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Introduction
A common issue in developing countries is the
inefficiency and unreliability of infrastructures.
A concerning example of this is the fact that
most of the roads in urban areas are paved with-
out proper documentation. As a consequence of
this, the optimization of public transport routes
is hindered by the lack of knowledge regarding
which roads are actually accessible and which
are not.
The objective of this work was to solve this is-
sue by producing new algorithms capable of per-
forming the classification of road segments into
"paved" and "unpaved", relying only on publicly
available data.
We focused on the case of the Greater Maputo
area, in Mozambique, but the results can be
promptly extended to any other Sub-Saharan
city.

1. Graphs of Objects
The data used for our analysis came from two
different public sources, OpenStreetMap and
Google Earth, respectively in the form of a net-
work of polygons identified by spatial coordi-
nates and a set of satellite images. In this way,

for each road we had access to its shape, loca-
tion, and appearance. In order to fully exploit
the available information, without having to rely
on synthetic indices, we decided to design a new
data structure, that maintained this duality.
Firstly, inspired by the work in [1], we converted
every satellite image into a 3D object. In prac-
tice, every picture was cleaned of unwanted areas
(generally representing vegetation or vehicles),
and a set of 150 of the remaining pixels was ran-
domly sampled and used to identify an object
ωi in the RGB cube. The set of all objects was
called Ω.
Secondly, a set of unweighted undirected edges
was designed starting from the polygon network.
Every pair of road segments whose respective
polygons had a common boundary where as-
signed an edge ηij . The set of all edges was
called H.
These steps lead to the creation of a data struc-
ture called Graph of Objects (GoO), and iden-
tified as

Γ(Ω,H)

where nodes contained the information that was
included in the pictures, while edges incorpo-
rated knowledge coming from the polygons.
Because of the large dimension of the dataset,
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we also extracted a second GoO,

Γ′(Ω′,H′)

representing a limited coastal area of Maputo.
Γ′ allowed us to tune our models with much
shorter computational times, to find the opti-
mal hyperparameters, and finally to run only the
best models on Γ.

2. Classification Framework
After having produced a data structure that in-
corporated all the information we wanted to use,
it was time to decide how to perform the clas-
sification of the unlabeled objects. This task
was a clear example of Semi-Supervised Learn-
ing. In this framework, both labeled and un-
labeled data were needed to improve accuracy,
propagating information from the former to the
latter throughout the graph structure.
First of all, we decided that our algorithms
needed to account for uncertainty at a certain
extent. Hence, they were written so that the pre-
dicted label ŷi of object ωi could assume three
different values: 0 ("paved"), 1 ("unpaved"), or
2 ("uncertain"). This lead to the type of confu-
sion matrix in Table 1.

Predicted

T
ru

e

0 1 2
0 N00 N01 N02

1 N10 N11 N12

Table 1: Confusion matrix in the general case

Inspired once again by [1], we defined the mis-
classification costs in Table 2, where yi refers
to the true class of ωi and ŷi to its predicted
class. Classifying an unpaved road as paved was

Misclassification Cost
yi = 0, ŷi = 1 2
yi = 0, ŷi = 2 1
yi = 1, ŷi = 0 2.5
yi = 1, ŷi = 2 1

Table 2: Misclassification costs

considered more dangerous than vice versa. Fur-
thermore, uncertainty was deemed less problem-
atic than wrong predictions.
This allowed for the computation of an error,
that was then normalized w.r.t. the error of a

dummy classifier in order to obtain a percentage:

E =
2N01 +N02 + 2.5N10 +N12

errdummy
· 100% (1)

The objective of our GoO-based algorithms was
therefore to minimize (1).
We then selected a traditional statistical ap-
proach, κ-Nearest Neighbors (κ-NN), and a
model based on Deep Learning, a Graph Con-
volutional Network (GCN), and adapted them
to this established framework.

3. κ-NN
3.1. Theory
In [1] an Object-Oriented κ-NN was designed,
where distance between objects was chosen to be
the energy distance. Keeping this in mind, we
stored the energy distance between every ωi ∈ Ω
and ωj ∈ ΩL, where ΩL was the subset of labeled
objects, in a matrix E. We then normalized it,
computing the so-called energy dissimilarity ma-
trix:

∆E,ij =
Eij −minE

maxE −minE
(2)

Afterwards, we computed multiple other dissim-
ilarity matrices to include information contained
in H, rather than just Ω.
The first one was the adjacency dissimilarity ma-
trix:

