
Advancing Keyword Clustering
Techniques: A Comparative Ex-
ploration of Supervised and Unsu-
pervised Method

Tesi di Laurea Magistrale in
Computer Science - Ingegneria Informatica

Author: Filippo Caliò

Student ID: 994184
Advisor: Prof. Davide Martinenghi
Co-advisors: Sarunas, Girdzijauskas
Academic Year: 2022-23

i

Abstract

Clustering keywords is an important Natural Language Processing task that can be
adopted by several businesses since it helps to organize and group related keywords to-
gether. By clustering keywords, businesses can better understand the topics their cus-
tomers are interested in. This thesis project provides a detailed comparison of two dif-
ferent approaches that might be used for performing this task and aims to investigate
whether having the labels associated with the keywords improves the clusters obtained.
The keywords are clustered using both supervised learning, training a neural network and
applying community detection algorithms such as Louvain, and unsupervised learning al-
gorithms, such as HDBSCAN and K-Means. The evaluation is mainly based on metrics
like NMI and ARI.

The results show that supervised learning can produce better clusters than unsupervised
learning. By looking at the NMI score, the supervised learning approach composed by
training a neural network with Margin Ranking Loss and applying Kruskal achieves a
slightly better score of 0.771 against the 0.693 of the unsupervised learning approach
proposed, but by looking at the ARI score, the difference is more relevant. HDBSCAN
achieves a lower score of 0.112 compared to the supervised learning approach with the
Margin Ranking Loss (0.296), meaning that the clusters formed by HDBSCAN may lack
meaningful structure or exhibit randomness.

According to the evaluation metrics, the study reveals that the supervised learning ap-
proach with the Margin Ranking Loss creates more accurate clusters than the unsuper-
vised learning techniques, but training with a BCE loss function provides different results,
obtaining that the unsupervised algorithms are better than this latter supervised learning
approach.

Keywords: Keyword Clustering, Supervised Learning, Unsupervised Learning, Cluster
Labels, Natural Language Processing, Sentence Embeddings

Abstract in lingua italiana

Il clustering delle parole chiave è un’importante ramo di Natural Language Processing
che può essere adottata da diverse aziende, poiché aiuta a organizzare e raggruppare di-
verse parole chiave. Il clustering delle parole chiave consente alle aziende di comprendere
meglio gli argomenti a cui sono interessati i loro clienti. Questo progetto di tesi for-
nisce un confronto dettagliato di due diversi approcci che potrebbero essere utilizzati per
svolgere questo compito e mira a indagare se la presenza di etichette associate alle pa-
role chiave migliora i cluster ottenuti. Le parole chiave vengono raggruppate utilizzando
sia supervised learning, addestrando una rete neurale e applicando algoritmi di commu-
nity detection come Louvain, sia algoritmi di unsupervised learning, come HDBSCAN e
K-Means. La valutazione si basa principalmente su metriche come NMI e ARI.

I risultati mostrano che il supervised learning può produrre cluster migliori rispetto
all’unsupervised learning. Osservando il punteggio NMI, l’approccio di supervised learn-
ing composto dal training di una rete neurale con Margin Ranking Loss e l’applicazione di
Kruskal raggiunge un punteggio leggermente migliore di 0,771 contro lo 0,693 dell’approccio
di unsupervised learning proposto, ma osservando il punteggio ARI, la differenza è più
rilevante. HDBSCAN ottiene un punteggio inferiore di 0,112 rispetto all’approccio di su-
pervised learning con Margin Ranking Loss (0,296), il che significa che i cluster formati
da HDBSCAN potrebbero mancare di una struttura significativa o presentare una certa
casualità.

In base alle metriche di valutazione, lo studio rivela che l’approccio di supervised learning
con Margin Ranking Loss crea cluster più accurati rispetto alle tecniche di unsupervised
learning, ma l’addestramento con BCE come loss function fornisce risultati diversi, otte-
nendo che gli algoritmi unsupervised sono migliori di quest’ultimo approccio di supervised
learning.

Parole chiave: Clustering di parole chiave, Apprendimento Supervisionato, Apprendi-
mento Non Supervisionato, Etichette dei cluster, Natural Language Processing

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Background . 2
1.2 Problem . 3
1.3 Purpose . 4
1.4 Goal . 4
1.5 Benefits, Ethics and Sustainability . 5
1.6 Research Methodology . 5
1.7 Stakeholders . 6
1.8 Delimitations . 6
1.9 Outline . 6

2 Theoretical Background 7
2.1 Natural Language Processing . 7
2.2 Transformer Architecture . 7

2.2.1 Sentence Embeddings . 8
2.3 Clustering . 10

2.3.1 K-Means . 10
2.3.2 Hierarchical clustering . 11
2.3.3 Density-based clustering . 11
2.3.4 Supervised Clustering . 13

2.4 Evaluation Metrics . 13
2.4.1 Extrinsic Measures . 13

2.5 Community Detection Algorithms . 19

vi | Contents

2.5.1 Louvain . 20
2.5.2 Greedy Modularity maximization 21
2.5.3 Kruskal . 21

2.6 Contrastive Learning . 22
2.7 Loss Functions . 22

2.7.1 Binary Cross Entropy . 23
2.7.2 Contrastive Loss . 23

2.8 Related Work . 24

3 Methodology 27
3.1 Research methods . 27
3.2 Data Collection . 28
3.3 Results Analysis . 29
3.4 Model Design . 30

3.4.1 Supervised Learning . 31
3.4.2 Unsupervised Learning . 31

3.5 Experimental Design . 31
3.5.1 Experiment 1: Supervised Clustering 32
3.5.2 Experiment 2: Unsupervised Clustering 35

4 Implementation 37
4.1 Hardware and Software . 37
4.2 Sentence Embeddings . 38
4.3 Supervised Learning Experiments . 38

4.3.1 Dataset Splitting . 39
4.3.2 Model Training . 40
4.3.3 Creation of Output Adjacency Matrix 44
4.3.4 Community Detection Algorithms 44

4.4 Unsupervised Learning Experiments . 45
4.4.1 HDBSCAN . 45
4.4.2 K-Means using Elbow Method . 45

4.5 Evaluation . 45
4.5.1 Average . 46
4.5.2 Weighted Average . 46

5 Results and Discussion 47
5.1 Experiment 1: Supervised Learning . 47

5.1.1 Comparison BCE - Margin Ranking Loss 47

5.1.2 Comparison Community Detection Algorithms 48
5.2 Experiment 2: Unsupervised Learning . 48

5.2.1 Comparison HDBSCAN - K-Means 49
5.3 Comparison Supervised and Unsupervised Learning 49
5.4 Discussion . 50

6 Conclusions and Future Works 53
6.1 Conclusion . 53
6.2 Limitations . 54

6.2.1 Future Work . 54

Bibliography 57

A Additional Results and Discussion 67
A.1 Results Supervised Learning Experiments 67

A.1.1 BCE . 67
A.1.2 Margin Ranking Loss . 70
A.1.3 Comparison Community Detection Algorithms 71
A.1.4 Comparison BCE - Margin Ranking Loss 71

A.2 Results Unsupervised Learning Experiments 73
A.2.1 HDBSCAN . 73
A.2.2 K-Means with Elbow Method . 74
A.2.3 Comparison HDBSCAN - K-Means 76

A.3 Comparison Supervised and Unsupervised Learning 76

List of Figures 77

List of Tables 79

Acknowledgements 81

1

1| Introduction

Today, there is an inevitable increase in the amount of data that has become available
online and comes from different sources [4]. They have the potential to be helpful to
various kind of businesses and can be used to create value. However, in order to do
this, it is required to work with this data, extracting useful information. One of the
most widely used techniques is clustering [49], which is the process of grouping similar
objects together, based on their similarity, such that items in the same group are more
similar to each other than items in other groups [49, 77]. Clustering algorithms are
becoming important tools for analyzing data, especially to separate large amount of data
into smaller groups. In today’s data-driven world, the ability to automatically group data
into clusters has become critical in several areas, including recommendation systems,
search engine optimization (SEO) and social networks [44]. Organizing and categorizing
data, for example text, is crucial in extracting useful information that can help businesses
to make decisions. By grouping text, companies and organizations can better understand
their data, find out emerging trends and topics, and improve their recommendation engine.
By comprehending the context and themes connected to various types of keywords, they
can make better recommendations to users.

Additionally, this procedure may lead to further applications, like sentiment analysis [72]
and topic modelling [8]. The former is a technique used to determine the emotional tone
expressed in a piece of text, for example a review or a customer feedback. The latter
involves identifying and extracting topics or themes from a collection of documents or
text data.

A variety of community detection algorithms can be used to cluster keywords effectively
[26, 46]. They can be applied to keyword clustering by treating words as nodes in a graph
and examining the similarity relationships among them. Community detection algorithms
can help identify word groups (communities) based on their semantic meaning.

However, traditional community detection algorithms may not always yield optimal results
for keyword clustering as they are unsupervised and do not consider external information
or domain-specific knowledge. This is where supervised clustering algorithms may be

2 1| Introduction

useful [33, 34]. By incorporating additional information such as labeled data, these al-
gorithms may be able to increase the accuracy of the clusters. In supervised clustering,
the algorithm exploits a predetermined set of categories or labels, associated to the data.
The clustering process is then trained and optimized by the algorithm using these labels
[33, 34].

In this thesis, we propose combining the supervised clustering algorithm with several
community detection algorithms such as Louvain [11], one of the most used algorithms for
weighted graphs, to cluster keywords. We aim to find out how well community detection
algorithms work for clustering keywords and if using supervised clustering algorithms
make clusters more distinct and clear than the ones created by unsupervised techniques
[30], such as HDBSCAN and K-Means. The aim is to find out whether having or not
labels associated to text data is helpful to cluster keywords.

1.1. Background

Natural Language Processing (NLP) [15] is the name given to the area of computer science
that helps interpret text, and more specifically, the area of Artificial Intelligence (AI) and
deep learning. This aids in the understanding and processing of text that contains human
language by computers. It is used to translate text between languages [43], responds to
text commands, and so on. It is now being used more frequently than ever [15] because
there are now larger volumes of textual data available and also because machine learning
techniques like word embeddings are being used [8]. One of the challenges regarding NLP
is representing text in such a way that machines can understand [40]. During the last
years, many machine learning approaches have been used to generate embeddings, such as
neural networks [19]. It has been demonstrated that a Transformer-based model [73] is a
class of neural network that performs a variety of NLP tasks quite well [76]. To solve many
issues, the architecture’s design is crucial. Transformers are composed by two main blocks:
encoders and decoders. A Transformer-based encoder (like BERT [22]) is able to produce
embeddings from input sequences, such as text. Embeddings are vector representations
of data points, such as words, phrases, in a continuous numerical space. These vector
representations allow algorithms to work with textual more effectively, as they capture
meaningful relationships and similarities between data points. By converting complex
data into manageable numerical vectors, embeddings enable tasks like text classification,
recommendation systems, and sentiment analysis. In our thesis, we use phrase-BERT [75]
in order to create embeddings, since it is more adapted for creating embeddings of short
phrases and keywords.

1| Introduction 3

In order to group keywords similar to each other, words are considered as nodes within
a network/graph and the similarity relationships between them are examined. There are
several techniques for clustering text data that have been converted into embeddings,
including supervised clustering and unsupervised clustering.

Finley et al. [25] state: "Supervised clustering is the problem of training a clustering
algorithm to produce desirable clusterings: given sets of items and complete clusterings
over these sets, we learn how to cluster future sets of items.". While supervised clustering
uses labeled data [25] for the clustering process to improve the clustering findings accuracy,
unsupervised clustering aims to group similar items without any prior knowledge or labels.
Two popular unsupervised clustering techniques are HDBSCAN [51] and K-means [39].
In many cases, it can be easier to learn from previous and existing correlations between
terms and group them using labeled data.

Text data can also benefit from community detection algorithms such as the Louvain
method [11] and the Kruskal algorithm [45]. Kruskal’s algorithm is primarily used for
finding the minimum spanning tree of a graph, which can be seen as a form of community
detection, as Haponchyk et al. use in their studies [33]. The Louvain method, on the
other hand, is a community detection algorithm used to find communities within large
networks. A variety of clustering metrics [2] can be utilized to assess the quality of the
conclusions, such as F1 Score, ARI, NMI and Fowkles score.

1.2. Problem

A lot of sources can produce data and this has led to find effective methods to extract
valuable information, that can be helpful for a lot of businesses. One of these methods
is clustering, which plays a significant role by grouping similar objects and enabling the
categorization of data. Moreover, the labels associated to the data are not always available
since labelling require humans [65] and it could be a time consuming tasks.

The project is conducted in collaboration with Gavagai AB, a Swedish company focused
on NLP field. The goal is to gather relevant insights from a vast amount of user keywords,
especially we want to find out which the best model approach is (among the ones that
will be presented in Sec. 2.5) that can be used to recommend clusters.

In the word clustering field, different unsupervised community detection algorithms can
be used to identify relevant word groups [79]. When used for keyword clustering, they
might not always produce the best results, leading to the creation of low-accurate clusters.
To solve these challenges, one possible solution could be the use of supervised clustering

4 1| Introduction

training of a neural network and after it the use of community detection techniques. We
use different clustering evaluation metrics which are analyzed in Sec. 2.4.

The research questions that we address in this thesis are the following:

• RQ1: How do supervised clustering techniques compare to unsupervised clustering
techniques in terms of clustering keywords, using evaluation metrics, such as NMI
and ARI?

• RQ2: What are the differences in clustering performance metrics, such as NMI and
ARI, when used to evaluate clusters generated by applying K-Means and HDBSCAN
to keyword embeddings?

• RQ3: What are the key differences in the clustering performance metrics - NMI and
ARI - when these metrics are utilized to assess the outcomes of applying the Louvain,
Kruskal, and Greedy Modularity Maximization algorithms to keyword clustering?

1.3. Purpose

This thesis investigates and explores the efficacy of incorporating supervised clustering
techniques into the process of keyword clustering. By combining and incorporating addi-
tional data in the form of labels, the thesis aims to address the limitations of traditional
unsupervised clustering methods and check whether supervised clustering may enhance
the accuracy of the cluster’s results.

The main objectives of this thesis are assessing the performances of different community
detection algorithms in clustering keywords and investigating the impact of integrating
the use of supervised clustering on the accuracy of keyword clusters.

The thesis aims to contribute to the advancement of keyword clustering techniques and
the research outcomes will provide helpful insights for businesses seeking to extract mean-
ingful information from large amounts of data, for instance improving recommendation
systems. This study’s results will also offer new directions for research in data analysis and
clustering approaches by highlighting the possibility of combining supervised clustering
with community detection algorithms.

1.4. Goal

The thesis seeks to investigate how community detection techniques may be applied to
cluster keywords, represented as phrase-BERT embeddings [75], which captures the se-

1| Introduction 5

mantic meaning of words. The primary objectives are to assess the quality of the results
using clustering metrics and to compare the effectiveness of two methods: supervised
clustering and conventional unsupervised clustering algorithms.

These have been divided into the following sub-goals:

1. Clustering phrase-BERT embeddings using unsupervised community detection tech-
niques, to group similar words together, enabling better categorization of textual
data.

2. Training a model following a supervised learning method, using labeled data, to try
to improve the accuracy of the cluster results.

3. Evaluating and comparing the different clustering approaches.

1.5. Benefits, Ethics and Sustainability

This thesis presents some benefits to those businesses (such as Gavagai AB) that deal
with Machine Learning and NLP tasks. Thanks to the use of NLP techniques, it is
easier to extract information from large amounts of text data. Keyword clustering helps
businesses to categorize data, trying to extract powerful insights, and to improve their
recommendation systems, leading to more accurate recommendations for the customers.

It is also important to handle data privacy: textual data often contains sensitive infor-
mation such as personal details or confidential business data. Another problem could be
dealing with different biased word associations, that can impact the clustering results,
leading to unfair categorization [12].

1.6. Research Methodology

The research method involves the analysis of measurable data and it is also crucial to
quantify and translate the results obtained by different models into numbers. We selected
the empirical method because it enables us to test different models and draw conclusions
based on how they perform, and to do so we need to utilize metrics to determine which
approach is the most accurate, in a quantitative way.

In this thesis project, the objective is to compare the clustering metrics obtained with
different experimental approaches. First of all, we train using a supervised clustering
approach, and then using the community detection techniques we create clusters. Sec-
ondly, we cluster word phrase-BERT embeddings in an unsupervised approach. Finally,

6 1| Introduction

the research methodology ends with a comparison of the outputs and a discussion about
the results.

