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Abstract

The Surgical Microscope (SM) is the gold standard instrument in neurosurgery. The SM
allows to visualise the surgical field and the anatomical details of the brain structures.
On the other hand, the high magnifications provided by the SM cause a very limited field
of view (FoV) that may lead to harmful operations on anatomical structures or a nearby
organ, which will affect the surgical outcome.

In the opinion of Humanitas Hospital neurosurgeons, the illustrated limitations have an
evident influence on Cerebral Cavernous Malformations (CCMs) removal and glioma re-
section.

A intra-operative system able to perform a real-time and broad exposure of the surgical
theatre could be an effective tool to support neuro-surgeons in tumour or lesions localiza-
tion and treatment.

The panorama can represent an important reference for surgeon as it allows him to observe
the brain tissue details using the SM magnifications and at the same time, to consult a
broader map of the operating field, without moving the SM.

The reconstruction and expansion process is obtained with a deep learning-based mo-
saicking framework, applied to some videos of a neurosurgical setting captured by a SM.

To the best of our knowledge, this work represents the first application of mosaicking on
neurosurgical images.

The purpose of video mosaicking is to combine consecutive frames of a video sequence,
in which each frame shows only an partial local view of the field of interest, in order to
obtain a broader view of the same scene.

The classical mosaicking approach is characterized by the following four stages: keypoints
detection and description; keypoints matching with outlier rejection; homography estima-
tion; and image warping and blending.

The peculiar conditions of a neuro-surgical setting could affect the quality of the mo-
saicking result. Indeed the presence of regular patterns (for the blood vessel’s structure),
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viewpoint changes, illumination variations, and motion blur are relevant factors that make
the classical mosaicking method not robust enough.

These issue introduces the need to find stable keypoints detectors and establish stronger
matches between the keypoints of consecutive frames; essential characteristics for the cor-
rect homography matrix estimation and the consequent mosaicking accurate development.

The proposed architecture is called NeuroGlue and it is constituted by a Fully Convolu-
tional Neural Network (named SuperPoint) for keypoints detection and description and by
an Attentional Graph Neural Network for keypoints matching. The combination between
the NeuroGlue layers stability and the domain adaptation performed during training al-
lows to achieve a promising result, both in visual terms and also in terms of 5-frames
Structural Similarity Metric (i.e. SSIM ), standing out clearly from traditional algorithms
(BRISK, ORB and SIFT) and also respect to the SuperPoint model pre-trained with the
COCO dataset.

Mosaikcing for surgical theatre expansion answers to low visibility issue in neurosurgery
with SM. Moreover its integration with navigation systems and preoperative images could
minimize the inaccuracies for lesions or tumour localization and removal, improving the
surgical outcome.

Keywords: Surgical microscope, Neurosurgery, Cerebral Cavernous Malformation, Glioma,
Mosaicking, Deep learning.
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Sommario

Il microscopio chirurgico (SM) è lo strumento maggiormente utilizzato negli interventi di
neurochirurgia.

Il microscopio chirurgico permette di visualizzare il campo operatorio e i dettagli anatomici
delle strutture cerebrali esaminate. D’altra parte gli elevanti ingradimenti causano una
riduzione sostanziale del campo visivo del chirurgo. Questa limitazione può risultare dan-
nosa per le strutture anatomiche e gli organi coinvolti, influenzando l’esito dell’intervento
chirurgico.

Secondo l’opinione di alcuni neurochirurghi dell’ospedale Humanitas di Milano, queste
limitazioni hanno un particolare effetto sulla rimozione di Malformazioni Caveronse Cere-
brali (CCM), note anche come Angiomi, e sulla resezione di gliomi.

Un sistema intra-operatorio capace di eseguire un’espansione del campo chirurgico in
tempo reale potrebbe essere un efficiace strumento di supporto per il chirurgo nel tratta-
mento e nella più agevole localizzazione di tumori e lesioni cerebrali.

Il panorama può rappresentare un importarte riferimento per il chirurgo; in quanto egli
può sia osservare i dettagli del tessuto cerebrale grazie agli ingrandimenti del microscopio
e contemporaneamente consultare una mappa più ampia dell’intero campo chirurgico,
senza dover spostare il microscopio.

La ricostruzione del campo chirurgico si realizza tramite una rete di apprendimento per
il mosaicking che riceve come input una sequenza di fotogrammi estratti da un video
eseguito con microscopio.

Al meglio delle nostre conoscenze, questo lavoro rappresenta il primo tentativo di appli-
cazione della tecnica del mosaicking a immagini neurochirurgiche.

Il processo di mosiacking mira a combinare una sequenza di immagini dove ognuna è
caratterizzata da una visione parziale del campo di interesse. L’obbiettivo è quello di
ottenere una rappresentazione più ampia della scena, la quale prende il nome di mosaico.

La metodologia classica del mosaicking comprende quattro fasi: rilevamento e descrizione
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di punti chiave, identificazione delle corrispondenze tra i punti chiavi di fotogrammi
consecutivi con eliminazione degli outlier, stima dell’omografia e infine trasformazione
e unione delle immagini.

Le condizioni peculiari di un ambiente neurochirurgico rappresentano un ostacolo rilevante
per la corretta esecuzione del mosaicking. Infatti la presenza di schemi ripetitivi (dati dalla
struttura dei vasi sanguigni), variazioni di illuminazione e sfocatura da movimento nelle
immagini, sono fattori che rendono i metodi tradizionali non sufficientemente robusti.

Questa problematica introduce il bisogno di utilizzare rilevatori e descrittori di punti chi-
ave stabili e di calcolare corrispondenze più robuste tra i punti chiave di immagini consec-
utive. Queste sono caratteristiche essenziali per eseguire una corretta stima dell’omografia
e il conseguente sviluppo accurato del mosaico.

L’architettura proposta prende il nome di NeuroGlue ed è costituita da una Rete Neurale
Convoluzionale (chiamata SuperPoint) per il rilevamento e la descrizione dei punti chiave,
e da una Rete Neurale a Grafo Attenzionale per la fase di calcolo delle corrispondenze.
La combinazione tra la stabilità di NeuroGlue, data dalla struttura della rete, e la pro-
cedura di adattamento al dominio eseguita durante la fase di allenamento, permette di
ottenere un risultato promettente, osservabile sia visivamente ma anche in termini di met-
rica di similarità strutturale calcolata ogni 5 fotogrammi (indicata come SSIM ). Dunque
il metodo proposto si distingue chiaramente rispetto agli algoritmi tradizionali (BRISK,
ORB e SIFT) e anche in relazione alla rete neurale SuperPoint, pre-allenata con il dataset
COCO.

La tecnica di mosaicking applicata all’espansione del campo operatorio risponde adeguata-
mente ai problemi relativi alla scarsa visibilità in neurochirurgia con microscopio. Inoltre
la sua integrazione con i sistemi di navigazione e con le immagini preoperatorie potrebbe
minimizzare le inaccuratezze riscontrate nella localizzazione e nel trattamento di lesioni
cerebrali e tumori, migliorando l’esito dell’intervento chirurgico.

Parole chiave: Microscopio chirurgico, Neurochirurgia, Malformazione caveronsa cere-
brala, Glioma, Mosaicking, Deep learning.
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1| Introduction

1.1. Clinical context

Cerebral Cavernous Malformations (CCMs), also called Angiomas or Cerebral Cavernous
Angiomas, are vascular lesions consisting of clusters of abnormally dilated blood vessels,
also called caverns. These caverns have a typical raspberry appearance and they leak
due to defects in the endothelial cells and in other structural components, required for
vessel wall integrity. Lesion size is variable, ranging from microscopic to a few inches in
diameter. [1]

The CCM appearance is caused by loss-of-function mutations to one of three CCM genes
known as CCM1/KRIT1, CCM2/malcavernin or CCM3/PDCD10.

Angiomas occur in both sporadic and familial forms. Patients with familial CCMs typ-
ically have multiple malformations, with a correspondingly higher risk of complications.
In contrast, the sporadic form is characterised by only a single lesion. In the familial
CCM, even if all the endothelial cells present the gene mutation, the malformations are
only found in a few localised regions of the brain microcirculation. Furthermore, it has
been shown that, for human sporadic CCM, only a small fraction of endothelial cells has
a mutation for the CCM genes. [2] These differences can be observed in Fig. 1.1. [3].

Subjects may be asymptomatic (quiescent state) or present a wide variety of symptoms
including seizures, intracranial haemorrhages, or focal neurological deficits. [1]

The underlying pathology is reflected radiographically on Magnetic Resonance Imaging
(MRI). [4]

The prevalence of CCM is not exactly known because the diagnosis can be made only
with brain imaging or autopsy. Estimates from autopsy studies and MRI analysis suggest
a frequency of 0.16% to 0.9%. [5]

The standard treatment is the neurosurgical excision, so the surgical removal of these
lesions. [1] A complete resection of the lesion is mandatory because the presence of
residuals increases the risk of haemorrhage and seizures.[6]
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Figure 1.1: This image illustrates the difference between the familial and the sporadic
CCM. The upper part of the image describes the familial CCM, characterized by several
lesions. The down part shows the sporadic CCM, that presents only one cavern. The
symptoms occur when the lesion size increases.

Glioma is one of the adults’ most common primary malignant brain tumors. It can occur
anywhere in the central nervous system but primarily in the brain.

They typically arise from glial tissue or precursor cells and develop into astro-cytoma,
oligodendroglioma, ependymoma, or oligoastrocytoma.

According to the World Health Organization (WHO) classification, gliomas are catego-
rized into four grades, among which grade 1 and grade 2 gliomas indicate a lower risk
ones, and grade 3 and grade 4 gliomas indicate higher risk glioma. [7]

Glioblastoma is the most frequent grade 4 glioma, whose average age-adjusted incidence
rate is 3.2 per 100, 000 population, as reported in [8]. In Fig. 1.2 an example of glioblas-
toma is illustrated with the corresponding post-operative situation which shows some
small residuals. [9].

