig-
ure 1.8, a comparison between the LCI measured in patients affected by cystic fibrosis
lung disease and healthy subjects is shown.

The LCI upper limit of normal range for young children is around 7.9, and in the study of
Kinghorn et al. [23], the LCI of children affected by cystic fibrosis was 24% higher than
the healthy control group. The LCI has proven to be more sensitive than FEV1 in the
detection of early signs of the disease, but further evidence is required [15].

Figure 1.8: The LCI for patients affected by cystic fibrosis (CF) and control group HC is
computed against the post-natal age [22].

LCI has proven to be more sensitive than FEV1 in the early stages of the disease with
results comparable with HRCT [15], but without exposing the patients to ionizing radia-
tion. LCI is a measure of ventilation inhomogeneity, and as spirometry, it does not provide
information about the structures’ abnormalities in the lungs and their distribution [15].
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1.3. HRCT in Cystic Fibrosis Patients

Pulmonary function testing is a useful tool to provide a fast evaluation lung function and
monitor disease progression but it presents some limits: early signs of the disease might
not be detected and it doesn’t provide spatial information about the distribution of the
disease inside of the lung [16]. Out of the different imaging techniques, High Resolution
Computed Tomography (HRCT) has emerged because of its higher resolution compared
to Chest X-Ray and MRI. In CF lung disease, the chronic bacterial infection and the
exaggerated immune response are responsible for structural damage in the airways and
parenchyma. These changes are extremely heterogeneous in the lung, with even patients
with normal lung function showing lung areas with end-stage disease. HRCT is currently
the “gold standard” to delineate these structural abnormalities [24–26]. It has been demon-
strated that HRCT is sensitive to early disease, suggesting that structural changes occur
before functional decline can be appreciated [16, 27, 28]. The most relevant structural
changes occurring in CF lungs that can be observed on CT are bronchiectasis, airway
wall thickening and mucous plugging. Less common structural abnormalities are atelec-
tasis/consolidation, alveolar consolidation, sacculations/abcesse, bullae, and thickening
of septa [29].

Bronchiectasis

Bronchiectasis is a permanent condition in which airways are widened as a result of dam-
ages of the surrounding lung tissue [30]. In patients affected by cystic fibrosis, the chronic
cycles of inflammation and infection are responsible for the development of bronchiecta-
sis [31], but it can also derive from airway obstruction. Bronchiectasis can be observed
on HRCT as an airway with widened lumen and irregular wall, or as an airway which
lacks the normal tapering, or the appearance of airways in the most peripheral areas of
the lungs [31]. Airway dilation occurs when the internal diameter of the airway is larger
than the diameter of the corresponding pulmonary artery, whereas airways tapering is
the airway caliber decrease from the central to the peripheral areas [31]. Even if the
damages are permanent and cannot be recovered, a therapeutic approach can be used to
limit the progress of bronchiectasis [31]. Figure 1.9 and Figure 1.10 show the appearance
of bronchiectasis in HRCT.
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Figure 1.9: Severe bronchiectasis can be observed [32].

Figure 1.10: HRCT showing presence of bronchiectasis and peribronchial wall-thickening
[33].

Airway wall-thickening

Airway wall-thickening, or bronchial wall-thickening, describes airways with abnormal
wall thickness. This origin of this sign is thought to be the result of a process of airway
modeling and inflammatory changes [34]. The thickness of the airway wall is considered
pathological when it is 20% higher than the outer airway diameter or it is 33% larger than
the corresponding artery diameter [7].
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Airway wall-thickening can be observed in Figure 1.11.

Figure 1.11: Patient affected by cystic fibrosis. Presence of bronchiectasis, airway wall-
thickening and moderate mucous plugging can be observed [33].

Mucous Plugging

Mucous plugging, or mucoid impaction, is a common CT pathological finding in which
airways are filled with mucous up to the point to be completely obstructed. The presence
of occluded small airways can be associated with worse lung function [35]. Moreover, if
the plugged airways are small enough, it could lead to collapsed alveoli and air-trapping.
The mucous plugs inside of the lung are not only a problem from a mechanical point
of view, as it obstructs the airways, but they can also harbor pathogens that can cause
further damages to the airways and lung tissue.

Figure 1.12 show the appearance of mucous plugging in a CT scan.

Figure 1.12: CT shows the presence of acute bronchiectasis and modest airway wall-
thickening. In the left lung, extensive mucoid impaction can be seen [33].
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1.3.1. Scoring Systems

Over the last few decades it has been shown that bronchiectasis, airway wall thickening,
mucous impaction, and trapped air count as the most important markers to quantify
on chest CTs. Numerous scoring system have been proposed for chest CT in CF lung
disease (e.g.: Brody [36], PRAGMA-CF [37], SALD [38], . . . ) for semi-quantification of
morphological CT changes. For example, bronchiectasis can be evaluated by comparison
between the airway lumen and relative artery diameter (airway to artery ratio) or by
checking the presence of the natural tapering of the airways and the extent is defined by
the number of lungs lobes which are involved. In Figure 1.13 is shown an example image
scored with PRAGMA-CF.

Figure 1.13: (a) The original image, with the overlaid scoring greed. (b) Slice with
annotated scores: red = bronchiectasis; yellow = mucous plugging; orange = bronchial
wall thickening; pink = atelectasis; green = no abnormality seen [37].

Each scoring system defines its own set of features, with bronchiectasis, mucous plugging,
airway wall thickening and parenchymal opacities representing the abnormalities included
in most scoring systems. Scoring systems are advantageous as they are relatively insensi-
tive to the CT scanner technique and acquisition protocol being used.

CT scoring systems can be used to monitor patterns of disease and to identify possible
risk factors in the disease progression. Bouma et al., for example, used PRAGMA-CF to
show how the percentage of disease in preschool children is associated with bronchiectasis
in school age children [39]. Similarly, Sanders et al., proved that CT scans scored with
BRODY scoring system predict the presence of pulmonary exacerbations in the following
10 years [40]. The utility of this approach is not limited to the evaluation of the disease but
could provide also a useful tool for planning lung transplantation and improving survival
prediction models [41].

Even if the total score obtained with various scoring systems have shown to have a certain
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degree of reproducibility, it is not clear how meaningful it is to sum scores which evaluates
different patterns without knowing the weight that each one of them has on the progression
of the disease [24]. In addition, this type of approach requires the training of a radiologist
in the use of a specific scoring system, introducing complications which are typical of
manual approaches, such as inter and intra-subject variability in the evaluation process
[24]. For all these reasons, an automated approach which can identify the presence of
pathological pattern based on objective measures could be an interesting tool for the
support for clinical care and for the monitoring of the disease progression.

1.4. Pattern Recognition in CT Lung Imaging

Pattern recognition is a technique that exploits machine learning algorithms in order to
identify patterns inside the data. In Figure 1.14 is shown the working principle of a
statistical pattern recognition approach. During the training, the model selects the best
set of features that classify the training samples. Then, in the test phase, the model
classifies an input pattern into a class based on its features.

Figure 1.14: Model for statistical pattern recognition [42].

Pattern recognition applied to CT lung images can be used to extract quantitative infor-
mation to monitor disease extent and progression, providing support in the decision or
diagnosis process.