∆A,ij = 1−Aij (3)

where A was the adjacency matrix of the GoO.
Then, starting from A, we computed P , a ma-
trix consisting of the length of the shortest path
between each pair ωi ∈ Ω and ωj ∈ ΩL. For com-
parison purposes we normalized this one too:

∆P,ij =
Pij −minP

maxP −minP
(4)

Finally, we performed four different community
detection algorithms over Γ. These algorithms
were capable of finding hidden structures within
the graph, similarly to what a clustering algo-
rithm does, starting only from the adjacency
matrix.
The idea was that communities within the net-
work were likely reflecting neighborhoods of the
city, and the pavement of roads in the same
neighborhood was likely to be similar.
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We then counted how many of these four algo-
rithms classified each pair of ωi and ωj as mem-
bers of the same community in matrix C:

Cij =
∑
a∈A

δa(ωi, ωj) (5)

where A was the set of the four community de-
tection algorithms. We finally normalized C, ob-
taining the community dissimilarity matrix:

∆C,ij =
maxC − Cij

maxC −minC
(6)

Multiple tests were made to find the best com-
bination of sums and element-wise products of
these four dissimilarity matrices to find the best
performing one. It was proven that this optimal
dissimilarity was given by:

∆ij = ∆ζ
E,ij ·∆

1−ζ
C,ij (7)

where ζ ∈ (0, 1) was an hyperparameter to be
tuned.
Finally, we decided to compare and contrast two
models:
• Ωκ-NN, the Object-Oriented κ-NN pro-

posed in [1], using (2) as dissimilarity;
• Γκ-NN, a new GoO-Oriented κ-NN, using

(7) as dissimilarity.

3.2. Results
In the final part of our work on the κ-NN, we
tried to find the optimal sets of hyperparameter
values both for the Object-Oriented model (Ωκ-
NN), and the new GoO-Oriented one (Γκ-NN).
These hyperparameters where:
• κ: number of neighbors;
• θ1 and θ2: thresholds such that:

ŷi =


0 if fP,i > θ2

1 if fP,i ≤ θ1

2 otherwise
(8)

where fP,i was the frequency of paved
neighbors of ωi;

• ζ (only for Γκ-NN): value in (7).
We decided to tune these hyperparameters with
5-fold cross-validation over multiple different
train-test splits of Γ′. This process allowed to
iteratively enhance our models and get the most
realistic results.
The values of the error E for the two optimal
models over five splits are reported in Table 3,

Seed Ωκ-NN Γκ-NN
110 41.79% 22.01%
120 36.94% 25.75%
130 34.7% 19.78%
140 34.33% 15.67%
150 36.19% 18.28%

Table 3: Compared E obtained by optimal Ωκ-
NN and Γκ-NN on Γ′

where it is clear the dominance of our GoO-
Oriented approach.
A plot of the classification performed by the op-
timal Γκ-NN is reported in Figure 1. The seed
used in this case is 0.

Figure 1: Optimal Γκ-NN model on Γ′

Paved Unpaved

The same model was then applied to the entire
Greater Maputo area, represented by Γ, leading
to the results in Table 4.

Seed E
100 25.34%
200 29.11%
300 30.48%
400 35.96%
500 25%

Table 4: Results of optimal Γκ-NN model on Γ

These final results were obviously slightly worse
in terms of E than the ones obtained on Γ′,
but this was an expected behavior, since hyper-
parameters were tuned on the limited dataset.
This allowed for low computational times (on
average 39.2 s were needed for an entire classi-
fication of Γ), without hindering too much the
efficiency of the classification.
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4. GCN
4.1. Theory
This second approach was mainly based on the
work in [2], that presented an idea for a convo-
lutional neural network, called GCN, capable of
spreading information throughout a graph. The
original structure performed the following com-
putation:

Z = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
(9)

where Â was a slightly modified version of the
adjacency A, X was a matrix containing fea-
tures, and Z was an N×2 matrix containing for
each ωi the probability of belonging to class 0
and class 1. By definition, ∀ωi ∈ Ω

Zi,1, Zi,2 ∈ [0, 1]

Zi,1 + Zi,2 = 1
(10)

The idea of this approach was to feed the neu-
ral networks with the training set for multiple
iterations, adjusting the weights W (0) and W (1)

according to gradient descent. Afterwards, (9)
was applied to the test set using the optimized
W (0) and W (1) to get a final classification.
We decided to test the different performances of
three models:

• HGCN, a classical Edge-Oriented convolu-
tional network, with no information taken
from the shape of the objects. This was
achieved by setting X = I in (9);

• ΓGCN1, a first GoO-Oriented network,
with information regarding objects given in
the input. More specifically, X was set to be
the one-hot-encoded version of fU , the fre-
quency of unpaved neighbors obtained with
a traditional Ωκ-NN;

• ΓGCN2, a second GoO-Oriented network,
with information regarding objects given in
the output. A new output function, called
oo-softmax, was defined to substitute the
softmax in (9), resulting in

B : = [b0, b1]

= Â ReLU
(
ÂW (0)

)
W (1)

(11)

Z = oo-softmax (B)

= softmax([α · b0 + (1− α) · fP ,
β · b1 + (1− β) · fU ])

(12)

where α and β were two new hyperparame-
ters in [0, 1], used to weigh the contribution
of edges and objects.