The presentation of a patient with glioma can vary greatly depending on the size and
location of the tumour and on the anatomic structures of the involved nervous tissue.
Also, for this reason, the glioma individuation is problematic; the common way, indicated
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by the WHO, to confirm a diagnosis is the histologic analysis. [10]

The standard of care for gliomas includes maximal resection followed by concomitant
radiotherapy and chemotherapy, especially in the 30 days after surgery. [7]

Figure 1.2: The figure shows the pre- (A) and immediate post-operative (at 24 hours)
axial MRI (B). In the pre-operative image, an example of glioblastoma is present. In the
post-operative image there is a minimal residual of the tumor.

The surgical resection is associated to several risks depending on the position and on
the severity of the tumour. Most of the glioma surgery entails a standard craniotomy
approach for its complete removal. The correct tumour localization and its overall view
during the surgical treatment are necessary to reach a successful outcome. [11]

For the investigated surgical procedures and in general in the neurosurgery scenario, the
surgical microscope (SM) is involved. [12]

The SM is the gold standard instrument in neurosurgery. [13] Indeed it allows to visualise
the surgical field and the anatomical details of the brain structures, with the correct
illumination. On the other hand, the high magnifications provided by the SM cause a very
limited field of view (FoV) that may lead to harmful operations on anatomical structures
or a nearby organ, which will affect the surgical outcome, reduce organ preservation, or
even cause life-threatening consequences. [13, 14]

During the surgical operations intra-operative navigation systems are needed to detect the
tumor or lesion position. They provide the rigid body transformation from the coordinate
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system of the preoperative image to the coordinate system of the patient during surgery.
[15] However registration errors due to this navigation systems may occur. In particular,
the brain shift, which is a nonrigid brain deformation caused by craniotomy, reduces the
alignment accuracy. [16]

In the opinion of Humanitas Hospital neurosurgeons, the illustrated limitations have an
evident influence on Cerebral Cavernous Malformations (CCMs) removal and glioma re-
section.

An example of the real surgical environment is represented in Fig. 1.3 and a schematic
scenario is shown in Fig. 1.4.

Therefore a reduced FoV could prevent the surgeon from having a complete view of the
brain tumour or the lesion, and the navigation system errors may affect their localization.
These are relevant factors that make neurosurgical procedures still challenging.

A intra-operative system able to perform a real-time and broad exposure of the surgical
theatre could be an effective tool to support surgeons in tumors or lesions localization and
treatment. Computer Assisted Intervention (CAI) is a powerful ally to deal with these
types of challenge, especially through new developing techniques like Artificial Intelligence
(AI) and Deep Learning (DL).

In particular mosaicking can be applied to extend the neurosurgical FoV, limited by the
SM magnifications, by creating a panorama of the surgical environment.

This expansion of the operative field can be practised at any stage of the surgical in-
tervention even if it was primarily tested to be applied in the early stage, generating a
reconstruction of the brain superficial layers.

It is obtained performing a video registration of the FoV using the microscope, without
the need to introduce a new sensor or a new device respect to the ones already present
in the operating room. The panorama is visible in real-time and it can represent an
important reference for the surgeon during the procedure.

Indeed the surgeon can work on the brain anatomy, observing each details, thanks to
the high magnifications of the SM, and at the same time he is able to have a broader
view of the entire scene, without further moving the microscope, storing the hand-held
instruments or changing the magnifications during the procedure, reducing significantly
the timing of surgery.

This tool could be involved in the surgical procedures thanks to its easy application for
surgeons and because its employment is almost independent from surgeons actions or from
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Figure 1.3: The figure illustrates a classical neurosurgical setting, characterized by the a)
Surgical Microscope (SM), which provides an b) adequate illumination and is used by the
surgeon to achieve a detailed view of the nervous tissues. In the image it is underlined the
c) Surgical Field obtained with the SM and the d) Neuro-Navigation Systems, necessary
for the lesion or tumor localization. The image was taken in a surgical room of Humanitas
Research Hospital of Milano.

the occurrence of unexpected events such as a sudden movement of the SM.

These fast movements, caused for example by impacting the microscope during the reg-
istration of the surgical field, could affect the mosaicking outcome. [17] However the
proposed method is able to eliminate the results obtained during the impact and restore
the panorama previously recorded, without the need to start a new registration.
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Figure 1.4: Schematic representation of the neurosurgical setting that puts into evidence
the limited FoV, projected in the screen, the SM structure with the provided illumination
and the navigation systems; taking inspiration from the real environment illustrated in
Fig. 1.3.
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1.2. Disclosure

The aim of this thesis is to implement a deep learning-based mosaicking framework ob-
tained from videos of different neurosurgical settings, captured from a surgical microscope.
The mosaicking approach is applied to expand the surgical field of view and support the
surgeon during the operation, improving the surgical outcome.

This work was developed at NearLab in Politecnico di Milano in collaboration with Hu-
manitas Research Hospital of Milano which made available the required technologies for
this project.
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The purpose of video mosaicking is to combine different images, in which each one shows
only a partial local view of the field of interest. It allows to obtain a broader view of the
same scene. [17]

The classical mosaicking development is divided in four stages: i) Keypoint detection and
description; ii) Keypoint matching and Outlier rejection; iii) Homography estimation; and
iv) Image warping and blending, as it is illustrated in Fig. 2.1. In this process every step
is essential for the correct execution of the next ones. [18]

The first step to be applied is the feature-detector, an algorithm that searches for key-
points into an image. Keypoints represent the most significant pixels of a considered
image and can range from a single pixel to edges, contours, blobs, junctions and lines.

The detected keypoints are subsequently described in logically different ways based on
unique patterns possessed by their neighboring pixels. This process is called feature
description as it describes each keypoint by assigning it a distinctive identity which is
represented with a vector that allows the effective keypoint recognition for matching. [18]

There are some keypoint detection algorithms that include also the description phase;
instead other detectors have to be integrated and coupled with a descriptor algorithm.

Considering a frame pair, keypoints detection and description are applied in each image
of the pair. Two sets of points (with their spatial coordinates) and descriptors vectors
are obtained as output. These sets are characterized by a point-to-point correspondences,
essential for matching. [19]

The next stage of the mosaicking process is the keypoint matching, which aims to establish
correct feature correspondences from the two extracted points sets. [20]

Afterwards RANdom Sample Consensus (RANSAC) and Levenberg-Marquardt (LM) al-
gorithm are jointly applied to estimate the homography. The objective of RANSAC is to
select the optimal set of keypoints and filter out outliers that do not fit with a defined
type of transformation. [21] Image warping and blending are then performed by com-
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Figure 2.1: The classical four stages of image mosaicking are represented in this diagram:i)
Keypoint detection and description; ii) Keypoint matching and Outlier rejection; iii)
Homography estimation; and iv) Image warping and blending. In this figure, the steps
are applied to an image pair (image A and B) in order to obtain a panorama image.

bining the two images, basing on the homography matrix previously computed until all
matched feature points are aligned. In this way, a partial panorama is obtained. [22]

In the next sections some methods for keypoints detection description and matching,
presented in literature, are described.

2.1. Keypoints Detection and Description

Since the very beginning of computer vision, feature detectors have occupied an important
place in the research due to their numerous applications in such areas as object recognition,
categorization, classification, robot localization and tracking, image matching and 3D
reconstruction, image retrieval, registration, etc [22].
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The research on feature detectors and descriptors is a fast growing area in image pro-
cessing. The following section has been arranged chronologically to explain the gradual
improvements in feature detection, as well as the evolution and limitations of comparative
studies. [22]

The first corner detection algorithm was designed by Moravec in 1977 [23]. Harris and
Stephens [24] revealed the limitations of this detector with their popular corner and edge
detector (better known as Harris corner detector). It is based on the local auto-correlation
function of the image for measuring the intensity differences between a patch and windows
shifted in several directions.

Lucas and Kanade proposed a popular method, further developed by Tomasi and Kanade
[25], often called the Kanade–Lucas–Tomasi feature tracker. This method allows to track
the small motion of features in an image stream and it takes inspiration from the Harris
and Stephens detector.

In the same decade other algorithms were designed, such as the one proposed by Heitger
in [26] and the framework for low level feature extraction presented by Forstner in [27].

Shi and Tomasi [28] proposed a new detection metric (Good Features To Track or GFTT)
based on the Harris operator, arguing that their model was a better choice. A completely
new approach, called SUSAN, was also proposed in [29]. However, the illustrated opera-
tors of SUSAN fall short when rotation and scaling are involved. In 1998 a comprehensive
review of a number of popular detectors is presented in [30]. The authors compare Harris
corner detector to other algorithms previously mentioned in [26] and [27]. Later, Schmid
et al. [31] revised the comparison method originally proposed, and conducted a number
of qualitative tests. The test results indicated that the Harris operator (which is the basis
of Harris corner detector) is the best among the compared methods.

Hall et al. [32] provided a definition of saliency, underlying that the most salient or
discriminant image features are those that allow to distinguish one feature from others.
An image feature that is present in only a single image or on a single object would allow to
distinguish this image or object from all others. Moreover Hall et al. evaluated Harris, the
method proposed in [33] regarding feature detection with automatic scale selection and
Harris–Laplacian corner detector [34]. Harris–Laplacian is a combination of the Harris
and Laplacian function for characteristic scale selection.

Driven by the need for a scale-invariant approach, Lowe [35] proposed one of the most
popular feature detectors: the Scale Invariant Feature Transform or SIFT. SIFT is a
combination of feature point detector and descriptor.
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In this method, keypoints are extracted from the image in two steps. First, the image
is repeatedly smoothed using Gaussian filters and subsampled to find images in smaller
scales. In this way, an image pyramid is constructed with the reference image at the ground
level (first octave). Second, keypoints are discovered in the 3× 3× 3 neighborhood of any
pixel at an intermediate level. These points are obtained from the image points where
the Difference-of-Gaussians (DoG) values attain an extreme (minimum or maximum).
This architecture gives scale and rotation invariance to the algorithm. [22, 36] Fig. 2.2
represents the SIFT detection structure.