1.4.1. Texture Analysis

The first step in machine learning is to extract the features that contain the information
used to make decisions. The simplest features derive from the application of threshold-
based methods, which enhance high or low attenuation areas of the lungs [43–45]. Another
common set of features are first-order statistics, which collect information that can be
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derived from the histogram of the image (e.g.: mean, standard deviation, mode, kurtosis,
skewness, etc...) as shown in Figure 1.15.

To exploit the spatial distribution of the data the second-order statistics, such as gray-
level co-occurrence matrix (GLCM) [46] or the gray-level run length matrix are computed.
An example of GLCM is shown in Figure 1.16.

Other methods rely on models or on transforms to extract more complex patterns. This
class includes approaches such as Minkowski functionals, wavelets, Gabor filters and
Laplacian transforms [47, 48]. This approach can be extended also for 3D regions, but
their analysis falls beyond the scope of this work [49].

In Figure 1.17 the most common features used in texture analysis are summarized [48].

Figure 1.15: First order statistics based on a CT image. (a) Plot of the image histogram
on which are underlined mean, standard deviation (SD), count of pixels and mean of
positive pixels (MPP). (b) Sample histograms show the behaviour of skewness, which is
a measure of asymmetry of the histogram. (c) Sample histograms show the behaviour of
kurtosis, which is a measure of tailedness of the histogram. [50].
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Buch et al. [52], studied the influence of the different CT acquisition parameters on textu-
ral features. In detail, they extracted 42 different features by varying pitch, milliampere,
kilovolt, section thickness and acquisition mode. They concluded that even if some acqui-
sition parameters didn’t have a strong impact on the textural features, it is necessary a
standardization to prevent confusion between biological features and image heterogeneity.

Figure 1.16: GLCM computes the occurrences of pair of pixels at a defined distance and
angle in an image [51].
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Class Type Method Texture interpretation
Main estimated

features

Statistical method

First order Grey-level histogram

Global distribution of intensity
values in terms of spread,
symmetry, flatness, uniformity
and randomness

Mean

Variance

Skewness

Kurtosis

Energy

Entropy

Second order GLCM

Spatial relationship between pixel
in a specific direction, highlighting
the properties of uniformity,
homogeneity, randomness and
linear dependency of the image

Energy

Homogeneity

Contrast

Entropy

Dissimilarity

Correlation

Higher order NGTDM

Spatial relationship among three
or more pixels, closely
approaching the human
perception of the image

Complexity

Busyness

Contrast

Coarseness

Texture strength

Higher order GLRLM

Texture in a specific direction,
where fine texture has more short
runs whilst coarse texture presents
more long runs with different
intensity values

Short-run emphasis

Long-run emphasis

Grey-level
non-uniformity

Run length
non-uniformity

Run percentage

Higher order GLSZM
Regional intensity variations or
the distribution of homogeneous
regions

Zone size emphasis

Grey-level zone
emphasis

Zone size
non-uniformity

Grey-level
non-uniformity

Model-based
method

Fractal models

Complexity of the image. For 2D
images, FD ranges from 2 to 3,
where more complex pattern
presents higher values

FD

Fractal abundance

Lacunarity

Transform-based
method

Fourier transform Analysis of the frequency content without spatial localization

Wavelet and
Gabor filters

Frequency and spatial localization

LoG Extraction of areas with increasingly coarse texture patterns

BJR

Box counting, fractional 
Brownian motion method and 
power spectral method

Figure 1.17: Features used in texture analysis, adapted from [48].
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1.4.2. Texture Analysis applied to CT Lung Imaging

Texture analysis can retrieve information from CT scans that can be used as features
during pattern recognition. In CT lung imaging, the pattern recognition is used to classify
between pathological and healthy regions, by first extracting a set of features for each
pattern, to be used to train a classification model. The results can be used to monitor
and evaluate the progression of the disease.

Yoon et al [53], tried to combine the use of texture analysis with machine learning in order
to classify radiological patterns (normal, alveolar, bronchial, and unstructured interstitial)
in animal radiographs. They extracted 44 features, which were used to train and test an
artificial neural network, that reached an area under the receiver operating characteristic
of 0.92 on the test set.

Sun et al. [54], used texture analysis in order to differentiate between bronchiolar adenoma
(BA), adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA). A to-
tal of 396 textural features were extracted and their study suggested that texture analysis
has great potential in differentiating BA from AIS and MIA.

Tanizawa et al. [55], analyzed images of patients affected by fibrotic idiopathic interstitial
pneumonias. To first order statistics parameters, they added two scores: high-attenuation
areas (HAAs)(CT values > -200) and low-attenuation areas (LAAs)(CT values < -960)
and from this cystic areas (CA) were computed. The first index reflected physiological
impairment, while CA% corresponded with diagnosis and CT patterns.

Chen et al. [56], tried to use radiomic features to distinguish between benign and malig-
nant lung nodules. They extracted for each case 750 features, but only 76 had significant
differences in the two classes and the top 4 features were used to build a radiomic signa-
ture. The signature was then used to differentiate between benign and malignant lesions
achieving an accuracy of 84%.

These studies suggest that a combined use of texture analysis and pattern recognition
can differentiate among pathological and healthy patterns independently from the disease
that generated them.

1.4.3. CT Texture Analysis in Cystic Fibrosis Lung Disease

Texture analysis and pattern recognition are not widely diffused in the evaluation of
HRCT in cystic fibrosis lung disease. In the literature, the analysis of a CT image is
usually limited to the extraction of some features or scores, which are then compared
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with FEV1 or scores made manually from radiologists. Nevertheless, scoring systems are
not routinely applied in most clinics because they are time-consuming, subjective and
require training.

Chassagnon e al. in 2018 [57], investigated the ability of a model, based on fixed and
moving thresholds, to evaluate the presence of high attenuating structures inside of the
lungs. The score was defined as the ratio between the lung volume above the threshold
(high-attenuating structures) and the whole lung volume. A total of fourteen different
thresholds were tested, four fixed and ten variable, and FEV1 was used as gold standard.
The automated score had a better correlation with FEV1 than visual scores made by
radiologist.

Instead, DeBoer et al. [58], built an automated software to count the number of visible
airways and evaluate air-trapping in CT images. The scores obtained were then validated
with Brody CT scan scores and pulmonary function measures. The detection of the
airways was done on inspiratory images, while estimation of air-trapping on expiratory
images. The number of total, central and peripheral airways in children affected by cystic
fibrosis was higher than the healthy control group. Also the low attenuation density
(LAD%) index, which was defined as the percentage of lung volume affected by air-
trapping, was higher in children with cystic fibrosis. The number of airways correlated
with Brody’s bronchiectasis subscore, and LAD% with air-trapping. Hence the number
of airways and LAD% could be used as surrogates in the evaluation of bronchiectasis and
air-trapping in CT images.

Chassagnon et al. in 2020 [59], designed a model based on 38 radiomic features in order
to assess disease severity and the risk of exacerbation in adults affected by cystic fibrosis.
Out of the 38 features, 7 belonged to first order characteristics, 24 to three-dimensional
co-occurence matrices and the last 7 to fractal dimensions. The extracted features were
used to train a regression model that produced a radiomic based CT score. The output of
the trained model showed good correlation with FEV1 and the presence of an exacerbation
in the following 12 months.

