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Abstract

The scope of this thesis is to simulate the behaviour of anisotropic spin lattices
in dynamic conditions, i.e. when a time-varying sinusoidal field is applied.
To perform such an analysis, I implemented on MATLAB the Ising model
through a dynamic algorithm proposed by NOVOTNY in 1995 that uses a
division of the lattice in 18 classes according to the orientation of their nearest-
neighbours in horizontal and vertical direction, using the GLAUBER dynamics.
After checking that the results yielded by this algorithm in the static case
(B = 0) are in line with the analytical predictions made by ONSAGER (the
anisotropy making the temperature decrease), I computed the dynamic cri-
tical temperature with a sinusoidal field of amplitude B0 and period P, in
order to see how Tc evolves with P, B0 and the anisotropy factor K = Jx

Jy
,

where Jx and Jy are the coupling constants in the horizontal and vertical
direction. This allowed to extrapolate some relationships between these para-
meters and to draw various phase 3D diagrams for the dynamic order para-
meter, which replaces the usual magnetization in the dynamic case. Finally,
in order to account for the disorder present in real physical systems, I intro-
duced the Random Anisotropy Ising Model, in analogy with the Random
Bond Ising Model. I then made simulations using this algorithm in order to
see the effect of randomness and how it competes with the anisotropy when
it comes to the value of the critical temperature.

Keywords : Ising Model, Glauber Dynamics, Magnetism in Condensed Matter,
Phase Transitions, Statistical Physics, Random Bond Ising Model
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Abstract in lingua italiana

Lo scopo di questa tesi è di simulare il comportamento di reticoli di spin
anisotropi in condizioni dinamiche, quando un campo magnetico sinusoidale
viene applicato. Per eseguire tale analisi, ho implementato su MATLAB il
modello di ISING tramite un algoritmo dinamico proposto da NOVOTNY nel
1995 che usa una partizione del reticolo in 18 classi, a seconda dell’orien-
tamento dei loro vicini orizzontali e verticali, usando la dinamica di GLAUBER.
Dopo aver verificato che i risultati ottenuti dalle mie simulazioni fossero
in linea con le aspettative analitiche previste da ONSAGER nel caso statico
(B = 0), ho calcolato la temperatura critica dinamica in presenza di un campo
variabile con periodo P e ampiezza B0, per vedere come questa temperatura
evolve con P, B0 e il fattore d’anisotropia K = Jx

Jy
, dove Jx e Jy sono le costanti

di accoppiamento nella direzione orizzontale e verticale rispettivamente. Que-
sto ha permesso di estrapolare alcune relazioni tra questi parametri e di
disegnare vari diagrammi di fase tridimensionali per il parametro d’ordine
dinamico Q, che si sostituisce alla magnetizzazione M nel caso dinamico.
Infine, per tener conto del disordine presente in sistemi fisici reali, ho intro-
dotto il Random Anisotropy Ising Model, in analogia con il Random Bond Ising
Model. Ho effettuato diverse simulazioni usando questo algoritmo per vedere
l’impatto della casualità sulla temperatura critica e quanto importante può
essere rispetto all’anisotropia.

Parole Chiave : Modello di Ising, Dinamica alla Glauber, Magnetismo nella Materia
Condensata, Transizioni di Fase, Fisica Statistica, Random Bond Ising Model
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Introduction

The main goal of this thesis is to study how the properties of a two-dimen-
sional L× L spin lattice abiding by the ISING model are modified when there
is some anisotropy in the spin network, i.e. that the interaction between
nearest neighbours in the horizontal direction Jx can be different than the one
in the vertical direction Jy. Anisotropic 2D spin lattices typically represent
physical systems comprised between the ideal one-dimensional case (a finite
spin chain) and the ideal two-dimensional case (a perfectly isotropic spin
lattice). In particular, we try to analyse how various quantities of interest of
such physical systems are being changed when anisotropy comes into play,
starting by the static critical temperature.

The dynamics of 2D Ising systems can be simulated using a MONTE-CARLO

algorithm. The most simple approach is the single spin-flip algorithm, where
all spins are tackled as individual particles. In 1975, LEBOWITZ [17] proposed
the 10-fold way algorithm, based on a partition of the spin lattice into classes,
a spin pertaining to a given class according to its own orientation and on the
orientation of its neighbours. Based on this reasoning, a specific algorithm
designed to treat anisotropic two-dimensional lattices that was proposed by
NOVOTNY in 1995 [3], using a partition of the lattice in classes, which ultimately
improves the computational efficiency with respect to a standard METROPOLIS-
HASTINGS algorithm. After a brief theoretical introduction on magnetic materials
and on the numerical fondations for the 2D Ising model, we make a review
of recent scientific papers that have tackled anisotropic spin lattices with
different formalisms and algorithms. After implementing this algorithm,
we perform zero-field simulations in order to see how well the data from
the simulations reproduces the theoretical behaviour that was predicted by
ONSAGER for anisotropic lattices.
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Then, we want to study the impact of exerting a time-varying magnetic field
on this lattice to see to what extent the properties of the system are modified,
thanks to the calculation of the hysteresis loops for different amplitudes and
periods of the field, which are two factors that impact the critical temperature.

Thereupon, randomness is introduced in the anisotropy, by analogy with
the classical Random Bond Ising Model, in order to see how the random
distribution of the bonds competes with a mean anisotropic effect. Eventually,
we study the fluctuations of the magnetization for subcritical conditions in
order to see to what extent the anisotropy has an impact on the appearance
of these fluctuations.

Finally, we study more in depth the link between the anisotropy and the
dimensionality of the lattice, to see how well these two concepts can be
related between each other, based on the results of our simulations and the
scientific literature.
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Chapter 1

The Isotropic Ising Model and the
Monte Carlo Method

In this first part, after introducing the concepts of magnetism in condensed
matter useful to this thesis, namely the magnetic susceptibility and the ex-
change interaction, we make a description of the ISING model, elaborated by
the German physicist Ernst ISING approximately 100 years ago that allows
to compute the magnetic response of a ferromagnetic material, namely the
phase transition it undergoes. One advantage is that the analytical solutions
of the model for the two-dimensional case can be exactly computed within
the frame of statistical physics, with the main phenomenon coming into play
being the phase transition of the material from a ferromagnetic behaviour to
a paramagnetic one. We then show how it can be implemented with the help
of a MONTE-CARLO method.

1.1 Phenomenology of magnetic phase transitions

in condensed matter

Magnetic materials are primarily characterized by three vectorial quantities :

• the magnetic induction
−→
B , expressed in Tesla (T);

• the magnetic field
−→
H , expressed in Amperes per unit length (A/m);
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• the magnetization
−→
M, corresponding to the magnetic moment per unit

volume (always null in free space), also expressed in A/m.

In a solid, these quantities are linked mutually by the following linear relation-
ship

−→
B = µ0(

−→
H +

−→
M), (1.1)

where µ0 ∼ 1.257 H/m is the vacuum permeability. The magnetization and the
magnetic field are linked in the most general case by the so-called POLDER

tensor ¯̄χ which corresponds to the magnetic susceptibility :

−→
M = ¯̄χ.

−→
H . (1.2)

However, we can approximate it as a linear relationship between these two
quantities, therefore, this POLDER tensor is reduced to a simple scalar coeffi-
cient χ if the two vectors are directed along the same axis. If the magnetic
susceptibility is positive, the material is considered as paramagnetic. If is
negative, the material is called diamagnetic.

These properties depend on the temperature. Indeed, some materials, such
as iron (Fe) or cobalt (Co), that exhibit a ferromagnetic behaviour respectively
until T = 1000 K and T = 1450 K. Ferromagnets are materials behaving
as permanent magnets, i.e. the magnetization remains non-null even when
the applied external field is removed. Once a given temperature Tc, known
as the critical temperature, is overcome, the ferromagnetic order is destroyed
and they become paramagnets, with a zero magnetization. We will interest
ourselves for phase transitions from a ferromagnetic behaviour towards a
paramagnetic one, i.e. a transition from an ordered state into a disordered
one, where the net value of the magnetization acts as the order parameter.
This transition is a second-order one, with the second derivative of the free
energy χ = ∂2F

∂H2 showing a discontinuity at T = Tc, with F the free energy
of the system, H the external applied field and χ the magnetic susceptibility,
while the first-order derivative M = ∂F

∂H , called the magnetization, shows a
continuous behaviour.

Furthermore, ferromagnets are characterized by a so-called ’memory’. Indeed,
the curve representing the magnetization as a function of the external field
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Figure 1.1: Hysteresis loop of a typical ferromagnetic material (R. CARABALLO-
VIVAS)

applied shows an hysteretic behaviour that can be observed on Fig. 1.1. Let
us analyze this curve by starting from the top-right side, where the material
is saturated, i.e. its magnetization is the highest possible and can not further
increase by increasing the external field H. When bringing the external field
to zero, the material will keep a finite value of the magnetization that we
call the remanent magnetization MR. To completely demagnetize the sample,
we need to apply the so-called coercive field Hc, that is necessarily opposed
to the magnetization left in the material. The magnetization does not follow
the same curve depending on whether the field is increasing or decreasing,
hence the term hysteresis.
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1.2 Exchange interaction

To explain the origin of ferromagnetism, a first intuition would be to think of
the magnetic dipole interaction, given by the following expression :

Eint =
µ0

4πr3

[−→µ1.−→µ2 −
3
r2 (
−→µ1.−→r )(−→µ2.−→r )

]
, (1.3)

where −→µ1 and −→µ2 are the magnetic dipole moments and −→r is a unit vector
parallel to the line linking the two dipoles. However, this energy is generally
too weak with respect to the thermal energy and it favours an antiparallel
alignment of the spins.

A very relevant phenomenon in magnetic materials is the so-called exchange
interaction. Let us consider two electrons as independent identical particles
and a two-level energy spectrum. This allows us to define two wave functions
ψa(r) andψb(r) and a joint wave function that readsΦ(−→r1 ,−→r2 ) = ψa(

−→r1 )ψb(
−→r2 ).

However, this wave function is not suited in this case, since the two particles
are considered identical and thus must obey particle exchange according to
quantum mechanics. This implies that two new wave functions have to be
introduced in order to respect this property :ψS(

−→r1 ,−→r2 ) =
1√
2

[
ψa(
−→r1 )ψb(

−→r2 ) +ψa(
−→r2 )ψb(

−→r1 )
]
;

ψA(
−→r1 ,−→r2 ) =

1√
2

[
ψa(
−→r1 )ψb(

−→r2 ) −ψa(
−→r2 )ψb(

−→r1 )
]
.

(1.4)

These quantities are respectively called symmetric and antisymmetric wave
functions and they can be reformulated as follows :ψS(

−→r1 ,−→r2 ) =
1√
2

[
ψa(
−→r1 )ψb(

−→r2 ) +ψa(
−→r2 )ψb(

−→r1 )
]
χS;

ψT (
−→r1 ,−→r2 ) =

1√
2

[
ψa(
−→r1 )ψb(

−→r2 ) −ψa(
−→r2 )ψb(

−→r1 )
]
χT ,

(1.5)

where ψS and ψT are the wave functions of singlet and triplet states, with χS
and χT respectively referring to the orthogonal basis of these states (for the
z-component). The singlet and triplet configurations for a two-level energy
system are illustrated in Fig. 1.2.

Let us call Ê the Hamiltonian of the two-electron system we consider. We can
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Figure 1.2: Singlet and triplet configurations

define two energy levels associated to the singlet and the triplet states we
introduced :

ES =
∫
ψ∗SÊψSd

−→r1d
−→r2 ;

ET =
∫
ψ∗T ÊψTd

−→r1d
−→r2 .

(1.6)

From these energies, we can define a quantity named the exchange interaction
constant :

J =
ES − ET

2
. (1.7)

A ferromagnetic configuration, i.e. that favours the parallel alignment of the
spins, will correspond to a lower triplet energy ET < ES, hence to a positive
exchange interaction constant.

1.3 Onsager’s analytical derivation

Let us introduce a d-dimensional periodic lattice with d ∈ {1, 2, 3} having for
example a cubic or hexahedral shape, forming an array of N sites. Each of
these sites corresponds to a given spin configuration si = ±1, i = 1, ...,N,
the + referring to the spin-up state while the − refers to the spin-down state.
In the following, these two states will be labeled respectively ↑ and ↓. The
state of the system is given ultimately by the N-tuple {si}i=1,...,N. The ISING

Hamiltonian of the system is given by the following expression :

H({si}i=1,...,N) = −

N∑
i=1

N∑
j=1

Jijsisj − µBB

N∑
i=1

si, (1.8)
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Figure 1.3: Red-circled grey dots represent the 4 nearest neighbours of the red dot

where B is an external magnetic field, µB = e h
2me

the BOHR magneton and Jij
is the exchange interaction constant for a given pair (i, j). The Ising model
considers only nearest-neighbour interactions, as Figure 1.3 shows. Therefore,
a lot of terms (all the ones corresponding to non-nearest-neighbour inter-
actions) vanish in the first sum, and the energy becomes H({si}i=1,...,N) =

−
∑
⟨i,j⟩ Jijsisj − µBB

∑N
i=1 si, in which ⟨i, j⟩ designates only the four nearest-

neighbour interactions for each spin. For the notice, we consider ⟨i, j⟩ and
⟨j, i⟩ equivalent. Let us focus on a two-dimensional lattice with constant
interaction J for all pairs of nearest neighbours in the absence of an external
field (B = 0). An analytical solution was found by Lars ONSAGER in 1944. If
we consider the magnetization of the system, simply given by :

M =

N∑
i=1

si, (1.9)

and the mean magnetization per spin

m =
⟨M⟩
N

, (1.10)

where ⟨u⟩ is the average of a given physical quantity u within the canonical
ensemble in the frame of statistical physics. He showed that the temperature
at which the second-order phase transition occurs, also called the CURIE

temperature for the 2D ISING model, is given by

Tc =
2J

kB ln (1 +
√

2)
, (1.11)

where kB is the BOLTZMANN constant. If we make the temperature dimension-
less (which is the practical case for computational methods), this yields kBTcJ ≃
2.2692. Within the same analytical derivation, ONSAGER also demonstrated
that the mean magnetization per spin follows the evolution m(T < Tc) =

15



Figure 1.4: Average magnetization per spin according to the ONSAGER’s model

[
1 − 1

sinh4( 2J
kBT )

] 1
8 and m(T > Tc) = 0, having the evolution pictured by

Figure 1.3, which is the expected shape for a second-order phase transition
: the magnetization is indeed continuous, but its derivative will exhibit a
singularity at the critical point.

