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Abstract

Code-based cryptosystems have been thoroughly studied in literature due to their quan-
tum resistant properties. The most effective attacks to such systems are based on solving
the Information Set Decoding problem. Our work is based on Kachigar and Tillich’s stud-
ies on Quantum Random Walks used to tackle this issue. We detail the construction of a
quantum circuit that explores a Johnson graph, which to the best of our knowledge has
never been accomplished in literature. This thesis also shows how to apply such circuit to
solve a sub-procedure of the Finiasz-Sendrier ISD algorithm. We provide a quantitative
analysis of the performance of the circuit in term of the required amount of qubits and
total quantum gates.

Keywords: Coding Theory, Information Set Decoding, Quantum Computing, Post-
Quantum Cryptography, Quantum Random Walks, Johnson Graph





Abstract in lingua italiana

I crittosistemi basati su codici lineari sono oggetto di approfonditi studi a causa delle loro
proprietà di resistenza agli attacchi quantistici. Gli attacchi più efficaci a questi sistemi
sono basati sul risolvedere il problema chiamato Information Set Decoding. Il nostro la-
voro si fonda sugli studi di Kachigar e Tillich sulla risoluzione del problema sfruttando
le Camminate Casuali Quantistiche. Mostriamo in dettaglio la costruzione di un circuito
quantistico che esplora un grafo di Johnson, circuito che, al meglio delle nostre conoscenze,
non è mai stato definito in letteratura. Questa tesi definisce come applicare il suddetto
circuito per risolvere una sotto procedura dell’algoritmo di ISD di Finiasz-Sendrier. For-
niamo infine un’analisi quantitativa delle prestazioni del circuito in termini di numero di
qubit e porte quantistiche usate.

Parole chiave: Teoria dei Codici, Information Set Decoding, Computazione Quantis-
tica, Crittografia Post-Quantistica, Camminate Casuali Quantistiche, Grafi di Johnson
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1

Introduction

In recent years, Quantum computers have drastically risen in popularity mainly due to
big investments from both public and private institutions. What 40 years ago was merely
conceptualized as a mathematical construct, today is a reality. The main reason behind
this technological break-through is that we are trying to achieve the so called Quantum
Advantage: the possibility of solving very specific problems in a much more efficient way
compared to classical methods of computation.

Cryptography is one of the mathematical fields that are deeply influenced by such ad-
vantage, which is the reason why today’s literature focuses on a category of algorithms
defined as quantum-resistant. Code-based cryptosystems rely on the hardness of finding a
minimum-weight codeword in a seemingly randomly structured linear code and, according
to literature, they seem to fit this category. The most effective attacks to such systems
try to solve what is called the Information Set Decoding problem, as a consequence any
Quantum procedure that could speedup its solving is of great significance.

In this work we show a circuital implementation of a Quantum random walk in a Johnson
graph which, to the best of our knowledge, has only been studied in literature from a pure
mathematical point of view. We also prove that this solution is mathematically correct
by comparing simulation results obtained from Qiskit, IBM’s framework for quantum
simulation, with Thomas Wong’s work [39] on Lackadaisical Quantum random walks.
In addition, we also analyze the circuit’s performance when applied to Finasz-Sendrier’s
Information Set Decoding algorithm, indicating its gate number as well as depth using
the algorithm’s parameters.

In Chapter 1 we present the state of the art regarding Coding Theory. Specifically, we
focus on Linear Codes, Decoding Strategies and a brief explanation of how McEliece and
Niederretier’s cryptosystems work. An analysis of the main Information Set Decoding
algorithms is also present.

Chapter 2 explores the main properties and physical laws that rule the world of Quan-
tum Computing. A short description of how classical computation works introduces the
concept, followed by a description of Quantum Algorithms as well as their speedup and
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complexity.

An overview of a key topic is present in Chapter 3: Quantum Random Walks. It starts
from the description of the classical counterpart followed by the Quantum version ex-
plaining their difference. The chapter continues by analyzing their properties regarding
search problems and shows an Hypercube example. The last Sections address such walks
on Johnson graphs. After a brief mathematical analysis, we explain in detail our circuit
implementation of a quantum random walk on a J(4, 2) graph, showing the results of
different simulations as well as gate and depth analysis.

Chapter 4 details the application of our walk on a Information Set Decoding algorithm
called Finiasz-Sendrier. After specifying the its encoding on the graph, we proceed to
analyze phase by phase how the quantum circuit accomplishes a sub-procedure of the
original algorithm. We end the Chapter by analyzing its complexity, showing experimental
results as well as evaluating the performance of the walk.

Appendix A lists basic linear algebra elements that are used throughout this work.
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1| Coding Theory

For millennia mankind has been looking for new ways of communication, from the inven-
tion of new languages to the modern internet. A turning point was reached with the birth
of the first electronic communication devices, as a consequence the need for a new theory
of communication with a solid mathematical foundation emerged.

The first developments of this new theory are attributed to Claude Shannon [32] [33] who
was the first to realise its potential. Its most general scheme is to send a message through
a noisy channel and receive it without it being compromised such as Figure 1.1. The
basic idea, as intuitive as it is elegant, is to add redundant information to the message to
protect it from a certain number of errors due to external noise.

Figure 1.1: High-level description of the communication model proposed by Shannon in
[32]

How much redundancy do we need to correct a given number of errors? Intuitively,
maximising the number of corrected errors and minimising redundancy are two opposite
goals. The objective is to find the optimal trade-off for the specific application. From
this point on, we will focus on a sub-class of codes that is more relevant to the purpose
of this work, the linear codes. The notation and mathematical definitions that will follow
are based on the work of Guruswami [15] while the style of pseudo-algorithm is drawn
from the thesis work of Perriello [27], similar to those that can be found in literature on
the subject.
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1.1. Linear Codes

1.1.1. Notation

The first mathematical notation we need to introduce is Fq, which indicates a finite field
of order q. In this manuscript we will mainly work with order q = 2, i.e. finite fields with
binary coefficients. Over a finite field we can define other mathematical structures such
as v ∈ Fnq which is a column vector of n elements and its transposed vT . With M ∈ Fx×yq

we define all the (x × y)-sized matrices with entries over the field. Same as before, MT

is the transposed matrix. Special cases are 0x×y and Ir, which denote the x × y all-zero
matrix and the r × r identity matrix, respectively. Given A ∈ Fx×yq , to show that the
concatenation of the columns of the matrices A1 ∈ Fx×zq and A2 ∈ Fx×(y−z)

q results in the
starting matrix, we use the special notation A = [A1|A2]. Moreover another important
concept is indexing/projection AI . Given a matrix A ∈ Fx×yq , AI consists of the column
vectors of A that are indexed by a set I ⊆ {1, ..., n}.

1.1.2. Definition

To be complete with our definition of linear codes, we must first define what a linear
subspace is.

Definition 1.1 (Linear Subspace). A non-empty subset S ⊆ Fnq is a linear subspace if
the linearity property hold:

1. ∀x, y ∈ S, x+ y ∈ S where addition is the vector addition over the finite field Fq.

2. ∀ scalar α ∈ Fq and x ∈ S, α·x ∈ S where the multiplication is done component-wise
over the finite field Fq.

Definition 1.2 (Span). A set S of vectors from a vector space, denoted span(S), is the
smallest linear subspace which contains the set. It can be characterized either as the
intersection of all linear subspaces that contain S, or as the set of linear combinations of
elements of S.

Therefore starting from the above definition, a linear code can be represented as the span
of a minimal set of codewords or a basis in terms of linear algebra.

Definition 1.3 (Linear Code). Assume q to be a prime power, namely q = ps for some
prime p and some integer s ≥ 1. C ⊆ {0, 1, . . . , q − 1}n is a linear code if it is a linear
subspace of {0, 1, . . . , q − 1}n. If C has dimension k it will be written as [n, k]q. The
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vectors (c1, c2, . . . , ck)q ∈ C are called codewords of C.

Usually, for clarity of expression, the basis codewords are grouped into a non-unique
matrix called generator matrix for the code C.

Definition 1.4 (Generator Matrix). If S ⊆ Fnq is a linear subspace there exists at least a
set of vectors v1, . . . , vk ∈ S called basis element such that every x ∈ S can be expressed
as x = a1v1 + a2v2 + ... + anvn with ai ∈ Fq and i ∈ [1, k]. We denote as G or generator
matrix a full rank k × n matrix with entries from Fq which can express every element of
S, in other words x = (a1, a2, ..., ak) ·G.

G =




← v1 →
← v2 →

...
← vk →




We can give a more compact description of linear code which we will follow for the rest of
the manuscript. It is easy to understand that a codeword c is just a linear combination
of the rows of the generator matrix.

Remark 1.1. With our previous definitions we can view a linear code as a set of vectors,
C := {c ∈ Fnq |c = G⊤m, G ∈ Fk×nq ,m ∈ Fkq}.

The generator matrix allows us to encode any word m of length k into a codeword c of
length n belonging to C. It’s worth noticing that part of the information contained in the
codeword is not used to encode the message (as it is shorter in length). This leads us to
give a better definition of Information vs. Redundancy. To formalize this notion we need
a couple of definitions.

Definition 1.5 (Information Set). An information set of C is a set of coordinates which
correspond to k linear independent columns of G.

By duality the remaining n− k columns of G form the Redundancy set.

We have seen how we can divide the information contained in a linear code, but we have
not yet given a definition of how efficient this system is, the efficiency of a code can be
measured in terms of the code rate.

Definition 1.6 (Code Rate). Code rate or information rate is defined as R = k
n
.

It is useful now to introduce the concept of distance between codewords in order to better
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understand how they work. This is of fundamental importance as it is directly linked to
the number of errors that can be corrected.

Definition 1.7 (Hamming Distance). Given two vectors x, y ∈ Fmq the Hamming distance
dist(x,y) is defined as the number of positions in which xi ̸= yi, i ∈ [1,m].

In simple terms, the Hamming distance measures the minimum number of substitutions
to change one vector into the other, or the minimum number of errors that could have
transformed one vector into the other.

Remark 1.2. If q = 2 Definition 1.7 can be seen as the number of set terms in the binary
vector obtained as the boolean eXclusive OR between two vectors, i.e. x⊕ y.

Definition 1.8 (Hamming Weight). Given a vector x ∈ Fmq the Hamming weight weight(x)
is defined as weight(x) = dist(x, 0).

The Hamming weight is the number of nonzero components of x.

Definition 1.9 (Code Distance). The code distance is the distance d, such that d :=

min{dist(c1, c2)|c1, c2 ∈ C, c1 ̸= c2} for each codeword pair of C.

This leads to the widely spread notation of [n, k, d]-code. From a theoretical point of view,
Definition 1.9 is crucial as it provides a measure of how resistant to errors a code is. With
the code [n, k, d] we are able to detect up to d−1 errors before a word is indistinguishable
from another and correct up to ⌊d−1

2
⌋ errors deterministically. If an error has a Hamming

weight greater than ⌊d−1
2
⌋, multiple codewords may correspond to the corrupted word,

leaving it up to the receiver to decide which is the correct one. In the following chapters
we will focus only on the subset of linear code with a maximum error correction capability
of ⌊d−1

2
⌋.

So far nothing has been said about how similar two codes are. Also in this case the
distance plays a key role.

Definition 1.10 (Code Equivalence). Two linear codes [n, k, d], C1 and C2 are equivalent if
and only if there exists a bijective mapping function f : Fnq → Fnq such that ∀c1,1, c1,2 ∈ C1
there exist mappings f(c1,1), f(c1,2) ∈ C2 with dist(c1,1, c1,2) = dist(f(c1,1), f(c1,2)).

Note that the m → c mapping between message space and codeword space is not the
same for two equivalent codes, the notion of equivalence is based on preserving the code
distance between two codes.

Equivalent codes have some interesting properties:
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Lemma 1.1. Given a linear code C1 with a generator matrix G1 ∈ Fk×nq and an equivalent
linear code C2 with G2 ∈ Fk×nq the following proposition are true:

• C1 is a linear code [n, k, d] ⇔ C2 is a linear code [n, k, d].

• G2 can be generated from G1 and vice-versa using basic matrix operations.

It is possible to generate a new equivalent code using only basic linear algebra operations:
G2 = AG1M where A ∈ Fk×kq and M ∈ Fn×nq is a monomial matrix.

Remark 1.3. A monomial matrix is a generalized case of a permutation matrix. Given
the identity matrix In the permutation matrix P ∈ Fn×nq is derived by applying a series of
columns permutation to In. The monomial matrix M ∈ Fn×nq is directly derived from P

by multiplying the columns of P by a scalars a1, ..., an ∈ Fq with ai ̸= 0 ∀i.

A relevant application of the equivalence property is to highlight the difference between
Information and Redundancy sets, in order to do this some mathematical transformations
need to be applied.

Theorem 1.1. Every linear code C1 with a generator matrix G1 ∈ Fk×nq has an equivalent
code C2 with a generator matrix G2 = [Ik|Q], where Q ∈ Fk×(n−k)

q . A generator matrix in
this form is called systematic.

It is easy to see how the first k columns of G2 represent the information set (Definition 1.5)
which encodes the original message m in the code C. The remaining n − k columns of
the matrix form the redundancy set. This way, to recover the original message during
decoding it is sufficient to read the first k symbols of the received message and use the
remaining n− k to correct possible errors.

It is useful to show a different way to define a linear code via a parity check matrix.

Definition 1.11 (Parity Check Matrix). Given a linear code C with generator matrix
G ∈ Fk×nq , any matrix H ∈ F(n−k)×n

q with HG⊤ = 0(n−k)×k and rank(H) = n− k is called
parity check matrix of the code C.

Remark 1.4. As it’s been done in Theorem 1.1, given a generator matrix in the sys-
tematic form G = [Ik|Q] with Q ∈ Fk×(n−k)

q we can express H = [−Q⊤|In−k] with
Q⊤ ∈ F(n−k)×k

q which is said to be a parity check matrix in systematic form.

The parity check matrix lead us to an alternative formalization of linear code: given that
Hc = HG⊤m = 0 we can restate the usual definition as C := {c ∈ Fnq |Hc = 0, H ∈
F(n−k)×n
q , 0n−k}.
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Up to this point we have seen how a linear code is defined and some of its properties.
However, the aim of this thesis is to show the practical applications of this family of codes.
Assume that y ∈ Fnq is a message afflicted by an error e to be decoded, i.e. y = e+ c. To
check if y is error-free we can use the parity check matrix: Hy = H(e+c) = He+Hc = 0.
If this holds true, the error component is null.
Generally, however, the resulting vector is s = Hy which is called syndrome of the vector
y.

Definition 1.12 (Syndrome). Given a parity check matrix H ∈ F(n−k)×n
q of a code C and

a vector y ∈ Fnq , we call s = Hy with s ∈ F(n−k)
q syndrome of the vector y.

In the next section we will show how the syndrome is involved in decoding.

1.2. Decoding Strategies

So far we have discussed about linear codes as a pure mathematical concept. Generally
speaking, the purpose of a linear code is to allow information to be sent through a noisy
channel. Here is where decoding enters the game: given a received message y the decoding
method tries to find the right codeword c and then retrieve the initial message m. In this
section we will see how linear codes can be applied to cryptography.
In order to understand how the mathematical concepts just presented can take part in
the art of information hiding, first of all it is necessary to understand the true complexity
behind decoding. The following are the main decoding strategies, from the most common
to the most complex and interesting.

1.2.1. Syndrome Decoding

The first approach we show is the so called list based decoding. Suppose that the received
message y is affected by an error e of a certain weight weight(e) = t. By recalling
Definition 1.12 of the syndrome s = Hy = H(e + c) = He + Hc = He, it can be seen
that the syndrome of the message y is associated with the error vector. We can thus use
the syndrome directly to correct errors in messages.
Usually this is done employing a lookup table T, which maps all the possible syndrome s
to errors e with weight(e) ≤ ⌊d−1

2
⌋. Note that the table has a size of 2(n−k) − 1 and can

be precomputed.
The goal is to retrieve the correct codeword c = y−T(s) = y− e.
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Definition 1.13 (Syndrome Decoding Problem (SDP)). Given a parity check matrix H,
a message y = e + c and a syndrome s = Hy = He find the error vector e such that
weight(e) = t.

In code-based cryptography there is a problem strictly related to this. Suppose we have a
code C, the goal of this problem is to find a codeword c with the smallest possible positive
weight w.

Definition 1.14 (Codeword Finding Problem (CFP)). Given a parity check matrix H
and a weight w, find a codeword c with weight(c) ≤ w and Hc = 0.

Notice how the codeword finding problem is reduced to finding a good sum of the columns
of the parity check matrix since the only values of H which are involved in the sum are
those in correspondence to the no-null positions of the vector c i.e. the 1s of the codeword.

The last point to be clarify is how to look for the right sum of the columns. The most
naive approach is, as often happens in computer science, the exhaustive search.
A pseudocode of this type of search is reported below.

Algorithm 1 Syndrome decoding - exhaustive search
Input: s: n− k bit long syndrome

H: (n− k)× n parity check matrix
t: weight of an error vector

Output: e: n-bit error vector s.t. He = s with weight(e) = t

1: e ← [0n]
2: for j ← 1 to

(
n
t

)
do

// J is a set of t distinct integers in {0, . . . , n− 1}
3: J ← IntegerToCombination(j)
4: if

∑
i∈J hi = s then

5: for all i ∈ J do
6: e ← e + [0i|1|0n−1−i]
7: return e
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Algorithm 1 complexity is the following:

CES(n, k, t) =

(
n

t

)
(CIntToComb + t(n− k))

CIntToComb = O((2n− t)
(
log

(
n

t

)2
)
)

SES(n, k) = O(n2 − nk))

(1.1)

where CES is the time complexity and SES is the spatial complexity. The function Inte-
gerToCombination() maps a given integer into a set of t distinct indexes in the interval
{0, . . . , n− 1}. These will be used as selectors for the columns of the H matrix.

Algorithm 1 is the simplest way to tackle the problem, in the next sections we see how it
can be optimised.

1.2.2. Information Set Decoding

In this section we will extensively use the concept of Information set (Definition 1.5)
explaining how it plays a key role in speeding up the decoding.
By applying the notion of Information set to the two matrices G and H, some interesting
observations can be done.

Definition 1.15 (Information Set Generator Matrix). Given a linear code [n, k] with a
generator matrix G ∈ Fk×nq , a set I ⊆ {1, ..., n} of size k is an information set if and only
if rank(GI) = |I| = k.