Figure 2.2: The figure shows the detection procedure of SIFT. A) is an example of Gaus-
sian pyramid and of Difference-of-Gaussians (DoG). B) represents the search for extremes
[37].

SIFT involves also the descriptor computation for the keypoints. The descriptor is related
to the orientation of each detected key-point that is obtained using the point’s gradients.
In particular the gradients are rotated by the computed orientation and an histogram is
created for each sub-region. [37] A common implementation is based on a 4×4 descriptor,
as Fig. 2.3 illustrates, characterized by 8 different orientation vectors. [36, 37]

To resume, the SIFT descriptor is a position-dependent histogram of the local image
gradient directions around the keypoints. [22] This feature detection algorithm is one of
the most stable and precise between the ones illustrated in literature. [37]

Mikolajczyk and Schmid [38] compared the SIFT descriptor and a number of related
descriptors, proving SIFT to be one of the best feature detectors based on the strength
of its descriptor.

Harris and SIFT have been well explored and improved by several researchers [39–41].
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Moreels and Perona [42] compared Harris, Hessian, and difference of Gaussian filters on
images of 3D objects with different viewpoints, lighting variations, and scale variations.
They differentiated between detectors and descriptors, using SIFT, PCA-SIFT, steerable
filters, and shape context descriptors. They found a good match of detector and descrip-
tor. In particular PCA-SIFT (Principal Component Analysis-SIFT) was developed to
improve SIFT, projecting high-dimensional samples into a low-dimensional feature space
and reducing the computational costs carried with Lowe’s implementations. [43]

Figure 2.3: The figure represents the SIFT descriptor procedure [37].

In the following years several feature detectors were suggested taken inspiration from the
SIFT algorithm.

Maximally Stable Extremal Regions (MSER), proposed by Matas et al. in [44], is a
method able to detect blobs in images. The key points detection is based on a connectivity
analysis, indeed it is performed by computing connected maximal and minimal intensity
regions. A fast implementation of MSER can be found in [45].

Speeded Up Robust Features (SURF) is a scale and rotation-invariant feature detection
and descriptor algorithm designed by Bay et al. [46]. The SURF detector is very similar to
SIFT and it is found on each keypoint by orientation assignment and descriptor component
analysis. [22]

Rosten and Drummond [47] described Features from Accelerated Segment Test (FAST)
detector. FAST algorithm aims to find points of interest in an image and is specialized
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in corner detection. The corner selection is done through some criteria which together
create a decision tree in order to correctly classify all the corners. [22]

In particular FAST corner detector uses a circle of 16 pixels (a Bresenham circle of radius
3) to classify whether a candidate point p is actually a corner. Each pixel in the circle is
labeled from integer number 1 to 16 clockwise. If a set of N contiguous pixels in the circle
are all brighter than the intensity of candidate pixel p (denoted by Ip) plus a threshold
value t or all darker than the intensity of candidate pixel p minus threshold value t , then
p is classified as corner. (Fig. 2.4) [48] Defining S, a set of N contiguous pixels and Ix,
the intensity of the pixels belonging to S, the conditions can be written as follows:

Condition 1 : ∀x ∈ S, Ix > Ip + t

Condition 2 : ∀x ∈ S, Ix < Ip − t
(2.1)

There is a tradeoff of choosing N , the number of contiguous pixels and the threshold value
t. On one hand the number of detected corner points should not be too many, on the
other hand, the high performance should not be achieved by sacrificing computational
efficiency. Usually N is chosen as 12. [48]

Figure 2.4: The figure represents the ORB detection mechanism, namely the FAST
algorithm.[48].

Center Surround Extremas (CENSURE) is a detector proposed by Agrawal et al. [49]
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based on two criteria: stability (persistence of features across viewpoint changes) and
accuracy (consistency of feature localization across viewpoint changes). The feature de-
tection is characterized by a method called Hessian–Laplacian.

Binary Robust Independent Elementary Features (BRIEF) was developed by Calonder
et al. [50] in 2010. It is an attractive descriptor of binary strings that allows to extract
descriptors from feature points for image matching. BRIEF is used a common descriptor
for those detectors that don’t have their own descriptors, such as FAST, CENSURE, and
MSER.

It employs simple tests using intensity difference to create binary feature vectors that
effectively describe key points in a pair of images. Before executing binary tests, images
are smoothed using a Gaussian kernel at a pixel level, reducing noise sensitivity. The
obtained binary strings with BRIEF only require between 128 and 512 bits, a relatively few
number of bits compared with other state-of-the-art feature descriptors. The Hamming
distance is employed for evaluating the ranking of descriptors, instead of the Euclidean
distance, since it is easier to calculate. Although construction and matching for this
descriptor is faster than other state-of-the-art ones, does not provide rotation and scale
invariance, but tolerates just small amounts of rotations. [36]

Fusing together the FAST and the BRIEF algorithms the Oriented FAST and Rotated
BRIEF (ORB) detector and descriptor is obtained. It was proposed by Rublee et al.
[51] as a valid alternative to SURF and SIFT. The ORB descriptor modifies the FAST
extractor adding an orientation component through first-order moments in a local patch.
Then the BRIEF descriptor is computed on a rotated patch order to deal with the lack
of rotational invariance. [52]

Another important feature detector and descriptor is the Binary Robust Invariant Scalable
Key-points (BRISK), designed by Leutenegger et al. [53]. In this method, points of
interest are first identified using a saliency criterion. Next, a sampling pattern is applied
to the neighborhood of each of these detected key points to retrieve the orientation and
so the descriptor.

It is based on a scalespace FAST method; in particular, it takes the input image c0 to
create a multiscale space with n octaves ci and intra-octaves di, where i goes from 0.1 to
n − 1 and normally n = 4. To find the keypoints, a circular mask consisting of 8 points
is used. If an adequate number of pixels is larger or smaller than the central one, it is
taken as a candidate key-point. This process is performed in each octave and intra-octave
separately to identify potential corner points [54].
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The candidate points are compared with their neighbors in the same layer and in the
upper ci+1 and lower ones ci−1, as shown in Fig. 2.5. Thus, points are evaluated on
different planes and scales accordingly. After obtaining the keypoints at different scales,
they are used for the construction of the descriptor.

Figure 2.5: The figure represents the BRISK detection mechanism: a potential keypoint
is identified in the octave by comparing 8 pixels of a neighbourhood ci as well as the
corresponding patches of the immediately adjacent layers above ci+1 and below ci−1. [54].

Thus, on these k points in the input image a sampling pattern of n samples is used,
usually (n = 60) consisting of four circles. Then, a Gaussian smoothing is performed with
standard deviation equal to the distance between the points of the same circle (Fig. 2.6). In
addition, the local gradient over the k is calculated and the estimation of the direction of k
is obtained. This mechanism gives to the method, rotation invariance. The description of
point k is formed by the bit vector dk which is assembled from the short-distance pairwise
intensity comparisons. Finally, to compare two BRISK descriptors, the Hamming distance
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is employed. [22]

Figure 2.6: The figure represents the BRISK description mechanism. Sampling pattern
with n = 60 points is shown; the small blue circles denote the sampling locations and the
red dashed circles are the Gaussian kernels that are used to smooth the neighbourhood.
[54].

Fast Retina Key-point (FREAK) is a binary feature descriptor, suggested by Alahi et
al. in 2012 [55]. It is inspired by the human visual system, or more precisely, by the
retina. The binary descriptor is produced with the retinal sampling grid that is a circular
pattern which has a higher density of points near the center. Indeed A human vision-like
search (called a saccadic search) is used to select relevant features. Moreover FREAK
compensate rotation changes measuring the orientation in a similar way to BRISK.

Alcantarilla et al. illustrated the KAZE algorithm [56] which consists of detecting and
describing 2D features in a non-linear scale space to obtain better distinction and location
precision. This detection method is based on the calculation of the Hessian matrix and
the description is made computing the key point orientation. KAZE descriptor is invari-
ant to scale and rotation, but it is computationally expensive. For this reason AKAZE
(Accelerated-KAZE) was implemented by the same authors [57] to improve the previous
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method. As the name indicates it is an accelerated version of KAZE, providing similar or
even better performances in some scenarios.

In the last decade, several reviews have been conducted. One of the most relevant work
was published by Mukherjee et al. in 2015 [22]. The authors showed a comparison between
some combinations of detectors and descriptors in a practical scenario. The analysis is
based on the algorithm invariance against image transformations such as illumination
changes, blurring, rotation, scaling, viewpoint changes, exposure, combined scaling and
rotation, and combined viewpoint changes. The considered architectures are the following:
BRISK, CENSURE+BRIEF, FAST+BRIEF, MSER+BRIEF, ORB, SIFT and SURF.
The comparison was made in terms of average positional error and computational time
for motion recovery. It shows that ORB was characterized by the lower computational
cost but the worst accuracy in scaling as opposed to SIFT.

In 2018 Tareen et al. [18] evaluated accurately the performance of several feature de-
tectors and descriptors applied in the image registration scenario. This article presents
an exhaustive comparison of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. The ex-
perimental results provide rich information and various new insights that are valuable
for making critical decisions in vision based applications. The comparison is provided
on different levels. SIFT, SURF, and BRISK are found to be the most scale invariant
feature detectors that have survived wide spread scale variations. ORB is found to be
the least scale invariant. ORB, BRISK, and AKAZE are more rotation invariant than
others. ORB and BRISK are generally more invariant to affine changes as compared to
others. SIFT, KAZE, AKAZE, and BRISK have higher accuracy for image rotations as
compared to the rest.

Win and Kitjaidure [58] applied the image stitching methodology based on features detec-
tion, description and matching in the biomedical field. This feature-based system is used
to stitch high-resolution biomedical images with a short processing time. The process
is divided five stages: pre-processing, feature extraction, feature matching, homographic
estimation, and image stitching. In the feature detection stage, a method based on ORB
features is considered and compared to many different feature detectors, such as Harris
Corner Detector, SIFT, and SURF technology.