1.7. Stakeholders

There could be different stakeholders that might be interested in the results and outcomes
of this thesis, such as businesses, data scientists and researchers, which deal with NLP
and word embeddings, but mainly the company which will use the results of this thesis
project to find out a way to better recommend clusters to users. This research contributes
to the improvement of keyword clustering techniques and remove up novel opportunities
for investigation in supervised clustering algorithms.

1.8. Delimitations

One of the major limitations of this thesis is the choice of the right clustering metric to
evaluate the results. Where there are many different methods for analysing the results
obtained by the algorithms, it is fundamental selecting the appropriate metrics to provide
relevant final explanations. In this thesis, since we have access to ground truth (labeled
data), where the true cluster assignments are known, we use external evaluation metrics
that compare the clustering results to the ground truth (as we discuss in Sec. 2.4).

Another limitation for future research regarding this topic is the use of a proper dataset,
containing text and the labels associated to it. As we describe in Sec. 3.2, the company
provided a helpful dataset containing all the information needed to conduct this research.

1.9. Outline

This thesis is organized as follows: in Chapter 2 we introduce the relevant theory and
background regarding NLP, Supervised Clustering, Community Detection algorithms, the
Loss functions and the related work. In Chapter 3, we present the details of the research
methodology and then the data used for the experiments. Chapter 4 presents the im-
plementation details. In Chapter 5 we present the results of the experiments, that are
discussed in Chapter 6, where we propose future directions and work for the research.
Appendix A contains additional results from the experiments.

7

2| Theoretical Background

This chapter introduces the extended background of this thesis research, covering the
theory needed for the project. Section 2.1 explains the theory about Natural Language
Processing. Section 2.2 focuses on Transformers and Sentence Embeddings. Section 2.3
provides a general overview on clustering, with a focus on Supervised Clustering. Section
2.4 describes the evaluation metrics for assess the quality of the outcomes, obtained with
different Community Detection Algorithms, described in the Section 2.5. Section 2.6
focuses on Contrastive Learning, used for running some experiments and Section 2.7
describes the loss functions of this research project. Finally Section 2.8 covers related
works, regarding this topic.

2.1. Natural Language Processing

Natural Language Processing (NLP) [15] enables computers to understand and interpret
human language in a meaningful and useful way. The input and output for a NLP system
can be speech and/or written text.

The first research regarding NLP began in the 1950s as the intersection of artificial intel-
ligence and linguistics [36, 55], and in the last twenty years it has been widely used for
different tasks and purposes [16], such as sentimental analysis [72], topic modelling [41],
information retrieving, language translation [36].

For performing these tasks, it is necessary to convert the raw text into a suitable represen-
tation that computer systems can understand. To convert unprocessed text into suitable
representations for computer processing, there is a range of approaches, such as word
embeddings [53] or sentence embeddings [22].

2.2. Transformer Architecture

The Transformer architecture was described for the first time by Vaswany et al. [73].
Transformer-based models are an appropriate neural network design for processing input

8 2| Theoretical Background

sequences, being successful for many NLP projects. Recurrent Neural Networks (RNNs)
[70] were replaced by transformer-based architectures for the resolution of tasks requiring
the processing of input sequences. Transformers present many advantages over RNNs,
such as the fact that Transformer models are unaffected by the vanishing gradient issue.
Additionally, Transformers can handle entire input sequences, while RNNs process one
part of the complete input sequence at a time.

Transformers are powerful models that are designed to process sequential data (sentences,
documents) and can capture contextual information and relationships between words, us-
ing the Attention mechanism, originally described by Vaswani et al. [73]. This component
captures relationships between words in a sequence, allowing models to focus on relevant
parts of the input sequence. The Transformers are capable to convert text (such as words,
sentences, and paragraphs) to a fixed-length dimensional dense vector.

Encoder and decoder parts compose the Transformer architecture. At a high level, the
Transformer architecture utilizes a mechanism called self-attention to handle sequential
data, such as text. Self-attention enables the model to take into account both local and
global relationships between words by weighing the relative importance of various words
in a sentence as each word is processed.

2.2.1. Sentence Embeddings

A sentence embedding is a numerical representation of a sentence that captures its mean-
ing and context [64]. Unlike word embeddings, which represent individual words, sentence
embeddings represent entire sentences. Word Embeddings technique focuses on individual
words and provides effective representations for words in a continuous vector space, where
words with the same meaning are represented similarly. Sentence Embedding models serve
as a kind of interpreter between people and computers. These models, in particular, con-
vert textual data (sentences) into a machine-understandable n-dimensional vector.

A global word embedding is learned by using conventional word embedding techniques.
They begin by developing a general vocabulary using words that are specific to the docu-
ments while ignoring the meaning of words in various contexts. The words that appeared
more frequently close to one another in the documents are then taught similar represen-
tations. The issue is that such word representations ignore the contextual meaning of
the words. For instance, only one representation of the word "left" is learned when it
appears in the sentence "I left my phone on the left side of the table." However, because
"left" has two different meanings in the sentence, the embedding space must also have two
different representations for it. On the other hand, contextual embedding techniques take

2| Theoretical Background 9

into account the order of all the words in the sentence to learn sequence-level semantics.
Therefore, depending on their context, these techniques learn various representations for
polysemous words, such as "left".

There are several ways to create sentence embeddings, such as BoW [66], TF-IDF [1] and
Phrase-BERT [75]. Bidirectional Encoder Representations from Transformers (BERT) is
a pre-trained transformer [73] network introduced in 2018 [22]. In contrast to earlier mod-
els that only took into account left-to-right or right-to-left context, BERT’s bidirectional
nature enables it to capture context from both directions (left and right) of a word in a
sentence. The BERT model’s Sentence-BERT (SBERT) [68] variant was created specif-
ically to produce fixed-length sentence embeddings. While BERT and SBERT are both
based on the Transformer architecture and have many similarities, SBERT is more suited
to specific tasks and scenarios because it focuses on creating semantically meaningful sen-
tence representations. For the purpose of this thesis, we use Phrase-BERT [75]. Instead
of other sentence embedding models, Phrase-BERT performs well with short phrases and
keywords, being helpful for our task.

Phrase-BERT

Sentence Transformers, such as Phrase-BERT [75], can be used to create word embeddings,
mapping the words to a 768-dimensional dense vector space. Phrase-BERT is a simple but
effective method to improve phrase embeddings from BERT using a contrastive learning
approach (Sec. 2.6).

Wang et al. [75] show that Phrase-BERT embeddings can be easily integrated with a
simple autoencoder to build a phrase-based neural topic model that interprets topics as
mixtures of words and phrases by performing a nearest neighbor search in the embedding
space. Phrase-BERT focuses on short text during pretraining, like phrases and words.

Using a contrastive learning approach, the authors have trained Phrase-BERT to place
semantically similar phrases and words closer together and push apart different concepts,
exploiting a triplet loss. Wang et al. [75] demonstrate that Phrase-BERT outperforms
baselines (such as Sentence-BERT [68]) across a variety of phrase-level semantic tasks,
while also showing increased lexical diversity between nearest neighbors in the vector
space. Another advantage regarding the use of Phrase-BERT against BERT is the pro-
duction of embeddings which do not raise any ethical concerns, regarding genders and
racial biases [29].

Some examples of how the textual words are converted into arrays of numbers to be fed

10 2| Theoretical Background

into the neural networks are provided in the table 2.1.

Term Sentence Embedding
service [0.123, 0.456, 0.789, 0.321, ...]

customer [0.987, 0.654, 0.321, 0.789, ...]

Table 2.1: Example of word embeddings.

2.3. Clustering

Clustering is the task used to divide a dataset, composed by unlabeled data, such as nodes,
and documents, into different groups or clusters, based on the similarity among the nodes.
The aim of the clustering process is to have clusters such as nodes that are in the same
group are more similar than nodes that are in different groups. It is an unsupervised
learning method because it does not require the need for human intervention and it is
used to process unclassified data objects into groups represented by patterns, to find
meaningful structure.

We can define a cluster as a good cluster when the data points in the cluster are similar
to each other (small within-cluster variance) and clusters are different from other clusters
(large between-cluster variance) [7].

There are different techniques that can be used for clustering, such as K-Means [39],
hierarchical clustering [18], and density-based clustering [24], each of them with strength
and weaknesses.

2.3.1. K-Means

K-Means is a centroid-based clustering algorithm, computationally efficient and adapt to
be used with large datasets. This algorithm divides the dataset into K clusters, where
K is a hyperparameters defined in advance by the user. By assigning data points to
the nearest centroid and updating the centroid positions until convergence, K-Means
algorithm works iteratively. One of its drawbacks is that this algorithm needs to know in
advance the number of K clusters and it is sensitive to the initial centroids selection.

One technique used to determine the optimal number of clusters is the Elbow Method. It
involves plotting the number of clusters against the within-cluster sum of squares (WCSS),
which measures the compactness of data points within each cluster. The elbow point in
Fig. 2.1, where the rate of decrease in WCSS significantly slows down, suggests the

2| Theoretical Background 11

Figure 2.1: Elbow Method for selecting the optimal number of clusters.

appropriate number of clusters that balances minimizing WCSS and avoiding overfitting
or underfitting.

2.3.2. Hierarchical clustering

Hierarchical clustering is based on the developing of the hierarchy of clusters in the form
of a tree, called dendrogram. It is a representation of the clusters evolution (the merges
of the clusters) during model training. This technique can be computationally expensive
for large datasets and it starts by considering each data point as an unique cluster, then
repeatedly merge clusters that are closest to each other until all data points are in a single
cluster or a certain number of clusters are achieved.

2.3.3. Density-based clustering

Density-based clustering algorithms, such as DBSCAN (Density-Based Spatial Clustering
of Applications with Noise), identify different clusters in the data, knowing that a cluster
is a contiguous region of high point density, separated from other such clusters by other
regions of low point density.

For this thesis project, as for the unsupervised approach, we use K-means with the Elbow
method and HDBSCAN to cluster the keywords, without the use of human labels, and at
the end we compare the results to see whether human labels are useful or not to create
clusters.

12 2| Theoretical Background

HDBSCAN

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
[51] is a density-based clustering algorithm, created to overcomes some of DBSCAN’s
limitations [24], regarding parameters’ choice (the tuning of Epsilon and Min Points in-
volves a lot of trails) and the handling of different densities clusters. It extends the
concepts of DBSCAN to provide a hierarchical clustering structure.

One of the advantages of HDBSCAN is that you do not need to specify in advance the
number of clusters. This algorithm is composed by 5 steps:

1. Transform the space: the algorithm is used to find clusters in noisy data. It uses den-
sity estimation to distinguish denser regions ("land") from sparser regions ("sea").
It uses a core distance metric based on the distance to k-th nearest neighbor, to
identify sea points an spread them apart. The mutual reachability distance met-
ric is introduced to push sparse points away from each other, while keeping dense
points’ relative distances. It helps approximate the hierarchy of density distribution
in single linkage clustering.

2. Build the minimum spanning tree: the mutual reachability metric is used to con-
struct weighted graph representation of the data, in order to identify islands of dense
data that can be the clusters that we are looking for. Adjusting a threshold value,
edges with low weights can be removed, disconnecting the graph into connected
components. Using Prim’s algorithm, the minimum spanning tree of the graph is
found and it represents the hierarchy of connected components, based on the mutual
reachability distance.

3. Build the cluster hierarchy: the algorithm extracts the hierarchy of connected com-
ponents from the minimum spanning tree found in the previous step.

4. Condense the cluster tree: the hierarchy is traversed and for each split the size of
the new clusters is compared to an additional parameter: minimum cluster size. If
the size is lower than the parameter, the points are marked as "points falling out of
a cluster".

5. Extract the clusters considering the persistence of each cluster.

HDBSCAN has many advantages over other clustering algorithms. It has a few hyperpa-
rameters that can be tuned to achieve better results, such as the minimum cluster size,
the minimum samples required to form a cluster, and the maximum distance between
points in a cluster. It can discover clusters of varying shapes and sizes. This can be done
through the use of a density-based strategy, which enables to find clusters based on the

2| Theoretical Background 13

local density of the data points. It is able to find those points that do not belong to
any clusters. This is useful in applications like outlier detection, where it’s necessary to
recognize data points that are different from the rest.

2.3.4. Supervised Clustering

Supervised Clustering (Sec. 1.1) is a type of clustering technique that uses labeled data to
guide the clustering process. The goal is to create groups of similar data points using the
known class labels or ground truth information. It is useful when there is prior knowledge
about the structure of the data.

Supervised and unsupervised learning have a number of challenges, one of which is deter-
mining the quality of the results produced by clustering approaches.

2.4. Evaluation Metrics

Finding the right metrics to evaluate the results can be challenging, since several metrics
can be used. Each of them has their own advantages and drawbacks. There are various
types of metrics, depending on the type of task we are trying to accomplish and the type
of data that we have. According to the presence or not of the ground truth labels, there
are two different clustering evaluation metrics [21]:

• Extrinsic Measures: these metrics require ground truth labels to evaluate the
performance of a clustering algorithm.

• Intrinsic Measures: these metrics do not require ground truth labels and evaluate
the quality of clustering based on internal criteria, such as cluster compactness and
separation.

2.4.1. Extrinsic Measures

Precision, Recall, and F1 score are common extrinsic measures [9, 56, 61], but there are
also Rand Index, Mutual Information and Fowlkes-Mallows Score.
The aim of these evaluation metrics is to compare the ground truth, composed by the
prior knowledge’s labels from the dataset P = {P1, P2, . . . , Pm} to the label’s results of
the community detection algorithms, that are a potentially different partition of the data
C = {C1, C2, . . . , Cs}. The following terms are used to evaluate the performance of a
clustering algorithm by comparing the predicted clusters with the ground truth clusters

14 2| Theoretical Background

[61].

Precision - Recall - F1 Score

Haponchyk et al. [34] use Precision and Recall (and the combination of both these mea-
sures: F1 Score) as two measures to define and compare the results of the analysis of the
experiments. These both metrics have range [0, 1]. They compare the output clustering
to the ground truth and to do so, they assign ĉj to the most frequent gold class (cluster)
and then compute the clustering’s average Precision over the clustering as:

Precision =
1

N

k̂∑
j=1

max
i

|ci ∩ ĉj| (2.1)

In Eq. 2.1, N is the number of points to be clustered and k̂ the number of output clusters.
This metric corresponds to the standard clustering purity defined Zhao et al. [81]. It is
the percent of the total number of objects (data points) that were classified correctly.
Instead, the Recall is defined as:

Recall =
1

N

k∑
j=1

max
i

|ĉi ∩ cj| , (2.2)

where k is the number of gold standard clusters.

Precision and Recall are both important measures of the performance of a clustering algo-
rithm. More intuitively, one can say that precision measures how accurate the clustering
algorithm is, while recall measures how complete the clustering algorithm is [2, 61]. Using
Precision and Recall, it is possible to compute the clustering F1 metric, which is the
harmonic mean of precision and recall.

F1 =
2× Precision × Recall

Precision + Recall
(2.3)

The F1 score is a good measure of both precision and recall, and it is often used as a
single measure of the performance of a clustering algorithm [2].

As mentioned before, extrinsic measures require ground truth labels (for example thank to
manual labeling by humans). Other metrics that can be used to evaluate the performances
are Mutual Information, Rand Index and Fowkles-Mallows Scores [21].

2| Theoretical Background 15

Mutual Information

Mutual Information (MI) [50] is a function that measures the agreement of two assign-
ments (in our case ground truth class and clustering algorithm), ignoring permutations.
This measure is built on the Shannon Entropy of information theory: the entropy of a
cluster is a measure of the homogeneity of the data points inside the cluster and allows
the measurement of the degree of disorder in the clustering results [61]. It quantifies
uncertainty and entropy decreases as the uncertainty decreases.

For a discrete random variable X with possible outcomes x1, x2, ..., xn and corresponding
probabilities p1, p2, ..., pn, the entropy is defined as:

H(X) = −
n∑

i=1

p(xi) log p(xi) (2.4)

where p(xi) is the probability of a data point being classified as c in cluster x.

If a cluster has low entropy, it means that the data points are similar to each other and
belong to the same class (high degree of homogeneity). The entropy of a cluster reflects
how the members of the k categories are distributed within each cluster.

A higher score of MI means higher similarity. This measure tells you how these two
assignments agree to each other, i.e., how much information they share about each other.
This measure is symmetric, meaning that the mutual information between the variables
X and Y is equivalent to Y and X: I(X;Y) = I(Y ;X).The measure ranges between 0 and
1 and the mutual information between two variables it is defined as:

I(X;Y) = H(Y)−H(X|Y) (2.5)

where H(X|Y) is the entropy of class labels Y within each cluster C. Substituing Eq. 2.4
in Eq. 2.5, the measure can also be written as:

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y)log
p(x, y)

p(x)p(y)
(2.6)

In Fig. 2.2, we can see how the mutual information is represented.

