
Executive Summary of the Thesis

Dynamic Query Optimization in Spark

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Antonio Pipita

Advisor: Prof. Emanuele Della Valle

Co-advisor: Andrea Picasso Ratto

Academic year: 2021-2022

1. Introduction
How to properly store, manage and query data
has always been a relevant topic. The rise in
both relevance and volume of data has prompted
a paradigm shift in both storing and querying
architectures, which moved from centralized to
distributed systems. Throughout these changes,
the question of how to optimize query proce-
dures has stayed relevant. Amongst the vari-
ous distributed query engines, Spark has main-
tained a role of relevance. Spark was born as
an abstraction over MapReduce [3] based on the
RDD abstraction [2] and, as time went on, dis-
tributed querying functionalities were added to
it in the SparkSQL module [1]. In SparkSQL
the Catalyst optimizer takes care of query opti-
mization by combining the rule-based and cost-
based optimization approaches. Traditionally,
however, the Catalyst is only able to perform
static optimizations, not being able thus to take
into account changes of the data during the ex-
ecution. This gap was bridged by the introduc-
tion of AQE, Adaptive Query Execution, which
added dynamic optimization capabilities to the
Catalyst 1.
AQE, in Spark 3.1.2, introduces three main ca-

1Spark SQL Guide. url:https://spark.apache.org/docs/
3.1.2/sql-performance-tuning.html

pabilities: dynamically shifting from Sort Merge
Join to Broadcast Hash Join when the dimen-
sions of one of the tables fall below the broad-
cast threshold, automatically performing the co-
alesce of partitions after shuffle stages and han-
dling skewness in joins. While these capabilities
have the potential to improve Spark’s perfor-
mances, there is currently no in-depth analysis
regarding the inner workings of AQE. As such,
given this lack of information, it is not possible
to make a comprehensive analysis of the impacts
that AQE has on production workloads. This
thesis explored the inner workings of AQE to
understand its mechanisms and provide a com-
prehensive analysis of this technology.

2. Methodology
In order to better understand the inner work-
ings of AQE two sets of experiments were used:
the baseline set and the workload set. Exper-
iments in the baseline set tested AQE’s capa-
bilities in a controlled environment, making use
of suit-tailored data and workloads and being
executed on a commodity laptop. In this set
of experiments, AQE’s capabilities were isolated
and tested one at a time to better understand
the underlying mechanisms. The dynamic join
selection feature was tested both with and with-

1

Executive summary Antonio Pipita

out the usage of hints. AQE’s ability to dy-
namically change the number of partitions af-
ter shuffle stages was tested both trying to in-
crease and diminish the number of partitions.
AQE’s skewness handling capabilities were stud-
ied with varied settings relative to the definition
of skewness. The workload set of experiments fo-
cused instead on observing how AQE’s usage in-
fluences Spark’s performances in real-world sce-
narios and interpreting its effects based on the
findings in the baseline Section. Two different
workloads were tested: workload A and work-
load B. Workload A executes delta merge oper-
ations while workload B executes a query char-
acterized by highly filtering statements followed
by joins scheduled as sort-merge joins.

3. Baseline tests
The baseline test set has returned a great deal
of information both on AQE and on the cata-
lyst. This group of tests was executed locally
on a commodity laptop (16 GB RAM, i5-8350U
CPU). The first component to be tested was
tested with the following workload (except for
the experiments on the Broadcast Hash join,
which used a simplified workload):

val dfA =spark.read
.parquet("spark−aqe−main/src/main/resources/bigTableA")

val dfB =spark.read
.parquet("spark−aqe−main/src/main/resources/bigTableB")

val dfK =spark.read
.parquet("spark−aqe−main/src/main/resources/keys")

val dfAux=dfB
. join(dfK, dfB("LAVORO_B")===dfK("LAVORO_KEYS"),

"left")
. filter ("FILLER1==FILLER2 and FILLER2==FILLER3")
. repartition(200)

val dfResult =dfA.join(dfAux, join_conditions, join_type)
dfResult.count()

While AQE was enabled, however, the auto-
matic coalesces and the skew join handling were
disabled. Broadcast threshold, join conditions
and join type were set in each experiment to
trigger different join strategies 2 . The first find-
ing to be noted was obtained while testing on
the sort merge join and removing the .reparti-
tion(200) command. The dynamic join selection
does not behave as described in the documenta-
tion, having instead the need for a further shuffle
stage between the filtering action and the sub-
sequent sort merge join. This is corroborated
both empirically by the tests’ results and also in
AQE’s source code 3 . Among the other find-
ings worth noting is that AQE is also able to
dynamically change from a Cartesian Product
to a Broadcast Nested Loop join, a possibility
which is not present in the documentation foot-
note 1 and that may lead to otherwise avoid-
able out of memory errors footnote 2. Further-
more, it was found that the broadcast thresh-
old directly influences the choice between Carte-
sian Product and Broadcast Nested Loop join
in equi-joins, while available information states
otherwise footnote 2. While testing AQE’s in-
teraction with hints it was found that broadcast