2.2. Keypoints Matching

Correspondences between points in images are essential for estimating the 3D structure
and camera poses in geometric computer vision tasks such as Simultaneous Localization
and Mapping (SLAM) and Structure-from-Motion (SfM). Such correspondences are gen-
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erally estimated by matching local features, a process known as data association. [19]

Three feature point matching algorithms commonly used in literature are: Brute Force
matching algorithm (BF), K-Nearest Neighbors (kNN) and Fast Library for Approximate
Nearest Neighbors (FLANN). Their performances vary basing on the feature detector and
descriptor with which they are coupled.

The matching process of BF consists of taking the descriptor of one feature in the first
set (referred to xm) and matching it with all other features in the second set (referred to
xr). The correspondence is done calculating the distance between the points, finally the
closest key point is returned and the match is completed. This is computed for all the
keypoints detected in the two images. Different types of distance can be implemented
for this purpose. The metric distance used by default is the Euclidean distance (Eq. 2.2)
between two vectors M and R, where M is the set of key points of the frame xm and R

is the set of key points of the frame xm. Another metric that is often involved to perform
the BF matching is the Hamming distance. The Hamming distance (Eq. 2.3) Hamm(M ,
R) between the features vectors M and R, both of length n, is the number of positions u
such that M(u) is different from R(u) and is a value from 0 to n. [59, 60, 60].

dist(M,R) =

√√√√ n∑
i=o

(Mi −Ri)2 (2.2)

Hamm(M,R) =
n∑

i=0

(Mi == Ri)?1 : 0 (2.3)

KNN method follows the same principle of BF matcher. It considers the keypoints de-
scriptors of xm and xr and it searches for the k best matches in the nearest neighbour set
of pixels around the points of interest. This is employed through a k-d tree, which is a
binary multilevel tree where each note represents a subfile of the query descriptors. Then,
the Euclidean distance (Eq. 2.2) between the descriptor vectors is calculated. Finally, a
good match is detected if it meets the condition proposed by Lowe, expressed in equation
below. [59]

Lowe′s Condition =

if dist(M,R) ≤ M − 0.7R Good Match

if dist(M,R) > M − 0.7R Reject Match
(2.4)
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Where the value 0.7 is a threshold selected by the user.

To resume, respect to the BF matching algorithm, which returns the best match, KNN
gives the k best matches, where k is indicated by the user. [61]

The FLANN feature matcher includes a set of algorithms for fast nearest neighbour search
in large data sets and high-dimensional features. In the process of feature point matching,
the procedure of FLANN is using the selected algorithm to calculate and find the specific
feature point with the nearest distance of descriptors as the matched feature point.

In conclusion the BF and the KNN algorithm work well for small sets of key points, but
they tend to be slower when the quantity of features increases. However, FLANN shows a
lower computational cost with a large set of keypoints, respect to the other two methods.
[59]

For example Noble et al. delineated a comparison of OpenCV’s feature detectors and
feature matchers. [62] SIFT, SURF, BRISK, ORB, KAZE, and AKAZE feature detectors,
coupled with BF and FLANN feature matchers, have been implemented. The evaluation
of their performances was based on the number of features detected and detection time
related to the number of features matched and the matching time. In conclusion they
noticed that BF is the algorithm that matches more features and the combination of
BRISK and BF provided a reasonable balance between the number of features detected
and matched and a relatively short computation time.

Among all these algorithms, the commonly used is SIFT because of its stability to rotation
and scale. However it is not possible to establish the best method or an ideal one for
specific purposes also because each feature detector presents some issues. For example
SIFT is characterized by scale and rotational invariance but is associated to an higher
computational cost. On the contrary ORB is faster in key points detection but less
accurate.

keypoint detection, description and matching phase are connected because the final result
is highly dependent on their coupling. Moreover the use of a feature detector reduces
the search space of matching, for this reason it could be better to implement a unique
architecture which faces to this problem. [63]

In addition a traditional feature detector may fail to extract enough keypoints in spe-
cific settings characterized by various factors such as poor texture, repetitive patterns,
viewpoint change, illumination variation, and motion blur. These problems make also the
matching phase particularly challenging. [19] These conditions are especially prominent
in neurosurgical environments, where low-texture regions or repetitive patterns sometimes
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occupy most areas in the field of view. Without repeatable keypoints, it is impossible to
find correct correspondences even with perfect descriptors. [63]

2.3. Learning Based Methods

Deep learning (DL) has achieved rapid developments in computer vision and image pro-
cessing such as object detection, image identification and image classification. DL can be
used in the method of image registration that is classified into the intensity-based method
and the feature-based method. In the classical deep neural intensity-based method, a
general solution is that the deep learning is used as an iterator to optimize the loss func-
tion between the reference image and the floating image to estimate the transformation
function. When the loss value reaches the required range, the transformation matrix is
obtained. [63]

To improve the invariance to deformation, semi- and selfsupervised learning is also at-
tempted using GANs and autoencoder. However, intensity-based methods are unsuitable
for large displacement problems which are handled by feature-based methods.[63]

Learning schemes have been used in feature-based image registration to detect keypoints,
describe keypoints, and to estimate transformation between images. The FAST detector
firstly uses machine learning techniques to classify a pixel point into a corner point or
not using decision trees. [64] For FAST, learning and supervised transformation have
been adopted for the high repeatability and to speed up the convergence but the principal
drawback is the learning algorithm high dependency on the training data, which could
not cover all possible corners. [63]

Another example of DL network applied for keypoints detection is the Temporally Invari-
ant Learned Detector (TILDE), proposed by Veredie et al. [65]. It designed to detect
repeatable keypoints in images with drastic illumination changes, conosidering images
captured in different conditions, such as different moments of the day, different weather
or seasons. These images constituted the training set. Then SIFT was used to detect
and locate the position of keypoints. A linear regressor is trained to predict a score map,
whose value is greater than a threshold, a keypoint is identified. Despite the promising
architecture, TILDE only remains a state-of-the-art approach for keypoints detection in
the presence of illumination changes, as it is not characterized but scale and rotation
invariance. [63]

Learn Invariant Feature Transform (LIFT) was attempted by Yi et al. [66] It is char-
acterized by a learning detection, orientation estimation, and keypoints description in a
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unified pipeline that consists of three convolutional neural networks (CNNs).The authors
claimed that LIFT can be regarded as a trainable SIFT. The training procedure concerns
the descriptor first, then the orientation estimator for the descriptor, and finally the de-
tector. LIFT is an improvement of TILDE that is learned to robustly detect features in
spite of illumination changes. However, the learning only carries on a dataset without
viewpoint and scale changes, in this way the method does not learn the scale invariance of
the detector in the training process. Although the method proposed an effective strategy
to train each component individually, resulting in running jointly, the further objection is
to look into performing the method over the whole image instead of pre-extracted patches.
[63]

DeTone et al. designed the SuperPoint architecture, inspired by recent advances in ap-
plying DL to keypoint detection and descriptor learning. [67] They described a fully-
convolutional neural network (FCNN) architecture for keypoint detection and description
trained using a self-supervised domain adaptation framework called Homographic Adap-
tation. Their aim was to compute both keypoints and descriptors in a single network
in real-time. A similar approach to Homographic Adaptation was presented by Honari
et al. [68] under the name “equivariant landmark transform.” Also, Geometric Matching
Networks [69] and Deep Image Homography Estimation [70] use a similar self-supervision
strategy to create training data for estimating global transformations. However, these
methods lack in keypoints correspondences. Moreover different from LIFT, this method
performs on full-sized images to computer interest point at pixel level and associated
descriptors in one forward pass instead of relying on preextracted patches. [63]

The principal analysed methods for keypoints detection and description are summarised
with their fundamental proprieties (invariance to scale, rotation and illumination) in Ta-
ble 2.1.

In this scenario, with the developments of DL, Ma et al. [71, 72] have reviewed and proved
that Convolutional Neural Networks (CNNs) are the mostly used deep net architectures
in keypoints detection, description, and matching in comparison with other models. The
principle of the deep learning-based detector is to construct a response map and then
search keypoints in it. Moreover the detector is trained in a differentiable way and under
the geometric transformation constraints between images. This type of method can be
classified into supervised, self-supervised, or unsupervised methods. [63]

As Abbadi et al. asserted in [73], image stitching and registration is still an important
challenge in many image processing and computer vision tasks. Unfortunately, there isn’t
still an appropriate algorithm that provides a precise and accurate panoramic image. In-
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Table 2.1: This table resumes the principal characteristics of the most relevant keypoints
detectors and descriptors presented in literature, both traditional and learning based. The
reported features detectors and descriptors are: BRISK, ORB, KAZE, SIFT, SURF, LIFT
and Superpoint. The keypoints detectors are: Harris Corner Detector, FAST and TILDE.
The keypoints descriptors are: BRIEF and FREAK. The analysed proprieties are: scale,
rotation and illumination invariance both for detection and description algorithms. [54]

Detector Descriptor
Scale Invariance Rotation Invariance Illumination Invariance Scale Invariance Rotation Invariance Illumination Invariance

Harris × ✓ ✓ - - - -
FAST × × ✓ - - - -
BRISK ✓ × ✓ BRISK ✓ ✓ ✓
ORB × ✓ ✓ ORB × ✓ ✓

- - - - BRIEF × × ✓
- - - - FREAK × × ✓

KAZE ✓ ✓ ✓ KAZE ✓ ✓ ✓
SIFT ✓ ✓ ✓ SIFT ✓ ✓ ✓
SURF ✓ ✓ ✓ SURF ✓ ✓ ✓
TILDE × × ✓ - - - -
LIFT × ✓ ✓ LIFT × ✓ ✓

SuperPoint ✓ ✓ ✓ SuperPoint ✓ ✓ ✓

deed the obtained mosaic depends strongly on the characteristics of the available dataset.
In particular the typical conditions of a surgical setting such as viewpoints change, illumi-
nation variation and motion blur, as I mentioned before, are factors likely to be responsible
for inaccuracies in the reconstruction process. However, the technology is advancing with
the aim of achieving high accuracy results.

