

Analysis of the Usage of
Specific Technologies in
Android Development

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE AND ENGINEERING

INGEGNERIA INFORMATICA

Author: Robert Medvedec

Student ID: 962348
Advisor: Luciano Baresi
Academic Year: 2021-22

 i

Abstract

Android is a world-leading operating system for smartphone devices. Being an open-
source platform it has spread to devices from many different manufacturers and is
supported by a wide range of hardware. Development of Android applications is an
advanced process in which a number of technologies are being used to allow for
creation of applications for many different use cases. The state of the Android
development is rapidly changing due to both software and hardware evolving every
year. The goal of this thesis is to capture the current state of Android development as
well as present the most used technologies and their use cases for specific types of
applications.

To achieve this, an analysis was made on 27 widely used open-source Android
applications. The analysis includes individual scan of each of those applications with
a deep dive into the language, components, patterns, and services used in the
development. The overall analysis takes into the individual results of analyzed
applications to create an snapshot of a current state in Android development.

Key-words: Android development, open-source applications, Java, Kotlin, software
architecture

 iii

Abstract in italiano

Android è il sistema operativo leader mondiale per i dispositivi smartphone. Essendo
una piattaforma open source, si è diffusa su dispositivi di molti produttori diversi ed
è supportata da un'ampia gamma di hardware. Lo sviluppo di applicazioni Android
è un processo avanzato in cui vengono utilizzate una serie di tecnologie per consentire
la creazione di applicazioni per molti casi d'uso diversi. Lo stato dello sviluppo di
Android sta cambiando rapidamente di anno in anno a causa dell'evoluzione di
software e hardware. L'obiettivo di questa tesi è catturare lo stato attuale dello
sviluppo di Android e presentare le tecnologie più utilizzate e i loro casi d'uso per
specifici tipi di applicazioni.

Per raggiungere quest’obiettivo, è stata effettuata un'analisi su 27 applicazioni
Android open source ampiamente utilizzate. L'analisi include la scansione individuale
di ciascuna di queste applicazioni con un'analisi approfondita del linguaggio, dei
componenti, dei modelli e dei servizi utilizzati nello sviluppo. L'analisi complessiva
prende in considerazione i singoli risultati delle applicazioni analizzate per creare
un'istantanea dello stato attuale nello sviluppo di Android.

Parole chiave: Sviluppo Android, applicazioni open-source, Java, Kotlin, architettura
software

 v

Contents

Abstract ... i

Abstract in italiano .. iii

Contents ... v

Glossary ... viii

Introduction .. 9

1 Android basics .. 11

1.1. Short history of Android ... 11

1.2. Android by versions (API levels) ... 11

1.3. Android development ... 13

1.4. Android development environments .. 14

2 Main characteristics of technologies used in Android development 15

2.1. Programming languages ... 15

2.1.1. Java ... 15

2.1.2. Kotlin .. 15

2.1.3. Java vs Kotlin .. 16

2.1.4. C/C++ .. 18

2.2. Architectural patterns .. 18

2.2.1. MVC (Model – View – Controller) ... 19

2.2.2. MVP (Model – View – Presenter) ... 21

2.2.3. MVVM (Model – View – ViewModel) .. 22

2.3. Android libraries .. 23

2.3.1. AndroidX ... 23

2.3.2. Android Jetpack .. 23

2.4. Design patterns ... 29

2.4.1. Creational patterns ... 29

2.4.2. Structural patterns .. 31

2.4.3. Behavioral patterns .. 32

2.5. Android application components .. 33

2.6. Other commonly used products and services ... 34

2.6.1. Google Firebase ... 34

vi | Contents

2.7. ProGuard (R8) ... 38

3 Analysis results ... 39

3.1. Analysis goals ... 41

3.2. Problems with certain metrics during the analysis 41

3.2.1. Measuring source code size and the number of files 42

3.2.2. Information about the first app version release 42

3.2.3. Measuring the exact number of screens .. 42

3.2.4. Counting dependencies ... 42

3.3. Application analysis ... 42

3.3.1. Browsers ... 43

3.3.2. Commercial applications ... 47

3.3.3. Media players .. 52

3.3.4. Messaging and email .. 57

3.3.5. Other ... 62

3.3.6. Tech demo .. 67

4 Notable selected applications .. 71

4.1. Mozilla Fenix (Firefox) ... 71

4.2. Muzei .. 74

4.3. Kickstarter and WordPress ... 77

4.4. NotyKT - Views and Compose version... 79

4.4.1. Shared components .. 79

4.4.2. Individual components .. 79

5 Conclusions and results comparison .. 83

5.1. Application complexity and size .. 84

5.2. Programming language ... 87

5.3. User interface (UI) .. 90

5.4. Google libraries and services .. 93

5.5. Architectural and design patterns ... 95

5.6. Conclusion ... 97

Bibliography ... 101

A Appendix A .. 105

A.1. Complete table of applications analysis results 105

A.2. List of analyzed applications’ repositories ... 111

List of Figures ... 113

List of Tables .. 115

Acknowledgments ... 119

| Contents vii

viii | Glossary

Glossary

Android - a mobile operating system based on Linux kernel, runs on many
different mobile smartphones from different manufacturers

API - Application Programming Interface - a way for two or more computer
programs to communicate with each other, in the context of Android
development used as a way of saying that one software is using the services
and the data that is fetched from another library or website

IDE - Integrated Development Environment - software for building
applications that combines common developer tools into a single graphical
user interface, the main tool being a source code editor

iOS - a mobile operating system developed by Apple, runs exclusively on their
line of products (iPhones, iPads, iPods)

JVM – Java virtual machine – a virtual machine that enables a computer to run
Java programs as well as programs written in other languages that are also
compiled to Java bytecode

Open-source - denoting software for which the original source code is made
freely available and may be redistributed and modified

OS - Operating system - system software that manages computer hardware,
and software, and provides common services for computer programs

QA - Quality assurance - a customary practice that assures that the developed
product meets certain expectations and is ready to be publicly available

UI - User interface - referred to everything that the user can see on the screen
and interact with – similar to GUI – Graphical user interface

XML - Extensible Markup Language - a markup language for storing
structured data, referred to the files that describe the UI on the screen in the
View presentation blocks that are stored in that specific file format (.xml)

 9

Introduction

Android devices make up more than two-thirds of the smartphone market as of 2022.
With the vast majority of the human population in developed countries owning such
a device, applications that run on smartphones are not only shaping the way people
use their phones but also shaping how everyone leads their lives.

Development of Android applications ever since Android OS inception in 2008 has
been rapidly evolving and quite often rashly changing due to quick technological
advancements in both mobile and computer hardware capabilities. Defining the
current state of Android development and pinpointing the most used languages,
technologies, IDEs, architectural patterns, and other elements have never been easy
tasks due to such rapid changes.

In recent years Android OS creators, a consortium led by Google, managed to slow
down the evolution of the development by sticking to a certain approach and
technologies, however good or bad they might be in a general sense, creating at least
some sort of stability in the Android app development world. The thrust from other
developers to make development for other systems, most notably iOS, as closely as
possible connected to the Android development goes hand in hand with Google's
intention and is further stabilizing the technologies used. All of this is to allow
developers to create better and more innovative apps with their focus shifted to
execution rather than catching up with the recent technologies.

In this work, the current state of the most used technologies in Android application
development has been thoroughly researched, explained, and presented. Therefore, a
"snapshot" of the state of technologies used has been created. The aim is not only to
determine which technologies are the most used but also to try and find out which
combination of them achieves the best results and what the future of Android
applications is going to look like, assuming there are no drastic technological changes
in the upcoming years.

The research is done on the most downloaded and rated open-source applications that
still have active repositories and recent releases, listed in Table A.2. Many of these
applications are used by big companies and quite often function as companion apps
for selling their main product.

Analysis of these applications is done on multiple different parameters, with most of
them regarding technologies and architectural patterns used, but also considering the
size, complexity, and functionalities of the app.

10 0| Introduction

The main hypothesis going into this work is that the latest technologies offer the most
flexibility and the best performance, with the newest applications that integrate the
most recent technologies being the easiest to use, analyze, and develop. Adding to that
is that most of the developers have or will have switched to the newer technologies
knowing that they will be supported and updated for many years, having the full
backing of Google and its developers, making development faster and easier.

The document is divided in the following sections:

• Chapter 1 introduces the concept of Android OS and Android development.
The main focus is on what Android as a platform actually represents, its
evolution through the years, and description of the development process on the
platform. The chapter also touches on brief history of different Android OS
versions as well as IDEs that are used most often for its development.

• Chapters 2 puts the focus on the Android stack and the whole technical
background of the OS. It contains the descriptions of the most common
architectural patterns, languages, design patterns, and other technologies
surrounding the Android software development, with multiple examples of
how they work as a system. The latest Android libraries and development
practices are presented with more detail.

• Chapter 3 contains a concise description of the applications used in the analysis,
the process of app selection, and the main questions that are attempting to be
answered by the analysis. The bigger part of the chapter focuses on individual
analysis of each app, which consists of a brief description, analysis results, and
a post-analysis comment.

• Chapter 4 is divided into four subchapters, each of them providing a deeper
analysis or a deeper dive into some of the analyzed applications. This chapter
is meant to describe some of the most common cases in Android development
in greater depth and to apply the previous knowledge from the work to the real-
life cases.

• Chapter 5 features a conclusion on the current state of the Android
development based on the analysis results. Explanations of the findings and the
most common patterns are also located in this chapter. Comparison of the
previously made hypothesis with the actual results is located at the end of this
work together with the prognosis for the future of Android development.

1| Android basics 11

1 Android basics

1.1. Short history of Android
Android is a mobile operating system that came to focus with the emergence of
smartphones in the late years of the first decade of the 21st century. Based on a
modified version of the Linux kernel it is mostly used on touchscreen devices, phones,
and tablets, although its use has expanded to other products like TVs and watches. It
is currently, as it has been almost since its inception, the most common operating
system on mobile phones with 71.55% of the world market share, while iOS-based
devices hold all the remaining 28% percent. [1]

Android is developed by a consortium of developers called Open Handset Alliance,
although it is primarily sponsored and supported by Google, the de facto owner of the
system. The core version of Android is open source, although most of the devices come
with pre-installed proprietary software adapted to the specific device by different
companies like Samsung, Huawei, and OnePlus.

Throughout the years Android has been known as the more "open" of the two main
mobile OS systems and has managed to firmly establish itself as the most used one,
mostly since the price range of the devices supporting Android is very wide, which
cannot be said about the iOS supported devices. Despite that, there have been several
different systems that have not managed to win the competition of the operating
systems, most notably Windows Phone, which has been in production by Microsoft.

Along with the previously stated, Android has been more severe in evolution and has
had major changes in the releases, which has often led to bad reactions from both
developers and users. In the end, after 13 major releases and more than twenty minor
ones, it has established its identity and has grown to be a preferred system for
developers around the world, with Google's efforts in making it more standardized
being a huge factor.

1.2. Android by versions (API levels)
To understand the current state of the OS it is also necessary to know its past and the
path it has taken to reach this level.

The first version called Android 1.0 was released in September 2008 for HTC Dream,
the first commercially available Android device. From the next big release in 2008,
Android was named after a certain sweet, different one for each version, which was
the naming convention up to Android 10.

12 1| Android basics

Android 1.5 Cupcake vastly improved the Android interface by adding an on-screen
keyboard, enabling the phones to be mostly screen-based with only a few buttons.
Along with that, third-party widgets were added, which were for years an Android-
only feature on smartphones, until Apple introduced them on iOS more than 10 years
later. At this time Android minor and major updates were separated by only weeks,
as the platform was improving dramatically. This was to settle in the future as Google
started adopting the more common yearly update model.

Android 2.0 Eclair added voice-guided turn-by-turn navigation integrated into maps
and pinch-to-zoom capability, which was up to that point exclusive to Apple - this
would launch an unofficial war between the two companies and "borrowing" each
other's software characteristics would become more common between them.

Expansion to tablets came in 2011 with Android 3.0 Honeycomb as it opened up an
entirely new range of devices for Android.

Android 4.0 Ice Cream Sandwich introduced widgets, a feature that is going to be a
huge identity element of the Android OS and that will differentiate it from the
competitors.

Android 4.4 KitKat featured Google Assistant integration for the first time.

In the next several features Android was slowly adding some minor updates, visual
changes, and some novelties that would only prove to be more important in the years
to come (like split-screen mode, support for fingerprint readers, support for USB-C,
etc.).

Android versions 9 and 10 focused more on the user's privacy and security, battery
and performance optimization, productivity, visuals, and navigation, most of which
look the same today. These two versions made the Android look and feel more
authentic and differentiated it even more from its competitor.

The biggest update when it comes to development came with a new set of Android
Jetpack libraries, called androidx, which required API level 28 (Android 9) and featured
full compatibility with older API levels and libraries. It featured a whole new set of
libraries for the most used functionalities in app development. A new base was
successfully set up and Google has been building on it ever since.

The last three versions that came out - 11, 12, and 13 - are mainly minor reskins and
feature mostly quality-of-life improvements. As Android OS has already mostly
reached its recognizable look and feel, Google is shifting its focus on the more
functional areas of the whole user experience and is experimenting with new features
that are currently not available for iOS phones. This stability and the lack of major
changes also allowed for the development experience to be more streamlined, stable,
and documented, with Google staying on course with technologies used for it and for
the first time in years trying to keep the main parts of the development intact.

1| Android basics 13

The market share of Android OS versions as of October 2022 is presented in the
following table [2]:

Table 1.1: Usage of Android OS versions

 Percentage of usage (%)

Android 12 29
Android 11 26
Android 10 19
Android 9 9
Android 8 8

Other API levels 9

1.3. Android development
Characteristics of Android development experience have vastly changed throughout
the years and are now much more positive than before. In the early phase, Android
developers complained about the lack of documentation, frequent bugs in the OS and
IDEs used for Android development, and no QA support which made apps more
prone to bugs. Google has often listened to the wishes of the developer community
and made great improvements in these areas. These days the whole experience has
changed, with extremely detailed documentation and a vast number of examples
made by Google, which can easily be found on GitHub pages. Since the community
has grown rapidly many those examples can also be found in other open-source
projects and many different forums, making the whole development a lot easier for
new developers. Google also supports Android by creating many different videos and
functionalities previews which they consistently post and write extensive articles
about.

Official Google conferences all around the world made for sharing and acquiring
knowledge are available to everyone live or on-demand for free. With the addition of
Google Nexus and later Google Pixel phones to their line-up, a big step was made in
making new Android versions as good as possible on their release dates. These devices
get exclusive access to the newest updates, which allows Google to test some new
features on a limited number of users, gathering feedback and improving the features
before the full release. As of 2022, Android development has reached an exceedingly
prominent level and is regarded as one of the most documented and advanced
technologies on the market. With Google finally stabilizing the developing
environment and going for a long-term focus on technologies and language, it is safe
to say that the platform is as advanced and as stable as it has ever been.

14 1| Android basics

1.4. Android development environments
Early in the Android development, there was no official IDE as the technology was
still catching on.

Eclipse IDE, originally created by IBM but was later taken over by the Eclipse
Foundation, was a natural choice for most Android developers since most people used
it as their preferred Java programming environment, a language that was natively
supported at the time by Android.

Google released a set of tools called ADT (Android Development Tools) that
integrated native Android dev support into Eclipse. Google was improving the
experience and releasing new updates to the tools regularly until they announced their
IDE for Android development called Android Studio, which was to be made in
collaboration with JetBrains, the creators of the already popular IDE IntelliJ IDEA on
which Android Studio is heavily based.

With the launch of Android Studio in late 2014, Google's official support for Eclipse
IDE was discontinued, and Eclipse Foundation released its plugin called Andmore:
Development Tools for Android. Andmore only lasted two years and never reached a
stable version as it was discontinued in early 2017 with version 0.5.1. Android Studio
took over the market share ever since the beginning. Continuous Google and IntelliJ
support and vast improvements meant that no other software was able to compete
with it. As of 2022, almost all the native Android development is done in Android
Studio, while there are still some other solutions that are used for cross-platform
programming. In 8 years, Android Studio has received more than twenty major
updates and several new features that have vastly improved the development
experience. Like the naming convention of Android OS versions, Google has dropped
the numbering system and decided to go alphabetically with different animal names.

The version of Android as of writing this work is called Dolphin and was released in
September 2022. Two additional versions are planned to be released in 2023 by the
names of Electric Eel and Flamingo.

Figure 1.1: Android development timeline

 15

2 Main characteristics of technologies
used in Android development

2.1. Programming languages
The native Android development environments support two programming languages
- Java and Kotlin. Additional C/C++ code can be interpolated in the app by using other
tools that help with the internal translation to Java language. One of the focuses of this
work are the main differences between Java and Kotlin, the number of apps that are
using one or another, and their advantages and disadvantages.

2.1.1. Java
Java is a language that first appeared in 1995, developed by Sun Microsystems. It is a
high-level, class-based, object-oriented language that is designed to have as few
dependencies as possible.

It quickly became one of the most used languages in the world, a status which still
maintains to this day.

Java was originally the preferred and default language of the platform.

One major advantage of developing software with Java is its portability. Once you
have written code for a Java program on a notebook computer, it is extremely easy to
move the code to a mobile device. When the language was invented in 1991 by James
Gosling of Sun Microsystems (later acquired by Oracle), the primary goal was to be
able to "write once, run anywhere."

The main technical advantages of Java are interoperability, scalability, and
adaptability. It is an object-oriented language that allows for a creation of modular
programs and reusable code, which is perfect for scaling applications.