Santos et al. [60], proposed and automated method to quantitatively evaluate morpho-
logical changes of airways. In patients with severe airflow obstruction, an higher number
of bronchi was found. While for patients without severe airflow obstruction the relative
wall thickness of the from third bronchial generation to the eighth had a good correlation
with FEV1.
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1.5. Aims

Textural analysis has proven to be useful to evaluate different lung patterns in CT images.
The scope of this thesis is to create an automated algorithm that based on textural analysis
and machine learning quantifies the extent of pathological patterns in patients affected by
cystic fibrosis lung disease. To improve the performance of textural features, surrogates
of indices used by radiologist for the evaluation of different patterns will be used. At the
end, the model will be evaluated in a group of CF patients, by comparing the results with
spirometry and multiple breath washout measures.
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2| Materials and Methods

This chapter describes the method developed for lung texture analysis and classification,
which consists in a first algorithm for airways identification, which supports the second
algorithm for lung parenchyma classification. The developed classifier is then applied to
CT images of a group of patients with CF lung disease, which is described in the last
paragraph of the present chapter. All the steps are implemented in python.

2.1. Image Processing Outline

The block diagram in Figure 2.1 shows the overall algorithm workflow.

Figure 2.1: Overview of the algorithm pipeline. Images for SVM and the bayesian model
are taken from [61].
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Figure 2.2 describes in detail the creation of the dataset and the implementation of the
classifiers.

Figure 2.2: Features extracted from the ROIs are used to train and test the classifiers.

2.1.1. Dataset of labeled ROIs

Pathological and healthy regions of interest (ROI) were manually selected. According
to the radiologist 4 classes were identified: airway wall-thickening (AWT), bronchiectasis
(BR), mucous plugging (MP), and healthy (HLT). Respect to Brody score, the most used
CT scoring system in CF lung disease, parenchymal abnormalities were not considered,
as under-represented in our population. Squared ROIs were extracted from the centroid
of manually drawn regions. ROIs sized 16x16 and 32x32 pixels were extracted, to find the
optimal ROI size for the classification task. In Figure 2.3 there is an example of a ROI
extracted from the original CT image.
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Figure 2.3: (a) HRCT slice on which the ROI is highlighted with a red square. (b) The
same region is shown as the final image used for the analysis.

2.2. Features Estimation

For each ROI, a set of features have been calculated. In addition to the most common
features present in literature, such as first and second order statistics, we implemented
variables related to airways morphology and positioning within the lung, which have been
demonstrated to be useful for pattern recognition in CF lung disease [58] (Figure 2.4). At
the end of this section, all the features computed for each ROI are reported in Table 2.1.

2.2.1. Threshold Filtering

Thresholding is a common but fast tool to process the image. Thresholds are usually
selected to highlight low or high attenuation patterns inside the lung. In this case, 4 ranges
were chosen to underline the presence of different patterns: air-trapping, consolidation,
ground-glass opacity (GGO) and high attenuation structures. Even if the name might be
misleading, air-trapping doesn’t refer only to the presence of air "trapped" inside of the
lungs, but it also represents a hypo-perfused area [27]. Consolidation and GGO are high
attenuation areas of the lung parenchyma, in which the vessels are still visible (GGO) or
not (consolidation).

• Pixels < -950 HU: for the evaluation of air-trapping inside of the lungs, as similar
values can be found in literature [55].

• Pixels between -703 HU and -368 HU: for the evaluation of GGO [62].



24 2| Materials and Methods

Figure 2.4: The features extraction process is composed of two parallel paths. In the first
one, thresholds, first and second order statistics are computed directly on the ROIs. In the
second path, airways are segmented with the help of a UNET and each ROI is represented
with the number of airways, and informations relative to their shape and size.

• Pixels between -100 HU and 5 HU: for the evaluation of consolidation [62].

• Pixels > -650: for the evaluation of all high attenuation structures inside of the
lungs, similar to Chassagnon in 2018 [57].

The simplicity of this approach represents its strength and weakness as it requires a small
computational time, but with a simple threshold lungs structures and pathological pat-
tern cannot be distinguished (Figure 2.5). Moreover, the selection of fixed values for the
thresholds does not consider the variability of CT images and that among subjects. In-
deed, variable thresholds have shown a better correlation with FEV1 than fixed thresholds
[57]. After the filtering process, a quantitative evaluation was made by computing the
number of non-zero pixels for each of the output images.
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Figure 2.5: (a) Original image, before the application of threshold filters. (b) Mask with
pixels identified as air-trapping. (c) Mask with pixels identified as GGO. (d) Mask with
pixels identified as consolidation.

2.2.2. First Order Statistics

First order statistic parameters are computed on the image density histogram, which
evaluates the frequency of the pixels at each density value. For each ROI the following
parameters were calculated: mean, standard deviation, minimum, maximum, median,
mode, skewness and kurtosis. Nevertheless, the parameters do not account for the spatial
relationship between the pixels [50].

A representative ROI histogram with the corresponding features is reported in Figure 2.6.
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Figure 2.6: ROI density histogram and his first order statistics parameters.

2.2.3. Second Order Statistics

The gray-level co-occurrence matrix (GLCM) was calculated to derive second order statis-
tic parameters. Prior to the computation of the GLCM matrix, input images are quan-
tized in a finite number of level, 16 discrete levels ranging from 0 to 15, and each ROI
was processed as shown Figure 2.7.

Figure 2.7: Quantization of a ROI into 16 discrete levels.

GLCM counts the number of times a pair of pixels of levels i and j appear at a given
distance d and angle θ. In order to completely explore a 2D neighborhood, GLCMs were
computed with one distance d equal to one pixel and four directions θ: 0°, 45°, 90°, 135°.
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In Figure 2.8 is represented the operations to compute a GLCM for d = 1 and θ = 0°, of
a 4 levels image.

Figure 2.8: (a) Example image, in which the direction and angle are shown. (b) Example
image, with annotation of the value for each pixel. (c) Final GLCM.

Then, from each GLCM, the following parameters were computed:

contrast :
levels−1∑
i,j=0

Pi,j(i− j)2

dissimilarity :
levels−1∑
i,j=0

Pi,j|i− j|

homogeneity :
levels−1∑
i,j=0

Pi,j

1 + (i− j)2

ASM :
levels−1∑
i,j=0

P 2
i,j

energy :
√
ASM

correlation :
levels−1∑
i,j=0

Pi,j

(i− µi)(j − µj)√
(σ2

i )(σ
2
j )


where Pi,j is the pixel at the entry (i,j) of the normalized GLCM and µx, µy, σx, σy are
the mean and standard deviation of px(i) =

∑levels
j=1 Pi,j, and py(j) =

∑levels
i=1 Pi,j [46].



28 2| Materials and Methods

2.2.4. ROI Position Compared to Lung Contour

As anticipated in section 1.4, the presence of airways in the most peripheral part of the
lungs are indicative of the presence of bronchiectasis. Therefore, a specific feature was
developed, computing the minimum distance between the center of each ROI and the lung
contours. To this aim, lungs contours are identified, using the "find_contour" function
which is implemented in the skimage library of python [63] (Figure 2.9). The function
finds contours searching for constant values inside the image using the marching squares
method. The marching squares algorithm uses the same approach as marching cubic
algorithm [64], but just in two dimensions. As the function returns all the contours inside
of the image, they are filtered based their closure and size, to retrieve only the lungs.
Once the lungs’ contours are found, the minimum distance from the edges of the lungs to
the center of a ROI can be easily obtained.