16 2| Theoretical Background

Figure 2.2: The intersection between the two circles that represent the individual entropies
of the two variables is the mutual information I(X;Y).

Source: McDaid et al. [50]

Normalized Mutual Information

Normalized Mutual Information (NMI) [50] ranges between 0 (no mutual information)
and 1 (perfect correlation) and it a symmetric function. A NMI value of 1 between two
clusters means perfectly similar clustering, whereas a value of 0 means perfectly different
clustering [47]. NMI is the mutual information divided by the average of the cluster
entropies. The NMI value between two clusterings C and C ′ is measured as:

NMI(C,C ′) =
2 · I(C;C ′)

H(C) +H(C ′)
(2.7)

The Eq. 2.7 is derived by normalizing the mutual information by the sum of the entropies
of the individual clusterings. One advantage of NMI is that it is easy to measure and
compare the value between various different clusters having various numbers of nodes
because it has been normalized [6]. Moreover, a permutation of the cluster label values
will have no effect on the score value since this measure is independent of the labels’
absolute values.

Rand Index

Rand Index (RI) [67] measures the similarity between two partitions, ignoring permuta-
tions, to evaluate the performance of a clustering algorithm. It is used to compare the
actual class labels with the predicted cluster labels. Similar clusterings have a high Rand
Index, which is a value between 0 and 1. The value 0 indicates that there is no agreement
between the two data clusterings on any pair of points, and the value 1 means that they
are precisely the same. It is defined as:

2| Theoretical Background 17

RI =
a+ b(

n
2

) (2.8)

In Eq. 2.8, a is the number of data points pairs that are assigned to the same cluster in
both the predicted and true clustering, and b is the number of data points pairs assigned
to different clusters in both the predicted and true clustering. n is the total number of
data points. The binomial coefficient represents the number of unique pairs that can be
formed by a set of n items and it can be represented by n(n−1)/2. One of the drawbacks
of using RI is that it does not consider the possibility of agreement occurring by chance
[54]. Two clusterings might have a high RI even if they have little in common and they
are the result of random chance. For instance, if the cluster assignment was random,
there might be different cases of "true negatives". We would like to have random label
assignments to have scores close to 0, and to do so, we require adjusting for chance, using
the following evaluation metric.

Adjusted Rand Index

Regardless of the number of clusters and samples [21], the Adjusted Rand Index (ARI)
[37] guarantees a value near 0 for random labeling and an exact 1 value for identical
clusterings. It ranges from -1 to 1, and -1 indicates that the two clusterings are completely
different. ARI is still a measure of the similarity between two data clusterings, and it
alters RI to take into account the likelihood that some agreement between two clusterings
could happen by chance. This measure may have negative values for severely discordant
clusterings because of the chance adjustment. This occurs when the agreement between
the two clusterings is lower than what would be predicted if the cluster assignments were
generated at random [13].

ARI =
RI − E[RI]

max(RI)− E[RI]
(2.9)

In Eq. 2.9, E[RI] is the expected value of the Rand Index under the assumption of
independence and max(RI) represents the maximum possible value of the Rand Index.

If the results have an ARI close to 0, then it means that the result will be almost as good
if you randomly permute all labels. A low ARI indicates a poor result.

18 2| Theoretical Background

Fowlkes-Mallows Scores

The Fowlkes-Mallows index (FMI) [28] is an evaluation metric and it is defined as the
geometric mean between precision and recall:

FMI =
TP√

(TP + FP)(TP + FN)
(2.10)

where:

• True positives (TP): the number of pairs of data points that are correctly assigned
to the same cluster in both clusterings.

• False positives (FP): the number of pairs of data points that are incorrectly
assigned to the same cluster in both clusterings.

• True negatives (TN): the number of pairs of data points that are correctly iden-
tified as belonging to different clusters.

• False negatives (FN): the number of pairs of data points that are incorrectly
assigned to different clusters in both clusterings.

The range of FMI is between 0 and 1, where a score of 1 indicates a perfect match
between the predicted and true cluster labels. The Fowlkes-Mallows score is based on the
intersection and union of the two clusterings and it is a more robust measure than the F1
score, as it is not as sensitive to outliers.

Summary Evaluation Metrics

In Table 2.2, we summarize the metrics used for the experiments and for responding the
research question, defined in Section 1.2.

Metric Description

F1 Score It is the harmonic mean of Precision and Recall [2].
ARI It accounts for chance agreement and is suitable for comparing clus-

terings with varying sizes [37].
NMI It normalizes the mutual information which quantifies the shared in-

formation between two clustering [50].
Fowlkes It is a metric that calculates the geometric mean between precision

and recall [28] .

Table 2.2: Summary of Clustering Evaluation Metrics used in this project.

2| Theoretical Background 19

2.5. Community Detection Algorithms

This section investigates the use of community detection algorithms in keyword clustering.
The term community refers to a set of nodes in a network where nodes inside the com-
munity have more internal connections than external connections [27]. These algorithms
are used to find and identify groups of nodes similar among them and they have different
applications across various field, such as social network analysis, recommendation sys-
tems [82]. As we can see in Fig. 2.3, in this graph we have three different communities,
represented by grey areas.

Figure 2.3: Communities in a graph.
Source: Newman et al. [59]

The graph networks can be represented in different ways: weighted and unweighted. In
unweighted graphs, the edges between nodes indicate whether those nodes are connected
or not, without considering any strength of the connections. On the contrary, weighted
graphs are characterized by values on the edges between nodes, representing the similarity
of the connections. To better represent the nodes n and their connections inside a graph
G, we can use adjacency matrices [71]. An adjacency matrix A is a square matrix where
aij indicates whether vertices i and j are adjacent (connected) in a graph.

For unweighted graphs aij is either 1 (indicating a connection) or 0 (no connection).

A ∈ Rn×n, ai,j ∈ {0, 1}; i, j ∈ 1, ..., n

In the case of weighted graphs aij takes on numerical values representing the weight of
the connection between nodes i and j.

A ∈ Rn×n, ai,j ∈ R; i, j ∈ 1, ..., n

20 2| Theoretical Background

n represents the number of nodes in a graph. When a graph is symmetric it is also defined
as undirected: the presence of an edge between node A and node B implies the existence
of an edge between node B and node A. The number of combinations Nc in a symmetric
graph is the total amount of non-symmetric pairs of nodes n in the graph G.

Nc =
n(n− 1)

2
(2.11)

In the following sections, we discuss in detail about different algorithms that can be used
for detecting clusters inside graphs.

2.5.1. Louvain

The Louvain method [11] is a widely used algorithm for detecting communities in net-
works. This is a heuristic method based on modularity optimization that run in time
O(n · log n), where n is the number of nodes in the network [46]. The modularity is a
measure that is used to evaluate the quality of a partition in a graph and it a scalar
value that ranges between -1 and 1. "Modularity is a measure of the structure of a graph,
measuring the density of connections within a module or community" [59]. High modu-
larity score means that the graph has many connections within a community, but only
few connections that point outwards to other communities. In the weighted networks, the
modularity is defined as [58]:

Q =
1

2m

∑
i,j

[(
Aij −

kikj
2m

)
δ(ci, cj)

]
(2.12)

Here Aij represents the weight of an edge between the two nodes i and j; ki and kj

represent the degrees of the nodes; ci and cj represent which is the community of nodes
i and j, respectively; m represents the sum of all edge weights in the graph, and δ(·, ·) is
the delta function, which corresponds to 1 when ci is equal to cj and 0 otherwise.

This algorithm is divided in two phases that are repeated iteratively and its aim is to find
high modularity partitions. In the first step, it assigns every node of a weighted network
of n nodes to N different communities, to have the same number of communities and
nodes. Afterwards, for each node, it moves each node to all of its neighbor communities,
trying to find the maximum positive modularity. If there is no positive gain, the node
remains in its original community. This process is applied repeatedly and sequentially for
all nodes until there is no improvement. The final output of this algorithm is a hierarchical

2| Theoretical Background 21

community structure.

2.5.2. Greedy Modularity maximization

Clauset et al. [17] have presented a hierarchical agglomeration algorithm for detecting
communities in a graph, using a greedy modularity optimization. It proves faster than
competing algorithms [17] with a complexity of O(md · log n), where n is the number
of vertices in a network, m number of edges and d is the depth of the dendrogram that
describes the community structure. This algorithm was created to be time efficient for
large dataset, since the authors have developed it using a big Amazon dataset. The
aim is to find the community partition with the largest modularity. Greedy modularity
maximization begins with each node in its own community (hierarchical) and repeatedly
merges the pair of communities that lead to the largest modularity until no further increase
in modularity is possible.

2.5.3. Kruskal

Kruskal algorithm [45] is a greedy algorithm used to find the Minimum Spanning Tree
(MST) of a weighted graph G. This algorithm can be also used for clustering, as
Haponchyk et al. do in their studies [33]. In order to find clusters, Kruskal is used
as an inference step to find a Maximum Spanning Tree h on G. This algorithm is based
on the principle of choosing the available edge with the lowest/highest (according to the
the chosen spanning tree) weight value that does not create a cycle. It finds an optimum
solution at every stage of the iteration of the algorithm, instead of focusing on a global
optimum, forming a minimum spanning tree with the selected edges. In a graph with E
edges and V vertices, the time complexity is O(E logE) or O(V log V).

The Kruskal algorithm starts from edges with the lowest weight values, keeps adding the
edges until the goal is reached. First of all, sort all the edges in a non-decreasing order of
their weights. After it, take and add to the spanning tree the edge with the lowest weight,
only if that edge does not create any cycles. Keep adding edges until all the vertices are
reached, to obtain a minimum spanning tree at the end.

By computing a Maximum Spanning Tree h instead of a Minimum Spanning Tree, the
algorithm finds those pairs of nodes with a high weight value on the edge. The higher the
weight, the more similar the nodes and they will be placed together in the same cluster.

22 2| Theoretical Background

2.6. Contrastive Learning

Contrastive Learning [48] is a deep learning technique, based on the comparison between
pairs of instances, given as input. It is used to learn representations of data in such a
way that similar data points (positive pairs) have similar representations in embedding
space, than the dissimilar data points (negative pairs). Samples are compared against
each other, and those samples that belong to the same distributions are pushed toward
each other in the embedding space, while the ones that have different distributions are
pulled against each other. Two instances belonging to the same class lie close to each
other in the embedding space are considered a positive example denoted d+, and those
belonging to different classes lie at a greater distance from each other are considered a
negative, denoted d−. Thus, a contrastive learning model tries to minimize the distance
d+ and maximize the distance d−. So the goal is to learn how to discriminate data points
that belong together from those that do not. Two word embeddings belonging to the same
cluster should stay close to each other in the embedding space d+ and those belonging to
different clusters should stay at a greater distance from each other d−. The contrastive
learning model tries to minimize the distance d+ and maximize the distance d−.

Becker et al. [10] showed for the first time how to learn in a contrastive way using pairs
of data as input: the similarity of positive pairs should be higher than the similarity of
negative pairs.

Supervised Contrastive Learning (SCL) [42] is a variant of contrastive learning that in-
corporates supervised information into the learning process. SCL is a training framework
that combines supervised learning with contrastive learning principles. By encouraging
similar samples to be closer together in the learned feature space while pushing dissimilar
samples apart, it aims to improve the representation learning process.

The machine learning models used for contrastive learning learn what makes the data
points similar and dissimilar, using loss functions. The final goal for each contrastive loss
function is to minimize the distance between samples.

2.7. Loss Functions

A loss function in a neural network is a function that compares the target y and predicted
output values ŷ (see 2.13). It measures the model’s quality during training and offers
a mathematical framework for updating the model’s weights. The goal of the training
process is to reduce this function in order to get the best possible model configuration.

2| Theoretical Background 23

loss = L(ŷ, y) (2.13)

According to the loss value, the model can be updated to get the best results. This
section describes the two loss functions used in the thesis project: Binary Cross Entropy
and Margin Ranking Loss.

2.7.1. Binary Cross Entropy

Binary Cross Entropy (BCE) is a loss function in machine learning, particularly used in
binary classification tasks. It measures the dissimilarity between predicted probabilities
and true binary class labels. The formula of the Binary Cross Entropy loss LBCE is defined
as:

LBCE(ŷ, y) = − (y log(ŷ) + (1− y) log(1− ŷ)) (2.14)

In Eq. 2.14, y is the true binary label (0 or 1) of the sample and ŷ is the predicted
probability of the positive class (between 0 and 1). It has several advantages: it is a smooth
and continuous function such that it can be optimized using gradient-based methods, and
it is also convex, which means that it has a unique global minimum. By training a model
using BCE, the output is composed the similarity (represented in percentage) between
two nodes: two similar nodes should have a greater similarity value than two dissimilar
nodes.

2.7.2. Contrastive Loss

Chopra et al. [14] created a similarity metric to keep similar points together and push
dissimilar point, called Contrastive Loss. This metric-learning loss was used for the first
time for dimensionality reduction [31]. The authors compare the pair of embeddings with
Euclidean Distance: the smaller the distance, the closer the representations; the larger
the distance between two dissimilar points, the more negative the loss becomes.

Margin Ranking Loss

The final goal for each contrastive loss function is to minimize the distance between
samples. Margin Ranking Loss compares the distance between positive pairs (similar
instances of the same cluster) and negative pairs (instances belonging to different clusters)

24 2| Theoretical Background

in the feature space.

It measures the loss given two inputs x1, x2, and the target label y. The two inputs are
the feature representations of two instances and the label contains either +1 or -1, used
to indicate whether the instances are similar or dissimilar. If y = +1, the first input
x1 should be ranked higher because it has a larger value than the second input x2, and
vice-versa for y = −1. By adjusting y value, it is possible to bring similar nodes closer to
each other and push away dissimilar nodes in a graph [34].
The Margin Ranking Loss function LMRL for each pair of samples is defined as follows:

LMRL(x1, x2, y) = max(0,−y · (x1 − x2) + margin) (2.15)

In Eq. 2.15, the margin is a hyperparameter that defines the minimum desired distance
between positive and negative pairs.

2.8. Related Work

Haponchyk et al. [34] state "Supervised clustering has been shown particularly effective
for the NLP task". It has been shown that supervised techniques tend to be effective
in grouping similar keywords together, which can be useful in improving search engine
optimization, recommendation systems and content categorization. The use of supervised
clustering techniques for keywords is a powerful tool for improving the accuracy of key-
word grouping and it is expected to become even more prevalent in the coming years,
with the increasing availability of data and the growing need for improved search and
recommendation systems.

One possible approach to supervised clustering, analyzed in [33, 34] is using Neural Su-
pervised Clustering (NSC) models, based on Latent Structural Support Vector Machines
(LSSVM) and Latent Structural Perceptron (LSP) and on a latent representation of clus-
ters using graph structures. In their studies, Lin et al. and Zhang et al. [78, 80] focused
on intent clustering, which is about discovering new intents (expected questions) using
limited knowledge over intent data, taking advantage of labeled data. Moreover, the au-
thors design neural networks based on latent structured prediction loss and Transformer
models to approach supervised clustering. Lin et al. and Zhang et al. test their methods
on the task of automatically recreating categories of intents from publicly available ques-
tion intent corpora and they found that their methods achieve state-of-the-art results.
Their methods rely on pre-trained language models such as BERT (Bidirectional En-

2| Theoretical Background 25

coder Representations from Transformers), which can be computationally expensive and
domain-specific. In this degree project, we rely on using a pre-trained language model
(Phrase-BERT, for its ability to properly embed both phrases and words) focused on
clustering keywords.

Haponchik et al. [34] present a supervised clustering method based on hierarchical agglom-
erative clustering (HAC) with pairwise similarity scores derived from word embeddings.
They find that their method outperforms baseline methods such as k-means clustering
or HAC with cosine similarity on both datasets in terms of cluster purity and normal-
ized mutual information (NMI). However, their method requires manual annotation of
questions into intents for training data, which can be costly and time-consuming. The
same authors also proposed a model for optimizing a structural clustering loss with neural
networks, with the goal of training a model with a scoring function such that the correct
clustering is scored higher than incorrect clusterings. Their approach is based on mapping
the elements into nodes of a fully-connected undirected graph G for an input x, with nodes
representing elements xi of the input x and edges representing all pairwise links between
them (xi, xj)

2. Any spanning forest h on G translates directly into a clustering y: the
nodes in each linked component (spanning tree) of h are meant to be members of the same
cluster. To find and detect the clusters, Haponchik et al. [34] used the Kruskal algorithm
to find the maximum spanning forest. They have trained a basic simple feed-forward
neural network, with ReLU activation functions. The pairwise encoder is trained to score
positive edges higher than negative edges, which correspond to the pairs of questions that
the authors have analyzed. However, none of the aforementioned papers tackling super-
vised clustering leverage community detection. Moreover, no one has discussed about
supervised learning applied to keywords yet.