2.1.2. Kotlin
Kotlin is an Android-compatible language that is concise, expressive, and designed to
be type- and null-safe. It works with the Java language seamlessly, so it makes it easy

16
2| Main characteristics of technologies

used in Android development

for developers who love the Java language to keep using it but also incrementally add
Kotlin code and leverage Kotlin libraries.

 Kotlin is a relatively new language in the programming world - created by JetBrains
in 2011 it is a cross-platform, statically typed, general-purpose programming
language. It was designed to be fully interoperable with Java, with more concise syntax
and many additions that make programming easier and faster. It mainly targets JVM
but can also be compiled in JS or native code.

Android Kotlin compiler produces Java 8 bytecode by default, but it also supports
other Java versions from 9 to 18.

2.1.3. Java vs Kotlin
Kotlin officially became the preferred Android dev language in 2019. Up until that
point, Java has firmly held the position as the main and preferred language, with only
C++ being supported from the other languages, and Kotlin being added as the
supported language in 2017.

There are many alleged reasons why Google decided to officially "switch" to Kotlin as
the main language (although Java is still supported in the same way as it was before),
but Google never officially listed the main reasoning behind it. This work will not
focus on the reasoning, but rather on the advantages and disadvantages of the
respective languages.

Both languages can still be used on the same projects and there is even a language
translator directly integrated into Android Studio which allows for seamless code
translation. Some projects are still written in both languages, as rewriting the old code
from Java to Kotlin brings no major advantages and is still time-consuming, so some
developers opted for keeping the old code and writing all the new code in Kotlin.

Their real-time performance when it comes to execution is on-par. [3] Java keeps the
advantage in compile times due to the fact that Kotlin needs to first be “translated” to
Java bytecode, which adds additional overhead. Google is claiming to be dropping the
compilation time difference with every new update. The execution of the code is
approximately the same and offers no functional differences besides the number of
lines of code.

2| Main characteristics of technologies
used in Android development

17

Table 2.1: Java and Kotlin differences

[4] [5] [6] [7] Java Kotlin

Amount of code
More declarative, no lambda or inline

functions

Less verbose, allows quick
constructors/lambda functions,

inline functions

NullPointerExc
eption (NPE)

Uses NPE to prevent access to undefined
object, causes crashes if not caught

Uses safe calls (.?) which will
prevent the execution of the

method if the object is undefined,
no crashes

Coroutines
Doesn’t support coroutines, provides other

less-efficient methods
Has full coroutines support

Performance Faster compilation, executes on JVM
Slower compilation, executes on

JVM

Data typing Requires variable specification
Doesn’t require variable

specification (uses var and val)

Android
support

Supports of all of the basic features, most
of the native libraries still written in Java

Many new features (like Jetpack
Compose) are built on Kotlin and
are meant to be used with Kotlin,

new annotation types support,
continuous platform updates that

make the coding experience
better

Smart cast Doesn’t support smart casting Supports smart casting

Primitive types Has primitive types that are not classes

Doesn’t have pritive types that
are not classes – byte code may

use them when possible

Overall
conclusion

More difficult to write, easier to debug,
older and bigger community, more online

support and learning materials, most of
the libraries are still being written in Java

Easier to write, harder to debug,
more user-friendly, features

many improvements from Java,
still has a young community, has

massive support from Google

18
2| Main characteristics of technologies

used in Android development

2.1.4. C/C++

2.1.4.1. JNI

Another way of programming Android apps (or some elements of them) is by using
Java Native Interface (JNI) - a programming framework that enables Java code running
in a Java virtual machine to be called by native applications. This allows for other
languages to run their code and libraries, mostly in C and C++.

Development in C++ for Android apps is not common, but many apps use some very
low-level code and libraries that are non-existent in Java/Kotlin, mostly due to the
complexity and the performance drop they would achieve. This allows the developers
to code in C++ and implement it in their Java/Kotlin code without having to rewrite all
of the code to the native language. JNI features some overhead, as the translation from
C/C++ to Java is not seamless. It also allows direct access to assembly code, shortening
the overhead time.

Since Java and Kotlin are native to Android development C/C++ is not destined to run
better or faster than the other two languages. Native C++ development, most often
used for cross-platform is also possible in Android development, although the
emergence of KMM (Kotlin Multiplatform Mobile) and Flutter is making cross-
platform development much easier to access.

2.1.4.2. Android NDK

There exists a toolset that allows for the implementation of apps in native code by
using libraries in other languages like C and C++. Certain types of apps and some app
functionalities which require high performance and are most often low-level require
these libraries to run fast and efficiently.

The main difference between Android NDK and JNI is that JNI uses some of the
functions from native (C/C++) code and is inserting them into the Java language
environment, still using other Java functionalities and compiling normally in Java.

Android NDK compiles the native code into a native library which can then later be
reused. These two technologies are not interchangeable and are generally not used for
the same solutions.

2.2. Architectural patterns
Aside from the programming language and platform, the most important choice in
android development is the architecture of the software. Software architecture is a set

2| Main characteristics of technologies
used in Android development

19

of fundamental structures of a software system that defines software elements and the
relations between them.

The term "architecture" was originally taken from the architecture in buildings to make
a connection with the foundations of the structure and emphasize the importance of
the internal part of the system. Although the general significance behind the term has
mainly remained the same in the public, computer scientists have had different
opinions on what the term means in the computer world. Also, as the technology itself
evolved and got more complicated, the definitions grew more complex.

The choice of the right architecture for a certain system depends on many varied
factors - the goal of the app, available resources, technologies used, and many more.
When it comes to Android development the evolution of architectures used has been
relatively steady, with them being mostly smaller adjustments to the previous system.
Of course, they are not real evolutions, as many of the previously most popular
architectures are still being used both in Android development and outside of it. The
change in the most popular architecture was always followed by a major technological
shift, although it is still not rare to see hybrids of architectures due to the fast pace of
technological advancement in the mobile world.

The most used architectural patterns in Android development are:

 MVC (Model - View - Controller)
 MVP (Model - View - Presenter)
 MVVM (Model - View - ViewModel)

2.2.1. MVC (Model – View – Controller)
MVC is an architectural pattern in software design commonly used to implement user
interfaces, data, and controlling logic. [8] It emphasizes the separation between the
software's business logic and display. This "separation of concerns" provides for a
better division of labor and improved maintenance. Other architectural patterns are
based on MVC, such as MVVM (Model-View-ViewModel), MVP (Model-View-
Presenter), and MVW (Model-View-Whatever).

The three parts of the MVC software design pattern can be described as follows:

Model: Manages data and business logic.

View: Handles layout and display.

Controller: Routes commands to the model and view parts.

20
2| Main characteristics of technologies

used in Android development

Figure 2.1: MVC scheme

The important thing to notice is that the View component, which is the part that is
visible to the user, has no direct control over the data. It can communicate only with
the Controller which then also communicates with the Model creating a chain of
communication and adding another abstraction and control layer. The three elements
are very distinctly separated and allow for better control over specific parts of the
system. Programming these elements can therefore be completely separated and each
component should work the same regardless of the ongoing changes in the other ones.

MVC decouples views and models by establishing a subscribe/notify protocol between
them. A View must ensure that its appearance reflects the state of the Model.
Whenever the model's data changes, the model notifies views that depend on it. In
response, each View gets an opportunity to update itself. This approach allows to
attach multiple views to a Model to provide different presentations.

This architecture allows for all of the three major elements to be completely
independent of each other which has many advantages - interchangeability,
interoperability, reusability, and faster debugging, just to name a few.

This architecture has been the most popular in mobile app development for many
years while also evolving due to changes in other technologies used in development.

2| Main characteristics of technologies
used in Android development

21

2.2.2. MVP (Model – View – Presenter)
MVP is a derivation of the MVC architectural pattern, mostly used for building user
interfaces where the presenter assumes the functionality of the "middle-man" and
holds the entire presentation logic. [9]

It builds up upon the MVC pattern and improves on some of the main disadvantages
that it has - most notably unit testing and the size of the Controller layer, which holds
most of the provided logic.

Figure 2.2: MVP scheme

Improvements in modularity and testing are done by completely separating View
and Model layers with the presenter handling all of the updates and responses. This
allows for centralized control and fully observable communication between the
layers.

For every View class, there is also a Presenter class with a one-to-one relationship,
while there is only one model that communicates with many presenters. Model and
View layers are in no way connected.

One of the main potential issues in MVC on Android is having a lot of the application
logic in the Activity thus limiting the developer to having to do everything logic-wise
through it. MVP takes away the entire business logic from the Activity which now only
holds the Views.

22
2| Main characteristics of technologies

used in Android development

There also exists a version of MVP called Supervising controller which directly connects
the View layer with the Model layer to allow for faster data flow through data binding,
although this architecture re-introduces some of the same issues that MVC has.

2.2.3. MVVM (Model – View – ViewModel)
MVVM is an architectural pattern in software design that facilitates the separation of
the GUI from the development of the business logic. View is therefore not dependent
on any specific model platform.

In this architecture, ViewModel serves as a value converter from the Model to the
View, allowing for easy and flexible use regardless of the technologies used.
ViewModel also holds the most logic behind the View. The easiest explanation would
be to describe the ViewModel as the state of the data in the model, which is then shown
through the View to the user. [10]

Figure 2.3: MVVM scheme

The rationale is using the data binding functions through Binder to fully remove any
logic behind the View code and therefore offer full separation of the View layer. While
being remarkably similar to MVP in many aspects, it is more event-driven and
communicates with the user by representing the current state of the data. ViewModel
has no reference to the View and the View only extracts specific data from the
ViewModel when it needs it. The amount of code in classes is generally smaller than
in other architectural patterns and due to a high degree of separation, unit testing is
simple and effective.

2| Main characteristics of technologies
used in Android development

23

2.3. Android libraries
Google provides a set of libraries and support services that aim to improve Android
development and make it more streamlined. These libraries have initially been
scattered and were not a part of any group which would specify to the developers
what should they use for the best development experience. This has changed in recent
years and Google has released two big sets of libraries that are recommended to use in
all new Android projects.

2.3.1. AndroidX
One of the major breakthroughs in Android development was the release of the
Android Extension Library, also known as AndroidX. [11] It is a set of libraries that
comprises all of the Android Jetpack libraries, which not only bring new features to
Android developers but also provide backward compatibility across Android releases.
It was released as the replacement for the Android Support Library, replacing all the
previous features and adding many others. The first stable release of AndroidX 1.0.0
was in September 2018, coinciding with the release of Android 9.

AndroidX improved the coding experience by having libraries under a unique
namespace, reworking some of the functionalities, and making it all more accessible
to developers. New sub-libraries are still being added. It currently holds around one
hundred libraries, with the majority of them already having at least one stable version.

The biggest advantage of the library is having much smaller and more focused
packages, which allow developers to include in their code only the sub-libraries they
need, therefore reducing the size of both the code and the app. Renaming and
restructuring of some libraries also resolved the problems of the old Support Library
which has become cluttered with many sub-libraries, some of which were not even
used, and featured many naming inconsistencies often creating confusion among
developers about which libraries are needed.

Therefore android.* namespace has been reserved for libraries that ship with the
Android OS and androidx.* for libraries that are unbundled and that are not directly
connected to the Android OS.

2.3.2. Android Jetpack
Android Jetpack is a set of libraries, tools, and architectural guidance to help make it
quick and easy to build great Android apps. It is a subset of the AndroidX library set.

24
2| Main characteristics of technologies

used in Android development

It provides common infrastructure code so you can focus on what makes your app
unique. It helps developers to follow best practices, reduce boilerplate code, and write
code that works consistently across Android versions and devices.

Using libraries from Jetpack can significantly reduce code size and the number of
crashes. [12] The four main categories of Android Jetpack are Foundation,
Architecture, Behavior, and UI.

Figure 2.4: Android Jetpack components

List of the most used Jetpack libraries: [13]

 Activity - Access composable APIs built on top of Activity
 Camerax - Add camera capabilities to the app; the library provides several

compatibility fixes and workarounds to help make the developer experience
consistent across many devices

 Compose - Define UI programmatically with composable functions that
describe its shape and data dependencies

 Hilt - Extend the functionality of Dagger Hilt to enable dependency injection of
certain classes from androidx libraries

 Lifecycle - Build lifecycle-aware components that can adjust behavior based on
the current lifecycle state of an activity or fragment

 Navigation - Build and structure the in-app UI, handle deep links, and navigate
between screens

 Room - Create, store, and manage persistent data backed by an SQLite database
 Test - Testing in Android
 Work - Schedule and execute deferrable, constraint-based background tasks

2| Main characteristics of technologies
used in Android development

25

Some of the most used libraries will be further explained either in this or the following
subchapters as they are expected to be found in many of the analyzed apps and offer
significant advantages to other alternatives.

2.3.2.1. Room persistence library

In 2017, Google introduced what was to become one of their most used libraries in the
Android Jetpack package - Room. It is meant to allow inexperienced users to have an
easier way of creating and handling database actions as its native integration to the
app together with the SQLite language allowed for quick setup and easy use.

Many Room features are automatically integrated and many of the most basic DB
functions do not require any code as they can easily be implemented just by annotating
a method. The benefits of using Room are compile-time verification of SQL queries,
annotations that minimize repetitive and error-prone boilerplate code and
streamlining database migration paths.

It is to be used as a local database that can then be synchronized and implemented
with any traditional online SQL database. Room makes the offline experience much
simpler and synchronizing between an online and offline version of the database
almost seamless.

Data Access Objects (DAO) are used to define the relations between the app and the
database and create methods that are going to be used when fetching and storing data
from the database. Entities are then defined and stored in the database like regular
class objects. On top of everything, Room Database is defined with both the entities
and DAOs.

2.3.2.2. Jetpack Compose

Jetpack Compose is Android's recommended, modern toolkit for building native UI.
It simplifies and accelerates UI development on Android, bringing an app to life with
less code, powerful tools, and intuitive Kotlin APIs. Compose is a new way of creating
UIs aimed by Google to be a replacement for the older Views in XML form.

The first stable version of Jetpack Compose appeared in 2021, with the technology
being available on the market for a couple of years before that in alpha and beta
versions. During those years Google experimented with a lot of different
functionalities and features and received mixed feedback from the developers. Many
parts of the tool that were being complained about the most are still present in the
stable version. Google is making a big effort to push Compose to the market and to
"force" all of the new developers to use it in their projects.

26
2| Main characteristics of technologies

used in Android development

Figure 2.5: Button code example in XML

Figure 2.6: Button code example in Compose

2.3.2.3. Views

Views represent a basic building block for UI components. It is what the user sees on
the screen and the first connection point between the user interaction and the
application components. A single View occupies a rectangular area on the screen and
is responsible for drawing and event handling.

Multiple Views can be combined to create multifunctional screens by using the
ViewGroup, a subclass that can hold other Views and ViewGroups, and that serves

as a base for layouts that are used to organize the way they are going to be presented.

2| Main characteristics of technologies
used in Android development

27

Figure 2.7: View hierarchy

Some of the most common Views are TextView, EditText, Button, ImageButton,
ImageView, and RadioButton. The most common layouts of ViewGroup are
LinearLayout, RelativeLayout, FrameLayout, and ListView. View components are
attached to the Activity in the initial part of the Activity creation. Views are
represented by XML files, which define the structure and hierarchy of all the elements
contained in the View along with their attributes and references to other elements.

2.3.2.4. Composables

Composable elements, or functions, are Jetpack Compose elements meant to replace
View objects and provide an alternative to representing the UI.

Composables are organized into functions that are then called upon by the Activity.
They change their appearance based on the provided set of arguments and can be
recomposed if any of those data arguments change. This provides an improvement to
the system since only certain parts of the UI need to be recalculated and redrawn, and
not the whole UI as was the case before.

Since the philosophy on how to represent the UI with Compose is completely different
from the one with Views, a whole different approach needs to be taken when using
these components. [14]

They represent a big step towards a declarative UI model, putting more focus on single
components rather than the entire UI. Recomposition of the composables can be set by
the developer and is generally a lightweight task that can be done multiple times a
second without affecting the performance too much.

When a composable is called, it is typically passed some data and a set of properties
that define how the corresponding section of the user interface is to behave and appear

28
2| Main characteristics of technologies

used in Android development

when rendered to the user in the running app. In essence, composable functions
transform data into user interface elements. Composables do not return values in the
traditional sense of the Kotlin function, but instead, emit user interface elements to the
Compose runtime system for rendering.

2.3.2.5. Composables vs Views (XML)

The main advantages of Jetpack Compose compared to the Android View system, as
stated by Google, are the following: [15]

 Less Code
o Compose does everything in one language - Kotlin. There is no back-

and-forth between Kotlin/Java and XML, where referencing elements
and Views can quite often get messy and difficult, and where errors are
inevitable. Compose also allows for better reusability - all of the
components are written as classes, so to get a new component all that is
needed is to create another instance of it and fill it with proper attributes
and data. XML View system is not classed but rather file-based, therefore
reusing Views often means either replicating the same file or creating
subcomponents that are going to adapt the attributes of that file to
specific needs.

 Intuitive
o Compose uses a declarative API, meaning that only the UI description is

needed, and the system takes care of the rest. Theming and coloring of
the components are handled in a much simpler way and there is no need
for multiple XML files defining different aspects of the look of the
components. Compose elements work on a state basis, meaning that they
can easily be changed by updating the state of it and recomposing it,
which takes no time, rather than changing XML file attributes and re-
creating the View.

 Accelerated development
o Compose is compatible with all the previous code. It can be used

interchangeably with Views and there is no need to rewrite the old code
written in View architecture.

 Powerful
o Compose features support for Material Design, dynamic theming,

animations, and more. Animations and dynamic pages are easy to
implement, bring a high degree of configuration, and have predefined
libraries which do not require a lot of designers and animators work for
bringing the app to life.