2Developers’ comments on how Spark chooses the join
strategy. URL: https://github.com/apache/spark/blob
/branch-3.1/sql/core/src/main/scala/org/apache
/spark/sql/execution/SparkStrategies.scala#L109

3How AQE optimizes future stages. URL: https://
github.com/apache/spark/blob/branch-3.1/sql/core
/src/main/scala/org/apache/spark/sql/execution
/adaptive/AdaptiveSparkPlanExec.scala#L454

Table 1: Effects of broadcast hints on a Sort Merge Join

Hints No Broadcast Broadcast threshold greater than 0

No hints Sort Merge Join

Depends on the threshold value: if at least one
of the tables is below the broadcast thresh-
old value then a Broadcast Hash Join is per-
formed, otherwise a Sort Merge Join is per-
formed

Outer tables Sort Merge Join

Depends on the threshold value: if the outer
table is below the broadcast threshold value
then a Broadcast Hash Join is performed, oth-
erwise a Sort Merge Join is performed

Inner tables Broadcast Hash Join Broadcast Hash Join
Both tables (left
outer, right outer
and inner joins)

Broadcast Hash Join Broadcast Hash Join

2

Executive summary Antonio Pipita

hints usage does not follow the available infor-
mation about it footnote 2, following instead the
behavior outlined in table 1. It was also found
that, while the usage of a merge hint can hinder
AQE’s optimization abilities, forcing the cata-
lyst to choose a Sort Merge join in place of the
Broadcast Hash join that would instead be cho-
sen because of AQE’s intervention.
AQE’s ability to perform coalesces and reparti-
tions was tested in an isolated fashion too: skew
handling was disabled, while dynamic changes
to the join strategy were avoided by proper tun-
ing of the broadcast threshold. The following
workload was used for tests on the coalesce:

val dfA=sparkNoAQE.read
.parquet("spark−aqe−main/src/main/resources/bigTableA")
.sample(false , 0.0001)
. repartition(200)

val dfB =sparkNoAQE.read
.parquet("spark−aqe−main/src/main/resources/bigTableB")
.sample(false , 0.0001)
. repartition(200)

val dfResult_ =dfA
. join(dfB,dfA("LAVORO_A")===dfB("LAVORO_B"), "left")

print(dfResult_.explain())
dfResult_.count()

The following workload was, instead, used for
the tests on the repartition:

val dfA=spark.read
.parquet("spark−aqe−main/src/main/resources/bigTableA")
. coalesce(1)

val dfB =spark.read
.parquet("spark−aqe−main/src/main/resources/bigTableB")
. coalesce(1)

val dfResult_ =dfA
. join(dfB,dfA("LAVORO_A")===dfB("LAVORO_B"), "left")

print(dfResult_.explain())
dfResult_.count()

AQE’s automatic post shuffle coalesce proved to
behave as described, being able to coalesce par-
titions but not to repartition them into a higher
number. The only caveat is an apparent dis-
missal of the minimum number of partitions set.
AQE’s ability to handle skewed joins was tested
on the following workload:

val dfA =spark.read
.parquet("spark−aqe−main/src/main/resources
/veryBigTableSkew")

val dfB =spark.read
.parquet("spark−aqe−main/src/main/resources/veryBigTable")

val dfResult_ =dfA
. join(dfB, join_expression, join_type)

The tables used to create dfA were heavily
skewed in the column used as the join key.
Join expression, join type and the broadcast
threshold were tuned for each experiment to
trigger the desired join strategy. AQE and its
skew handling module were enabled while the
automatic post shuffle coalesce was disabled via
the configurations and the dynamic join strategy
selection was avoided via proper tuning of the

broadcast threshold. The main caveat regarding
skewness handling lies in the definition of skew-
ness. AQE recognizes skewness according to two
settings: skewedPartitionThresholdInBytes,
acting as an absolute threshold, and
skewedPartitionFactor, acting as a thresh-
old relative to the median of the sizes of
the partition. If a partition is greater than
the skewedPartionFactor multiplied by
the median of the partitions’ dimension
and the skewedPartitionThresholdInBytes
then it is considered skewed and it will be
divided into partitions of the size set in
advisoryPartitionSizeInBytes. Tuning
these configurations to correctly define when a
partition is to be considered skewed has proven
to be quite complex, yet vital for the correct
usage of this feature of AQE’s. Another relevant
finding is that the join type will determine the
side that will be checked for skewness. As an
example, if the side is set as left, only the left
table of the join will be checked for skewness.
Another caveat is that skewness in the join
column directly translates into skewness in the
join tasks only when a sort merge join is used.
Overall, these experiments have shown how
AQE strays from the behavior described in the
documentation while also highlighting details
over how to use AQE to the full extent of its
capabilities.