In the biomedical scenario Bano et al. [74] proposed a deep learning-based mosaicking
framework for diverse fetoscopic videos captured from different settings such as simulation,
phantoms, ex vivo, and in vivo environments. The idea is that fetoscopic mosaicking can
help in creating an image with the expanded field of view which could facilitate the
clinicians during the twin-to-twin transfusion syndrome (TTTS) treatment. Placental
panorama is built starting from segmented vessels; but the highly dependence on the
correctness of segmentation, makes this approach problematic and not robust enough.

This thesis aims to apply the mosaicking technique to a neurosurgical setting to deal with
the presented issue of low visibility in neurosurgery environment.

The contribution of this thesis work can be summarized as follows:

1. To the best of our knowledge, it represents the first application of mosaicking on a
neurosurgical dataset.

2. A robust self-supervised method for keypoints detection and description to be com-
pared with the traditional algorithms presented in literature.

3. An attentional graph neural network based on [19], trained in a self-supervised way
on intra-operative images for keypoints matching.
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4. The management of unexpected situations in the surgical room (like accidentally
bump the microscope). These situation cause fast movements of the camera that
could damage generating mosaic. An homography check and filter is performed in
order to save the reconstruction, obtained until the unexpected event occurs.
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The purpose of video mosaicking is to combine consecutive frames of a video sequence,
in which each frame shows only an partial local view of the field of interest. It allows to
obtain a broader view of the same scene. [17]

The classical mosaicking approach is characterized by the following four stages: i) Feature
detection and description; ii) Feature matching with outlier rejection; iii) Homography
estimation; and iv) Image warping and blending. In this process each step is essential for
the correct execution of the next ones. [18]

A features detector is an algorithm that searches for keypoints into an image. Keypoints
can range from a single pixel to edges, corners, contours, blobs, junctions and lines; they
are expressed by a system of coordinates and represent the most significant pixels of the
selected image. [18]

Once the keypoints have been extracted from the image, the feature description phase is
applied. A descriptor is a vector, needed to assign to each key point a distinctive identity
which allows its effective recognition for matching. The features description is based on
unique patterns possessed by the neighboring pixels of each keypoint. [19]

Given a frames sequence, each images pair is considered. The frame pair consists of a
moving image (B) to be registered respect to the reference image (A).

Keypoints detection and description are computed for each image of the pair. The next
stage of the mosaicking process is the feature matching between the keypoints of the two
images. It aims to establish a correct correspondences from the keypoints sets. [20]

Afterwards, RANdom Sample Consensus (RANSAC) algorithm is employed for the ho-
mography estimation. The homography matrix is applied to the moving image B and it
is used to merge A with B. This step is called image warping. [18]

After this overview of the mosaikcing process, in the next sections the proposed method
is described. It is an end-to-end learning-based architecture, used to perform keypoints
detection description and matching, and it is called NeuroGlue.
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3.1. Keypoints Detection and Description

In NeuroGlue, the keypoints detection and descriptor phase are combined in a fully-
convolutional neural network (FCNN), which is called SuperPoint. [67]

In particular this network is able to detect robust and repeatable keypoints and to attach
a fixed dimensional descriptor vector to each keypoint for further processing, such as
image matching.

The first step that is applied is the dimensionality reduction of each input image, which
is performed with a single shared-encoder. The encoder consists of convolutional layers,
spatial downsampling via pooling and non-linear activation functions. After the encoder,
the architecture splits into two decoders: one for keypoint detection and the other for key-
point description. Both decoders operate on a shared and spatially reduced representation
of the input performed in a VGG-style.

In this way most of the network’s parameters are shared between the two decoders, and
this represents an evolution respect to the traditional systems. Indeed the classical meth-
ods first detect keypoints, then compute descriptors and lack the ability to share compu-
tation and representation across the two tasks. [67]

For the image pair considered, the keypoints pA and the relative descriptors (d)A for the
frame A and pB with the descriptors dB for the frame B are obtained. Fig. 3.1.

3.2. Graph Based Matching

NeuroGlue is based on an Attentional Graph Neural Network (AGNN) that concerns the
matching computation, and it takes inspiration from SuperGlue network. [19]

In the first step keypoints and descriptors obtained from the SuperPoint network, are
subsequently combined into a single vector using a keypoints encoder. In this way a first
features representation is achieved (fA

i for image A and fB
i for image B).

After the positional encoding, coarse features are the input of a module composed by a
Self Attentional layer and a Cross-Attentional layer. In neural networks, attention is a
technique that mimics cognitive mechanisms, using an encoder-decoder architecture. The
rationale of attention mechanism is to discriminate which input points are important by
assigning them a high weight factor, and to diminish less relevant point. In Self-Attention
layers the transformer concentrates on mapping meaningful points inside the same image,
while in Cross-Attention layer relevant points between the two input images are mapped
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ad enhanced. The output of the described module facilitates matching, due to the high
feature dependency on position and context. In particular the alternation of the two
Attentional Aggregration layers allows to develop the keypoints connection, making it
stronger and stable for matching. (Fig. 3.1) From this process, matching descriptors
(indicated with mA

i and mB
i ) are achieved.

The affinity between the correspondeces is defined with a score matrix (Sij), which is
built making the dot product between the matching descriptors of each image, previously
obtained.

The score matrix is used also to filter out the invalid matches and relative keypoints,
present due to occlusions and noise. This procedure is carried out with the introduction
of a dustbin, as indicated in Fig. 3.1.

Finally, the Sinkhorn algorithm is applied as an optimization layer in order to increase the
reliability of the optimal transport estimation for matching computation. Indeed optimal
transport tool is used to find the minimal cost in probability distribution data pairs.
Sinkhorn algorithm is an iterative process that normalizes the score matrix around the
rows and the columns. From the obtained result, the matches can be extracted.[19]

3.3. Homography Estimation

After that the valid matches and the correspondent keypoints are extracted, RANdom
Sample Consensus (RANSAC) and Levenberg-Marquardt (LM) algorithm are jointly ap-
plied to estimate the homography. The objective of RANSAC is to select the optimal set
of keypoints and filter out outliers that do not fit with a defined type of transformation,
and this procedure is based on the back projection error minimization.

The samples which satisfy the model are called inliers and the corresponding set consti-
tutes the consensus set. The samples which do not satisfy the model are called outliers,
that are rejected. The model which produces the larger consensus set is considered as
valid and the corresponding inliers are kept for further processing. [21]

Homography is then estimated using the openCV function cv2.estimate2DAffine() or
cv2.f indHomography(). The homography H is a 3×3 matrix, which provides the relative
transformation of B respect to A. [18, 19]

The two openCV functions receive the same inputs: the array of coordinates of the key-
points extracted from image A (pAif iltered), the keypoints coordinates detected in image B

(pBif iltered), the function cv2.RANSAC to correctly fit the data into the model and the
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Figure 3.1: Overview of the proposed framework for neurosurgery mosaicking, as described
in Chapter 3. The first block concerns keypoints detection and description phases. Each
keypoint and descriptor of the image A are indicated with pAi and dAi respectively. The
same idea is applied to the image B (Sec. 3.1). These outputs are then combined using
a keypoint encoder in order to obtain a unique feature vector for each image (fA

i and
fB
i ). Their combination is indicated with

⊕
. mA

i and mB
i are the matching descriptors

obtained from the alternation of Self and Cross Attentional Layers. The affinity between
the correspondences is represented by the score matrix Sij, which is also used to filter out
invalid matching with a dustbin. Matching optimization is performed with the Sinkhorn
Algorithm. (Sec. 3.2) Removing the key points relative to invalid matches, pAif iltered and
pBif iltered are identified and are employed for the homography estimation (H)(Sec. 3.3),
essential for image warping and blending (Sec. 3.4). Also the optional filtering stage is
represented. It is applied for the management of unexpected movements of the camera as
it is described in Sec 3.5.

ransacReprojThreshold, back projection error threshold imposed equal to 2.

The output of cv2.estimate2DAffine() is a 2× 3 matrix, which is combined to the last
row of the identity matrix to create the 3× 3 homography matrix H. Instead the output
of cv2.f indHomography() is directly H. Sperimentally it was observed that the best
results are obtained with cv2.estimate2DAffine() function.

In general the homography matrix represents the transformation between the points of
two different planes as indicated in the following equation:

 x′

y′

z′

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


 x

y

z

 (3.1)
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In the reported equation 3.1 H represent between the transformation of P ′(x′, y′, z′) re-
spect to the reference plane P (x, y, z). H presents eight degrees of freedom because it is
generally normalized with:

h33 = 1 (3.2)

or
h2
11 + h2

12 + h2
13 + h2

21 + h2
22 + h2

23 + h2
31 + h2

32 + h33 = 1 (3.3)

The homography is created combining different components: the camera intrinsic matrix
(which depends on the focal length); rotation matrices around the X,Y,Z axis and the
translation array in X,Y,Z directions. H is essential for image warping which is the
following step of the process.

3.4. Image Warping and Blending

Image warping and blending is performed combining B with A, basing on the matrix H

previously computed, until all matched feature points are aligned. It is performed using
the cv2.warpPerspective() openCV function. This function receives as input parameters,
the considered frame (B), H, and the dimension of the canvas image, in order to attach
the image B accordingly transformed basing on H in the correct position of the canvas
respect to A, already located on it. A canvas is a black image, characterized by greater
dimensions respect to the input frames, and it is used to host the generating panorama
(Fig. 3.1).

Considering a frames sequence, for example extracted from a a video, each frame pair is
considered and the same steps, described above, are applied to them.