2| Main characteristics of technologies
used in Android development

29

On the other hand, Compose does not offer the main feature of traditional Views -
simplicity. Due to the clear sections of the components that are easy to understand and
visualize, the development experience with Views is much easier for newer
developers. Elements can also be directly imported in several different forms, from
vector to pixel types of files, which removes the step of “language” translation between
the designers and the developers. Both methods have their advantages and flaws, but
as Google keeps supporting one technology and completely ignoring another, it is not
impossible for Views to completely be removed as a development option in the future.

2.4. Design patterns
In software engineering, a design pattern is a general repeatable solution to a
commonly occurring problem in software design. A design pattern is not a finished
design that can be transformed directly into code. It is a description or template for
how to solve a problem that can be used in many different situations. [16]

Design patterns are used throughout software development since its early beginnings.
One of the first major design patterns were classes - the base of object-oriented
programming which ultimately became the most used design pattern. [17]

Some patterns are specific (more often used) in specific architectures as their
advantages are best exploited only in certain use cases. There are three main
classifications based on the use and the background of the patterns. In this work, only
the ones that are used most often and appear in the analyzed applications are
presented and described.

2.4.1. Creational patterns
These design patterns are used during the class instantiation. Inheritance and
delegation are used in some of these patterns to make creating and attributing new
instances easy and effective. Further subdivisions can be made into class-creation and
object-creation patterns.

2.4.1.1. Builder

 Builder pattern is used to simplify the creation of objects, deconstructing the
construction of an object into multiple steps during which certain attributes of the
object can be specified. This pattern offers easier construction of an object, type control,
attribute constraints control, and makes code less prone to bugs and crashes.

30
2| Main characteristics of technologies

used in Android development

2.4.1.2. Dependency injection (DI)

DI is a pattern in which an object or a function that needs to use other objects or
functions, that on which it depends for its functionalities, is having them directly
provided as a parameter, rather than having them instantiated again or grabbing them
indirectly from some other classes. This greatly reduces the unnecessary duplication
of code and reduces the overhead of having to create multiple new objects in complex
classes. DI libraries make things even easier for developers by having automated
parameters in objects and functions, eliminating the need for ever to worry about
forgetting to insert any dependencies via the parameter. Ease of factory, ease of testing,
reusability of code, and reduction of the amount of code are just some of the
advantages that DI provides, as it is very widely used in modern app development. DI
is most commonly used by provided libraries, as manual dependency injection
requires a lot more code and attention to detail.

Dagger/Hilt

Dagger is a fully static compile time for Java/Kotlin in Android environment, Hilt is
an additional layer built on top of it that allows for even easier integration and use in
Android apps. Hilt is more commonly used due to providing the same functionalities
of the Dagger but with improved ease of use, all while keeping the additional overhead
minimal. Hilt is a part of the previously mentioned Android Jetpack. These
dependency injections offer fast runtime performance, but have longer build times,
which makes them easier to debug. [18]

Koin

Kotlin-based library focused on exploiting the advantages of Kotlin such as
conciseness of code, all by using DSL (Domain-specific language). It offers shorter
build times, which makes it harder to debug because of fewer checks. Runtime
performance is somewhat slower than the one of Dagger/Hilt, but it doesn’t generate
any additional code. Koin can only be used with files and components written in
Kotlin, making it unusable for applications that do not use it. [19]

2.4.1.3. Singleton

Singleton is a pattern that specifies that only a single instance of a class should exist
which can be accessed from every single point of the system. This pattern is often used
when modeling real-world objects that are meant to have only one instance. Singleton
classes are the most common network or database instances, where having multiple

2| Main characteristics of technologies
used in Android development

31

instances may cause data mixing and duplicate sources. It is a pattern that is present
in almost every app, and it has virtually no disadvantages if used correctly.

2.4.1.4. Factory

Factory pattern is used to take care of all of the creational logic of an object. Factory
class controls which object to instantiate and chooses between multiple choices of
objects that might be created at that time. If the observed objects have remarkably
similar attributes and functionalities, Factory pattern is used to determine which one
is the most adequate for the situation, using additional information to make the choice.
It also hides the creation logic from the client allowing him only to focus on the
functionality of the required instance, rather than on the details of how to create it.

2.4.2. Structural patterns
Structural patterns are used to organize the details of classes and objects into familiar
arrangements that perform typical tasks. By using these patterns, the inheritance in
classes and adding functionalities to objects is greatly simplified.

2.4.2.1. Adapter

Adapter's main purpose is to adapt a certain type of data or a method so that it can be
used with the other parts of the system. It is mostly useful when combining classes
and functions that were not originally meant to be used in combination or when
fetching data from multiple sources that often have different formats. Adapter is used
as a wrapper for these types of objects and is used to "translate" the data/code to be
compatible with other functions. [20]

The main advantage of the Adapter pattern is that there is no need to rewrite other
functions, but just create an additional layer of translation. This reduces development
time and allows the developers to get the data from multiple sources that have no
common attributes.

When using Adapter pattern with classes, the result is a new interface that provides
similar functionalities as the adapted class, whilst being compatible with the
connecting class.

When using Adapter pattern with objects, it implements the interface of one of the
objects and wraps the other one.

32
2| Main characteristics of technologies

used in Android development

2.4.2.2. Decorator

Decorator's main purpose is to dynamically extend the object's functionalities at
runtime. This is done by placing the object in a special wrapper object that contains
new behaviors. This pattern allows the client to not use inheritance, since it only allows
for a static change in the functionality and requires a whole other interface to be
created, with classes being impossible to inherit twice.

Decorator, therefore, allows for an extension of the functionalities by just wrapping
the object and is therefore sometimes called the wrapper pattern.

2.4.2.3. Façade

Facade provides a simplified interface to a library, a framework, or any other complex
set of classes. It simplifies what could be a complex process of handling multiple
interfaces and dependencies and having to worry about all of the method
implementations. It is generally used to simplify the usage of some classes and
functions that are overly complex and makes it easier to use for clients that don't know
all of the insides of that particular function.

2.4.3. Behavioral patterns
Behavioral patterns are concerned with algorithms and the assignment of
responsibilities between objects. They define the behavior of certain components and
the way they can communicate and share information with other components.

2.4.3.1. Observer

Observer pattern allows defining a subscription mechanism to notify multiple objects
about any events that they are observing. It defines a one-to-many dependency
between the objects. This pattern serves as a "notification" system and greatly
simplifies the data update instead of multiple objects having to check every once in a
while, whether the data has changed or instead of every object having a copy of the
same data. The pattern is most often implemented in Listener classes and is found in
nearly every app due to its simplicity and importance in the system.

Observable objects in Android will emit values and it was first introduced by the
RxAndroid framework. Subscriber objects will listen and receive data updates as they
arrive. More recently there has been a native way to implement this behavior called
LiveData, which can be found in some of the newer apps.

2| Main characteristics of technologies
used in Android development

33

2.4.3.2. State

A pattern that allows objects to alter their behavior on some event or change of some
of the internal variables. State pattern is the base of the new Jetpack Compose UI
tooling. Every time a "state" of the composable object is changed, the object is
recomposed, and an action is run, which most often means that the UI changes.

MVVM architectural pattern also uses similar behavior, with ViewModels usually
having multiple different states, which then affect how the UI and the model will
behave.

State pattern has become increasingly popular in the last several years, with other
exceedingly popular technologies outside the Android world, most notably React,
having completely adopted the pattern and using it as the base of its behavior.

2.4.3.3. Iterator

A pattern that allows traversing through a collection of objects without exposing its
underlying representation. This will allow the client to read and change all of the data
objects in the collection in the same way, without knowing whether the collection is a
list, an array, a tree, or any other type. All iterators usually implement the same
interface, making them universally usable in the same way.

2.5. Android application components
Analysis description These components make the essential building blocks of an
Android app. Each component is an entry point through which the system or a user
can enter the app. Some of the components are interdependent. To understand how an
Android app works and how each part of the app is connected to others, it is important
to know what each of these components does. [21] [22]

A unique part of the Android system is that any component of another app can activate
(or request to activate) any other app's components, allowing for the functionalities of
certain apps to be reused.

Four major Android application components are Activities, Services, Providers, and
Receivers, and all are defined in Android Manifest file together with the application
specifications.

34
2| Main characteristics of technologies

used in Android development

2.6. Other commonly used products and services

2.6.1. Google Firebase
Firebase is a set of hosting services for any type of application. Due to Google's
association with the Android platform, it is mostly used in Android app development.
It offers NoSQL and real-time databases, content, social authentication, notifications,
and many other services. It was launched in 2012 and since then has grown in the
number of services and usage around the community.

Firebase products are more commonly used in smaller applications due to their easy
implementation and good documentation provided by Google. Most of the services
are completely free of charge up to a certain point, which allows developers to improve
quality and shorten development time in the initial stages of app development. Most
of these services also scale with extreme ease to a bigger number of users, although in
that case, they become somewhat pricey which makes them less attractive for
applications that aim to have a large user base.

Although primarily intended to be used by smaller apps and by smaller development
teams, due to its increased popularity, known stability, and continuous support by
Google, they are also used by the commercial apps. [23] Firebase also provides hosting
services that are being frequently used by many developers. [24]

2.6.1.1. Analytics and Crashlytics

App measurement solution that provides insight into app usage and user
management. It is one of the most used Firebase products since it provides detailed
data, most notably about user signups and app crashes/issues, completely free of
charge.

Analytics integrates across Firebase features and provides reporting for up to five
hundred distinct events. Analytics reports are also used for tracking user behavior and
debugging the app.

2| Main characteristics of technologies
used in Android development

35

Figure 2.8: Crashlytics dashboard

2.6.1.2. Database (Realtime Database & Cloud Firestore)

Firebase offers two different services for storing data. [25] None of them are real SQL
databases, which account for a vast majority of database systems in the industry,
although the use of NoSQL databases is steadily increasing in recent years. [26]

A survey by StackOverflow, one of the most visited websites for developers, shows that
NoSQL databases like Firebase and MongoDB are increasingly used every year. The
most used database models in the industry (by ranking) are MySQL and PostgreSQL,
which are real SQL databases.

 StackOverflow survey 2017 [27] – 21% used MongoDB
 StackOverflow survey 2018 [24] – 26% used MongoDB
 StackOverflow survey 2021 [28] – 28% used Mongo DB, 17% used Firebase

Firebase Realtime Database is a cloud-hosted NoSQL database that lets developers
store and sync data between users in real-time. It is also optimized for offline use and
features synchronization as soon as the device gets a connection. It is a document-

36
2| Main characteristics of technologies

used in Android development

based database that stores all of the data as one large JSON tree. Due to its simplicity
and easy manipulation, it is a satisfactory solution for simple queries.

Cloud Firestore is a newer and more complex version of the Realtime Database. It is
also document-based, although it offers a more complex structure, with both
documents and collections that offer a more organized structure. Google recommends
its usage for bigger systems that require better data organization.

Figure 2.9: Firebase Cloud Firestore example

Both databases offer exceedingly high uptime, relatively fast responses, and easy
scalability. Many additional features and read/write rules can also be accessed via the
Firebase Console. The biggest downsides of these databases are platform limitations
and pricing which increase at higher usages. Other most used database systems in the
industry are all SQL based with MySQL, PostgreSQL, and SQLite headlining the list.

2.6.1.3. Remote Config

Gives developers visibility and fine-grained control over the app's behavior and
appearance without making app updates and releasing new versions. It allows for
dynamic turning features on and off, personalization by audience segments, and
running experiments on a smaller number of customers without setting up complex

2| Main characteristics of technologies
used in Android development

37

infrastructure. The most common use is the releasing of test features which can then
be observed on a smaller number of users within a controlled environment.

2.6.1.4. Cloud Functions

Service that provides access to the serverless backend and allows triggering of distinct
functions by actions on other Firebase products, like data changes in the databases,
sign-ups via Firebase Auth, and events in Analytics. It is based on JavaScript functions
that are being run in a Node.js environment that can be executed at specific times or
after certain events. The advantage of Cloud Functions is also keeping logic hidden on
the server side, with no direct code in the application files.

2.6.1.5. Authentication

Authentication service that allows for easy sign-up and login with a secure
authentication system. The service supports multiple widely used platforms like
Facebook, Twitter, GitHub, and more, as well as a simple email authentication.
Accounts can be manipulated, merged, and control all from a single interface. It is also
one of the most used Firebase services due to easy implementation, wide support, and
an elevated level of security.

2.6.1.6. Cloud Messaging

Firebase Cloud Messaging (FCM) provides a reliable and battery-efficient connection
between the server and devices that provide messages and notifications support for all
platforms. The service also features predefined segments for different demographics
and behavior groups, subscriptions to specific topics, and granularity. This service is
one of the most used services when it comes to sending notifications.

During the analysis of the applications services by Firebase that are used by the apps,
it has been noted to see how many developers have taken the "easy way out" of
implementing pre-done services, sacrificing flexibility and cost of service for stability,
security, and ease of implementation.

38
2| Main characteristics of technologies

used in Android development

2.7. ProGuard (R8)
ProGuard is one of the technologies that is used to reduce the size of the app and to
hide the code from being reverse engineered. The process is being done at compile-
time. A newer version of ProGuard is called R8 and it is used in newer versions of
Android Gradle from 3.4.0. [29]

To make your app as small as possible, you should enable shrinking in your release
build to remove unused code and resources. When enabling shrinking, you also
benefit from obfuscation, which shortens the names of your app's classes and
members, and optimization, which applies more aggressive strategies to further
reduce the size of the application.

The plugin handles the following compile-time tasks:

 Code shrinking - detects and safely removes unused classes, methods,
attributes, and library dependencies

 Resource shrinking - removes unused resources from the packaged app
including resources from library dependencies

 Obfuscation - shortens the names of classes and members which results in
reduced DEX file sizes

 Optimization - inspects and rewrites code to further reduce the size of the app

When building the release version of the app, by default, R8 automatically performs
the compile-time tasks described above. However, certain tasks can be disabled or
customized through ProGuard rules files. R8 works with all of your existing ProGuard
rules files, so updating the Android Gradle plugin to use R8 should not require a
change of the existing rules. ProGuard and R8 can often be found in apps, and it is an
industry-standard.

 39

3 Analysis results

There are a total of twenty-seven applications that have been analyzed in this research.
(Table 3.1) All of them are open-source apps with their repositories being located on
GitHub. All of the apps have more than one thousand stars, which means that a fair
amount of people are following their repositories and are interested in the
development of that app, which is usually a good indicator that the repository is
popular and provides some interesting content for the users. All of the apps have had
at least one recent version release and pull request since 2020, while the vast majority
are being updated regularly even to this day. None of the repositories have been
archived up to October 2022.

Apps have initially been divided into categories based on what they are used for.
Every app is listed with a description and a lot of other key details about the size,
architecture, and everything that might be relevant to the analysis. A large table
containing all of this information can also be found in the Appendix A.

Most of them were found on the Wikipedia page of open-source android applications
[30] and searching different forums for GitHub repositories.

40 3| Analysis results

Table 3.1: Analyzed apps listed by category

App
number

App name App category

1 Brave Browser
2 DuckDuckGo Browser
3 Fenix Browser
4 Orbot Browser
5 Bitwarden Commerical
6 Kickstarter Commerical
7 Shadowsocks Commerical
8 Wikipedia Commerical
9 Wordpress Commerical
10 Antenna Media player
11 NewPipe Media player
12 Phonograph Media player
13 Shuttle Media player
14 Timber Media player
15 K9 Messaging and email
16 QKSMS Messaging and email
17 Signal Messaging and email
18 Telegram Messaging and email
19 Wire Messaging and email
20 Google I/O Other
21 Habitica Other
22 Materialistic Other
23 Muzei Other
24 Omni Notes Other
25 Kotlin Pokedex Tech demo
26 NotyKT Tech demo
27 Pokedex Tech demo

3| Analysis results 41

3.1. Analysis goals
The goal of the analysis of these apps is to see in which "real" state are the industry
standard apps, not regarding what Google thinks is a standard. Some of the main
questions presented by this analysis, divided into different categories, are the
following:

 Application complexity and size
o What is the average application install size?
o What affects application size the most?

 Programming language
o How many applications are using Kotlin or Java as a primary language?
o How many applications use more than one language?
o How many applications have made the transition from Java to Kotlin?
o What is the number of Activities and Fragments in Kotlin-based and

Java-based apps?
 User interface (UI)

o Which technology is being used for the UI - Compose, or Views (XML)?
o What is the number of Activities, Fragments, and screens in the

respective technologies?
 Google libraries and services

o How much do developers trust Google and their services?
o Which non-native libraries and services are being used?

 Architecture and design patterns
o What is the most common architectural pattern?
o Which are the most common design patterns?

 Conclusion
o How many years does it take for a certain technology to become widely

used in the industry since becoming stable and what were the
technologies that have become industry standard the quickest and why?

o What is the future Android development?

3.2. Problems with certain metrics during the analysis
During the analysis phase several scenarios haven been encountered that have in some
way affected the results. Most of these issues represent a parts of certain metric
categories, meaning that the conclusions can still be drawn from other metrics that are
in many ways connected.

42 3| Analysis results

3.2.1. Measuring source code size and the number of files
Most of the apps are modular and have several layers of code and components that
support multiple platforms. This makes it difficult to completely make a distinction
between which files are used in which modules. Therefore, some metrics regarding
app size are not 100% correct. Thus, the main metric for determining the app size is
the installation size on a real device.

3.2.2. Information about the first app version release
Some applications appeared on GitHub years after their release. This made tracking
some older versions and real release dates more difficult. Regardless of the problem,
the overall age of the app and the design choices that follow the era in which the app
was made was relatively easy to determine based on other information.

