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Abstract

HIGH-LEVEL SYNTHESIS (HLS) tools simplify the design of hardware acceler-
ators by automatically generating Verilog/VHDL code starting from a general
purpose software programming language, usually C/C++. They include a wide

range of optimization techniques in the process, most of them performed on a low-level
intermediate representation (IR) of the code. Because of the mismatch between the
requirements of hardware descriptions and the characteristics of input languages, HLS
tools often rely on users to add specific directives (pragmas) that augment the input
specification to guide the generation of optimized hardware. A good result thus still
requires hardware design knowledge and non-trivial design space exploration, which
might be an obstacle for domain scientists seeking to accelerate applications written,
for example, in Python-based programming frameworks.

This thesis proposes a modern approach based on multi-level compiler technologies
to bridge the gap between HLS and high-level frameworks, and to use domain-specific
abstractions to solve domain-specific problems. The key enabling technology is the
Multi-Level Intermediate Representation (MLIR), a framework that supports building
reusable compiler infrastructure inspired by (and part of) the LLVM project. The pro-
posed approach uses MLIR to introduce new optimizations at appropriate levels of
abstraction outside the HLS tool while still relying on years of HLS research in the low-
level hardware generation steps; users and developers of HLS tools can thus increase
their productivity, obtain accelerators with higher performance, and not be limited by
the features of a specific (possibly closed-source) backend.

The presented tools and techniques were designed, implemented, and tested to syn-
thesize machine learning algorithms, but they are broadly applicable to any input spec-
ification written in a language that has a translation to MLIR. Generated accelerators
can be deployed on Field Programmable Gate Arrays or Application-Specific Integrated
Circuits, and they can reach ~10-100 GFLOPS/W efficiency without any manual opti-
mization of the code.
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CHAPTER1
Introduction

THIS thesis proposes a multi-level, compiler-based approach to overcome the lim-
itations of High-Level Synthesis tools, improving productivity for both users
and developers. The introduction illustrates the problems that the proposed ap-

proach aims to solve, and briefly describes the main tools and methods involved. A
comparison is drawn between the proposed "modern" approach and the "classic" way
HLS tools are used, focusing especially on the acceleration of machine learning mod-
els; the final section outlines the content of the following chapters.

The chapter contains material from:

S. Curzel, N. Bohm Agostini, A. Tumeo, and F. Ferrandi, “Hardware Acceleration
of Complex Machine Learning Models through Modern High-Level Synthesis,” in Pro-
ceedings of the 19th ACM International Conference on Computing Frontiers, 2022, pp.
209–210.
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Chapter 1. Introduction

1.1 Motivation

The exponential growth of data science and machine learning (ML), coupled with the
diminishing performance returns of silicon at the end of Moore’s law and Dennard
scaling, is leading to widespread interest in domain-specific architectures and accel-
erators [2]. Field Programmable Gate Arrays (FPGAs) and Application-Specific Inte-
grated Circuits (ASICs) can provide the necessary hardware specialization with higher
performance and energy efficiency than multi-core processors or Graphic Processing
Units (GPUs). ASICs are the best solution in terms of performance, but they incur
higher development costs; FPGAs are more accessible and can be quickly reconfig-
ured, allowing to update accelerators according to the requirements of new applications
or to try multiple configurations in a prototyping phase before committing to long and
expensive ASIC manufacturing.

ASICs and FPGAs are designed and programmed through hardware description
languages (HDLs) such as Verilog or VHDL, which require developers to identify
critical kernels, build specialized functional units and memory components, and ex-
plicitly manage low-level concerns such as clock and reset signals or wiring delays.
The distance between traditional software programming and HDLs creates significant
productivity and time-to-market gaps [3, 4] and traditionally required manual coding
from expert hardware developers. The introduction of High-Level Synthesis (HLS)
simplified this process, as HLS tools allow to automatically translate general-purpose
software specifications, primarily written in C/C++, into an HDL description ready for
logic synthesis and implementation [5, 6]. Thanks to HLS, developers can describe the
kernels they want to accelerate at a high level of abstraction and obtain efficient designs
without being experts in low-level circuit design.

Due to the mismatch between the requirements of hardware descriptions and the
characteristics of general-purpose programming languages, HLS tools often require
users to augment their input code through pragma annotations (i.e., compiler direc-
tives) and configuration options that guide the synthesis process, for example, towards
a specific performance-area trade-off. Different combinations of pragmas and options
result in accelerator designs with different latency, resource utilization, or power con-
sumption. An exhaustive exploration of the design space does not require extensive
changes to the input code, and it does not change the functional correctness of the algo-
rithm, but it is still not a trivial process: the effect of combining multiple optimization
directives can be unpredictable, and the HLS user needs a good understanding of their
impact on the generated hardware.