For the notice, the ISING model is just a particular case in the study of spin-
interacting structures. The most general case can be described by means of
the n-vector model, in which the spins are n-dimensional vectors, with n a
given integer. For example, in the HEISENBERG model, the spins are three-
dimensional vectors, and the Hamiltonian takes the following form :

H = −J
∑
⟨i,j⟩

−→
Si .
−→
Sj , (1.12)

where the scalars in the ISING model are replaced by 3-dimensional vectors
−→
S = (Sx,Sy,Sz) ∈ R3 and the terms in the sum above correspond therefore to
the scalar products between nearest-neighbour spins. The book by STANLEY

[5] gives a more detailed overview of such a model. The results presented
here will focus on the two-dimensional ISING model, for which n = 1 and
d = 2.
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1.4 Statistical mechanics

The ISING model relies on statistical physics, which is a powerful tool to
study systems with a large number of interacting particles, in particular to
calculate macroscopic quantities of condensed matter systems. Solving the
motion equation for each one of the particle would be analytically way too
demanding. The approach used here is therefore probabilistic to transition
from one state to another, without describing thoroughly all the dynamics.
Let us describe this principle. Let µ be the present state of the system we
consider. We call R(µ → ν) the probability that it is in a state ν after a given
amount of time dt. R(µ → ν) is called the transition rate, is expressed in s−1

and is assumed to be time-independent. Let us define a set of weights wµ
representing the probability that the system is in a given state µ for a given
instant t. The evolution of wµ(t) is governed by the so-called master equation
:

dwµ

dt
=

∑
ν

(
wν(t)R(ν→ µ) −wµ(t)R(µ→ ν)

)
, (1.13)

considering transitions from and into the state µ. Since the system must be
in a given state at every instant t, the sum rule applies and yields

∑
µwµ = 1

for every time t. The equilibrium state in this case is obtained by putting the
right-hand term of the master equation to 0. The values at equilibrium of the
weights will be given by :

pµ = lim
t→+∞wµ(t). (1.14)

GIBBS demonstrated that for a system in thermal equilibrium with a reservoir
at a temperature T , the probability reads pµ = 1

Ze
−βEµ , where Eµ is the energy

of the state µ, β = (kBT)
−1 and Z =

∑
µ e

−βEµ the partition function, the
symbol Z coming from the German word Zustandssumme, literally the “sum
over the states”. From there, we are able to define the expectation value of a
quantity of interestQ, that will read ⟨Q⟩ =

∑
µ pµQµ, hence developing with

the above expression for the probability :

⟨Q⟩ =
∑
µQµe

−βEµ∑
µ e

−βEµ
. (1.15)
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The limitation of such a calculation tool is that this kind of sum as above
can be very hard to derive, especially if the number of states is very large
! This is why there is a need for computational techniques, where we will
be able to simulate the evolution of systems of limited size, that we want
to increase as much to get as close as possible to the thermodynamic limit,
above which energy fluctuations could be considered as negligible. In the
following section, we will describe the working mechanism of the MONTE-
CARLO numerical method, as described in the book by BARKEMA [1].

1.5 The Monte-Carlo method

In the frame of this numerical method, we need to sample the states that
we want to study and work with a selected subset, thanks to a probability
distribution (pµ) for example. The formula for the computation of a given
physical quantity will therefore be different :

QM =

∑M
i=1Qµip

−1
µi
e−βEµi∑M

i=1 p
−1
µi e

−βEµi

, (1.16)

assuming that there are M selected states (µ1, ...,µM). QM is the estimator of
Q. There are a few points to be addressed here : ideally, we should have
M → +∞ since it is the configuration in which the estimator will be the
closest to the analytical quantityQ. Furthermore, the probability distribution
for the selection of the subset is a crucial choice. We should select states that
weigh the most in the sum over the states, according to the BOLTZMANN

distribution. The MONTE-CARLO method consists in finding these M most
important states, by selecting states for which the probability of being chosen
is precisely given by the BOLTZMANN distribution. In this case, the estimator
would simply become

QM =
1
M

M∑
i=1

Qµi . (1.17)

For this purpose, it is quite handy to use a so-called MARKOV process to
generate a new state ν from a given state µ. The probability of generating that
state ν given µ is called the transition probability P(µ→ ν). This probability

18



must always be the same in this frame, regardless of what happened before
reaching the state µ, and we should have as well the well-known sum rule∑
ν P(µ→ ν) = 1. It is important to note that we can have P(µ→ µ) ̸= 0. The

MONTE-CARLO simulation should therefore consist in a MARKOV process
allowing the generation of states appearing with probabilities yielded by
the BOLTZMANN distribution, provided it is run for a sufficient time. We
will detail below the other conditions that are needed to actually verify this
hypothesis.

1.5.1 Ergodicity

The MARKOV process we consider should be able to reach any state of the
system, provided it is run for a time long enough. If there is one state ν that
can not be reached from a given state µ, that would mean that the probability
of reaching it is simply zero, instead of pν = e−βEν ̸= 0.

1.5.2 Detailed balance

The detailed balance condition makes sure that the BOLTZMANN distribution
is actually reached for a long enough time of simulation. By putting to 0 the
master equation above, we obtain this equation :∑

ν

pµP(µ→ ν) =
∑
ν

pνP(ν→ µ). (1.18)

By exploiting the sum rule on the left-hand side of this equation, we get
pµ =

∑
ν pνP(ν → µ). For any set of transition probabilities satisfying this

equation, the probability distribution pµ will an equilibrium of the dynamics
of the MARKOV process. But only satisfying this equation does not imply
bindingly that the limit will be pµ going from any state of the system even if
run for long enough. Let us use a matrix formalism to describe the stochastic
matrix containing the various transition probabilities P(µ → ν), named P. If
we use discrete time steps, the probability of being in the state ν at time t+ 1
is given by wν(t+ 1) =

∑
µ P(µ → ν)wµ(t), which would become in matrix

19



notation :
w(t+ 1) = P.w(t), (1.19)

this very last equation becoming, provided an equilibrium state is indeed
reached :

w(+∞) = P.w(+∞). (1.20)

However, a dynamic equilibrium can also be reached, when w rotates around
several values, known as a limit cycle. The condition for a very long time will
read :

w(+∞) = Pn.w(+∞), (1.21)

where n is called the cycle length. If the transition probabilities are chosen
so that they respect pµ =

∑
ν pνP(ν → µ), nothing actually guarantees that

we will not have any limit cycles, making completely uncertain the fact that
the generated states will have the desired probability distribution. To ensure
this, we need an extra condition, known as the detailed balance :

pµP(µ→ ν) = pνP(ν→ µ). (1.22)

This condition allows to get rid of limit cycles. Let us prove this. The left-
hand (resp. right-hand) side of this equation corresponds to the overall transition
rate from state µ to state ν (resp. ν to µ). Qualitatively, this signifies that
on average, the system should go from µ to ν as often as it goes the other
way around. For limit cycles however, there must be states for which this
condition is not respected on any particular step of the MARKOV chain. Since
the probability of occupation of some or all the states varies in a cyclic way,
it must happen that some states see their probability of occupation increase,
implying that there are more transitions into that state than out of it. Thus,
these dynamics are forbidden by the detailed balance condition. Finally,
since we want pµ and pν to obey the BOLTZMANN distribution, the detailed
balance condition furnishes the following ratio between the two transition
probabilities :

P(µ→ ν)

P(ν→ µ)
=
pν

pµ
= e−β(Eν−Eµ). (1.23)
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1.5.3 Acceptance ratio

For the sake of simplicity, the transition probability is written in the following
way :

P(µ→ ν) = g(µ→ ν)A(µ→ ν), (1.24)

where g(µ → ν) is the selection probability and A(µ → ν) is the acceptance
ratio telling whether the system will go into the newly generated state ν.
Therefore, the general principle of a MONTE-CARLO algorithm is to generate
random new states ν from old ones µ with a probability g(µ → ν) and then
accept or not the move with an acceptance ratio A(µ → ν), having to fulfill
the detailed balance condition :

g(µ→ ν)A(µ→ ν)

g(ν→ µ)A(ν→ µ)
= e−β(Eν−Eµ). (1.25)

In the particular case of the n-fold algorithm we use, we will see that this
probability is always equal to 1.
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Chapter 2

The Anisotropic Ising Model and
the Lebowitz - Novotny algorithm

2.1 Anisotropic spin lattices in past scientific literature

An anisotropic spin lattice is a spin network in which the interaction between
a spin and its two nearest neighbours in the horizontal direction Jx can be
different from the one between this spin and its nearest neighbours in the
vertical direction Jy, as illustrated on Fig. 2.1. From a theoretical point of
view, in the absence of an external magnetic field, ONSAGER [7] demonstrated
that for a given lattice of sizeNx×Ny with horizontal (resp. vertical) exchange
interaction Jx (resp. Jy), the critical temperature fulfills the following condition

sinh
( 2Jx
kBTc

)
sinh

( 2Jy
kBTc

)
= r, (2.1)

with r = Nx
Ny

a quantity called the aspect ratio. In the case of a square lattice,
we have r = 1. This equation can be solved numerically and yields the
expected theoretical value of Tc for a given arrangement (Jx, Jy).

Anisotropic spin lattices and their implementation, in the last 20 years, have
been tackled in several scientific papers that investigated various ways to
determine critical parameters of such systems. M. GHAEMI, M. GHANNADI

and B. MIRZA [13] computed in 2003 the critical temperature of a multi-
layer ferromagnet with anisotropic exchange interaction, using the numerical
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Figure 2.1: A schematic representation of an anisotropic spin lattice [14]

Transfer Matrix Method. They defined three coupling variables : the in-plane
exchange constants Kx and Ky (that correspond to Jx and Jy we introduced in
the previous chapter) and the inter-layer coupling constant Kz and used the
Transfer Matrix method. To determine the critical temperature, they plotted
the reduced internal energy per site as a function of the reduced temperature
for different lattice sizes. These curves crossing themselves at the critical
point, this allows to recover this parameter. They calculated this parameter
for various values of the in-plane anisotropy ratio ρ =

Ky
Kx

and ξ = Kz
Kx

. The
graph in Fig. 2.2 shows the computed values within this model for Tc as a
function of ρ for different values of the parameter ξ. As we can observe,
for a fixed value of ξ, the critical temperature diminishes as the in-plane
anisotropy factor ρ increases, in a similar fashion for all three values of ξ.
Clearly, the in-plane anisotropy, which will be our focus in this thesis (we
will simulate 2D lattices) has a higher impact than the inter-layer one : the
three curves are pretty close from one another, despite the variation of ξ.

In 2017, D. FARSAL, M. SNINA, M. BADIA and M. BENNAI studied anisotropic
spin lattices by the means of two methods : the Finite-Cluster Approximation
(FCA) and the Monte-Carlo algorithm. By computing the magnetic suscepti-
bility and finding the position of its peak, they confirmed that the critical
temperature undergoes a decreasing trend when the anisotropy goes up, as
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Figure 2.2: Calculation of the critical temperature by GHAEMI [13] as a function of
the anisotropy

Fig. 2.3 shows.

They also obtained the phase diagram (between the ordered phase T < Tc

and the disordered phase T > Tc) presented in Fig. 2.4, which shows Jv
Tc

as a function of JhTc in the theoretical case (i.e. as predicted by ONSAGER), the
mean-field approximation, the FCA approach and the Monte-Carlo simulation.
Jh and Jv represent the variables we introduced as Jx and Jy in our work. As
we can see, the results of the Monte-Carlo simulation are pretty well in line
with the theoretical expectation by Onsager. The mean-field and the FCA are
pretty far from the analytical expectation, although the FCA reproduces the
trend pretty well. The Monte-Carlo method used in this paper is the classical
single-spin flip static algorithm, i.e. one spin is flipped at a time.

In 2019, MURTAZAEV and IBAEV [15] studied the Anisotropic Ising Model
with competing interactions with nearest neighbours (ANNNI) using the
WANGLANDAU algorithm. This article again confirms the essential fact regarding
the anisotropic lattices : the critical temperature decreases when the coupling
constants Jx and Jy get very different from one another.