3.2.3. Measuring the exact number of screens
Some applications have very deep screen trees and feature functionalities which are
only accessible when the user is logged in or has a premium subscription. Also,
counting the same type of screen that appears multiple times in an app with different
data did not seem like the right choice. The number of screens in an app is therefore
more of an approximation, although in many cases a correct one. There still may be
some data that is not 100% correct, but this in no way influences the overall analysis
and the conclusions regarding the complexity of the apps.

3.2.4. Counting dependencies
The continuation of the modularity problem. Counting the exact number of
dependencies (libraries) that the app uses was problematic due to the several different
modules that are included in an app, with every one of them having its own
dependencies. Some source codes use diverse ways of bringing multiple different
modules together, meaning that it is not always truly clear which exact submodules
have been included with which dependencies. These numbers are not 100% correct,
but they do not influence the analysis in any way.

3.3. Application analysis
 In this section, the individual app results from the analysis are presented, together
with short descriptions and post-analysis comments for every one of them.

3| Analysis results 43

3.3.1. Browsers

3.3.1.1. Brave

Description

Chromium-based browser that
prioritizes user experience, speed,
privacy, and a better
advertisement system. One of the
key features of the browser is
blocking advertisements and
website trackers, as well as
providing optional ads to users in
return for Basic Attention Tokens
(BAT) cryptocurrency. It was
reported to have nearly 60 million
active users in August of 2022.

Post-analysis comment

Extremely complex multiplatform
source-based environment.
Exceedingly difficult to extract the
data size and find the correct
structure. Highly modular for
different platforms uses a lot of
C/C++ code through JNI.

Table 3.2: Brave analysis table

Category Value

App size Large

Languages used
Java and C/C++ (through
JNI)

State
Active - Latest release in
November 2022

First release
/repository created

January 2012

Analyzed version v.1.46.59 (October 2022)

Google Play
downloads

100M+ (4.7)

GitHub repository
stars

14.1k

Architecture MVVM

Design patterns
Builders, Factories,
Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

 No

Number of
dependencies

 50+

Number of screens 20

Number of
Activities

 25

Number of
Fragments

 57

Uses Firebase
services

 No

Uses Room No

Uses ProGuard/R8 Yes

44 3| Analysis results

3.3.1.2. DuckDuckGo

Description

Privacy-oriented browser (and a
search engine) that emphasizes
protecting searchers' privacy and
avoiding the filter bubble of
personalized search results.

Primarily made as a search engine
it has also evolved into a browser
on Android and iOS devices. It is
one of the fastest-growing search
engines on the market. The
number of queries per day
increasing exponentially since its
release in 2008.

Post-analysis comment

Extremely complex multiplatform
source-based environment,
hybrid architecture, multiple
layers ranging from backend to
frontend.

Table 3.3: DuckDuckGo analysis
table

Category Value

App size Medium

Languages used Kotlin

State
Active - Latest release in
November 2022

First release
/repository created

December 2017

Analyzed version v5.138.1 (October 2022)

Google Play
downloads

10M+ (4.7)

GitHub repository
stars

2.8k

Architecture Hybrid (MVVM + MVP)

Design patterns
DI, Builders, Factories,
Adapters, Decorators,
Facades

Application
components

Activities + Fragments,
Services, Providers,
Receivers

UI technology Views (XML)

Depdendency
injection

Dagger

Number of
dependencies

50+

Number of screens 22

Number of
Activities

40

Number of
Fragments

42

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

3| Analysis results 45

3.3.1.3. Mozilla Fenix

Description

Fenix (internal codename) is the
all-new Firefox for Android
browser, based on Mozilla
Android Components. It is an
open-source official Firefox
clone coded from zero that uses
newer technologies and
patterns, to make for a better
and cleaner code (and therefore
app). It recently replaced
Mozilla Firefox on Google Play
and is one of the most active
open-source Android app
repositories on GitHub, with
multiple commits on the main
branch every day and more
than 370 version releases. The
old Firefox version was based
on the older architectural
patterns, used Java as a
programming language, and
Views for the UI instead of
Jetpack Compose.

Post-analysis comment

Exceptionally clean and
modern architecture, uses
newest technologies patterns.
Contains a neat folder and file
structure, which is easy to
observe and analyze. Usable,
responsive, and a great app
overall.

Table 3.4: Mozilla Fenix analysis
table

Category Value

App size Large

Languages used Kotlin

State
Active - Latest release in
October 2022

First release
/repository created

June 2019

Analyzed version v105.1.0 (September 2022)

Google Play
downloads
(average rating)

100M+ (4.5)

GitHub repository
stars

6.4k

Architecture MVC + MVVM

Design patterns
Adapters, Builders,
Decorators

Application
components

Activities, Fragments,
Services, Providers,
Receivers

UI technology Compose

Depdendency
injection

No

Number of
dependencies

118

Number of screens 18

Number of
Activities

12

Number of
Fragments

91

Uses Firebase
services

Yes – Analytics, Crashlytics,
and Cloud Messaging

Uses Room Yes

Uses ProGuard/R8 Yes

46 3| Analysis results

3.3.1.4. Orbot

Description

Orbot is a freely licensed open-
source application developed for
the Android platform. It acts as a
front-end to the Tor binary
application, and also provides an
HTTP Proxy for connecting web
browsers and other HTTP client
applications into the Tor SOCKS
interface. It acts as an instance of
the Tor network, free and open-
source software for enabling
anonymous communication, on
such devices and allows traffic
routing from a device's web
browser, email client, map
program, etc., through the Tor
network, providing anonymity
for the user.

Post-analysis comment

Modular and simple application
with architecture made to support
multiple device families.

Table 3.5: Orbot analysis table

Category Value

App size Small

Languages used Java

State
Active - Latest release in
October 2022

First release
/repository created

March 2017

Analyzed version v16.6.2 (July 2022)

Google Play
downloads

10M+ (4.1)

GitHub repository
stars

1.2k

Architecture MVP

Design patterns Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

 No

Number of
dependencies

 25

Number of screens 5

Number of
Activities

 9

Number of
Fragments

 9

Uses Firebase
services

 No

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 47

3.3.2. Commercial applications

3.3.2.1. Bitwarden

Description

A password management service,
stores sensitive information such
as website credentials in an
encrypted vault. Offers both a free
cloud-hosted service as well as the
ability to self-host. Client
functionalities include 2FA login,
biometric unlock, random
password generator, password
strength tool, and many other
functionalities. It is one of the
most popular password managers
on the market.

Post-analysis comment

This app uses Xamarin which is a
free cross-platform service that
allows for the apps to be written
in .NET and C# and programmed
for both iOS and Android.
Because of this, Bitwarden does
not have traditional Android
architecture and components like
Activities and Services.

Table 3.6: Bitwarden analysis table

Category Value

App size Medium

Languages used C# (Xamarin)

State
Active - Latest release
October 2022

First release
/repository created

August 2016

Analyzed version v2022.10 (October 2022)

Google Play
downloads

1M+ (4.5)

GitHub repository
stars

4k

Architecture MVVM

Design patterns N/A

Application
components

N/A

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

50+

Number of screens 6

Number of
Activities

N/A

Number of
Fragments

N/A

Uses Firebase
services

Yes - Cloud Messaging

Uses Room No

Uses ProGuard/R8 No

48 3| Analysis results

3.3.2.2. Kickstarter

Description

Kickstarter application for
Android. Implemented with
RxJava in logic filled with view
models. Kickstarter as a service is
a crowdfunding platform where
users can present their projects
and receive money from backers.
It is the most visited and used
crowdfunding platform on the
market.

Post-analysis comment

A mix of modern and traditional
architecture, a lot of well-known
patterns have been used. The app
seems to be stuck between
transitioning to the new approach
and staying in the old way of
programming Android apps.

Table 3.7: Kickstarter analysis table

Category Value

App size Large

Languages used Kotlin and Java

State
Active - Latest release
October 2022

First release
/repository created

February 2017

Analyzed version v3.5.0 (September 2022)

Google Play
downloads

1M+ (3.7)

GitHub repository
stars

5.7k

Architecture MVVM

Design patterns
DI, Builders, Factories,
Adapters, Decorators

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Dagger

Number of
dependencies

50

Number of screens 24

Number of
Activities

49

Number of
Fragments

13

Uses Firebase
services

Yes - Analytics +
Crashlytics + Cloud
Messaging

Uses Room No

Uses ProGuard/R8 No

3| Analysis results 49

3.3.2.3. Shadowsocks

Description

High-performance cross-platform
secured socks5 proxy. The main
point of the services is to allow the
user to surf the internet privately
and securely. It is widely used in
China to circumvent Internet
censorship. The socks5 proxy is
similar to an SSH (Secure Shell
Tunnel), but unlike an SSH tunnel
can also proxy UDP (User
Datagram Protocol) traffic.

Post-analysis comment

Multiplatform modular app with
maximum code reuse for different
platforms, well organized and
simple. Does not use that many
design patterns and traditional
Android architecture. The app
has gone through the transition
from Java to Kotlin and is now
fully written in Kotlin.

Table 3.8: Shadowsocks analysis
table

Category Value

App size Small

Languages used Kotlin and C/C++ (JNI)

State
Active - Latest release
September 2021

First release
/repository created

June 2014

Analyzed version v5.2.6 (September 2021)

Google Play
downloads

5M+ (4.5)

GitHub repository
stars

33.1k

Architecture Hybrid

Design patterns Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

27

Number of screens 6

Number of
Activities

11

Number of
Fragments

16

Uses Firebase
services

Yes - Analytics and
Crashlytics

Uses Room Yes

Uses ProGuard/R8 Yes

50 3| Analysis results

3.3.2.4. Wikipedia

Description

Multilingual free online
encyclopedia app, one of the most
visited websites on the Internet.
The official application allows
you to access the entire content of
one of the greatest sources of
information on the Internet, just
by making a few movements on
the screen of your Android
device. Features a simple interface
that adapts the Wikipedia pages
to mobile screens and has all of
the same features as a full web
page.

Post-analysis comment

Nicely organized and structured
app. Very deep and modular
structure, good code organization
with an elevated level of
integration of Google services and
libraries.

Table 3.9: Wikipedia analysis table

Category Value

App size Small

Languages used Kotlin

State
Active - Latest release
November 2022

First release
/repository created

January 2012

Analyzed version v2.7 (October 2022)

Google Play
downloads

50M+ (4.5)

GitHub repository
stars

1.8k

Architecture MVVM

Design patterns
Builders, Factories,
Adapters, Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

50+

Number of screens 9

Number of
Activities

47

Number of
Fragments

42

Uses Firebase
services

Yes - Cloud Messaging

Uses Room Yes

Uses ProGuard/R8 Yes

3| Analysis results 51

3.3.2.5. WordPress

Description

Free and open-source content
management system (CMS)
written in hypertext processor
language and paired with a
MySQL or MariaDB database
with supported HTTPS. It allows
for easy and efficient website
creation, editing, and
management. The Mobile version
supports the creation and editing
of posts and pages, photos and
videos upload and managing user
communication.

Post-analysis comment

Combined and messy architecture
combining old Java way of
programming and new Android
Jetpack. Featuring a lot of design
patterns, the app feels like it is in
a transition phase between the old
Java and the new Kotlin ways of
Android development.

Table 3.10: WordPress analysis table

Category Value

App size Large

Languages used Kotlin and Java

State
Active - Latest release
November 2022

First release
/repository created

December 2015

Analyzed version v20.9 (October 2022)

Google Play
downloads

10M+ (4.4)

GitHub repository
stars

2.7k

Architecture MVVM

Design patterns
Builders, DI, Factories,
Adapters, Decorators,
Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Hilt

Number of
dependencies

25

Number of screens 50+

Number of
Activities

99

Number of
Fragments

167

Uses Firebase
services

Yes - Remote Config and
Cloud Messaging

Uses Room Yes

Uses ProGuard/R8 Yes

52 3| Analysis results

3.3.3. Media players

3.3.3.1. Antenna

Description

Easy-to-use, flexible, and open-source
podcast manager for Android. Gives
access to millions of free and paid
podcasts from independent podcasters
to large publishing houses like BBC,
NPR, and CNN. It allows streaming and
downloading of all of the podcasts that
can be found on the iTunes podcast
database or other places on the Internet.
It is completely free and features no ads.

Post-analysis comment

Features a highly modular and reusable
architecture, does not follow any
traditional architectural patterns.

Table 3.11: Antenna analysis table

Category Value

App size Small

Languages used Java

State
Active - Latest
release October 2022

First release
/repository created

February 2014

Analyzed version v2.7.1 (October 2022)

Google Play
downloads

500K+ (4.7)

GitHub repository
stars

4.5k

Architecture Hybrid

Design patterns
Builders, Factories,
Adapters,
Decorators, Facades

Application
components

Activities +
Fragments, Services,
Receivers, Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

46

Number of screens 20

Number of
Activities

11

Number of
Fragments

45

Uses Firebase
services

No

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 53

3.3.3.2. NewPipe

Description

A libre lightweight streaming
front-end for Android. Does not
use any Google framework
libraries or YouTube APIs,
making it usable on devices
without installed Google Services.
It supports services like YouTube,
YouTube Music, PerrTupe,
Bandcamp, SoundCloud, and
media.ccc.de. The functionalities
of the app range from simple
music playing to watching 4K
videos, listening to audio in the
background, picture-in-picture
mode, live streams, and much
more.

Post-analysis comment

A highly modular app that
successfully avoids the usage of
any Google-based external
service, uses a lot of distinctive
design patterns, and has an
exceptionally clean architecture
based on MVVM.

Table 3.12: NewPipe analysis table

Category Value

App size Small

Languages used Java

State
Active - Latest release
November 2022

First release
/repository created

September 2015

Analyzed version v0.24.0 (October 2022)

Google Play
downloads

50K+ (1.7)

GitHub repository
stars

21.9k

Architecture MVVM

Design patterns
Builders, Facades,
Adapters

Application
components

Activities + Fragments,
Services

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

47

Number of screens 10

Number of
Activities

12

Number of
Fragments

31

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

54 3| Analysis results

3.3.3.3. Phonograph

Description

Material Design-based music
player made with the premises to
look and feel good. Features
simple music player capabilities
and a highly customizable UI.

Post-analysis comment

Exceptionally clean code and code
structure. Simple, good-looking,
and well-functioning app.

Table 3.13: Phonograph analysis
table

Category Value

App size Small

Languages used Java

State
Semi-active - Latest
release October 2021

First release
/repository created

April 2017

Analyzed version v1.3.5 (September 2020)

Google Play
downloads

1M+ (3.8)

GitHub repository
stars

2.7k

Architecture MVP

Design patterns
Builders, Facades,
Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

33

Number of screens 8

Number of
Activities

14

Number of
Fragments

20

Uses Firebase
services

No

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 55

3.3.3.4. Shuttle

Description

An open-source, local music
player for Android. Shuttle comes
in two versions - Shuttle (free) and
Shuttle+. The basic version
includes features like local
playback, equalizer, sleep timer,
widgets, and artwork scraping,
with the paid Shuttle+ version
including additional options like
Chromecast support and
theming.

Post-analysis comment

Nicely done application based on
the MVP architecture by the
textbook. Using a lot of design
patterns with a perfect folder and
file structure, making analysis
and development a lot simpler.

Table 3.14: Shuttle analysis table

Category Value

App size Small

Languages used Java and Kotlin

State
Not active - Latest release
July 2020

First release
/repository created

March 2017

Analyzed version v2.0.17 (July 2020)

Google Play
downloads

1M+ (4.3)

GitHub repository
stars

2.2k

Architecture MVP

Design patterns
DI, Builders, Adapters,
Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Dagger

Number of
dependencies

50

Number of screens 19

Number of
Activities

9

Number of
Fragments

16

Uses Firebase
services

Yes – Remote Config

Uses Room No

Uses ProGuard/R8 Yes

56 3| Analysis results

3.3.3.5. Timber

Description

Material theme music player that
works across multiple platforms
(phones, wear, auto, cast,
assistant). This music player's
strong point is a Material Design-
style interface that can be
customized at will. The player
supports MP3 and FLAC files and
features a quite simple audio
equalizer.

Post-analysis comment

Exceptionally clean code and code
structure. A simple, functional,
and lightweight application.

Table 3.15: Timber analysis table

Category Value

App size Small

Languages used Java

State
Not active - Latest release
October 2020

First release
/repository created

January 2016

Analyzed version v1.7 (October 2020)

Google Play
downloads

100K+ (4.1)

GitHub repository
stars

6.8k

Architecture MVP

Design patterns
Builders, Factories,
Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (Compose)

Depdendency
injection

No

Number of
dependencies

22

Number of screens 11

Number of
Activities

9

Number of
Fragments

15

Uses Firebase
services

Yes - Crashlytics

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 57

3.3.4. Messaging and email

3.3.4.1. K9

Description

Email app for Android that works
with basically every email
provider. Designed as an
alternative to the stock email
clients included with the
platform. Supports POP3 and
IMAP protocols and IMAP IDLE
for real-time notifications.

Post-analysis comment

Overly complex architecture, a lot
of modular files with different
architectures in different
modules. The backend layer and
the frontend layer are very clearly
divided.

Table 3.16: K9 analysis table

Category Value

App size Small

Languages used Java and Kotlin

State
Active - Latest release in
July 2022

First release
/repository created

January 2014

Analyzed version v6.202 (July 2022)

Google Play
downloads

5M+ (2.8)

GitHub repository
stars

7.4k

Architecture MVVM

Design patterns
DI, Builders, Factories,
Adapters, Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology View (XML)

Depdendency
injection

Koin

Number of
dependencies

19

Number of screens 30

Number of
Activities

 30

Number of
Fragments

 42

Uses Firebase
services

 No

Uses Room No

Uses ProGuard/R8 Yes

58 3| Analysis results

3.3.4.2. QKSMS

Description

SMS messenger for Android is
aiming to replace the stock
version. Offering a clean and
customizable design and
theming, with support from SMS
and MMS messages, delayed
message sending, and group
messaging.