2
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1.1. Motivation

Data scientists who develop and test algorithms in high-level, Python-based pro-
gramming frameworks (e.g., TensorFlow [7] or PyTorch [8]) typically do not have
any hardware design expertise: therefore, the abstraction gap that needs to be over-
come is not anymore from C/C++ software to HDL (covered by mature commercial
and academic HLS tools), but from Python to annotated C/C++ for HLS. The issue is
exacerbated by the rapid evolution of data science and ML, as no accelerator can be
general enough to support new methods efficiently, and a manual translation of each al-
gorithm into HLS code is highly impractical. Compilers like XLA [9], Glow [10], and
TVM [11] map tensor-based operations from ML frameworks to accelerators such as
general-purpose GPUs with tensor cores, systolic arrays, or dataflow accelerators; their
contribution is valuable, but their targets are still fixed architectures that have been op-
timized for a subset of primitives and cannot be easily extended. Design flows based
on HLS provide more flexibility to generate efficient accelerators tailored to specific
algorithms.

This thesis proposes a multi-level, compiler-based approach to bridge the gap be-
tween high-level frameworks and HLS. The key enabling technology is the Multi-Level
Intermediate Representation (MLIR) [12], a reusable and extensible infrastructure in
the LLVM project for the development of domain-specific compilers. MLIR allows
defining specialized intermediate representations (IRs) called dialects to implement
analysis and transformation passes at different levels of abstraction, and it can inter-
face with multiple software programming frameworks. An MLIR-based approach is a
"modern" solution to automate the design of hardware accelerators for high-level ap-
plications through HLS, as opposed to "classic" approaches that rely on hand-written
template libraries. Section 1.2 compares the two alternatives in more detail focusing on
the acceleration of ML models.

A practical realization of the proposed approach is the SOftware Defined Architec-
tures (SODA) Synthesizer [13,14], an open-source hardware compiler composed of an
MLIR frontend [15] and an HLS backend [16]. SODA provides an end-to-end agile
development path from high-level software frameworks to FPGA and ASIC acceler-
ators, supports the design of complex systems, and allows to introduce and explore
optimizations at many different levels of abstraction, from high-level algorithmic trans-
formations to low-level hardware-oriented ones. Translation across different levels of
abstraction is performed through progressive lowering between IRs, allowing each step
to leverage information gathered in other phases of the compilation. In the frontend,
domain-specific MLIR dialects (existing and introduced by SODA) allow developers to
work on specialized abstractions to address system-level concerns and pre-optimize the
code. The integration of an open-source tool in the backend allows to exploit years of

3
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Chapter 1. Introduction

HLS research and to introduce new features in the low-level hardware generation steps
when necessary.

The following chapters will describe the proposed multi-level approach, showing
how it improves productivity for users and developers of existing HLS tools, and how it
can unlock multiple research opportunities for the design and optimization of domain-
specific accelerators.

1.2 "Classic" and "modern" approaches

Machine learning (ML) and deep learning algorithms are well suited to process and
analyze large amounts of data, as repeatedly proven in applications such as image clas-
sification, natural language processing, or recommendation systems. They continue
to receive significant attention from industry and research, and they have also become
a fundamental component in large-scale scientific experiments, where instruments ac-
quire large amounts of raw data that need to be processed close to the sensors with
extremely low latency. Both ML training and inference are compute- and memory-
intensive, leading to widespread adoption of heterogeneous systems containing spe-
cialized hardware accelerators. GPUs are often the platform of choice to accelerate
training; however, they are often too power-hungry to run inference tasks at the edge or
cannot meet the strict latency requirements of real-time applications. A variety of cus-
tom solutions implemented on FPGA or ASIC have been proposed in their place, with
different degrees of specialization: from generic "neural processors" such as Google’s
Tensor Processing Unit (TPU) [17], to accelerators that support a narrow set of models
with great efficiency (e.g., targeting low-precision convolutional neural networks [18]).

High-Level Synthesis plays a crucial role in bridging the productivity gap between
the design of a new ML model and its implementation on FPGA/ASIC. Several previ-
ous works proposed to exploit HLS by using C/C++ as an intermediate representation
of the input model, augmenting it with tool-specific directives that drive the synthe-
sis to obtain an efficient design. The most popular frameworks that help automate the
design of ML accelerators (e.g., hls4ml [19], FINN [20]) use commercial HLS tools
as backend, in what can be called a "classic" HLS-based design flow: they parse a
model exported from popular ML frameworks and replace operators with C/C++ func-
tions taken from a library of templates that already contains pragma directives (Figure
1.1a). The HLS tool processes this intermediate C/C++ representation and produces a
corresponding accelerator design without further manual intervention.