24



Figure 2.3: Magnetic susceptibility for different anisotropies (lattice size L = 60) [14]

Figure 2.4: Phase diagram with four different methods [14]
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2.2 The n-fold way algorithm

2.2.1 The n-fold partition of the lattice

Let us consider an anisotropic spin lattice of size Lx×Ly, in which the exchange
interaction in the horizontal direction Jx and the one in the vertical direction
Jy are not necessarily equal. The ISING Hamiltonian for an anisotropic lattice
reads :

H({si}) = −Jx

Lx∑
i=1

Ly∑
j=1

si,jsi+1,j − Jy

Lx∑
i=1

Ly∑
j=1

si,jsi,j+1 − µBB

Lx∑
i=1

Ly∑
j=1

si,j. (2.2)

The usual MONTE-CARLO algorithm is the following :

1. Start from an initial spin configuration;

2. Choose a random spin to flip among the Lx × Ly that are in the grid;

3. Compute the probability that it will flip (this will be addressed this);

4. Choose a uniformly distributed number r comprised between 0 and 1.
If r ⩽ p, do si,j ← −si,j;

5. Increment the time by one time step;

6. Return to step 2 and iterate.

In 1975, LEBOWITZ [2] proposed a new way of implementing the MC algo-
rithm, in order to make it more computationally efficient. It is based on
the fact that we can make a partition of our spin lattice into several classes,
according to how many ↑ nearest neighbours a spin has. For an isotropic
lattice, we count n = 10 classes to characterize all possible nearest-neighbour
configurations. In the anisotropic case, as it has been described by NOVOTNY

[3] in 1995, the spins will be classified as in the table 2.1 (with exactly n = 18
classes describing exhaustively the lattice), alongside with the energy change
of the system if the flipping actually occurs. For the notice, the magnetic
field B is applied in the negative direction, and its sign has been taken into
account for the computation of the different energy shifts ∆E = Eold − Enew.
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Class Initial spin Horizontal ↑ n.n. Vertical ↑ n.n. Energy shift ∆E
1 +1 2 2 −4Jx − 4Jy + 2|µBB|
2 +1 2 1 −4Jx + 2|µBB|
3 +1 2 0 −4Jx + 4Jy + 2|µBB|
4 +1 1 2 −4Jy + 2|µBB|
5 +1 1 1 2|µBB|
6 +1 1 0 4Jy + 2|µBB|
7 +1 0 2 4Jx − 4Jy + 2|µBB|
8 +1 0 1 4Jx + 2|µBB|
9 +1 0 0 4Jx + 4Jy + 2|µBB|
10 -1 2 2 −4Jx − 4Jy − 2|µBB|
11 -1 2 1 −4Jx − 2|µBB|
12 -1 2 0 −4Jx + 4Jy − 2|µBB|
13 -1 1 2 −4Jy − 2|µBB|
14 -1 1 1 −2|µBB|
15 -1 1 0 4Jy − 2|µBB|
16 -1 0 2 4Jx − 4Jy − 2|µBB|
17 -1 0 1 4Jx − 2|µBB|
18 -1 0 0 4Jx + 4Jy − 2|µBB|

Table 2.1: 18-fold classification of the spins for an anisotropic configuration.

This algorithm uses the same dynamics as the standard one, i.e. a single spin-
flip. The main difference between the standard algorithm and the n-fold way
algorithm is that while in the standard one, we choose a spin and decide to
flip it according to a given probability p. in the n-fold way, however, the spin
flipping is performed certainly at each step of the algorithm. The selection
of the spin that will flip depends on the class configuration of the current
spin lattice. In contrast to the usual method, the increment of time elapsed
between each MC iteration is variable and will depend on a random number
and on the number of spins that have each p value, that is the population
of each class reported in the table 2.1. The main advantage of this algorithm
is that unlikely events are reached in a lesser amount of CPU time, which
allows to have a better computational speed at low T .
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2.2.2 Absorbing Markov chains

Let us introduce the concept of absorbing MARKOV chains, which are relevant
for the implementation of then-fold way algorithm. In an absorbing MARKOV

chain, there is at least one absorbing state, meaning that if the system gets in
this state, it will remain there forever. Let us use a basic example to illustrate
this feature, with Alice and Bob playing a game with a 10-side dice, on which
two sides are labeled “Alice wins”, one side “Bob wins” and all the 7 others
“Roll the dice again”. Let us write the transition matrix associated to this
game, having state 1 :“Alice wins”, state 2 : “Bob wins” and state 3 “Roll the
dice again” :

M =

 1 0 0
0 1 0

0.2 0.1 0.7

 , (2.3)

which constitutes indeed a MARKOV matrix, since the matrix is not dependent
of the previous states of the system. The two first rows of this matrix represent
what we call an absorbing state : once they are reached, the game is over
and the dice is not rolled again. For the notice, all rows have their sum
equal to unity, since one state of the dice is bindingly up at all times. Let
us focus on the initial state : the system must necessarily be in the state
corresponding to the unit vector vT = [0, 0, 1]. We can prove that after m
rounds of the game, the probability of being in one of the three states of
the system is the 3-tuple pm = vT.Mm. Let us consider the probability that
Alice has won the game after m steps, that will be given by the following
sum : pA,m = 0.2 + 0.2× 0.7 + ... + 0.2× 0.7m−1. By using the formula for
the geometric sum, we obtain pA,m = 2

3(1 − 0.7m), this implying that the
probability that Alice wins after a very large number of steps (m → +∞)
is 2

3 . Let us now transpose this to the n-fold way problem. We label ni
the number of spins in a given class i = 1, ...,n. If we name N the total
number of spins, we have of course

∑n
j=1 nj = N. Therefore, the quantity

njp(j)
N is the probability of choosing a spin in class j and flipping it, p(j)

corresponding to the probability that if a spin in class j is chosen, it will
flip. Let us then build the (n+ 1)× (n+ 1)-sized matrix that will correspond
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to the MARKOV process associated to this process. Similarly to the 3 × 3
example presented above, we will have a lower-right diagonal element that
will give the probability of remaining in the current spin configuration, while
all the other diagonal elements will give the probability of being absorbed,
this corresponding in this case to exiting the current spin configuration. The
transition matrix will have the following shape :

Mn+1,n+1 =

[
In×n 0n×1

R1×n λ

]
, (2.4)

where In×n is the identity matrix, 0n×1 is a zero n-tuple, λ is a scalar and
R = 1

N [n1p(1), ...,nnp(n)]. Since it is a MARKOV matrix, we should have the
following relation for the last row :

λ = 1 −
1
N

n∑
j=1

njp(j), (2.5)

λ corresponding to the probability of remaining in the current spin configuration.
We choose the following notation λ = 1− Qn

N . The probability of remaining in
the current spin configuration after m time steps is λm, similarly to the “roll
the dice again” situation in the previous example. Instead, the probability
of an absorption (i.e. exiting the current configuration) is given by λm−1(1 −

λ). Let us choose a random number r̃ such that 0 < r̃ ⩽ 1. This number
corresponds to the value of the probability when the system exits the current
spin configuration, and the equation λm−1 ⩾ r̃ > λm yields the number of
time steps m required to flip this probability. Since λ is by definition smaller
than 1, the resolution of this inequality gives the following relation :

m− 1 ⩽
ln r̃
ln λ

< m, (2.6)

thus preventing the number r̃ to be zero. The probability of absorption into
a particular class will be given by A = 1

Qn
[n1p(1), ...,nnp(n)]. Let us form

the partial sums Qi =
∑i
j=1 njp(j) for i=1,...,n, putting Q0 = 0. To decide

which class will be interested by the flipping, we need to find the integer
k ∈ {1, ...,n} such that :

Qk−1 ⩽ rQn < Qk, (2.7)
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where r is a random number generated from a random distribution in the
interval [0, 1[. In case there are several spins in the chosen class, an extra
randomization has to be carried out in order to perform the single spin-flip.
Assuming that Qn

N ≪ 1, we can recover the time increment needed for exiting
the current spin configuration, that will be given by :

∆t = −
N

Qn
ln r̃. (2.8)

2.2.3 Implementation and choice of the dynamics

The algorithm for the 18-fold way method will have the following steps :

1. Choose an initial spin configuration and set the accumulated time to
zero;

2. Generate a random number r̃ and increment the accumulated time by
the suitable time increment given by Equation (2.8);

3. Choose a random number r and determine which class k satisfies the
above inequality. If there are several spins in the class, generate a new
random number to choose which spin to flip. Perform si,j ← −si,j;

4. Change the class of the chosen spin by adding ±9 modulo 18 to its
previous class number if the flipped spin was initially ↑ (resp. ↓);

5. Change the class of the two nearest neighbours in the horizontal direction
by adding 3 modulo 18 if the flipped spin was initially ↑ (-3 if ↓);

6. Change the class of the two nearest neighbours in the vertical direction
by adding 1 modulo 18 if the flipped spin was initially ↑ (-1 if ↓);

7. Return to step 2 and iterate.

Some arrays are useful to keep track of all the quantities that we have mentioned
when we proceed to the practical implementation. The first one is the array
C, of size 18 × 1, such that ∀i = 1, ..., 18,C(i) = ni. Taking N = Lx × Ly,
we have then the two-dimensional array LOC of size N× 18 that contains
the location of the spins in the lattice for each class we consider. The two

30



other arrays are LOOK, giving the index of the first dimension in LOC, and
LOOC giving the class number of a spin given its position i ∈ {1, ...,N} in
the lattice having been made one-dimensional. This leads to the relationship
LOC(LOOK(i), LOOC(i)) = i. It is noteworthy that only the C(k) spins in
the column LOC(j,k)j=1,...,C(k) contain the spin locations in current use.

Let us then explain the dynamics that were used in order to choose the probabi-
lity of selection and flipping of a given spin. In this case, the usual METROPOLIS-
HASTINGS dynamics, where

p = min
{

1, e
∆E
kBT

}
, (2.9)

were not employed, instead, we used the so-called GLAUBER dynamics, where
the probability p reads :

p =
1

1 + e
− ∆E

kBT

, (2.10)

where∆E = Eold −Enew. The advantage of this method over the METROPOLIS-
HASTINGS dynamics is that the actual value of the energy shift ∆E is always
considered, whereas the METROPOLIS dynamics allows with equal probability
(1 in this instance) all flips such that the energy of the system decreases.
Instead, the GLAUBER dynamics favours, for a fixed temperature T , the flips
that induce a higher ∆E, as shown on the figure 2.5.

In the computational implementation, we will use transition rates, i.e. probabi-
lities per unit time, expressed in s−1. In the frame of the GLAUBER dynamics,
we can show that it is written :

wi(sj) =
1

2α

(
1 + sjtanh(β

∆Ei
2

)
)

, (2.11)

where α is the inverse of a time determining the time scale of the process
and sj = ±1 is the numerical value of the spin we consider. In our 18-
fold model, we will therefore dispose of 18 transition rates, corresponding
to each one of the spin classes we consider. With this, we are set to launch
the simulation, provided that we can compute our measurable quantities,
such as the magnetization, the latent heat or the magnetic susceptibility.
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Figure 2.5: p = f(∆E) for the GLAUBER dynamics

2.3 Impact of the anisotropy on Tc

2.3.1 Physical phenomenon and analytical expectations

Increasing the anisotropy of the system, i.e. making the ratio K = Jx
Jy

bigger,
will tend to gradually transform the two-dimensional lattice into a one-dimen-
sional one. Let us consider a (N + 1)-spin 1D ferromagnetic chain. The
exchange Hamiltonian reads as usual H = −2J

∑N
i=1 sisi+1. Adding one

defect in the chain, i.e. a spin that is not aligned to the other ones, will
cost an energy E = J, whereas the entropy will read S = kB lnN, since the
defect can be placed on N different positions along the chain. Therefore,
considering the free energy F = E− TS, the defect formation will cause F to
diverge towards −∞ when the chain becomes infinitely long for any T > Tc,
preventing any ordered configuration for the one-dimensional case. There
is no phase transition in the 1D case, or rather we can say that it occurs
for T = 0. This implies that we should observe a decrease in Tc(K) as the
anisotropy ratio K is increasing.

To determine the critical temperature for a given configuration of the lattice,
that is a given size N = L × L (we consider square lattices) and a given
anisotropyK = Jx

Jy
, we first need to adapt our reference system for the tempera-
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ture proceeding to a normalization of our exchange interaction J : let us write
Jx =

√
2J cosα and Jy =

√
2J sinα. Indeed, this allows to be independent

of which way we define the anisotropy, i.e. whether Jy (resp. Jx) increases
with respect to Jx (resp. Jy) This means for example that Jx

Jy
= 2 should be

equivalent to Jy
Jx

= 2. We have a new form for our exchange interaction

J =
J2x+J

2
y

2 , for which the directionality will be determined by the angle α. The
rotation from α = π

4 to α = 0 marks the transition from a fully isotropic
lattice towards a completely one-dimensional one. Furthermore, we can
demonstrate analytically that for α → 0 (or π/2, which is equivalent), we
have Tc → 0. Indeed, for α → 0, thanks to usual considerations on the
equivalents (cos(α→ 0) ∼ 1, sin(α→ 0) ∼ α and sinh(X→ 0) ∼ X), we have

2
√

2J
Tc

sinh
(2
√

2J
Tc

)
=

1
α

, (2.12)

yielding lim
α→0

Tc(α) = 0. The input variable of our algorithm is the anisotropy

factor K, implying within this formalism that the values of Jx and Jy are
derived thanks to the angle α = arccotan(K). The temperature will now be

expressed as units of 1
kB

√
J2x+J

2
y

2 . For the sake of simplicity, we take numerical
values for J and kB equal to 1. This formalism allows to recover the well-
known value as found by ONSAGER T ≃ 2.26 for Jx = Jy. Let us look at the
equation (2.12) from a graphical point of view, in order to confirm that the
critical temperature is indeed decreasing when the anisotropy is increasing
and that for any 0 ⩽ p ⩽ 1, α1 = pπ2 and α2 = (1 − p)π2 we have exactly
the same Tc, since α1 and α2 correspond to anisotropy factors K and 1/K,
both representing the same physical configuration. We see on Figure 2.6 that
the critical condition is reached as expected for T ≃ 2.26 in the isotropic
case (α = π/4) whereas the curves for equivalent anisotropy (0,π/2) and
(π/8, 3π/8) are overlapped and their crossings with the horizontal line f = 1
are shifted towards lower temperature with respect to the isotropic lattice.

2.3.2 Computation of the physical quantities

We first need to compute the magnetic susceptibility χ. Physically it represents
how easily the material will respond to a magnetic excitation by an external
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Figure 2.6: Graphical determination of the expected critical temperature, with f(T) =
sinh

(
2Jx
kBT

)
sinh

(
2Jy
kBT

)

field. It is in the most general case a tensor, but in the most simple case,
−→
M = χ.

−→
H . We know that for a paramagnetic material, i.e. for T > Tc, this

quantity will be proportional to the inverse of the temperature, more exactly
it will have the following evolution :

χ =
C

T − Tc
, (2.13)

where C is a temperature-independent multiplicative constant. This implies
that for a 2D ferromagnet, the magnetic susceptibility exhibits a singularity
at the critical temperature.