Post-analysis comment

Unusual architecture featuring all
three architectural patterns
(MVC, MVVM, MVP). Highly
modular with modules divided
based on their role to
presentation, model, domain, and
common layers.

Table 3.17: QKSMS analysis table

Category Value

App size Small

Languages used Kotlin and Java

State
Semi-Active - Latest
release in February 2021

First release
/repository created

December 2015

Analyzed version v3.9.4 (February 2021)

Google Play
downloads

1M+ (4.0)

GitHub repository
stars

3.9k

Architecture
Hybrid (MVVM, MVP,
MVC)

Design patterns
DI, Builders, Facades,
Adapters, Factories

Application
components

Activities, Services,
Receivers, Providers

UI technology Views (XML)

Depdendency
injection

Dagger

Number of
dependencies

18

Number of screens 10

Number of
Activities

12

Number of
Fragments

0

Uses Firebase
services

Yes - Crashlytics

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 59

3.3.4.3. Signal

 Description

A messaging app for simple
private communication with
friends. Signal uses phone data
connection (WiFi, 3G, 4G) to
communicate securely, optionally
supports plain SMS/MMS to
function as a unified messenger
and can also encrypt the stored
messages on the phone.

Post-analysis comment

Incredibly detailed and complex
modular folder structure and a
complex architecture based on
MVP. Advanced level of
programming using a lot of
distinctive design and
architectural patterns.

Table 3.18: Signal analysis table

Category Value

App size Large

Languages used Java and C/C++ (JNI)

State
Active - Latest release
November 2022

First release
/repository created

October 2013

Analyzed version v5.53.2 (October 2022)

Google Play
downloads

100M+ (4.4)

GitHub repository
stars

23k

Architecture MVP

Design patterns
Builders, DI, Factories,
Adapters, Decorators

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Yes - Dagger

Number of
dependencies

60

Number of screens 23

Number of
Activities

73

Number of
Fragments

118

Uses Firebase
services

Yes - Analytics and Cloud
Messaging

Uses Room No

Uses ProGuard/R8 Yes

60 3| Analysis results

3.3.4.4. Telegram

Description

Telegram is a messaging app with
a focus on speed and security, it is
super-fast, simple, and free.
Telegram can be used on multiple
devices at the same time —
messages synchronize seamlessly
across any number of phones,
tablets, or computers. Telegram
has over seven hundred million
monthly active users and is one of
the ten most downloaded apps in
the world.

Post-analysis comment

Complex app that uses a lot of
C/C++ code through JNI. An
exceedingly high number of
Activities compared to the
number of screens.

Table 3.19: Telegram analysis table

Category Value

App size Medium

Languages used Java and C/C++ (JNI)

State
Active - Latest release in
November 2022

First release
/repository created

December 2019

Analyzed version 1000M+ (4.3)

Google Play
downloads

21k

GitHub repository
stars

v8.8.2 (June 2022)

Architecture MVC

Design patterns
Builders, Factories,
Adapters, Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

26

Number of screens 19

Number of
Activities

103

Number of
Fragments

4

Uses Firebase
services

Yes - Remote Config and
Cloud Messaging

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 61

3.3.4.5. Wire

Description

Wire is the most secure
collaboration platform. It claims
to increase the productivity in the
team while keeping the
information private. Wire allows
its users to communicate and
share information easily and
securely - messages, files,
conference calls or private
conversations - always in context.

Post-analysis comment

Simple and well-organized
messaging app, with a lot of
different build variants, allowing
for easy version control and
testing.

Table 3.20: Wire analysis table

Category Value

App size Medium

Languages used Scala, Java, and Kotlin

State
Active - Latest release in
August 2022

First release
/repository created

August 2016

Analyzed version v3.82.38 (August 2022)

Google Play
downloads

1M+ (2.9)

GitHub repository
stars

2.5k

Architecture MVC

Design patterns
DI, Factories, Adapters,
Decorators, Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Koin

Number of
dependencies

50+

Number of screens 12

Number of
Activities

11

Number of
Fragments

5

Uses Firebase
services

Yes - Cloud Messaging

Uses Room Yes

Uses ProGuard/R8 Yes

62 3| Analysis results

3.3.5. Other

3.3.5.1. Google I/O

Description

An app used for the Google I/O
developer conference with several
days of deep technical content
featuring technical sessions and
hundreds of demonstrations from
developers. The app displays a
list of conference events - sessions,
office hours, app reviews, code
labs - and allows the user to filter
these events by types and topics.
Users can also star certain events
and reserve a seat. The app was
initially used for the 2019
conference, and even though the
following two conferences have
been canceled, it was still updated
with the newest technologies and
improvements.

Post-analysis comment

Modular architecture, divided
folders and different builds for
different purposes, exceptionally
clean and consistent code. The
app includes some of the newest
Google libraries like LiveData and
DataStore, trying to stay up to
date with the newest releases.
App also has a partial integration
with Google Compose, which is
integrated on another branch and
is not a part of the official release.

Table 3.21: Google I/O analysis table

Category Value

App size Small

Languages used Kotlin

State
Semi-active - Latest
release in 2021

First release
/repository created

February 2016

Analyzed version v2021 (2021)

Google Play
downloads

1M+ (4.3)

GitHub repository
stars

21.7k

Architecture MVVM

Design patterns DI, Adapters

Application
components

Activities + Fragments,
Receivers, Providers

UI technology Views (XML)

Depdendency
injection

Hilt

Number of
dependencies

7

Number of screens 6

Number of
Activities

5

Number of
Fragments

34

Uses Firebase
services

Yes

Uses Room Yes

Uses ProGuard/R8 Yes

3| Analysis results 63

3.3.5.2. Habitica

Description

Habit building program which
treats your life like a Role-Playing
Game. It allows the user to level
up as it succeeds, lose HP as it
fails, and earn money to buy
weapons and armor. It looks and
feels like a video game, but it
replicates real-work actions from
the user, all to make him work
harder and better in real-life to get
in-game rewards.

Post-analysis comment

Post-analysis comment: Another
one of the apps that made a nearly
full transition from Java to Kotlin.
The architecture of the app is
extremely well organized and
clean, allowing for multi-layer
type organization and structure
which makes components easier
to find and maintain.

Table 3.22: Habitica analysis table

Category Value

App size Medium

Languages used Kotlin and Java

State
Active - Latest release
September 2022

First release
/repository created

November 2015

Analyzed version v4.0.2 (September 2022)

Google Play
downloads

1M+ (4.2)

GitHub repository
stars

1.1k

Architecture MVVM

Design patterns
DI, Builders, Factories,
Adapters, Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Hilt

Number of
dependencies

46

Number of screens 50+

Number of
Activities

29

Number of
Fragments

67

Uses Firebase
services

Yes - Analytics, Remote
Config, and Crashlytics

Uses Room No

Uses ProGuard/R8 Yes

64 3| Analysis results

3.3.5.3. Materialistic

Description

Material design Hacker news
client for Android that uses
official HackerNews/API, Dagger
for dependency injection, and
Roboelectric for unit testing.

Post-analysis comment

Unstructured files and folders,
messy architecture, and app. No
modularity, everything is in the
same folder, offers no real support
for any new developers wanting
to improve the app.

Table 3.23: Materialistic analysis
table

Category Value

App size Small

Languages used Java

State
Not active - Latest release
March 2019

First release
/repository created

April 2016

Analyzed version v3.3 (March 2019)

Google Play
downloads

N/A

GitHub repository
stars

2.2k

Architecture MVP

Design patterns
DI, Builders, Adapters,
Facades

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

Dagger

Number of
dependencies

20

Number of screens 16

Number of
Activities

23

Number of
Fragments

6

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

3| Analysis results 65

3.3.5.4. Muzei

Description

Muzei is a live wallpaper that
gently refreshes your home screen
each day with famous works of
art. It also recedes into the
background, blurring and
dimming artwork to keep your
icons and widgets in the spotlight.
Simply double touch the
wallpaper or open the Muzei app
to enjoy and explore the artwork
in its full glory. It also allows
setting your favorite photos in the
background.

Post-analysis comment

Exceptionally clean architecture,
simple and modular client for
multiple platforms.

Table 3.24: Muzei analysis table

Category Value

App size Small

Languages used Kotlin, Python, and Java

State
Active - Latest release
January 2022

First release
/repository created

February 2014

Analyzed version v3.4.1 (January 2022)

Google Play
downloads

1M+ (4.1)

GitHub repository
stars

4.4k

Architecture MVVM

Design patterns
Builders, Factories,
Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

17

Number of screens 7

Number of
Activities

11

Number of
Fragments

16

Uses Firebase
services

Yes - Analytics +
Crashlytics

Uses Room Yes

Uses ProGuard/R8 Yes

66 3| Analysis results

3.3.5.5. OmniNotes

Description

A note-taking application aimed
to have a simple interface while
keeping smart behavior. The
application expands on the
generic note-taking features of
other basic applications and
allows users to attach image and
video files, use a variety of
widgets, tag and organize notes,
search through notes, and
customize the application's UI.

Post-analysis comment

Clean and organized architecture.
Smooth and fast application with
a lot of listeners, helpers, and
providers. Genuinely nice
application to use that offers quite
a few functionalities and does it
well.

Table 3.25: OmniNotes analysis table

Category Value

App size Small

Languages used Java

State
Active - Latest release
March 2022

First release
/repository created

August 2015

Analyzed version v6.1.0 (March 2022)

Google Play
downloads

100K+ (4.0)

GitHub repository
stars

2.5k

Architecture MVP

Design patterns Factories, Adapters

Application
components

Activities + Fragments,
Services, Receivers,
Providers

UI technology Views (XML)

Depdendency
injection

No

Number of
dependencies

40

Number of screens 5

Number of
Activities

13

Number of
Fragments

8

Uses Firebase
services

No

Uses Room No

Uses ProGuard/R8 Yes

3| Analysis results 67

3.3.6. Tech demo

3.3.6.1. Kotlin Pokedex

Description

Pokedex app build with Kotlin
that uses most of the latest
technologies from Android, such
as LiveData, Navigation, Room,
and Databinding. Pokedex allows
for quick and easy Pokemon
search, fetching the Pokemon
details, seeing their evolutions
and other connections, as well as
seeing some news from the
Pokemon world.

Post-analysis comment

The app has all of the modern
android development features
but Compose and is intended
more as a demo app to showcase
all of the latest features of
Android development. On
GitHub, another similar version
of the app can be found that uses
Jetpack Compose, but the level of
quality of the app architecture
and the number of
stars/downloads were not enough
to be included in this list.

Table 3.26: Kotlin Pokedex analysis
table

Category Value

App size Small

Languages used Kotlin

State
Semi-active - Latest
release in May 2020

First release
/repository created

February 2020

Analyzed version v2020 (May 2020)

Google Play
downloads

N/A

GitHub repository
stars

1.3k

Architecture MVVM

Design patterns DI, Factories, Adapters

Application
components

Activities

UI technology Views (XML)

Depdendency
injection

Koin

Number of
dependencies

26

Number of screens 2

Number of
Activities

1

Number of
Fragments

0

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

68 3| Analysis results

3.3.6.2. NotyKT

Description

A complete Kotlin-stack note-
taking application built to
demonstrate the use of Kotlin
programming language in server-
side and modern android
development tools.

Post-analysis comment

A complete Kotlin-stack
application built to demonstrate
the use of modern android
development tools with best
practices. There are two versions
of the app - the regular that uses
Views and Compose version. The
two versions are mostly using the
same components and share all of
the same characteristics. When
using the app, the difference
between them is almost
nonexistent. A deeper analysis of
the two versions is done in
Chapter 6 of this work.

Table 3.27: NotyKT analysis table

Category Value

App size Small

Languages used Kotlin

State
Active - Latest release
October 2022

First release
/repository created

October 2020

Analyzed version v2.1.0 (October 2022)

Google Play
downloads

100M+ (4.5)

GitHub repository
stars

1.4k

Architecture MVVM

Design patterns
DI, Builders, Factories,
Adapters

Application
components

Activities + Fragments

UI technology
Two versions - Compose
and Views (XML)

Depdendency
injection

Hilt

Number of
dependencies

28 (38 Compose version)

Number of screens 6

Number of
Activities

1

Number of
Fragments

8 (0 Compose version)

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

3| Analysis results 69

3.3.6.3. Pokedex

Description

A Pokedex application written in
Kotlin that demonstrates modern
Android development using all of
the most popular and modern
Android tools like Material
Motion, Coroutines, Flow, and
Jetpack, all based on MVVM
architecture.

Post-analysis comment

Post-analysis comments: A
modern app with a lot of
dependencies and external
libraries that are often used in the
industry. Features a clean code
and solid architecture, a very
responsive UI, and overall, a very
solid app.

Table 3.28: Pokedex analysis table

Category Value

App size Small

Languages used Kotlin

State
Active - Latest release
August 2021

First release
/repository created

December 2019

Analyzed version v1.1.0 (August 2021)

Google Play
downloads

N/A

GitHub repository
stars

6.1k

Architecture MVVM

Design patterns DI, Factories, Adapters

Application
components

Activities, Providers

UI technology Views (XML)

Depdendency
injection

Hilt

Number of
dependencies

27

Number of screens 3

Number of
Activities

4

Number of
Fragments

0

Uses Firebase
services

No

Uses Room Yes

Uses ProGuard/R8 Yes

 71

4 Notable selected applications

Some of the applications from the analyzed set offer an interesting approach whether
it comes to architectural patterns, UI design, modular code, or something else. In this
chapter, these apps will be analyzed in depth to try and explain what makes them
stand out and are of special interest to this research. Six applications have been selected
for this chapter.

4.1. Mozilla Fenix (Firefox)
Fenix app is of great interest due to it being the only major app that uses Compose and
is completely influenced by the most modern Android development libraries and
services.

It originally started as a project of rewriting an entire Mozilla Firefox app for Android
by using Kotlin and Compose, the opposite of the previously used technologies of Java
and Views. After years of development, Fenix was finally completed and replaced the
previous version of Firefox completely in 2022.

Fenix is an all-new Firefox browser based on GeckoView and Mozilla Android
Components. GeckoView is a tool that allows apps to use the entire power of the Web
in their applications, providing the functionalities of a full WebView through an API,
but offering many more features than the default Android built-in WebView. Mozilla
Android Components is a collection of independent, reusable Android library
components to make it easier to build browsers and browser-like applications.

Fenix also implements several different build variants, which allows the developers to
launch different versions of the app through different channels:

 Debug - default variant for developers, allows debugging and adds tools like
LeakCanary for troubleshooting

 Nightly - used to ship Firefox Nightly, minor version updates with small
features that ship on a nightly basis, using GeckoView Nightly

 Beta - a more stable version of Nightly, featuring more new features and being
released less often

72 4| Notable selected applications

 Release - full release versions of the app, fully stable, released even less often
than beta

This approach allows Mozilla developers to easily test out new features, receive and
test pull requests from other developers, and have continuous development without
affecting the users that don't want to be affected. What allowed this to exist is the
modular structure of the app that easily allows the developers to include or exclude
some parts of the project from the build version.

Fenix folder structure is feature-based, which means the folders are organized so that
the files inside do similar tasks. Since it is using Compose, it is only natural that Fenix
is based on MVVM architecture, which goes together with this UI technology due to
its state-based functionalities. It still uses some Controllers and has some elements of
MVC, but since MVVM naturally expands and inherits MVC architecture, it is
expected for such a complex app to use both architectures to match its needs.

Despite being such a large and complex app, Fenix only uses twenty-nine different
composable elements, meaning that most of the elements are being reused within the
app. This allows developers to easily switch a certain style or functionality of a
component since it has to be changed only once to be reflected in all the places
throughout the app, a feature that does not exist in the Views approach.

The Mozilla team takes a serious approach when it comes to code stability and
efficiency. Within the source folder, additional two modules can be found that are
specifying the use of Lint and Rekt, which are both used for checking and notifying
the developer about potential bugs in the code. Their proper use often leads to much
better, cleaner, and more efficient code, along with reducing the app size.

The application itself runs very cleanly, without any jitter or crashes, and is a good
example of how a good, clean, and organized code can lead to having a better app and
providing the users with a great experience.

4| Notable selected applications 73

Figure 4.1: Mozilla Fenix
(Firefox) on Android

Figure 4.2: Mozilla Fenix
(Firefox) settings on Android

74 4| Notable selected applications

4.2. Muzei
Muzei is a quite simple, lightweight, and unique app, which has little interaction with
the user but can change the whole mobile experience. It dynamically changes the
background of a phone and replaces it with a new picture of a famous painting from
the world's famous museums every day. The functionality also exists as an API,
making it possible to be implemented into other apps as well.

What makes Muzei interesting for this analysis is the way it uses modularity to achieve
multi-device support. The main folder structure is divided into thirteen different
submodules. They are the following:

 android-client-common
 example-unsplash
 example-watchface
 extensions
 el-wallpaper
 legacy-common
 legacy-standalone
 main
 muzei-api
 source-featured-art
 source-gallery
 source-single
 wearable

The main submodule is a module that holds the base of the code and is included in all
of the app versions. The muzei-api submodule is used only for the API that can be
included by other apps.

Legacy modules are used for some older versions of the app that are only supported
on some older devices for some architectural reasons. Source modules define from
where the background images are being fetched, whether from a museum collection,
user gallery, or is it just a single photo.

Android-client-common and wearable submodules hold most of the functionalities for
their respective platforms of Android and Wear OS.