27

3| Methodology

This chapter describes the strategies used to answer the research questions in Sec. 1.2.

In order to fully answer the research questions, we use a comparative approach to measure
different models. At the end, we analyze and evaluate the results. To make the explanation
and analysis of my experiments clearer in this chapter, I included several self-explanatory
illustrations.

3.1. Research methods

This degree project follows a quantitative approach in order to answer the research ques-
tion [38]. To do so, we employ the experimental research method, quantitatively evalu-
ating the performance of different models and different hyperparameters. The evaluation
will be done using the same data set, that will be discussed in Sec. 3.2, keeping any other
experimental variable constant, for instance the training and testing split. The quality
of the output clusters obtained by applying different algorithms is evaluated using the
clustering metrics described in Sec. 2.4. The details of the research methodologies are
shown in Fig. 3.1. In few words, we perform different experiments on the text embed-
dings. One of our goals is to see whether clustering word embeddings is better following
a supervised learning technique or not. Based on the collected quantitative results, we
draw our conclusions.

The output from the supervised learning approach is composed by adjacency matrices
(see Sec. 2.5), which represent the graphs. From them, we can extract the clusters with
community detection algorithm which will be evaluated with the evaluation metrics. In
Fig. 3.2, we can see how the comparison and evaluation work. After that, we compare
the results of the comparison to state the conclusions. The output from the unsupervised
algorithms are clusters.

28 3| Methodology

Figure 3.1: The high-level overview of the research methodology.

Figure 3.2: General view on the cluster evaluation.

3.2. Data Collection

To execute the experiments and facilitate the project, the company furnished me with
a dataset comprising nearly fifteen million labeled keywords. It is composed by four
different attributes described below:

A dataset example of the tuples can be found in table 3.2.

The average length of the text is one word, so it means that the dataset is mainly composed
by keywords. In the dataset, there are 46 unique language values, such as English, French,
Swedish, Italian and so on. For the purpose of this thesis, we focus only on the English

3| Methodology 29

Attribute Description

MD5 Indicates the keyword’s label. If two keywords have the same MD5
value, it means that they belong to the same cluster.

Term The keyword itself, the text data that will be converted into a word
embedding.

UserId Indicates the user who belongs to the text data.
Language Specifies the language of the keyword.

Table 3.1: Description of the dataset’s attributes.

MD5 Term UserId Language

a0e8f907 price 12345 EN
b76cd2fe tjänst 67890 SV
a0e8f907 cost 12345 EN

Table 3.2: Example of the dataset.

terms, to be more consistent with the results, but as we will discuss in Sec. 6.2.1, regarding
the future works of the project, it is possible to analyze another language to see whether
the results are similar or not.

By selecting only the English terms, at the end for our experiments we have 465 unique
users and 2 millions tuples. After having performed some data analysis, we notice how
the dataset is mainly composed by business keywords, and that is why this degree project
is suitable for those companies that deal with these terms.

To proceed with the experiments, we need to create another attribute which contains
the embeddings values (Sec. 2.2) of the keywords. To do so, we apply phrase-BERT,
explained in Chapter 4. Afterwards, these values are fed into the deep learning models
and/or unsupervised algorithms that we analyze in the following sections.

3.3. Results Analysis

We need an adequate data analysis approach to assess the data after the results have been
collected. The experiments to answer the research questions use quantitative research. We
compare the evaluation metrics on the clusters obtained by the algorithms (Fig. 3.2): we
obtain the clusters from the adjacency matrices which represent the graphs. To do so, as
we analyze in Sec. 3.5, we need to run several experiments with different hyperparameters.

30 3| Methodology

3.4. Model Design

In order to achieve the main purpose of this research, we need to define a pipeline, as we
can see in Fig. 3.3.

Figure 3.3: General view of the project.

This pipeline is in common among the two experiments: first, we read the dataset and we
group the N users to have N different dataset, containing all the M words belonging to
the users. We can associate each training instance (an user dataset) to a graph. In this
way, our training is not biased on only a dataset, but we train and obtain results from
many datasets. After that, we retrieve from each dataset two values which will be use for
the training:

• Labels: this 1-D tensor contains M labels associated to the keywords of that user,
represented in a numerical way. For instance, if two keywords have the same label,
they will have the same integer which means that belong to the same cluster.

• Embeddings: this 2-D tensor contains M word embeddings with length 768, each
embedding corresponds to a word.

In Table 3.3, we can see a possible configuration of these two values which are used and
combined in different ways according to the experiment that we want to run.

Labels: [0, 1, 1, 2]
Embeddings: [[5.6, ...], [1.2, ...], [0.3, ...]]

Table 3.3: Example of the user data.

3| Methodology 31

For instance, this data extracted from an user states that the user has 4 keywords and
there are 3 clusters (as we can see in the Labels value).

3.4.1. Supervised Learning

In Supervised Learning (Sec. 2.3.4) we need the labels associated to each word embedding.
In Fig. 3.4, it is easier to visualize how supervised learning works in this thesis project. So,
to run the experiments, we both need Labels and Embeddings, as previously described.

Figure 3.4: Differences between supervised learning and unsupervised learning.

3.4.2. Unsupervised Learning

In Unsupervised Learning the only thing required for the experiments is the word em-
beddings value, as we can notice in Fig. 3.4. Since it is unsupervised, we cannot use the
labels that are provided with the embeddings.

In the following section, we provide more details about the experiments.

3.5. Experimental Design

This section describes the detailed settings of the two experiments in order to evaluate
the results of the two different approaches.

The output of both the experiments are adjacency matrices which represent the graphs.
Each graph is composed by nodes which represent the word embeddings. From the graph,

32 3| Methodology

it is possible to extract the clusters, using the clustering techniques explained in Sec. 2.5.
Both the experiments are used for answering to RQ1 (see Sec. 1.2).

Fig. 3.5 shows how the experiments are structured.

Figure 3.5: Supervised learning and unsupervised learning.

3.5.1. Experiment 1: Supervised Clustering

This experiment is based on training using supervised clustering and then applying com-
munity detection techniques to cluster the output (adjacency matrices). We need this
experiment to answer to RQ3 (see Sec. 1.2).

First of all, we need to find a way to compute the values on the edges e between the nodes
in the graphs, with different neural network models.

Wang et al. [74] state deep learning models can be used with word embeddings. For this
experiment and to gather many results, we use different Neural Network models (with
many hyperparameters and layer configurations). Each user with his own data (labels
and embeddings) is a training instance, so each step of the experiment is conducted for
the N users available in the dataset. The experiments’ steps are represented in Fig. 3.6
and they are the following:

1. We gather labels and embeddings belonging to the user x.

2. We transform labels and embeddings (explained below) to be given to a Neural
Network model (the description of the Neural Network layers is provided in Sec. 4).

3. We train the model for several epochs, using one of the losses described in Sec. 2.7.

3| Methodology 33

4. We collect the output.

Figure 3.6: The supervised experimental approach.

For a training instance, the input of the neural network is composed by a tensor containing
pairs of keywords (converted into word embeddings). So, in input the model receives a
3-D tensor I, where the first one describes the number of pairs (P), the second one states
that the elements are pairs (2) and the third one is the word embedding dimensions (768).

I ∈ RP×2×768

We pass pairs of keyword/nodes, i.e., edges e = (xi, xj) and we obtain from the model a
1-D tensor O, where the dimension correspond to the number of pairs P.

O ∈ RP

The values in the output can be evaluated as either the weight (such as Haponchyk et
al. [33] used for their experiments) or the percentage similarity between two nodes. From
these output values, we reconstruct the adjacency matrices that represent the graphs
containing the nodes. In Fig. 3.7, we see the input and output configuration for this ex-
periment: the former is composed by pairs of word embeddings and the latter is composed
by numerical values.

Since we are training models, our aim is to reduce the loss. According to the chosen loss
function (Margin Ranking Loss or BCE - see Sec. 2.7) and the model’s configuration, we
use the provided labels associated to the keywords in different ways. According to the
activation function at the end of the neural network, we obtain different range of values
in output.

34 3| Methodology

Figure 3.7: Input and output configuration.

ReLU and Margin Ranking Loss

With a ReLU layer at the end of the neural network, we obtain positive values greater or
equal than 0, representing the weight on the edge between two nodes. The higher the
weight, the more important the connection is. LMRL (see Eq. 2.15) needs three values:
x1, x2, y, where in our experiments x1, x2 are model’s outputs, obtained from the model
(which has a ReLu activation function at the end) that receives in input one tensor after
the other one. The first input tensor i1 contains all the pairs of text that have the same
label, while the second one i2 contains all the pairs of text with different labels. Feeding
i1 and i2 to the model, we obtain two different output tensors x1 and x2 which contain
numerical values.

At the end, we obtain a model that is trained on putting similar words in the same area
and different words far from each other.

Sigmoid and Binary Cross Entropy

The goal is to have nodes within clusters that have greater similarity values than the node
connections between clusters. To do so, we need to have in output an activation function
that ranges between 0 and 1, such as Sigmoid. The input given to the model is composed
by the Nc pairs of keywords (see Eq. 2.11), since the graphs are undirected.

BCE (Sec. 2.7.1) measures the dissimilarity between the predicted probabilities and the
true labels. In our experiments, the two variables of LBCE (see Eq. 2.14) coincide with
the model’s output (a tensor containing the similarity between the Nc pair of nodes)
and a tensor containing only 1 or 0. If a pair of nodes is in the same cluster the value
corresponds to 1, otherwise 0.

3| Methodology 35

Community Detection Algorithms

After having trained different models with many configurations and loss functions, we
obtain and store the best model b, according to the minimum validation loss obtained.
Afterwards, this model is tested on the testing set: we pass to b the pairs of words of each
testing user, without the labels. After it, we analyze the output obtained by the model.
To do so, we transform the input and the output (with length Nc) into adjacency matrices.
Since the graphs are weighted and undirected, we only need Nc values that corresponds
to the upper triangle and consequently the lower triangle. Along the diagonal we can set
the values equal to 1, since every node is surely similar or stay in the same cluster as
itself.

In Fig. 3.2, we can see that to compute the evaluation we need to retrieve the clusters and
to do so, we can run some community detection algorithms (Sec. 2.5) on the adjacency
matrices which represent the graphs.

The main idea about applying Kruskal’s algorithm is to find the maximum spanning
tree to cluster the nodes. By doing this, we can find the nodes having a stronger edge
connectivities, i.e., they are more similar to each other. So this algorithm can be applied
only on the output obtained by the models with the Margin Ranking Loss, which use a
ReLU activation function as final layer.

Regarding Louvain and Greedy Modularity maximization, we only need to apply
these algorithms on the graphs, and they will extract different clusters in different com-
puting time. For the purpose of this thesis, we mainly focus on the model which uses the
Margin Ranking Loss (as Haponchyk et al. have done in their experiments [34]). There-
fore, for the BCE model we use only Louvain as community detection algorithm and we
apply all of three algorithms to the Margin Ranking Loss model.

3.5.2. Experiment 2: Unsupervised Clustering

These experiments are used to answer to RQ2 (see Sec. 1.2). As we can see in Fig. 3.8,
we only need the word embeddings.

In these experiments, we pass all the word embeddings of each user at a time to the algo-
rithms (K-means or HDBSCAN). By doing this, the algorithms create and find different
clusters for each user, as for the Experiment 1.

These experiments should be faster than the first ones since the algorithms only need
the embeddings and they directly create the clusters. At the end, the clusters will be

36 3| Methodology

Figure 3.8: The unsupervised experimental approach.

evaluated using the same cluster evaluation technique, used in the Experiment 1 as well.
We want to replicate the cluster evaluation in Fig. 3.2 and to do so, we need the input
adjacency matrices. In this case, the output clusters are obtained by the algorithms, while
the input adjacency matrices are obtained looking at the dataset, focusing on the "MD5"
attribute. The adjacency matrix of a user u will be a square matrix with length n which
correspond to the number of words of user u, where rows and columns correspond to the
nodes of the graph, in our project the nodes are the word embeddings. If two words have
the same label, in the adjacency matrix there will be a 1, indicating a connection between
the two nodes. If the graph is weighted, there could be other positive values to indicate
the weight.

37

4| Implementation

In the previous chapter, we analyzed the methodologies and the theory regarding my
degree project. Now, let’s analyze it deeper. This chapter explains the technical details
about the experiments, specifying the models’ architectures, the hyperparameters and
how to replicate our work.

4.1. Hardware and Software

The project is written using Python language, which comprises many useful libraries. For
this thesis project, we used different libraries from the most common ones, used in data
analysis and machine learning (such as pandas [52], numpy [35], torch [62]) to the more
specific ones:

• sklearn [63]: from this library we use two different libraries: metrics is used for
the evaluation metrics (Sec. 4.5), such as:

– adjusted_rand_score

– normalized_mutual_info_score

– fowlkes_mallows_score

The submodule clusters is used for performing KMeans, for running the Unsuper-
vised Experiment.

• igraph [20]: powerful library used for creating, manipulating, and analyzing graphs.
In our case, it is used to create a graph given an adjacency matrix.

• sentence_transformers [68]: used for transforming the text data into word em-
beddings. The details about it are explained in Sec. 4.2.

• networkx [32]: provides many functions to perform community detection (other
details are provided in Sec. 4.3.4).

• hdbscan [51]: necessary to compute the Unsupervised Experiment, regarding HDB-

38 4| Implementation

SCAN.

For running the experiments, the company provided me the dataset and two GPUs:
NVIDIA RTX A5000 (24GB) and NVIDIA GeForce RTX 3080 Ti (12GB). These GPUs
are particularly useful since they allow to run both the experiments simultaneously.

In the following sections, we describe all the technical details which are utilized for pro-
viding a better explanation, regarding the experiments. First of all, after having read the
dataset we need to have the word embeddings.

4.2. Sentence Embeddings

Since many terms are repeated in the dataset and to perform this operation in an effi-
cient and fast way, we have created a dictionary containing all the unique terms in the
dataset. After it, we have converted them into the sentence embeddings storing the value
in the dictionary. In this way, we have a dictionary with the keys that are the terms
and the values are the sentence embeddings. For doing so, we need to use the library
sentence_transformer [68], in particular for this project Phrase-BERT is used. Phrase-
BERT creates meaningful phrase embeddings by fine-tuning BERT and as Wang et al.
say [75], it outperforms strong baseline models.

Figure 4.1: General view about how a Sentence Transformer works: it takes some text
and it converts it into an array of values.

In the Phrase-BERT case, the architecture transforms the word into an array with length
768, meaning that each word or phrase has 768 features (also known as dimensions).

After having stored all the word embeddings in a data structure, since we train a model
for the Supervised Experiment, we need to split the dataset in different subsets (Sec.
4.3.1).

4.3. Supervised Learning Experiments

4| Implementation 39

4.3.1. Dataset Splitting

We divide our dataset into three different subsets with different length: training, testing
and validation. Briefly, the training set is used to train the machine learning model,
which learns by adjusting its parameters to minimize the prediction errors. The val-
idation set is a subset of the data used during the training to fine-tune the model’s
hyperparameters. It helps in detecting overfitting (when a model performs well on the
training set but poorly on new data). The testing set is a separate portion of the data
that is used to evaluate the performance of a trained model. It is not used during the
training process to ensure an unbiased evaluation. The model makes predictions on the
testing set, and its evaluation metrics, are calculated in order to drawn some analysis.
In our supervised experiments, the proportion of training/testing/validation is 70/20/10.
First of all, we need to retrieve the number of unique users in the dataset: 487. After that,
we compute the above percentages to create the three subset. To do so, we randomly take
from the dataset the 70% of 487 for creating the training set and so on (see Table 4.1).

One issue observed is about those training instances (users u) with a large number of
words. As we perform and store word combinations, the total number of items we must
store grows, yield scalability issues due to memory limitations. To solve it, we must use
random sampling [60], which involves selecting words at random by those users u.

Training Set Testing Set Validation Set

Number of unique Users 341 97 49

Table 4.1: Dataset splitting.

By doing so, we have three different subsets with no overlapping users among them. It is
better to remember that each user with his words is a training instance and it represents
a graph. So in our case it is similar to have 341 different small dataset used to train our
model. We prevent bias by ensuring that the three dataset splits do not share any users
between them.