Figure 2.9: Identification of lungs contours. (a) Input image. (b) All the contours around
a defined level are found. (c) Then they are filtered by taking into account if they are a
closed loop and their size, in the end only the two lungs remain.

2.2.5. Airways Features

Airways Detection

The correct identification of the airways is of utmost importance in the evaluation of
pathological pattern in CF lung disease, especially for the identification of airway wall-
thickening and bronchiectasis.

I implemented two different approaches for airways identification.

The first approach was similar to the one previously described for the delineation of lung
contours. All the contours at a defined HU level were found and then filtered to retrieve
the airways. An airway was accepted if the contour was close and if the object enclosed
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a low density area (airway lumen) and was completely surrounded by a high attenuating
structure (airway wall). The process is outlined in in Figure 2.10.

Figure 2.10: (a) The process begins with the original image. (b) All the contours, open
and closed, are found around -700 HU. (c) A first check is made on the contours and
only the ones closed are kept. (d) Then, the mean value for the region defined by each
contour is computed, and if it is below a defined threshold (-750 HU) and it is surrounded
by high attenuation structures, the contour is accepted as an airway.

This approach had limitations, as not only each airway had its own intensity level to
correctly identify the contour, but also the parameters used to identify the lumen and the
surrounding wall had to be changed. This first approach cannot be extended to a larger
scale, thus an automatic method based on deep-learning was implemented.
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The chosen architecture was the UNET, due to its proven ability to segment biomedical
images and its structure is shown in Figure 2.11.
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Figure 2.11: Architecture of the UNET.

The UNET architecture is composed of two parts: the contracting path and the expansive
path [65]. In the contracting path, two convolutions with kernel of size 3x3 are followed
by rectified linear unit (ReLU) and max pooling. In the expansive path, the input fea-
tures map is first upsampled and the number of features is divided by two with a 2x2
convolution. Then the features map is concatenated with the corresponding features of
the contracting path and two 3x3 convolution are applied. The starting number of feature
map selected for the UNET was 16. A lower value caused a worsening of the performance
both on validation and test set, while a higher value increased the risk of over-fitting
without providing any benefit in the performance of the model.
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The dataset used for the training was manually built using the approach based on the
contour identification and was composed by 10373 images, which could contain or not
airways. Before training, the images were upscaled to three time the original size, to both
increase the airway size, that in some cases could be close to image resolution, and to allow
a smoother transition between adjacent pixels, which improve contour identification. The
loss function selected was the intersection over union which is defined as:

IoU loss = 1− Area of intersection
Area of union

and evaluates the performance of the model by comparing the agreement of the intersec-
tion and union between the predicted image and the target mask.

Once the model was trained, it was used to propose airways candidates, which still undergo
a validation process in order to be accepted. The candidate contour was identified in the
prediction image. Then, on the original image, the contour had to satisfy the same
requisites of the previous method. A candidate was accepted if the contour identified a
low-density area, completely enclosed by a higher density structure. The advantage of
this method is to automatically identify possible airways without constantly tuning the
parameters of the previous approach. This is possible because the contours are found in
the prediction and then used to extract information from the original image as shown in
Figure 2.12.

Figure 2.12: (a) The input image is first scaled to three times the original size. (b) Then,
the prediction is computed using the UNET and the candidate contours are identified.
(c) The lumen intensity and the presence of a higher attenuation structure around it are
checked before validating the candidate.

Airways Features

When a ROI was analyzed, for each segmented airway, area, perimeter and roundness were
extracted. Thus, each ROI was characterized by the number of airways, their average area,
average perimeter, average roundess and the number of pixels in the prediction which had
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a value above 0.5. The last variable was added to account for airways partially included
in the ROI. Since these values are computed on the resized image, they are first rescaled
for the dilation factor and then converted in millimeters. The conversion from pixels to
millimeters was needed because the patients’ CT scans didn’t have the same spacing in
the horizontal plane, thus the real dimension of the airways did not correspond to the
number of pixels.

Features

Method Feature

Threshold

Air-trapping
Consolidation

GGO
High attenuation structures

First Order

mean
standard deviation

min
max
mode

median
kurtosis
skewness

GLCM

Contrast
Dissimilarity
Homogeneity

ASM
Energy

Correlation

Airways and Lung

Number of airways
Average perimeter

Average area
Average roundness

Presence of Airways
Distance from edges

Table 2.1: Summary of all the features extracted for each ROI.
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2.3. Classification

In this section is described the composition of the dataset, the features selection process
and the classifier implementation.

2.3.1. Dataset

The final dataset was composed of 472 ROIs divided in 4 classes as follows: 79 airway wall
thickening, 142 bronchiectasis, 86 mucous plugging, 165 healthy regions. In Table 2.2 is
reported the number of samples per class in the dataset.

Class Samples

AWT 79

BR 142

MP 86

HLT 165

Total 472

Table 2.2: Composition of the dataset.

2.3.2. Classifier Implementation

In this subsection a short description of the two classifiers implemented, i.e. Bayesian
classifier and Support Vector Machine (SVM), is provided.

Bayesian Classifier

The aim of a Bayesian approach is to learn the posterior probability over the model
parameters w, from the data and a prior probability distribution.

In the "naïve" bayesian approach it holds the hypothesis that every pair of features are
independent given the class. The inference process is based on the Bayes theorem:

p(parameters | data) =
p(data | parameters) · p(parameters)

p(data)
∝ likelihood · prior

where p(parameters | data) is the posterior over the training data. The parameters
that will be chosen are the mode of the posterior probability distribution, also known as
maximum a posteriori (MAP).
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For our work we used a Gaussian Naive Bayes algorithm where the likelihood is assumed
to be:

p(xi | y) =
1√
2πσ2

y

exp

(
(xi − µy)

2

2σ2
y

)
In Figure 2.13 , an example of the sequential Bayesian process is shown.

Figure 2.13: The figure shows the Bayesian sequential learning. As the model experience
data the posterior is tuned, and then it is used as prior in the following iteration [61].
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Support Vector Machine (SVM)

SVM is a classification method that tries to maximize the margin between the decision
boundary and the closest data points. Thus, the decision boundary is defined only by a
subset of the data points, which are known as support vectors. In Figure 2.14, an example
of SVM for binary classification is shown.

Figure 2.14: Only the closest points contribute to the definition of the decision boundary
[61].

Since real problem are not often linearly separable, the input x̄ is usually mapped in a
higher dimensional space with the help of features functions Φ(x̄) or kernel trick. In a
binary classification task, the target class for a sample x̄ computed by SVM is:

y(x̄) = sign(wTΦ(x̄) + b)

where w and b are the weights and bias and are found by maximizing the margin in the
train dataset. But even in an higher feature space a perfect solution might not be found,
for these reason soft margin ξn are introduced to give some compliance to the model.
With the introduction of soft-margins, data points are allowed to be inside of the margin
and even to be missclassified. Thus the minimization function becomes:

1

2
||w||22 + C

N∑
n=1

ξn
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subjected to:

yn(w
TΦ(xn) + b) ≥ 1− ξn, for all n

ξn ≥ 0, for all n

C is an hyperparameter that controls the trade-off between margin and error. SVM solves
binary classification problems, but it can be extended to multiple-classes by exploting
strategies as One vs One or One vs All. In Figure 2.15, the effect of soft-margins
addition can be seen.