The matrix GI ∈ Fk×kq is the portion of G that encode any message m ∈ Fkq in its
correspondence codeword or in other word GI represents any possible non-redundant
linear transformation on m. The information set applies to H in the same way.

Definition 1.16 (Information Set Parity Check Matrix). Given a linear code [n, k] with
a parity check matrix H ∈ F(n−k)×n

q , a set I ⊆ {1, ..., n} of size k is an information set if
and only if rank(HI∗) = |I∗| = n− k, with I∗ := {1, ..., n}\I.

Let’s see how we can take advantage of an information set. Given a matrix G and a
received message y = c + e, once an information set GI is defined we can write

y⊤
IG

−1
I = (c + e)⊤IG

−1
I = c⊤IG

−1
I + e⊤

IG
−1
I (1.2)
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Assuming eI = 0 and recalling that c = G⊤m we derive the original message m

y⊤
IG

−1
I = c⊤IG

−1
I = (m⊤G)IG

−1
I = m⊤ (1.3)

On the other hand if eI ̸= 0, by multiplying every term by G we obtain

y⊤
IG

−1
I G = (c + e)⊤IG

−1
I G = c⊤IG

−1
I G+ e⊤

IG
−1
I G

= (m⊤G)IG
−1
I G+ e⊤

IG
−1
I G

= m⊤G+ e⊤
IG

−1
I G = c⊤ + c⊤e

(1.4)

where c⊤e = e⊤
IG

−1
I G.

The idea behind information set decoding, or ISD, is to guess an information set for which
the indexed part of the error is null or for which we know eI .

Due to its smaller size, we can use the parity matrix H to speed up computation. Before
doing this, some transformations need to be applied to H. After selecting uniformly an
information set I we use a permutation matrix P ∈ Fn×nq (Remark 1.3) to shift to the
right side the n− k columns of H indexed by I∗ := {1, ..., n}\I, obtaining

H̃ = HP (1.5)

We apply elementary row operation to H̃ to bring it into systematic form (Remark 1.4).
All the row transformations are grouped in a matrix R.

Ĥ = RH̃ = RHP = [V |I(n−k)] (1.6)

where V ∈ F(n−k)×k
q . Notice that Ĥ ∈ F(n−k)×n

q .

We need to also define a new error vector ê = P−1e = P⊤e. The effect of the inverse
of the permutation matrix on e is to group all the n − k elements indexed by I∗ at the
bottom of ê. What we now have is

Ĥ ê = RHPP⊤e = RHPP−1e = RHe = ŝ (1.7)

Solving Ĥ ê = ŝ is equal to solve Rs = ŝ.

To get a clearer picture, Figure 1.2 shows the weights distribution and the division of Ĥ, ê
and ŝ.



12 1| Coding Theory

V I

Ĥ

ê

ŝ=

k n-k

n-k

n-k

k

n-k

êI

êI∗

Figure 1.2: Structure of Ĥê = ŝ

This is reflected in Equation (1.7)

Ĥ ê = [V |I(n−k)][ê⊤
I |ê⊤

I∗ ]⊤

= V êI + I êI∗

= V êI + êI∗ = ŝ

(1.8)

Additionally, we can derive êI∗ as êI∗ = ŝ− V êI .

To sum up what we have done so far: we started from the syndrome decoding problem
(Definition 1.13) and rephrased it in terms of Ĥ, ê and ŝ. The goal is still to find a
correct error vector e of weight t, but now we can directly guess a weight p on the êI bits,
compute êI∗ and check our hypothesis

weight(êI∗) = t− weight(êI) = t− p (1.9)

If our guess is correct we compute ê with weight(ê) = t through the concatenation of êI

and êI∗ . To derive the initial error e we simply apply the the permutation matrix in the
reverse order e = P ê. However if our hypothesis is wrong we need to try another weight
p or to choose a different information set I.

Almost all ISD algorithms share as a common structure the random choice of the infor-
mation set or the algebraic transformation on the matrix H, therefore we group these
common steps in the sub procedure: ISextract.
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Algorithm 2 ISextract
Input: s: (n− k)-bit long syndrome

H: (n− k)× n parity check matrix
Output: ŝ: (n− k)-bit long new syndrome

P : n× n permutation matrix
V : (n− k)× k binary matrix

1: repeat
2: P ← RandomPermutationGen(n) // random choice of I
3: H̃ ← HP

4: (U, [V |W ])← RedRowEchelonForm(H̃) // reduction of H̃ into systematic form
5: until W ̸= In−k

6: ŝ← Us
7: return (ŝ, P, [V |W ]) =0

Algorithm 2 complexity is the following:

CIS(n, k) =
1∑n−k

i=1 (1− 2−i)
CRREF (n, k) + (n− k)2

CRREF (n, k) = O
(
n(n− k)2

2
+
n(n− k)

2
− (n− k)3

6
+ (n− k)2 + (n− k)

6
− 1

)

SIS(n, k) = O(n(n− k))

(1.10)

where CIS is the time complexity and SIS is the spatial complexity.

Algorithm 2 takes as input the syndrome s and the parity check matrix H and it returns
the new syndrome ŝ, the permutation matrix P and the permuted parity check matrix in
systematic form Ĥ i.e. [V |W ]. The main loop (line 1-5) is composed by three steps: the
procedure RandomPermutationGen() (line 2), used to generate a random permutation
matrix P , the computation of the permuted parity check matrix H̃ (line 3) and the
reduction to systematic form of the latter through the procedure RedRowEchelonForm().

At this point all that is needed to conclude the discussion is how to compute the error
vector. Different algorithms are discussed.

1.2.3. Prange algorithm

The first algorithm for ISD was proposed by Prange in 1962 [29], it is considered the
starting point for the literature of this field. Prange’s algorithm is based on a simple
observation: if êI = 0 then from ŝ we can derive all the entries of êI∗ , the weight
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distribution is shown in Figure 1.3.

V I

Ĥ

ê

ŝ=

k n-k

n-k

n-k

k

n-k

0

t

Figure 1.3: Weight distribution for Prange’s algorithm

From equation 1.8 we have that êI∗ = ŝ and weight(ê) = weight(êI∗) = weight(ŝ) = t.
By recovering the initial error e we can solve the syndrome decoding problem 1.13.
The idea is to guess the right IS by randomly selecting a permutation on H and verifying
the weight of the resulting syndrome ŝ. The pseudo code is described in algorithm 3

Algorithm 3 Syndrome decoding - Prange
Input: s: n− k bit long syndrome

H: (n− k)× n parity check matrix
t : the weight of the error vector

Output: e : n-bit error vector s.t. He = s with weight(e) = t

ê : n− k bit new syndrome
P : n× n permutation matrix
V : (n− k)× k binary matrix

1: repeat
2: (ŝ, P, [V |W ])← ISextract(s, H)
3: until weight(ŝ) = t

4: ê← [0k|ŝ]
5: return P ê
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Algorithm 3 has the following complexity:

CPR(n, k, t) =

(
n
t

)
(
n−k
t

)(CIS +O(n)) (1.11)

where CPR is the time complexity and CIS is defined in Equation 1.10.

1.2.4. Lee-Brickell algorithm

An improvement of Prange’s idea is done by Lee and Brickell in [18]. It is based on the
fact that it is unlikely that the whole weight of ê is concentrated in the n − k positions
indexed by I∗. The authors allow exactly p non zero entries in the first k positions of
the permuted error. Notice how Prange is a special case of Lee-Brickell with p = 0, the
weight distribution is reported in Figure 1.4.

V I

Ĥ

ê

ŝ=

k n-k

n-k

n-k

k

n-k

p

t-p

Figure 1.4: Weight distribution for Lee-Brickell’s algorithm

From the equation 1.8 we derive êI∗ = ŝ−V êI and weight(êI∗) = weight(ŝ−V êI) = t−p.
The structure of this algorithm is similar to that of Prange’s, with an additional procedure
for the choice of how to distribute the weight p over k indexes namely

(
k
p

)
. The pseudo

code is described in algorithm 4. Specifically, we need to try all the possible combinations
of the weights (line 4) and at any iteration we map this choice with a set of columns of
V (line 5).
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Algorithm 4 Syndrome decoding - Lee-Brickell
Input: s: n− k bit long syndrome

H: (n− k)× n parity check matrix
t : the weight of the error vector
p : the weight of the first k bit of ê with 0 ≤ p ≤ t

Output: e : n-bit error vector s.t. He = s with weight(e) = t

ŝ : n− k bit new syndrome
P : n× n permutation matrix
V : (n− k)× k binary matrix

1: repeat
2: (ŝ, P, [V |W ]) ← ISextract(s, H)
3: for j ← 1 to

(
k
p

)
do

4: J ← IntegerToCombination(j)
5: êI∗ ← ŝ−∑i∈J vi
6: if weight(êI∗) = t− p then
7: ê ← [0|êI∗ ]

8: for i ∈ J do
9: ê ← ê + [0i|1|0n−1−i]

10: end for
11: return P ê

Algorithm 4 has the following complexity:

CLB(n, k, t, p) =

(
n
t

)
(
k
p

)(
n−k
t−p
)
(
CIS +

(
k

p

)
(CIntToComb + p(n− k))

)

CIntToComb = O((2k − p)(log
(
k

p

)
)2)

SLB(n, k, t, p) = O(n(n− k) + (n− k)2 + (p− 1)(n− k) + n− k)

(1.12)

where CLB is the time complexity and SLB is the spatial complexity.

1.2.5. Leon algorithm

A further improvement to Leon-Brickell’s idea is made by Leon in [19]. It is now assumed
that the contribution of the first l bit of the syndrome ŝ comes from the columns of V .
This hypothesis implies that in the error ê is present a slide of l zeros in the first bits
indexed by I∗ that cancel the contribution of the first l columns of the matrix I.
To give a clearer view, the matrices division is shown in Figure 1.5.
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V

I

ê

ŝ

=

k n-k

n-k

n-k-ℓ

ℓ

k

n-k

p

t-p

0

Vup

Vdown

ℓ

n-k-ℓ

sup

sdown

ℓ

n-k-ℓ

Figure 1.5: Weight distribution for Leon’s algorithm

This type of assumption reduces the probability of success because we are excluding all
possible solutions that do not have a slide of l zeros in the permuted error. On the other
hand we have the possibility to precompute the sum of the first l rows of the matrix
composed by the p columns of V instead of the sum of the entire columns.

1.2.6. Stern algorithm

Developing the idea of precomputing some sub-part of the problem we present Stern’
algorithm [36]. Starting from Leon’s idea it employs a meet-in-the-middle strategy to find
which sub-part of the matrix V forms the first l bits of the syndrome.
The idea is to split êI in two intervals of k

2
bit, each with a weight of p

2
. In Figure 1.6 is

reported the weight distribution.

Solving the equation:

VupêI = ŝup ⇔ ŝup = Vup1êI,up1 + Vup2êI,up2 (1.13)

we derive Vup2êI,up2 = ŝup + Vup1êI,up1. Using the result we have just found we can
precompute ŝup + Vup1êI,up1 for all possible

(
k/2
p/2

)
combinations and store the values in a

list θ, computing the remaining part Vup2êI,up2 and check if the result is present in θ. If a
match is found we have a candidate for êI and we can proceed to the next checks on êI∗ .
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V

I

ê

ŝ

=

⌈k
2
⌉ ⌊k

2
⌋ n-k

n-k

n-k-ℓ

l

⌊k
2
⌋

⌈k
2
⌉

n-k

p

w-p

0

Vup1 Vup2

Vdown

ℓ ℓ

n-k-ℓ

ŝup

ŝdown

ℓ

n-k-ℓ

Figure 1.6: Weight distribution for Stern’s algorithm

1.2.7. Finiasz-Sendrier algorithm

Finiasz and Sendrier in [13], differently from Leon and Stern, dismiss the presence of a l
long strip of zeros in the permuted error êI∗,up = 0l. They allow for the distribution of
the weight p also in the region êI∗,up. The idea behind it is now to split êI in two interval
of k+l

2
bit of weight p

2
. The weight distribution for the new matrix division is reported in

Figure 1.7.

V

I

ê

ŝ

=

⌈k+ℓ
2
⌉ ⌊k+ℓ

2
⌋ n-k-ℓ

n-k

n-k-l

⌊k+ℓ2 ⌋

⌈k+ℓ2 ⌉

n-k

p

t-p

Vup1 Vup2

Vdown

0̄ℓ ℓ

n-k-ℓ

sup

sdown

ℓ

n-k-ℓ

Figure 1.7: Weight distribution for Finiasz-Sendrier’s algorithm
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We follow the same principle of the Stern’s Equation 1.13 to create the list θ and checking
for a collision between all

(
(k+l)/2
p/2

)
values of Vup2êI,up2 and ŝup+ Vup1êI,up1. However with

this approach we have to slightly modify the ISextract procedure. As a consequence of
having the division of Figure 1.7 we admit the possibility of selecting k + l columns of V
hence the need to have a modified version of the aforementioned procedure that we will
call ISextractFS. The only difference between the two is that in the modified one we need
to stop earlier the RedRowEchelon sub-procedure, obtaining (n − k − l) × (n − k − l)

identity matrix in the lower rightmost portion of Ĥ. Algorithm 5 shows the pseudo-code
of Finiasz-Sendrier ISD.
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Algorithm 5 Syndrome decoding - Finiasz-Sendrier
Input: s: n− k bit long syndrome

H: (n− k)× n parity check matrix
t : the weight of the error vector
p : the weight of the first k bit of ê with 0 ≤ p ≤ t

l : input parameter 0 ≤ l ≤ n− k − t+ p

Output: e : n-bit error vector s.t. He = s with weight(e) = t

ŝ : n− k bit new syndrome
P : n× n permutation matrix
V : (n− k)× k binary matrix
θ : list containing ŝup − Vup1êI,up1 result, initially is a empty list

1: repeat
2: (ŝ, P, [V |W ])← ISextractFS(s,H)

3: for l1 ← 1 to
(
(k+l)/2
p/2

)
do

4: J1 ← IntegerToCombination(l1))
5: θ ← ŝup −

∑
l1∈J1

vup1l1
6: end for
7: for l2 ← 1 to

(
(k+l)/2
p/2

)
do

8: J2 ← IntegerToCombination(l2))
9: if Collision(

∑
l2∈J2

vup2l2 , θ) then
10: êI∗ ← ŝ−∑l1∈J1

vup1l1 −
∑

l2∈J2
vup2l2

11: if weight(êI∗) = t− p then
12: ê← [0k+l|êI∗ ]

13: for l1 ∈ J1 do
14: ê← ê+ [0l1|1|0n−1−l1 ]

15: end for
16: for l2 ∈ J2 do
17: ê← ê+ [0l2|1|0n−1−l2 ]

18: end for
19: return P ê

Algorithm 5 has the following complexity:

CFS(n, k, t, p, l) =

(
n
t

)
(
n−k−l
t−p

)(
(k+l)/2

p/2

)2 (CIS−FS(n, k, l)+

(
(k + l)/2

p/2

)2CIntToComb + CCollision +

(
(k+l)/2

p/2

)
2l

p(n − k − l)

 + p

SFS(n, k, t, p, l) = O(n(n − k) +

((
(k + l)/2

p/2

)
(
p

2
log2(

k + l

2
) + l)

)
)

(1.14)
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where CFS is the time complexity, SFS is the spatial complexity, CIS−FS is the complexity
of the ISextractFS operation on line 1 which has the same complexity as the original
ISextract (1.10) but with a new CPar−RREF equal to

CPar−RREF = O
(
−

l2n

4
−

l2(n − k)

4
−

ln(n − k)

2
−

ln

4

−
l(n − k)2

2
−

l(n − k)

4
−

3n(n − k)2

4
+

n(n − k)

4

−
n

2
+

3(n − k)3

4
−

3(n − k)2

4
−

(n − k)

2

) (1.15)

The relevant part is the complexity of the Collision operation in line 9, CCollision, which is
the part of the procedure we will try to optimize via our novel quantum solution explained
in Chapter 4. Its classical complexity depends on the method of computation used: either
we perform a Binary-Range search or we employ a lookup table. The complexities are

CCollision,BR = O
(
2 log2

(
(k + l)/2

p/2

))

CCollision,LUT = O
((

(k+l)/2
p/2

)

2l

) (1.16)

Finiasz and Sendrier’s algorithm closes the section dedicated to information set decod-
ing. Again, this will be the starting point for the our attack based on a novel quantum
algorithm.

1.3. Code based cryptosystems

Up to present day, the increase of available computational power has led to a constant
improvement and evolution of cryptographic systems. The computational security of
modern asymmetric cryptography is rooted in complex mathematical problems such as
factoring the product of two primes or solving the discrete logarithm problem. Some of
the most widely used public key algorithms such as RSA and Diffie-Hellman are based
on these mathematical problems [9, 31]. The arrival of quantum computing in the early
’90 and the consequent exponential growth in computing power has been a turning point
for many sectors especially in cryptography. In 1994 Peter Shor proved the superiority of
the new paradigm by providing in [35] a quantum algorithm able to solve the factoriza-
tion problem in polynomial time, achieving an almost exponential improvement over any
known classic algorithm. Hence the need to continue the research in this field to make
cryptography quantum resistant, linear code based cryptosystems seem to fulfil this task.
The computational security of these encryption algorithms rely on the difficulty of finding



22 1| Coding Theory

a minimum weight codeword in a linear code with a random structure (Definition 1.14)
that is proven to be a NP-Hard problem [6]. In this section we present two of the most
famous ciphers based on linear code the McEliece and Niederretier cryptosystem showing
their general structures and the encryption/decryption procedures.

1.3.1. McEliece

Robert McEliece in [22] was one of the first to present a cipher based on linear codes.
Although decoding a linear code have been demonstrated to be NP-Complete in [6] this
cryptosystem has never really been adopted, this is due to the length of the keys and a
low code rate compared to other algorithms such as RSA. The recent increase in quantum
computing capacity has rekindled the interest in this cryptosystem thanks to its apparent
quantum resistant property. The first proof of quantum resistance is given by [10] where
it is shown how the cipher is immune to Quantum Fourier Sampling, a common proce-
dure underlying many famous quantum algorithms such as Shor and Simon’s algorithms.
However, estimating the real security of the parameters employed is not an easy task,
which is why the search for increasingly effective attacks must be carried on.