Another operation to do is the one used to remove those training users that have either
only one word or less than two clusters, since we cannot cluster anything with those ones.
After this kind of preprocessing operation, for our supervised experiment we have 313
users (see Table 4.2).

As for the unsupervised experiment, we do not need to split the dataset into subsets, but

40 4| Implementation

Training Set Testing Set Validation Set

Number of unique Users 313 97 49

Table 4.2: Dataset splitting after data cleaning.

we only have to group by the users in order to create several instances. They will be given
to one of the two unsupervised algorhtms.

4.3.2. Model Training

The steps for training a model are the following ones:

1. Defining the optimizer: method used to adjust the parameters of a model during the
training process. Its scope is to minimize the loss function by iteratively updating
the model’s parameters based on the gradients of the loss with respect to those
parameters. In our project, we use Adaptive Moment Estimation (Adam). It allows
to use a fixed amount of memory regardless of the size of the training set, and in
our case the memory management is an important aspect to consider.

2. Defining the learning rate (lr), which is a hyperparameter that determines the step
size at each iteration during the optimization process. Since it is a hyperparameter
it needs to be tune with different experiments.

3. Training with several epochs using an early stopping condition to prevent overfitting.
It involves monitoring the performance of the model on a validation set during
training and stopping the training process when the performance on the validation
set starts to degrade.

Hyperparameter Value

Learning Rate 0.0001
Epochs 500
Patience 15

Optimizer Adam
Loss Functions LBCE, LMRL

Table 4.3: Hyperparameters for model training.

According to the chosen loss function, there are different model configurations with hy-
perparameters which will be analyzed below. Some standard hyperparameters are defined

4| Implementation 41

in Table 4.3.

The layers used for defining the deep learning models are described in 4.4. These layers
are combined together to obtain different models which will be discussed below.

Layer Description Formula

A Linear Layer operates by carrying out a linear transforma-
tion on the input data. This involves computing the product of
the input vector x and a set of adjustable weights (represented
by the matrix W), and then adding a bias vector b [23].

y = Wx+ b

A ReLU activation function introduces non-linearity to the
model by setting the negative values of the input vector x to
zero and leaving positive values unchanged. It helps the model
learn complex patterns and improves its ability to approximate
non-linear relationships [3].

ReLU(x) = max(0,x)

A Sigmoid activation function squashes the input values x be-
tween 0 and 1, providing a probabilistic interpretation. It is
often used in binary classification problems to produce a prob-
ability value that represents the likelihood of a particular class
[57].

σ(x) = 1
1+e−x

Table 4.4: Description of layers and functions in the model.

Model used with Margin Ranking Loss

The Margin Ranking Loss LMRL is defined in Eq. 2.15. For computing this training with
LMRL , three values are needed: x1, x2, y. In order to perform this training, we follow
these steps:

• We identify the indices of those terms that have the same labels and we store the
embeddings with those indices in a tensor called sl. We create another tensor called
dl that corresponds to those embeddings with different labels. Now we have two
tensors of different lengths which contain different things: one contains all the pairs
of embeddings with the same label and the other one all the pairs of embeddings
that have different labels among each other.

• Since the tensors have different lengths, we determine the size that both of the
tensors should have to perform downsampling on the longer tensor. So, now we
have two tensors with the same length.

• We pass the sl and dl through the model to obtain the outputs x1 and x2, respec-
tively.

42 4| Implementation

• We create a target tensor called y and we fill it with ”1”, to give more importance
to the first tensor in LMRL.

• We calculate the loss with the Eq. 2.15.

In order to have as many results as possible to run better analysis, we used different
models’ configuration (see Table 4.5).

Hyperparameter Value

Hidden Size 512, 1024
Layers 2, 3

Margin γ 1, 10

Table 4.5: Hyperparameters for training with Margin Ranking Loss.

Using these hyperparameters, we obtained two different models, represented in Fig. 4.2.

Figure 4.2: Neural Network Architectures for Margin Ranking Loss.

Every model (with its initial hidden size and with different margin - see Eq. 2.15) produced
different results which will be showed in Chapter 5.

Model used with BCE

The BCE Loss function LBCE is defined in 2.14. For computing the training with BCE,
two values are required: ŷ and y, as discussed in Sec. 2.7.1. In our case, ŷ is the output
obtained from the model and y represents the ground truth of the label values and it is
computed looking at the tensor which contains all the labels for the training instance.

The steps for this training are represented in Listing 4.1:

1 # dataset: collection of data samples used containing labels and

embeddings associated to a user

2 # device: hardware on which computations are performed (CPU or

GPU)

3

4| Implementation 43

4 for labels , embeddings in dataset:

5 labels , embeddings = labels.to(device), embeddings.to(device)

6

7 combinations = generate_combinations(embeddings.shape)

8 adj = calculate_adjacency_matrix(labels)

9 input = select_input_pairs(embeddings , combinations)

10 true = select_true_labels(adj , combinations)

11 output = model(input)

12 loss = loss_bce(output , true)

13

14 optimizer.zero_grad ()

15 loss.backward ()

16 optimizer.step()

Listing 4.1: A PyTorch pseudocode about training using BCE

In order to have as many results as possible to run a better analysis, we used different
models’ configurations (see Table 4.6).

Hyperparameter Value

Hidden Size 64, 512, 1024
Layers 2, 3

Activation Functions among the layers Sigmoid, ReLU

Table 4.6: Hyperparameters for training with BCE.

Using these hyperparameters, we obtained four different models, represented in Fig. 4.3.

Figure 4.3: Neural Network Architectures for BCE.

44 4| Implementation

Every model (with its initial hidden size) produced different results which will be showed
in Chapter 5.

4.3.3. Creation of Output Adjacency Matrix

After having stored the best model (the one with the lowest validation loss) among the
epochs, we test it on the testing set. We pass to the model the terms’ combinations of the
testing instances and we store the output. After it, we recreate the adjacency matrices
from the outputs. Each output has dimension Nc (Eq. 2.11) and it corresponds to the
upper triangle of the adjacency matrix. Since the graph is undirected, the upper triangle
corresponds to the lower triangle.

4.3.4. Community Detection Algorithms

After having retrieved the weighted graphs G from the adjacency matrices using the
library networkX, we apply the three community detection techniques, described in Sec.
2.5 on the graphs G:

• Louvain: we use the function community.best_partition on G [11].

• Greedy Modularity maximization: for this algorithm we use the function
greedy_modularity_communities on G that uses Clauset-Newman-Moore greedy
modularity maximization [17].

• Kruskal: in order to perform this algorithm, we need to find the maximum spanning
tree on G using the function maximum_spanning_tree. In this way we obtain those
clusters that contain nodes with the largest weights.

All of these three algorithms are utilized with the model used with Margin Ranking Loss.
As for the model used with BCE Loss, we use only Louvain since Kruskal is preferable
when there are weights and not probabilities. After having computed these techniques, we
use an algorithm that sort and assign the labels of the clusters to have a final tensor similar
to the input one. So instead of having a tensor such as [1, 1, 3, 3, 3, 0, 2], we have a tensor
that does not depend on specific label IDs, transforming into the tensor [0, 0, 1, 1, 1, 2, 3].
In this way, we have an output tensor similar to the input one which will be compared
(Sec. 4.5).

4| Implementation 45

4.4. Unsupervised Learning Experiments

After having as many graphs as the number of users, we need to compute the unsupervised
techniques on the instances which will produce clusters as output.

4.4.1. HDBSCAN

As we said in Sec. 2.3.3, the advantage of this algorithm is that we do not need to specify
in advance the number of clusters in a graph. So, for each user we only have to extract his
word embeddings (i.e. nodes in the graph) and computing the algorithm with the library
(see Sec. 4.1).

In order to find the best configuration of hyperparameters (see Table 4.7 for this technique,
the grid search method is leveraged.

Hyperparameter Value

min_cluster_size α 2, 10, 200
min_samples β 2, 10, 200

Table 4.7: Hyperparameters for HDBSCAN algorithm.

4.4.2. K-Means using Elbow Method

The main drawback about this algorithm is the need to specify the number of clusters
in advance. But as we analyzed in Sec. 2.3, we can use the Elbow Method to find the
optimal number of clusters K. By doing so, we can perform the algorithm knowing the
exact number of K for each user. At the end we obtain the L clusters extracted from
each graph. In order to run this algorithm we use the python function KMeans from
sklearn.cluster. We pass to the function the word embeddings of each user/instance
(which corresponds to a graph) and we use the elbow method to determine K. The elbow
method plots the inertia for different numbers of clusters, and the optimal number of
clusters is the point where the curve starts to bend sharply.

4.5. Evaluation

From each algorithm and from each graph, we obtain a tensor ŷ. It contains the predicted
labels of the clusters. To make it clearer, let’s do an example. We have a graph with

46 4| Implementation

six nodes and three clusters such as the first cluster contains the nodes 1,2,3; the second
cluster contains the nodes 4,5 and the third cluster contains node 6. The tensor ŷ has size
6 (like the number of nodes): [0,0,0,1,1,2]. This means that the first three elements
have the same cluster because the label value is the same, and so on. It will be compared
with a tensor obtained by looking at the MD5 attribute values. By checking the labels’
values we create a tensor y that has the same size as the number of nodes/words in an
instance. Each evaluation metric function takes in input ŷ and y and produces an output
value.

We store all the values of the metrics for every instance available in the testing set.
Afterward, we can compute the average or the weighted average to have the final results
regarding each algorithm.

4.5.1. Average

In order to have the average of each metric, we compute the average among all the values
obtained. So for instance to have the final value of the metric ARI, we need to compute
it for each instance and at the end determine the average of all the stored ARI values.

By doing so, we are not considering that the instances have different numbers of clusters
so we also need to consider the dimension (i.e. number of words) in the instances.

4.5.2. Weighted Average

For quantifying the weighted average, we examine the number of terms, giving more
importance to those users with more terms. This approach emphasizes the impact of the
number of nodes in the graph on the overall evaluation score. We count the number of
terms in each graph and we give to that user a weight. The higher the number of nodes
the higher the value. In this way, we differentiate users with few terms and users with a
huge number of terms.

47

5| Results and Discussion

This chapter contains only the best results collected by the experiments described in the
previous chapters. In order to have a larger view of the outcomes, all the results are
visualized in Appendix A.

Firstly, we analyze the outcomes coming from the supervised learning experiments and
secondly, the unsupervised learning outcomes are analyzed. Each metric has two different
values: the average value and the weighted value (as described in Sec. 4.5). We also
offer an analysis of another measure that indicates how long an algorithm takes and may
be used to do further investigations. For evaluating the performances, we consider the
following evaluation metrics: F1 Score, NMI, ARI and Fowkles Score, described in
Sec. 2.4.

As discussed in Sec. 4.5.2, we give priority to those models with a higher NMI and ARI
values, in order to define which the best model is.

5.1. Experiment 1: Supervised Learning

For the Supervised Learning experiment - described in Sec. 4.3 - six different models are
used. The four models trained with BCE Loss (Sec. 4.3.2 - models architecture in Fig.
4.3) are defined with the following notation: M1

BCE, M2
BCE, M3

BCE, M4
BCE. The other

two models trained with the Margin Ranking Loss (Sec. 4.3.2 - models architecture in
Fig. 4.2) are defined with M1

MRL, M2
MRL.

Every model is trained with different hyperparameters (Sec. 4.3.2). In order to be more
concise, only the results obtained by the best models are showed (for a complete view of
the results, see Appendix A.

5.1.1. Comparison BCE - Margin Ranking Loss

In order to do a better comparison between these two approaches, we compare and illus-
trate in Table 5.1 the best results obtained by the best BCE Model configurations (Table

48 5| Results and Discussion

A.2) and the best Margin Ranking Loss Model (Table A.4). We highlight the higher
values to make the comparison easier to visualize.

The models analyzed are M2
BCE trained with hidden_size = 1024 and using Louvain

and M2
MRL trained with hidden_size = 1024 and γ = 10 and using Kruskal.

Weighted Average Metric M2
BCE M2

MRL

F1 Score 0.229 0.447
NMI 0.473 0.771
ARI 0.108 0.296
Fowlkes 0.195 0.336

Time (sec) 8,054.13 18,117.27

Table 5.1: Comparison between the best BCE and Margin Ranking Loss models.

5.1.2. Comparison Community Detection Algorithms

Table 5.2 displays the results and differences of the community detection algorithms,
applied to M2

MRL. These numerical outcomes are taken from Table A.4.

Algorithm Weighted Average of Evaluation Scores Time (s)
F1 Score NMI ARI Fowlkes Score

Kruskal 0.447 0.771 0.296 0.336 18,117.27
Louvain 0.13 0.351 0.053 0.111 8,912.74
Greedy 0.098 0.212 0.023 0.094 1,659.41

Table 5.2: Evaluation scores and time for the community detection algorithms.

5.2. Experiment 2: Unsupervised Learning

For the Unsupervised Learning experiment (described in Sec. 4.4), there are two algo-
rithms: HDBSCAN and K-Means with Elbow Method. In the following sections, we show
the best outcomes obtained by the experiments.

5| Results and Discussion 49

5.2.1. Comparison HDBSCAN - K-Means

In order to do a better comparison between the unsupervised learning algorithms, we
compare the evaluation metrics obtained by the best HDBSCAN configurations and K-
Means. The best HDBSCAN configuration is picked from Table A.8: α = 200 and
β = 200.

The results are illustrated in Table 5.3. We highlight the higher values to make the
comparison easier to visualize.

Weighted Average Metric HDBSCAN K-Means

F1 Score 0.444 0.59
NMI 0.693 0.423
ARI 0.112 0.234
Fowlkes Score 0.143 0.442

Time (sec) 1,554.36 6,128.37

Table 5.3: Comparison between HDBSCAN and K-Means.

5.3. Comparison Supervised and Unsupervised Learn-

ing

In the previous experiments, we have plotted the results obtained by different approaches.
In order to run our final conclusions and discussions, Table 5.4 is showed. It comprises the
two supervised (BCE and Margin Ranking Loss) and unsupervised learning approaches
(HDBSCAN and K-Means).

Weighted Average Metric Supervised Learning Unsupervised Learning

BCE Margin Ranking Loss HDBSCAN K-Means

F1 Score 0.229 0.447 0.444 0.59
NMI 0.473 0.771 0.693 0.423
ARI 0.108 0.296 0.112 0.234
Fowlkes score 0.195 0.336 0.143 0.442

Time (sec) 8,054.13 18,117.27 1,554.36 6,128.37

Table 5.4: Comparison of best metric values for supervised and unsupervised Learning

50 5| Results and Discussion

5.4. Discussion

One of the delimitations of this degree project (Sec. 1.8) is choosing the right evaluation
metric to run the final analysis and to define the best model. For the purpose of this
thesis project, since we have graphs of different dimensions, we focus on NMI (described
in Sec. 2.4.1) and ARI (described in Sec. 2.4.1), considered with the weighted average.
These measures are powerful when comparing clusterings of various sizes are needed and
they are the appropriate evaluation measure to use for running conclusions of this thesis
project since the graphs and clusters of our experiments have varying sizes. Since NMI is
normalized we can measure and compare the value between different clusterings having
different numbers of clusters. ARI gives us an idea of whether the clusterings are similar
to what would be expected by random chance (if ARI is close to 0). We choose to
prioritize the weighted average since the graphs analyzed in this degree project have
different dimensions, so the number of nodes inside a graph is a metric that should be
considered when running the analysis.

The experiments were conducted using different metrics to evaluate the models and an-
alyze their results. After having plotted many outcomes, a proper final discussion about
them is crucial. One of our final aim is to check which approach performs better to clus-
ter keywords in terms of evaluation metrics against the others. In order to do, we have
compared the best models gathered from the experiments in Appendix A. We mainly
focus on the outcomes obtained by computing the weighted average (Sec. 4.5.2) of the
evaluation metrics, to highlight the importance of the algorithms to consider the size of
the graphs. It is important to note that there is no universally "best" metric among the
ones that we have provided for running our analysis. The choice of the metric depends
on the specific context and the nature of the data. Each metric captures different aspects
of clustering quality and has its own strengths and limitations. We should also highlight
the fact that these results come from one dataset, so it is possible that these approaches
bring to different results on a different dataset.

Firstly, we compare and display in Table 5.1 the results of the best model trained using
BCE and the best model trained using Margin Ranking Loss. For the purpose of our
task, the model trained using Margin Ranking Loss with Kruskal performs better than
the other Supervised Learning approach. M2

MRL shows superiority in each evaluation
metric, especially on the NMI value (0.771 against 0.473). The higher NMI indicates that
the Margin Ranking Loss model preserves the mutual information between clusters better,
contributing to a more accurate representation of the data’s underlying structure. The
main difference between these two approaches is the lower ARI value (0.108) for the BCE

5| Results and Discussion 51

approach, stating that this is not the right approach for this kind of task. ARI measures
the similarity of data points present in the clusters i.e., how similar the instances that are
present in the cluster. So, this measure should be as high as possible else we can assume
that the data points are randomly assigned in the clusters.