Figure 2.15: with soft-margins, points are allowed inside of the margin and they can even
be missclassified [61].
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2.3.3. Cross-Validation

In a machine learning approach, the selection of hyper-parameters is an important task in
order to optimize the performance of a model. At first glance, a good strategy would be to
just train the model and tweak the hyper-parameters in order to maximize the metrics used
on the test set. This approach risk to increase over-fitting because the hyper-parameters
are tuned directly on the test set and thus the performance of the model is not independent
from test data. A solution is to divide the dataset in 3 sets: train, validation and test
set. In this case, the validation set is used to tune the model hyper-parameters without
introducing the influence of the test set. This solution is unfeasible in problems where
the number of samples is limited and other strategies must be used, as cross-validation.
In this setting, a validation set is not required as the training set is split in k subsets: k-1
are used for the training phase and the last one is used for the validation. The procedure
is done for each of the k-folds, allowing to validate the model without the influence of the
test set. In Figure 2.16 is shown a training set split in five folds, four will be used for
training and one for validation. In this work, the train set was divided in five "stratified"
folds. The term "stratify" means that the folds are created by maintaining the same
percentage of samples for each class [66].

Figure 2.16: Example of k-fold cross-validation with k = 5.
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2.3.4. Features Selection

Feature selection is used to minimize the amount of variance into the model by reducing
the number of features on which is trained. Other techniques that can achieve the same
scope are dimensionality reduction, which reduces the dimension of the input space, or
regularization, to keep the parameters of the model close to zero. In feature selection, the
features that are deemed redundant or irrelevant are removed from the training set with
different techniques. The first approach used was a forward sequential feature selection,
but really few features were discarded, and the trained model showed strong over-fitting
on real images.

Then, it was tried a strategy based on correlation of the data, using Pearson correlation
coefficient:

ρx,y =
cov(x, y)

σxσy

The correlation coefficient was computed for each pair of features and highly correlated
features (ρ >0.9) are removed. Then, the correlation coefficient was computed between
each feature and the target class, retaining only features with a good correlation (ρ >
0.4). From 24 features, only 8 were selected.

In the table 2.3, the final set of features is shown.

Method Feature

Threshold GGO

First Order
Mean

Standard deviation
Skewness

GLCM Contrast

Airways and Lung
Number of airways

Average area
Presence of Airways

Table 2.3: Features after the features selection process.
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2.3.5. SMOTE

A balanced dataset has the same number of samples for each class, while an imbalanced
dataset has a non-homogeneous distribution of samples among the classes. The classes
which compose most of the dataset are referred to as majority classes, while the others as
minority classes. A model trained on an imbalanced dataset may be biased, due to a high
degree of accuracy for the majority classes and a low accuracy for the minority classes.

Imbalanced datasets are a common problem for machine learning applied to medical tasks
as usually there are more samples for the healthy class than for the pathological ones [67].
As it can be seen in subsection 2.3.1, our dataset is imbalanced and thus Synthetic
Minority Oversampling Technique (SMOTE) was applied [68]. SMOTE is a technique
used to deal with imbalanced problems as it generates artificial samples by exploiting
similarities in the feature space in the minority classes.

To create a new synthetic element, a sample x̂ belonging to a minority class is chosen.
Then, one of the k-nearest neighbour of the same class x is randomly selected and a new
synthetic sample is generated as follows:

xnew = x̂+ (x− x̂) · δ

where δ ∈ [0, 1] is a random number.

The Figure 2.17 shows the scatterplot of two variables in both the original and the over-
sampled dataset. In the images SMOTE is applied to the whole dataset only for a better
representation of the data, but during the classification it will be used only on the training
set.
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Figure 2.17: Scatterplot of mean vs standard deviation before and after SMOTE.

SMOTE generates new samples without considering the presence of samples from other
classes. This process can lead to overlaps among different classes, and this effect can
be noted in Figure 2.17. For this reason, more advanced algorithms, such as borderline-
SMOTE [69] or ADASYN [70], were proposed, but the selection of the best up-sampling
technique was not in the scope of the thesis.
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2.3.6. Metrics

The performance of the classifiers was measured with the following metrics: sensitivity,
precision, specificity and f1 score weighted for the classes.

Sensitivity measures the ability of a model to correctly classify positive samples in the
positive class.

Sensitivity =
TP

TP + FN

Precision measures the percentage of samples that a model predicts as positive and really
belong to the positive class.

Precision =
TP

TP + FP

Specificity measures the ability of a model to correctly classify negative samples in the
negative class.

Specificity =
TN

TN + FP

The f1 score is the harmonic mean of precision and recall. It combines the information
coming from the two metrics and thus allows an easier comparison between two models.

f1 =
2 · Precision · Sensitivity
Precision + Sensitivity
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2.4. Volume Processing Outline

In this section the process for volume evaluation is described (Figure 2.18). First, the
images are pre-processed by removing vessels with the Frangi’s filter. Then, lungs are
segmented and each pixel is classified according to the trained classifier.

Figure 2.18: Evaluation workflow. First the vessels are segmented, then they are removed
from the original image and the ROIs which have at least 80% of the pixels belonging to
the lung are chosen. In the end, the accepted ROI are classified.
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2.4.1. Vessels’ segmentation

Vessels appear in CT images as high attenuation structures, which could be confused
with consolidation or mucous plugging. In order to prevent their impact during the
evaluation process, they are removed from the image before classification. For the vessels’
segmentation Frangi’s filter is used [71]. The algorithm is based on the computation of
the hessian matrix of the image in the 3D space and enhance rounded, tubular or planar
structures based on the eigenvalues. In Figure-2.19, it is shown an example of the final
segmentation.

Figure 2.19: (a) Original image. (b) Highlight of the vessels found inside of it, please
note that the main branches of the airways have been removed from the segmentation
because they weren’t useful for the scope of the work.

2.4.2. Volume Evaluation

The lungs were segmented as described in subsection 2.2.4. Then, for each slice, a grid
was constructed starting from the bounding box of the lung. Only the ROI with at least
80% of pixels being lung pixels were accepted. The window slides across the grid cells and
classifies the pixels inside it (Figure 2.20). Hence, while a bigger window slides across the
image, only the central pixels corresponding to the grid cells are classified at each step.
Then, the window moves on the next cell and the process is repeated until the lungs are
fully covered.

The grid was built with a spacing of 8 pixels, thus creating cells of 8x8 pixels. This value
was selected as a trade-off between computational time and output resolution. A bigger
value allowed to reduce the computational time but had a worse resolution on the output
image. The difference is shown in Figure 2.21.
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Figure 2.20: The image shows the process that identifies the lung regions to be classified.
(a) First the lungs’ contours are identified. (b) Then the bounding box is derived. (c)
A grid is created with cells of desired size. (d) Only the cells containing at least 80% of
lung pixels are retained.

Figure 2.21: The same lung is divided in region sized 8x8 (a) pixels and 16x16 (b).
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2.4.3. Quantitative Evaluation

The segmented vessels were subtracted from the HRCT volume and each disease class
(AWT, BR, MP and HLT) was quantified on the overall lung volume. Each class was
expressed as percent volume (AWT%, BR%, MP%, HLT%). As the condition of the
airways is a key point in cystic fibrosis lung disease, also the airways volume was evaluated
as a percentage over the lung volume (vol_a%).