To compute this quantity numerically, we use the following relationship :

χ(T) = β(⟨m2⟩− ⟨|m|⟩2), (2.14)

where ⟨m2⟩ corresponds to the average squared magnetization per spin, m2

being computed at each MC step alongsidem, andβ = 1
kBT

. Another quantity
of interest is the fourth-order BINDER cumulant, calculated in the following
way :

U4(T ,N) = 1 −
⟨m4⟩

3⟨m2⟩2
, (2.15)
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related to the kurtosis, that is the “tailedness” of the order parameter m. It is
a very useful quantity since for a given anisotropy coefficient, the different
curves of U4(N) as a function of the temperature should all cross in a unique
point, of which the x-coordinate is the critical temperature Tc, allowing to
perform a double-check with the value we found using the peak of the magne-
tic susceptibility.

To define the stopping criterium for this 18-fold MONTE-CARLO algorithm,
we need to define a maximum elapsed time above which we stop the program,
indeed, using a for loop is not suited since we can not predict how many
time steps we will have, the time increments depending on random numbers
generated at each new iteration. Therefore, a while loop is used to run this
iterative algorithm, stopping when the imposed maximum time has been
reached.

2.3.3 Results of the simulation

We first need to fix a total time TimeMax during which the system will evolve
and that will be the ending condition for the while loop mentioned above,
i.e. when the total elapsed time has overcome the value of this parameter.
We took in all the simulations TimeMax = 10000, which turned out to be a
good compromise between the computational speed and the simulation time
required to reach equilibrium for the measurable quantities of interest we are
looking at, such as the magnetization or the global energy of the system.

The graphs on Figure 2.7a and 2.7b show the typical evolution of these quanti-
ties for a ferromagnetic state (T < Tc) with an anisotropy K = 2 (correspon-
ding to an angle α = cotan(2) ∼ 0.4636rad). The equilibrium configuration is
reached since we see that the energy is stationary around a negative value,
indicating it is a favourable configuration for the system, while the magneti-
zation per spin reaches a steady state as well, very close to 1 in absolute value,
indicating that the spin lattice is very strongly directed in one direction, as we
can see on Figure 2.8 (with the ↑ spins in white and the ↓ ones in black). This
plot implies that the critical temperature for K = 2, as we will check later, is
higher than T = 1.9, since we obtain an ordered configuration with a large
majority of the spins that are aligned, whereas the paramagnetic behaviour
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(a) Energy

(b) Magnetization

Figure 2.7: Simulation realized for K = 2 and T = 1.9 J
kB

(L = 100)

Figure 2.8: Lattice at the end of the simulation for K = 2 and T = 1.9 J
kB

(L = 50)
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Figure 2.9: Lattice at the end of the simulation for K = 2 and T = 2.7 J
kB

(L = 50)

above Tc would favour an eventual lattice configuration as the one shown
on Figure 2.9 : here we talk about a disordered state, in which no particular
orientation of the spins is preferred. The mean magnetization per site will
be close to zero in such situations and we can deduce from this equilibrium
configuration that the critical temperature for the K = 2 case is lower than
2.7 J

kB
.

Then, the key quantity for the knowledge of the state of system is the average
magnetization per spin, labeled as ⟨m⟩. To obtain it, we need to make a temporal
average of the magnetization per spin once the system has entered equilibrium.
To increase the reliability of the value obtained, we can run the experiment
multiple times and average the temporal mean values obtained themselves
to weaken as much as possible the random component of the simulation,
while ⟨m2⟩ and ⟨m4⟩ are also computed in the same way.

After having computed the order parameter of the system and some of its
moments, we want to see the evolution of the thermodynamic quantities
such as the magnetic susceptibility χ alongside the temperature. The tempera-
ture loop was executed in a decreasing way, using the equilibrium lattice
at the temperature T + ∆T as the initialization lattice at the temperature T
This allows to avoid as much as possible metastable configurations, since
an anisotropic lattice can present so called striped configurations below the
critical temperature and thus have a mean magnetization per spin lower
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(a) ∆T = 0.1 J
kB

(b) ∆T ′ = 0.02 J
kB

Figure 2.10: Peak of the magnetic susceptibility for L = 100

than 1, which would make the computation of the magnetic susceptibility
meaningless, since we must have a clear transition from 1 to 0.

To obtain reliable results, we first made a temperature sweep in the calculation
of the magnetic susceptibility with a step ∆T = 0.1 J

kB
in a large interval, in

order to have a first estimate of the position of the peak, and then we refine
it around a narrower interval (typically of length 0.2 J

kB
) centered around our

first estimation with a more accurate temperature step ∆T ′ = 0.02 J
kB

, as it is
illustrated on the figures 2.10a and 2.10b, for the case of a 100× 100 lattice
with a K = 2 anisotropy. In this case, we have a first estimate of the position
of the peak around T = 2.1 that we refined to finally confirm it was T = 2.10,
with a sensitivity of ∆T ′ = 0.02. We repeated the process for various values
of the anisotropy factor, refining it particularly around α = π

4 . We then
compared it to the analytical curve given by the equation (2.1), thanks to
which we recover Tc with the MATLAB solver for a given angle α. Figure
2.11 shows the superposition of both plots. As a first observation, the fitting
between both graphs seems good. However, we notice that the analytical
curve shows finite values for the temperature even at very low angles (that
is at high anisotropy factor K). For K = 80, we obtain Tc ∼ 0.754, which is
still far from zero. Indeed, taking a very small angle such as α = 10−12 yields
again a finite temperature Tc ∼ 0.113. The graph in Figure 2.12 shows on a
semi-logarithmic scale the evolution of Tc for extremely small values of the
angle α, down to 10−36, where we still get a finite temperature Tc = 0.0357.
Below this threshold, the solver runs into an error. To have a reference for a
comparison, we can try to get an estimate of the critical temperature for very
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small values of the angle α. Making suitable approximations, we get

Tc ∼
2
√

2
2
√

2 − ln(α) − ln(ln( 1
α))

, (2.16)

which we can write under an even more approximate form for small α using
the dimensional quantities :

kBTc

J
= −

2
√

2
ln(α)

+Oα→0

( ln(ln(α))
ln(α)

)
. (2.17)

We see on Figure 2.12 that this analytical estimation gives a fair estimate
of the solutions computed by the solver for the critical temperature, up to
an angle α ∼ 10−25, where the gap between the curves gets significantly
higher. For each value of the anisotropy factor, the position of the magnetic

Figure 2.11: Tc = f(α) (analytical and computed values)

susceptibility’s peak was cross-checked with the position of the crossing point
of the BINDER cumulants for several lattice sizes, as Fig. 2.13 shows in the
case K = 2.
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Figure 2.12: Tc = f(α) for very large anisotropies (solver values and analytical
approximation)

Figure 2.13: Verification of the critical temperature for K = 2 with the crossing point
of the BINDER cumulants
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Chapter 3

Dynamic Phase Transitions in
anisotropic Ising Systems

Until now, we have worked only in absence of an external magnetic field B =

0, in order to simulate the spontaneous properties of anisotropic ferromagnetic
materials. However, an interesting feature that we can add to the anisotropic
framework is the presence of an oscillating field with a given time period
P. In this chapter, we will highlight how the properties of our system are
impacted by the presence of a variable field and how they "compete" with the
anisotropy of the system, as the articles by CHAKRABARTI [8] and YÜKSEL [9]
did.

3.1 The dynamic order parameter Q

The Hamiltonian of the system remains the same as in the time-independent
case, with the only difference that B = B(t) is now a function of time :

H({si}) = −Jx

Lx∑
i=1

Ly∑
j=1

si,jsi+1,j − Jy

Lx∑
i=1

Ly∑
j=1

si,jsi,j+1 − µBB(t)

Lx∑
i=1

Ly∑
j=1

si,j, (3.1)

where B(t) = B0 cos(2π
P t). The objective is the same as in the static case, i.e.

identifying the critical conditions. To do this, we need to define a quantity
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named the dynamic order parameter :

Q =
1
P

∮
M(t)dt, (3.2)

where M(t) is the instantaneous magnetization of the system and
∮

denotes
the integral performed over a full period of the magnetic field. Q is also
called the average magnetization per cycle. We obviously have Q comprised
between 0 and 1, since the absolute value of the magnetization is itself compri-
sed between 0 and 1 at each time step. Let us take the two extreme cases that
could occur with a time-varying magnetic field from a phenomenological
point of view :

• if the material is perfectly paramagnetic, the magnetization will be propor-
tional to the magnetic field at each time step t. Therefore, M(t) will be
a sinusoidal curve in phase with B(t) and its integral over a period will
be 0. This is the dynamic disordered phase;

• instead, if the material is insensitive to the magnetic stimulation and its
magnetization remains unchanged at a value 1, then the order parameter
will be equal to 1. We call it the dynamic ordered phase.

The presence of a dynamic component of our system implies the existence of
two configurations :

• for fixed period and intensity of the magnetic field, we can study the
evolution of the dynamic order parameter as a function of the temperature,
so as to determine the critical temperature Tc when the system is subject
to an oscillating field. We expect the critical temperature to decrease in
this case for a fixed anisotropy, since the oscillating field can be seen as
a perturbation bringing disorder to the system and thus lowering Tc;

• for a fixed temperature (T < Tc) and fixed field’s intensity, we can
evaluate the critical period of the magnetic field, i.e. the one below
which the magnetization can not follow anymore the magnetic field,
that we note analogously Pc.
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(a) Without modifying the algorithm (b) Modifying the algorithm

Figure 3.1: Temporal evolution of B(t) and M(t) over 10 periods for K = 1 and
T = 0.7

The algorithm needs to be modified as well. Indeed, what happens at very
low temperature (typically below 0.6 J

kB
) is that the time increments ∆t we

calculate at each step are very high and can be even higher than the period of
the magnetic field we give as input to the algorithm. Therefore, the subsequent
magnetization of the system would make not much sense. To resolve this,
we apply an extra step in the MONTE CARLO algorithm, which consists in
the following alternative :

• if ∆t ⩽ P
50 , the spin flipping is accepted as in the standard algorithm

and the total elapsed time is incremented by ∆t;

• else, the spin flipping is not performed but the time is still incremented,
in this case by P

50 .

The threshold P
50 has been chosen by performing empirical tests. Fig. 3.1a

and Fig. 3.1b show an example of the magnetization and the magnetic field
with the standard algorithm and with the modified one for the temperature
T = 0.7 J

kB
.
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Figure 3.2: Convergence of the system in the absence of a magnetic field

3.2 Fixed period P

3.2.1 Evolution of the critical temperature

Substantially, the algorithm remains completely unchanged with respect to
the static case. The only difference is that the time-varying field needs to
be updated properly at each time step, since we are using a varying time
increment ∆t. It is also important to note that our 18-fold algorithm remains
completely applicable here, since at each time step, the magnetic field assumes
a fixed value, therefore the 18 classes yielding the energy variation for each
time step of the simulation are always well defined.

We first need to choose a proper temporal period for the magnetic field we
apply. To determine it, let us simulate the evolution of a fully magnetized
lattice at a temperature T > Tc for a given anisotropy and see how long
it needs to converge to the zero-magnetization state. This experiment is
shown on Fig. 3.2. We notice that the time needed to get into the non-
magnetized state (M̄ = 0) after starting in the fully magnetized state (M̄ =

1) is approximately 500. We choose a period P = 1000 to make sure that
transitions from a dynamically disordered phase from a dynamically ordered
one (diminishing the temperature) actually happen.
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Let us look at different cases for the evolution of the magnetic field and the
magnetization along time, with P = 1000 and B0 = 0.3, with a lattice size
L = 50, depicted in the four graphs in Fig. 3.3.

Let us analyze each of the four plots. In Fig. 3.3a, for T = 1.1, the material
is dynamically ferromagnetic : despite the time-varying oscillating field, the
lattice remains almost completely magnetized in an only direction. Increasing
the temperature to T = 1.8 like in Fig. 3.3b, we see that the behaviour of
M(t) has changed a lot : the magnetization oscillates between -1 and 1 with
the same period than the magnetic field, however with a slight phase delay.
When we increase again the temperature (T = 2.8), the in-phase oscillations
of the field and of the magnetization are almost perfect in Fig. 3.3c, the
amplitude of the magnetization having decreased. The most extreme case is
depicted by the last figure Fig. 3.3d, where the amplitude of the magnetization
is now lower than the one of the magnetic field (indeed, it gets to 0 as the
temperature increases) but the phase difference is now 0. Interestingly, we
notice the increasing importance of noise as the temperature increases in the
magnetization curves, due to the increasing contribution of thermal noise.
However, this should not have a big impact on the computation, since we
perform calculations of averaged quantities. Therefore, after averaging a
curve like the one shown on Fig. 3.3d over a large number of periods, this
eliminates the bias of the thermal agitation.

If we perform the computation of the dynamic order parameter over a suitable
temperature range, we obtain the plot shown in Fig. 3.4 for K = 2, where
the dynamic critical temperature here is clearly identifiable as Tc,d = 1.50
(the resolution in temperature is here ∆T = 0.05), which is smaller than the
ideal critical temperature we computed without an external magnetic field,
which was Tc ∼ 2.076. This confirms the fact that the time-varying magnetic
field acts as a disorder agent on the lattice, thus lowering the actual critical
temperature. To precisely determine the critical temperature, we can use the
variance of Q, which will be given by

V(Q) = L2(⟨Q2⟩− ⟨|Q|⟩2), (3.3)

and, similarly with the magnetic susceptibility in the static case, will yield a
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(a) T = 1.1 J
kB

(b) T = 1.8 J
kB

(c) T = 2.8 J
kB

(d) T = 7 J
kB

Figure 3.3: Illustration of different steps of a dynamic phase transition (K = 2 and
P = 1000) : magnetization and field are shown as a function of time

peak at the position of the dynamic critical temperature, as can be observed
in Fig. 3.5, in the case of a 30 × 30 lattice with anisotropy K = 1 and a
magnetic field (B0 = 0.3,P = 1000).