What this thesis proposes, instead, is a "modern" compiler-based approach (Fig-
ure 1.1b): an integrated framework that exploits MLIR to interface with high-level

4
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1.2. "Classic" and "modern" approaches

HLS engine accelerator
design

to MLIR

analysis

optimization

exploration

to LLVM IR

integrated framework

(a) "Classic" HLS flow with intermediate C/C++.

HLS engine accelerator
design

translation and 
 pre-processing

annotated 
 C/C++

export

library of
templates

(b) "Modern" compiler-based HLS flow.

Figure 1.1: Two different approaches to generate ML accelerators through HLS.

ML frameworks, progressively lowers and optimizes the input model through differ-
ent MLIR dialects, and delegates only the low-level hardware generation steps to the
HLS tool. Such a compiler-based flow has two fundamental differences with respect
to the "classic" approach. First, instead of directly translating a high-level description
of the input into C/C++ code, the proposed approach embraces the MLIR multi-level
approach to work with progressive lowerings: in this way, for example, the computa-
tional graph that describes the input ML model can be analyzed and transformed while
it still contains information on the flow of data between layers, which is harder to re-
construct at the C/C++ level. Second, the HLS tool is more tightly integrated with the
rest of the flow: this is particularly beneficial if the tool of choice is open source, as it
is possible to have more control over the underlying synthesis process. For example,
detailed information can be exchanged between MLIR analysis passes and hardware
generation passes, or new MLIR optimizations can be implemented knowing precisely
what their effect on HLS will be. The result is a fully automated flow where users never
need to modify their input code, and developers can experiment with new techniques in
a modular environment.

The proposed multi-level approach overcomes two critical limitations of existing
"classic" frameworks: portability and scope. The library of templates, in fact, is neces-
sarily tied to a specific HLS tool and a narrow set of supported models, as it requires
expert HLS developers to implement in advance the best version of all necessary oper-
ators for a pre-determined backend tool. Portability is a problem for HLS in general,
as typically there is one commercial tool for each hardware vendor and each tool ex-
pects coding patterns, annotations, and configuration directives that are not recognized

5
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Chapter 1. Introduction

by other tools. In a framework that heavily relies on a library of templates, switching
to a new hardware target thus requires a new version of the library, as incompatible
coding patterns and directives would be ignored by the new HLS backend, resulting in
inefficient designs. In the proposed compiler-based framework, instead, the input to the
HLS tool is an LLVM IR optimized in the MLIR frontend by target-agnostic high-level
transformations. When a new backend tool (accepting LLVM IR as input) is introduced,
any syntactic modification that is needed can be applied in an LLVM pass at the end of
the compilation pipeline, while the rest of the design flow remains unchanged; thus the
proposed modular multi-level approach improves portability between HLS tools.

A second limitation of the existing "classic" frameworks is that they usually fo-
cus on a narrow set of models, specifically deep and convolutional neural networks
(DNNs/CNNs). Machine learning is an umbrella term that covers a broad spectrum of
algorithms, while research works about hardware acceleration and HLS-based design
flows have mostly been focused on the subset of ML models based on dense convolu-
tions and matrix multiplications. Sometimes their scope is further limited by applica-
tion requirements: for example, the original implementation of hls4ml was optimized
for small, fully-connected models under tight latency constraints, reflecting the needs
of a high-energy physics experiment at CERN. Appropriate implementation choices for
such a specific case may not always be beneficial: hls4ml proposed to store network
weights inside on-chip logic and unroll all loops to increase parallelism, which quickly
depletes FPGA resources when considering a neural network with more layers and
weights. Different application requirements and different operators in the input model
require once again expert HLS developers to write and optimize new C/C++ templates.

While it is true that DNNs and CNNs cover a significant part of ML applications (es-
pecially in the computer vision field), there is ample room for exploring other classes
of models, for example to accelerate scientific applications that work on sparse data
structures or graphs. Large models are often compressed to reduce their computation
and memory requirements, either by employing low-precision data types (quantization)
or by removing operations with zero values (pruning). Quantization is well suited to
hardware acceleration since custom precision operators can be implemented quickly
and efficiently (also through dedicated HLS libraries). Sparsity, on the other hand, im-
plies irregular computation, communication, and memory access patterns, which result
in poor efficiency when mapped on accelerators or templates designed for dense mod-
els. Graph structures provide great expressive power to represent and analyze data in a
variety of applications, from chemistry to language, social networks, recommendation
systems, etc. Graph neural networks (GNNs) could benefit from hardware acceleration
and require unique design choices: models that work on graphs include both sparse

6
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1.3. Thesis structure

(aggregation) and dense (feature extraction) computation patterns, which are also af-
fected by the input graph size; such characteristics could benefit from a task-based
parallelism paradigm. Existing HLS-based design flows are good at extracting data-
and instruction-level parallelism (e.g. by unrolling loops), but they are not equipped to
deal with the irregular task-based patterns required by graph processing.