2.4.4. Study Population

A group of patients with cystic fibrosis (CF) lung disease was studied. Diagnosis of CF
was confirmed by a sweat chloride level >60 mM and/or two CF-causing mutations in the
CFTR gene according to established diagnostic criteria. All patients underwent chest CT,
spirometry and MBW test as part of their annual surveillance programme at the Lom-
bardia Region CF Centre, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale
Maggiore Policlinico, Milan, Italy. Spirometry was performed on the same day as CT
and included the measurement of FEV1, forced vital capacity (FVC) and FEF25–75%.
Values were expressed as a percentage of predicted values according to the prediction equa-
tions of the Global Lung Function Initiative. Spirometry was performed in compliance
with American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines
[72]. Multiple breath washout was performed within 15 days of CT. The commercial
nitrogen-MBW equipment ExhalyzerD and associated software package (Eco-Medics AG,
Duernten, Switzerland) were used for data acquisition, storage and analysis in compliance
with the standard operating procedure [73]. PFTs of patients are reported in Table 2.4.

PFTs Median (25th - 75th percentile)

FEV1 (L) 2,90 (1,76 - 3,44)

%FEV1 70,70 (54,70 - 82,15)

FVC (L) 4,48 (3,00 - 5,00)

%FVC 86,90 (76,40 - 103,25)

FEF25%-75% (L) 1,73 (0,80 - 2,04)

%FEF25%-75% 36,40 (22,7 - 46,9)

LCI 2,5% norm 15,17 (13,36 - 17,11)

Table 2.4: PFTs expressed as median and 25th-75th percentile.
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In this chapter the results of this work are shown. First, the performance of the UNET
for airways segmentation is described, then the comparison between the SVM and the
Gaussian Naive Bayes (GNB) classifiers is reported. The performance of the best model
on the training set was tested on ROIs sized 16x16 and 32x32 pixels, to find the best size
for the classification task. In the end the best model is used to quantify the different lung
patterns over the whole lung volume and the results are compared to radiological scores
and PFTs.

3.1. UNET Evaluation

The “airways dataset” included 19 patients, for a total of 10373 ROIs. The dataset was
split into training, validation and test set based on patient ID, in order to have a better
generalization. 17 patients (9305 ROIs) were used for the training, 1 (490 ROIs) for the
validation, and 1 (578 ROIs) for the test set. At the end of the training, the model
presented a validation loss of 0.315 and a test loss of 0.305. Since the test loss does not
have relevance by itself, the model performance was manually checked by testing it on
other 100 sample ROIs extracted randomly from the “lung parenchyma dataset”. In order
to have a balanced and complete test set, 50 ROIs were chosen among the BR and AWT
classes, that surely contained airways, while the other 50 were selected from the HLT
class. The performance of the model was scored as follows: correct if all the airways were
correctly segmented, incorrect otherwise Out of the 100 ROIs selected, 58 contained at
least one airway and 42 did not. The model correctly recognized the 42 ROIs without
airways, and correctly segmented 51 out of the 58 ROIs with airways segmentation errors
were present in 7 ROIs: in 4 cases the segmentation had more airways than the original
image, while in the other 3 they were fewer or partially segmented. The pure model
showed an overall accuracy of 93%.

In Figure 3.1 some examples of the model segmentation are reported.
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Figure 3.1: (a) The airways are correctly segmented. (b) In this case the model did
not predict the presence of an airway in the original ROI. (c) Even if an airway is
correctly segmented, the other one is just partially present in the model output, thus it
was considered a mistake.
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3.2. Classifiers Evaluation

The performance of the classifier models were evaluated as shown in Figure 3.2.

Figure 3.2: Procedure followed to evaluate the models performance.

The main dataset is first divided in two sets: 75% of the data are used for the train-set,
while the remaining 25% for the test-set. As the train-set was imbalanced, SMOTE was
applied to create synthetic samples in order to balance it. At the end of the splitting
process the train-set was composed of 354 true observations, and after SMOTE of 496
samples equally spread among the 4 classes. Then, the model was trained and the per-
formance was verified on the test-set. The performance of the model is strictly related
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to how the samples are divided into the train and test-set, for this reason, the procedure
described above was repeated 100 times to reduce the impact of the random splitting pro-
cess. At the end of each iteration, recall, precision, specificity and f1 score were computed
and thus the performance of the model are expressed as mean ± standard deviation.

In Figure 3.3 is shown an example of how precision, recall and specificity are computed
in a multi-class problem.

FP TN

FNTP

Figure 3.3: In a confusion matrix, the elements belonging to the same row are the true
values, while the one belonging to the same columns are the elements predicted for that
class. From the confusion matrix, it is possible to compute precision, recall and specificity
for each class.
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3.2.1. SVM vs Gaussian Naive Bayes

In Figure 3.4, the comparison of recall, precision and specificity between the two models
is reported.

Figure 3.4: The three bar plots show the performance of the SVM and GNB. The metrics
were recall, precision and specificity. The metrics were evaluated on 16x16 pixels regions.
SVM had better recall, precision and specificity than the Bayesian model in almost every
class.

The overall performance of the model was measured with the f1 score, which was equal
to 82.32 ± 3.24% for the Gaussian Naive Bayes, and 87.06 ± 2.54% for the SVM.

The SVM approach had a better performance than the Bayesian one, and thus was chosen
for the next steps. A summary of the Bayesian and SVM models are reported respectively
in Table 3.1 and Table 3.2.
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Bayesian AWT BR MP HLT

Recall 67.65±10.21% 73.42±7.33% 96.33±4.09% 89.10±5.36%

Precision 56.92±7.66% 79.53±5.74% 85.90±6.85% 99.08±1.31%

Specificity 89.31±3.07% 91.52±2.99% 96.39±2.31% 99.55±0.65%

f1: 82.32 ± 3.24%

Table 3.1: Summary of Bayesian model performance.

SVM AWT BR MP HLT

Recall 68.12±9.54% 82.56±6.73% 95.73±3.95% 96.06±2.36%

Precision 73.08±8.85% 83.52±5.03% 86.14±6.82% 97.94±1.93%

Specificity 94.61±2.25% 93.09±2.45% 96.57±1.68% 98.90±1.03%

f1: 87.06 ± 2.54%

Table 3.2: Summary of SVM model performance.
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3.2.2. ROI Size Comparison

The performance of SVM was then tested on ROIs of different size: 16x16 pixels or
32x32 pixels. Smaller sized ROIs were discarded because they did not provide sufficient
morphological information, due to their reduced field of view and also because airways
usually don’t fit inside such a small patch. The results are shown in Figure 3.5.

Figure 3.5: Recall, precision and specificity are computed with SVM on ROIs of different
sizes, demonstrating that the 16x16 ROI has an overall better performance in all the
classes compared to the 32x32.

The model trained and tested on ROI of size 16x16 pixels showed a better performance
than the one developed on 32x32 ROI. This could be due to the fact that a 32x32 ROI
covers more space and more than one class might appear in the same ROI, affecting the
performance of the model. Hence, the model selected for the evaluation of the lung volume
is a SVM with a ROI sized 16x16 pixels.
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In Table 3.3 the comparison of the model trained and tested on the two different ROI size
is summarized.