Applying the same computation for different anisotropies, we can enrich the
graph Tc = f(α) shown on Fig. 2.11 with the values of the dynamic critical
temperatures. The graph on Fig. 3.6 shows to what extent the curve of the
critical temperature as a function of the anisotropy angle α = arccotan( JxJy ) is
shifted towards lower values when a time-varying magnetic field is present.
The effect is clearly visible at the center of the graph, for low anisotropies,
where the gap between the critical temperature in the zero-field case and
the critical temperature under a time-varying magnetic field can be as high
as 0.5 J

kB
. When the anisotropy is increasing, we observe that the gap between

the critical temperature and the dynamic critical temperature is getting weaker
but the dynamic critical temperature is still smaller than the one in the zero-
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Figure 3.4: Dynamic order parameter Q as a function of T (K = 2)

Figure 3.5: Variance of the dynamic order parameter V(Q) as a function of
temperature
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Figure 3.6: Critical temperature as a function of the anisotropy with and without the
presence of time-varying magnetic field)

field case.

3.2.2 Evolution of theM−H curve

An other figure of merit of the time-varying ISING system is the evolution
of the magnetization as a function of the applied field, the so-called M−H

curve. Indeed, for a given temperature, we can obtain this plot from the
time curves of the external field and of the magnetization by collecting at
each time step over a period P the tuple (H(t),M(t)). Let us look at various
M −H curves for an anisotropy K = 2 for example. The several plots are
shown in Fig. 3.7.

These four plots show very well the various phases through which our system
goes when the temperature changes. First, for very low temperatures, such
as T1 = 0.9 J

kB
, we have a mean magnetization per site equal to unity all

along time, causing the M−H curve to look like Fig. 3.7a. Then , when the
temperature increases, an hysteretic behaviour appears : this is the sign that
both the magnetization and the field oscillate, but with a phase difference
as in Fig. 3.7b : the system has already entered the dynamic paramagnetic
state. As the temperature increases again, we see that the phase difference
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decreases in such a way that the hysteretic loop has a decreasing area (Fig.
3.7c). Finally, when the temperature is high enough (Fig. 3.7d), the hysteresis
loop disappears and the M−H curve turns into a straight line : the magne-
tization is completely in phase with the magnetic field.

(a) T = 0.9 J
kB

(b) T = 1.8 J
kB

(c) T = 2.5 J
kB

(d) T = 3.5 J
kB

Figure 3.7: Evolution of theM−H curve along temperature (K = 2)

To study quantitatively this evolution, we need to define a numerical para-
meter : for example, the loop area A =

∮
M(H)dH (we can obtain this value

with the MATLAB command polyarea(H,M), with H andM being the values
of the magnetic field and of the magnetization sampled over a period). Before
plotting this quantity for different values of the anisotropy, let us try to predict
its evolution : according to the curves displayed in Fig. 3.7, it seems that A
should have almost zero values for low and high T , where no loop behaviour
is present, while it should reach its highest point for intermediate values of
the temperature.

Let us look at the curves A(T) for different values of the anisotropy factor
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K presented in Fig. 3.8. As expected, the temperature corresponding to the
maximum loop area is shifted towards lower values when the anisotropy is
increasing, in concordance with Fig. 3.6. Furthermore, we can compare the
x-coordinate of the loop area peak with the dynamic critical temperatures we
found looking at the curves of the dynamic order parameters and we indeed
check that they coincide.

(a) K = 1 (b) K = 2

(c) K = 10 (d) K = 40

Figure 3.8: Loop area A as a function of the temperature for several anisotropy
factors K
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3.3 Fixed temperature T

The other case we are interested in is to recover a quantity named the critical
period of the dynamic system. Indeed, for a given temperature, the variation
in the frequency of the time-varying magnetic field will cause the dynamic
order parameter Q = 1

P |
∮
M(t)dt| to vary as well. Let us think quantitatively

about what should happen. For high frequencies, i.e. short periods of the
magnetic fields, the magnetization struggles to follow the magnetic field and
can’t reverse itself as fast as the field does. Therefore, the dynamic order
parameter will be maximum in such a configuration. Instead, if the period
of the field increases, the system will tend to a slower dynamic and the
magnetization will become more and more able to follow the dynamics of
the oscillating field. Thus, we expect the dynamic order parameter to go to
zero as the frequency diminishes.

3.3.1 Evolution of the critical period with anisotropy

To evaluate how the critical period goes with the anisotropy and below which
value of P the magnetization is not able anymore to follow the magnetic
field, we made a frequency sweep for the excitation signal (the time-varying
magnetic field) for the usual values of K (1, 2, 5, 10, 20, 40 and 80) so as
to observe the dynamic order parameter as a function of the period. We
place ourselves for each anisotropy at a temperature T∗ = 0.8Tc(K), which
turns out to be a good compromise for the computation : below T∗, the
magnetization goes to 1 for all periods of the field so it is impossible to draw a
phase transition, whereas for temperatures too close or higher than Tc(K), the
magnetic field always follows the magnetic field, so that the order parameter
is always 0 and makes it as well impossible to plot a phase transition. Fig.
3.9 shows an example of a phase transition for the Q− P curve in the case
K = 2. We used a step ∆P = 20 for the period. For a given period, the total
time of the simulation is chosen equal to TimeMax = 5P and the average
magnetization per cycle is calculated over 4 periods. Furthermore, the order
parameter stored and plotted in Fig. 3.8 is averaged over five independent
runs, so as to eliminate unwanted bias.
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Figure 3.9: Dynamic order parameter as function of the period (T∗ = 0.8Tc(2) =
1.661)

We obtain the curves Q = f(P) for various anisotropies in order to see how
the critical period Pc(K) changes when K increases. Four different phase
transitions, each of them at a temperature T∗(K) = 0.8Tc(K), are shown in Fig.
3.10. We observe that the critical period of the system, i.e. the temperature
over which the dynamic order parameter is zero, decreases when the aniso-
tropy increases. Let us then investigate, as for the temperature-wise study,
the evolution of the loop area as a function of the period (or the pulsation)
for various anisotropies.

3.3.2 Evolution of theM−H curve

Again fixing the temperature value at T∗(K) = 0.8Tc(K), we now want to
investigate what happens to the evolution of the magnetization as a function
of the magnetic field over a full cycle of the field. Let us observe the looks of
the hysteresis curves for various values of the period of the external magnetic
field. Fig. 3.11 shows six different cases for the M−H curve in the case of a
weak anisotropy (K = 2). When the period is very small (P = 20) as shown in
Fig. 3.11a, the magnetization does not follow the magnetic field and remains
at a high value, close to 1, therefore the hysteresis is almost non-existent and
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(a) K = 1 (b) K = 2

(c) K = 5 (d) K = 10

Figure 3.10: Q = f(P) for various values of the anisotropies (T∗(K) = 0.8Tc(K))

the loop area is consequently very close to 0. Increasing the period (P = 50)
as in Fig. 3.11b, the loop area increases and the center of the hysteresis is
closer to 0, as we can see on Fig. 3.11c. Around P = 500, the hysteresis curve
reaches a maximum and is well centered around the origin of the graph. This
means that the dynamic order parameter has reached an almost null value,
as it can be observed on Fig. 3.9. Increasing again the period for P = 900
and P = 5000, respectively Fig. 3.11e and 3.11f, we see that the loop area is
progressively decreasing, though remaining well above zero even for high
periods.

Let us then look at the evolution of the loop area A = f(P) (calculated in
the same way as in the previous section with polyarea(H,M)) for different
anisotropies, in order to see if a common pattern emerges.

As we can observe on Fig. 3.12, the plotsA = f(P) show a very sharp increase
for low periods (P < 500) until they reach a maximum almost equal to the full
occupancy of the grid (which corresponds to 1.2 in this case, since the values
of the field are comprised between -0.3 and 0.3). This maximum is reached
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(a) P = 20 (b) P = 50

(c) P = 200 (d) P = 500

(e) P = 900 (f) P = 5000

Figure 3.11: Evolution of the M−H hysteretic behaviour for different values of P
(K = 2)

for the same value of the period for all anisotropies we considered, that we
can identify to P∗ ∼ 500. Furthermore, the curves are almost superimposed
in this first domain. We can interpolate it with a linear trend shown by the
black line on Fig. 3.13 (based on the mean points between the four different
anisotropy factors in the increasing domain of the loop area).

Then, once the extremum is passed, as we see on Fig. 3.12, they evolve in a
distinct way, though all decreasing in a progressive way, with a 1

x-like fashion
(to which a constant term is added). This means that the phase shift (i.e.
time delay) between the magnetic field and the magnetization is decaying
very slowly. Interestingly, we notice that when the anisotropy increases, the
loop area decreases more rapidly with respect to the field period (for a given
period P, the loop area is always the smallest for K = 20 in the decreasing
part of the plot).

In order to reverse our perspective, we can also visualize the loop area as a
function of the angular frequency ω = 2π

P as plotted on Fig. 3.14. For high
frequencies, we notice that the loop area for weak anisotropies (K = 1, 2)
gets closer to 0 with respect to higher values of K, again with a single peak
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Figure 3.12: Loop area A as a function of the magnetic field’s period P

Figure 3.13: Loop area A as a function of the magnetic field’s period P with the
average linear trend (a = 0.0025 and b = −0.01)
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Figure 3.14: Loop area A as a function of the magnetic field’s angular frequencyω

reached for a value ofω ∼ 0.01.
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3.4 Convergence from the dynamic Ising model to

the static one

3.4.1 Decreasing the magnetic field’s amplitude B0

When using a time-varying field, we can try to see how well it converges
to the static case. Let us recover the dynamic critical temperatures for a
given anisotropy by making the amplitude of the field B0 closer to 0. In
this case, we expect the values of the critical temperature, at fixed anisotropy
factor, to get closer to the static case (B = 0) as the amplitude of the field
decreases. The conditions are the same as in section 3.2, with P = 1000. We
determine the critical temperature as previously, by looking at the dynamic
order parameter and then cross-checking the estimate with the intersection of
the BINDER cumulants, as the paper by SELKE [7] shows. We used different
values for the amplitude, namely B0 ∈ {0.1; 0.25; 0.5} and plotted the graph
Tc = f(α) for these four values, comparing these experimental curves with
the analytical curve in the zero-field static case we already plotted in Fig. 3.6.

Figure 3.15: Evolution of the graph Tc = f(α) for different values of the amplitude
B0

We observe, as expected, that the curve Tc = f(α) is getting closer to the
analytical one when the magnetic field is getting weaker. This effect is very
marked for low anisotropies (in the center of Fig. 3.15, while it tends to get
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weaker as we reach the edges of the graph. For example, forK = 1, the critical
temperature passes from 2.27 in the ideal static case to 1.20 with an amplitude
B0 = 0.5 in the dynamic case. More generally, it seems that decreasing the
magnetic field is an efficient method to recover the static limit by using the
dynamic algorithm.

We also see that the curves converge towards a finite temperature (>0) when
getting closer to the edges. The case α = 0 corresponding to the 1D case, we
would expect a zero dynamic critical temperature at this point. By running a
real Monte-Carlo 1D algorithm (with the Metropolis dynamics), the dynamic
critical temperature is extremely close to zero (Q is still zero for T = 0.001
by using this algorithm). By looking at the curves on Fig. 3.15, we could
therefore reasonably conclude that the algorithm overestimates Tc for strong
anisotropies (considering the two points closest to the edges here, where the
curve is becoming less steep), that is below α = π

32 .

We can also try to recover a relationship for the decreasing factor of the
critical temperature with respect to the amplitude of the magnetic field. Indeed,
looking at Fig. 3.15, it seems that there might be some multiplicative factor
a(B0) between the curves of the dynamic critical temperature Tc,B0(α) and
the ideal static curve in a zero-field configuration.

We apply the following steps to confirm this relationship : first, we perform a
linear least square regression to estimate the best-fitting multiplicative factor
a∗(B0) for given values of the magnetic field (hereB0 ∈ {0.1; 0.175; 0.25; 0.375; 0.5}).
Three examples are shown on Fig. 3.16 (omitting the points at the edges
for which the estimation given by the algorithm does not seem too good as
mentioned above).

Table 3.1 lists the best-fitting multiplicative factors found for the amplitudes
we consider.

When performing a linear regression of these two datasets, we obtain a fair
correlation, with a determination coefficient R2 = 0.984, yielding the graph
in Fig. 3.17.

This linear correlation is very well verified for field amplitudes lower or
equal than 0.5. If we try to plot the same curve as Fig. 3.15, but adding
the dynamic critical temperatures when B0 = 0.7 and B0 = 0.9, we obtain the
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Figure 3.16: Evolution of the graph Tc = f(α) for different values of the amplitude
B0 with their best fitting curve Tc = a∗(B0)Tc(B0 = 0) (solid line)

Field amplitude B0 Best-fitting factor a∗(B0) (Resolution δ = 0.005)
0.1 0.810

0.145 0.795
0.175 0.780
0.21 0.745
0.25 0.690
0.325 0.650
0.375 0.605
0.45 0.575
0.5 0.535

Table 3.1: Value of the best-fitting multiplicative factor for the estimation of Tc,B0(α)

curve shown in Fig. 3.18.

We observe that for B0 > 0.5J the curves become very flat in the edges
when the anisotropy starts increasing. Therefore, the fitting would be not
so adapted for the entire range of values of α we are considering. However,
the central values (up to α ≃ 0.32 approximately i.e. K ≃ 3) seem to be in
compliance with a fitting Tc(B0) = a(B0)Tc(B0 = 0). Indeed, when performing
a fitting of this form in this limited area (K ∈ [1; 3]), we have a good correlation
even forB0 > 0.5. The linear regression between the best-fitting multiplicative
factor a∗(B0) (over the restricted interval) and the magnetic field B0 yields
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Figure 3.17: Linear regression a∗(B0) = f(B0)

also here a satisfying result, with a determination coefficient R2 = 0.985.

3.4.2 Decreasing the period P

Another way we can think of in order to converge towards the static case
would be to decrease the period of the magnetic field. Indeed, if the magnetic
field is very slow (i.e. has a huge period like P = 20000), then the magneti-
zation will be able even for lower temperatures to follow at least partially
the magnetic field, as we can see on Fig. 3.19b : for some extrema of the
field, the magnetization goes from one orientation to the other. However, for
faster fields, with P = 1000, the magnetization for so low temperatures as
T = 1.3 does not revert because the field is too fast, as shown on Fig. 3.19a.
Therefore, at a given temperature, the order parameter will be higher for the
configuration with a higher field cycle.