4. Workload tests
In this Section experiments focused on analyzing
the impact that using AQE can have over pro-
duction workload by analyzing how Spark’s per-
formances changed when executing workloads A
and B with AQE enabled.

Workload A is responsible for updating delta ta-
bles. The experiments on this workload were
divided in two phases, each of the duration of
one week. Workload A is executed over a clus-
ter with 4 workers, each having 4 CPU cores
and 20GiB of RAM. During the first week the
following configurations were used 4:
• adaptive.enabled: True , in order to en-

able AQE;
4in order to obtain the full name of the configuration

prepend spark.sql.

3

Executive summary Antonio Pipita

Figure 1: Table describing the data regarding both the two experiments and older executions of
Workload A (execution times in minutes)

Metric Percentage variation at week one Percentage variation at week two
Files added -79.28% -78.57%
Rewrite time -6.08% -2.06%
Scan time 7.75% 4.12%

Table 2: Percentage variations from delta logs between the two weeks without AQE and the two
experiments performed

• adaptive.coalescePartitions.enabled:
True in order to enable the feature studied
in this phase;

• adaptive.skewJoin.enabled: False;
• autoBroadcastJoinThreshold: -1, as such

both for reasons related to the workload and
to disable the dynamic join selection;

• adaptive.coalescePartitions.min
PartitionNum: used to set the minimum
number of partitions after the automatic co-
alesce has been performed. The value is set
to default;

• adaptive.advisoryPartitionSize
InBytes: given the dimensions of both the
tables and the updates and taking into ac-
count the trade-off explained before, this
value is set to 256 MiB; and

• adaptive.coalescePartitions.initial
PartitionNum: left to the default value of
none, as it was considered to be irrelevant
to this experiment.

As the configurations show the only AQE ele-
ment active was the automatic post shuffle coa-
lesce. During the first week, it was possible to
observe that Spark’s execution times have not
been affected by the introduction of AQE, as
shown in Image 1. At the same time, the number
of partitions involved was reduced drastically, as

shown in Table 2. This, however, did not affect
delta update times. The second week of experi-
mentation saw the tuning of the minimum num-
ber of partitions to 16 to always fully make use of
the available degree of parallelism. The second
week of experimentation also saw the introduc-
tion of a broadcast threshold of 20 MiB, thus
enabling both statically and dynamically sched-
uled Broadcast Hash joins. As shown in figure 1
the average execution time was drastically re-
duced. This is due to the statical scheduling
of broadcast hash joins in place of sort merge
joins. Dynamic join strategy selection was not
triggered in these experiments: the workload did
not involve filtering statements followed by sort
merge joins. While Spark’s performances im-
proved, delta merge execution times stayed sta-
tionary as shown in Table 2. Experiments over
workload B tested, at first, dynamic join selec-
tion, then automatic post shuffle coalesce. The
first sperimental phase lasted eight days and saw
the usage of the following configurations 4:
• adaptive.enabled: True , in order to en-

able AQE;
• adaptive.coalescePartitions
.enabled: False;

• adaptive.skewJoin.enabled: False; and
• autoBroadcastJoinThreshold: 20 MiB,

4

Executive summary Antonio Pipita

Figure 2: Table describing the data regarding both the two experiments and older executions of
Workload B (execution times in minutes)

the value is set at this value as, after analyz-
ing multiple executions of this workload, it
enables the Catalyst to schedule Broadcast
Hash joins without incurring in the risk of
crashing the driver.

These experiments confirmed what was already
seen while testing AQE’s dynamic join strategy
selection capabilities. To trigger the dynamic
join selection a shuffle phase between the filter-
ing action and the subsequent sort merge join
is needed. Since the DAGs involved in the exe-
cution of Workload B do not present the afore-
mentioned shuffle phase between the filter and
the join, AQE did not trigger. As such, the im-
provement that can be seen in execution times
in figure 2 can be considered a consequence of
the static scheduling of broadcast hash joins in
place of sort merge joins. It has to be noted
however that, due to the reduced sample size
and the high variance in samples, the compari-
son between the averages of execution times is
of little statistical significance.
The second experiments group also lasted eight
days and verted on testing the automatic post-
shuffle coalesce functionalities 4:

• adaptive.enabled: True , in order to en-
able AQE;

• adaptive.coalescePartitions
.enabled: True in order to enable the fea-
ture studied in this phase;

• adaptive.skewJoin.enabled: False;
• autoBroadcastJoinThreshold: -1, as such

both for reasons related to the workload and
to disable the dynamic join selection;

• adaptive.coalescePartitions.min

PartitionNum: used to set the minimum
number of partitions after the automatic
coalesce has been performed. The value is
set to 8, equal to the number of CPU cores
available to the executors, in order to fully
make use of the available parallelism;

• adaptive.advisoryPartitionSize
InBytes: given the dimensions of both the
tables and the updates and taking into ac-
count the trade-off explained before, this
value is set to 256 MiB; and

• adaptive.coalescePartitions.initial
PartitionNum: left to the default value of
none, as it was considered to be irrelevant
to this experiment.

The results are in contrast with what was ob-
served during Workload A tests: while during
the baseline tests and tests over workload A the
minimum number of partitions was ignored by
Spark, here it was taken into account. The mini-
mum number of partitions was above eight even
in situations in which 8 partitions of 256 MiB
would have been sufficient.
As Image 2 shows, execution times were drasti-
cally reduced on average. However, as already
stated for the previous experiment, the compar-
ison between the averages is of little statistical
meaning, given the low number of samples and
the high variance among the samples.

5. Conclusions and future work
The experiments performed returned a great
amount of insight regarding AQE’s inner work-
ings. It was found that AQE does not perform
dynamic join selection as described in the docu-

5

Executive summary Antonio Pipita

mentation. While the documentation states that
AQE will switch join strategy at shuffle phases
when one of the joined tables falls below the
broadcast threshold, AQE does not behave as
described. As both baseline experiments and ex-
periments over Workload B have shown, a shuffle
phase is needed between the filtering action and
the following sort-merge join to trigger the dy-
namic join strategy selection. It was also found
that AQE can transform cartesian products into
Broadcast nested loop joins. Furthermore, base-
line experiments have shown that the usage of
broadcast hints over sort merge joins can have
effects not described in the documentation, as
shown in Table 1.
While the baseline experiments and experiments
over workload A have highlighted that the Au-
tomatic post shuffle coalesce does not seem to
respect the parameter that sets the minimum
number of partitions, experiments over workload
B have proven otherwise. This discrepancy will
require further study, as the reasons behind it
are not clear.
Experiments over the skew join handling have
shown that it behaves as described in the docu-
mentation. These experiments have also shown
that properly tuning AQE to recognize skewness
is as complex as relevant. it was also found that
the join type influences what tables are consid-
ered when searching for skewness.
Experiments over workloads A and B have pro-
vided further proof that the dynamic join se-
lection needs a shuffle phase between the fil-
tering action and the subsequent join. They
have also shown the previously mentioned dis-
crepancy between local and cluster execution
regarding the automatic post shuffle coalesce.
Both workload A and Workload B have seen
better performances when using AQE (Images 1
and 2), while workload A has shown that a re-
duction of the partitions involved in delta merge
operations does not translate into better perfor-
mances. This points to the data transmission
over the internet as the bottleneck for these op-
erations.
While these studies have provided a clear pic-
ture of some of AQE’s capabilities, there are
still more to do. As already mentioned, the be-
havior of the automatic post shuffle coalesce is
still in need of further clarifications. Another
thing to note is that AQE’s skewness handling

capabilities have not yet been tested on produc-
tion workloads. Furthermore, given how param-
eter tuning affects AQE’s performances, more
tests with finer tuning on configurations are
needed to fully utilize AQE. Another field that
needs research is AQE’s interaction with Hyper-
space’s indexing system. Hyperspace modifies
the Catalyst to make it operate on an index-
aware basis. Given that the usage of indexes
can lead to skipping shuffle stages, the possible
conflicts and trade-offs between Hyperspace’s in-
dexes and AQE need to be studied.

6. References
[1] Michael Armbrust et al. “Spark sql: Rela-

tional data processing in spark”. In: Pro-
ceedings of the 2015 ACM SIGMOD in-
ternational conference on management of
data. 2015, pp. 1383–1394.

[2] Matei Zaharia et al. “Resilient distributed
datasets: A fault-tolerant abstraction for
in-memory cluster computing”. In: 9th
USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI
12). 2012, pp. 15–28.

[3] Matei Zaharia et al. “Spark: Cluster com-
puting with working sets.” In: HotCloud
10.10-10 (2010), p. 95.

6

	Introduction
	Methodology
	Baseline tests
	Workload tests
	Conclusions and future work
	References