To complete the description of the cryptosystem, we first show how the public and private
keys are generated in Algorithm 6

Algorithm 6 McEliece Keys generation
Input: n, k, d, q, t: integer value
Output: pk: public key

sk: secrete key
P : n× n permutation matrix over Fq
A: k × k matrix of rank k over Fq
G: k × n generator matrix over Fq

1: C ← ChooseLinearCode(n, k, d)
2: G← GenMatrix(C)
3: P ← RandPerm()
4: A← RandMatrix()
5: G′ = AGP

6: pk = (G′, n, k, t, q)

7: sk = (G,P,A)

8: return (pk, sk) =0

The procedure ChooseLinearCode() at (line 1) is used to choose randomly a linear code C-



1| Coding Theory 23

[n, k, d] over the finite field Fq such that an efficient decoding algorithm DecodeG() exists
and it corrects up to ⌊d−1

2
⌋ errors. The main idea is hide the linear code C generated by

G with an equivalent linear code C ′ with generator matrix G′. Thanks to Definition 1.1
using only simple linear algebra operation we derive G′ = AGP , even if the two code C
and C ′ are equivalent the mapping between the message space and the codeword space
m→ G⊤m is completely different.

The encryption procedure illustrated in Algorithm 7 is the encoding of the plaintext
c = mG′ with the addition of a random error e of weight(e) = t, to improve the security
it is a good practice to choose the highest possible weight for e.

Algorithm 7 McEliece encryption

Input: m : plain text over Fkq
pk : public key

Output: y: cipher text over Fnq
e : a random error over Fnq

1: c = mG′

2: e ← random error with weight(e) = t

3: y = c + e
4: return y

The decryption procedure shown in Algorithm 8 requires a little more attention, all the
matrices operation are explained in detail:

d = Py⊤ = P (mG′)⊤ + Pe⊤ = P (mAGP )⊤ + Pe⊤ =

PP⊤G⊤A⊤m + Pe⊤ = (AG)⊤m + Pe⊤ (1.17)

Thanks to the remark 1.3 P−1 = P⊤ and applying a permutation to the error vector does
not change the weight.
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Algorithm 8 McEliece decryption
Input: y: cipher text over Fnq

sk : secret key
Output: m : plain text over Fkq

e : a random error over Fnq
1: d = Py⊤

2: a =DecodeG(d) = A⊤m
3: m = A−1a
4: return m

There are two main family of attacks which can be applied to McEliece cryptosystem in
order to test its security level, the Structural and the Unstructural/Decoding attacks.

Structural attack. The attacker can attempt to recover the structure of C and thus find
an efficient decoding algorithm Decodeatk to break the encryption. This type of attack
highly depends on the family of code from which C is chosen, the original proposal of
using Goppa Codes is still immune to this attack.

Unstructural or Decoding attack. The attacker can retrive the plaintext m from the
message y ignoring the structure of the code just using an algorithm for decoding a linear
code like Syndrome decoding or ISD. This attack which is often referred as brute force
relies only on the computational power available for the attacker because as shown in this
chapter every general decoding algorithm as exponential running time.

To give practical idea on the parameters employed McEliece in his original paper suggest
using binary Goppa code, extensively explained in [5], with security parameters sizes of
n = 1024, k = 524 and t = 50. Concerning post quantum security the proposed parameter
are in the order of n = 6960, k = 5413 and t = 119 suggested in [2]. The search for
McEliece cryptosystem parameters that offer the best trade-off between performance and
post-quantum security is still open for discussion.

1.3.2. Niederretier

The second cryptosystem based on linear code was introduced by Harald Niederreiter in
[24], it follows the structure of the McEliece cryptosystem and it offers the same level of
security of the latter. Its main idea consists of using the parity check matrix H in the
encryption procedure and the syndrome as chipertext. The procedure of key generation,
encryption and decryption are described below.
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Algorithm 9 Niederretier Keys generation
Input: n, k, d, q, t: integer value
Output: pk : public key

sk : secrete key
P : n× n permutation matrix over Fq
A : k × k matrix of rank k over Fq
H : (n− k)× n generator matrix over Fq

1: C ← ChooseLinearCode(n,k,d)
2: H ← ParityMatrix(C)
3: P ← RandPerm()
4: A← RandMatrix()
5: H ′ = AHP

6: pk = (H ′, n, k, t)

7: sk = (H,P,A)

8: return (pk, sk)

Algorithm 10 Niederretier encryption

Input: m : plain text over Fkq
pk : public key

Output: y: cipher text over Fnq
e : a random error over Fnq

1: c = H ′m⊤

2: e ← random error with weight(e) = t

3: y = c + e
4: return y

Algorithm 11 Niederretier decryption
Input: y: cipher text over Fnq

sk : secret key
Output: m : plain text over Fkq

e : a random error over Fnq
1: d = A−1y
2: a=SyndromeDecodeH(d) = Pm⊤

3: m⊤ = P−1a
4: return m
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The word Computer today has a very specific meaning: a machine, a construct, whose
only purpose is to execute a given command. Its shape and form can be wildly different,
but our relationship with it is always the same: we give it an input, an output comes out.
In our society, it’s a given.
The mathematical logic behind its reasoning has been thoroughly studied in the ’30s and
’40s by Alan Turing and John von Neumann, shortly after that, advancements in the field
of electronics led to the realization as well as miniaturization of the execution of those
logical axioms. Our phones and laptops are based on chips that follow the rules of voltages,
currents, capacities. What we are going to examine in this work act in accordance of that
same mathematical logic by following a radically different set of rules whose properties
have historically been a challenge to comprehend: Quantum Mechanics.

The content of the following chapter is based on the work of Nielsen and Chuang [25].

2.1. History

At the beginning of the twentieth century, the foundations of physics were brought into
question. Up until that point, the laws of physics managed to model, to give meaning to
our reality from the point of view of our everyday world. Observation and experimentation
were limited to what a scientist could experience. These laws worked so long as the world
they were applied on (or more like taken from) was big: we can experience quite easily
what is gravity, what is an electrical current. Problems arose when these rules where
confronted with a very different world, a very small one. Atoms, light particles and
electrons seemed not to obey particularly well to those models. These laws where not
enough, a completely new paradigm had to be found.

2.2. Quantum Mechanics

Quantum Mechanics is, like the Classical laws we have just described, a mathematical
framework or set of rules for the construction of physical theories. These rules have
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always been proven hard to grasp, to the point that Einstein himself couldn’t reconcile
his own work with them. Yet, Quantum Mechanics today offers the most accurate and
complete description of the laws that rule the physical world we live in.

2.2.1. Properties

Before analyzing in detail the fundamental postulates this new paradigm is based upon,
we need to provide an intuition about a few key properties that characterize Quantum
Mechanics and directly Quantum Computing: the concept of Superposition, how Mea-
surements work and Entanglement.

The most basic element of classic computation is called bit, and it can famously only be
in two states: either 0 or 1. In Quantum Computing, the corresponding computation
element is the quantum bit or shortly qubit. Just like its classic counterpart, the qubit
has as possible states |0⟩ and |1⟩, but the key difference is that its state can also be any
linear combination between 0 and 1:

|ψ⟩ = α |0⟩+ β |1⟩ (2.1)

This property is called Superposition. Here α and β are complex numbers called am-
plitudes, that is why the state of a qubit is a vector in a two-dimensional complex vector
space. The special states |0⟩ and |1⟩ are known as computational basis states, and form
an orthonormal basis for this vector space.
There is a catch: Quantum Mechanics tells us that we can only acquire much more
restricted information about the quantum state. This is the introduction to the Mea-
surement problem: when we measure a qubit we cannot determine its quantum state.
A state amplitude, if squared, represent the probabilities of measuring that specific base
state of the state |ψ⟩, and when a measurement is applied we only obtain that base state.
It naturally follows that for any qubit |α|2 + |β|2 = 1. Geometrically, we can interpret
this as the condition that the qubit’s state vector be normalized to length 1, that is why
generally a qubit is a unit vector in a two-dimensional complex vector space.

The phenomenon of Entanglement is the last key element of these new laws that is
going to be a resource of great utility for quantum computation.

As we will understand better later by looking at the definition in postulate 4, an entangled
state is a composite system that can’t be written as a product of states of its component
systems, meaning there is no single qubit states |a⟩ and |b⟩ such that |ψ⟩ = |a⟩ |b⟩.
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Consider the following two qubit state called EPR pair:

|ψ⟩ = |00⟩+ |11⟩√
2

(2.2)

This is the main counter-intuitive property that characterizes Quantum Mechanics whose
effects are still studied today: measuring the state |ψ⟩ of (2.2) gives rise to a behaviour
that puzzled physicists for quite some time. By following its definition, if we apply a
Measurement to the two qubits we will have the same probability of observing either
|00⟩ or |11⟩. However, if we decide to measure only one of those qubits observing, say, a |0⟩,
and observe the other, then the whole state collapses to |00⟩. This means that observing
the first qubit immediately fixes the second to a specific value: with no direct observation
we already know its state just by interacting with the first qubit. The surprising part is
that these qubits do not have to be close to each other once they have been entangled.
This behaviour is one of the reasons why scientist where initially skeptical about the laws of
Quantum Mechanics since it breaks a fundamental notion of physics: information cannot
travel faster than light itself. It turns out, on the other hand, that we are not conveying
anything, since we are simply aware from our qubit’s observation what is happening on
the other end of the entangled state.

There are a couple of noteworthy properties before continuing, these are especially im-
portant in case we want to achieve some kind of computation with this new paradigm.
The first is called No-Cloning Theorem from [40]:

Theorem 2.1. (No-Cloning Theorem) It is not possible to make an identical copy of an
arbitrary unknown quantum state.

This means that a device that, given a quantum state, outputs one or multiple copies
of that same state does not exists and never will. This is one of those truths imposed
by reality, a fundamental characteristic of the quantum world. If we want to perform
computation in this field this may sound quite troublesome, but new rules mean new
issues as well as new opportunities.

Quantum Teleportation will sound like a direct counter-example of the No-Cloning
theorem, yet a small detail will make a big difference. It turns out that it is possible to
transfer a quantum state from a qubit to another if they are entagled. This operation
comes at the cost of the measurement of the sender qubit, thus the quantum state is lost
from one side of the channel. Investigated for the first time in [4], the process involves,
other the a shared EPR pair, just 2 bits of classic information that are transmitted in a
classical channel. Once one qubit of the pair has been measured, information about the
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measured state is then sent to the other qubit recipient, who will interact with its system
accordingly. The result is that the sender is left with a measured system, meaning the
original quantum state is lost, whereas the receiver qubit’s state is exactly equal to the
original sender’s state.

These basic properties have been useful in giving us a quick high level representation
of this new model. We will now delve into the actual physical axioms that form the
foundation of Quantum Mechanics.

2.2.2. Postulates

We will briefly describe the fundamental postulates that Paul Dirac [11] and John Von
Neumann [38] introduced in the early ’30s. For a better understanding of the Dirac
notation and linear algebra, we suggest reading Appendix A.

Postulate 1. Any isolated physical system is associated with a complex Hilbert space
called state space of the system. The system is completely described by a unitary vector
in this state space, called state vector.

As we have already described, the simplest isolated physical system is a two-dimensional
state space called qubit. Its Hilbert space is C2. If we consider |0⟩ and |1⟩ as orthonormal
basis of this state space (the quantum version of the classical 0 and 1), then an arbitrary
state vector can be written as

|ψ⟩ = α |0⟩+ β |1⟩ (2.3)

where α, β ∈ C. The unitarity condition expressed in the postulate is modeled via the
formula we have already illustrated |α|2 + |β|2 = 1.

The following postulate gives a description of how a system changes with time.

Postulate 2. The evolution of a closed quantum system is described by a unitary trans-
formation. Meaning, the state |ψ⟩ of the system at time t1 is related to the state |ψ′⟩ of
the system at time t2 by a unitary operator U which depends only on the times t1 and t2

|ψ′⟩ = U |ψ⟩ (2.4)

A closed system does not interact in any way with any other system. This is to be
considered an approximation since no physical system in nature is completely isolated.
We can refine the second postulate by describing the evolution of a closed physical system
in continuous time.
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Postulate 3. The time evolution of the state of a closed physical system is defined by the
Schrödinger equation

iℏ
d |ψ⟩
dt

= H |ψ⟩ (2.5)

Here ℏ is Planck’s constant, whose value has been experimentally determined. H is a fixed
Hermitian operator known as the Hamiltonian of the closed system.

In principle, knowing a system’s Hamiltonian means that we understand its dynamics
completely, yet figuring it out can be extremely complicated. What is worth pointing out
is that there is a one-to-one correspondence between the discrete-time description of dy-
namics using unitary operators and the continuous time descriptions using Hamiltonians.
In order to observe what is going on in a physical system we are forced to interact with
it and rendering it not closed, meaning not necessarily subject to unitary evolution. We
need to describe what happens when the system is subject to measurement.

Postulate 4. Any Observable M (any property of a physical system that can be measured)
is represented by an Hermitian operator on the system’s state space that is observed. M
is equal to

M =
∑

m

mPm (2.6)

where Pm is the projection onto the subspace formed by M’s eigenvectors that correspond
to the eigenvalue m. The possible results of an observable M’s measurement are the eigen-
values m of M. After a measurement of M in the state |ψ⟩, the probability that result m
occurs is

p(m) = ⟨ψ|Pm |ψ⟩ = ||Pm |ψ⟩ ||2 (2.7)

The state of the system immediately after a measurement with result m is

Pm |ψ⟩√
p(m)

(2.8)

Pm operators satisfy the completeness equation

∑

m

Pm = I (2.9)

The equation above denotes the fact that the sum of the probabilities of a measurement
is 1. Meaning

1 =
∑

m

p(m) =
∑

m

⟨ψ|Pm |ψ⟩ = ⟨ψ|ψ⟩ (2.10)
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In reality, the type of measurement we have just described is called projective measurement
which can be considered a special case of measurement, but so long as we perform only
unitary transformations this specialization is equivalent to the general case.

Generally speaking, the result of the measurement of an observable M in a state |ψ⟩
is random. By measuring multiple copies of a given system it is possible to study the
probabilistic distribution of the possible results. We can analyze it by introducing the
definition of average E of a random variable (the observable M) which corresponds to the
weighted average over all the possible outcomes.

E|ψ⟩(M) =
∑

m

mPm

=
∑

m

m ⟨ψ|Pm |ψ⟩

= ⟨ψ|
(∑

m

Pm

)
|ψ⟩

= ⟨ψ|M |ψ⟩ ≡ ⟨M⟩

(2.11)

We can extend even further via probability theory notation and define the standard devi-
ation associated to an observable M as

[∆(M)]2 = ⟨(M − ⟨M⟩)2⟩
= ⟨M2⟩ − ⟨M⟩2

(2.12)

which is a measure of the typical spread of the observed values upon measurement of M.
The average and standard deviation formulations in terms of observables are especially
useful in that they simplify a lot of calculations and come particularly in handy during
the definition of the Heisenberg uncertainty principle.

Lastly, the following postulate describes how the state space of a composite system is
built up from the state spaces of the component systems.

Postulate 5. The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. If we have systems numbered 1 through n,
and system number i is prepared in the state |ψi⟩, then the joint state of the total system
is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩

The reason why a composite system is defined as the tensor product of the component
systems can be easily understood when looking at how the concept of superposition is
mathematically represented: instead of applying the principle to an isolated system |A⟩,
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if applied to a composite one |A⟩ |B⟩ we come to the tensor product in the postulate.

To wrap everything up, all the fundamental postulates can be summed up as the following:

• Postulate 1 defines how the state of an isolated quantum system is to be described.

• Postulate 2 and 3 tell us that the dynamics of closed quantum systems are described
by the Schrödinger, thus by unitary evolution.

• Postulate 4 gives us a way to extract information from a quantum system by de-
scribing the concept of measurement.

• Postulate 5 gives the definition of how to combine different quantum systems thus
describing the composite system.

The main difference between the quantum world and classic physics is the fact that we
can’t directly observe the state vector in the latter. A fundamental property of an object
is no longer directly observable, yet we can indirectly interact with it. Measuring in this
environment is like an imposition, a forced standpoint that can no longer be taken lightly
since by Postulate 3 this action changes the state of the system. On the other hand, this
weird and counter-intuitive behaviour is exactly the strong point that these new set of
rules gives us: we can exploit the hidden nature of the state vector to do information
processing tasks beyond what is possible in the classical world.

2.3. Information Modeling

Before examining how we can actually perform any kind of computation in this quantum
environment, we need to briefly introduce how computation itself has been historically
modeled. The first problem scientist has to agree on was the formulation of the concept
of algorithm. After all, we compute by following a series of instructions, thus by following
an algorithm. The fundamental notions of modern algorithm theory, i.e. computation
theory, were introduced in the 1930s by Alan Turing and Alonzo Church who were trying
to understand whether an algorithm that could solve all mathematical problems existed
or not. The answer turned out to be negative, nonetheless from their work the model of
modern computation was formalized.

The Turing Machine is a class of machines that captures the notion of an algorithm
that performs a computational task. It consists of:

• A program, a list of instructions the machine has to follow.

• A finite state control, it represents the internal state of the machine during the
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computation. It always includes a starting state and one (or more) halting states.

• A tape, it essentially acts like a memory.

• A read-write tape-head, it points to the position on the tape which is currently
readable or writable.

To summarize its functioning: the machine starts its operation with the finite state control
set to the starting state and with the read-write head at the leftmost tape element. The
computation proceeds in a step by step manner according to the program’s instructions.
An instruction is executed only if the current element under the tape and the current
internal state are correct, if so the instruction may specify a change in the current state
as well as a write on the tape and the movement of the head. The execution terminates
whenever a halting state is reached and what can be read on the tape is considered the
output.

The computational capabilities of such a machine are considerable. So much so, Turing
conjectured that it is a model for computation that completely captures the notion of
computing a function using an algorithm. Church achieved the same result by studying
lambda calculus.

Thesis 1. (Church-Turing) The class of functions computable by a Turing machine cor-
responds exactly to the class of functions which we would naturally regard as being com-
putable by an algorithm.

So far, no evidence that suggests this thesis to not be true has been found. The Church-
Turing thesis suggests that a Turing machine is an ideal starting point for the creation of
a computing construct. The ideal part is a key problem here, a real device is finite in size
from any point of view.

We now analyze a model called circuit model that is computationally equivalent to
Turing machines but much more useful when confronted with the problem of applications
on a real device. A circuit is made up of:

• Wires, that connect the different components of the circuit and carry the information
content.

• Gates, the structures that actually perform the computation based on the content
of the input wires.

Gate types may vary, yet they all can be considered placeholders for the execution of a
general boolean function f : {0, 1}k → {0, 1}l which takes as input k bits and outputs
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l bits, therefore k wires will be needed as inputs of the gate and l wires as outputs. A
comprehensive list of possible classical gates as well as their truth table is shown below.