Let us try to see the evolution of the dynamic critical temperature with respect
to the period P for different anisotropies. To determine the value of Tc(P),
we use the variance of the system V = L2(⟨Q2⟩ − ⟨|Q|⟩2) which presents a
maximum for the critical temperature, with analogy to the magnetic suscepti-
bility in the static case.
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Figure 3.18: Tc = f(α) for various values of the field’s amplitude B0

We then apply a period sweep with equally spaced logarithmic values from
100 to 20000, so as to cover three different orders of magnitude) to see the
evolution of the position of the peak for different anisotropies, using a 30×30
lattice and a temperature step of ∆T = 0.025. The graph in Fig. 3.20 featuring
the the evolution of the critical temperature as the period increases (the x-
axis for P is rendered logarithmic so as to make the graph more regular), and
as predicted, Tc diminishes when the period increases, for any anisotropy.

Let us try to guess an analytic behaviour for the curve in the isotropic case,
so as to define reference values. Looking at the curve, a reasonable analytic
formula able to fit well the data could be of the form :

TcK=1,analytical(P) =
a

log10(P)
+ b, (3.4)

where a and b are two parameters to estimate. Performing the consequent
linear regression, we obtain a very fair correlation with a determination coeffi-
cient R2 = 0.991, the two ideal parameters being (a∗ = 2.682,b∗ = 0.748).
This is an Arrhenius-like behaviour, since we can write P in an exponential
fashion and a can be considered as an activation energy term.

Interestingly, the curves have a very similar look. So as to fit them, we could
think of a translating term ∆TK such that for any given period P (in the range
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(a) P = 1000 (b) P = 20000

Figure 3.19: Temporal evolution of B(t) and M(t) over 10 periods for K = 1 and
T = 1.3

Figure 3.20: Plot of Tc(P) for K ∈ {1; 2; 5; 10}

we consider), we have TcK = TcK=1 +∆TK, with ∆TK < 0.

We perform a linear least squares fitting between the actual values of the
critical temperature we found thanks to the variance and the predicted beha-
viour, in order to find for a given anisotropy the additive term ∆TK that
minimizes best the sum :

Np∑
i=1

[TcK(P) − (TcK=1(P) +∆TK)]
2, (3.5)

where Np is the number of different periods we consider. We apply this
operation for all integer anisotropies between 2 and 10. The table 3.2 lists all
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the values we found for the term ∆TK when looking at anisotropies from 2 to
10.

Anisotropy factor K Best-fitting term ∆TK (Resolution δT = 0.005)
2 -0.210
3 -0.340
4 -0.425
5 -0.610
6 -0.590
7 -0.650
8 -0.740
9 -0.865

10 -0.895

Table 3.2: Value of the best-fitting additive term for the estimation of T

Fig. 3.21 shows an example of the superposition of the best fitting term and
the actual critical temperature alongside the period. When performing a

Figure 3.21: Plot of Tc(P) for K ∈ {1; 2; 5; 10}, alongside with the best-fitting curves

linear regression of ∆K as a function of K, a pretty good result comes out,
namely with a determination coefficient R2 = 0.93, taking into account the
fact that this value is strongly decreases by the not so good concordance for
K = 5 (removing the data for K = 5, R2 becomes 0.992). This linear fitting is
shown in Fig. 3.22, with a slope a = −0.082 and an intercept b = −0.11 (this
value being fairly consistant with the fact that we should ideally have a zero
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value for ∆TK at the origin). The activation factor a does not depend on the
value K, only the additive b term does.

Figure 3.22: Linear fitting ∆

Figure 3.23: Tc = f(P) with the cases K = 15 and K = 20

This relationship remains valid for a limited range of the anisotropy factor
K. Indeed, when computing the dynamic critical temperatures with different
periods of the magnetic field for K = 15 or K = 20, we obtain the graph
shown in Fig. 3.23. The curves in these two cases have become very close
and so the linear evolution of the translating term ∆TK we highlighted for
K ⩽ 10 is no longer present.
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(a) P = 1000 (b) P = 10000

Figure 3.24: Phase transition diagram in the (T ,K,Q) 3D space (B0 = 0.3)

3.5 Phase diagrams

3.5.1 T −K phase transition

Dynamic phase transitions, as we have seen, depend on many different va-
riables. Let us now try to draw some 3D phase diagrams to better illustrate
these phenomena. For example, if we fix the amplitude and the period of
the external field, we are able to draw a diagram (T ,K,Q) to show the limit
between the dynamic ordered phase (Q = 1) and the dynamic disordered
phase (Q = 0). For B0 = 0.3, we drew the phase diagrams for the periods P =

1000 and P = 10000, that are shown in Fig. 3.24a and Fig. 3.24b. The number
of cycles that we used is Np = 1000 and we used a randomly distributed
lattice as initial system.

Furthermore, we can project these 3D plots on the (T,K) plane so as to have
a picture of the evolution of Tc along with these two variables, as it is shown
on Fig. 3.25a and Fig. 3.25b. The linear trend that we observe for the critical
temperature as a function of a the anisotropy factor seems to be confirmed
here, for the range 1 ⩽ K ⩽ 10. We also see that on the same diagram, the
dynamic disordered phase occupies a higher surface for P = 10000, since the
critical temperature, for any anisotropy, is lower than the one for P = 1000.
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(a) P = 1000 (b) P = 10000

Figure 3.25: Phase transition diagram in the (T ,K) 2D space (B0 = 0.3)

3.5.2 T −B0 phase transition

Changing our paradigm, we can plot phase diagrams in an other plane, that
is the T − B0 one, using this time the anisotropy factor as a parameter and
fixing the period of the field (P = 1000). We get 3D plots of the disorder
parameter as a function of both the temperature and the magnetic field’s
amplitude.

The effect of the anisotropy is clearly visible on how the green area is reduced
when K increases. The border is shifted towards lower temperatures.
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(a) K = 1 (b) K = 2

(c) K = 5 (d) K = 10

Figure 3.26: Phase transition diagrams T −B0 for diverse anisotropies (P = 1000)
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Chapter 4

Impact of randomness in the model

The lattices we have tackled so far were ideal spin lattices. Indeed, in real
ferromagnets, the bonds between the spins Jx and Jy might not be the same
all over the lattice. A possible way to simulate such a configuration is to
introduce randomness in each bond of the lattice.

4.1 Random Anisotropy Ising Model (RAIM)

4.1.1 Theoretical frawework

The main idea for the Random-Bond Ising Model (shortened as RBIM) is to
assume that the exchange interaction Ji,j between a spin i and a spin j is
variable, as written in Equation (4.1). In a classical isotropic spin lattice, we
would assume a normal distribution and have the interaction parameter Ji,j
written in the following way :

f(Ji,j) =
1√
2πR

e−
(Ji,j−J̄)2

2R , (4.1)

where
√
R is the standard deviation and J̄ the mean of the gaussian distribution.

R, comprised between 0 and 1, is also called the disorder parameter : when
it is 0, there is no random component at all, i.e. the gaussian distribution
becomes a DIRAC one, represented by a vertical straight line at the value Ji,j.
Instead, when R increases, the gaussian curve becomes broader and broader.

68



However, within the anisotropic ISING model, we can not apply this formula
in this way. Instead, we choose an approach that we could qualify of Random
Anisotropy Ising Model (RAIM), where it is the anisotropy angleα = arccotan(K)
which will bear the random component. Let us consider a lattice of (mean)
anisotropy K̄, we could calculate for each position in the lattice (k, l) ∈ [[1;L]]×
[[1;L]] an anisotropy angle labeled asαk,l according to the following distribution

g(αk,l) =
1√

2πσα(R)2
e
−

(αk,l−ᾱ)2

2σα(R)2 , (4.2)

where the mean value of the distribution is the mean anisotropy angle ᾱ =

arccotan(K̄) and the standard deviation is σα(R), which will be derived later,
so as to have scalable variation for different mean values of the anisotropy.
Then, for each position of the lattice (k, l), we calculate the usual exchange
coefficients Jx and Jy after fixing the value of J to 1 (following the relationship
J2x+J

2
y

2 = 1), as in the previous parts. The overall configuration will result
in each spin of the lattice having its own interaction coefficient for its left
and right neighbours Jx(k, l) and its up and down neighbours Jy(k, l). We
deduce in the usual way the horizontal and vertical bonds for a given spin
after choosing a random αk,l.Jx(k, l) =

√
2J cos(αk,l);

Jy(k, l) =
√

2J sin(αk,l).
(4.3)

Let us derive the optimal value for the standard deviation σK(R), so as to
have a scalable distribution for every value of the mean anisotropy. A good
parameter to evaluate this is the probability of getting a negative anisotropy
coefficient P(αk,l < 0), given by the well-known formula below :

Pαk,l<0 =

∫0

−∞ g(αk,l) dαk,l. (4.4)

By introducing the complementary error function erfc(x) = 2√
π

∫x
0 e

−t2 dt and

carrying out the following variable change t =
ᾱ−αk,l
2σα(R)

, we can derive the
following expression
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Pαk,l<0 =
1
2

erfc
( ᾱ

2σα(R)

)
. (4.5)

As mentioned, we should have a scalable behaviour of this quantity. Therefore,
the probability of "overflow" into the negative domain for the angle should
not depend on the mean value of α ! Consequently, we must have, according
to Eq. 4.5, σα(R) ∝ ᾱ. We can choose to introduce as the proportionality
coefficient the square root of the disorder parameter

√
R.

Let us first visualize the gaussian distribution for the anisotropy angle α for
several values of the disorder parameter R with a mean anisotropy angle
of ᾱ = arccotan(K̄) = 2 and a standard deviation σα(R) = ᾱ

√
R, i.e. ᾱ =

arccotan(2) ∼ 0.464.

Figure 4.1: Normal distribution of the anisotropy ratio (here ᾱ = arccotan(2)) for
various values of σα = ᾱ

√
R

We can see that there is a non-zero probability of getting a negative anisotropy
angle. A crucial aspect in this distribution is therefore the way of handling
the probability of getting a negative anisotropy angleαk,l < 0. This, according
to Eq. 4.3 will lead to the bond in the vertical direction Jy changing sign and
becoming negative, since sin is an odd function. Jx will remain unchanged
because cos is an even function. Let us plot the proabability of getting a
negative angle in a certain position (k, l) of the lattice as a function of the
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Figure 4.2: Probability of having a negative anisotropy angle αk,l as a function of
the disorder parameter R

disorder parameter R. According to what we did below, this probability is
given by

PR(αk,l < 0) =
1
2

erfc(
1√
2R

), (4.6)

since it does not depend on the mean value of the anisotropy we consider.
This curve has a shape shown on Fig. 4.2.

We must then fix a limit for the disorder parameter Rmax until we can perform
our computation so as to treat an actual ferromagnetic system. Indeed, if too
many negative bonds are present, the physics of the system could change
drastically. An estimate of the concentration in antiferromagnetic bonds (the
ones for which J < 0, i.e. destroying the ferromagnetic order) has been found
by N.K. JAGGI to be equal to 0.15, though some sources take it equal to 0.1.
By precaution, we decide to fix the threshold to 0.1. Assuming that all spins
are perfectly equivalent, i.e. that the proportion of antiferromagnetic bonds
is equal to the probability of having a single spin of negative sign, we can
recover the value of Rmax we can treat.

We decide according to Fig. 4.3 to take as threshold Rmax = 0.6. Not only
this avoids considering possibly non-ferromagnetic systems, but it allows
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Figure 4.3: Probability of having a negative anisotropy factor Kk,l with the
ferromagnetic limit P = 0.1

to minimize the percentage of strange physical configurations, that is with
classical positive bonds in the x-direction whereas the y-direction would
allow negative bonds. Let us then detail how we introduced in practice the
randomness into the model.

4.1.2 Implementation

Substantial changes to the algorithm must be made with respect to the one
used in the previous parts, since a classes-like algorithm would not be suitable
for the treatment of random anisotropy. Indeed, having randomly distributed
bonds all over the lattice will make the number of classes possibly very large
(18 times the number of spins in the lattice) : therefore, the treatment in the
18-fold way we applied so far becomes completely irrelevant, as it would
make the simulation time explode. Therefore, we prefer the most classical
version of the single spin-flip algorithm, that will be far more efficient. The
dynamics is still the GLAUBER one, but instead of considering a probability
rate per unit of time, we use an actual probability p = 1

1+e
− ∆E

kBT

, where

∆E = Eold − Enew.
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4.1.3 Evolution of the curves Tc = f(ᾱ) with R

We can now use the algorithm to calculate the magnetic susceptibility and
deduce the critical temperature for a given value of the mean anisotropy
angle ᾱ and a given value of the disorder parameter. The plot presented
in Fig. 4.4 represents the evolution of the plot Tc = f(ᾱ) for different values
of the disorder parameter R ∈ {0.1; 0.2; 0.3; 0.5}, so as to have always a ferro-
magnetic behaviour of the lattice. We used a random initialization of the
lattice and a decreasing temperature loop. We made 10 runs for each configuration,
so as to compute in each case a mean value T̄c and a standard deviation
σTc that account for the randomness of the system. The error bars show the
interval [T̄c − σTc ; T̄c + σTc].

Figure 4.4: Plot of the critical temperature as a function of the mean anisotropy angle
ᾱ for different values of the disorder parameter

Several interesting observations can be made from this graph :

• the disorder parameter leads to a decrease in the critical temperature
at all anisotropies. This was expected, since the fact of introducing a
variation of the bond makes the lattice more similar to a 1D network, a
configuration for which the critical temperature would converge to 0;
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• unlike in the deterministic case, the maximum critical temperature is
not reached for an on-average isotropic lattice (ᾱ = arccotan(1)), as we
observe a slight decrease of Tc when getting closer to the center of the
figure;

• the disorder parameter seems to have no effect when the anisotropy
gets high, since the curves get superimposed for ᾱ < 0.25 (and on the
other side, for ᾱ > 1.35).