Finally, a narrow focus limits the possibility of quickly adapting to new algorith-
mic approaches, which would instead be desirable in a rapidly evolving field such as
ML (and data science in general). A multi-level, MLIR-based approach allows to eas-
ily introduce specialized abstractions (dialects) to solve domain-specific optimization
problems and support a diverse set of input models efficiently. The compilation flow
can be tailored to the needs of each input specification by enabling and disabling com-
piler passes, exploring different solutions with no manual modifications to the code
until application requirements are met. As the MLIR project grows, it provides more
and more interfaces to high-level programming frameworks and domain-specific lan-
guages: the proposed design flow and its optimization features will then progressively
be available to more classes of algorithms, not exclusively ML models. In the context
of a scientific experiment, this will allow translating into hardware also other stages in
the data acquisition pipeline, such as pre-processing, analysis, and simulation.

1.3 Thesis structure

The rest of the thesis is structured as follows:

• Chapter 2 presents a survey of the state of the art, focusing in particular on solu-
tions to the limitations of existing HLS tools, automated design of ML accelera-
tors, and methodologies to improve HLS results;

• Chapter 3 describes high-level optimizations that can be effectively applied before
HLS to improve developer productivity, portability between different backends,
and performance of the generated accelerators;

• Chapter 4 presents an end-to-end flow based on the proposed multi-level ap-
proach that can automatically generate systems composed of multiple acceler-
ators, coupling high-level optimizations with low-level synthesis methodologies
for the generation of dataflow accelerators;

• Chapter 5 describes the introduction of an MLIR domain-specific abstraction to
support the simulation of spiking neural networks and the generation of corre-
spondent neuromorphic accelerators;

7
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• Chapter 6 presents and discusses experimental results obtained with the proposed
multi-level approach;

• Chapter 7 wraps up the thesis and outlines future research directions.

8



i
i

“output” — 2022/12/28 — 13:03 — page 9 — #19 i
i

i
i

i
i

CHAPTER2
State of the art

PREVIOUS works have proposed methodologies and research directions that are re-
lated to the topics covered in this thesis. This chapter presents the most relevant
ones, divided into three macro-categories: techniques to overcome the limitation

of existing HLS tools, automated hardware design flows for ML, and methodologies to
improve the HLS process and quality of results.

9
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Chapter 2. State of the art

2.1 Overview

The proposed multi-level approach to HLS draws inspiration from several previous
works, and it is related to many recent efforts to solve similar problems. Figure 2.1
groups them into three areas of active research, which correspond to the three following
sections of this chapter. The first group (Section 2.2) contains works that take existing
HLS tools as a baseline and overcome their limitations by carefully restructuring input
specifications. The second group (Section 2.3) contains research on specific optimiza-
tions that improve the quality of HLS results, and new techniques that aim to replace
existing HLS tools. The third group (Section 2.4) focuses on the automated genera-
tion of accelerators for ML, which is often based on HLS. This subdivision is useful to
compare and discuss related work, but often the scope of a paper will span across more
than one group, so it will be cited and discussed in multiple sections according to its
contribution to the corresponding area.

Modern HLS: a multi-level approach

Goal: overcome the
limitations of existing HLS
tools

Automated design space
exploration
Decoupled algorithm and
optimizations
Optimization through ML
...

Goal: generate accelerators
for ML algorithms

Domain-specific
accelerators
Reconfigurable
accelerators
Design automation for
ML
...

Goal: improve HLS process
and results

MLIR-based hardware
generation
Generation of dataflow
accelerators 
Loop optimizations
...

Section 2.2 Section 2.4Section 2.3

Figure 2.1: Areas of research covered in Chapter 2.

2.2 Challenges for productive HLS

The special session "New perspectives in High-Level Synthesis" at the 2022 Design
Automation Conference gathered leading experts in HLS research to discuss challenges
and opportunities introduced by innovations in technologies and applications. Decades
of research produced HLS tools that are very efficient at implementing FPGA/ASIC
accelerators starting from general-purpose programming languages; however, obtain-
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2.2. Challenges for productive HLS

ing a design that meets specific latency, throughput, area, or power consumption re-
quirements still depends on the ability of users to understand the effect of optimization
directives. A common theme in the special session was therefore how to improve pro-
ductivity and automate design space exploration (DSE), especially to the benefit of
domain scientists working in Python-based high-level frameworks.