(a) NOT gate (b) AND gate (c) NAND gate (d) OR gate (e) NOR gate

(f) XOR gate (g) XNOR gate

Figure 2.1: A summary of the most used logic gates

a b ¬a a ∧ b ¬(a ∧ b) a ∨ b ¬(a ∨ b) a⊕ b ¬(a⊕ b)
0 0 1 0 1 0 1 0 1
0 1 1 0 1 1 1 1 0
1 0 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0 1

Table 2.1: Truth table of the gates shown above: ¬ NOT, ∧ AND, ∨ OR, ⊕ XOR

Like a puzzle, we can put together may of these gates which can be considered the building
blocks of modern computation to perform a huge amount of different computations. It
can be shown, in fact, that these elements can be used to compute any boolean function
whatsoever.
This model of computation can be proven to be computationally equivalent to a Turing
machine. Specifically, it is possible to implement any Turing Machine with a synchronous
circuit with Boolean gates and single-bit synchronous memory elements. The proof is quite
lengthy, the key point is that it is possible for an algorithm running on a Turing machine
to give a description of a circuit. The circuit model therefore inherits its capability
concerning the notion of computing explained in (1).



36 2| Quantum Computing

Figure 2.2: An example of a classic combinatorial circuit

What we have just outlined is the theory at the foundation of computation that we need
in order to be able to give an accurate description of what a quantum circuit is. We can
thus proceed to analyze its components.

2.4. Quantum Circuit

Having described the basics from classical theory, we can now delve into the quantum
model. The quantum circuit model can be considered today the framework we can base
quantum computation upon, and, just like its classical counterpart, gates are the sub-
structures that perform the actual computation followed and/or preceded by wires that
connect multiple instances.

Again, we suggest reading Appendix A for an explanation of the Dirac notation as well
as some basic linear algebra concepts.

2.4.1. Single Qubit gates

The most basic gate type is the single qubit gate. As we have already mentioned, a single
qubit is a vector |ψ⟩ = α |0⟩ + β |1⟩, parametrized by two complex numbers satisfying
|α|2+ |β|2 = 1. Since operations on a qubit must always preserve this norm, a single qubit
transformation is described by a 2× 2 unitary matrix. This means that, while classically
there is only one non-trivial operation on a bit (the NOT operation), in the quantum
model we can have multiple when concerned with a single qubit. The corresponding
quantum operation of the NOT gate is called X and is defined as:

X =

[
0 1

1 0

]
(2.13)
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Indeed, on a α |0⟩+ β |1⟩ qubit an X gate applies the following transformation:

X

[
α

β

]
=

[
β

α

]

where it is clear the connection with the NOT operation: it swaps the amplitudes of the
base states |0⟩ and |1⟩.
Among the single qubit operations, there are three more that are worth noting. The first
two are the Z gate and the Y gate.

Z =

[
1 0

0 −1

]
Y =

[
0 −i
i 0

]
(2.14)

We can read how a transformation alters a quantum state by looking at the two column
vectors of the 2 × 2 matrix: the first one shows how the base state |0⟩ is transformed
whereas the second concerns the base state |1⟩. For example, the Z gate leaves unaltered
the |0⟩ base state while flipping the sign of the |1⟩ component. Together, the X, Y and Z
gates are called Pauli matrices and represent respectively the x, y and z components of
an electron’s spin: they each apply a π radians rotation to the quantum system around
the corresponding axis. When exponentiated, the Pauli matrices produce the rotation
operators :

Rx(θ) ≡ e−iθ
X
2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
(2.15)

Ry(θ) ≡ e−iθ
Y
2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
(2.16)

Rz(θ) ≡ e−iθ
Z
2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

[
e−i

θ
2 0

0 ei
θ
2

]
(2.17)

Lastly, one of the most useful single qubit gates is the Hadamard gate:

H =
1√
2

[
1 1

1 −1

]
(2.18)

Its effect is to transform a basis state into a superposition such that a measurement
would output one of the two basis states with the same probability. As we will learn,
this transformation is the centerpiece of any search-related algorithm since a parallelized
application of n of these gates on n qubits can quickly create the superposition of all the
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possible combinations of those qubits basis states.

On a circuit, the gates we have analyzed so far are simply represented by their respective
letters in a box acting on a single wire.

X Y Z Rx Ry Rz

As an additional note, the measurement operation can be considered a single qubit opera-
tion as well, although not technically a gate. Its purpose is to represent the measurement
action on the wire which will output, as described in 2.2.1, one of the two possible basis
states depending on the current state’s amplitudes. Since only one of the basis states can
be measured, post-measurement the wire can be effectively considered a classical wire,
therefore the operation is usually applied at the end of the circuit.

2.4.2. Multi Qubit gates

The ability to perform controlled operations is a fundamental part of any form of com-
putation model. The same principle can be applied when dealing with quantum transfor-
mations. A controlled gate is a gate with one or more control qubit(s) and a target qubit.
The state of the target qubit after the transformation depends on the state of the control
qubit before it.

The most classic controlled operation is the CNOT wherein the control qubit state deter-
mines whether the target qubit state is gonna be flipped or not. More specifically, an X
gate is applied to the target qubit if the control qubit’s state equals to the basis state |1⟩.
It acts like a quantum variant of the classic XOR operator, indeed in bra-ket notation
its action can be expressed as |A⟩ |B⟩ → |A⟩ |A⊕B⟩ where A is the control qubit and B
is the target qubit.

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(2.19)

|A⟩ |A⟩
|B⟩ |A⊕B⟩

≡
X

It’s worth noting that, like any unitary transformation, the CNOT operation is reversible:
if we were to reapply the same gate on the same wires the quantum system’s state would go
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back to the original state. This does not generally hold true for any classical operation. As
an example, from the output of the boolean OR operation it is not possible to determine
what input configuration caused the bit to have that final value.
Any single qubit gate can undergo the same process: the gate’s transformation is applied
to the target qubit if the control qubit’s state is equivalent to |1⟩.

Z Y
H

2.4.3. Example and Properties

Gathering all pieces of information described so far, a quantum circuit follows the circuit
model analyzed in 2.3: an arbitrary number of gates acting on different wires implement
a boolean function whose output is then measured. Seeing that the measurement is an
intrinsically stochastic operation, it may be necessary to repeat the whole process multiple
times in order to obtain an accurate representation of the quantum state at the end of
the computation.
As an example, we show a circuit that performs a swap of the states of two given qubits:

|A⟩ |B⟩

|B⟩ |A⟩
≡

We can have a look at how the quantum system changes after each single gate application.

|A,B⟩ → |A,A⊕B⟩
→ |A⊕ (A⊕B), A⊕B⟩ = |B,A⊕B⟩
→ |B, (A⊕B)⊕B⟩ = |B,A⟩

A few key differences between the quantum circuit model and the classical one are worth
noting. In a quantum circuit loops are not allowed, circuits have to be acyclic. Sec-
ondly, a classical circuit allows two wires to be joined together performing what is called
a FANIN operation which is a bit-wise XOR of the two inputs. Again, in a quantum
setting this is not possible since this is not a reversible operation. Lastly, the inverse
operation FANOUT is not viable anymore since it is basically a copy operation which
violates the No-Cloning theorem described in (2.1).
To put it shortly, the number of outputs (wires) coming out of any quantum transfor-
mation has to be equal to the number of inputs, otherwise the transformation has no
possibility of being reversible.
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2.5. Quantum Algorithms

Having described the model of computation, we try to analyze what so far has been
accomplished with it. The similarities with the classical model, and especially the differ-
ences, can be better understood if the perspective is now the steps of an actual algorithm
instead of a simple component description. Lastly, we show a possible classification of
these algorithms based on the different paradigms they make use of.

2.5.1. Classic Computation & Quantum Parallelism

Being it based on quantum mechanics as well, it is expected that a classic logic circuit
can be simulated using a quantum circuit. It turns out that it is indeed possible, but a
few changes may be needed. The most fundamental difference between the two models is
the fact that unitary quantum logic gates are always invertible thus reversible, whereas
some classic logic gates are inherently irreversible. In other words, the function a quan-
tum circuit computes must always be bijective, a condition that is not necessary when
considering a classical circuit.

Any classical circuit can be replaced by an equivalent circuit containing only reversible
elements by using a gate known as Toffoli gate. It has two control qubit and a target
qubit controlled via an X gate.

TOFFOLI =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




(2.20)

|A⟩ |A⟩
|B⟩ |B⟩
|C⟩ |C ⊕ AB⟩

A proper sequence of applications of this gate can achieve the simulation of the NAND
gate as well as the FANOUT operations. Given the universality of these operations,
it becomes possible to simulate all other transformations, meaning an arbitrary classical
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circuit can be simulated by an equivalent reversible circuit. Once the necessary changes
are done, the equivalent classical circuit built via the usage of Toffoli gate can be simulated
by a quantum circuit, noting that two subsequent application of the Toffoli gate return the
original quantum state |A,B,C⟩ → |A,B,C ⊕ AB⟩ → |A,B,C ⊕ AB ⊕ AB⟩ ≡ |A,B,C⟩
demonstrating its reversibility. It is thus possible, given a general classic function f , to
build a quantum circuit that performs the following transformation:

|x, y⟩ → |x, y ⊕ f(x)⟩ (2.21)

where x is the input and y is are the allocated qubits for the output.

We can further expand upon these considerations regarding simulation by taking into con-
sideration probabilistic classic computers. This class of machines bases the computation
on the generation of random bits. Being randomness a fundamental component of the
quantum environment, a quantum machine can easily simulate such constructs. A very
basic circuit that could represent a simple coin toss is achievable via the use of a single
Hadamard gate.

|0⟩ H
1√
2
(|0⟩+ |1⟩)

Measuring the output state 1√
2
(|0⟩ + |1⟩) will result in the state |0⟩ or |1⟩ with 0.5/0.5

probability, which is the same probabilistic behaviour of a coin toss. Any random process
is inherently efficient to simulate thanks to gates like Hadamard, in view of the fact that
any superposition is naturally a stochastic process.

This property is the reason why it is possible to define a key feature of many quantum
algorithms: Quantum Parallelism. The ability to efficiently simulate probabilistic
processes allows quantum computers to evaluate a function f(x) : {0, 1} → {0, 1} for
different values of x simultaneously.
First we give the mapping (2.21) a name Uf (for our purpose we can consider it a black
box). Secondly, we note that:

• If we put |0⟩ in the second register |y⟩ the final state of the second register will be
exactly |f(x)⟩.

• If we put a superposition of |0⟩ and |1⟩ in the first register we can evaluate the
function for both inputs at the same time.
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|0⟩+|1⟩√
2

Uf |ψ⟩ = |0,f(0)⟩+|1,f(1)⟩√
2

|0⟩

x x

y y ⊕ f(x)

The final state is a superposition of two states that contains both the inputs of the function
together with their evaluations. Unlike classical parallelism, where multiple circuits can
evaluate different inputs at the same time, quantum parallelism exploits the superposition
properties and manages with a single circuit to evaluate many different inputs.

There is the not-so-small detail that it is not possible to obtain all the possible outputs
with a single measurement. As we have observed in 2.2.1, here measurements give either
|0, f(0)⟩ or |1, f(1)⟩. In order to extract information about more than one value of f(x)
from superposition states like these the most naive approach would be to repeat the whole
process obtaining another possible output state. With more and more measurements of
the same circuit one can obtain a piece of information about the probabilistic behaviour
of the final quantum state approximated to a sufficient extent. Differently, particular
algorithms may obtain this kind of information from a generic quantum state using more
specific methods.

2.5.2. Main Algorithm Classes

Broadly speaking, the quantum algorithms that so far have been proven to provide an
advantage over the corresponding classic algorithm can be grouped under three different
classes.

A first possible class is characterized by algorithms that are based upon the quantum
version of the Fourier transform. Algorithms that belong to this class are the Deutsch-
Josza [8] and Shor [35] algorithms. The Discrete Fourier transform (DFT) is described as
transforming a set x0, . . . , xN−1 of N complex numbers into a set of N complex numbers
y0, . . . , yN−1 defined as

yk ≡
1√
N

N−1∑

j=0

e
2πijk
N xj

Generally speaking the Fourier transform has always had a huge number of applications in
any branch of science. On a quantum computer the Walsh-Hadamard transformation (a
size-2 DFT) can be accomplished with an exponential speedup compared to the classical
equivalent, but suffers again from accessing the information hidden in the amplitudes of



2| Quantum Computing 43

the quantum state.

Secondly, algorithms may fall under the quantum search category, whose main rep-
resentative is Grover’s algorithm [14]. All algorithms that belong to this class solve the
following problem: given a N -sized search space containing information with no structure,
we want to find an element inside it, more specifically an element that satisfies a given
property. This problem is classically solved in O(N) operations because in the worst
case scenario we would need to look at all the elements in the database. A quantum
search algorithm on the other hand can solve it in O(

√
N) operations. The achievable

speedup is only quadratic compared to the previous class, but the applications regarding
this problem are even wider.

The last class of quantum algorithms is Quantum simulation, whereby a quantum
computer simulates a quantum system. The evolution of natural quantum mechanical
systems are extremely difficult to study using a classical machine. By definition, the
classic computation necessary to model a quantum system grows exponentially with its
size rather than linearly. Storing information regarding a quantum system with n distinct
components takes cn bits of memory with c being a constant that depends on how a qubit
is defined. A quantum computer can represent that same system with kn qubits, again
with k being a different constant defined on the qubit’s definition. This means that a
quantum computer is, unsurprisingly, much more efficient in performing a simulation of
a naturally quantum system than a classical computer. One important field this class of
algorithms could bring a significant contribute to is quantum chemistry as the behaviour
of molecules is increasingly difficult to simulate the larger their size.

2.6. Quantum Speedup & Complexity

In order to better understand how and why such a machine can have an advantage or
not, we briefly discuss the basics of computational complexity theory.
The main focus of this theory is to classify computational problems based on the quantity
of resources, typically time and/or space related, required to solve them on a particular
machine. A complexity class can be thought of as a collection of computational problems
that share a common feature regarding the usage of resources to solve them.

Classically speaking, the two most important classes are P and NP: P is the class of
computational problems that can be solved in polynomial time in the size of the input
on a classical computer whereas NP contains problems that have solutions that can be
checked in polynomial time in the size of the input on a classical computer. Although it
is easy to understand why P ⊆ NP, their relationship is not trivial, as to this day no one
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knows if these classes are really different or not. In other words:

P
?
̸= NP

Despite being able to solve some problems that are believed to be in NP but not in
P, it is not yet known whether quantum computers can be used to quickly solve all the
problems in NP. The search-based advantage that derives from quantum parallelism does
not always yield an efficient solution to a problem in NP, only some examples have been
found so far.

In the quantum setting the class of computational problems which can be solved efficiently
on a quantum computer is called BQP. In this case, seeing that these are probabilistic
procedures by nature, a bounded probability error is allowed. Specifically, the final mea-
surement of an encoded problem in such a machine yields the correct answer with prob-
ability Pr > 1

2
+ k with 1

2
+ 1

poly(n)
< k < 1 − 1

2n
where n is the input length. Following

from the fact that the Toffoli gate is an universal gate for reversible classic computations,
it can be stated that P ⊆ BQP. Yet, nobody can confirm whether NP ⊆ BQP, unless
P=NP.

Hence no proven superiority does not rule out the fact that further experimentation is
not worthwhile. As of the writing of this theses the so called Quantum Supremacy has
not been achieved, if ever possible. Still, in the past few years the quantum computing
field has witnessed a tremendous growth both in terms of grants for research as well as
the number of new startups that bring new tools based on quantum technologies to the
market. This suggests that interest is rapidly increasing and that industries from different
fields can benefit from this new model of computation, whether their business domain is
financial, chemical or logistics.
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In July of 1905 the English mathematician Karl Pearson posed an interesting question in
an issue on Nature [26]. He wondered if someone knew the solution to the problem he
called the Random Walk. He defined it as finding an integrated solution of the distance
from an origin that an agent covers when traveling in a random fashion. Specifically,
starting from the origin O the agent chooses randomly an angle and walks l yards in a
straight line. Once this initial distance has been travelled, the process is then repeated n
times.

Random walks will later find many applications in different fields and will be considered
the base model for numerous stochastic processes. Being the Quantum world stochastic
by nature, at the beginning of the 1990s interest around possible applications of this topic
in this new model grew. In 1993 Aharonov, Davidovich and Zagury coined the term
Quantum Random Walks [1].

An introductory overview on the topic from J. Kempe can be found in [17] and an in-depth
book about this topic is [28].

3.1. Overview

3.1.1. Classical Random Walk

In [1], before introducing the quantum equivalent, the authors give a slightly different
definition of random walk compared to the original paper written 90 years before. The
walk is performed on a line: the random choice of an angle is reduced to a simple left or
right decision.

The Classical One-dimensional Random Walk is a mathematical representation of
an agent that can move along a line. This means that it is defined in terms of the
probabilities of a particle to make a step of a given length to the left or to the right. It is
a simplification, but it can be considered an initial example without any loss of generality.

Such a walk can be represented as a probability distribution on a discrete line of the
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position of a walker that starts the exploration in its middle. Given a time-step t and a
position n we can compute what is the probability p of the particle being in that position
at that time step as:

p(t, n) =
1

2t

(
t
t+n
2

)
(3.1)

where
(
a
b

)
= a!

(a−b)!b!

0−1−2 1 2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 3.1: Classical random walk on the line

If the agent starts on an initial position 0 and does not walk, the probability of remaining
in the origin is unsurprisingly 100%, meaning p(t = 0, n = 0) = 1. At the next time step
there will be a 50% probability of being in position −1 and 50% probability of being in
position 1, p(t = 1, n = 1) = 1/2, p(t = 1, n = −1) = 1/2. At each time step, we repeat
the same process: randomly choose left or right, then move.
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Figure 3.2: Binomial distribution of the classic random walk

If we were to keep iterating the process and plot the result on a graph (3.2), we can see
that for a fixed value of t, p(t, n) is a binomial distribution. It is interesting to analyze
some properties of such curve.
The average position on the curve is En =

∑∞
n=−∞ n p(t, n) = 0 which can be noticed by
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the symmetric behaviour of the curve around the origin. The initial position will always
be the most probable to be in after any t time steps. As t increases, the height of the
midpoint of the curve decreases, whereas the width increases.
The standard deviation captures the idea of how far away from the origin we can expect
to find the agent as time goes on and is defined as σ(t) =

√∑∞
n=−∞ n2 p(t, n) =

√
t.