4.2. Results
Similarly to what was done for the κ-NN, we
searched the optimal hyperparameter values for
the three GCN models, for later comparison.
These hyperparameters where:
• θ1 and θ2: thresholds such that:

ŷi =


0 if Zi,1 > θ2

1 if Zi,1 ≤ θ1

2 otherwise
(13)

• κ (only for ΓGCN1 and ΓGCN2): number
of neighbors;

• α and β (only for ΓGCN2): weights in (12).
We once again performed cross-validation
to tune the hyperparameters and iteratively
reached the three different optimal sets. In Ta-
ble 5 we report the error E for the same train-test
splits used for the κ-NN.

Seed HGCN ΓGCN1 ΓGCN2

110 24.63% 17.16% 26.12%
120 31.34% 30.97% 25%
130 28.36% 30.22% 22.76%
140 21.27% 20.9% 15.67%
150 21.64% 17.54% 16.04%

Table 5: Compared E obtained by optimal
HGCN, ΓGCN1 and ΓGCN2

Both GoO-Oriented models outperformed the
Edge-Oriented one, showcasing their capability
of exploiting all available information. More-
over, ΓGCN2 generally outperformed ΓGCN1,
making it our best GCN model. From now on,
it will be referred to as ΓGCN.
In Figure 2 a plot of the classification performed
by the optimal ΓGCN is available.
Furthermore, in Table 6 results of such model
over the entire Γ for five different train-test splits
are available. Like before, the errors over the en-
tire dataset were obviously higher than over the
limited one, but the gain in terms of compu-
tational time was impressive: on average, only
21.02 s were needed for the classification.

4



Executive summary Marco Poggi

Figure 2: Optimal ΓGCN model on Γ′

Paved Unpaved

Seed E
100 31.16%
200 38.7%
300 35.45%
400 34.93%
500 41.78%

Table 6: Results of optimal ΓGCN model on Γ

5. Compared Approaches
To conclude our work, we decided to compare
and contrast the two algorithms designed for the
analysis of Graphs of Objects according to four
indicators:
• Performance: ability to minimize the av-

erage E on the limited dataset Γ′.
By looking at the results in Table 3 and
Table 5, it was clear that the two algorithms
were equivalent and it was not possible to
identify the best one.

• Generalizability: ability to minimize the
average E on the complete dataset Γ, with-
out re-tuning the hyperparameters.
According to Table 4 and Table 6, Γκ-NN
outperformed ΓGCN four out of five times
and was deemed the winning approach.

• Computational Time: time needed for
the classification of the entire road network
represented by Γ.
Here, ΓGCN was proven to be almost twice
as fast as Γκ-NN and nominated the best
approach.

• Visual Result: visual analysis of Figure 1
and Figure 2, to highlight possible mistakes
made by the classifiers, taking into account

a priori information on the structure of the
city of Maputo.
Both models presented some imperfections,
but the general trend was the same and co-
herent with the real world scenario. The re-
gion immediately adjacent to the coast fea-
tured a substantial number of paved roads,
indicative of a densely populated neighbor-
hood. Moving away from this area, the
prevalence of short unpaved roads increased
exponentially, pointing towards the sub-
urbs.
It was not possible to consider one model
better than the other only according to this
inspection.

To sum up, the two models performed equiv-
alently and none of them clearly outperformed
the other. The choice was then left to the user,
according to their needs in terms of dimension
of the full dataset and computational time.

Conclusion
We proved the efficiency of a GoO-based ap-
proach for the classification of a road network, as
compared to more simple Object-Oriented and
Edge-Oriented models. Furthermore, the pro-
posed models effectively utilized both sources of
information to enhance their results. It was not
possible to choose one single best model, but this
allows for much more freedom for the user and
adaptability to different problems.
This thesis was a first step in the world of GoO-
Oriented Data Analysis, but multiple new algo-
rithms could be developed in the future to try
and exploit effectively this complex type of data.

Code
The presented results can be reproduced us-
ing the code available at https://github.com/
bertrandpouget/goo.
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