HeteroCL [21, 22] tackles this problem by decoupling the definition of the algo-
rithm from compute, data type, and memory optimizations, following the separation of
concerns paradigm introduced by Halide [23] for image processing. An extension to
Halide already existed to design FPGA-friendly schedules and generate corresponding
HLS code [24]; however, HeteroCL is a more general solution that supports more opti-
mization opportunities and a broader range of applications. Specifically, HeteroCL de-
fines a domain-specific language (DSL) based on Python to partition an algorithm into
host code to be executed on a general-purpose processor, and kernel code to be synthe-
sized as an FPGA accelerator. The programming model based on decoupled algorithm
and hardware customization raises the level of abstraction and increases productivity,
as annotated HLS code for the kernel is automatically generated by a compiler accord-
ing to directives specified in Python by the user. HeteroCL also includes templates for
the generation of systolic arrays and dataflow accelerators. Other works such as Py-
Log [25], or Hot&Spicy [26] also produce annotated code for HLS tools starting from
Python code; none of them, however, provides an interface to popular data science and
machine learning frameworks.

ScaleHLS [27, 28] exploits MLIR to analyze and transform input code from C or
PyTorch, generating annotated code for Vivado HLS (a slightly old version of the Xil-
inx HLS tool which does not apply any automated optimization). The multiple levels
of abstraction provided by existing MLIR dialects allow ScaleHLS to reason about
graph-level, loop-level, and directive-level optimizations; a custom dialect helps the
translation into C++ with pragmas. A quality of results (QoR) estimator and a DSE
engine automatically identify the best combination of optimizations following user-
defined constraints, without requiring long simulation or synthesis runs to evaluate the
effect of changes in the optimization directives. The portability of code generated by
ScaleHLS is limited: as happens with every tool that relies on pragma annotations, the
optimizations it applies are only effective if the backend HLS tool recognizes them.
Moreover, analyzing high-level IRs or early HLS estimates may lead to an underesti-
mation of resource consumption, as was shown in several experiments where designs
produced by ScaleHLS could not conclude place and route because they required more
resources than the ones available in the target FPGA.

High-level design choices significantly affect QoR of the generated accelerators,
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and their impact can first be seen at the end of the HLS process, which takes minutes
to hours to complete. Since the design space to explore is considerably large, it can be
beneficial to implement fast prediction methods rather than exhaustively evaluate every
configuration. Multiple solutions based on different ML methods have been proposed
in the past, e.g., [29–31]; GNNs are used in [32–34] because input programs can be
easily represented as graphs. Supervised learning methods rely on the availability of
large training sets, which in this case means sampling the design space and synthesizing
a subset of the possible configuration for each kernel. [35] applies transfer learning to
exploit knowledge about a design and predict the QoR of a different one, reducing the
effort of creating a new training set for each input kernel. Improving upon an existing
GNN model for DSE, [36] addresses the same issue through advanced meta-learning
techniques that reduce the accuracy drop on new inputs.

A radically different approach to improve productivity is the multi-level, compiler-
based design flow proposed by this thesis and implemented in SODA [13,14]. Users of
SODA do not need to rewrite their applications in a new DSL, nor do they have to aug-
ment them with optimization directives: thanks to MLIR, SODA has a direct interface
with high-level programming frameworks, and it exposes optimizations as compiler
passes providing a convenient entry point for DSE [15]. The SODA Synthesizer is
described in more detail in Chapter 4.

2.3 Improvements to the HLS process and results

While the approaches in Section 2.2 mostly use existing HLS tools as "black boxes",
exploiting as much as possible the optimization opportunities they expose, this section
describes proposals to innovate the HLS process itself in order to obtain better QoR and
increase productivity for developers. Research in this field is sometimes hindered by the
proprietary nature of established HLS tools [37] (Bambu [16] is a notable exception).
However, there is a trend toward the democratization of hardware design, as attested
for example by the open-source release of the Xilinx Vitis HLS frontend [38] or by the
OpenROAD project for ASIC synthesis [39].

The CIRCT project [40] intends to use MLIR to build a new generation of interop-
erable tools and compilers for hardware design, starting from the definition of circuit-
level IRs and working upwards to higher levels of abstraction (e.g., dataflow models or
finite state machines). Part of the project is dedicated to HLS [41], particularly to the
implementation of static and dynamic scheduling through MLIR and CIRCT dialects.
CIRCT could be an essential building block for future industrial and academic design
flows. However, to obtain the results described in this thesis it was preferable to inte-
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grate mature HLS backends with optimized synthesis algorithms and resource libraries
supported by decades of research.

Chapters 3 and 4 will describe methods to improve the HLS process and results
through high-level loop optimizations and the generation of dataflow accelerators; Sec-
tions 2.3.1 and 2.3.2 collect related work on these two specific topics.