We will better understand later why this value has a great importance for the topic. For
now, we simply state that in a classical random walk the expected distance, given t time
step, is

√
t.

3.1.2. Classical Discrete Markov Chains

A proper mathematical framework that better represents such behaviour is needed. Av-
erage and standard deviation alone are not sufficient to thoroughly study this process.

Definition 3.1. (Classic Markov chain) is a stochastic process that assumes values in a
discrete set of states that are randomly selected after each time step. States can be seen
as vertices in a directed graph where edges indicate what the possible next states are.
They obey the markovian property: the choice of the next state is not influenced by the
past.

s0 s1

s2

0.9

0.1

0.4

0.6

0.5
0.5

Figure 3.3: Markov chain with three states

Classical discrete Markov chains are chains with discrete time variables, meaning that at
each time step there is an associated probability distribution (the set of probabilities for
an agent to begin in each state/vertex). A finite vector can describe such a distribution.
Let G(X,E) be a graph with a set of vertices X = {x1, . . . , xn} (|X| = n) and a set of
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edges E. The probability distribution takes the following form:

p(t) =




p1(t)
...

pn(t)


 (3.2)

where pi(t) is the probability of the agent being in vertex xi at time t.

We cannot determine precisely the evolution of the walk’s probability distribution at each
time step without considering the structure of the graph. In order to encode this in a
matrix form, we use the transition matrix M.

Definition 3.2. (Transition (or Stochastic) Matrix) contains the information regarding
the probability of moving from a vertex i to j for every pair (i, j) of vertices in the graph.
Each column vector of the matrix represents the probabilities of the outward edges of a
specific vertex. A generic definition is:

M =




M1,1 M2,1 . . . Mi,1 . . . Mn,1

M1,2 M2,2 . . . Mi,2 . . . Mn,2

...
... . . . ... . . . ...

M1,j M2,j . . . Mi,j . . . Mn,j

...
... . . . ... . . . ...

M1,n M2,n . . . Mi,n . . . Mn,n




The total state transition probability from a generic state i to all its adjacent states (in-
cluding itself) must be one, meaning

∑n
j=1Mi,j = 1.

If no edge is present from i to j then Mi,j = 0 whereas if the graph is undirected Mi,j =

Mj,i. A complete graph having the property that every edge of a generic vertex has the
same probability of being chosen is represented by Mi,j = 1/dj where dj is the degree if
vertex j.

Putting everything together, if the probability distribution is known at time t, its evolution
at time t+ 1 is defined as:

pi(t+ 1) =
n∑

j=1

Mi,j pj(t) or p(t+ 1) =M p(t) (3.3)
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An important property of this equation is that it is recursive, as such it can written as

p(t) =M t p(0) (3.4)

where p(0) is the initial condition. It is thus possible to multiply the initial probability
distribution by the transition matrix to the t-th power to compute any successive evo-
lution. This is useful because in a stochastic environment we must consider all possible
evolutions of a system. The opportunity of describing all its possible transformations
in a matrix form will come extremely useful in the quantum setting where, instead of
strictly positive real numbers, the elements of M can be negative and complex (they are
probability amplitudes).

3.1.3. Quantum Random Walk

Taking directly from the postulates (Section 2.2.2), we can extend the same principles to a
quantum system since the concept of measurement is based on a probability distribution.
We will follow the same example of a walk on a line shown in Figure 3.1.

In the discrete model of the quantum random walk the walker’s position n should be a
vector in Hilbert space HP whose size depends on the degrees of freedom of the physical
system, but we can initially consider it of infinite dimension. Its computational basis can
be represented as {|n⟩ : n ∈ Z}. The random left or right choice of the walk depends on
a quantum coin: if heads is flipped and the walker is in position |n⟩ then in the next step
its position will be described by |n+ 1⟩, if tails is flipped then the position will be |n− 1⟩.
The Hilbert space of this system is thus described as H = HC ⊗ HP . HP describes the
position whereas HC represents this coin choice, which is a two-dimensional Hilbert space
with computational basis {|0⟩ , |1⟩}.

These two transformations must be described by unitary operators that act on a vector
of the corresponding Hilbert spaces. We will call S the shift operator and C the coin
operator. The coin operator acts as the decision maker regarding the next step direction,
whereas the shift operator executes the coin choice by modifying the position of the walker.
The transformations are

C |0⟩ |n⟩ = (a |0⟩+ c |1⟩) |n⟩
C |1⟩ |n⟩ = (b |0⟩+ d |1⟩) |n⟩

(3.5)

S |0⟩ |n⟩ = |0⟩ |n+ 1⟩
S |1⟩ |n⟩ = |1⟩ |n− 1⟩

(3.6)

where C is a generic coin operator defined as C = [ a bc d ].
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One step of a quantum random walk is a succession of these two transformation which
act on HC first (C) then HP later (S). We call evolution operator(U) the transformation
that acts on the whole Hilbert space H = HC ⊗HP defined as:

U = S(C ⊗ I) (3.7)

where I is the identity matrix.

A quantum walk begins by tossing a coin, essentially choosing the future walk direction.
This is performed by applying the coin operator to the initial state. The rotation of the
coin state may result in a superposition of states. This means that via this superposition
we can take both directions at the same time. We start the walk at the central position
n = 0 at time t = 0 with an initial direction of |0⟩

|ψ(0)⟩ = |0⟩ |n = 0⟩ (3.8)

|ψ(t)⟩ denotes the state of the quantum walk at time t.
We choose as the coin the Hadamard gate. As we have explained in Section 2.4.1, its effect
is to transform a basis state in a superposition that outputs one of the two basis states
with the same probability, which seems like a good property if we would like to traverse
the line in a symmetrical fashion. This implies that, given any of the two directions in
the coin space, this gate will randomly and evenly output ’right’ or ’left’.
So, we compute one step of the walk, we toss the coin first then follow it up with a shift:

|ψ(0)⟩ = |0⟩ ⊗ |n = 0⟩ H⊗I−−→ |0⟩+ |1⟩√
2
⊗ |n = 0⟩

S−→ 1√
2
(|0⟩ ⊗ |n = 1⟩+ |1⟩ ⊗ |n = −1⟩)

(3.9)

As we can see we are in a superposition of position |n = 1⟩ with direction |0⟩ and position
|n = −1⟩ with direction |1⟩.

Applying a measurement after one step will yield |n = 1⟩ with probability 50% and
|n = −1⟩ with probability 50%, so the behaviour compared to the classical random walk
is the same. If we don’t measure the system and keep applying the U = S(C ⊗ I) trans-
formation, each superposition will itself give rise to two more exploring elements, with
either constructive or destructive interference with regard to other quantum components
that are generated by other superpositions. Similarly to the classical walk evolution (3.4),
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this process can be described recursively

|ψ(t)⟩ = U t |ψ(0)⟩ (3.10)

We could iteratively apply this definition to obtain |ψ(t)⟩ for any t, but in order to compute
|ψ(100)⟩ we would have to repeat the process 100 times. We can achieve the same thing
via a recursive formula: the generic walk state at time t is a linear combination of the
computational basis as

|ψ(t)⟩ =
∞∑

n=−∞
(An(t) |0⟩+Bn(t) |1⟩) |n⟩ (3.11)

that satisfies the constraint

∞∑

n=−∞
|An(t)|2 + |Bn(t)|2 = 1 (3.12)

ensuring the norm of |ψ(t)⟩.
If we use the Hadamard gate as the coin, the recursive formulas of An and Bn are

An(t+ 1) =
An−1(t) +Bn−1(t)√

2

Bn(t+ 1) =
An+1(t)−Bn+1(t)√

2

(3.13)

At this point we can appropriately choose the initial conditions An(0) and Bn(0) for
n ̸= 0, corresponding to the center of the line at time t = 0, and calculate the probability
distribution using the formula

p(t, n) = |An(t)|2 + |Bn(t)|2 (3.14)
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Figure 3.4: Asymmetric Quantum Random Walk example

Plotting the probability distribution of this quantum walk yields a very different behaviour
compared to its classic equivalent. First off, the distribution is not concentrated in the
central points. The curve is relatively flat in that area while spiking toward the edges.
As it turns out, for any value of t the probability distribution reaches its maximum at
around t/

√
2.

Looking at the distribution relative to our example (Figure 3.4), the curve is asymmet-
ric, specifically it has a tendency to go right since there are higher probabilities around
that area. The Hadamard coin is non-biased when applied to |0⟩, but there is a sign
difference on the generated quantum components when applied to |1⟩. The result is that
the rightward components (relative to direction |0⟩) never meet destructive interference
whereas the leftward ones are propagated half of the times with a negative sign, leading
to cancellations.
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Figure 3.5: Symmetric Quantum Random Walk example

Two solutions are possible to obtain a symmetric walk (Figure 3.5): either we keep the
coin and change the initial position/direction (for example the initial state |ψ(0)⟩ =
|0⟩−i|1⟩√

2
|n = 0⟩ will yield a symmetric distribution when using a normal Hadamard coin

since it solves the sign difference) or we use a symmetric coin. A symmetric walk will
have the same expected position as the classic equivalent En =

∑∞
n=−∞ n p(t, n) = 0 but a

very different standard deviation: σ(t) =
√∑∞

n=−∞ n2 p(t, n) = 0.54t.

This is exactly the advantage that characterizes quantum machines. These weird phe-
nomena that rule this world turn out to behave in extremely convenient ways in the
right settings. Search problems are one of them. This linear dependence of the posi-
tion standard deviation against time is an asymptotical improvement compared to the
classic random walk. Via a single procedure, a quantum random walk not only explores
both directions on the line, but on average at a quadratically faster speed (σ(t) =

√
t

vs. σ(t) = 0.54t) (Figure 3.6). This means that given the same number of time steps,
the quantum exploration on average will move quadratically farther away from the initial
position.



54 3| Quantum Random Walks

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

t

σ
(t
)

σ(t) =
√
t

σ(t) = 0.54t

Figure 3.6: Difference between Classical and Quantum Walk standard deviations

3.2. Search Problems

A search problem, from its most general definition to the most structured one, has a
fundamental role in computer science. In this section we briefly describe what a search
problem is using an approach based on quantum algorithms and showing how quantum
walk search can achieve a significant advantage. Subsequently, we will show an example of
quantum walks on a more structured search problem where information about the search
space can be used to improve the exploration.

3.2.1. Definitions

Generally speaking a search problem can be defined as finding a subset M for which each
element x∗ satisfies a given boolean predicate P (x) in some set x ∈ X. In the generic case
where no information is given in advance on the search space, the naive classical strategy
is to check the condition P (x) over the entire set of elements X expecting to find the
right element in O(Z/N) queries where |X| = N and |M | = Z. In a classical setting this
task can be implemented in various ways, for example by differentiating the entries of a
table or nodes in a tree, but the key problem is how to effectively differentiate the desired
elements in the initial set.

Suppose f is a function with domain {0, . . . , N − 1} where N = 2n with n some positive
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integer.

f(x) =




1 if x = x∗

0 otherwise
(3.15)

In a classical circuit the function f is implemented via a set of logic gates as stated in the
previous chapter, however in a quantum setting we need some special unitary operator
O that is able to compute f . Following the model of Equation (2.21) where the domain
and the co-domain of f are mapped onto two Hilbert spaces |x, y⟩ 7→ |x, y ⊕ f(x)⟩ we can
initialize the y register in superposition using an X gate followed by a Hadamard gate:

|x⟩ |0⟩ X−→ |x⟩ |1⟩ H−→ |x⟩ |0⟩ − |1⟩√
2

= |x⟩ |−⟩ (3.16)

Applying the operator O to the system we derive:

O |x⟩ |−⟩ = |x⟩ |− ⊕ f(x)⟩ (3.17)

If x is not the solution of the function nothing changes, otherwise we get a qubit flip on
the second register. From a different point of view the new operator applies a phase shift
of π on the global state that depends on the result of f .

|x⟩ |− ⊕ f(x)⟩ = (−1)f(x) |x⟩ |−⟩ (3.18)

Notice how the second register is not affected by the result of f so it can be simplified in
the expression obtaining a compact representation

(−1)f(x) |x⟩ (3.19)

In the literature, the operator O (Figure 3.7) is called oracle and it is the key ingredient
for any search algorithm. Therefore the oracle operator can be used to mark the state
that corresponds to the solution or a set of them of the original problem.

Grover’s algorithm [14] is a search algorithm originally designed, given an unsorted
collection of elements and a function, to look for the elements whose image of the given
function is 1. It has been shown that this algorithm is optimal (up to a multiplicative
constant), meaning no other algorithm will ever achieve better performance when solving
this exact problem. With N elements in the search space, it takes O(

√
N) steps to find the

marked element with high probability using O(log(N)) storage space. More specifically,
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|[phase, ]|
|x⟩ O (−1)f(x) |x⟩

|−⟩ |−⟩

Figure 3.7: High level description of black-box oracle

Grover’s algorithm solves the problem by querying the oracle f ⌊π
4

√
N⌋ times.

The goal here is to find x∗ with as little queries to the oracle as possible, thus reducing
as much as possible the steps of the algorithm. Our f now is realized via the use of two
registers in the computation: the first stores the domain elements whereas the second
their images. We call this operator O

O |x⟩ |i⟩ = |x⟩ |i⊕ f(x)⟩ (3.20)

where ⊕ is a bitwise xor operation.
We can easily understand how this operator behaves

O |x⟩ |0⟩ =




|x∗⟩ |1⟩ if x = x∗

|x⟩ |0⟩ otherwise
(3.21)

Since we have no prior knowledge of where the marked element is within the database,
we need to create a superposition of all possible states of the first register. That is why
we define the uniform superposition |DN⟩ as our search space.

|DN⟩ =
1√
N

N−1∑

x=0

|x⟩ (3.22)

The second unitary operator accomplishes the following:

G = (2 |DN⟩ ⟨DN | − IN)⊗ I2 (3.23)

where I2 is the identity matrix of dimension 2.

The operator G usually, defined as Grover Diffuser, carries out a procedure called Am-
plitude Amplification. This is the centerpiece of the quantum advantage regarding
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search problems. Once the oracle has inverted the sign of the marked element, this pro-
cedure amplifies its amplitude while at the same time shrinking all the other amplitudes
(the norm has to be preserved, increasing an amplitude forces the others to decrease in
modulus). An example with three qubits is shown in Figure 3.8

H X Z X H

H X X H

H X X H

Figure 3.8: Grover Diffuser example (G)

After the oracle’s application, the marked element has negative amplitude, which means
that the average is slightly lower than the amplitude of a non-marked element. Mathe-
matically, the Diffuser performs a reflection about average over the whole state. Conse-
quently, non-marked elements will be subjected to a shrunk of their amplitudes, whereas
the marked element amplitude will be amplified. The following graphs show this in action.
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(b) After the Diffuser application

Figure 3.9: Amplitude Amplification
The dashed line shows the average of the amplitudes after the Oracle application

Now one step of the algorithm is first a query to the oracle O, then the application of the
G operator. This can be considered the evolution operator as defined in (3.7), thus we
will give it the same symbol

U = GO (3.24)
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Before the iterative application of U , the initial condition is

|ψ0⟩ = |DN⟩ |−⟩ (3.25)

Finally, measuring the first register will yield x∗ with probability greater than 1− 1
N

.

Algorithm 12 Grover’s algorithm.
Input: N and f defined in (3.15), a 2-register quantum computer with n+ 1 qubits
Output: x∗, the marked element with probability greater than or equal to 1− 1

N

1: Prepare the initial state |DN⟩ |−⟩
2: Apply U t where t = ⌊π

4

√
N⌋ and U given by (3.24)

3: Measure the first register in the computational basis

|state⟩ H⊗n

O

G

|ancillas⟩ X H

Oracle Diffuser

Repeated O(
√
N) times.

Figure 3.10: A generic Grover’s algorithm circuit

Geometrically speaking, O and G can be considered reflection operators.
O is a reflection around the vector space orthogonal to the vector space spanned by
|x∗⟩ |−⟩. Taking from equation (3.21), this means that

O |x∗⟩ |−⟩ = O |x∗⟩ |0⟩ −O |x∗⟩ |1⟩√
2

=
|x∗⟩ |0⟩ − |x∗⟩ |1⟩√

2

= − |x∗⟩ |−⟩

(3.26)

If we apply the same definition on the on a non-marked element we obtain O |x⟩ |−⟩ =
|x⟩ |−⟩ for x ̸= x∗. An application of O on a linear combination with real coefficients of
|x∗⟩ |−⟩ with a vector orthogonal to |x∗⟩ |−⟩ inverts the sign of component |x∗⟩ |−⟩ while
preserving the sign of the component orthogonal to |x∗⟩ |−⟩.
In a similar fashion, the second operator, G, is also a reflection but around the vector
space spanned by |DN⟩, implying G |DN⟩ |−⟩ = |DN⟩ |−⟩ from equation (3.23). Again,
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if G is applied to a linear combination with real coefficients of |DN⟩ |−⟩ with a vector
orthogonal to |DN⟩ |−⟩, it inverts the sign of the latter while preserving the former.

Summing everything up, starting from the initial condition |DN⟩ one application of U
rotates |DN⟩, the uniform superposition, approximately by 2√

N
radians towards |x∗⟩.

Since |DN⟩ and |x∗⟩ are almost orthogonal when N is large, the strategy of the algorithm
is to rotate the initial condition by π

2
radians before applying the measurement. This

transformation is repeated enough times to achieve the closest position as possible to
|x∗⟩, which turns out to be tf = ⌊π4

√
N⌋. Excessive repetitions of U may not only lead to

the overshoot of the marked element state, but to a sinusoidal behaviour of the circuit.
In the end, the smaller the angle between the final state and the marked state, the higher
the probability of measuring x∗ is.

This same methodology of checking a certain condition with the oracle and then modifying
the amplitudes of the state space via the Diffuser can be applied in a similar fashion on the
Quantum walks paradigm. The evolution of both algorithms is tied to first an application
of some sort of marking operator followed by an update of the state space controlled by
the marking. The next Section will explain this relationship in detail.

3.2.2. Quantum Random Walk Search

In this section we show how a Quantum random walk can be applied to a search problem
by presenting the model proposed by Shenvi, Kempe and Whaley in [34], formalising the
general structure and highlighting its main properties. This procedure is called SKW
algorithm and follows the model known in literature as coined Quantum walk search.