This structure is a good example of a preferred structure for multi-device support. All
of the app versions will have a main submodule included, but the mobile app will not
have a wearable submodule, the same way a wearable app will not have android-
client-common. The API itself will then be minimal for the same reason, making it easy
for other developers to include it in their projects due to such a small size.

4| Notable selected applications 75

Each of those submodules has its own gradle file with defined dependencies. This
allows these submodules to only implement certain dependencies when they are being
used, meaning that the app size and the app compilation time will be much smaller
when it is being used on a certain family of devices since not all of the dependencies
are being included.

Ultimately, this also means much less code since the code itself is being reused. When
a certain class of functionality is needed from another submodule, the included
submodule takes up much less space than having to include all of the classes,
especially considering that submodules contain classes and methods that are generally
used together.

Muzei is therefore one of the smallest analyzed apps, despite having a sizable number
of code lines and dependencies, as well as providing more functionalities than some
other apps that take up much more space on the phone. Not to mention it runs very
smoothly and does perfectly for what is intended.

76 4| Notable selected applications

Figure 4.3: Muzei on Android
#1

Figure 4.4: Muzei on Android
#2

Figure 4.5: Muzei on Android
#3

Figure 4.6: Muzei on Android
#4

4| Notable selected applications 77

4.3. Kickstarter and WordPress
Kickstarter and WordPress applications represent two remarkably similar examples.
Both are mobile versions of services that are primarily meant to be accessed via the
web and offer limited functionalities compared to their web versions. Both are
commercially used apps with a large number of users and very advanced
functionalities. Both have overly complex architecture and folder structures. And
finally, both are currently in a transition phase, moving from the old ways of Android
development in Java using older patterns and making a move to Kotlin and new
development ways.

Most of the code in both of these apps is in Kotlin, although some major parts are still
written in Java. The folder and file structure of these apps are very messy, with files in
the same folder being written in two different functionalities and often interpolating.
While this works due to the interoperability of Java and Kotlin it can be very
frustrating for a developer having to switch the syntax and the way of thinking very
often when editing and rewriting some code.

Both of the apps have made a transition to MVVM architecture, which brings them
one step closer to modern ways of development. Since all of those ViewModel classes
are written in Kotlin, it can be assumed that the change of architecture came at the
same time or after the decision to change the primary language.

Neither of these applications has submodules, making it even more difficult for
developers to change specific parts of the subsystem and potentially slowing down the
transition. That is why it is unlikely they will make a full transition to Compose since
doing that with such a messy code structure would be a very brave move that could
potentially backfire.

In these code bases, only one gradle file is present, which limits developers' approach
options when it comes to testing and trying out new apps. These apps in their current
state offer a particularly good look at how refactoring and code maintenance can be a
messy process if the early phase of the development and project setup is not done in a
recommended way. These statements do not necessarily have to reflect on the user
experience, but the fact that they are by far the biggest apps in their category and one
of the biggest apps in total may deflect users from using them.

78 4| Notable selected applications

Figure 4.3: Mix of Kotlin and Java files in
WordPress source code

Figure 4.4: Mix of Kotlin and Java files
in Kickstarter source code

4| Notable selected applications 79

4.4. NotyKT - Views and Compose version
One of the analyzed applications comes in two versions, which are in practice almost
identical but offer slightly diverse backgrounds and technologies. One has a UI made
by using Jetpack Compose and another one by using Views with XML. Even though it
is an amazingly simple and lightweight app, it can still provide some answers on what
the main differences between the two UI technologies are when everything else
around it is mostly the same.

4.4.1. Shared components
The app itself has a modular architecture that allows both versions of the app to reuse
the same code within the same files. The app is based on the MVVM architecture.

Shared components of the app are task manager, connectivity components, repository,
utilities, dependency injection modules, and all of the view models with states. More
than 50% of the app files are shared and reused, meaning that the apps are not only
similar in practice but also have a vast majority of the code base identical.

Shared dependencies include web communication library Retrofit, local database
Room, some basic androidx libraries, and Hilt dependency injection library.

Apps also share some of the resources like strings, values, and images.

4.4.2. Individual components
The Views version of the app uses the more traditional approach of using Fragments.
Since the app only has one Activity, Fragments act like individual screens or small
components. There are six screens in total, with eight Fragments, that besides the
screens also display two additional sub-components that appear on user action. Other
individual components are also two dialogs, one adapter, and resources, mostly XML
layout files that are used to represent the UI.

The Compose version of the app uses a more modern approach and does not have any
additional Fragments. Everything is accessed by activity. This version has twenty-four
composable elements, with additional theming and utility files, but has no extra
resources due to them being presented by composables. The file count is twice as big
as with the other version, as the structure is even more modular than before.

80 4| Notable selected applications

While apps do feel and behave the same, while only having minimal visual differences,
behind the scenes some of the aspects are not the same. The difference in the size of
the app is quite different, with the Compose version being more than twice as big as
the Views with XML version. This is most likely due to a lot more dependencies that
the Compose version has as the libraries that include Compose are not included by
default. The app is not quite complex enough to notice any significant performance
differences, but it does bring to the conclusion that Compose apps tend to be
somewhat bigger than their Views with XML counterparts.

Table 4.1: NotyKT application XML and Compose version comparison table

NotyKT app
Views
(XML)
version

Compose
version

App install size 9 19

Programming
language

Kotlin Kotlin

Number of
dependencies

28 38

Number of
Activities

1 1

Number of
Fragments

8 1

Number of
screens

6 6

4| Notable selected applications 81

Figure 4.5: NotyKT
(XML) login screen

Figure 4.6: NotyKT
(Compose) login

screen

Figure 4.7: NotyKT
(XML) main screen

Figure 4.8: NotyKT
(Compose) main

screen

Figure 4.9: NotyKT
(XML) add note

screen

Figure 4.10: NotyKT
(Compose) add note

screen

Figure 4.11: NotyKT
(XML) added notes

night mode

Figure 4.12: NotyKT
(Compose) added
notes night mode

 83

5 Conclusions and results comparison

Analysis of this work is thoroughly done in this chapter. Some of the main hypotheses
made in the initial part of the work are analyzed and looked at by numbers. Statistics
in the previous chapter are being used as a base for the analysis. Some of the other
non-numerical parameters are also going to be taken into the account. Not all of the
applications can utilize all of the technologies and some of them have clear reasoning
for choosing the right one.

The overall complexity and size of the application are big factors when determining
what can be expected from the app. Another big one is functionality, as it would make
sense to compare browsers to browsers, and media players to media players. Some of
the applications are not being used at a mass scale. More focus will be put on the ones
that are commercial and that have the most users, as those usually present a clearer
picture when it comes to certain design choices and real-life flow when it comes to app
development.

The ultimate goal of the analysis is to determine the current state of Android
development, its progress through the years, which technologies are being used in
which scenarios, and finally, how it is all meshing with Google's ideas and a big push
toward Kotlin, Jetpack libraries, and Jetpack Compose UI.

84 5| Conclusions and results comparison

5.1. Application complexity and size

All of the detailed data about the specific folder sizes, app installation sizes, and many
other analyzed numbers can be found in the analysis tables located in the appendix
part of the work. Apps regarded as large in the list take up more than 100MB after
installation, medium apps take up between 50MB and 100MB, and small apps take up
less than 50MB. Average app sizes on Google Play are somewhere in the medium
region, around 60MB. [31]

Application size can be measured in multiple ways, depending on from which side is
it being looked at. All but two applications use ProGuard or R8 for reducing the app
size, which means that the statistics of app sizes should be in line and have the same
starting point. From the developers' standpoint, this would be done by measuring the
size of the source code folder, or the number of lines in the source code, as well as the
number of included libraries and gradle files that are needed to compile the app. From
the users' standpoint, it would mean the size of the installed app on the device.

Since developers usually do not have limited space on their devices and tend to use
many more libraries in their app development and testing than in the actual final
product, a metric that was taken as the most important one is the installed app size.
Users can only have so many apps on their phones before it gets clogged with too
many of them, so having the app size proportional to its value for the user is important.
Not every app can be small, but the ones that take up much more space than some
other apps that offer similar functionalities can easily be discarded by many users.

What is the average application install size?

When looking at the final numbers, several different conclusions can be drawn. In the
analysis of twenty-seven apps, only four of them are bigger than 100MB when
installed, with the average size after installation being 58MB.

The biggest of the four are two browser apps, Fenix (3) and Brave (1). This is to be
expected since browsers contain a full stack of code and have extensive features that
include a lot of different libraries. The other two big apps are Signal (17) the messaging
app and Kickstarter (6) mobile version. Signal, similar to browser apps, contains
several layers of full-stack architecture and implements many security features in the
messaging system. Kickstarter as an app is very exhaustive has a large number of
different screens and offers many unique features to the users.

5| Conclusions and results comparison 85

Table 5.1: Application size table

Small

(< 50MB)

Medium
(50-100

MB)

Large
(>100MB)

Total

Application
count

17 6 4 27

Average
application

installation size
24MB 75MB 179MB 58MB

Code size (in
MB)

7MB 32MB 36MB 17MB

Kotlin (primary
language) size

21MB 77MB 179MB 59MB

Java (primary
language) size

26MB 81MB 179MB 58MB

Average
number of

dependencies
30 41 70 38

Average
number of

screens
10 27 21 16

Average
number of
activities

13 47 40 25

Average
number of
fragments

18 48 70 32

What affects application size the most?

One common denominator in the app size is the number of included libraries in the
project. Every library has a certain size and adds a certain amount of additional code
which attributes to the final app size. Since libraries generally don't have a certain size,
the number of them doesn't necessarily determine how big the app will be, since most
of them may be very small. Nevertheless, a large number of them guarantees some
increase in size.

86 5| Conclusions and results comparison

Every app in the set that has 50 or more external library dependencies is over 25MB
big when installed, with most apps in the range of 50MB+ having almost exclusively
as many. Code size does not necessarily relate to the final app size as there are a few
apps that have several hundreds of MB in source folders yet take up less than 30MB
on the phone. This part of the analysis as previously mentioned is also quite
challenging due to many apps supporting multiple platforms and reusing some parts
of the code for many of them, thus making it difficult to know which files are exactly
included in which builds. Finally, even though bigger apps tend to have several tens
of different screens that the user can access, there are also smaller apps with a large
number of screens. The same set of conclusions applies to the number of activities and
fragments since these are often closely correlated to the number of screens.

Conclusion

The programming language used, whether Java, Kotlin, C#, or C/C++ through JNI does
not offer any real conclusions, as there are many applications in all of the languages
that are both big and small. The bigger apps tend to use C/C++ more, but that is rather
due to the complexity and additional functionalities of the app.

One interesting conclusion, although drawn from an exceedingly small dataset, is that
Jetpack Compose apps tend to be bigger in size than the apps that use traditional
Views for the UI. The biggest app in the set, Mozilla Fenix, uses Jetpack Compose and
it takes up more than 250MB when installed, with Brave browser being around 5%
smaller whilst offering similar functionalities and using Views.

An even more interesting comparison is between the two versions of the NotyKT app
(Table 4.1). Two almost identical versions exist that share most parts of the code and
offer the same functionalities, with one using Views and the other one Compose. The
Compose version is more than twice as big, as it takes up 19MB compared to the 9MB
of the Views version. These examples offer clear evidence that Compose applications
are more demanding on the user's memory, but unfortunately, this statement would
have to be supported with bigger numbers to be fully valid. This can also be attributed
to the number of dependencies, as Compose applications require a number of
additional libraries to be included and even a simple app like NotyKT has 10 more
dependencies in Compose version.

The final conclusion from all of the data is that the application install size mainly
increases with the high number of dependencies, with the number of Activities,
Fragments, screens, programming language, and code size being much less of a factor.

5| Conclusions and results comparison 87

5.2. Programming language

Using the data from the Stack Overflow survey, which is annually filled by about
70,000 developers, the shift towards Kotlin throughout the years is noticeable, but not
dramatic. [32] [33] [24] Kotlin as a programming language only first appeared on the
survey in 2018 when it had been used by 4.5% of developers after Google had already
made a certain push to try and place it on the market. It was also the second most
"loved" language, with a 75% approval rate. Java was at that time much higher on the
usage list, being used by 45% of developers, but with a much lower approval rate of
51%. In only four years, during which Google made it the default Android language,
Kotlin's usage doubled to 9%, while Java's dropped off to 33%. Java is still a much
broader language, used for more than just Android apps, which is not the case for
Kotlin, so the difference is noticeable. Despite this, the data confirm that Kotlin is
becoming more popular and popular which is also emphasized by this research.

Figure 5.1: Programming languages usage chart

How many applications are using Java or Kotlin as a primary language?

Thirteen out of twenty-seven analyzed apps use Kotlin as their primary language, with
another four currently in the transition phase where most of the code is still written in
other languages, mainly Java. Only one application doesn’t use these languages with
C# being represented once as a primary language (5).

0 2 4 6 8 10 12 14

Other

C/C++

Kotlin

Java

Programming language usage

Primary language Secondary language

88 5| Conclusions and results comparison

How many applications use more than one language?

Thirteen out of twenty-seven applications are using more than one language. Most of
them, five, are using Java together with Kotlin as a primary language, meaning that
they are currently in the transition phase.

Multiplatform applications and the ones that require some low-level coding (1) use a
lot of C/C++ code through JNI. This allows developers to have the same base of the app
in one code, which is then dynamically translated to other platforms, thus keeping the
consistency among functionalities. In total, four applications use C/C++ code (1, 7, 17,
18) and they all share similar characteristics when it comes to multiplatform support
and low-level access. Only one application (19) uses Scala as its secondary language.

Table 5.2: Programming languages distribution table

Java Kotlin C/C++ Other

Primary language 13 13 0 1 (C#)

Secondary
language

5 2 4
2 (Scala,
Python)

Average number of
Activities based on
a primary language

26 25 0 0

Average number of
Fragments based on
a primary language

29 38 0 0

Have any applications made the transition from Java to Kotlin?

Three of the apps (3, 7, 16) made a full transition from Java in the previous years and
use minimal to no Java code, with another three (6, 21, 23) still using some Java code.
Mozilla Fenix (Firefox) is the only large app that has made a full transition to Kotlin.
This can be attributed to the large team that Mozilla has as well as the wide popularity
among the developer community which helped out with the coding during the
process.

Complex apps with a large number of files and complex structures are still not being
refactored and translated to Kotlin. It can be concluded that the teams are unwilling to
put in the enormous effort required to do this with no direct benefit to the users.
Applications that use C/C++ code have not made the transition most likely due to the

5| Conclusions and results comparison 89

complexity of the app and a lot more refactoring that would be needed. Those apps
also contain a lot of code and are categorized as medium/large.

What is the number of Activities and Fragments in Kotlin-based and Java-based
apps?

The number of Activities and Fragments doesn’t bring too many conclusions. The
average number of Activities in Kotlin applications is almost identical to the ones
written in Java, with Kotlin having around 30% higher number of Fragments, which is
still not big enough margin to draw any major conclusions and can be attributed to the
characteristic of the dataset.

Conclusion

Java is still a number one programming language for Android, but Kotlin is rapidly
taking over. All of the apps newer than 2017 are written in Kotlin and many older ones
are being translated to Kotlin from Java.

90 5| Conclusions and results comparison

5.3. User interface (UI)
Considering that Jetpack Compose is a relatively new technology that completely
changes the way the UI works it is to be expected that it hasn’t completely caught on
yet. Unlike making the transition from Java to Kotlin, the transition from Views to
Compose is much harder to be done gradually. Views and Compose do not mesh very
well together, even though it is possible, but the whole idea behind Compose and the
way it works requires completely different architecture. Switching from Java to Kotlin
can be done gradually, as both of the languages are the same in the core, and
interoperability is very well supported. It is easy to conclude that the switch to
Compose is a much greater step for development teams and it is not clear why would
the teams do it.

Figure 5.2: UI technology distribution chart

Which technology is being used for the UI - Compose, or Views (XML)?

Out of all the analyzed apps, only two of them are using Jetpack Compose. One of
those is an additional app having a Compose version next to the Views one NotyKT
(26), and the other one already mentioned, refactored Mozilla Fenix (Firefox) (3).
Despite Compose being on the market for a few years now and having a stable version
for more than a year, no applications seem to catch on.

It is even less likely that the other non-open-source apps have transitioned to it as it
would take a lot of working hours for the whole operation, without any direct benefits
for the user.

Views (XML)
96%

Compose
4%

UI TECHNOLOGY

5| Conclusions and results comparison 91

What is the number of Activities, Fragments, and screens in the respective
technologies?

The number of Compose applications doesn’t allow for a deeper answer to this
question. In theory, Compose applications should be made with only one Activity (or
at least as less as possible) which is reflected even on the only Compose example,
Mozilla Fenix, where the most complex and the biggest application of all has the least
number of Activities. Some of the bigger XML applications from the dataset have a
much bigger (9 and 17) have a much larger number of Fragments than Mozilla Fenix
meaning that the number of Fragments could also be much lower in Compose apps.

Table 5.3: UI technology distribution table

Views
(XML)

Compose

Number of apps
using a UI
technology

26 1

Average number of
Activities based on

a UI technology
25 12

Average number of
Fragments based on

a UI technology
30 91

Average number of
screens based on a

UI technology
16 18

Conclusion

Google is most likely aware that not a lot of commercial applications are using
Compose - most likely because the developers do not want to do the entire refactoring
process like Mozilla did, with no real benefits for the users. Some of the basic examples
even showed that Compose performance is worse than View performance on
equivalent screens [34] [35]. The provided research is limited to a small number of
simple examples, but it does offer a good base for further research. What are the real
advantages of using Compose over Views (XML), other than cleaner and reusable code
for developers?