The reason for the shifting of the maximum critical temperature towards
anisotropies higher than can be explained in the following qualitative way
: since we introduce a fluctuation of the anisotropy angle, the bonds in the
lattice for a mean anisotropy angle ᾱ = π

4 will tend to assume values on
average that are different from the perfectly isotropic case, which will lead
to a decrease in the critical temperature. Instead, the slightly anisotropic
mean angles will have a fair proportion of bonds that will be identical to
the isotropic case. The position of the maximum is consequently shifted
towards the left of the graph (i.e. lower anisotropy angles) when the disorder
parameter decreases, since this leads to higher fluctuations of the mean aniso-
tropy angle.

Why does the effect of the anisotropy get a higher weight than the disorder
parameter as the mean value of the anisotropy factor increases ? So as to
have a scalable behaviour of the system for different mean values of the
anisotropies, the relative fluctuation was chosen identical (with σα =

√
Rᾱ).

This leads to a decreasing absolute fluctuation as the anisotropy increases
(i.e. as the anisotropy angles decreases). So as to make an example, we
can plot the function g(K) = arccotan(2K) − arccotan(K). This quantity is
a picture of how the fluctuation between a mean anisotropy angle and its
double (hence separated by some number of standard deviations) goes with
the value of the anisotropy factor. We observe that the randomness gets
negligible as the system becomes more anisotropic, as Fig. 4.5 shows. In
the center, for isotropic and weakly anisotropic lattices, the fluctuation is
maximum between the angle corresponding to an anisotropy factor and the
one corresponding to its double.

Furthermore, the overlapping curves for high anisotropies (i.e. for ᾱ < 0.25
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Figure 4.5: Fluctuation of the anisotropy angle with respect to the anisotropy factor

and for ᾱ > 1.35) can be interpolated pretty well by a linear trend, as can
be seen on Fig. 4.6. The coefficients for the best fitting (based on the mean
points of the four curves for a given ᾱ) are a slope a = 3.26 and a crossing
b = 0.95.

In order to check that the physics of the system actually changes for disorder
parameters higher than R = 0.6, let us plot the graph Tc = f(ᾱ) for the
parameters R = 0.8 and R = 1, as shown in Fig. 4.7. This is clear that
the shape has changed, with a very sharp peak in the center and a distinct
decrease for larger anisotropies. As mentioned, these physical systems are
tough to apprehend, as they are still ferromagnetic in one direction (the one
corresponding to the cosine of the anisotropy angle), while the other direction
will tend to have some negative bonds, making the different rows of the
lattice trying to oppose each others. The temperatures plotted in this graph
have still been determined with the position of the peak of the magnetic
susceptibility. However, the expected behaviour of this quantity is not known
in the case of a ferromagnetic lattice in one direction (the one for which the
sign of the angle does not count) and of a spin glass in the other. Therefore,
this nuances the reliability of the curves, that anyway show a behaviour that
is different from the ferromagnetic case.
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Figure 4.6: Linear trend for very high anisotropies

4.2 Fluctuation of the magnetization under the effect

of a time-varying field

4.2.1 Impact of the anisotropy on the magnetization’s noise

The noise of the magnetization has been tackled in diverse contexts. For
example, PUPPIN and ZANI [11] studied the impact of the random-field Ising
model. In Chapter 3, we saw the effect of the magnetic field’s period on the
dynamic critical temperature. We now want to investigate another aspect
of the randomness in the behaviour of anisotropic spin lattices, namely the
temperature fluctuation. If the temperature is below the dynamic critical
temperature, the system is in the ordered phase. However, for temperatures
very close to the transition temperature, typically 0.9Tc, the magnetization
becomes able to follow partially the magnetic field as we will see. Let us
study the influence of the anisotropy factor on the magnetization’s fluctuations
at a typical subcritical temperature as T = 0.9Tc.

We choose a magnetic field’s period P = 1000 (with amplitude B0 = 0.3 as
before). The figure Fig. 4.8 shows plots of the both the magnetic field and
the magnetization for anisotropies K = 1, K = 2, K = 5 and K = 10, running
the simulations for a total time TimeMax = 200P. The anisotropy acts as a
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Figure 4.7: Critical temperature as a function of the mean anisotropy angle for R =
0.8 and R = 1

disorder agent : for K = 1 the magnetization is strongly located at +1, with
the peaks symbolizing partial reversals of the magnetization as we see on Fig.
4.8a. When increasing K, the magnetization becomes more and more noisy,
to the point that in Fig. 4.8d, the system does not oscillate anymore between
-1 and +1 but is comprised in a smaller interval. We can also see that the
attempted reversals are much more frequent when the anisotropy increases
since they look much denser on the graphs in Fig. 4.8c and Fig. 4.8d than on
plots in Fig. 4.8a and 4.8b.
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(a) K = 1 (b) K = 2

(c) K = 5 (d) K = 10

Figure 4.8: Magnetization and magnetic field along time for subcritical temperature
T = 0.9Tc

4.2.2 Thermal excitation as a function of the anisotropy

To measure to what extent the magnetization is impacted by the temperature,
i.e. the thermal excitation, we can define two thresholds :

• the temperature Tf of the first fluctuation, for which the ferromagnetic
phase undergoes a first slight perturbation. A slight perturbation is
defined as an attempted reversal with a jump equal to more than 0.05
(i.e. going at least from 1 to 0.95 or from -1 to -0.95);

• the temperature Tr of the first reversal, for which the magnetization
experiences its first complete reversal, still in the ferromagnetic phase.
We choose a duration of 50P, which is an arbitrary choice, but that
seems reasonable to observe long-term phenomena such as reversals
of the magnetization.
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(a) First fluctuation (b) First reversal

Figure 4.9: First fluctuation and first reversal of the magnetization for K = 3 and
B0 = 0.8

These two thresholds are illustrated respectively on Fig. 4.9a and on Fig.
4.9b. We computed these temperatures for values of the field pertaining to
{0.2; 0.4; 0.6; 0.8; 1} and for an anisotropy factor K ∈ {1; 2; 3; 5}. The results are
shown on Fig. 4.10. Since they are by definition arbitrary (in particular the
threshold used for the first reversal and the duration of the experiment), we
should repeat the experiment several times in order to have an estimate of the
variation between measurements under the same conditions. Furthemore,
they are defined for a given dimension of the lattice, L = 50. Changing the
size of the system might result as well in some variations.

As expected, we observe a decrease of the fluctuation and the reversal tempera-
tures for a fixed field’s value when the anisotropy increases and for a fixed
anisotropy when the field increases. Furthermore, we notice that there is
a clear difference between the isotropic case and the anisotropic ones (for
K = 2, 3 and 5), since the two temperatures are almost the same in the case
of an isotropic configuration, whereas the anisotropic configurations clearly
exhibit a significant gap between Tf and Tr, that we can estimate around 0.2 J

kB

on average. Qualitatively, this means that the thermal excitation is active on
a broader range for anisotropic lattices.

We notice that the curve of the first reversal temperature is getting closer to
the critical one as the anisotropy increases. This is confirmed by calculating
the sum of the square errors between the two curves. For the total subcritical
excitation (the difference between the critical curve and the one for the first
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(a) K = 1 (b) K = 2

(c) K = 3 (d) K = 5

Figure 4.10: Magnetization and magnetic field along time for subcritical temperature
T = 0.9Tc

fluctuation) instead, a maximum is observed for K = 2.

Of course, a more quantitative analysis would be hard to perform given the
number of independent parameters : the dimension of the lattice, the period
of the field (in this case P = 1000), the mesh for the amplitude of the field...).
Doubling the size of the lattice yields however very similar results.
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Chapter 5

Anisotropy and dimensionality of
the lattice

Finally, we can investigate the transition from a one-dimensional spin chain
towards a 2D isotropic lattice, in order to determine how the critical tempe-
rature goes from zero to a finite value as the anisotropy becomes weaker.
The implemented system is a 10000× 4 chain as shown in Fig. 5.1. We start

Figure 5.1: A 10000× 4 spin lattice with Jx
Jy

= 10−2

verifying that no phase transition is observed for the case Jx = 0, when the
lattice is only made of non-correlated 1D stripes. Then, we start increasing
the exchange interaction constant between these stripes, in order to simulate
the transition from a 1D lattice into a 2D one. We obtain the graph presented
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in Fig. 5.2. From this graph, it appears that there is a change of behaviour

Figure 5.2: Increase of Tc as the material gets two-dimensional

from K = 10−4, since above this value, the critical temperature is getting
high, while it remains very close to 0 for stronger anisotropies : Tc = 0.001
for K = 10−6 and Tc = 0.005 for K = 10−5. Furthermore, this curve is coherent
with the analytical expectation by Onsager presented in Fig. 2.12, plotting it
in a semi-logarithmic way.

In 1992, NOVOTNY [16] plotted the critical temperature of a lattice of dimension
d comprised between 1 and 2 (non-integer values were obtained thanks to
interpolation). By fitting the values he obtained with the analytical prediction
of ONSAGER, we can plot the dimensionality of the lattice as a function of the
anisotropy factor K. Fig. 5.3 shows this graph.

We observe that there is a very strong decrease of the dimensionality occurring
for quite low values of K ⩽ 5. However, once d ∼ 1.1 is reached, the decrease
becomes extremely slow and progressive and the true one-dimensional lattice
will be reached only at the limit of an infinitely anisotropic lattice. This is
coherent with the fact that we observe still a finite critical temperature even
when the anisotropy constant is very low.

The link between the anisotropy and the dimensionality is however not so
simple to deduce. Indeed, in the same article, NOVOTNY plotted the relation-
ship between the inverse of the critical exponent ν (appearing in the expression
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Figure 5.3: Estimated dimensionality of the lattice as a function of the anisotropy
factor (based on the values of Tc)

of the correlation length ξ =
∣∣∣T−TcTc

∣∣∣−ν) and the lattice dimensionality d, as
shown on Fig. 5.4.

Figure 5.4: yT = 1
ν as a function of the lattice’s dimensionality (NOVOTNY, [16])

We notice a clear variation of the critical exponent when d goes from 2 to
1. However, when computing the critical exponent with our algorithm for
different anisotropies, using the scaling equation given in the book by BINDER

and LANDAU [4], we always obtain a value of ν around 1, which is also
confirmed by the works of FARSAL [14]. Therefore, we can not state that
there is a direct equivalency the concepts of anisotropy and dimensionality.
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Conclusions and future
developments

To wrap up, the original results of this thesis are multiple :

1. the impact of a time-varying sinusoidal magnetic field (its amplitude
and its period) on an anisotropic spin lattice;

2. the elaboration of multiple three-dimensional phase diagrams for the
dynamic order parameter as a function of diverse quantities (the aniso-
tropy factor K, the period P and the amplitude B0);

3. the introduction of the Random-Anisotropy Ising Model to study the
impact of randomness in an anisotropic spin lattice.

In the first point, our calculations showed that the critical temperature is
decreasing, on one hand when the field’s amplitude becomes higher for a
fixed period, and on the other hand, when the field’s period becomes smaller
for a fixed amplitude. We extrapolated trends of these evolutions as a function
of the anisotropy, showed on Fig. a. and Fig. b.

We then obtained various phase diagrams for the dynamic order parameter
between the dynamic ordered phase (Q = 1 in green) and the dynamic
disordered phase (Q = 0 in blue). Fig. ca and Fig. cb show the (T ,K,Q)

diagrams for various values of the period for example. This allowed to notice
a linear effect of the anisotropy (up to K = 10) on the decrease of the dynamic
critical temperature.

Finally, we implemented, by analogy with the Random-Bond Ising Model,
the Random-Anisotropy Model, that is based on a gaussian distribution of
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Figure a: Evolution of the graph Tc = f(α) for different values of the amplitude B0
with their best-fitting curve Tc = a∗(B0)Tc(B0 = 0) (solid line)

Figure b: Plot of Tc(P) for K ∈ {1; 2; 5; 10}, alongside with the best-fitting curves

(a) P = 1000 (b) P = 10000

Figure c: Phase transition diagram in the (T ,K) 2D space (B0 = 0.3)
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the anisotropy. After verifying the conditions for which the material can still
be considered ferromagnetic, we launched several simulations for various
values of the disorder parameter R and various values of the mean anisotropy
angle ᾱ. We obtained the graph shown in Fig. d.