In order to create a search algorithm using Quantum random walks we need a useful
representation of the search problem. We have already explained in Section 3.1.2 how
Markov Chains work. To give a quick recap, G(X,E) is a graph with a set of vertices X =

{x1, . . . , xn} (|X| = n) and a set of edges E. Even though our description was built upon
the definition of a classical one, this framework can efficiently describe Quantum random
walks as well. Specifically for search problems, a graph can be considered a representation
of a structured database that contains one or more marked elements. Our goal is to modify
the probability distribution of the Markov chain associated to the graph such that the
final measurement will yield, with reasonable probability, the marked element(s) of the
graph.
In essence, the principles we are going to explain can be considered an extension of
Subsection 3.1.3, with a slight difference in the functioning of the coin.

Similarly to Grover’s algorithm, one step of this procedure begins with the application of
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an oracle operator O whose task is to understand if the current state |x⟩ satisfies a given
property. The result of such interrogation is stored on additional qubit(s) which are then
used to control the coin application. In other words, the search problem that we want to
solve is encoded via a differentiation of the choice of the coin that depends on the oracle:
on marked vertices, those that satisfy the oracle condition, one kind of coin is applied
whereas a different one is applied to non-marked vertices. Figure 3.11 shows the choice of
which coin to apply based on the output of the checked condition: the coin C1 is applied
if |x⟩ respects the condition, otherwise C0 is applied.

|x⟩
O

|x⟩

|0⟩ |f(x)⟩

Hc C1 C0 Hc

Figure 3.11: Depending on the oracle result, apply C1 or C0. (HC is the coin register)

To proceed with the algorithm formalization we need to chose a proper coin operator for
C0 and C1. Usually the choice for C0 is the Grover diffuser operator (Equation (3.23))
as it distributes the same amplitude on all the n directions, meaning the probability of
choosing a given direction is the same for all possible directions. It is defined as:

C0 = G = (2 |DC⟩ ⟨DC | − I) (3.27)

where |DC⟩ follows the same concept of 3.22 but is the equal superposition over all direc-
tions.

For the choice of C1, we consider the case C1 = −I which is also called SKW coin.
Therefore the effect of the two operator C0 and C1 combined into the new global coin C ′

is:
C ′ = C0 ⊗ I + (C1 − C0)⊗ |x∗⟩ ⟨x∗|

= G⊗ I + (−I −G)⊗ |x∗⟩ ⟨x∗|
(3.28)



3| Quantum Random Walks 61

Following from the definition in Equation (3.7), we derive the new evolution operator U ′

U ′ = SC ′ = S(G⊗ I − (I +G)⊗ |x∗⟩ ⟨x∗|)
= S((2 |DC⟩ ⟨DC | − I)⊗ I − (I + (2 |DC⟩ ⟨DC | − I))⊗ |x∗⟩ ⟨x∗|)
= U ⊗ I − 2S(|DC⟩ ⟨DC |)⊗ |x∗⟩ ⟨x∗|

(3.29)

The pseudo code of the SKW algorithm is proposed in Algorithm 13.

Algorithm 13 SKW’s algorithm.
Input: N and f defined in (3.15), a 2-register quantum computer with n+ d qubits
Output: x∗, the marked element with probability greater than or equal to 1

2
− 1

N

1: Prepare the initial state |DN⟩ |DC⟩
2: Apply (U ′)t where t = ⌊π

2

√
N⌋ and U ′ given by (3.29)

3: Measure the first register in the computational basis

We show what the most generic circuit for a Quantum random walk search looks like in
Figure 3.12.

|ancillas⟩
O O−1

|state⟩ H⊗n

S

|coin⟩ H⊗d C0 C1

Repeated O(
√
N) times.

Figure 3.12: Generic Quantum random walk search circuit

The oracle is applied again, but reversed, after the coin control for uncomputation pur-
poses. This is done in order to have the ancilla qubits ready for the next step, whose
oracle needs to have clean (i.e. at base state |0⟩) qubits to properly control the coin
again.
Notice that it is also possible, as shown in Figure 3.12, to apply the two coins differently
than explained before: either they are both controlled by the oracle’s output(s) qubit(s)
(Figure 3.11) or only one is. The coin that is specifically applied when the marked vertex
is found has to be always controlled. The second coin instead can either be controlled,
meaning applied when the vertex is not marked, or non-controlled. In other words, this
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second solution first applies a coin to every vertex of the graph then immediately applies
a second one for the marked vertex. With an appropriate selection of coins, these two
methods are mathematically equivalent.

In addition to the SKW coin defined in Equation (3.28), another solution is also possible:
reapplying again the Grover diffuser operator as C1. The new Equation for C ′ is now:

C ′ = G⊗ I +G⊗ |x∗⟩ ⟨x∗| (3.30)

The two options are shown in Figure 3.15 and yield a different behaviour regarding the
probability of measuring the marked vertex at the end of the circuit.

G −I G G

c

b

a

−2µ+ c

−2µ+ b

−2µ+ a

Figure 3.13: G + SKW marking coin

c

b

a

−c

−b

−a

Figure 3.14: G + Grover marking coin

Figure 3.15: Effects of the two different marking coins on a generic vertex with
degree = 3 (where µ = a+b+c

3
)

Later in our work, we will show this difference by looking at the simulated probabilities
regarding the exploration of the Johnson graph (Figure 3.29).
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3.2.3. Costs

In order to analyze the performance of Quantum Random walks algorithms in solving
search problems, Magniez et al. [20] define the following cost system:

• Ts is the cost of SETUP, it is the cost of sampling the first vector and initializing
the data structure.

• Tc is the cost of CHECK, it represents the oracle cost.

• Tu is the cost of UPDATE, it is the cost of sampling a neighbour and updating the
data structure.

This is the most generic cost definition possible, as is it considers the data structure that
is chosen to navigate the graph as generic.

The formula for the total cost of a Quantum walk search is

Ts +
1√
ε

(
Tc +

1√
δ
Tu

)
(3.31)

We need to define parameters ε and δ. In Subsection 3.2.1 we specified as x∗ ∈ M the
subset of elements in some set x ∈ X that respect a certain condition P (x). If ∥X∥ = N

and ∥M∥ = Z, we define as ε = Z/N the ratio of the number of these elements w.r.t the
total number of elements in the search space. This is related both to the oracle costs well
as the update cost: the higher this ratio the more oracle calls as well as data structure
updates the search will have to perform.
The second parameter we need is the spectral gap of the transition matrix M defined as
δ := 1 −maxi>1 |λi| where (λi)i>1 are the eigenvalues of M not equal to 1. It represents
how many times the update of the data structure has to take place.

3.2.4. Hypercube example

In order to clarify the concept described so far, we show an implementation example. As
search space we use a four dimensional hypercube i.e. a regular graph with |V | = 2n

nodes an degree equal to d = n where n = 4.
Each node vi ∈ V can be labeled with a n-bit binary string and two nodes vi and vj are
connected by an edge if their Hamming distance is 1 i.e. dist(vi, vj) = 1. To set up the
SKW algorithm we need a Hn coin space to encode all the directions and a H2n node
space for the vertices.
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The computational basis is

{|d, v⟩ , d ∈ D = {00, 01, 10, 11}, v ∈ V = {0000, 0001, · · · , 1111}} (3.32)

The value of the coin computational basis d determines the direction to follow and every
edge of a node is associated with a value of d. In this example if d = 00 the walker will
move to the node where the first binary value differs from the current node, if d = 01 it
will move to the node where the second binary value differs from the current node and so
on.

For the shift S operator we can exploit the symmetric structure of the hypercube, it maps
|d, v⟩ onto |d, v ⊕ ed⟩ where ed is the d-basis of the hypercube.

S =
n∑

d=1

2n∑

v=1

|d, v ⊕ ed⟩ ⟨d, v| (3.33)

We assume that the marked node is the one with the label v = 1011 and using the evolution
operator U ′ defined in Equation 3.29 we are able to perform the SKW algorithm. The
quantum circuit implementation is proposed in Figure 3.16

|v⟩

H

H

H

H

|d⟩
H

G −I
H

Figure 3.16: Implementation of one step of SWK algorithm on 4-dimension hypercube
and marked node v = 1011
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1000 1010

1100 1110

1001 1011

1101 1111

0000

0001

0010

0011

0100

0101

0110

0111

(a) After one walk step

1000 1010

1100 1110

1001 1011

1101 1111

0000

0001

0010

0011

0100

0101

0110

0111

(b) After two walk steps

1000 1010

1100 1110

1001 1011

1101 1111

0000

0001

0010

0011

0100

0101

0110

0111

(c) After three walk steps

1000 1010

1100 1110

1001 1011

1101 1111

0000

0001

0010

0011

0100

0101

0110

0111

(d) After four walk steps

Figure 3.17: Hypercube quantum random walk example with marked vertex 1011.
From the initial superposition we reach the marked element. Darker colors indicate

higher probabilites
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3.3. Johnson Graphs

So far, the definitions we have given hold true for any generic graph, but historically
speaking some graphs have proven to be more useful than others. We first explain why
Johnson graphs are particularly interesting when explored by a Quantum random walk,
followed by our example of implementation. A great write-up about Quantum random
walks on this kind of graphs can be found in [37].

Let G(V,E) be the Johnson graph J(n, k) where V is the set of vertices and E is the
set of edges. V is the set of k-subsets of [n]={1,2,. . . ,n}, and two vertices v, v′ ∈ V are
adjacent if and only if |v ∩ v′| = k − 1. The number of vertices is

(
n
k

)
. A J(n, k) Johnson

graph is d-regular, where d is the degree equal to d = k(n − k). The following Figure
shows an example with n = 4 and k = 2.

1, 2

3, 4

1, 3

2, 4

1, 4

2, 3

Figure 3.18: Johnson graph J(4, 2) with [n] = {1, 2, 3, 4}

There are a few properties that favor Johnson graphs in a search problem. First of all,
vertex-transitivity.

Definition 3.3 (Vertex-transitive Graph). A graph G is vertex-transitive if, given any
two vertices v1 and v2 of G, there is some automorphism

f : G→ G s.t. f(v1) = v2

The computational complexity of the search problem in vertex-transitive graph is simpler
because independent of the location of the marked vertex. Johnson graphs are not only
vertex-transitive but also distance-transitive.
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Definition 3.4 (Distance-transitive Graph). A distance-transitive graph is a graph such
that, given any two vertices v1 and v2 at any distance d and any other two vertices v3 and
v4 at the same distance d, there is some automorphism that carries v1 to v3 and v2 to v4.

This property can be used to find an invariant subspace of the Hilbert space that helps in
the calculation of the computational complexity, meaning the vertices can be partitioned
into subsets of vertices that have the same distance to the marked vertex. Tanaka et
al. in [37] give an analytical explanation of the importance of these properties. Also, an
extensive analysis of Johnson graphs specifically tied to their distance-transitivity can be
found in [41].

The position-coin notation we have explained in Section 3.1.3 holds true for this kind
of graph as well: the Hilbert space is HV ⊗ HC where HV = {|v⟩ : v ∈ V } and HC =

{|c⟩ : 1 ≤ c ≤ d}. To achieve the walk evolution, we apply the double coin definition as
explained in Equation (3.28), aware of the fact that the coin space is equal to the degree.
A first coin C1 either applies the negation of the d-dimensional identity operator (−Id) or
a d-dimensional Grover coin G on the marked vertex whereas the d-dimensional Grover
coin G is applied to unmarked ones, as shown in Figure 3.15.

The final state after t applications of the appropriately modified evolution operator U =

S C on the initial state |ψ(0)⟩ = 1√
dV

∑d−1
c=0

∑V−1
v=0 |c, v⟩ is |ψ(t)⟩ = U trun |ψ(0)⟩ with

trun =

⌊
πnk/2

2
√
2k!

⌋
≈ π
√
N

2
√
2

(3.34)

from [37]. We present a circuital implementation of a walk in this kind of graphs.

3.4. Circuit Implementation

Here we show our approach that performs a coined quantum walk search on a Johnson
graph. In this example a J(4, 2) is used, however the implementation can be extended to
any value of the parameters n and k.

3.4.1. Encoding

In order to be able to explore the graph we need to have a working shifting phase. The
first step is to use a suitable encoding to represent the graph. Each node can be labelled
with a binary string whose values express whether an element of n is present in the subset
k represented by the node. All vertices’ labels are n-sized binary strings with exactly k
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bits set to 1.
For instance the encoding 1010 means that the node represents the set k with elements in
positions p0 and p2 of n i.e. the values 0 and 2. The binary encoding graph is presented
in Figure 3.19.

1100

0011

1010

0101

1001

0110

Figure 3.19: Johnson graph J(4, 2) with binary labels

In this example we give an asymptotic analysis of the depth of the circuit and the number
of qubits employed as a function of the parameters n and k of the Johnson graph, assuming
unitary cost for each gate.

3.4.2. Initialization

In order to initialize a Quantum walk on this graph we need to set up a proper super-
position that represents all possible vertices in a generic J(n, k) Johnson graph. This is
known in literature as Dicke state |Dn

k ⟩: it is an equal-weight superposition of all n-qubit
states with Hamming weight k (i.e. all strings of length n with exactly k ones over a
binary alphabet). It is defined as:

|Dn
k ⟩ =

(
n

k

)− 1
2 ∑

wt(x)=k

|x⟩ x ∈ {0, 1}n (3.35)

where wt() is the Hamming weight (Definition 1.8).
We implemented in our solution the work done by Bärtschi and Eidenbenz in [3], further
improved by Mukherjee et al. in [23]. Because of the fact that in our example we chose
to use the J(4, 2) graph, we show the circuit that creates the |D4

2⟩ superposition.
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|0⟩ Ry(1.23) Ry(π/2)

∣∣D4
2

〉|0⟩ Ry(π/2) Ry(1.91) X X

|1⟩ Ry(2.09) X X X

|1⟩ X X X X

Figure 3.20: |D4
2⟩ Dicke state circuit

The algorithm is based on the observation that Dicke states can be built inductively
according to the formula

|Dn
k ⟩ =

√
k

n
|Dn−1

k−1⟩ |1⟩+
√
n− k
n
|Dn−1

k ⟩ |0⟩ (3.36)

This means that the algorithm achieves a specific superposition |Dn
k ⟩ by expanding upon

the gate sequence that defines a Dicke state with smaller values of n and/or k.

The final state of our example equals to

|D4
2⟩ =

1√
6
(|1100⟩+ |0011⟩+ |1010⟩+ |0101⟩+ |0110⟩+ |1001⟩) (3.37)

This solution is quite efficient, in that it achieves the generic Dicke state |Dn
k ⟩ in depth

O(n) with gate number of O(n+ k2) for both X and Ry gates. More specifically we have

CNOTDicke = 5nk − 5k2 − 2n (3.38)

RyDicke = 4nk − 4k2 − 2n+ 1 (3.39)

in our example |D4
2⟩ this means that we have 40 CNOT gates and 9 Ry gates.

To initialize the walk to the desired superposition |ψ(0)⟩ = 1√
dV

∑d−1
c=0

∑V−1
v=0 |c, v⟩ we

apply the circuit in Figure 3.20 on register |v⟩. This register will, from now on, represent
the current position of the walker on the Johnson graph and will be called state register.
Secondly, we apply an Hadamard gate on each qubit of a second register |c⟩ to obtain an
uniform superposition of all the possible base states. We call |c⟩ the coin register, it will
perform the coin toss needed to explore the graph.

We show the initialization part of the circuit in Figure 3.21.
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|v〉 Dicke state

|c〉

H

H

H

Figure 3.21: Initialization of J(4, 2)

3.4.3. Coin

The application of the coin follows the same structure of Figure 3.15. Like we did in the
Hypercube example, the coin stage also embeds the functioning of the oracle that directly
controls the marking coin C1. We assume that the marked vertex has a specific label, in
this case 1100. Figure 3.22 shows the part of the circuit that implements the coin stage.

|v〉

|c〉 C0 C1

Figure 3.22: Coin application of J(4, 2) with marked vertex 1100
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3.4.4. Shift

In the setting of coined quantum walks, finding the most suited way of performing a
shift in a graph is of great interest as it is the sub-procedure that most conditions the
performance of the walk. Because of the encoding of the Johnson graph, the key element
in achieving this operation is the swap gate.

The shift gate, the circuit representation of the shift operator, is made by using a series
of swap gates placed in a proper order. The swap gate in Figure 3.23 performs a swap of
the states between two qubit.

|a⟩ |b⟩

|b⟩ |a⟩
Figure 3.23: The swap gate between two qubit

For instance if the walker is in vertex with the label 1100, by taking a step in one direction
it will reach one of the possible neighbours among {1010, 1001, 0101, 0110}. A step or shift
is realised by swapping two qubit of the state register with opposite values i.e. a qubit in
state 0 with a qubit in state 1 and viceversa, so that the Hamming distance (Definition 1.7)
between one vertex and the next is preserved. An example of all possible shifts of vertex
1100 can be seen in Figure 3.24.

|1⟩ |0⟩
|1⟩ |1⟩
|0⟩ |1⟩
|0⟩ |0⟩

(a) First direction.

|1⟩ |0⟩
|1⟩ |1⟩
|0⟩ |0⟩
|0⟩ |1⟩

(b) Second direction.

|1⟩ |1⟩
|1⟩ |0⟩

|0⟩ |1⟩
|0⟩ |0⟩

(c) Third direction.

|1⟩ |1⟩
|1⟩ |0⟩
|0⟩ |0⟩
|0⟩ |1⟩

(d) Fourth direction.

Figure 3.24: Shifting from 1100 towards its neighbors
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In a Johnson graph using binary label of n qubits there are
(
n
2

)
possible applicable swaps

but we have to discard those that do not meet the condition on the Hamming distance.
Given that two nodes are adjacent if the sets they represent differ by only one element,
the Hamming distance between the binary labels of two adjacent nodes is always fixed at
2. Indeed, only k(n−k) swaps are valid. We can rephrase the shifting problem as finding
the k(n − k) permutations that preserve a Hamming distance of 2 from a given starting
label.

For the sake of clarity all possible combination of swap for the J(4, 2) are reported in the
Table 3.1 where a swap is expressed with the position (xi, xj) of the qubit to swap.