ROI AWT BR MP HLT

Recall
16 68.12±9.54% 82.56±6.73% 95.73±3.95% 96.06±2.36%

32 67.14±9.79% 78.35±7.65% 87.68±7.92% 94.94±3.08%

Precision
16 73.08±8.85% 83.52±5.03% 86.14±6.82% 97.94±1.93%

32 67.72±10.28% 81.54±5.66% 82.18±7.47% 95.09±3.20%

Specificity
16 94.61±2.25% 93.09±2.45% 96.57±1.68% 98.90±1.03%

32 93.12±2.91% 92.55±2.53% 95.78±1.93% 97.36±1.75%

f1 on 16x16 ROI: 87.06 ± 2.54%

f1 on 32x32 ROI: 83.84 ± 2.99%

Table 3.3: Comparison between the performance of the classifier on 16x16 and 32x32 ROI.
The better performance of the 16x16 ROI is reflected by the higher fl score.
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3.2.3. Impact of Airways Features

One of the aims of the thesis was to check if the use of information related to the airways
could improve the performance of a texture analysis approach. To do so, the feature
selection process described in Subsection 2.3.4 was applied on two features sets, the first
one included the features related to the airways, while the latter did not. The first
set of features, obviously, coincided with the final 8 features used for the evaluation of
the models, while the other had only 5 features: Mean, Standard Deviation, Skewness,
Contrast, GGO. The performance of the two models is shown in figure 3.6.

Figure 3.6: The features related to the airways had a strong impact on the correct classifi-
cation of AWT, BR and even MP. The model trained on the set without airways features
shows a worse performance in all the classes, for all the metrics.

As one could expect, the information related to the airways leaded to an increased per-
formance of the model in the classification of AWT an BR. Surprisingly, the presence of
these features had a positive impact also in the classification of MP.
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In Table 3.4 the comparison between the two dataset is summarized.

Airways AWT BR MP HLT

Recall
Yes 68.12±9.54% 82.56±6.73% 95.73±3.95% 96.06±2.36%

No 60.17±9.87% 61.91±7.86% 83.48±8.84% 94.73±3.14%

Precision
Yes 73.08±8.85% 83.52±5.03% 86.14±6.82% 97.94±1.93%

No 54.56±8.89% 68.17±7.49% 78.76±8.08% 95.51±3.20%

Specificity
Yes 94.61±2.25% 93.09±2.45% 96.57±1.68% 98.90±1.03%

No 89.47±2.76% 87.68±3.77% 94.98±2.26% 97.58±1.75%

f1 with airways info : 87.06 ± 2.54%

f1 without airways info : 76.93 ± 3.52%

Table 3.4: Comparison between datasets with and without airways information.

3.2.4. Cross-Validation Results

Cross-validation was used in order to search for the best "C" parameter for the SVM,
without having knowledge leaking from the test set into our model. The different values
of C tried were: 1, 2, 5. The results are shown in Table 3.5.

C AWT BR MP HLT

Recall
1 53.94±14.70% 88.70±4.79% 95.38±6.15% 95.17±2.99%

2 53.94±14.70% 87.71±3.88% 93.85±8.97% 96.0±3.58%

5 57.27±13.37% 86.75±5.62% 93.85±8.97% 96.0±3.58%

Precision
1 74.31±6.32% 79.79±8.46% 86.06±8.14% 99.23±1.54%

2 72.70±9.78% 79.67±8.64% 87.34±9.63% 98.43±1.92%

5 72.13±11.4% 81.13±7.95% 88.19±8.36% 98.43±1.92%

Specificity
1 96.27±1.27% 89.90±4.80% 96.20±2.75% 99.57±0.87%

2 95.93±1.73% 89.90±4.80% 96.55±3.08% 99.12±1.08%

5 95.25±2.92% 90.70±4.75% 96.89±2.53% 99.12±1.08%

f1 with C = 1: 85.90 ± 3.45%

f1 with C = 2: 85.64 ± 4.33%

f1 with C = 5: 86.07 ± 3.45%

Table 3.5: Performance of SVM with different C values.
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As there wasn’t any significant increase in performance, C was set equal to 1.

3.3. Patients Scoring

The analysis was performed on the whole CT lung volume.

The lungs are then evaluated with our algorithm, the average time to elaborate an HRCT
image is about 5 minutes. In Figure 3.7 two representative patients are shown. Out of
the whole volume, three lung levels are reported.

Patient B

Patient A

Figure 3.7: The images of the two representative patients are shown at three lung levels:
aortic arch, carina and top diaphragm.
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The results are provided as percentage of each class over the whole lung volume. (AWT%,
BR%, MP%, HLT%) and the percentage of airways over the lung volume (vol_a%). The
output of the algorithm for the two representative patients is summarized in Table 3.6
and Table 3.7.

Score Presence

AWT% 0.15

BR% 0.89

MP% 0.44

HLT% 98.52

vol_a% 0.05

Table 3.6: Patient A lung composition.

Score Presence

AWT% 0.28

BR% 2.50

MP% 4.18

HLT% 93.04

vol_a% 0.12

Table 3.7: Patient B lung composition.
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3.4. Comparison with Radiological Scores

The quantitative data obtained with volume analysis were then compared with radiologi-
cal scores in the group of patients with CF lung disease. The correlation between AWT%,
BR%, MP% and radiological scores (AWT, BR, MP) was compared with Pearson corre-
lation coefficient. The result of the correlation was reported in Table 3.8.

Scores ρ AWT% ρ BR% ρ MP%

AWT 0.72** - -

BR - 0.70** -

MP - - 0.55*

Table 3.8: Correlations results between radiological scores and the presence of patterns in
HRCT. Significant values (*: p-value < 0.05; **: p-value < 0.01) are highlighted in bold.

The results of the lung volume analysis showed a good level of correlation with manual
scores of the radiologist. Strong positive correlation was found between AWT score and
AWT% (ρ = 0.72; p-value < 0.01) and BR score and BR% (ρ = 0,70; p-value < 0.01),
while only moderate positive correlation was found for MP score and MP% (ρ = 0.55;
p-value < 0.05).

Figure 3.8 shows the relation between BR, AWT and MP scores with BR%, AWT% and
MP%.

Figure 3.8: Comparison between BR, AWT, MP scores with BR%, AWT%, MP%. The
translucent area around the regression model is the confidence interval at 95%.
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3.5. Comparison with PFTs

The correlation between AWT%, BR%, MP%, HLT%, vol_a% and PFTs was compared
with Spearman correlation coefficient in 15 patients. The results of the correlation are
reported in Table 3.9 and significant results are highlighted in bold.

PFTs ρ AWT% ρ BR% ρ MP% ρ HLT% ρ vol_a%

FEV1 (L) -0.05 -0,50 -0,48 0,58* -0,18

%FEV1 -0,02 -0,53* -0,18 0,52* -0,47

FVC (L) -0,03 -0,32 -0,47 0,49 -0,14

%FVC -0,22 -0,60* -0,47 0,68** -0,52*

FEF25%-75% (L) -0,03 -0,36 -0,18 0,38 -0,15

%FEF25%-75% -0,02 -0,37 -0,02 0,33 -0,30

LCI 2,5% norm 0,15 0,24 0,02 -0,25 0,46

Table 3.9: Correlations results between PFTs and the percentage of each pattern in HRCT.
Significant values (*: p-value < 0.05; **: p-value < 0.01) are highlighted in bold.