In particular cv2.warpPerspective() function needs as input the absolute homography
matrix, which is obtained performing the product between all the relatives homographyes
(H) which characterize each image pair of the sequence.

In this way each selected frame of the sequence is transformed basing on absolute homog-
raphy matrix and then attached to the canvas in the correct position. The canvas with the
attached frame becomes the new canvas for the next frames, and this process continues
until the end of the frames sequence, obtaining a sort of map composed of smaller images,
called mosaic or stitched image. [22]
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3.5. Filtering

Neurosurgery procedures are characterized by limited movements of the microscope. In-
deed broad and rapid movements are unlikely because surgeons used to work with high
magnifications in a reduced operative field. However, it could happen to mistakenly im-
pact the microscope generating very fast movements that could make the registration
algorithm to fail. Any abnormal movements of the camera, both translating and rota-
tional, could generate distortions and reconstruction errors. For this reason a filtering
stage is implemented.

After H estimation, the Singular Value Decomposition (SVD) is performed. SVD proce-
dure is based on the matrix factorization using eigenvalues and eigenvectors.

Experimentally it was demonstrated that if an unexpected movement occur one or more
decomposed values show a steep increase characterizing an abnormal homography.

In particular with SVD, six parameters are obtained: tx and ty which reflect the translating
movements of the camera, sx and sy, related to the scaling and γ and θ that translate the
rotational transformations.

These parameters are computed as follows, considering the homography H, as indicated
in Eq. 3.1.

E =
(h00 + h11)

2
(3.4)

G =
(h10 + h01)

2
(3.5)

Hval =
(h10 − h01)

2
(3.6)

Q =
√

E2 +H2
val (3.7)

R =
√
E2 +G2 (3.8)

a1 = arctan(
G

E
) (3.9)

a2 = arctan(
Hval

E
) (3.10)

sx = Q+R (3.11)
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sy = Q−R (3.12)

θ =
a2 − a1

2
(3.13)

γ =
a2 + a1

2
(3.14)

tx = h02 (3.15)

ty = h12 (3.16)

The correlation among the different parameters is assessed by computing the Pearson’s
Correlation (ρ) reported in Table 3.1.

Table 3.1: Pearson correlation (ρ) among parameters obtained through SVD of the ho-
mography transformation computed in Sec. ??

ρ tx ty sx sy γ θ
tx 1 0.999 0.999 -0.999 0.182 0.997
ty 0.999 1 0.999 -0.999 0.169 0.996
sx 0.999 0.999 1 -0.999 0.190 0.996
sy -0.999 -0.999 -0.999 1 -0.151 -0.995
γ 0.182 0.169 0.190 -0.151 1 0.223
θ 0.997 0.996 0.996 -0.995 0.223 1

Two parameters are correlated when the value of ρ is close to ±1. For this reason γ is
selected. To achieve a more complete and robust analysis also tx is considered.

At each iteration, tx and γ are compared with two thresholds, respectively, which are
experimentally selected. An abnormal change in the homography (one or both values
are over-threshold) interrupts the registration procedure, discarding the associated frame
since a new valid frame is present. Therefore this homography check allows to restore the
mosaic, obtained before the unexpected event occurs.

3.6. Dataset

The dataset available was supplied by Humanitas Research Hospital of Milano, in which
several videos was captured from a Carl Zeiss Surgical GmbH microscope. A physical
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Figure 3.2: This image shows the characteristics of the Carl Zeiss Surgical GmbH micro-
scope. It was taken form the ZEISS company website. [75]

representation of the SM is illustrated in Fig. 3.2.

The extracted frames have original dimension of 720× 576.

In particular three videos are available: Video1 contains 1677 frames, Video2 is composed
by 667 frames (it is the shorter one) and Video3 has 3543 frames. Some frames belonging
to these videos are reported as examples in Fig. 3.3.

Images captured from a surgical setting are characterized by regular patterns (for the
blood vessels structure), viewpoint changes, illumination variations, and motion blur.
Moreover, due to the intrinsic characteristics of neurosurgical environment images of this
setting are dishomogeneous in illumination. In general the operative room is widely
illuminated but the light introduced by the SM hits specific areas of the brain, making
them brighter than the other areas of the surgical field. This characteristic is visible in
Fig. 3.3. Thus, when images are stitched together, this imbalance in the illumination
affects the reconstruction.

In general all the presented factors make the classical mosaicking methods not enough
robust and stable, and the reconstruction process challenging.
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Figure 3.3: This figure shows some frames belonging to the three extracted videos:
A)Video1, B)Video2 and C)Video3.
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4.1. Training Phase

The NeuroGlue training is performed on a dataset of 6144 non-overlapped patches with
dimension 256x256, extracted from Carl Zeiss Surgical GmbH microscope videos.

NeuroGlue is trained end to end in a supervised way [19], for 300 epochs.

The Keypoints detection and Description network training is based on a method called
Homography Adaptation. [67] It consists on the random homographies generation that are
used to warp copies of the input image and combine the results. A random homography
is generated combining less expressive and simpler transformations, as Fig. ?? shows.

Figure 4.1: This figure illustrates how to generate a random homography. The procedure
includes the composition of simpler transformations, such as rotations, scaling and sym-
metry perspective distortions. These simpler transformations are multiplied to obtain M .

The same image is deformed L times, using L different random homographies. In each
warped image the keypoints are extracted, then the images are unwarped so an inverse
transformation is applied to restore the input image and finally all the L information
obtained are merged to create the keypoints set.

The Attentional Graph Neural Network training is developed with the homography matrix
computation and random image warping.

In particular, considering one frame X selected randomly from the patches set, its key-
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points and descriptors are computed with the previously trained SuperPoint architecture.
[67]

A random warp transformation is applied to X: the image is deformed taking into account
the expected movements of the microscope camera. It is done assigning to the patch
corners new coordinates, generating random numbers between a range which is related to
the patch dimension.

Experimentally it was shown that this procedure deforms the image simulating the mi-
croscope camera movements. In this way Xwarped is obtained.

Afterwards having X and Xwarped, the homography matrix M which represents this trans-
formation is computed. This is used to map the keypoints previously calculated with
SuperPoint in Xwarped. The keypoints in the border are then filtered out.

In this way the network learns to generate correct matches, since the keypoints correspon-
dence is specially guaranteed, using the homography matrix M .

Fig. 4.2 represents two examples of matches generation during the training phase. The
images show the computed correspondences between one random patch (X) and the same
patch randomly distorted (Xwarped). It is possible to observe the two reported examples of
Xwarped ( Fig. 4.2.A.b and Fig. 4.2.B.b) are likely to resemble images obtained by tilting
and shifting a video camera.

4.2. Ablation Study

To the best of our knowledge this work represents the first mosaicking application on
a neurosurgical environment. For this reason, the analysis concerns the quality with
which the methods presented in the literature for keypoints detection and matching (both
traditional and learning based) fit a neurosurgical dataset.

The proposed method is compared with three traditional features detectors and descrip-
tors: Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated
BRIEF (ORB) and Scale Invariant Feature Transform (SIFT). These keypoints detec-
tors are coupled with the K-Nearest Neighbors (kNN) matching algorithm. [18] These
methods have been described in Chapter 2.

It was tested also the SuperGlue network coupled with SuperPoint, both pre-trained
with the COCO dataset. [19, 67] This combination represents one of the most promising
and accurate technique in the state of the art for learning-based keypoints detection and
matching, outperforming others methods for the same purpose. [54]
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It was tested also the SuperPoint network for keypoints detection, pre-trained with the
COCO dataset [67] coupled with KNN algorithm for matching. SuperPoint architecture
represents one of the most promising and accurate technique in the state of the art for
learning-based keypoints detection. [54].

The compared methods are indicated as follows:

• Method 1: BRISK + KNN (it will be called BRISK)

• Method 2: ORB + KNN (it will be called ORB)

• Method 3: SIFT + KNN (it will be called SIFT)

• Method 4: SuperPoint + KNN (it will be called SuperPoint)

• Method 5: NeuroGlue (proposed architecture, based on Superpoint and Attentional
Graph Based matching)

Experiment 4 and 5 are characterized by the same architecture for keypoints detection, but
in experiment 5 the network is adapted to a neurosurgical domain (training performed
with the surgical images). Moreover this comparison was done to underline the two
different ways to compute matches: in Experiment 4 it is execute with the classical KNN
algorithm, instead in Experiment 5 the precise coupling between the SuperPoint network
and the Attentional Graph Based matching is shown.

4.3. Evaluation Metric

For the evaluation of the panorama reconstruction, obtained with the different methods,
5-frames Structural Similarity Measure (i.e. SSIM, indicated as s in Equation 4.1) is
computed. From the frame sequence F of each video, one frame every five is selected.
From this sampled list, consecutive pairs are taken. The second frame is transformed
according to the relative transformation with the first. On the central 60% of the first
frame and the second transformed frame, the metric is computed basing on the following
equation:

si→i+n = sim
(
w(Ĩi, Hi → i+ n), Ĩi+n

)
(4.1)

where n is equal to 5, w is the warping function, sim is a similarity function, Ii is the
first image, Ii+n is the second image, and H is the relative transformation.

The reason of this 5-frames analysis is that two consecutive images would be too much
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similar due to the small camera movements. The similarity between the two frames is
expressed with a number between 0 and 1. A value close to 1 represents a high similarity
between the two frames and so a less percentage of reconstruction errors.

However the use of this metric is limited. Let’s consider one frame (Ii) to be compared
with 5th consecutive one (Ii+5). To each frame the relative homography H is applied, so
the transformed images are analysed. The final result obtained with a traditional mosaick-
ing approach, such as BRISK or ORB, shows several deformations in the reconstructed
mosaic. The presence of these errors is correlated to an homography H, characterized
by abnormal parameters, obtained after the SVD process. Two frames with an irregular
homography applied, result almost equal. In this way the SSIM computation doesn’t
reflect correctly the quality of the mosaic: since the two images are similar, the SSIM
value is close to 1, but the obtained mosaic is very inaccurate. This situation is visually
shown in Fig. 4.3.