Figure d: Plot of the critical temperature as a function of the mean anisotropy angle
ᾱ for different values of the disorder parameter

From the computational point of view, a future perspective would be to write
the dynamic algorithm in a parallel way instead of the classical sequential
method. Indeed, this would allow to treat way bigger lattices while keeping
a small computation time. The idea is to divide the lattice into several regions
that are treated by the various processors of the computer that is used for the
simulation. This would be more difficult to implement, since each sublattice
would have its own computational time and the management of the spin
flips at the boundary between two domains have to be treated carefully.
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√
R . . . . . . . . . . . . . . . . . . 70

4.2 Probability of having a negative anisotropy angleαk,l as a function
of the disorder parameter R . . . . . . . . . . . . . . . . . . . . 71

4.3 Probability of having a negative anisotropy factor Kk,l with the
ferromagnetic limit P = 0.1 . . . . . . . . . . . . . . . . . . . . . 72

4.4 Plot of the critical temperature as a function of the mean anisotropy
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Appendix : MATLAB code of the
dynamic algorithm for an anisotropic
Ising lattice

Listing 5.1: MATLAB Function dynamic_anisotropic.m used for the temporal evolution of a 2D

anisotropic spin lattice

function [Energy ,Magnetization ,Magnetization2 ,Magnetization4 ,

time ,Lattice ,Field ,Energy2 ,contat] = dynamic_anisotropic(L,D

,T,Bb,Bzero ,P,NofIter ,Lattice ,show ,TimeMax ,K)

% Initialization of variables

N = L^D; % Total number of spins

NumClass = 18; % Number of classes of the system

J = 1;

% Variables of the system

Kb = 1;

beta = 1/(T*Kb); % Statistical temperature

phi = acot(K); % Anisotropy angle

Jx = sqrt (2)*J*cos(phi); % Horizontal exchange

interaction

Jy = sqrt (2)*J*sin(phi); % Vertical exchange interaction

muB = 1; %In terms of Hamiltonian we should consider muB*B

timePause = 0.25;

alph = 1; % Inverse of time used in the transition rate

for each class

% Variables as support
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nArray = zeros(1,NumClass); % Number of spins in the class

i

mArray = zeros(1,NumClass); % Keeps track of the number of

spins with class lower than i

qArray = zeros(1,NumClass); % Array of the coefficient Q

% Initialization of the variables

Class = zeros(18,N); %list of the spin lattice by class

Location = zeros(L,L); %keeps track of the location inside

class of each spin

Energy = [];

Magnetization = [];

time = [];

Field = [];

for i=1:L

for j=1:L

% Control the nearest neighbours

contav = 0; % Counts spin up in vertical direction

contah = 0; % Counts spins up in horizontal

direction

if(Lattice(mod(i,L)+1,j)==1)

contah = contah +1;

end

if(Lattice(i,mod(j,L)+1) ==1)

contav = contav +1;

end

if(Lattice(mod(i-2,L)+1,j)==1)

contah = contah +1;

end

if(Lattice(i,mod(j-2,L)+1) ==1)

contav = contav +1;

end

conta = contah + contav;

if Lattice(i,j)==1
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% Class from 1 to 9 (Novotny classification ,

1995 article)

if contah ==2

nArray (5 - conta) = nArray (5 - conta) + 1;

Class(5-conta ,nArray (5 -conta)) = i*18*L +

j;

for k=6-conta:NumClass

mArray(k) = mArray(k)+1;

end

elseif contah == 1

nArray (7 - conta) = nArray (7 - conta) + 1;

Class(7-conta ,nArray (7 -conta)) = i*18*L +

j;

for k=8-conta:NumClass

mArray(k) = mArray(k)+1;

end

elseif contah == 0

nArray (9 - conta) = nArray (9 - conta) + 1;

Class(9-conta ,nArray (9 -conta)) = i*18*L +

j;

for k=10- conta:NumClass

mArray(k) = mArray(k)+1;

end

end

else

% Class from 10 to 18 (Novotny classification ,

1995 article)

if contah ==2

nArray (14 - conta) = nArray (14 - conta) +

1;

Class(14-conta ,nArray (14 -conta)) = i*18*L

+ j;

for k=15- conta:NumClass

mArray(k) = mArray(k)+1;

end
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elseif contah == 1

nArray (16 - conta) = nArray (16 - conta) +

1;

Class(16-conta ,nArray (16 -conta)) = i*18*L

+ j;

for k=17- conta:NumClass

mArray(k) = mArray(k)+1;

end

elseif contah == 0

nArray (18 - conta) = nArray (18 - conta) +

1;

Class(18-conta ,nArray (18 -conta)) = i*18*L

+ j;

for k=19- conta:NumClass

mArray(k) = mArray(k)+1;

end

end

end

end

end

% Update Location matrix

for j=1: NumClass

for i=1:N

if (Class(j,i)~=0)

Location(floor(Class(j,i)/(L*18)),mod(Class(j,

i),L*18)) = 18*18*i+j;

end

end

end

% Calculation of energy and magnetization

Magnetization (1) = sum(sum(Lattice))/N;

Magnetization2 (1) = Magnetization (1)^2;

Magnetization4 (1) = Magnetization (1)^4;
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Energy (1) = 0;

for i=1:L

for j=1:L

Energy (1) = Energy (1) - Jx*Lattice(i,j)*Lattice(

mod(i,L)+1,j)/N - Jy*Lattice(i,j)*Lattice(i,mod(

j,L)+1)/N-(Bb+Bzero)*Lattice(i,j)/N;

end

end

if show == 1

figure (1)

imagesc(mod(Location ,18*18) ,[-1 18]);

colormap(hot (256))

title('Class');

figure (2)

imagesc(Lattice);

colormap(hot (256))

title('Lattice ');

drawnow

pause(timePause);

end

t = 1;

tempP = 0;

time (1) = 0;

Field (1) = 0;

% Actual Kinetic MonteCarlo

while time(t)<TimeMax

% Determination of the new transition probabilities

B = Bb + Bzero*cos(2*pi/P*time(t));

% Novotny

ClassEnergy = Jx*[2 2 2 0 0 0 -2 -2 -2 -2 -2 -2 0 0 0
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2 2 2] + Jy*[2 0 -2 2 0 -2 2 0 -2 -2 0 2 -2 0 2 -2 0

2] - abs(Field(t))*muB*[1 1 1 1 1 1 1 1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1]; %delta energy of a particular

class

Prob = zeros(NumClass ,1);

Prob (1) = 1/(2* alph).*(1 -1* tanh(beta *(2*Jx +2*Jy + B*

muB))); %appendix E Stanley

Prob (2) = 1/(2* alph).*(1 -1* tanh(beta *(2*Jx + B*muB)));

Prob (3) = 1/(2* alph).*(1 -1* tanh(beta *(2*Jx - 2*Jy + B*

muB)));

Prob (4) = 1/(2* alph).*(1 -1* tanh(beta *(2*Jy + B*muB)));

Prob (5) = 1/(2* alph).*(1 -1* tanh(beta*B*muB));

Prob (6) = 1/(2* alph).*(1 -1* tanh(beta *(-2*Jy + B*muB)))

;

Prob (7) = 1/(2* alph).*(1 -1* tanh(beta *(-2*Jx +2*Jy + B*

muB)));

Prob (8) = 1/(2* alph).*(1 -1* tanh(beta *(-2*Jx + B*muB)))

;

Prob (9) = 1/(2* alph).*(1 -1* tanh(beta *(-2*Jx - 2*Jy + B

*muB)));

Prob (10) = 1/(2* alph).*(1+1* tanh(beta *(2*Jx + 2*Jy + B

*muB)));

Prob (11) = 1/(2* alph).*(1+1* tanh(beta *(2*Jx + B*muB)))

;

Prob (12) = 1/(2* alph).*(1+1* tanh(beta *(2*Jx - 2*Jy + B

*muB)));

Prob (13) = 1/(2* alph).*(1+1* tanh(beta *(2*Jy + B*muB)))

;

Prob (14) = 1/(2* alph).*(1+1* tanh(beta*(B*muB)));

Prob (15) = 1/(2* alph).*(1+1* tanh(beta *(-2*Jy + B*muB))

);

Prob (16) = 1/(2* alph).*(1+1* tanh(beta *(-2*Jx +2*Jy + B

*muB)));
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Prob (17) = 1/(2* alph).*(1+1* tanh(beta *(-2*Jx + B*muB))

);

Prob (18) = 1/(2* alph).*(1+1* tanh(beta *(-2*Jx - 2*Jy +

B*muB)));

% Determination of the Q coefficient

qArray (1) = nArray (1)*Prob (1); %appendix E Stanley

for i=2: NumClass

qArray(i) = qArray(i-1) + nArray(i)*Prob(i);

end

% Determination of the class where the spin must be

flipped

R = qArray(NumClass)*rand (1);

for k=1: NumClass

if R<qArray(k)

break;

end

end

% The spin must be flipped in class k

% Calculation of energy

Energy(t+1) = Energy(t) + 2* ClassEnergy(k)/N;

%3. Determination of the spin in the class that must

be flipped and

%change of location and class accordingly

R = floor(nArray(k)*rand (1))+1;

riga = floor(Class(k,R)/(L*18)); %row of the spin to

flip

colonna = mod(Class(k,R)-1,L*18) + 1; %column of the

spin to flip

locazione = Location(riga ,colonna); %location of the

spin to flip in class (k-1,R)
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% Shift in last position the spin to flip

if time(t)>tempP

tempP = tempP + NofIter; % Show every P = n*

NofIter , n integer

if show == 1

figure (1)

imagesc(mod(Location ,18*18) ,[-1 18]);

colormap(hot (256))

title('Matrix LOCATION ')

set(gca ,'xtick' ,[])

set(gca ,'ytick' ,[])

figure (2)

imagesc(Lattice);

colormap(hot (256))

title('Matrix LATTICE ')

set(gca ,'xtick' ,[])

set(gca ,'ytick' ,[])

figure (3);

subplot (1,2,1)

plot(time ,Magnetization)

hold on

plot(time ,Field (1:t))

title('Magnetization ')

ylim ([-1,1])

hold off

subplot (1,2,2)

plot(time ,Energy (1:t))

hold on

plot(time ,Field (1:t))

title('Energy ')

101



hold off

figure (4)

bar(nArray)

ylim([0,L*L])

title('Array N-ARRAY ')

figure (5)

imagesc(Class .* -1+18)

colormap(hot (256))

title('Matrix CLASS')

drawnow

pause(timePause);

end

end

% Calculation of the time required for the flip

Rparameter = qArray (18);

deltaT = -1/ Rparameter*log(rand (1));

if deltaT <=P/50 % Check of whether the spin is taking

too long to flip

% Calculation of the magnetization and time

improvement

Lattice(riga ,colonna) = Lattice(riga ,colonna)*-1;

% Actual flipping of the spin

Magnetization(t+1) = Magnetization(t) + 2* Lattice(

riga ,colonna)/N;

Magnetization2(t+1) = Magnetization(t+1)^2;

Magnetization4(t+1) = Magnetization(t+1)^4;

time(t+1) = time(t) + deltaT;

Field(t+1) = B;
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t = t + 1;

lastValue = Class ((mod(locazione ,18*18)),nArray(

mod(locazione ,18*18))); % Last spin of the class

that needs to shift in the position of the spin

that is changing class

Class((mod(locazione ,18*18)),floor(locazione

/(18*18))) = lastValue; % Substitution the last

spin in each class in the right position

Location(floor(lastValue /(18*L)),mod(lastValue ,L

*18)) = locazione; % Update of the varaible

Location

Class((mod(locazione ,18*18)),nArray(mod(locazione

,18*18))) = 0; % Cancel of the position in class

of the last spin that was substituted

% Update of the variables mArray and nArray

nArray(mod(locazione ,18*18)) = nArray(mod(

locazione ,18*18)) -1; % nArray changes only in

the considered class

% Determination of the new class in which the spin is

added

newClass = mod(mod(locazione ,18*18) +8,18) +1;

keepinmind = floor((mod(locazione ,18*18) +8) /18); %

0 if spin up , 1 if spin down

Class(newClass ,nArray(newClass)+1) = riga *18*L+

colonna; % Substitution the last spin in class

in the right position

Location(riga ,colonna) = newClass + 18*18*( nArray(

newClass)+1);

% Update of nArray

nArray(newClass) = nArray(newClass) + 1;

% Change the nearest neighbours
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coordinates (1,1) = mod(riga ,L) + 1;

coordinates (2,1) = colonna;

coordinates (1,2) = riga;

coordinates (2,2) = mod(colonna ,L) + 1;

coordinates (1,3) = mod(riga - 2,L) + 1;

coordinates (2,3) = colonna;

coordinates (1,4) = riga;

coordinates (2,4) = mod(colonna - 2,L) + 1;

for i=1:4

locazione = Location(coordinates (1,i),

coordinates (2,i));

% Shift in last position the spin to flip

lastValue = Class ((mod(locazione ,18*18)),

nArray(mod(locazione ,18*18))); % Last spin

of the class that needs to shift in the

position of the spin that is changing class

Class((mod(locazione ,18*18)),floor(locazione

/(18*18))) = lastValue; % Substitution the

last spin in each class in the right

position

Location(floor(lastValue /(18*L)),mod(lastValue

,L*18)) = locazione; % Update of the

varaible Location

Class((mod(locazione ,18*18)),nArray(mod(

locazione ,18*18))) = 0; % Cancel of the

position in class of the last spin that was

substituted

% Update of the variables mArray and nArray

nArray(mod(locazione ,18*18)) = nArray(mod(

locazione ,18*18)) -1; % nArray changes only

in the considered class

% Determination of the new class in which the

spin is added
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if keepinmind ==0

if mod(i,2)==1 % horizontal nn

newClass = mod(mod(locazione ,18*18)

+2,18)+1; % No possibility of

1--->10

Class(newClass ,nArray(newClass)+1) =

coordinates (1,i)*18*L+coordinates (2,

i);

Location(coordinates (1,i),coordinates

(2,i)) = newClass + 18*18*( nArray(

newClass)+1);

nArray(newClass) = nArray(newClass) +

1;

else % Vertical nn

newClass = mod(mod(locazione ,18*18)

,18)+1; % No possibility of 1--->10

Class(newClass ,nArray(newClass)+1) =

coordinates (1,i)*18*L+coordinates (2,

i);

Location(coordinates (1,i),coordinates

(2,i)) = newClass + 18*18*( nArray(

newClass)+1);

nArray(newClass) = nArray(newClass)+1;

end

else

if mod(i,2)==1 % Horizontal nn

newClass = mod(mod(locazione ,18*18)

-4,18)+1; % No possibility of

10--->1

Class(newClass ,nArray(newClass)+1) =

coordinates (1,i)*18*L+coordinates (2,

i);

Location(coordinates (1,i),coordinates

(2,i)) = newClass + 18*18*( nArray(

newClass)+1);

nArray(newClass) = nArray(newClass) +
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1;

else % Vertical nn

newClass = mod(mod(locazione ,18*18)

-2,18)+1; % No possibility of

1--->10

Class(newClass ,nArray(newClass)+1) =

coordinates (1,i)*18*L+coordinates (2,

i);

Location(coordinates (1,i),coordinates

(2,i)) = newClass + 18*18*( nArray(

newClass)+1);

nArray(newClass) = nArray(newClass) +

1;

end

end

end

else % No flipping is performed , the system time is

incremented by P/50

Magnetization(t+1) = Magnetization(t); % First

-order magnetization

Magnetization2(t+1) = Magnetization(t+1)^2; %

Second -order magnetization (Useful to

compute Chi)

Magnetization4(t+1) = Magnetization(t+1)^4; %

Fourth -order magnetization (Useful to

compute Binder Cumulant)

time(t+1) = time(t) + P/50;

Field(t+1) = B;

t = t + 1;

end

end

end
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