Qubit register base state Valid permutations
1100 or 0011 (0,2),(0,3)(1,2),(1,3)
1010 or 0101 (0,1),(0,3),(1,2),(2,3)
1001 or 0110 (0,1),(0,2),(1,3),(2,3)

Table 3.1: J(4, 2) swap assignment

A first naive approach would be to encode such a shifting system by first analyzing where
the walker is during the walk (i.e. the current node) followed by the k(n − k) correct
shift operation on the node. This is a solution we tried to implement but were not
successful in. Specifically, we haven’t been able to design a circuit capable of applying
the sequence of correct swap operations controlled by the current node expressed in the
state space without resorting to adding an exponential number of additional qubits. A
procedure that relies on such amount of resources is not interesting with respect to current
literature on quantum search algorithms.

However, this controlled procedure is not strictly necessary. We explain why it is possible
to implement the same behaviour in a different way.

Let’s assume we are in node 1100, the correct swaps are shown in Table 3.1. Now we also
apply the swaps (0, 1) and (2, 3). The walker will not effectively perform any shift, because
the new swaps produce labels with zero hamming distance from the label of the starting
node, meaning the new label is identical to the starting one. In practice we introduce two
self-loops on the node. If we repeat the same procedure for every node of the graph what
we obtain is a modified version of the Johnson graph, shown in Figure 3.25.
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1100

0011

1010

0101

1001

0110

Figure 3.25: Johnson graph J(4, 2) with binary labels and self loops

The single self-loop of each vertex shown in Figure 3.25 merges multiple directions. Now,
the likelihood of performing a non-loop shift, meaning an actual changing of node labels,
depends on n and k. Specifically, given any node, we have that:

• k(n − k) directions are correct, meaning they encode a shift that when performed
changes the state register to one of the neighbours of the current vertex.

•
(
n
2

)
− k(n − k) directions are encoded in the self-loop, meaning this is the number

of shifts that will not effectively change the current label. The shifting is performed
but no actual label modification is done.

v

...

...

k(n− k)
(
n
2

)
− k(n− k)

Figure 3.26: Single vertex analysis of the encoded directions.

The circuit representation of the shift operator with self-loops is shown in Figure 3.27.
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|v⟩

|c⟩

Figure 3.27: Shift circuit on a J(4, 2) with self loop

All the possible
(
n
2

)
swaps modify the state register and are controlled by the coin register

|c⟩.

Regarding qubit number and depth, this shift operator has the following performance:

qubit numbershift = n+ ⌈log2
(
n

2

)
⌉ (3.40)

depthshift =
(
n

2

)
(3.41)

3.4.5. Final Circuit

Considering a Johnson J(n, k), our circuit requires the following two register:

• |v⟩: state register is used to encode the vertices of the graph, every qubit corresponds
to a position in the set n thus it has dimension dim(|v⟩) = n

• |c⟩: coin register is used to express all the possible directions of the coin. It has
dimension dim(|c⟩) = ⌈log2

(
n
2

)
⌉

The following Figure shows a complete exploration of a Johnson graph using our imple-
mentation (only showing 1 step of the walk).
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|v⟩ Dicke state

|c⟩

H

C0 C1H

H

Figure 3.28: Complete Johnson graph walk search with marked vertex 1100 (1 step)

3.4.6. Lackadaisical Quantum Random Walks

Quantum random walks with self-loops have been extensively studied by Thomas Wong
who coined the term Lackadaisical quantum random walks. To give a quick definition
taken from [39], they are random walks that include an additional coin degree of freedom
that encodes the self-loop. The generic Johnson graph’s Hilbert space equals to HV ⊗HC

with HV = {|v⟩ : v ∈ V } and HC = {1 ≤ c ≤ d} where d is the degree of the Johnson
graph plus 1.
The evolution operator U follows the equation:

U = S(IV ⊗ C0)(−C1 ⊗ Id) (3.42)

where S is the shift operator and Q is the Grover oracle defined as:

C1 = 2 |x∗⟩ ⟨x∗| − IV (3.43)

where |x∗⟩ is the marked vertex. C0 is the Grover diffusion coin for a weighted graph
defined as:

C0 = 2 |sc⟩ ⟨sc| − Id (3.44)

with

|sc⟩ =
1√
d+ l

(
d∑

c=1

|c⟩+
√
l |⟲⟩) (3.45)
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where l is the weight associated to the self-loop. Following the reasoning expressed in
Figure 3.15, U is equivalent to applying C0 to unmarked vertices and −C1 to the marked
vertex, followed by the shift operation. A more detailed analysis regarding the search
problem in vertex-transitive graphs is analyzed in [30], which details the following perfor-
mance analysis parameters:

t∗ =
π√

2(l + 1)

√
V

p∗ =
4l

(l + 1)2

(3.46)

where t∗ represents the number of times we need to apply the evolution operator U (i.e.
the number of steps of the walk) to reach the first probability peak of the marked vertex
whereas p∗ is the value of that probability peak.

Our intuition suggests that our coin application together with the shift phase behave in
the same way defined above. We cannot give a formal proof that our solution is mathe-
matically equivalent to a Lackadaisical Quantum random walk because our coin phase is
not a direct implementation of the formula expressed in Equation (3.45) since we follow
the double coin procedure shown in Figure 3.15. This link between our implementation
and Lackadaisical walks would help in better understanding the performance of our so-
lution. In the following Section we express the empirical evidence we have gathered to
support this connection.

3.4.7. Simulation & Performance

We simulated the final circuit represented in Figure 3.28 with different steps and two mark-
ing coins. We compared the results obtained via the circuit simulation using qiskit [12],
an open-source SDK for simulating quantum circuits, on IBM’s online Quantum Com-
puting lab using Aer simulator (automatic setting) with a mathematical simulation of a
Lackadaisical Quantum walk (addendum of [39]) that we adapted for the Johnson graph
J(4, 2). We show a comparison of the obtained simulations.



3| Quantum Random Walks 77

0 5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

p∗

(a) Grover marking coin. (Circuit simulation)
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(b) SKW marking coin. (Circuit simulation)
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(c) Grover marking coin. (Modified script of [39])
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(d) SKW marking coin. (Modified script of [39])

Figure 3.29: Simulated probabilities of measuring the marked vertex with different steps
and marking coins on J(4, 2) with l = 4

These results support the fact that our implementation complies with the mathematical
structure of the Lackadaisical walks. Further studies are needed in order to confirm this
design as an instance of this kind of walks.

According to [30] the optimal value for l for a Johnson graph, vertex-transitive graphs in
general, is:

lopt =
d

V
=
k(n− k)(

n
k

) (3.47)

This self-loop weight maximizes p∗. Consequently, by using this weight value it is possible
to measure with certainty the marked element(s) of the graph after t∗ search steps.

Our solution does not permit us to freely modify the weight l, whose value is constrained by
the structure of the circuit. The reason behind this is that parameters n and k determine
the ratio between the number of correct directions and the number of self-loops per vertex.
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Because of the fact that we need at least ⌈log2(
(
n
2

)
)⌉ qubits to apply all

(
n
2

)
swaps, the

actual weight of the self-loops is not simply what we have shown in Figure 3.26, but it
depends on the number of qubits in the coin register. This is explained by the fact that
the Grover diffuser performs the inversion about average of all 2qubits-number combinations,
even though we do not control all of them in the successive shift phase. This means that
the weight l of the self-loops in our implementation is equal to:

l = 2⌈log2 (
n
2)⌉ − k(n− k) (3.48)

This formula deviates from the optimum more and more the bigger n becomes. Specifi-
cally, the bigger the n the higher the value of l and the more likely it is to remain in the
same node while exploring. Plotting l with different values of n and k shows the following
behaviour:

0 5 10 15 20
0

5

10

15

20

k

n

l

Figure 3.30: Self-loops weight value of our implementation for 0 ≤ n, k ≤ 20. (The
redder the line, the higher the value)

Using our parameter l, the following plots suggest that parameter t∗ increases whereas
the parameter p∗ lowers as the Johnson graph grows in dimension.
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Figure 3.31: t∗ and p∗ values for 0 ≤ n, k ≤ 20. (The redder the line, the higher the
value)

This shows that for bigger and bigger values of n our solution performs poorly. The value
of l becomes so high that the process struggles in exploring the graph.

Regarding performance, the qubit number starts as n + ⌈log2
(
n
2

)
⌉ according to Equa-

tion (3.40), but ancillas may be necessary depending on the oracle. In the example shown
no ancillas are required but in the next chapter we will show that this won’t hold true.
Concerning depth and gate number we can analyze the circuit in phases:

• Initialization phase: the Dicke state circuit is applied to the state register, the
gate number cost is the sum of Equations (3.39) and (3.38). On the other hand, an
Hadamard gate is applied to each qubit of the coin register. Clearly the depth cost
is dominated by the Dicke state circuit.

• Coin phase: it can be seen in Figure 3.8 that the depth of the Diffuser operator is
constant. For both coin applications the depth is the same and is equal to 5: 2 sets
of H and X gates on each qubit plus a controlled-Z gate in between.

• Shift phase: as explained in Equation (3.41), the cost is
(
n
2

)
controlled-SWAP

gates.

The costs of the Coin and the Shift phase are repeated for each walk step.

Initialization Coin phase Shift phase

Gates O(n+ k2) O(log
(
n
2

)
) O(

(
n
2

)
log
(
n
2

)
)

Depth O(n) 10
(
n
2

)

Table 3.2: Single Johnson performance
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Initialization Coin phase Shift phase

CNOT 5nk − 5k2 − 2n 0 0

RY 4nk − 4k2 − 2n+ 1 0 0

H ⌈log2
(
n
2

)
⌉ 4⌈log2

(
n
2

)
⌉ 0

X 0 4⌈log2
(
n
2

)
⌉ 0

CZ 0 2 0

CSWAP 0 0 ⌈log2
(
n
2

)
⌉
(
n
2

)

Table 3.3: Single Johnson gate numbers

To conclude the discussion on the exploration of the Johnson graph, this is the only circuit
that, to the best of our knowledge, accomplishes a Johnson graph exploration.

In the next chapter we will see how to encode a search problem on a product of Johnson
graphs to tackle ISD.



81

4| Quantum Information Set

Decoding Algorithm

In this chapter we are going to give a description of our novel Information Set Decoding
algorithm that exploits Quantum Random Walks on a product of Johnson graphs. The
first to realise the connection between ISD and Quantum Computing was Bernstein [7],
who describes a quantum version of Prange’s algorithm (Section 1.2.3) using Grover’s
search. Kachigar and Tillich [16] are the first to tackle the ISD problem via quantum
random walk.

The chapter is organised as follows: in the first section we explain how the Finiasz-Sendrier
ISD can be translated in a graph representation useful for exploration, in the second
section we present the formulation of the two-sum problem, in the third we explain our
Quantum Collision algorithm based on quantum walk on the product of Johnson graphs
and in the last sections we discuss the experimental results and the performance achieved.

4.1. Graph formulation of ISD

Before diving deep into the discussion, we give a brief recap of the fundamental aspects
of the Finiasz-Sendrier ISD formulation. As we have seen in Section 1.2.7, the goal is to
find the correct weight distribution in the two halves of the permuted error êI . In order
to solve this FS-ISD with a Quantum walk search algorithm, we recast the problem into a
graph formulation. From now on we will focus on the two superior subparts of the matrix
V : Vup1 and Vup2.

Suppose we want to find a useful way to encode the selection of the columns of the Vup,1
submatrix. Selecting a group of columns of Vup1 means guessing a p

2
weight into the first

k+l
2

half of êI or, in other terms, choosing the columns of Vup1 in correspondence to the
position of the ones in êI,up1.
The columns selection can be encoded employing a Johnson graph as presented in Chap-
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ter 3. For instance if we choose Vup1 with l = 4 and k = 4, a possible matrix is:

Vup1 =




1 1 0 0

1 0 1 1

1 1 1 0

0 1 0 1




(4.1)

By using k+l
2

bit long binary labels we can express the selection of the columns with
the position in the binary string. For example, suppose that the error p

2
equals to 2,

the label 1100 will correspond to selecting the columns in position 0 and 1. For our
purpose we have to find all the possible way to combine a number of columns equal to
p
2
, i.e. all the ways to distribute the weight in êI,up1. As stated in Section 1.2.7 we have(
(k+l)/2
p/2

)
possible combinations for this column selection. A Johnson graph J(x, y) with

x = k+l
2

and y = p
2

expresses these combinations by using the binary labeling of the nodes
explained in Section 3.3.

Vup1 =




1 1 0 0

1 0 1 1

1 1 1 0

0 1 0 1




1100

0011

1010

0101

1001

0110

Figure 4.1: Vup1 encoding of the column selection via a Johnson graph.
Vertex 0110 corresponds to the selection of the columns highlighted in red

Now the issue is to find a way of encoding the column selection of the matrix in a quantum
circuit.

4.1.1. Quantum circuit for matrix encoding

To translate our l row matrix into the circuit we need l qubit to encode the sum of
the selected entries. We call this register sum. Every qubit will store the sum of bits
alongside a row, this can be obtained by applying an X gate for each 1 in a row as shown
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in Figure 4.2.

Figure 4.2: The input matrix Vup1 transposed in a quantum circuit

The next step is to use a k+l
2

qubit register |sel⟩ that acts as column selector. The selectors
are implemented as controlled NOT on the qubit that stores the matrix value as described
in Figure 4.3.

|sel⟩

|sum⟩

Figure 4.3: The column selectors circuit for Vup,1

In practice we choose a column out of k+l
2

available by activating the corresponding con-
trolled NOT. The main idea is: based on the state of the register |sel⟩ we XOR together
a subset of the columns of the matrix. At the end of the circuit in Figure 4.3, each qubit of
the register |sum⟩ will contain the sum module 2 of every ones of its correspondence row.
Going back to what we discussed in the previous Subsection, this has the same effect as
performing the usual row-column product between the matrix Vup1 and the column vector
êI,up1.
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In term of performance we have a number of qubit and a circuit depth that scale with
the parameters of the matrix

qubit number =
k + l

2
+ l (4.2)

depth =
k + l

2
(4.3)

From this point on we will refer to the selectors as the vertices of the Johnson graph
according to the scheme explained at the start of this section. Once we have translated
the input of the ISD problem into a quantum circuit, in the next Sections we will see how
to search for a solution with a Quantum walk algorithm.

4.2. FS-ISD Collision as 2-sum problem

In this Section we show how to solve FS-ISD using a Quantum walk search. Before doing
so we need to remind some mathematical concepts. As we have seen in Section 1.2.7,
solving the FS-ISD collision procedure means finding a solution to the following Equation

VupêI = ŝup ⇔ ŝup = Vup1êI,up1 + Vup2êI,up2 (4.4)

Solving this equation can be seen as an instance of finding a solution to the 2-SUM
problem. Kachigar and Tillich [16] have already formalized this idea. If we take into con-
sideration the Finiasz-Sendrier formulation, this is exactly what we are trying to achieve
when comparing the two halves of êI . The problem we address can now be formulated as
follows:

Vup1e0 + Vup2e1 = ŝup g(e0, e1) = 0

E0 = {(e0, 0(k+l)/2) ∈ Fl+k2 , e0 ∈ F(l+k)/2
2 , wt(e0) = p/2}

E1 = {(0(k+l)/2, e1) ∈ Fl+k2 , e1 ∈ F(l+k)/2
2 , wt(e1) = p/2}

(4.5)

where g is defined as g(e0, e1) = 0 if and only if êI = (êI,up1|êI,up2) is of weight p. In
other words if we have multisets of values Vup1e0 and Vup2e1 and a target sum ŝup, the
question is to decide whether any subset of those values sum to precisely ŝup. We proceed
with the discussion with a numerical example. Assuming that Vup1, Vup2 and ŝup have the
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following values:

Vup1 =




1 1 0 0

1 0 1 1

1 1 1 0

0 1 0 1




Vup2 =




1 0 1 0

0 1 1 0

1 1 0 1

1 1 1 1




ŝup =




1

1

0

0




(4.6)

We want to find a combination of columns of Vup1 and Vup2 such that their sum is equal
to ŝup. More formally given two subsets L1 ⊆ {0, . . . , (k+ l)/2−1} and L2 ⊆ {0, . . . , (k+
l)/2− 1} with |L1| = |L2| = (k + l)/2 we have

ŝup =
∑

l1∈L1

vup1l1 +
∑

l2∈L2

vup2l2 (4.7)

where vup1l1 are the columns in position l1 of Vup1 and vup2l2 are those in position l2 of
Vup2. Using binary matrices, summing modulo 2 is a XOR between the columns.

ŝup =
∑

l1∈L1

vup1l1 +
∑

l2∈L2

vup2l2 ⇔ ŝup =
⊕

l1∈L1

vup1l1
⊕

l2∈L2

vup2l2 (4.8)

In the given example, the exact combination comes by the columns in position 0 and 2 of
Vup1 and by those in position 1 and 3 of Vup2.

Vup10


1

1

1

0



⊕

Vup12


0

1

1

0



⊕

Vup21


0

1

1

1



⊕

Vup23


0

0

1

1



=




1

1

0

0



= ŝup (4.9)

Using the same graph representation of Section 4.1 this means that we are looking for
node 1010 on J1(k+l2

, p
2
) and node 0101 on J2(k+l2

, p
2
), where J1(k+l2

, p
2
) encodes the column

selection of Vup1 and J2(k+l2
, p
2
) encodes the column selection of Vup2.

We solve our version of the 2-SUM by means of a Quantum walk search on the Cartesian
product of two Johnson graphs.

Definition 4.1 (Cartesian Product between Graphs). Given two graphs G1 = (V1, E1)

and G2 = (V2, E2) their Cartesian product G1 ×G2 is the graph G = (V,E) where:

• V = V1 × V2 i.e. V = {(v1, v2)|v1 ∈ V1, v2 ∈ V2}
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• E = {(u1u2, v1v2)|(u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈ E1 ∧ u2 = v2)}

a

bc

×
0

12

≡

a0 a1a2

b0 b1b2

c0 c1c2

Figure 4.4: Example of a Cartesian product between graphs

For our purpose we need the product between two Johnson graphs J2(k+l
2
, p
2
) = J1(

k+l
2
, p
2
)×

J2(
k+l
2
, p
2
) which has

(
(k+l)/2
p/2

)2
vertices and is 2(p

2
)(k+l

2
− p

2
)-regular ([16]).

In order to take a step on the product graph J2(k+l
2
, p
2
) we can perform a step separately

on the two graphs J1(k+l2
, p
2
) and J2(

k+l
2
, p
2
) and check the corresponding vertex of their

product by observing the nodes of the two single graphs. The graphic representation of
the complete search space is reported in Figure 4.5.
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Figure 4.5: J2(4, 2) = J1(4, 2)× J2(4, 2) with marked vertex 1010, 0101

4.3. Quantum Collision Algorithm

Now we have all the building blocks of our algorithm. Figure 4.6 shows an high level
overview of our implementation which reflects the generic Quantum random walk search
circuit structure that we have shown in Figure 3.12. The complete circuit is shown in
Figure 4.12.