92 5| Conclusions and results comparison

Working with designers is much easier with Views, since components made in Figma,
the most used app design tool, can easily be exported in all types of formats and are
nearly seamlessly integrated into Android apps. Google also recently announced
better compose integration with Figma, a plugin called Relay [36] that will bring the
compose way of coding UI closer to designers. Whether this will be a step in the right
direction that will attract more developers and designers to the platform, is to be
determined.

The industry still clearly states that the Views using XML are the preferred technology
for the UI development.

5| Conclusions and results comparison 93

5.4. Google libraries and services

This chapter is trying to answer a simple question - how much do developers trust
Google and their services? The answer is obtained by answering several different
questions all regarding smaller modules that are made by Google. Coincidentally,
another question will be answer in this chapter – which other non-native libraries and
services are being used?

 Do these apps use the Room database?

Ever since the introduction of the Android Jetpack there has been a lot of talk among
developers on which libraries are useful. One that was needed was a local database,
which is provided by Room. It offers a great deal of flexibility, and integration with
any online database, and is relatively easy to implement. Room first appeared in the
first half of 2018 and can now be found in many apps. In the research data set, it is
located in fourteen out of twenty-seven analyzed apps. Even though the number may
not seem remarkably high, some of the tested apps do not require a local database.
Room is a tool that is used among developers.

Which Dependency Injection libraries are being used?

Fourteen out of twenty-seven applications use dependency injection libraries. Eleven
out of those fourteen use Dagger or Dagger - Hilt. The other three use Koin, which
offers some other advantages but is only supported on Kotlin. This is to be expected
since both Dagger and Dagger - Hilt are official Google DI libraries that work with
both Java and Kotlin, and even when refactoring the app and changing the language
from Java to Kotlin it serves no real purpose to also changing a DI library.

Table 5.4: Libraries and DI usage table

Library
Number of

apps using it

Room 13

ProGuard/R8 25

Dagger 5

Dagger - Hilt 6

Koin 3

94 5| Conclusions and results comparison

Google Firebase - which services are being used and which are not?

Firebase is often labeled as a set of services that are mostly used by inexperienced
developers to ease their way into development, or by smaller teams who do not have
the workforce to manually do every layer of the system. It is quite rare to see the most
popular applications that are using Firebase for database or authentication services.
None of the analyzed apps use them, most likely due to their simplicity. On the other
hand, some other services provide a set of functionalities that are more than adequate
for an average app.

Fifteen out of twenty-seven apps use some of the Firebase services. The most common
ones are Analytics, Crashlytics, and Cloud Messaging. These services provide enough
data for an average developer to know what has gone wrong with the app at certain
moments and to deliver quick messages to users through notifications. Another service
that is found in Remote Config, allows developers to make minor changes within the
app without changing any code or publishing a new version.

Table 5.5: Firebase services usage table

Firebase service
Number of

apps using it

Cloud Messaging 8

Analytics 6

Crashlytics 6

Remote Config 4

Any 15

Conclusion

Developers trust Google and are quite keen on using their services if they make the
experience easier and better. Despite some of Google's services not offering the
complexity and features of some other tools, the ease of implementation, good
support, and overall stability are more than enough to obtain many developers. With
Google investing a lot of time and money into not only improving their services but
also expanding the domain, the trend seems to be going in the direction where more
and more layers of apps are completely handled by native Google services. This could
lead to a much more streamlined developer experience and many more stable apps.

5| Conclusions and results comparison 95

5.5. Architectural and design patterns

Figure 5.3: Architectural patterns distribution chart

What is the most common architectural pattern?

The most popular architecture among the apps is the MVVM. This is in no way
connected with Compose, which is almost exclusively used with MVVM, as almost no
apps use it. MVVM has gradually taken over the market and is most often found as a
recommended architecture in guides and tutorials. There are no clean architecture
usages, which could be attributed to the fact that it rarely works well with medium
and large apps due to bad scalability.

Transition from MVC through MVP to MVVM is also visible from the numbers as only
two applications are using MVC, with seven using MVP, and thirteen using MVVM.
Seven applications are still in the transition phase or are just using more than one
pattern to better suit the needs.

Table 5.6: Architecture patterns distribution table

Architecture
patterns

Number of
apps using it

MVC 2

MVP 7

MVVM 13

Hyrbid 5

MVC
7%

MVP
26%

MVVM
48%

Hybrid
19%

ARCHITECTURAL PATTERN

96 5| Conclusions and results comparison

Which are the most common design patterns?

Using design patterns has become a standard a long time ago. Every tested app
contains more than one. Only the most used design patterns, which have been
previously mentioned in this work in the Chapter 3, have been analyzed. Behavioral
patterns like observers (which are represented by listeners), states, and iterators are so
common that there are almost no apps that use them. A similar thing can be said for
singletons, which are generally used when creating a local database, and for adapters,
which are used for adapting a certain type of data to the app.

The most common out of the rest are builders, with nineteen appearances, followed by
factories with sixteen, and the previously mentioned dependency injection with
fourteen. The least used are facades, represented by Managers, and decorators.

It is clear that design patterns are a standard and that their role of helping the
developers effectively resolve common problems is well fulfilled.

Table 5.7: Design patterns usage table

Design patterns
Number of

apps using it

Builder 19

DI 14

Singleton 26

Factory 16

Adapter 26

Decorator 7

Facade 13

Observer 26

State 26

Iterator 26

Conclusion

Most of the applications have embraced the latest ways of MVVM architectural pattern
and use a large number of design patterns. These, already established and well
documented patterns, are making both the design and execution of the app much
simpler while saving a lot of time for the developers.

5| Conclusions and results comparison 97

5.6. Conclusion
"The main hypothesis going into this work is that the latest technologies offer the most flexibility
and the best performance, with the newest applications that integrate the most recent
technologies being the easiest to use, analyze, and develop. Adding to that is that most of the
developers have or will have switched to the newer technologies knowing that they will be
supported and updated for many years, having the full backing of Google and its developers,
making development faster and easier."

Almost none of the applications use the newest technology by Google for the UI -
Jetpack Compose, which is a relatively new technology but is going to have a huge
support from Google for many years and is only going to be improved in the future.
This did not urge any developers, other than the team from Mozilla that developed
Fenix, to completely switch to it. This point about Compose also could not have been
thoroughly researched, since the first stable version of Compose came out only in 2021.
That is a noticeably brief period for an application to be developed and to gain a certain
number of stars on GitHub or downloads for Google Play which was the criteria for
making this app selection. All of the applications in this set have had their initial
release a year or more before. Most of the bigger teams that could do that amount of
work in a brief period, like previously mentioned Mozilla, tend not to have their
repositories open source. There is a possibility that newer Compose applications will
improve and grow to be more downloaded in the upcoming years. The belief is that
most of the applications that have been in development since 2021 would have used
Compose as their primary UI tool.

Kotlin as a programming language, with big backing from Google after making it the
default Android language in 2019, is more common among the newer apps. Almost all
of the apps that had initial releases in 2017 or later use Kotlin as their primary
language, which goes hand-in-hand with the hypothesis. Kotlin is much easier to learn
and use than Java and it is probably likely that new developers, and new apps, will be
even more oriented toward it.

Several applications have made partial or full transitions from Java, with some of them
still in progress. Some of the other ones have just recently begun their process and are
currently in the transitioning phase. The processes were gradual, approximately
starting around 2018 for all of them, with either only new files being done in Kotlin, or
also the old files being replaced. The industry seemed to have completely jumped onto
the Kotlin wave, although still, a fair number of older applications are to stay in Java.
This especially seems to be the case with the applications that also use some C/C++

98 5| Conclusions and results comparison

code through JNI, as their architectures tend to be more complex and are much more
difficult to refactor.

When it comes to Android Jetpack and its libraries and tools beside Compose, it
appears that it is very well accepted among the developers. Jetpack originally was not
meant to revolutionize development but rather to standardize what is already being
used in the industry and make it even more streamlined for developers. It was almost
impossible to find usages of some of the older libraries which have the Jetpack
equivalent library.

The most "modern" architecture, MVVM, is by far the most used. Almost all of the
newer applications use it, with MVP still being somewhat utilized in some of the older
ones. There also are a few instances of some hybrid architectures, which are the result
of developers trying to implement new methods without rewriting the entire code
from scratch. The rise of the popularity of MVVM cannot be contributed to the rise of
the popularity of Compose, as the apps that use Compose tend to also use MVVM due
to the state-focused architecture. MVVM is currently the most used architectural
pattern, and it appears that is not going to change in the near future.

There are still a couple of questions that need getting answered. First of the two is the
following - How many years does it take for a certain technology to become widely
used in the industry since becoming stable?

The industry seems to be following the trends and quickly catching on to the newer
technologies that offer numerous advantages when it comes to language, libraries, and
architecture. The same cannot be said about the Jetpack Compose UI, which despite
Google's enormous efforts to bring it to the market, still cannot be found very often in
any of the applications. Since the industry seems to catch on more quickly to the things
that are proven to work, another question must be asked - is Compose truly the right
choice for the UI, or are the developers refusing to change because of the lack of quality
of this technology? Regardless of the answer, one year of stable release is too short of
a period for a technology to stick. Kotlin gives a bit better approximation, with five
years of being stable and three years of being recommended by Google, it was found
in 50% of the applications with all of the recent applications seemingly catching on.
The same can be said for Android Jetpack library which is available for a similar period
of time and is being utilized very often. Anywhere between three and five years seems
to be a good approximation based on the numbers of this research.

5| Conclusions and results comparison 99

The second and final question - What is the future Android development?

When it comes to the programming language, Kotlin will most likely completely take
over and only older applications that are either made by smaller teams or do not have
any major updates will stay in Java. All of the new applications as well as a good
number of older ones will be written and translated to Kotlin. A push for Kotlin
multiplatform support will also be another strong argument for sticking to Kotlin.

As most of the applications are using many different Google services and libraries it
seems that Google has developed a range of products that are accepted and are getting
more recognition in the developer community. A growing rate of usage of these
libraries in the last few years suggest that we could, eventually, have a completely
Google-controlled Android development experience, with all of the libraries and
services being directly developed by them while offering easy integration and full
support. More complex tools are still going to be used, but most likely only by the
more complex applications, as Google’s focus seems to be on low-to-mid complexity.

Finally, if Google continues to develop Jetpack Compose in the same way it has its
other technologies, its usage could grow drastically. As Compose is the major talk of
every new Google technology update and conference, it seems that a lot of time and
effort is going into it. Only time will tell, but there should not be any surprises if in 5
years most of the apps are using Jetpack Compose and only older ones stick to Views
with XML.

 101

Bibliography

[1] "https://gs.statcounter.com/os-market-share/mobile/worldwide," 2022.
[Online].

[2] "https://gs.statcounter.com/os-version-market-share/android," 2022. [Online].

[3] "https://www.baeldung.com/kotlin/kotlin-java-performance," 2022. [Online].

[4] "https://kotlinlang.org/docs/comparison-to-java.html#what-java-has-that-
kotlin-does-not," 2022. [Online].

[5] "https://apiumhub.com/tech-blog-barcelona/java-vs-kotlin/," 2018. [Online].

[6] "https://developer.android.com/kotlin," 2022. [Online].

[7] "https://www.xenonstack.com/blog/kotlin-
andriod#:~:text=Any%20chunk%20of%20code%20written,run%20in%20a%20
Kotlin%20project," 2022. [Online].

[8] Mozilla, "https://developer.mozilla.org/en-US/docs/Glossary/MVC," 2022.
[Online].

[9] Boodhoo, "Design Patterns: Model View Presenter," August 2006. [Online].
Available: https://learn.microsoft.com/en-us/archive/msdn-
magazine/2006/august/design-patterns-model-view-presenter.

[10] Kouraklis, MVVM in Delphi, Apress, Berkeley, CA, 2016.

[11] "https://developer.android.com/jetpack/androidx," 2020. [Online].

[12] "https://developer.android.com/stories/apps/monzo-camerax," 2022. [Online].

[13] "https://developer.android.com/jetpack/androidx/explorer," 2022. [Online].

102 | Bibliography

[14] "https://developer.android.com/jetpack/compose/mental-model," 2022.
[Online].

[15] "https://developer.android.com/jetpack/compose," 2022. [Online].

[16] H. J. V. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

[17] "https://www.kodeco.com/18409174-common-design-patterns-and-app-
architectures-for-android#toc-anchor-002," 2021. [Online].

[18] "https://dagger.dev/," 2022. [Online].

[19] "https://insert-koin.io/," 2022. [Online].

[20] "https://refactoring.guru/design-patterns/adapter," 2022. [Online].

[21] "https://data-flair.training/blogs/android-application-components/," 2020.
[Online].

[22] "https://developer.android.com/guide/components/fundamentals," 2022.
[Online].

[23] "https://firebase.google.com/products-build," 2022. [Online].

[24] "https://insights.stackoverflow.com/survey/2018," 2018. [Online].

[25] "https://firebase.google.com/docs/firestore/rtdb-vs-firestore," 2022. [Online].

[26] "https://db-engines.com/en/ranking," 2022. [Online].

[27] "https://insights.stackoverflow.com/survey/2017," 2017. [Online].

[28] "https://insights.stackoverflow.com/survey/2021," 2021. [Online].

[29] "https://developer.android.com/studio/build/shrink-code," 2022. [Online].

[30] "https://en.wikipedia.org/wiki/List_of_free_and_open-
source_Android_applications," 2020. [Online].

[31] "https://www.statista.com/statistics/1296527/size-top-android-apps," 2022.
[Online].

| Bibliography 103

[32] "https://www.statista.com/statistics/793628/worldwide-developer-survey-
most-used-languages/," 2022. [Online].

[33] "https://survey.stackoverflow.co/2022/#most-popular-technologies-language,"
2022. [Online].

[34] Shelor, "https://engineering.premise.com/measuring-render-performance-
with-jetpack-compose-c0bf5814933," 2021. [Online].

[35] Arora, "https://medium.com/okcredit/comparing-jetpack-compose-
performance-with-xml-9462a1282c6b," 2022. [Online].

[36] "https://relay.material.io/," 2022. [Online].

[37] "https://support.microsoft.com/en-us/word," [Online].

[41] "https://developer.android.com/studio/releases/past-releases," 2022. [Online].

[42] "https://emulation.gametechwiki.com/index.php/Android_emulators," 2022.
[Online].

[43] "https://www.ibm.com/cloud/learn/java-explained," 2019. [Online].

[44] S. E. I. Carneige Mellon University, "What is your definition of software
architecture?," 2010.

[45] C. K. Bass, Software Architecture in Practice (2nd edition), Addison-Wesley,
2003.

[46] "ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems," 2000.

[47] Krutchen, "Rational Unified Provess," 1999.

104 | Bibliography

 105

A Appendix A

In this appendix a full analysis table is located. All of the individual applications are
provided with in-detail statistics of the analysis in the table in the chapter A.1. Chapter
A.2 consists of a table with the list of all the analyzed GitHub repositories.

A.1. Complete table of applications analysis results

106 A| Appendix A

Table A.1: Complete table of applications' analysis results

1

Brave
2

DuckDuckGo
3

Fenix
4

Orbot
5

Bitwarden
6

Kickstarter

Repository
opened/ first
release

January 2012 December 2017 June 2019 March 2017 August 2016 February 2017

Date of analysis 16th October 16th October
10th
October 16th October 16th October 16th October

Analyzed
version

v1.46.59 -
Oct 2022

v5.138.1 - Oct
2022

v105.1.0 -
Sep 2022

v16.6.2 - Jul
2022

v2022.10 -
Oct 2022 v3.5.0 - Sep 2022

Primary
language

Java Kotlin
Kotlin (Full
transition
from Java)

Java C#
Kotlin (Nearly full
transition from
Java)

Secondary
language JNI – C/C++ Java

Code size – src
folder (in MB) 38.2 13.6 29.4 1.71 1.38 14.5

Code + libraries
+ resources (in
MB)

420 48 1620 23 44 26.7

Installed app
size (MB) 239 78 257 48 55 101

Number of
depdendencies 50+ 50+ 118 25 50+ 50

UI technology XML XML Compose XML XML XML

Number of
screens

20 22 18 5 6 24

Number of
Activities
(Fragments)

25 (57) 40 (42) 12 (91) 9 (9) 0 (0) 49 (13)

Architecture MVVM
Hybrid (MVVM +
MVP)

MVC +
MVVM

MVP MVVM MVVM

Design patterns
Builders,
Factories,
Adapters

DI (Dagger),
Builders,
Factories,
Adapters,
Decorators,
Facades

Builders,
Decorators Adapters N/A

DI (Dagger),
Builders, Factories,
Adapters

Application
components

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

N/A

Activities +
Fragments,
Services, Receivers,
Providers

Firebase | Room
| Proguard (R8)

No | No |
Yes

No |Yes | Yes

Yes (
Analytics +
Crashlytics
+ Cloud
Messaging)
| Yes | Yes

No | No |
Yes

Yes (Cloud
Messaging) |
No | No

Yes (Analytics +
Cloud Messaging) |
No | No

A| Appendix A 107

7

Shadowsocks
8

Wikipedia
9

Wordpress
10

Antenna
11

NewPipe
12

Phonograph

Repository
opened/ first
release

June 2014 January 2012
December
2015

February
2014

September
2015 April 2017

Date of
analysis

10th October 16th October 15th October 16th October
15th
October

15th October

Analyzed
version v5.2.6 - Sep 2021 v2.7 - Oct 2022

v20.9 - Oct
20202

v2.7.1 - Oct
2022

v0.24.0 -
Oct 2022 v1.3.5 - Sep 2020

Primary
language

Kotlin (Full
transition from
Java)

Kotlin Kotlin Java Java Java

Secondary
language

JNI – C/C++ Java

Code size – src
folder (in MB)

1.5 17.1 34.4 33 8.43 4.27

Code +
libraries +
resources (in
MB)