No significant correlation was found between AWT%, MP% and any of the PFTs. BR
showed moderate correlation with %FEV1 (ρ = 0,53; p-value < 0.05) and %FVC (ρ =
0,60; p-value < 0.05). HLT% presented moderate correlation with FEV1 (ρ = 0,58; p-
value < 0.05), %FEV1 (ρ = 0,52; p-value < 0.05) and strong correlation with %FVC (ρ =
0,68; p-value < 0.01). Vol_a% showed significant correlation only with %FVC (ρ = 0,52;
p-value < 0.05). In Table 3.9 are highlighted only the values which presented a p-value
< 0.05. The correlation coefficient between LCI 2,5% norm and vol_a% had a p-value =
0.08.

In Figure 3.9, the scatterplots between %FEV1, %FVC, %FEF25%-75%, LCI 2,5% norm
and AWT%, BR%, MP% and vol_a% are reported.
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Figure 3.9: The scatterplots for each pair between %FEV1, %FVC, %FEF25%-75%, LCI
2,5% norm and AWT%, BR%, MP% and vol_a%.





63

4| Conclusions and Future

Developments

The scope of this work was to create an automated algorithm based on texture analy-
sis and machine learning to evaluate pathological patterns in patient affected by cystic
fibrosis lung disease. Other automated approaches found in literature exploit the use
of convolutional neural network (CNN) to achieve the same scope. Marques et al. [74]
proposed a model that was a cascade composition of two CNNs: the first one identified
the presence of abnormal tissue and the latter the type of structural abnormalities. The
first network could detect the presence of the disease with an accuracy of 0.94, while the
cascade model presented an f1 score equal to 0.33, averaged over the classes.

In addition to common textural descriptors (thresholds, first order statistics, second order
statistics), features derived from the airways were developed as surrogates of radiological
indexes used in the evaluation of CT scans in patients affected by cystic fibrosis lung
disease. This was done to improve the ability of the model to correctly identify and
differentiate two of the four classes present in the dataset: BR and AWT. Two methods
were implemented to segment the airways within the lungs. The first one was based on
the identification of the contours inside of the ROIs, but it required the constant tweaking
of parameters and hence it was not appropriate for an automated algorithm. The second
method exploited the use of a UNET, that was trained on images of segmented airways.
The performance of the UNET was tested on 100 random samples taken from our dataset,
achieving an accuracy of 93%. Thus, the UNET output was used to propose airways
candidates which still needed to be validated. An airway was accepted if it was a low-
density area, completely surrounded by high attenuation structures.

The performance of two models, SVM and GNB, were tested for comparison. The SVM
showed a better performance than GNB in all the metrics measured: recall, precision,
specificity and f1 score. As SVM presented a significantly higher f1 score (SVM = 87.06
± 2.54%, GNB = 82.32 ± 3.24%), it was selected for the following steps of the work.

Two ROI sizes (16x16 and 32x32) were tested. The model trained and tested 16x16 on
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dataset presented an f1 score higher than the 32x32 (f1 = 87.06 ± 2.54%, 83.84 ± 2.99%,
respectively for 16x16 and 32x32 ROIs).

The impact of the airways features was also investigated by comparing the performance of
the SVM on two features dataset: the first one included airways features, while the latter
did not. The model trained on the dataset with airways features showed the best recall,
precision and specificity on the BR and AWT classes. Moreover, the MP class profited
from airways features, as also its metrics improved. The presence of the airways features
sensitively increased the performance of the model (f1 = 87.06 ± 2.54%, 76.93 ± 3.52%,
respectively of the dataset with and without airways features).

The model was then used to evaluate the HRCT scans in a group of patients affected by
cystic fibrosis lung disease. The volume of each class (AWT%, BR%, MP% and HLT%)
as well as the volume of the airways (vol_a%) were computed as percentage of the total
lung volume.

The dataset of HRCTs included 15 patients with CF lung disease. Pearson correlation
coefficient was used to investigate the relationship between the volume of pathological
classes automatically quantified with the developed algorithm (AWT%, BR% and MP%)
and the visual radiological score (AWT, BR and MP). Strong positive correlation was
found between AWT score and AWT% (ρ = 0.72; p-value < 0.01) and BR score and BR%
(ρ = 0.70; p-value < 0.01), while only moderate positive correlation was found for MP
score and MP% (ρ = 0.55; p-value < 0.05). These results suggest that our model is able to
detect the presence of pathological pattern, but some discrepancies are present between the
radiological scores and the pattern evaluation. For the radiological score, the radiologist
assessed the severity and the extent of pathological patterns inside of the HRCT. Thus, a
severe but localized pattern can present a higher, or similar, radiological score of a mild
but diffused pattern. As our model evaluates only the percentage of a pattern inside of
the lungs, is not able to consider whether it presents a severe or mild disease. In some
cases the Frangi’s filter confused MP for vessels and, as a consequence, MP might be
underrepresented during our evaluation. Thus, other strategies for vessels segmentation
should be explored. Moreover, the training dataset included a limited number of ROIs,
thus we expect improvement with a larger dataset, balanced between the classes.

The correlation between our results and PFTs was also investigated in a group of 15 pa-
tients, to understand the relationship between structural and functional lung impairment.
Negative correlation was found between BR% and PTFs (%FEV1: ρ = -0.53, p-value <
0.05; %FVC: ρ = -0.60, p-value < 0.05), whereas a positive correlation was found between
HLT% and PFTs (FEV1: ρ = 0.58, p-value < 0.05; %FEV1: ρ = 0.52, p-value < 0.05;
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%FVC: ρ = 0.68, p-value < 0.01). These results are reasonable as BR is a pathological
pattern that causes a decrease in the PFTs of a subject, and a larger extent of healthy
tissue (HLT%) may indicate a better lung function. The LCI showed a positive correlation
(near significance, p-value = 0.08) with the percent volume of airways (vol_a%), suggest-
ing that a larger volume of the airways tree (which is present in case of bronchiectasis) is
an indicator of worse lung function.

This work presents some limitations. First, our dataset was composed of 472 ROIs. A
bigger dataset might help in improving the performance of the model and limiting the
impact of the SMOTE algorithm. Nevertheless, we notice that a bigger dataset doesn’t
directly imply a boost in the performance of the model because also the quality of the data
is relevant. The identification of pathological patterns and the evaluation of radiological
scores depends on the work of radiologists. Hence, a bigger dataset has more chance to
include the effects of inter and intra-operator variability. When comparing the automatic
disease quantification with PFTs, we notice that the patients analyzed in this thesis were
enrolled in a clinical trial. Thus, our algorithm was tested only on patients corresponding
to the enrolment criteria of the trial. In particular, only patients with mild or moderate
disease were included, while end-stage subjects were not present.

Further work could be oriented in improving the performance of our model. Our approach
is able to completely explore the whole lung volume, but it is not a 3D analysis, as each
slice in the HRCT is treated singularly during the analysis. Not only the standard textural
features could be adapted to a three dimensional approach, but also the airways features
might gain benefit from it. The proposed UNET works only on 2D images without
exploiting the continuity of the airways in the segmentation process. Moreover, a 3D
UNET could detect with higher precision not only the airways lumen, but it could also be
trained to identify the airways wall and the corresponding vessels, to be used to evaluate
the airway to artery ratio, the thickness of the airway wall with respect to the lumen and
the presence of airway tapering. These parameters are usually used by the radiologist in
the correct identification of AWT and BR. When applying our model to CT scans from
patients, a further step would be to apply the algorithm to longitudinal data in patients
under treatment, to evaluate the additional value of this approach in a clinical trial.
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