A comparison on the community detection algorithm is provided in Table 5.2. Kruskal is
the one with the best results, in every evaluation metric, except for the computing time.
Clauset et al. [17] with their Greedy Modularity Maximization algorithm, developed a
fast community detection algorithm and in our experiments Greedy is faster than the
other algorithms (1,659.41 seconds), but it provides the worst outcomes. In order to
understand which unsupervised algorithm is better for clustering keywords, Table 5.3 is
provided. K-Means is better among almost all the evaluation metrics, except for NMI.
HDBSCAN has a higher weighted average NMI of 0.693, surpassing K-Means’ weighted
average NMI of 0.423. The higher ARI value of K-Means (0.234) suggests better clustering
results, against 0.112 obtained by HDBSCAN.

Table 5.4 displays a summary of all the best algorithms used to figure out which is the
best approach for clustering keywords. K-Means performs better in terms of F1 Score
(0.59) and Fowlkes Score (0.442). On the other hand, Margin Ranking Loss with Kruskal
shows superiority in ARI (0.296). A higher ARI indicates that the Margin Ranking Loss
model provides a better adjustment for chance when measuring the agreement between
clusters. Margin Ranking Loss has the highest NMI value (0.771), but there is no huge
difference between the NMI value obtained with HDBSCAN (0.693). HDBSCAN has one
of the worst ARI result (0.112) and having this evaluation metric value close to 0 (see
Sec. 2.4.1) means that the nodes are assigned into the clusters as in a random way, as
explained by Hubert et al. [37]. This analysis underscores the advantages of MRL and
highlights the advantages and drawbacks of HDBSCAN and K-Means in unsupervised
learning scenarios.

53

6| Conclusions and Future Works

This chapter wraps up the thesis by providing some insights into the proposed strategy.

6.1. Conclusion

This study compares two approaches regarding clustering keywords, in a supervised way
or in an unsupervised way. We have computed and analyzed many experiments to answer
to the research questions (Sec. 1.2). In the context of Supervised Learning, where the
availability of labeled data and higher accuracy are prioritized, the choice of community
detection algorithm becomes crucial. In our experiments, the model trained using the
Margin Ranking Loss and Kruskal emerged as the top-performing algorithm in every
evaluation metric, achieving a NMI value of 0.771, against the 0.351 of Louvain and 0.212
of Greedy. It outperformed also regarding the ARI value (0.296) against 0.053 and 0.023.
This indicates that Kruskal effectively provided accurate clustering results and it is the
best community detection algorithm, associated with a supervised learning approach, to
cluster keywords. On the other hand, even the unsupervised learning algorithm (K-Means
with the Elbow Method) can be used as a viable alternative.

By looking at the results obtained in Appendix A, among these algorithms, HDBSCAN
shows the lowest ARI values, meaning that the clusters obtained are not as valid as the
clusters obtained by other algorithms. This means that K-Means (with an ARI value of
0.234) is more reliable if we want to use an unsupervised approach, instead of HDBSCAN
which produces clusters almost similar to random clusterings.

According to Romano et al. [69], the main cause for the low ARI values is given by the fact
that our ground truth clusterings associated to each user may have large different-sized
clusters. The authors state that it is better to use ARI when the ground truth clusterings
have large equal-sized clusters and to use Adjusted Mutual Information (AMI) when the
ground truth clustering is unbalanced and there exist small clusters. The highest NMI
obtained value (0.771) might be considered a low value since NMI tends to favor solutions
with a high number of small clusters, such as Amelio et al. state [5].

54 6| Conclusions and Future Works

HDBSCAN and BCE yielded the least favorable results in all the metric evaluations,
with ARI values of 0.108 and 0.112, respectively. These low ARI values suggest that
their outputs should be treated with caution, as they resemble "random" clusters, lack-
ing significant structure or coherence. The low ARI values observed in these clustering
approaches may be attributed to the complexity of the data or suboptimal algorithm
selection. Addressing these factors through careful data preprocessing, and algorithm
tuning could potentially improve the clustering quality. As a result, in cases when a small
decrease in accuracy is acceptable, K-Means might be an appropriate solution since it
produces relatively accurate clustering results. On the other hand, supervised learning
with the Kruskal algorithm would be the recommended approach if getting the maximum
accuracy is the major objective.

By looking at the results, some improvements can be made in the future in order to
get better outcomes and to visualize some output cluster examples, obtained by the
experiments. This research study can be used as a baseline to implement future algorithms
which might lead to better outcomes results.

6.2. Limitations

This section covers some of the project’s limitations. To begin with, selecting the appro-
priate assessment metric necessitated multiple investigations on the datasets and results.
As we previously discussed, there are many extrinsic measures and each of them has its
advantages and disadvantages.

Dealing with a large dataset also presented a substantial time barrier. Time-consuming
tasks included applying the sentence transformer to the dataset and then training the
models. Additionally, the wide variety of hyperparameters increased the time contribution
because they needed to be optimized and fine-tuned, which took a lot of effort.

6.2.1. Future Work

Future study might look at other datasets and algorithms to confirm these results and
give more thorough suggestions for selecting the best technique for clustering tasks in
various settings. Although this work contributed significantly to the area, there are var-
ious improvements for future research that can build on the results and improve our
understanding even further:

• Using other evaluation metrics: other metrics could be exploited such as Fair

6| Conclusions and Future Works 55

Normalized Mutual Information (FNMI) [5] and Adjusted Mutual Information (AMI).

• Exploring alternative Sentence Transformers: while phrase-BERT was used
as the sentence transformer in this study, other sentence transformers should be
considered. This investigation might help determine whether alternative sentence
transformers can increase clustering performance.

• Investigating alternative community detection algorithms: this study fo-
cused on the application of community detection algorithms on weighted graphs.
However, further investigation into alternative community detection algorithms can
be helpful. Other clustering techniques for the unsupervised approach can be ap-
plied, such as OPTICS.

• Improving training: since there are many different models’ configurations, future
works can deal about tuning other hyperparameters. It is also possible to make the
supervised learning approach faster, adopting new algorithms. Moreover, instead of
the single train-validation-test split, a cross validation technique can be explored.

• Exploring other languages: in this study, the focus was primarily on English
words and their word embeddings. A potential avenue for future research is to
extend the analysis to other languages.

• Considering stemming for word preprocessing: stemming is a technique used
to reduce words to their base or root form and it has the potential to improve the
clustering results by reducing noise within the clusters. Future research can explore
the effectiveness of stemming techniques on keyword clustering tasks using word
embeddings.

• Investigating the use of label propagation: it is a clustering machine learning
method that uses semi-supervised learning. When working with data that includes
examples with labels and without labels, it is helpful. Label propagation’s basic idea
is to spread labels from labeled data points to unlabeled ones, using the underlying
structure or similarity of the data points in order to draw conclusions or organize
the data.

We can expand our understanding and contribute to the growth of knowledge in this field
by addressing the points just raised.

57

Bibliography

[1] TF–IDF. In C. Sammut and G. I. Webb, editors, Encyclopedia of Machine
Learning, pages 986–987. Springer US, Boston, MA, 2010. ISBN 978-0-387-
30164-8. doi: 10.1007/978-0-387-30164-8_832. URL https://doi.org/10.1007/

978-0-387-30164-8_832.

[2] E. Achtert, S. Goldhofer, H.-P. Kriegel, E. Schubert, and A. Zimek. Evaluation of
Clusterings – Metrics and Visual Support. In 2012 IEEE 28th International Con-
ference on Data Engineering, pages 1285–1288, Arlington, VA, USA, Apr. 2012.
IEEE. ISBN 978-0-7695-4747-3 978-1-4673-0042-1. doi: 10.1109/ICDE.2012.128.
URL http://ieeexplore.ieee.org/document/6228189/.

[3] A. F. Agarap. Deep learning using rectified linear units (relu), 2019.

[4] B. Alabdullah, N. Beloff, and M. White. Rise of big data – issues and challenges.
pages 1–6, 04 2018. doi: 10.1109/NCG.2018.8593166.

[5] A. Amelio and C. Pizzuti. Is normalized mutual information a fair measure for com-
paring community detection methods? In 2015 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages 1584–1585,
2015. doi: 10.1145/2808797.2809344.

[6] A. Amelio and C. Pizzuti. Is Normalized Mutual Information a Fair Measure for
Comparing Community Detection Methods? In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
2015, pages 1584–1585, Paris France, Aug. 2015. ACM. ISBN 978-1-4503-3854-7.
doi: 10.1145/2808797.2809344. URL https://dl.acm.org/doi/10.1145/2808797.

2809344.

[7] L. M. Aouad, N.-A. Le-Khac, and T. Kechadi. Variance-based Clustering Technique
for Distributed Data Mining Applications, Mar. 2017. URL http://arxiv.org/

abs/1703.09823. arXiv:1703.09823 [cs].

[8] D. S. Asudani, N. K. Nagwani, and P. Singh. Impact of word embedding models on
text analytics in deep learning environment: a review. Artificial Intelligence Review,

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
http://ieeexplore.ieee.org/document/6228189/
https://dl.acm.org/doi/10.1145/2808797.2809344
https://dl.acm.org/doi/10.1145/2808797.2809344
http://arxiv.org/abs/1703.09823
http://arxiv.org/abs/1703.09823

58 | Bibliography

56(9):10345–10425, Sept. 2023. ISSN 1573-7462. doi: 10.1007/s10462-023-10419-1.
URL https://doi.org/10.1007/s10462-023-10419-1.

[9] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney. Model-based
overlapping clustering. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 532–537, Chicago Illinois
USA, Aug. 2005. ACM. ISBN 978-1-59593-135-1. doi: 10.1145/1081870.1081932.
URL https://dl.acm.org/doi/10.1145/1081870.1081932.

[10] S. Becker and G. E. Hinton. Self-organizing neural network that discovers surfaces in
random-dot stereograms. Nature, 355(6356):161–163, Jan. 1992. ISSN 0028-0836,
1476-4687. doi: 10.1038/355161a0. URL https://www.nature.com/articles/

355161a0.

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008. doi: 10.1088/1742-5468/2008/10/P10008.
URL https://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[12] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai. Man is to computer
programmer as woman is to homemaker? debiasing word embeddings. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, page 4356–4364, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

[13] J. E. Chacón and A. I. Rastrojo. Minimum adjusted Rand index for two clusterings
of a given size. Advances in Data Analysis and Classification, 17(1):125–133, Mar.
2023. ISSN 1862-5347, 1862-5355. doi: 10.1007/s11634-022-00491-w. URL https:

//link.springer.com/10.1007/s11634-022-00491-w.

[14] S. Chopra, R. Hadsell, and Y. LeCun. Learning a Similarity Metric Discriminatively,
with Application to Face Verification. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546,
San Diego, CA, USA, 2005. IEEE. ISBN 978-0-7695-2372-9. doi: 10.1109/CVPR.
2005.202. URL http://ieeexplore.ieee.org/document/1467314/.

[15] K. R. Chowdhary. Natural Language Processing, pages 603–649. Springer India, New
Delhi, 2020. ISBN 978-81-322-3972-7. doi: 10.1007/978-81-322-3972-7_19. URL
https://doi.org/10.1007/978-81-322-3972-7_19.

[16] G. G. Chowdhury. Natural language processing. Annual Review of Information
Science and Technology, 37(1):51–89, Jan. 2005. ISSN 00664200. doi: 10.1002/

https://doi.org/10.1007/s10462-023-10419-1
https://dl.acm.org/doi/10.1145/1081870.1081932
https://www.nature.com/articles/355161a0
https://www.nature.com/articles/355161a0
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://link.springer.com/10.1007/s11634-022-00491-w
https://link.springer.com/10.1007/s11634-022-00491-w
http://ieeexplore.ieee.org/document/1467314/
https://doi.org/10.1007/978-81-322-3972-7_19

| Bibliography 59

aris.1440370103. URL https://onlinelibrary.wiley.com/doi/10.1002/aris.

1440370103.

[17] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very
large networks. Phys. Rev. E, 70:066111, Dec 2004. doi: 10.1103/PhysRevE.70.
066111. URL https://link.aps.org/doi/10.1103/PhysRevE.70.066111.

[18] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu. Hierarchical
clustering: Objective functions and algorithms, 2017.

[19] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning.

[20] G. Csardi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 11 2005.

[21] S. A. Curiskis, B. Drake, T. R. Osborn, and P. J. Kennedy. An evaluation of
document clustering and topic modelling in two online social networks: Twit-
ter and reddit. Information Processing Management, 57(2):102034, 2020. ISSN
0306-4573. doi: https://doi.org/10.1016/j.ipm.2019.04.002. URL https://www.

sciencedirect.com/science/article/pii/S0306457318307805.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

[23] A. D. Dongare, R. R. Kharde, and A. D. Kachare. Introduction to Artificial Neural
Network. 2(1), 2012.

[24] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.

[25] T. Finley and T. Joachims. Supervised clustering with support vector machines.
In Proceedings of the 22nd international conference on Machine learning - ICML
’05, pages 217–224, Bonn, Germany, 2005. ACM Press. ISBN 978-1-59593-180-
1. doi: 10.1145/1102351.1102379. URL http://portal.acm.org/citation.cfm?

doid=1102351.1102379.

[26] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

https://onlinelibrary.wiley.com/doi/10.1002/aris.1440370103
https://onlinelibrary.wiley.com/doi/10.1002/aris.1440370103
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://www.sciencedirect.com/science/article/pii/S0306457318307805
https://www.sciencedirect.com/science/article/pii/S0306457318307805
https://aclanthology.org/N19-1423
http://portal.acm.org/citation.cfm?doid=1102351.1102379
http://portal.acm.org/citation.cfm?doid=1102351.1102379

60 | Bibliography

ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2009.11.002. URL https:

//www.sciencedirect.com/science/article/pii/S0370157309002841.

[27] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2009.11.002. URL https:

//www.sciencedirect.com/science/article/pii/S0370157309002841.

[28] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical cluster-
ings. Journal of the American Statistical Association, 78:553–569, 1983.

[29] D. Gala, M. O. Khursheed, H. Lerner, B. O’Connor, and M. Iyyer. Analyzing gender
bias within narrative tropes. In Proceedings of the Fourth Workshop on Natural
Language Processing and Computational Social Science, pages 212–217, Online, Nov.
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.nlpcss-1.23.
URL https://aclanthology.org/2020.nlpcss-1.23.

[30] D. Greene, P. Cunningham, and R. Mayer. Unsupervised Learning and Clustering.
In M. Cord and P. Cunningham, editors, Machine Learning Techniques for Multi-
media: Case Studies on Organization and Retrieval, Cognitive Technologies, pages
51–90. Springer, Berlin, Heidelberg, 2008. ISBN 978-3-540-75171-7. doi: 10.1007/
978-3-540-75171-7_3. URL https://doi.org/10.1007/978-3-540-75171-7_3.

[31] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an
Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Volume 2 (CVPR’06), volume 2, pages 1735–1742, New
York, NY, USA, 2006. IEEE. ISBN 978-0-7695-2597-6. doi: 10.1109/CVPR.2006.100.
URL http://ieeexplore.ieee.org/document/1640964/.

[32] A. Hagberg, P. Swart, and D. Chult. Exploring network structure, dynamics, and
function using networkx. 01 2008.

[33] I. Haponchyk and A. Moschitti. Supervised Neural Clustering via Latent Struc-
tured Output Learning: Application to Question Intents. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 3364–3374, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.263.
URL https://aclanthology.org/2021.naacl-main.263.

[34] I. Haponchyk, A. Uva, S. Yu, O. Uryupina, and A. Moschitti. Supervised Clustering
of Questions into Intents for Dialog System Applications. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2310–2321,

https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://aclanthology.org/2020.nlpcss-1.23
https://doi.org/10.1007/978-3-540-75171-7_3
http://ieeexplore.ieee.org/document/1640964/
https://aclanthology.org/2021.naacl-main.263

| Bibliography 61

Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1254. URL http://aclweb.org/anthology/D18-1254.

[35] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Pe-
terson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585
(7825):357–362, Sept. 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2649-2. URL
https://www.nature.com/articles/s41586-020-2649-2. Number: 7825 Pub-
lisher: Nature Publishing Group.

[36] J. Hirschberg and C. D. Manning. Advances in natural language processing. ARTI-
FICIAL INTELLIGENCE.