To deal with this limitation a correction factor to s is applied. In particular at each
iteration the relative homography matrix H is decomposed with the SVD procedure.
The obtained parameters are analysed and compared with thresholds experimentally de-
termined. If the SVD parameters are over-threshold the value of SSIM is drastically
decrease to 0. The procedure is very similar to the one performed in the filtering stage,
but the chosen thresholds are different. Moreover a check about the number of black
pixels in the images is used to confirm the action.

SSIM is computed for the three traditional methods presented in literature (BRISK, ORB
and SIFT), SuperPoint and NeuroGlue. This procedure is applied for the three videos
available.

The Wilcoxon Signed-Rank test is performed in order to quantify from a statistical point
of view the difference between values of SSIM, obtained with the different methods.
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Figure 4.2: The image shows two examples of matches computation during training. The
correspondences are obtained between one random patch (A.a) and its transformation
(A.b). The same idea is applied for the example B.
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Figure 4.3: These images are related to Video3 dataset. A) is the ORB mosaic resulted
at iteration number 2780. B) is the transformed frame number 2775 and C) transformed
frame number 2780. The accuracy of the reconstruction is very low, but the two relative
frames are almost equal. This is traduced to value of SSIM very close to 1 even if the
mosaic is not adequate.
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The obtained mosaics with the five different considered methods (BRISK, ORB, SIFT,
SuperPoint, NeuroGlue) are reported in Fig. 5.1, for Video1, Fig. 5.2, for Video2 and
Fig. 5.3, for Video3.

Figure 5.1: The figure shows the mosaics obtained with A.) BRISK, B.) ORB, C.) SIFT,
D.) SuperPoint, E.) NeuroGlue. The white arrows indicates some inaccuracies and align-
ment errors in the registration. In this figure the results of video1 are reported.
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Figure 5.2: The figure shows the mosaics obtained with A.) BRISK, B.) ORB, C.) SIFT,
D.) SuperPoint, E.) NeuroGlue. The white arrows indicates some inaccuracies and align-
ment errors in the registration. In this figure the results of video2 are reported.

The accuracy of the presented methods is quantified computing the Structural Similarity
Metric (i.e. SSIM ), as described in Sec 4.3. The mean and the average are computed for
the structural similarity of each architecture; the results are reported in Table 5.1 for
Video1, Table 5.2 for Video2 and Table 5.3 for Video3. With the obtained values the
boxplots are build and represented in Fig. 5.4.

Fig. 5.5 and Fig. 5.6 show a visual example of the detected keypoints with BRISK, ORB,
SIFT and NeuroGlue (using SuperPoint network). The trend of the extracted keypoints
number is analysed respect to each frame of Video1 in Fig. 5.7.

Fig. 5.8 and Fig. 5.9 represent the relation between the number of computed matches and
the number of invalid matches respectively, and the number of frames of Video1.

These plots can be summarized with Table 5.4, which contains the average number
of extracted keypoints per frame (indicated with key), the average number of com-
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Figure 5.3: The figure shows the mosaics obtained with A.) BRISK, B.) ORB, C.) SIFT,
D.) SuperPoint, E.) NeuroGlue. The white arrows indicates some inaccuracies and align-
ment errors in the registration. In this figure the results of video3 are reported.

puted matches per frame (match), the average number of invalid matches per frame
(inv_match) and the percentage of invalid matches respect to the total (inv_match(%))
for the different tested methods (BRISK, ORB, SIFT, SuperPoint and NeuroGlue). The
number of matches and invalid matches is referred to a single frame (Xi) but obviously
it is related to a frame pair composed by Xi and Xi−1.
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Table 5.1: Mean (m) and variance (σ) of the structural similarity datasets (SSIM ) com-
puted for Video1 with BRISK, ORB, SIFT, SuperPoint and NeuroGlue methods. These
values reflect the boxplot of Fig. 5.4.

5-framesSSIM
Video 1 BRISK ORB SIFT SuperPoint NeuroGlue

Mean (m) 0.5093 0.4976 0.5105 0.3472 0.7557
Variance (σ) 0.0421 0.0416 0.0435 0.0365 0.0183

Table 5.2: Mean (m) and variance (σ) of the structural similarity datasets (SSIM ) com-
puted for Video2 with BRISK, ORB, SIFT, SuperPoint and NeuroGlue methods. These
values reflect the boxplot of Fig. 5.4.

5-frames SSIM
Video 2 BRISK ORB SIFT SuperPoint NeuroGlue

Mean (m) 0.5284 0.4957 0.7839 0.5478 0.7351
Variance (σ) 0.0387 0.0311 0.0111 0.0060 0.0136

Table 5.3: Mean (m) and variance (σ) of the structural similarity datasets (SSIM ) com-
puted for Video3 with BRISK, ORB, SIFT, SuperPoint and NeuroGlue methods. These
values reflect the boxplot of Fig. 5.4.

5-frames SSIM
Video 3 BRISK ORB SIFT SuperPoint NeuroGlue

Mean (m) 0.4858 0.4737 0.7361 0.5598 0.7611
Variance (σ) 0.0390 0.0567 0.0205 0.0161 0.0173

Table 5.4: The average number of extracted keypoints per frame (key), the average num-
ber of computed matches per frame pair (match), the average number of invalid matches
per frame pair (inv_match) and the percentage of invalid matches respect to the total
(inv_match(%)) are reported for the investigated methods (BRISK, ORB, SIFT, Super-
Point and NeuroGlue) applied to Video1.

key match inv_match inv_match(%)
BRISK 1431.23 426.16 964.40 66.32 %
ORB 390.85 237.22 153.59 39.30%
SIFT 820.85 480.04 302.58 36.41%

SuperPoint 75.97 67.16 8.81 11.64%
NeuroGlue 596.06 549.96 45.30 7.64%
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Figure 5.4: Boxplot of 5-frames SSIM for the tested methods: BRISK (in light grey),
ORB (in light blue), SIFT (in blue), SuperPoint (in dark blue) and NeuroGlue (in night
blue). The results of video1, video2 and video3 are reported. The stars indicate difference
between the datasets from a statistical point of view. The number of stars is related to
the obtained p-values and to the Wilcoxon Signed-Rank test results (Sec 4.3).
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Figure 5.5: The figure shows the four keypoints representations obtained with A. BRISK,
B. ORB, C.SIFT, D. NeuroGlue for frame0 of Video1.
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Figure 5.6: The figure shows the four keypoints representations obtained with A. BRISK,
B. ORB, C.SIFT, D. NeuroGlue for frame884 of Video1.
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Figure 5.7: The plot illustrates the number of detected keypoints for each method: BRISK
(in blue), ORB (in yellow), SIFT (in green), SuperPoint (in purple) and NeuroGlue (in
red) respect to the number of frames. This example is reported for Video1.
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Figure 5.8: The plot illustrates the number of matches obtained with each method: BRISK
(in blue), ORB (in yellow), SIFT (in green), SuperPoint (in purple) and NeuroGlue (in
red) respect to the number of frames. This example is reported for Video1.
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Figure 5.9: The plot illustrates the number of invalid matches obtained with each method:
BRISK (in blue), ORB (in yellow), SIFT (in green), SuperPoint (in purple) and NeuroGlue
(in red) respect to the number of frames. This example is reported for Video1.
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A visual comparison of the mosaics, obtained with the different methods (BRISK, ORB,
SIFT, SuperPoint and NeuroGlue), is reported in Fig. 5.1, for Video1, Fig. 5.2, for Video2
and Fig. 5.3, for Video3.

It is possible to observe that the classical algorithms lead to mosaics with several alignment
errors and spatial distortions. This is particularly true for ORB keypoint detector: the
reconstructions, shown in Fig. 5.1.B, Fig. 5.2.B and Fig. 5.3.B, are completely hidden by
the huge image deformations.

Indeed the classical feature detectors may fail to extract enough keypoints into images
which are characterized by repetitive patterns, illumination variation, and motion blur,
typical elements of a neurosurgical dataset. These algorithms are primarily employed for
the keypoints extraction of landscapes, buildings or everyday life objects.

In Fig. 5.5 and Fig. 5.6 two example of detected keypoints with BRISK (A), ORB (B),
SIFT (C) and NeuroGlue (D) are present.

ORB is the feature detector which extracts the lowest number of keypoints (an average
of 390 keypoints per frame as reported in Table 5.4) respect to the others traditional
methods (BRISK and SIFT). This is confirmed also observing the keypoints number
trend in Fig. 5.7. Accordingly ORB is the method which computes the less number of
matches (on average 237) respect to BRISK and SIFT (Fig. 5.8).

This is a practical demonstration of one of the most relevant limitations of the classical
features detectors: the reduced number of keypoints, detected with the traditional algo-
rithm, restricts the space for matching. Indeed the same matching algorithm (KNN) is
employed for all the classical features detectors and, for BRISK and SIFT, the number of
matches is significantly higher (Fig. 5.8).

In general performing image registration with a limited number of keypoints and therefore
matches, leads to inaccurate results.

On the other hand it is not important only the number of detected keypoints but also
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their quality. In Fig. 5.5 and Fig. 5.6 it is evident that BRISK and SIFT extract a higher
number of keypoints respect to NeuroGlue (and ORB) and it is shown also in Fig. 5.7. In
particular BRISK detects an average of 1431 keypoints per frame and SIFT an average
of 821 keypoints per frame respect to NeuroGlue (596 keypoints on average), as it is
explained in Table 5.4.

However most of these keypoints is not employed in the matches generation. It is possible
to confirm this statement observing Fig. 5.9, which illustrates the number of invalid
matches trend during the registration process of Video1. BRISK and SIFT present the
highest number of extracted keypoints but also the higher percentage of invalid matches,
which is related to the number of rejected keypoints.