2.3.1 Loop optimizations

Loop transformations are essential to improve the QoR of accelerators generated by
HLS since a single loop iteration usually does not contain enough optimization po-
tential. Inter- and intra-iteration dependencies determine the amount of parallelism
that can be extracted from nested loops in the input code, and the user can use loop
transformations to choose a trade-off between area and performance according to ap-
plication requirements. Loop unrolling replicates the body of the innermost loop mul-
tiple times, exposing opportunities to execute instructions in parallel; this is the most
straightforward option, and it is available in generic compilers, but it results in large
area overheads. Loop pipelining, instead, aims at overlapping the execution of differ-
ent iterations by issuing a new iteration before the previous one has finished executing.
This is a more complicated transformation, which involves a scheduling process.

The polyhedral model provides unique opportunities to improve parallelization,
pipelining, and memory accesses, which are fundamental targets in mapping software
programs to the spatial parallelism of FPGAs and ASICs. Polyhedral compilers are par-
ticularly suited to workloads containing deeply nested loops and arrays, such as linear
algebra solvers for high-performance scientific simulation or tensor-based ML algo-
rithms. Typical targets for polyhedral optimization techniques include general-purpose
processors with vector units and large multi-level caches, GPUs, and spatial accelera-
tors. Previous works that applied the polyhedral model to HLS include [42–44], which
run C/C++ inputs through polyhedral optimizers and write back restructured C/C++ an-
notated with HLS directives. Even if these approaches show great potential to improve
the performance of generated accelerators, they are hard to combine with other opti-
mizations in a complete design flow, and the code they generate is not portable across
HLS tools. More recently, POLSCA [45] proposed a modular approach exploiting the
MLIR affine dialect and the Vitis HLS LLVM frontend to bridge the gap between poly-
hedral tools and HLS.

Loop pipelining is an essential, nontrivial optimization for HLS which has been
explored from several different perspectives. Irregular loops with variable bounds and
complex dependencies are especially challenging and require dedicated solutions: for
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example, [46] applies speculative loop pipelining for HLS, [47] supports loops with
non-constant dependencies, [48] and [49] exploit polyhedral frameworks to implement
dynamic loop pipelining. Polyhedral analysis in this case enables the generation of
specialized logic that, at runtime, verifies whether it is safe to run all loop iterations in
the pipeline or interrupts its execution to resolve memory conflicts.

The multi-level approach described in this thesis uses existing MLIR transforma-
tions and implements new ones when needed. For what concerns loop pipelining, the
MLIR structured control flow (SCF) dialect provides an experimental pass that gener-
ates pipelined loops according to a schedule manually encoded by the developer, and
the CIRCT staticlogic dialect implements the pipelined loop at a lower level of abstrac-
tion, explicitly dividing the instructions of a loop into pipeline stages. As previously
mentioned, CIRCT has been considered to be at a very early stage for integration in the
proposed design flow, while the SCF loop pipelining pass was considered too restrictive
and replaced by a custom implementation (this will be discussed in Chapter 3).

2.3.2 Generation of dataflow accelerators

HLS tools typically follow the finite state machine with datapath (FSMD) paradigm to
generate hardware designs, where each state determines which datapath components
are activated. The FSMD model is particularly suited for extracting instruction-level
parallelism, but it is based on a centralized controller that does not scale well to large
designs with parallel execution flows. Previous research proposed to decompose and
distribute the FSM controller, restructuring it in a hierarchical way [50], but this is not
an efficient solution to manage the concurrent execution of independent units. In such
conditions, the complexity of a centralized, statically scheduled FSM controller grows
exponentially, leading to significant area and performance overheads [51]. A solution
to this issue is to implement the accelerator following the dataflow paradigm, where a
distributed controller activates hardware components (which can be functional units or
more complex modules, depending on the chosen granularity) as soon as its inputs are
available.

The Bluespec compiler [52] implements an event-driven execution paradigm based
on rules and atomic transactions starting from BSV, a language close to behavioral
HDL (albeit more abstract than Verilog or VHDL). Dynamatic [53] is an HLS tool
that generates dynamically scheduled designs starting from C code using the dataflow
paradigm; it does not support resource sharing and abstracts memory by decoupling
it from the accelerator through a single load/store queue, thus not taking advantage of
memory-level parallelism. CIRCT also has a handshake dialect to implement dataflow
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circuits inspired by Dynamatic. All these tools mainly focus on supporting dataflow at
the instruction level, with functional units exchanging signals that drive the execution.