[37] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):
193–218, Dec. 1985. ISSN 0176-4268, 1432-1343. doi: 10.1007/BF01908075. URL
http://link.springer.com/10.1007/BF01908075.

[38] A. Håkansson. Portal of Research Methods and Methodologies for Research Projects
and Degree Projects. Computer Engineering, 2013.

[39] X. Jin and J. Han. K-Means Clustering. In C. Sammut and G. I. Webb, editors,
Encyclopedia of Machine Learning, pages 563–564. Springer US, Boston, MA, 2010.
ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_425. URL https://doi.

org/10.1007/978-0-387-30164-8_425.

[40] Z. Kaddari, Y. Mellah, J. Berrich, M. G. Belkasmi, and T. Bouchentouf. Natural
language processing: Challenges and future directions. 2020.

[41] P. Kherwa and P. Bansal. Topic modeling: A comprehensive review. ICST Trans-
actions on Scalable Information Systems, 7:159623, 07 2018. doi: 10.4108/eai.
13-7-2018.159623.

[42] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan. Supervised contrastive learning. CoRR, abs/2004.11362, 2020.
URL https://arxiv.org/abs/2004.11362.

[43] D. Khurana, A. Koli, K. Khatter, and S. Singh. Natural language processing: state
of the art, current trends and challenges. Multimedia Tools and Applications, 82(3):
3713–3744, Jan. 2023. ISSN 1380-7501, 1573-7721. doi: 10.1007/s11042-022-13428-4.
URL https://link.springer.com/10.1007/s11042-022-13428-4.

http://aclweb.org/anthology/D18-1254
https://www.nature.com/articles/s41586-020-2649-2
http://link.springer.com/10.1007/BF01908075
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://arxiv.org/abs/2004.11362
https://link.springer.com/10.1007/s11042-022-13428-4

62 | Bibliography

[44] J. Koirala. Understanding the Use of Cluster Analysis in Business, Mar. 2023. URL
https://papers.ssrn.com/abstract=4400674.

[45] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.
ISSN 0002-9939. doi: 10.2307/2033241. URL https://www.jstor.org/stable/

2033241. Publisher: American Mathematical Society.

[46] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative
analysis. Physical Review E, 80(5):056117, Nov. 2009. doi: 10.1103/PhysRevE.80.
056117. URL https://link.aps.org/doi/10.1103/PhysRevE.80.056117. Pub-
lisher: American Physical Society.

[47] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and hier-
archical community structure in complex networks. New Journal of Physics, 11(3):
033015, Mar. 2009. ISSN 1367-2630. doi: 10.1088/1367-2630/11/3/033015. URL
https://dx.doi.org/10.1088/1367-2630/11/3/033015.

[48] P. Le-Khac, G. Healy, and A. Smeaton. Contrastive representation learning: A
framework and review. IEEE Access, 8:193907–193934, 01 2020. doi: 10.1109/
ACCESS.2020.3031549.

[49] T. Madhulatha. An overview on clustering methods. IOSR Journal of Engineering,
2, 05 2012. doi: 10.9790/3021-0204719725.

[50] A. F. McDaid, D. Greene, and N. Hurley. Normalized Mutual Information to evaluate
overlapping community finding algorithms, Aug. 2013. URL http://arxiv.org/

abs/1110.2515. arXiv:1110.2515 [physics].

[51] L. McInnes, J. Healy, and S. Astels. hdbscan: Hierarchical density based clustering.
Journal of Open Source Software, 2(11):205, Mar. 2017. ISSN 2475-9066. doi: 10.
21105/joss.00205. URL https://joss.theoj.org/papers/10.21105/joss.00205.

[52] W. McKinney. pandas: a foundational python library for data analysis and statistics.
2011.

[53] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality.

[54] L. C. Morey and A. Agresti. The Measurement of Classification Agreement: An Ad-
justment to the Rand Statistic for Chance Agreement. Educational and Psychological
Measurement, 44(1):33–37, 1984. ERIC Number: EJ297546.

https://papers.ssrn.com/abstract=4400674
https://www.jstor.org/stable/2033241
https://www.jstor.org/stable/2033241
https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://dx.doi.org/10.1088/1367-2630/11/3/033015
http://arxiv.org/abs/1110.2515
http://arxiv.org/abs/1110.2515
https://joss.theoj.org/papers/10.21105/joss.00205

| Bibliography 63

[55] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman. Natural language pro-
cessing: an introduction. Journal of the American Medical Informatics Associ-
ation, 18(5):544–551, Sept. 2011. ISSN 1067-5027, 1527-974X. doi: 10.1136/
amiajnl-2011-000464. URL https://academic.oup.com/jamia/article-lookup/

doi/10.1136/amiajnl-2011-000464.

[56] M. P. Naik, H. B. Prajapati, and V. K. Dabhi. A survey on semantic doc-
ument clustering. In 2015 IEEE International Conference on Electrical, Com-
puter and Communication Technologies (ICECCT), pages 1–10, Mar. 2015. doi:
10.1109/ICECCT.2015.7226036.

[57] S. Narayan. The generalized sigmoid activation function: Competitive supervised
learning. Information Sciences, 99(1):69–82, 1997. ISSN 0020-0255. doi: https://
doi.org/10.1016/S0020-0255(96)00200-9. URL https://www.sciencedirect.com/

science/article/pii/S0020025596002009.

[58] M. E. J. Newman. Analysis of weighted networks. Physical review. E, Statistical,
nonlinear, and soft matter physics, 70 5 Pt 2:056131, 2004. URL https://api.

semanticscholar.org/CorpusID:1054844.

[59] M. E. J. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, June 2006. doi: 10.1073/pnas.
0601602103. URL https://www.pnas.org/doi/10.1073/pnas.0601602103. Pub-
lisher: Proceedings of the National Academy of Sciences.

[60] S. Noor, o. Tajik, and J. Golzar. Simple random sampling. 1:78–82, 12 2022. doi:
10.22034/ijels.2022.162982.

[61] J.-O. Palacio-Niño and F. Berzal. Evaluation Metrics for Unsupervised Learning Al-
gorithms, May 2019. URL http://arxiv.org/abs/1905.05667. arXiv:1905.05667
[cs, stat].

[62] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library, 2019.

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2011-000464
https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2011-000464
https://www.sciencedirect.com/science/article/pii/S0020025596002009
https://www.sciencedirect.com/science/article/pii/S0020025596002009
https://api.semanticscholar.org/CorpusID:1054844
https://api.semanticscholar.org/CorpusID:1054844
https://www.pnas.org/doi/10.1073/pnas.0601602103
http://arxiv.org/abs/1905.05667

64 | Bibliography

[64] C. S. Perone, R. Silveira, and T. S. Paula. Evaluation of sentence embeddings in
downstream and linguistic probing tasks. ArXiv, abs/1806.06259, 2018. URL https:

//api.semanticscholar.org/CorpusID:49306018.

[65] B. Plank. The “problem” of human label variation: On ground truth in data, mod-
eling and evaluation. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 10671–10682, Abu Dhabi, United Arab Emi-
rates, Dec. 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.731. URL https://aclanthology.org/2022.emnlp-main.731.

[66] W. Qader, M. M. Ameen, and B. Ahmed. An Overview of Bag of Words;Importance,
Implementation, Applications, and Challenges. pages 200–204, June 2019. doi: 10.
1109/IEC47844.2019.8950616.

[67] W. M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal
of the American Statistical Association, 66(336):846–850, Dec. 1971. ISSN 0162-
1459. doi: 10.1080/01621459.1971.10482356. URL https://www.tandfonline.com/

doi/abs/10.1080/01621459.1971.10482356. Publisher: Taylor & Francis _eprint:
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356.

[68] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks, 2019.

[69] S. Romano, N. X. Vinh, J. Bailey, and K. Verspoor. Adjusting for Chance Clustering
Comparison Measures.

[70] R. M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and
overview, 2019.

[71] H. Singh and R. Sharma. Role of Adjacency Matrix & Adjacency List in Graph
Theory. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 3
(1):179–183, Aug. 2012. ISSN 2277-3061. doi: 10.24297/ijct.v3i1c.2775. URL https:

//www.cirworld.com/index.php/ijct/article/view/2775.

[72] M. T. H. K. Tusar and M. T. Islam. A comparative study of sentiment analysis using
nlp and different machine learning techniques on us airline twitter data. pages 1–4,
09 2021. doi: 10.1109/ICECIT54077.2021.9641336.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,

https://api.semanticscholar.org/CorpusID:49306018
https://api.semanticscholar.org/CorpusID:49306018
https://aclanthology.org/2022.emnlp-main.731
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://www.cirworld.com/index.php/ijct/article/view/2775
https://www.cirworld.com/index.php/ijct/article/view/2775

| Bibliography 65

Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[74] C. Wang, P. Nulty, and D. Lillis. A Comparative Study on Word Embeddings in Deep
Learning for Text Classification. In Proceedings of the 4th International Conference
on Natural Language Processing and Information Retrieval, NLPIR ’20, pages 37–
46, New York, NY, USA, Feb. 2021. Association for Computing Machinery. ISBN
978-1-4503-7760-7. doi: 10.1145/3443279.3443304. URL https://dl.acm.org/doi/

10.1145/3443279.3443304.

[75] S. Wang, L. Thompson, and M. Iyyer. Phrase-BERT: Improved phrase embed-
dings from BERT with an application to corpus exploration. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages
10837–10851, Online and Punta Cana, Dominican Republic, Nov. 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.846. URL
https://aclanthology.org/2021.emnlp-main.846.

[76] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. Rush. Transformers: State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 38–45, Online, Oct. 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:

//aclanthology.org/2020.emnlp-demos.6.

[77] K.-C. Wong. A short survey on data clustering algorithms. In 2015 Second Inter-
national Conference on Soft Computing and Machine Intelligence (ISCMI), pages
64–68, 2015. doi: 10.1109/ISCMI.2015.10.

[78] H. Xu, H. Zhang, and T.-E. Lin. Discovering New Intents Via Constrained Deep
Adaptive Clustering with Cluster Refinement, pages 99–113. Springer Nature Singa-
pore, Singapore, 2023. ISBN 978-981-99-3885-8. doi: 10.1007/978-981-99-3885-8_8.
URL https://doi.org/10.1007/978-981-99-3885-8_8.

[79] H. Yang, Q. Liu, J. Zhang, X. Ding, C. Chen, and L. Wang. Community Detection in
Semantic Networks: A Multi-View Approach. Entropy, 24(8):1141, Aug. 2022. ISSN
1099-4300. doi: 10.3390/e24081141. URL https://www.mdpi.com/1099-4300/24/

8/1141. Number: 8 Publisher: Multidisciplinary Digital Publishing Institute.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://dl.acm.org/doi/10.1145/3443279.3443304
https://dl.acm.org/doi/10.1145/3443279.3443304
https://aclanthology.org/2021.emnlp-main.846
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.1007/978-981-99-3885-8_8
https://www.mdpi.com/1099-4300/24/8/1141
https://www.mdpi.com/1099-4300/24/8/1141

66 6| BIBLIOGRAPHY

[80] H. Zhang, H. Xu, T.-E. Lin, and R. Lyu. Discovering new intents with deep aligned
clustering, 2020. URL https://arxiv.org/abs/2012.08987.

[81] Y. Zhao and G. Karypis. Criterion Functions for Document Clustering.

[82] Zongqing Lu, Yonggang Wen, and Guohong Cao. Community detection in weighted
networks: Algorithms and applications. In 2013 IEEE International Conference on
Pervasive Computing and Communications (PerCom), pages 179–184, San Diego,
CA, Mar. 2013. IEEE. ISBN 978-1-4673-4575-0 978-1-4673-4573-6 978-1-4673-
4574-3. doi: 10.1109/PerCom.2013.6526730. URL http://ieeexplore.ieee.org/

document/6526730/.

https://arxiv.org/abs/2012.08987
http://ieeexplore.ieee.org/document/6526730/
http://ieeexplore.ieee.org/document/6526730/

67

A| Additional Results and

Discussion

This Appendix contains the results obtained by the experiments with all the hyperpa-
rameters explained in Chapter 4. We have collected many outcomes by tuning the hy-
perparameters regarding the supervised learning experiments (Tables 4.5, 4.6) and the
unsupervised learning experiments (Table 4.7). The aim of this Appendix is to provide
the best model configurations in order to better compare and analyze them in Chapter 5.
In order to assess the optimal model, several outcomes are compared using the NMI and
ARI metrics (as explained in Sec. 5.4). To better visualize the best outcomes inside the
tables, a gray color is used.

In addition, this Appendix provides analysis of a few experimental patterns that, while not
entirely relevant to the thesis, can still be used as a starting point for future investigations.

A.1. Results Supervised Learning Experiments

A.1.1. BCE

The hyperparameters used for the training of the models with LBCE are described in
Table 4.6. For each of the four models (Fig. 4.3), we have three different results due
to the different hidden layer size provided (64 - 512 - 1024). All the results obtained by
training models with LBCE and applying Louvain on the output are plotted in Table A.1
and in Table A.2.

Fig. A.1 and A.2 show the results of the experiments, plotting the four evaluation metrics
for each model. The aim is to see the presence of patterns varying the hidden layer sizes.
The hidden layer sizes are in the x-axis, while on the y-axis we have the metrics scores.

In M1
BCE (Fig. A.1a) with only two layers and a ReLu, we see that all the evaluation

metrics scores decrease with the increment of the hidden size. However, in M2
BCE (Fig.

A.1b), even if there are only two layers (but a Sigmoid instead of a ReLu), we see that

68 A| Additional Results and Discussion

Model Name Hidden Size Average of Evaluation Scores Time (s)
F1 Score NMI ARI Fowlkes Score

M1
BCE

64 0.552 0.556 0.322 0.438 8,279.43
512 0.497 0.544 0.28 0.374 11,936.48
1024 0.392 0.283 0.116 0.3 10,153.51

M2
BCE

64 0.458 0.472 0.197 0.316 13,510.52
512 0.5 0.544 0.268 0.364 12,964.79
1024 0.536 0.566 0.3 0.413 8,054.13

M3
BCE

64 0.389 0.271 0.097 0.299 8,933.85
512 0.335 0.175 0.039 0.258 6,672.62
1024 0.523 0.551 0.316 0.402 12,864.96

M4
BCE

64 0.508 0.552 0.289 0.394 11,191.33
512 0.535 0.542 0.292 0.405 9,972.51
1024 0.57 0.595 0.354 0.465 8,747.06

Table A.1: Average of evaluation scores and time for different BCE models.

Model Name Hidden Size Weighted Average of Evaluation Scores Time (s)
F1 Score NMI ARI Fowlkes Score

M1
BCE

64 0.243 0.447 0.107 0.206 8,279.43
512 0.167 0.44 0.08 0.137 11,936.48
1024 0.103 0.231 0.031 0.098 10,153.51

M2
BCE

64 0.176 0.431 0.08 0.146 13,510.52
512 0.205 0.463 0.102 0.165 12,964.79
1024 0.229 0.473 0.108 0.195 8,054.13

M3
BCE

64 0.118 0.246 0.031 0.103 8,933.85
512 0.103 0.227 0.026 0.103 6,672.62
1024 0.15 0.419 0.078 0.125 12,864.96

M4
BCE

64 0.16 0.449 0.081 0.133 11,191.33
512 0.161 0.427 0.079 0.128 9,972.51
1024 0.228 0.466 0.113 0.192 8,747.06

Table A.2: Weighted average of evaluation scores and time for different BCE models.

the evaluation metrics increase with the increment of the hidden size. This is due for the
first activation function which is a Sigmoid. So from Fig. A.1, we can say that when we
have a model with two layers and a ReLu activation function after the input, it is better
to use a small hidden input layer size hyperparameter. Instead, if we have a Sigmoid,
using higher hidden input layer size provides higher scores.

A| Additional Results and Discussion 69

(a) Results of M1
BCE . (b) Results of M2

BCE .

Figure A.1: Comparison of two layers models M1
BCE and M2

BCE.

(a) Results of M3
BCE . (b) Results of M4

BCE .

Figure A.2: Comparison of three layers models M3
BCE and M4

BCE.

Regarding M3
BCE and M4

BCE (Fig. A.2), we notice that in both the models, the scores
increase with the increment of the hidden size. We give the model extra parameters by
increasing the hidden size, allowing it to learn more complicated representations. This
additional capacity may allow the model to better match the training data, leading to
greater performance. M4

BCE (Fig. A.2b) is more stable than the third one A.2a, showing
that a model with more hidden layers and ReLu as activation functions performs better
increasing the hidden input layer size.