40 17.4 114 160 9.28 60.5

Installed app
size (MB)

27 38 97 42 15 7

Number of
depdendencies

27 50+ 25 46 47 33

UI technology XML XML XML XML XML XML

Number of
screens 6 9 50+ 20 10 8

Number of
Activities
(Fragments)

11 (16) 47 (42) 99 (167) 11 (45) 12 (31) 14 (20)

Architecture Hybrid MVVM MVVM Hybrid MVVP MVP

Design
patterns Adapters

Builders,
Factories,
Adapters,
Facades

Builders, DI
(Dagger –
Hilt),
Factories,
Adapters,
Decorators,
Facades

Buildrs,
Factories,
Adapters,
Decorators,
Facades

Builders,
Facades,
Adapters

Builders,
Adapters,
Facades

Application
components

Activities +
Fragments,
Services,
Receivers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services

Activities +
Fragments,
Services,
Receivers,
Providers

Firebase |
Room |
Proguard (R8)

Yes (Analytics +
Crashlytics) |
Yes | Yes

Yes (Cloud
Messaging) |
Yes | Yes

Yes (Remote
Config +
Cloud
Messaging) |
Yes | Yes

No | No |
Yes

No | Yes |
Yes No | No | Yes

108 A| Appendix A

 13
Shuttle

14
Timber

15
K9

16
QKSMS

17
Signal

18
Telegram

Repository
opened/ first
release

March 2017 January 2016 January 2014 October
2015

October
2013

January 2014

Date of
analysis

15th October 15th October 16th October 16th October 15th
October

16th October

Analyzed
version

v2.0.17 - Jul 2020 v1.7 - Oct 2020 v6.202 - Jul
2022

v3.9.4 - Feb
2021

v5.53.2 -
Oct 2022

v8.8.2 - Jun 2022

Primary
language

Java Java Java Kotlin (Full
transition
from Java

Java Java

Secondary
language

Kotlin Kotlin Java JNI – C/C++ JNI – C/C++

Code size – src
folder (in MB)

5 4.45 4 5.8 62 83.7

Code +
libraries +
resources (in
MB)

170 73 176 6 63 357

Installed app
size (MB)

26 16 38 21 119 75

Number of
depdendencies

50 22 19 18 60 26

UI technology XML XML XML XML XML XML

Number of
screens

19 11 34 10 23 19

Number of
Activities
(Fragments)

9 (16) 9 (15) 30 (42) 12 (0) 73 (118) 103 (4)

Architecture MVP MVP MVVM Hybrid MVP MVC

Design
patterns

DI (Dagger),
Builders,
Adapters,
Facades

Builders,
Factories,
Adapters

Builders, DI
(Koin),
Factories,
Adapters,
Facades

DI (Dagger),
Builders,
Factories,
Adapters,
Facades

DI
(Dagger),
Builders,
Factories,
Adapters,
Decorators

Builders,
Factories,
Adapters,
Facades

Application
components

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Firebase |
Room |
Proguard (R8)

Yes (Remote
Config) | No |
Yes

Yes
(Crashylitics) |
No | Yes

No | No |
Yes

Yes
(Crashlytics)
| No | Yes

Yes
(Analytics +
Cloud
Messaging)
| No | Yes

Yes (Remote
Config + Cloud
Messaging) | No
| Yes

A| Appendix A 109

 19
Wire

20
Google I/O

21
Habitica

22
Materialistic

23
Muzei

24
OmniNotes

Repository
opened/ first
release

August 2016 February 2016 November
2015

April 2016 February
2014

August 2015

Date of
analysis

16th October 10th November 16th October 15th October 12th
October

15th October

Analyzed
version

v3.82.38 - Aug
2022

v2021 v4.02 - Sep
2022

v3.3 - Mar 2019 v3.4.1 - Jan
2022

v6.1.0 - Mar 2022

Primary
language

Java, Scala Kotlin Kotlin
(Nearly full
transition
from Java)

Java Kotlin
(Nearly full
transition
from Java)

Java

Secondary
language

Kotlin Java Python,
Java

Code size – src
folder (in MB)

45.2 5.5 12 5.35 2.76 5.12

Code +
libraries +
resources (in
MB)

50 8 19.1 51 230 91

Installed app
size (MB)

87 13 55 14 25 28

Number of
depdendencies

50+ 7 46 20 17 40

UI technology XML XML XML XML XML XML

Number of
screens

12 6 50+ 16 7 5

Number of
Activities
(Fragments)

11 (5) 5 (34) 29 (67) 23 (6) 11 (16) 13 (8)

Architecture MVC MVVM MVVM MVP MVVM MVP

Design
patterns

DI (Koin),
Factories,
Adapters,
Decorators,
Facades

DI (Dagger –
Hilt), Adapters,
Observers

DI (Dagger –
Hilt),
Builders,
Factories,
Adapters,
Facades

DI (Dagger),
Builders,
Adapters,
Facades

Builders,
Factories,
Adapters,
Facades

Factories,
Adapters

Application
components

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Activities +
Fragments,
Services,
Receivers,
Providers

Firebase |
Room |
Proguard (R8)

Yes (Cloud
Messaging) |
Yes | Yes

Yes | Yes | Yes Yes
(Analytics +
Remote
Config +
Crashlytics)
| No | Yes

No | Yes | Yes Yes
(Analytics +
Crashlytics)
| Yes | Yes

No | No | Yes

110 A| Appendix A

 25
Kotlin

Pokedex

26
NotyKT

27
Pokedex

Repository
opened/ first
release

February 2020 October 2020 December 2019

Date of
analysis

20th October 10th October 20th September

Analyzed
version

v - May 2020 v2.1.0 - Oct
2022

1.1.0 Aug 2022

Primary
language

Kotlin Kotlin Kotlin

Secondary
language

 Kotlin Java

Code size – src
folder (in MB)

4.04 1 1.63

Code +
libraries +
resources (in
MB)

68 4.03 14.6

Installed app
size (MB)

24 9 (19
Compose
version)

13

Number of
depdendencies

26 28 (38
Compose
version)

27

UI technology XML XML
(Compose)

XML

Number of
screens

2 6 3

Number of
Activities
(Fragments)

1 (0) 1 (8; 0
Compose
version)

4 (0)

Architecture MVVM MVVM MVVM

Design
patterns

Adapters, DI
(Koin)

Factories,
Adapters, DI
(Dagger –
Hilt)

DI (Dagger – Hilt),
Factories, Adapters

Application
components

Activities +
Fragments,
Services,
Receivers,
Providers

Activities
(Fragments)

Activities, Providers

Firebase |
Room |
Proguard (R8)

No | Yes | Yes No | Yes |
Yes

No | Yes | Yes

A| Appendix A 111

A.2. List of analyzed applications’ repositories
Table A.2: List of analyzed applications' repositories

App
number

App name Repository link

1 Brave https://github.com/brave/brave-browser
2 DuckDuckGo https://github.com/duckduckgo/Android
3 Fenix https://github.com/mozilla-mobile/fenix
4 Orbot https://github.com/guardianproject/orbot
5 Bitwarden https://github.com/bitwarden/mobile
6 Kickstarter https://github.com/kickstarter/android-oss
7

Shadowsocks
https://github.com/shadowsocks/shadowsocks-
android

8
Wikipedia

https://github.com/wikimedia/apps-android-
wikipedia

9
Wordpress

https://github.com/wordpress-mobile/WordPress-
Android

10 Antenna https://github.com/AntennaPod/AntennaPod
11 NewPipe https://github.com/TeamNewPipe/NewPipe
12 Phonograph https://github.com/kabouzeid/Phonograph
13 Shuttle https://github.com/timusus/Shuttle
14 Timber https://github.com/naman14/Timber
15 K9 https://github.com/thundernest/k-9
16 QKSMS https://github.com/moezbhatti/qksms
17 Signal https://github.com/signalapp/Signal-Android
18 Telegram https://github.com/DrKLO/Telegram
19 Wire https://github.com/wireapp/wire-android
20 Google I/O https://github.com/google/iosched
21 Habitica https://github.com/HabitRPG/habitica-android
22 Materialistic https://github.com/hidroh/materialistic
23 Muzei https://github.com/muzei/muzei
24 Omni Notes https://github.com/federicoiosue/Omni-Notes
25 Kotlin Pokedex https://github.com/mrcsxsiq/Kotlin-Pokedex
26 NotyKT https://github.com/PatilShreyas/NotyKT
27 Pokedex https://github.com/skydoves/Pokedex

https://github.com/brave/brave-browser
https://github.com/duckduckgo/Android
https://github.com/mozilla-mobile/fenix
https://github.com/guardianproject/orbot
https://github.com/bitwarden/mobile
https://github.com/kickstarter/android-oss
https://github.com/shadowsocks/shadowsocks-android
https://github.com/shadowsocks/shadowsocks-android
https://github.com/wikimedia/apps-android-wikipedia
https://github.com/wikimedia/apps-android-wikipedia
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/AntennaPod/AntennaPod
https://github.com/TeamNewPipe/NewPipe
https://github.com/kabouzeid/Phonograph
https://github.com/timusus/Shuttle
https://github.com/naman14/Timber
https://github.com/thundernest/k-9
https://github.com/moezbhatti/qksms
https://github.com/signalapp/Signal-Android
https://github.com/DrKLO/Telegram
https://github.com/wireapp/wire-android
https://github.com/google/iosched
https://github.com/HabitRPG/habitica-android
https://github.com/hidroh/materialistic
https://github.com/muzei/muzei
https://github.com/federicoiosue/Omni-Notes
https://github.com/mrcsxsiq/Kotlin-Pokedex
https://github.com/PatilShreyas/NotyKT
https://github.com/skydoves/Pokedex

112 A| Appendix A

 113

List of Figures

Figure 1.1: Android development timeline ... 14

Figure 2.1: MVC scheme ... 20

Figure 2.2: MVP scheme ... 21

Figure 2.3: MVVM scheme ... 22

Figure 2.4: Android Jetpack components .. 24

Figure 2.5: Button code example in XML ... 26

Figure 2.6: Button code example in Compose ... 26

Figure 2.7: View hierarchy ... 27

Figure 2.8: Crashlytics dashboard ... 35

Figure 2.9: Firebase Cloud Firestore example ... 36

Figure 4.1: Mozilla Fenix (Firefox) on Android .. 73

Figure 4.2: Mozilla Fenix (Firefox) settings on Android .. 73

Figure 4.7: Mix of Kotlin and Java files in WordPress source code 78

Figure 4.8: Mix of Kotlin and Java files in Kickstarter source code 78

Figure 4.9: NotyKT (XML) login screen ... 81

Figure 4.10: NotyKT (Compose) login screen ... 81

Figure 4.11: NotyKT (XML) main screen ... 81

Figure 4.12: NotyKT (Compose) main screen ... 81

Figure 4.13: NotyKT (XML) add note screen ... 81

Figure 4.14: NotyKT (Compose) add note screen ... 81

Figure 4.15: NotyKT (XML) added notes night mode ... 81

Figure 4.16: NotyKT (Compose) added notes night mode ... 81

Figure 5.1: Programming languages usage chart ... 87

Figure 5.2: UI technology distribution chart ... 90

Figure 5.3: Architectural patterns distribution chart ... 95

 115

List of Tables

Table 1.1: Usage of Android OS versions .. 13

Table 2.1: Java and Kotlin differences .. 17

Table 3.1: Analyzed apps listed by category ... 40

Table 3.2: Brave analysis table ... 43

Table 3.3: DuckDuckGo analysis table ... 44

Table 3.4: Mozilla Fenix analysis table ... 45

Table 3.5: Orbot analysis table ... 46

Table 3.6: Bitwarden analysis table ... 47

Table 3.7: Kickstarter analysis table .. 48

Table 3.8: Shadowsocks analysis table ... 49

Table 3.9: Wikipedia analysis table ... 50

Table 3.10: WordPress analysis table .. 51

Table 3.11: Antenna analysis table .. 52

Table 3.12: NewPipe analysis table ... 53

Table 3.13: Phonograph analysis table ... 54

Table 3.14: Shuttle analysis table ... 55

Table 3.15: Timber analysis table .. 56

Table 3.16: K9 analysis table .. 57

Table 3.17: QKSMS analysis table ... 58

Table 3.18: Signal analysis table .. 59

Table 3.19: Telegram analysis table .. 60

Table 3.20: Wire analysis table ... 61

Table 3.21: Google I/O analysis table .. 62

Table 3.22: Habitica analysis table .. 63

Table 3.23: Materialistic analysis table ... 64

Table 3.24: Muzei analysis table .. 65

116 | List of Tables

Table 3.25: OmniNotes analysis table ... 66

Table 3.26: Kotlin Pokedex analysis table .. 67

Table 3.27: NotyKT analysis table ... 68

Table 3.28: Pokedex analysis table .. 69

Table 4.1: NotyKT application XML and Compose version comparison table 80

Table 5.1: Application size table .. 85

Table 5.2: Programming languages distribution table ... 88

Table 5.3: UI technology distribution table ... 91

Table 5.4: Libraries and DI usage table .. 93

Table 5.5: Firebase services usage table .. 94

Table 5.6: Architecture patterns distribution table ... 95

Table 5.7: Design patterns usage table ... 96

Table A.1: Complete table of applications' analysis results .. 106

Table A.2: List of analyzed applications' repositories .. 111

 117

 119

Acknowledgments

I dedicate this work and my whole tenure in Milan to the one person without whom I
would have probably never had come here, Ricardo. And of course, to the people
without whom my time in Milan would have been lame – Andrea, Angelo, Emma,
Francesca, Franco, George, Gosia, Heitor, Ivana, Kristina, Laura, Margot, Martìn,
Pedro, Philipp, Rebeka, Sanja, Theresa, Tom, and most importantly, Toma, just to
name a few.

	Abstract
	Abstract in italiano
	Contents
	Glossary
	Introduction
	1 Android basics
	1.1. Short history of Android
	1.2. Android by versions (API levels)
	1.3. Android development
	1.4. Android development environments

	2 Main characteristics of technologies used in Android development
	2.1. Programming languages
	2.1.1. Java
	2.1.2. Kotlin
	2.1.3. Java vs Kotlin
	2.1.4. C/C++
	2.1.4.1. JNI
	2.1.4.2. Android NDK

	2.2. Architectural patterns
	2.2.1. MVC (Model – View – Controller)
	2.2.2. MVP (Model – View – Presenter)
	2.2.3. MVVM (Model – View – ViewModel)

	2.3. Android libraries
	2.3.1. AndroidX
	2.3.2. Android Jetpack
	2.3.2.1. Room persistence library
	2.3.2.2. Jetpack Compose
	2.3.2.3. Views
	2.3.2.4. Composables
	2.3.2.5. Composables vs Views (XML)

	2.4. Design patterns
	2.4.1. Creational patterns
	2.4.1.1. Builder
	2.4.1.2. Dependency injection (DI)
	2.4.1.3. Singleton
	2.4.1.4. Factory

	2.4.2. Structural patterns
	2.4.2.1. Adapter
	2.4.2.2. Decorator
	2.4.2.3. Façade

	2.4.3. Behavioral patterns
	2.4.3.1. Observer
	2.4.3.2. State
	2.4.3.3. Iterator

	2.5. Android application components
	2.6. Other commonly used products and services
	2.6.1. Google Firebase
	2.6.1.1. Analytics and Crashlytics
	2.6.1.2. Database (Realtime Database & Cloud Firestore)
	2.6.1.3. Remote Config
	2.6.1.4. Cloud Functions
	2.6.1.5. Authentication
	2.6.1.6. Cloud Messaging

	2.7. ProGuard (R8)

	3 Analysis results
	3.1. Analysis goals
	3.2. Problems with certain metrics during the analysis
	3.2.1. Measuring source code size and the number of files
	3.2.2. Information about the first app version release
	3.2.3. Measuring the exact number of screens
	3.2.4. Counting dependencies

	3.3. Application analysis
	3.3.1. Browsers
	3.3.1.1. Brave
	3.3.1.2. DuckDuckGo
	3.3.1.3. Mozilla Fenix
	3.3.1.4. Orbot

	3.3.2. Commercial applications
	3.3.2.1. Bitwarden
	3.3.2.2. Kickstarter
	3.3.2.3. Shadowsocks
	3.3.2.4. Wikipedia
	3.3.2.5. WordPress

	3.3.3. Media players
	3.3.3.1. Antenna
	3.3.3.2. NewPipe
	3.3.3.3. Phonograph
	3.3.3.4. Shuttle
	3.3.3.5. Timber

	3.3.4. Messaging and email
	3.3.4.1. K9
	3.3.4.2. QKSMS
	3.3.4.3. Signal
	3.3.4.4. Telegram
	3.3.4.5. Wire

	3.3.5. Other
	3.3.5.1. Google I/O
	3.3.5.2. Habitica
	3.3.5.3. Materialistic
	3.3.5.4. Muzei
	3.3.5.5. OmniNotes

	3.3.6. Tech demo
	3.3.6.1. Kotlin Pokedex
	3.3.6.2. NotyKT
	3.3.6.3. Pokedex

	4 Notable selected applications
	4.1. Mozilla Fenix (Firefox)
	4.2. Muzei
	4.3. Kickstarter and WordPress
	4.4. NotyKT - Views and Compose version
	4.4.1. Shared components
	4.4.2. Individual components

	5 Conclusions and results comparison
	5.1. Application complexity and size
	5.2. Programming language
	5.3. User interface (UI)
	5.4. Google libraries and services
	5.5. Architectural and design patterns
	5.6. Conclusion

	Bibliography
	A Appendix A
	A.1. Complete table of applications analysis results
	A.2. List of analyzed applications’ repositories

	List of Figures
	List of Tables
	Acknowledgments