Indeed, with BRISK the 66.32% of the matches is rejected which corresponds to 964

matches and using SIFT the 39.30% of the matches is discarded (Table 5.4). Observing
Fig. 5.5 and Fig. 5.6 the keypoints extracted with the classical algorithms, in particular
with BRISK and SIFT, seem randomly positioned in the image. This characteristic
underlines the generic behavior of this algorithms that are not used to deal with this
typology of images. This explains why most of these keypoints are not employed for the
matching phase.

In this way, although SIFT and BRISK produce a larger set of keypoints, the number
of matches is on average lower respect to NeuroGlue: BRISK creates 426 matches on
average per frame pair, SIFT 480 per frame pair and NeurGlue provides an average of
550 matches per frame pair, with a percentage of invalid matches of only 7.64% (Table
5.4).

The mosaic obtained with SuperPoint shows several errors in Fig. 5.1, for Video1, Fig. 5.2,
for Video2 and Fig. 5.3, for Video3. Despite the promising keypoints detection network,
the peculiar characteristics of neurosurgical images, as previously stated, and the lack of
perfect coupling between the detection and matching phases provide inaccurate results.
Indeed, the number of detected keypoints (76) and the number of computed matches (67)
are very low respect to the other methods; it is evident in Table 5.4, in Fig. 5.7 and in
Fig. 5.8. The SuperPoint architecture was previously trained with the COCO dataset [67],
which includes images of everyday objects and landscapes. This behaviour underlines the
network dependence on the training data.

The NeuroGlue low percentage of invalid matches (7.64%, Table 5.4) and the high number
of computed matches (550, Table 5.4) demonstrates its ability to detect enough keypoints
which are stable and adequate for image matching.
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The Fully Convolutional Neural Network learned how to detect keypoints in images of
a neurosurgical setting, characterized by regular patterns, illumination variations and
motion blur. Indeed in Fig. 5.5 and Fig. 5.6 it is possible to observe that the keypoints
positions follow the blood vessels present in the frame and are not randomly assigned.

The Attentional Graph Neural Network, characterized by the alternation of the Self At-
tentional Aggregation layer and the Cross Attentional Aggregation layer, gives a strong
representation to the detected keypoints reducing the number of rejected ones for match-
ing. The low percentage of invalid matches (on average equal to 7.64%, as reported in
Table 5.4) is also related to the precise coupling between the keypoints detection FCNN
and the Attentional Graph Neural Network for matching.

The quality of the obtained mosaics can be evaluated in terms of 5-frames Structural
Similairty Metric (i.e. SSIM ), as explained in Sec. 4.3. SSIM is computed during
the registration process of Video1, Video2 and Video3 and the results are graphically
represented in Fig. 5.4. The principal information (mean and variance of SSIM ), that
can be extracted from the boxplots of Fig. 5.4, are summarized in Table 5.1 for Video1
Table 5.2 for Video2 and Table 5.3 for Video3.

In general it is possible to assert that the quality of the results is reflected in the SSIM
values. The mosaics obtained with ORB and BRISK are the most inaccurate and present
huge frame distortions. These registration errors provide very low values of SSIM : the
SSIM mean for ORB in Video1 is 0.4976 and the one of BRISK for the same video is
0.5093 (Table 5.1) and coherently they have the same behaviour also in Video2 (Table
5.2) and in Video3 (Table 5.3). Moreover they show the highest variance (σ) of SSIM :
σ related to ORB in Video1 is 0.0421 and related to BRISK of Video1 is 0.0416 and the
same trend is present also in Video2 (Table 5.2) and in Video3 (Table 5.3).

A greater value of σ is a demonstration of the low robustness of the considered method: the
distribution of the SSIM values is not compact but variable. It means that the method
is not able to maintain the stability achieved in the first moments of the registration
procedure, during the whole process.

In general SIFT presents better results with respect to ORB and BRISK; indeed the mean
value achieved in Video3 is 0.7361, a value comparable with the one obtained NeuroGlue
(0.7611), as reported in Table 5.3. The reason is that SIFT is characterized by a better
scale and rotation invariance, with respect to ORB and BRISK [22]. This is noticeable
also observing the visual results in Fig. 5.1, for Video1, Fig. 5.2, for Video2 and Fig. 5.3,
for Video3.
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In particular in the first stages of the mosaicking development, SIFT results quite precise
and shows its stability to scale and rotation. However going on with the registration (so
using longer videos) the algorithm starts to fail and to be less accurate, as it is shown in
Fig. 5.1.C for Video1 and Fig. 5.3.C for Video3, where the white arrows underline some
errors.

In Video2 (Fig. 5.2.C) SIFT presents good results and it is shown also in SSIM values,
which on average is 0.7361 as reported in Table 5.2. This behaviour is consistent with
what was previously stated because Video2 is significantly shorter respect to Video1 and
Video3: it has just 667 frames, while Video1 has 1677 frames and Video3 is composed by
3543 frames, as described in Sec. 3.6.

Considering a short video, so a reduced number of frames, the SIFT algorithm provides
results quite precise due to its intrinsic characteristics. However, considering more frames
and passing more times up to the same areas of the surgical field, underlines the problems
of SIFT feature detector, which starts to lose the guide and introduce alignment errors in
the reconstruction, as in Video1 and Video3.

This consideration justifies why the computed values of SSIM for Video2, present in Table
5.2, are higher for SIFT than for NeuroGlue. However observing in details Fig. 5.2.C
(SIFT) and Fig. 5.2.E (NeuroGlue), the few alignment errors of NeuroGlue are located
in the border, not in the brain tissue, as indicated by the white arrows in figure; instead
SIFT shows reconstruction errors also in the middle of the surgical field. Errors at the
border are not as relevant as those at the nervous tissue, because they don’t belong to
the interested field, involved in the surgical procedure.

The inaccurate coupling between SuperPoint and the KNN matching algorithm and the
difficult challenge of dealing with neurosurgical data justify the reconstruction errors of
the panoramas and this behaviour is reflected in SSIM calculation (Fig. 5.4). Indeed the
SSIM mean, achieved with SuperPoint is 0.3472 (Table 5.1) for Video 1, 0.5478 (Table 5.2)
for Video2 and 0.5598 for Video3 (Table 5.3).

NeuroGlue panorama stands out clearly from the other methods, this is due to the stability
and the strength of the network which learned to deal with neurosurgical images, thanks
to the adapted training (described in Sec. 4.1).

The higher accuracy is shown in the higher mean of SSIM, and the robustness is demon-
strated with the lower variance of SSIM. For example for Video3, the SSIM mean is
0.7611 and σ is 0.0173 (Table 5.3). These values and the ones obtained with Video1
(Table 5.1) and Video2 (Table 5.2), demonstrate that NeuroGlue outperforms the clas-
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sical algorithms (BRISK ORB and SIFT) and also the learning based keypoints detection
realized with SuperPoint coupled with KNN.

The Wilcoxon Signed-Rank test is performed, as Fig. 5.4 indicates, and it underlines a
significant difference between NeuroGlue and the other methods.
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7| Conclusion

This thesis presents a learning based mosaicking framework, able to build a real-time
panorama of a neurosurgical environment. To the best of our knowledge, the presented
algorithm is the first attempt to introduce the mosaicking tool in neurosurgery to overcome
the low visibility issue for the SM magnifications performed during surgery.

The peculiar conditions of a surgical setting could affect the quality of the mosaicking
result. These issue introduces the need to find stable keypoints detectors and establish
stronger connections between the keypoints of consecutive frames. These aspects guaran-
tee a greater stability and robustness, essential characteristics for the correct homography
matrix estimation and the consequent mosaicking accurate development.

The proposed method showed to achieve better performance in terms of SSIM compared
to the traditional feature detection algorithms (BRISK, ORB and SIFT) and also re-
spect to the SuperPoint method, underlying the importance of the domain adaptation
procedure, described in Sec. 4.1 and of the Attentional Graph Neural Network stability
(Sec. 3.2).

The real-time mosaic development and thus the introduction of an expanded view of the
surgical theatre could represent a valuable tool to deal with low visibility in neurosurgery
and to tackle with challenging tumors or lesions localization for the navigation systems
inaccuracies.

This expansion tool can be comfortably used during the neurosurgical procedures without
the need to introduce a new sensor or a new device respect to the ones already present in
the operating room, such as the SM and the neuro-navigation systems.

Indeed the surgeon can work on the brain anatomy, observing each details, thanks to
the high magnifications of the SM, and at the same time he is able to have a broader
view of the entire scene, without further moving the microscope, storing the hand-held
instruments or changing the magnifications during the procedure, reducing significantly
the timing of surgery.

In this way the obtained panorama can represent an important reference for the surgeon
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in the operating room.

This tool could be involved in the surgical procedures thanks to its easy application for
surgeons and because its employment is almost independent from surgeons actions or from
the occurrence of unexpected events such as a sudden movement of the SM.

The proposed mosaicking framework is able to recognize the presence of an incorrect
and unwanted movement of the SM. In particular the current architecture involves the
homography estimation, decomposition and analysis for each extracted frame. From this
homography investigation, the invalid frames related to the unwanted movements are
identified and discarded. In this way the panorama recorded before the unexpected event
is restored without the need to start a new registration.

A limitation of this work is that NeuroGlue was trained and tested on a reduced dataset:
only three videos were available. In order to reinforce its validation it is needed to expand
the neurosurgical dataset, providing more videos of the neurosurgical setting, including
also videos with a sudden rapid movement of the miscroscope to verify the filtering oper-
ation.

Moreover the NeuroGlue based mosaicking was applied only for the reconstruction of the
brain superficial layers. However the obtained results are promising and give hope that
the proposed method can also be employed for the reconstruction of deeper anatomical
structures.

This project’s future development and application could include its effective integration
with the intra-operative neuro-navigation systems output. This integration could min-
imize the inaccuracies for lesions or tumour localization caused by the brain shift phe-
nomenon.

The obtained panoramas could be integrated also with the pre-operative images, such as
the MRI, in order to create an anatomical and functional biomedical image which includes
more information respect to the single MRI.
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