A dynamically scheduled design based on the dataflow model results in simpler ac-
celerators exploiting parallelism across basic block boundaries; however, FSMDs pro-
vide higher QoR (both in performance and area) extracting instruction-level parallelism
from inside a function or a basic block: for this reason, it is sometimes beneficial to
combine the two models. Dynamatic has been extended to couple dynamic with static
scheduling in [54], supporting resource reuse and a simple memory abstraction, but
still focusing on dataflow at the instruction level rather than supporting coarser-grained
parallel tasks. Several other research projects can generate accelerators that exploit
coarse-grained parallelism by combining dataflow concepts with FSMDs: for example,
the Spatial DSL [55] allows marking modules as dataflow or FSMD at different levels
of the hierarchy. The Xilinx HLS tools support dataflow pipelining mechanisms across
functions or loops (marked by the user with a specific pragma), provided that they have
a similar initiation interval [56].

The SODA Synthesizer supports the generation of dynamically scheduled accelera-
tors by integrating the methodology presented in [57], as will be described in more de-
tail in Chapter 4. In its original version, the methodology allowed to synthesize parallel
tasks annotated by users with OpenMP-like pragmas, while the proposed multi-level
approach provides an entirely automated flow from MLIR specification to hardware
that does not require additional input from the user.

2.4 Hardware acceleration for machine learning

The multi-level, MLIR-based design flow proposed by this thesis can be especially
useful for domain scientists seeking to accelerate ML inference. In fact, ML training
can be efficiently run offline on clusters of GPUs, as throughput is critical and floating-
point data types with high precision are mandatory. Inference instead can be run in a
variety of different settings with different application requirements (including more and
more frequently edge devices [58]), where the most critical metric may be latency or
power consumption; for these cases, specialized accelerators or reconfigurable devices
are often the best solutions, and a variety of different architectures have been proposed
based on ASICs [59] or FPGAs [60].

Commercial solutions to accelerate ML algorithms include specialized functional
units in programmable devices, such as the Tensor Cores in NVIDIA GPUs [61] or
the AI engines in Xilinx platforms [62], and entire chips based on tensor processing
(e.g., the Google TPU [17]). Companies such as SambaNova [63], Graphcore [64],
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and Cerebras [65] propose architectures based on the dataflow paradigm, with varying
degrees of generality in their processing elements. Microsoft’s project Brainwave [66]
accelerates ML algorithms on an FPGA-based platform supporting specialized numeric
formats to reduce resource utilization and increase efficiency.

Considerable attention has been dedicated to the acceleration of DNNs [67, 68];
however, it would also be beneficial to design accelerators that can support multiple
classes of ML algorithms. Efforts in this direction include PuDianNao [69], supporting
multiple ML methods for both training and inference, and SpiNNaker [70] for Spiking
Neural Network (SNN) simulation. IBM’s TrueNorth [71] and Intel’s Lohihi [72] are
neuromorphic, brain-inspired chips built to run SNN models; SyncNN [73] leverages
HLS to implement digital SNN accelerators. TABLA [74] provides a programming
model and pre-optimized templates to design FPGA accelerators for different ML al-
gorithms starting from their gradient descent function. DNNBuilder [75] is also based
on pre-built register transfer level (RTL) components representing DNN layers, provid-
ing a design flow that configures them to compose FPGA accelerators and a dedicated
DSE flow to identify efficient configurations [76]. SIGMA [77] specializes a systolic
array architecture to efficiently support sparse and irregular computation through recon-
figurable interconnect; MAERI [78] also uses reconfigurable interconnects to support
multiple ML operators on the same accelerator.

Other works focus on the compilation and mapping of high-level ML models to
hardware accelerators or architectural templates. VeriGOOD-ML [79] uses the Poly-
Math compiler [80] to map ML models in the ONNX format to three different architec-
ture templates designed for different types of models: the TABLA template for generic
ML algorithms, an architectural template for DNNs, and one for small, extremely spe-
cialized operators. GEMMINI [81] offloads operations from specific layers of ONNX
models to a systolic array connected to a RISC-V core, after building the systolic array
itself starting from a parametrized generator in Chisel. TVM’s VTA architecture [82]
is a configurable FPGA co-processor for matrix multiplication; the TVM high-level
framework compiles ML models into instructions for VTA.