88 4| Quantum Information Set Decoding Algorithm

Figure 4.6: High level overview of quantum collision algorithm

Our algorithm requires four register:

• |v1⟩ is the state register for J1(k+l2
, p
2
), every qubit corresponds to a position in the

set k+l
2

thus it has a dimension dim(|v1⟩) = k+l
2

• |v2⟩ is the state register for J2(k+l2
, p
2
), every qubit corresponds to a position in the

set k+l
2

thus it has a dimension dim(|v1⟩) = k+l
2

• |sum⟩ is the ancilla register: it encodes the matrix values and its dimension depend
on the number of rows of Vup so dim(|sum⟩) = l

• |c⟩ is the coin register: it encodes all the possible direction of the coin dim(|c⟩) =
⌈log2

(
(k+l)/2

2

)
⌉

Input preparation. The first stage of the circuit is the registers initialisation. To
generate the superposition of the nodes of the two Johnson graphs J1(k+l2

, p
2
) and J2(k+l2

, p
2
)

we apply the Dicke operator (Figure 3.20) on registers |v1⟩ and |v2⟩. On the other hand, to
obtain an equal superposition of all the direction we apply the Hadamard gate (Eq. 2.18)
on the coin register |c⟩.

|v1〉 Dicke state

|v2〉 Dicke state

|c〉

H

H

H

Figure 4.7: Final circuit: Input preparation
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Oracle. The oracle phase is used to encode the values of the two matrix Vup1 and Vup2

on the register |sum⟩ following the same approach described in Figure 4.3. The selectors
for the first matrix are activated by the qubit in register |v1⟩ and for the second matrix
by those in register |v2⟩. With this structure, at the end of the oracle phase we obtain on
register |sum⟩ the syndrome value corresponding to the sum of the selected columns.

|v1〉

|v2〉

|sum〉

Figure 4.8: Final circuit: Oracle

Coin. The coin phase can be divided into two sub-phases:

• First sub-phase: the Grover diffuser operator (Figure 3.8) is applied on register |c⟩
with C0 = G regardless of the state value.

• Second sub-phase: in order to mark the right vertex the application of the second
coin C1 = G is conditioned by the desired value of the syndrome computed on
|sum⟩. In our example case, ŝup = [1100].

|sum〉

|c〉 C0 C1

Figure 4.9: Final circuit: Coin

Inverse oracle. This phase is used to uncompute the register |sum⟩ in order to reset
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the register for the next walk iteration. This is performed by applying in reversed order
the same sequence of operations of the oracle phase.

|v1〉

|v2〉

|sum〉

Figure 4.10: Final circuit: Inverse Oracle

Shift. The shift phase has the same structure of Figure 3.27 but is applied twice on the
two state registers. This is done in order to move simultaneously in both graphs during
the same shift application. Both shift applications are controlled by the register |c⟩, the
first one targets |v1⟩ while the second targets |v2⟩.

|v1〉

|v2〉

|c〉

Figure 4.11: Final circuit: Shift

Measurement. It is the last stage of the algorithm. After repeating the phases in the
loop body a certain number of times we need to measure the state of two registers |v1⟩
and |v2⟩. It will return a (k + l)-bit long string where the first half corresponds to the
measurement of the state of register |v1⟩ and the second half to that of register |v2⟩. In
our case we expect 1010 as measurement for |v1⟩ and 0101 for |v2⟩.
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The quantum circuit we have just described behaves according to Algorithm 14. The new
parameters γ and t∗ of the Johnson graph that we have described in the previous Chapter
are now

γ = 2⌈log2 (
(k+l)/2

2 )⌉ − p

2

(
k + l

2
− p

2

)

t∗ =
π√

2(γ + 1)

√(
(k + l)/2

p/2

) (4.10)

Algorithm 14 QuantumCollision

Input: (k + l) + l + ⌈log2
(
(k+l)/2

2

)
⌉ qubits

s: n− k bit long syndrome
p : the weight of the first k bit of ê with 0 ≤ p ≤ t

Vup1, Vup2: the two (k + l)/2× l Vup submatrices
Output: L1,L2 two sets of indexes of the valid columns of Vup1, Vup2
1: Prepare the initial state |v1⟩ = |v2⟩ = |DickeState⟩, |coin⟩ = |H⌈log2 ((k+l)/2

2 )⌉⟩,
|sum⟩ = |0l⟩

2: Apply U t∗ where U = SO−1CO

3: Measure registers |v1⟩ |v2⟩ in the computational basis, yielding L1,L2 sets of indexes

where S,O,C,O−1 are the operations we descibed as Shift, Oracle, Coin and Inverse
oracle.

The pseudocode of our hybrid classical-quantum FS-ISD algorithm can be derived from
the original Finiasz-Sendrier algorithm 5 where we have substituted the classic Collision
sub-procedure with our QuantumCollision procedure.
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Algorithm 15 Syndrome decoding - Quantum Finiasz-Sendrier
Input: s: n− k bit long syndrome

H: (n− k)× n parity check matrix
t : the weight of the error vector
p : the weight of the first k bit of ê with 0 ≤ p ≤ t

l : input parameter 0 ≤ l ≤ n− k − t+ p

Output: e : n-bit error vector s.t. He = s with wt(e) = t

ŝ : n− k bit new syndrome
P : n× n permutation matrix
V : (n− k)× k binary matrix

1: repeat
2: (ŝ, P, [V |W ])← ISextractFS(s, H)

3: if QuantumCollision(Vup1, Vup2) then
// L1 and L2 set of indexes returned by QuantumCollision

4: êI∗ ← ŝ−∑l1∈L1
vup1l1 −

∑
l2∈L2

vup2l2
5: if wt(êI∗) = t− p then
6: ê← [0k+l|êI∗ ]

7: for l1 do
8: ê← ê + [0l1|1|0n−1−l1 ]

9: end for
10: for l2 do
11: ê← ê + [0l2|1|0n−1−l2 ]

12: end for
13: return P ê

According to our calculations, the complexity of Algorithm 15 is equal to

CQ−FS(n, k, t, p, l) =

(
n
t

)
(
n−k−l
t−p

)(
(k+l)/2

p/2

)2 (CIS−FS(n, k, l)+

(
(k + l)/2

p/2

)CQuantumCollision +

(
(k+l)/2

p/2

)
2l

p(n − k − l)

 + p

(4.11)

where CQuantumCollision is the complexity of the novel quantum circuit. Giving a value
to such complexity is in literature, as of today, not an agreed topic. Today’s quantum
machines complexity heavily depends on the error correction of the underlying technology
which vastly overshadows the complexity of the circuit encoding. Our implementation is
transparent to these issues as this thesis does not concern these problems. It is possible
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to express the time complexity as:

CQuantumCollision = O(gates ∗ t∗) (4.12)

This is justified by the hypothesis that the cost of a single quantum gate is comparable
with the cost of a classical gate. The gates value is show in the next Section.

On the other hand, the spatial complexity of QuantumCollision() is:

SQuantumCollision =
k + l

2
+ l + ⌈log2

(
(k + l)/2

2

)
⌉ (4.13)

The circuit returns the marked element with a particular maximum probability that we
explain in Section 4.5.

In Section 4.4 we analyze depth and gate numbers of Algorithm 15, which are today a
good measurement for the complexity of quantum circuits.

4.4. Performance evaluation

The final circuit shows the following performance:

Input Preparation Oracle Coin Inverse Oracle Shift

Gates O(k+l
2

+ p2) O(k+l
2
l) O(log

(
(k+l)/2

2

)
) O(k+l

2
l) O(

(
(k+l)/2

2

)
log
(
(k+l)/2

2

)
)

Depth O(k+l
2
) O(k+l

2
) 10 O(k+l

2
)

(
(k+l)/2

2

)

Table 4.1: J2(k+l
2
, p
2
) performance

Input Preparation Oracle Coin Inverse Oracle Shift

CNOT 5(k + l)p/4− 5p2/4− (k + l) (k + l)l 0 (k + l)l 0

RY (k + l)p− p2 − 2(k + l) + 1 0 0 0 0

H ⌈log2
(
(k+l)/2

2

)
⌉ 0 4⌈log2

(
(k+l)/2

2

)
⌉ 0 0

X 0 0 4⌈log2
(
(k+l)/2

2

)
⌉ 0 0

CZ 0 0 2 0 0

CSWAP 0 0 0 0 2
(
(k+l)/2

2

)
⌈log2

(
(k+l)/2

2

)
⌉

Table 4.2: J2(k+l
2
, p
2
) gate numbers

These number are achieved using a total number of qubits equal to (k+l)+l+⌈log2
(
(k+l)/2

2

)
⌉.
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Table 4.1 gives the performance of the J2(k+l
2
, p
2
) graph regarding both the depth and

number of gates. From a computational point of view, the Shift operation is the most
significant part of the circuit because it resulted in having to applying all the possible
swaps

(
(k+l)/2

2

)
which has an exponential cost compared to the other phases which are at

most polynomial or as for the coin constant. Our solution however does not need ancillas,
beside the ones needed for the Oracle phase, meaning it takes much longer to perform the
computation but needs very few qubits.

Table 4.2 shows the actual gate numbers at each phase of the Algorithm divided for each
gate type. It is clear that the biggest contribute to the overall cost is carried by the
CSWAP gates of the Shift phase.

4.5. Experimental results

We simulated the final circuit shown in Figure 4.12 on IBM’s online Quantum Computing
lab using qiskit’s Aer simulator (automatic setting) and obtained the following probability
curve

0 2 4 6 8 10 12 14 16

0.03

0.05

0.08

0.1

0.13

0.15

steps

p∗

Figure 4.13: Simulated probabilities of measuring the marked vertex with different steps
on a product of J(4, 2)× J(4, 2) with the values of Vup1, Vup2 and sup described in Equa-
tion 4.6.

We expect the value of the first probability peak of measuring the marked vertex, as



96 4| Quantum Information Set Decoding Algorithm

explained in Chapter 3 Section 3.4.6, to be indicated by the parameter p∗, which is now:

p∗ =
4γ

(γ + 1)2
(4.14)

with

γ = 2⌈log2 (
(k+l)/2

2 )⌉ − p

2

(
k + l

2
− p

2

)
(4.15)

We noticed that the simulation in Figure 4.13 is the same shape as the probability curve
in Figure 3.29 of the single Johnson graph search but flattened. As the experimental
simulation shows, the new probability curve is flattened by a factor of 6 compared to the
single Johnson graph search in Figure 3.29a.

The total number of combinations of two single Johnson graphs state spaces is equal to
V = V1 × V2 as we have explained in Definition 4.1. Our hypothesis is that since the
complete state space explores the product of two graphs, the probability of measuring a
vertex in the product is divided by the ratio between the dimension of the product and
the dimension of one the original graphs, in this case either V1 or V2.

In our example, the product has a total of 36 vertices whereas the single graphs have 6.
As a consequence, the probability of measuring the marked vertex follows the same shape
of the single graph exploration but is divided by a factor of 6.

This shows that the definition of p∗ as it is is not suited for a product between graphs.

As a consequence, our circuit’s probability of measuring the correct vertex not only lowers
as the values of n gets bigger, but is worsened further if employed for the encoding of a
product of Johnson graphs. Further experimentation should be carried out in order to
confirm these observations.
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developments

The general goal of this thesis has been to explore the usefulness of Quantum Random
Walks in ISD algorithms. Current literature on the topic suggests studying Johnson
graphs because of their regularity. This led us to find a circuital implementation of
such walks on a Johnson graph, which to the best of our knowledge has never been
accomplished.

Taking inspiration from the work of Kachigar and Tillich [16], which conceptualized the
use of Quantum random walks to solve ISD problems, we set up to develop a quantum
algorithm that finds collisions on a sub-procedure of the Finiasz-Sendrier ISD algorithm.

We succeded in obtaining a quantum circuit that performs this operation. We simulated
the circuit using Qiskit, IBM’s quantum circuit simulation library, and compared it with
Thomas Wong’s mathematical formalization of Lackadaisical Quantum Random Walks
obtaining strong evidence that our solution complies with this type of walk.

Our solution could be employed in any search-based problem involving a structure which
can be encoded as a Johnson graph or a product of them.

The most challenging part was figuring out an efficient way of performing the shift opera-
tion in a Johnson graph which turned out to be quite complicated due to the combinatorial
nature of its encoding. The initial approach of having a loop-free structure has been dis-
carded in favour of a significant reduction in computational resources. The final solution
has linear spatial complexity but the maximum probability of measuring the correct el-
ement is not close to 1, as Thomas Wong’s work explains, and requires a relatively high
number of iterations because of the exponential depth of the Shift phase.

Regarding future development, different paths are possible. Firstly, research should focus
on understanding if different ISD algorithms can benefit from this quantum solution. Sec-
ondly, finding a more efficient solution for the shift phase in terms of both depth and gate
number could drastically improve the circuit performance. Our intuition suggests that a
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first step in this direction could involve finding an indexing algorithm for combinatorial
encodings as shown in [21]. It would be interesting to understand whether the same
problem can be solved using other graph topologies on which an efficient shift can be
implemented. This work focuses on the coined quantum walk model, nevertheless we do
not exclude the possibility of obtaining benefits from using other search paradigms such
as the Szegedy Quantum walk model or the Continuous time Quantum Walk.
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A| Linear Algebra

Linear algebra is to quantum computing as boolean algebra is to classical computing. We
have gathered here what we consider the mathematical foundations that are needed in
order to properly understand the quantum phenomena we have shown.

The following appendix’s sources are [25, 27]

A.1. Dirac Notation

Paul Dirac in [11] introduced the Dirac notation to better study Quantum Mechanics.
Since our work is built upon the same rules, it makes sense to understand how it works.

The |·⟩ is used to indicate that the object is a vector. Inside, any label for the vector can
be used. Traditionally, to indicate a generic vector the ψ symbol is used:

|ψ⟩

The position of the two symbols matter. The above vector is called ket and represents a
column vector. If switched, the symbols indicate a row vector called bra.

|ψ⟩ =
[
α

β

]
⟨ψ| =

[
α β

]

Formally, the bra vector is the conjugate transpose of a ket, meaning ⟨ψ| = (|ψ⟩∗)T := |ψ⟩†.
For the moment we can consider this just another way of defining a vector. We will later
understand why this notation can be very useful when dealing with complicated formulae,
especially compared to the standard definition of a vector.

A.2. Vector Spaces

Wherever possible, we will express the same concepts with the Dirac notation.

The two-dimensional vector space R2 is the set of column vectors having the following
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shape:

v =

(
a

b

)
≡ |v⟩ =

[
a

b

]

with a, b ∈ R. It goes without saying that the same principles that we are going to explain
hold true for any vector space dimension.
This is a list of a few key definitions related to vector spaces.

Definition A.1. (Transpose) The transpose vector of a column vector v is the row vector
vT = (a, b)

Definition A.2. (Vector Norm) The norm of a vector v is defined as ∥v∥ =
√
a2 + b2 or

∥v∥ =
√
⟨v⟩

Definition A.3. (Normalized (Unitary) vector) A normalized, or unitary, vector is a
vector whose norm is equal to 1, meaning ∥v∥ = 1

Definition A.4. (Scalar (or Inner) Product) The scalar product between two vectors v1 =
( a1b1 ), v2 = ( a2b2 ) is defined as:

v1 · v2 := vT1 v2 = (a1, b1)(
a2
b2 ) = a1a2 + b1b2 = ∥v1∥∥v2∥ cosθ

where θ is the angle formed between v1 and v2. It can also be represented as ⟨v1|v2⟩.

Definition A.5. (Tensor Product) Given two matrices A ∈ Rm×n and B ∈ Rp×q defined
as

A =




a11 . . . a1n
...

...
am1 . . . amn


 B =




b11 . . . a1q
...

...
bp1 . . . apq




the tensor product A⊗B is the matrix D ∈ Rmp×nq defined as

D =




a11B . . . a1nB
...

...
am1B . . . amnB




In Dirac notation, given two vectors |v1⟩ |v2⟩, their tensor product is |v1⟩⊗|v2⟩ also written
as |v1v2⟩.

Definition A.6. (Orthogonal vectors) Two vector are orthogonal if their scalar product
equals to zero, meaning: v1 · v2 = 0 or ⟨v1|v2⟩ = 0.
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Definition A.7. (Linearly Independent Vectors) A set of vectors {vi ∈ R2 | i = 1,2,. . . ,k}
is a set of linearly independent vectors if

a1v1 + a2v2 + · · ·+ akvk = 0, ai ∈ R

otherwise they are said to be linearly dependent.

Definition A.8. (Basis of a vector space) A basis for a vector space is a set of linearly
independent vectors belonging to it. Each other vector in the vector space can be defined
as a linear combination of a basis vector.

Definition A.9. (Orthonormal basis) A basis for a vector space is orthonormal if all
vectors are normalized and orthogonal to each other. The vectors

|0⟩ =
[
1

0

]
|1⟩ =

[
0

1

]

form an orthonormal basis for R2 called Standard basis.

Definition A.10. (Hilbert Space) A Hilbert space is a vector space with an inner product
and is complete with regards to the metric induced by the norm ∥ · ∥

The possible states of a quantum mechanical system are represented as unit vectors in
the complex Hilbert space. A Hilbert space can be considered a special case of a vector
space, but since in quantum computing vector spaces always have finite dimensions saying
’Hilbert space’ or ’vector space with inner product’ is equivalent.

A.3. Qubit representations

It is possible to give a geometric interpretation to a qubit. The Bloch sphere associates a
qubit state to a point on the surface of a unitary radius sphere.
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Figure A.1: Bloch Sphere

The south pole corresponds to |1⟩ whereas the north pole |0⟩, any other point on the
surface is a superposition of these two base states.
There is a bijective relationship between a generic qubit state and a point on the unitary
sphere in R3 represented by

|ψ⟩ = α |0⟩+ β |1⟩ = cos(θ/2) |0⟩+ eϕsen(θ/2) |1⟩

where θ and ϕ are real numbers.

By this definition it seems like it would be possible to encode an infinite amount of
information on a qubit, since any slight angular transformation represents a different
point on the surface. The reality is that in order to extract information from such a
system a measurement is necessary, meaning this sphere will either output the north or
the south pole. From this perspective, the probability of measuring one of the two base
states is given by the ’latitude’ of the system’s state.
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