70 A| Additional Results and Discussion

A.1.2. Margin Ranking Loss

The hyperparameters used for the models training with LMRL are described in Table 4.5.
For each of the two models M1

MRL and M2
MRL (Fig. 4.2), there are several outcomes due

to the different hidden layer size provided (512 - 1024) and different margin γ values. All
the results obtained are plotted in Table A.3 and Table A.4. After having trained them,
the three community detection algorithms are used on the outputs.

Name γ Hidden Size Algorithm Average of Evaluation Scores Time (s)F1 Score NMI ARI Fowkles Score

M1
MRL 1

512
Kruskal 0.499 0.761 0.335 0.378 18,788.43
Louvain 0.241 0.426 0.097 0.225 21,179.56
Greedy 0.179 0.276 0.048 0.185 3,674.72

1024
Kruskal 0.593 0.65 0.337 0.412 5,944.9
Louvain 0.513 0.477 0.253 0.381 6,262.78
Greedy 0.411 0.223 0.1 0.315 1,033.58

M2
MRL

1

512
Kruskal 0.497 0.759 0.335 0.378 17,317.4
Louvain 0.48 0.432 0.201 0.38 7,792.32
Greedy 0.388 0.146 0.039 0.324 1,344.06

1024
Kruskal 0.55 0.676 0.325 0.391 9,979.61
Louvain 0.466 0.46 0.232 0.356 9,971.64
Greedy 0.366 0.18 0.062 0.284 1,609.15

10

512
Kruskal 0.495 0.759 0.331 0.374 16,599.63
Louvain 0.569 0.479 0.279 0.44 3,843.07
Greedy 0.467 0.189 0.092 0.364 747.81

1024
Kruskal 0.5 0.762 0.338 0.381 18,117.27
Louvain 0.456 0.42 0.202 0.326 8,912.74
Greedy 0.374 0.187 0.064 0.275 1,659.41

Table A.3: Average of evaluation scores and time for Margin Ranking Loss.

Table A.3 and Table A.4 are characterized by the average and the weighted average of
the evaluation scores. In order to have a better visualization of the results, new graphs
are provided in the following sections. From our analyses, we can see how the best M2

MRL

performs better than the best M1
MRL. The best configuration for M2

MRL is: γ = 10 - hidden
size = 1024. Having these values is fundamental to run an analysis and comparison with
the best model obtained training using BCE and Margin Ranking Loss, visualized in
Chapter 5.

A chart representation of the numerical values in provided in Fig. A.3 and Fig. A.4. The
aim is to show the differences among the community detection algorithms. Each color
corresponds to a different evaluation metric and the three main areas inside the graphs
represent the three different community detection algorithms.

A| Additional Results and Discussion 71

Name γ Hidden Size Algorithm Weighted Average of Evaluation Scores Time (s)F1 Score NMI ARI Fowkles Score

M1
MRL 1

512
Kruskal 0.445 0.749 0.293 0.333 18,788.43
Louvain 0.207 0.408 0.081 0.193 21,179.56
Greedy 0.151 0.264 0.04 0.158 3,674.72

1024
Kruskal 0.294 0.697 0.166 0.202 5,944.9
Louvain 0.182 0.397 0.089 0.156 6,262.78
Greedy 0.136 0.238 0.043 0.127 1,033.58

M2
MRL

1

512
Kruskal 0.443 0.748 0.293 0.333 17,317.4
Louvain 0.155 0.367 0.064 0.14 7,792.32
Greedy 0.115 0.212 0.027 0.115 1,344.06

1024
Kruskal 0.222 0.687 0.113 0.145 9,979.61
Louvain 0.12 0.37 0.055 0.103 9,971.64
Greedy 0.081 0.207 0.021 0.08 1,609.15

10

512
Kruskal 0.442 0.748 0.29 0.33 16,599.63
Louvain 0.2 0.405 0.09 0.181 3,843.07
Greedy 0.147 0.248 0.041 0.147 747.81

1024
Kruskal 0.447 0.771 0.296 0.336 18,117.27
Louvain 0.13 0.351 0.053 0.111 8,912.74
Greedy 0.098 0.212 0.023 0.094 1,659.41

Table A.4: Weighted average of evaluation scores and time for Margin Ranking Loss.

(a) Average of the metrics on M2
MRL with hid-

den size 1024.
(b) Weighted Average of the metrics on M2

MRL

with hidden size 1024.

Figure A.3: Results with hidden size 1024 - γ = 1.

A.1.3. Comparison Community Detection Algorithms

Table A.5 displays the results and differences of the community detection algorithms,
applied to M2

MRL. These numerical outcomes are taken from Table A.4.

A.1.4. Comparison BCE - Margin Ranking Loss

In order to do a better comparison between the supervised learning approaches, we com-
pare the best results obtained by the best BCE Model configurations and the best Margin

72 A| Additional Results and Discussion

(a) Average of the metrics on M2
MRL with hid-

den size 1024.
(b) Weighted Average of the metrics on M2

MRL

with hidden size 1024.

Figure A.4: Results with hidden size 1024 γ = 10.

Method F1 Score NMI
Average Weighted Average Average Weighted Average

Kruskal 0.5 0.447 0.762 0.771
Louvain 0.456 0.13 0.42 0.351
Greedy 0.374 0.098 0.187 0.212

Method ARI Fowlkes score
Average Weighted Average Average Weighted Average

Kruskal 0.338 0.296 0.381 0.336
Louvain 0.202 0.053 0.326 0.111
Greedy 0.064 0.023 0.275 0.094

Table A.5: Comparison of community detection algorithms.

Ranking Loss Model. The results are illustrated in Table A.6. We highlight the higher
values to make the comparison easier to visualize.

Method BCE Margin Ranking Loss
Average Weighted Average Average Weighted Average

F1 Score 0.536 0.15 0.5 0.447
NMI 0.566 0.473 0.762 0.771
ARI 0.3 0.108 0.338 0.296
Fowlkes Score 0.413 0.195 0.381 0.336

Time (sec) 8,054.13 18,117.27

Table A.6: Comparison between the best BCE and Margin Ranking Loss models.

A| Additional Results and Discussion 73

A.2. Results Unsupervised Learning Experiments

A.2.1. HDBSCAN

The hyperparameters used for computing HDBSCAN are described in Table 4.7. Since
there are two hyperparameters min_cluster_size α and min_samples β that can be
tuned with three values each, we obtain in total nine different outcomes, showed in Table
A.7 and in Table A.8. The highlighted values are the ones with highest score among all
of the HDBSCAN experiments.

Name α β
Average of Evaluation Scores Time (s)F1 Score NMI ARI Fowkles Score

H1
2

2 0.52 0.667 0.191 0.259 612.27
H2 10 0.463 0.656 0.076 0.121 1,380.89
H3 200 0.377 0.667 0.007 0.028 2,274.66
H4

10
2 0.491 0.642 0.111 0.167 1,554.36

H5 10 0.445 0.653 0.057 0.089 1,276.49
H6 200 0.325 0.701 0.002 0.701 891.15
H7

200
2 0.347 0.685 0.004 0.011 804.76

H8 10 0.336 0.694 0.003 0.006 890.65
H9 200 0.317 0.703 0.002 0.005 885.01

Table A.7: Average of evaluation scores and time for HDBSCAN.

Name α β
Weighted Average of Evaluation Scores Time (s)F1 Score NMI ARI Fowkles Score

H1
2

2 0.369 0.702 0.091 0.124 612.27
H2 10 0.422 0.705 0.073 0.103 1,360.89
H3 200 0.365 0.714 0.012 0.036 2,274.66
H4

10
2 0.444 0.693 0.112 0.143 1,554.36

H5 10 0.446 0.686 0.07 0.105 1,276.49
H6 200 0.284 0.77 0.005 0.01 891.15
H7

200
2 0.353 0.718 0.013 0.036 804.76

H8 10 0.32 0.746 0.009 0.022 890.65
H9 200 0.257 0.778 0.003 0.002 885.01

Table A.8: Weighted average of evaluation scores and time for HDBSCAN.

Table A.8 shows that we have higher NMI values with α = 200 and β = 200. Therefore

74 A| Additional Results and Discussion

this configuration is used to compare it with the K-Means outcomes. Table A.9 illustrates
the results obtained by the best HDBSCAN configuration so far.

In order to better find any pattern among the evaluation metrics, we plot some results in
Fig. A.5 and Fig. A.6. Every plot contains the results with the another hyperparameter
β, showed on the x-axis, while on the y-axis the evaluation metrics scores are displayed.

Figure A.5: HDBSCAN with α = 10.

With Fig. A.5 and Fig. A.6, some patterns among the evaluation metrics can be identified.
Increasing the β value has different effects on various evaluation metrics:

• F1 Score: it decreases with the increase of the β value.

• NMI: it increases with the increase of the β value.

• ARI: it decreases with the increase of the β value.

• Fowlkes-Mallows score: it decreases with the increase of the β value.

A.2.2. K-Means with Elbow Method

In Table A.10, we report the results from K-Means algorithm.

A| Additional Results and Discussion 75

Figure A.6: HDBSCAN with α = 200.

Metric Average Weighted Average

F1 Score 0.491 0.444
NMI 0.642 0.693
ARI 0.111 0.112
Fowlkes score 0.167 0.143

Time (sec) 1,554.36

Table A.9: Evaluation results with the best HDBSCAN configuration (α = 10 - β = 2).

Metric Average Weighted Average

F1 Score 0.741 0.59
NMI 0.627 0.423
ARI 0.46 0.234
Fowlkes score 0.455 0.442

Time (sec) 6,128.37

Table A.10: Evaluation results with K-Means.

76 A| Additional Results and Discussion

A.2.3. Comparison HDBSCAN - K-Means

In order to do a better comparison between these two algorithms, we compare the best
results obtained by the best HDBSCAN configurations and K-Means. The results are
illustrated in Table A.11. We highlight the higher values to make the comparison easier
to visualize.

Method HDBSCAN K-Means
Average Weighted Average Average Weighted Average

F1 Score 0.491 0.444 0.741 0.59
NMI 0.642 0.693 0.627 0.423
ARI 0.111 0.112 0.46 0.234
Fowlkes Score 0.167 0.143 0.455 0.442

Time (sec) 1,554.36 6,128.37

Table A.11: Comparison between HDBSCAN and K-Means

A.3. Comparison Supervised and Unsupervised Learn-

ing

This final comparison helps to show the main differences between the outcomes from
supervised and unsupervised learning. We pick the best model from each algorithm to
run the final analysis. Table A.12 illustrates the results.

Metric M2
BCE M2

MRL HDBSCAN K-Means

Avg W. Avg Avg W. Avg Avg W. Avg Avg W. Avg

F1 Score 0.536 0.229 0.5 0.447 0.491 0.444 0.741 0.59
NMI 0.566 0.473 0.762 0.771 0.642 0.693 0.627 0.423
ARI 0.3 0.108 0.338 0.296 0.111 0.112 0.46 0.234
Fowlkes score 0.413 0.195 0.381 0.336 0.167 0.143 0.455 0.442

Time (s) 8,054.13 18,117.27 1,554.36 6,128.37

Table A.12: Comparison of best metric values for different algorithms.

Table A.12 is used to run the final analysis in Table 5.4.

77

List of Figures

2.1 Elbow Method for selecting the optimal number of clusters. 11
2.2 The intersection between the two circles that represent the individual en-

tropies of the two variables is the mutual information I(X;Y). 16
2.3 Communities in a graph. 19

3.1 The high-level overview of the research methodology. 28
3.2 General view on the cluster evaluation. 28
3.3 General view of the project. 30
3.4 Differences between supervised learning and unsupervised learning. 31
3.5 Supervised learning and unsupervised learning. 32
3.6 The supervised experimental approach. 33
3.7 Input and output configuration. 34
3.8 The unsupervised experimental approach. 36

4.1 General view about how a Sentence Transformer works: it takes some text
and it converts it into an array of values. 38

4.2 Neural Network Architectures for Margin Ranking Loss. 42
4.3 Neural Network Architectures for BCE. 43

A.1 Comparison of two layers models M1
BCE and M2

BCE. 69
A.2 Comparison of three layers models M3

BCE and M4
BCE. 69

A.3 Results with hidden size 1024 - γ = 1. 71
A.4 Results with hidden size 1024 γ = 10. 72
A.5 HDBSCAN with α = 10. 74
A.6 HDBSCAN with α = 200. 75

79

List of Tables

2.1 Example of word embeddings. 10
2.2 Summary of Clustering Evaluation Metrics used in this project. 18

3.1 Description of the dataset’s attributes. 29
3.2 Example of the dataset. 29
3.3 Example of the user data. 30

4.1 Dataset splitting. 39
4.2 Dataset splitting after data cleaning. 40
4.3 Hyperparameters for model training. 40
4.4 Description of layers and functions in the model. 41
4.5 Hyperparameters for training with Margin Ranking Loss. 42
4.6 Hyperparameters for training with BCE. 43
4.7 Hyperparameters for HDBSCAN algorithm. 45

5.1 Comparison between the best BCE and Margin Ranking Loss models. . . . 48
5.2 Evaluation scores and time for the community detection algorithms. 48
5.3 Comparison between HDBSCAN and K-Means. 49
5.4 Comparison of best metric values for supervised and unsupervised Learning 49

A.1 Average of evaluation scores and time for different BCE models. 68
A.2 Weighted average of evaluation scores and time for different BCE models. . 68
A.3 Average of evaluation scores and time for Margin Ranking Loss. 70
A.4 Weighted average of evaluation scores and time for Margin Ranking Loss. . 71
A.5 Comparison of community detection algorithms. 72
A.6 Comparison between the best BCE and Margin Ranking Loss models. . . . 72
A.7 Average of evaluation scores and time for HDBSCAN. 73
A.8 Weighted average of evaluation scores and time for HDBSCAN. 73
A.9 Evaluation results with the best HDBSCAN configuration (α = 10 - β = 2). 75
A.10 Evaluation results with K-Means. 75
A.11 Comparison between HDBSCAN and K-Means 76

80 | List of Tables

A.12 Comparison of best metric values for different algorithms. 76

81

Acknowledgements

I would like to thank Gavagai for allowing me to write the thesis with them and for
offering resources for study. I would like to thank my supervisor, Filip Cornell, for his
patience and wisdom who helped me a lot over the last few months, and for believing in
me. I would like to thank Annick for always encouraging me and pushing me to give my
best. I would like to thank my parents, Rossella and Marcello, my family and my friends
for their support and encouragement. I could not have completed this project without
their support. I would like to thank Federico Schiepatti for his support over the past few
years, being always available for every doubt. At the end, I would like to spend a few
words on my grandmother who recently passed away. Thank you for your support, thank
you for raising me and thank you for always being there for me. You will always be next
to me. Ciao Nonna, ti voglio bene.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Problem
	Purpose
	Goal
	Benefits, Ethics and Sustainability
	Research Methodology
	Stakeholders
	Delimitations
	Outline

	Theoretical Background
	Natural Language Processing
	Transformer Architecture
	Sentence Embeddings

	Clustering
	K-Means
	Hierarchical clustering
	Density-based clustering
	Supervised Clustering

	Evaluation Metrics
	Extrinsic Measures

	Community Detection Algorithms
	Louvain
	Greedy Modularity maximization
	Kruskal

	Contrastive Learning
	Loss Functions
	Binary Cross Entropy
	Contrastive Loss

	Related Work

	Methodology
	Research methods
	Data Collection
	Results Analysis
	Model Design
	Supervised Learning
	Unsupervised Learning

	Experimental Design
	Experiment 1: Supervised Clustering
	Experiment 2: Unsupervised Clustering

	Implementation
	Hardware and Software
	Sentence Embeddings
	Supervised Learning Experiments
	Dataset Splitting
	Model Training
	Creation of Output Adjacency Matrix
	Community Detection Algorithms

	Unsupervised Learning Experiments
	HDBSCAN
	K-Means using Elbow Method

	Evaluation
	Average
	Weighted Average

	Results and Discussion
	Experiment 1: Supervised Learning
	Comparison BCE - Margin Ranking Loss
	Comparison Community Detection Algorithms

	Experiment 2: Unsupervised Learning
	Comparison HDBSCAN - K-Means

	Comparison Supervised and Unsupervised Learning
	Discussion

	Conclusions and Future Works
	Conclusion
	Limitations
	Future Work

	Bibliography
	Additional Results and Discussion
	Results Supervised Learning Experiments
	BCE
	Margin Ranking Loss
	Comparison Community Detection Algorithms
	Comparison BCE - Margin Ranking Loss

	Results Unsupervised Learning Experiments
	HDBSCAN
	K-Means with Elbow Method
	Comparison HDBSCAN - K-Means

	Comparison Supervised and Unsupervised Learning

	List of Figures
	List of Tables
	Acknowledgements