"Classic" HLS-based approaches translate high-level ML models into a form that
can be ingested by existing HLS tools (typically, C/C++ code with optimization di-
rectives). ScaleHLS [27] aims at facilitating and optimizing HLS through high-level
transformations implemented in MLIR, generating annotated C code for Vivado HLS
for ML models translated from PyTorch. LeFlow [83] takes a TensorFlow graph as in-
put, transforms it into an LLVM IR through the XLA compiler, and synthesizes it with
LegUp [84]. The accelerators generated by LeFlow work under the assumption that
both weights and inputs of the model are available on-chip; this strongly limits the pos-
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sibility of using it on real-world networks with millions of parameters. Moreover, XLA
is built to generate code for CPUs and GPUs, so the final LLVM IR is not optimized
for HLS. The semantic information that gets lost in the process hinders the applica-
tion of meaningful transformations. Other tools are focused on FPGA acceleration of
CNN models [85], so they benefit from the regular computation patterns, redundancy,
and reduced dynamic range typical of convolutional layers. Most of them support only
fixed-point data types, arguing that the additional accuracy of floating-point calculation
does not compensate for the resource utilization overhead; some are based on HLS,
while others provide hand-written RTL kernels.

Hls4ml [19] is one of the most popular tools following the "classic" HLS approach:
it translates DNN models from high-level ML frameworks into annotated C++ code
for HLS, offering a complete and user-friendly design process that has been enthusias-
tically adopted in physics research. Hls4ml is under active development, but its core
functionality remains tied to a library of C++ components representing standard DNN
operators. The library is optimized for Vivado HLS, it contains parametric data types
to allow post-training quantization, and it assumes that the accelerator will be com-
posed of a sequence of operators representing the different network layers. Hls4ml was
initially developed for a specific use case where a multi-layer perceptron was used to
perform a classification task within a high-energy physics experiment; optimizations
introduced to comply with the strict latency constraints imposed by the experiment in-
cluded quantization, pruning, and frequent loop unrolling. Network compression was
exploited by enforcing sparsity in the training phase and relying on Vivado HLS to elim-
inate operations with zero weights. Following studies presented additions to the tool
to support quantization-aware training and automatic heterogeneous quantization [86],
binary and ternary networks [87], and CNNs [88].

FINN [20] is a similar framework with a specific focus on quantized DNNs with ex-
tremely low bit-widths (less than 4 bits fixed-point), and it contains a PyTorch library
for quantization-aware training to ensure reasonable accuracy even with such small data
types. The user can choose between two accelerator templates with different resource
utilization and throughput characteristics: a feed-forward streaming dataflow pipeline
(for small networks that can afford to store all weights on-chip) or a computation en-
gine that offloads part of the data to external memory (for larger networks or smaller
FPGAs). FINN supports the whole design and implementation flow, from the defini-
tion and training of the network to the deployment of the accelerator on cloud FPGA
instances, following a network/hardware co-design approach that is not always appli-
cable to a generic pre-trained DNN. Underneath the surface, FINN is based on a library
of parametric C++ components optimized for Vivado HLS.
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As discussed in Section 1.2, the specific implementation choices of tools like hls4ml
and FINN are not guaranteed to provide an optimized result in a general case, and im-
plementing a library of templates limits portability across different HLS backends. The
library implementation of activation functions for hls4ml contains a practical exam-
ple of features that are only applicable when synthesizing hardware with Vivado HLS:
non-trivial activation functions are implemented as tables of constant values represent-
ing the function output for a given range of inputs; Vivado HLS recognizes a specific
C++ pattern at compile-time so that the final RTL design only contains a pre-computed
lookup table stored in on-chip memories (BRAMs). Other HLS tools may not be able
to interpret the C++ pattern as the construction of a constant table, wasting resources
and increasing the overall latency to implement the actual mathematical functions and
control logic contained in the code. Another example of extreme specialization can
be found in the implementation of the softmax layer, where a default fixed-point type
was empirically selected to fill the available BRAM size on specific Xilinx FPGA mod-
els. With such an extreme degree of specialization, every new backend tool requires an
entirely new implementation of the template library.

This thesis does not propose yet another accelerator design or architectural template,
where different applications would achieve different performances depending on how
well they exploit the available computational resources: instead, the compiler-based
approach bringing together MLIR and HLS represents a new methodology to design
and implement an FPGA or ASIC accelerator starting from a high-level description
of a specific ML algorithm. Compared to other tools that provide a bridge between
high-level programming frameworks and hardware generation, the proposed method
is considerably more flexible in the high-level frameworks and backend HLS tools it
can support. Optimizations are applied at appropriate levels of abstraction without
generating intermediate C/C++ code, and the modular compilation pipeline can easily
be adapted to the needs of new classes of input models.
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APPLYING optimizations to high-level specifications before HLS can significantly
contribute to developers’ productivity, portability across HLS tools, and per-
formance. In this chapter, a high-level implementation of loop pipelining is

introduced leveraging a specialized MLIR dialect and integrated into a frontend opti-
mizer for HLS.

This chapter contains material from:

S. Curzel, S. Jovic, M. Fiorito, A. Tumeo, and F. Ferrandi, “Higher-Level Synthesis:
experimenting with MLIR polyhedral representations for accelerator design,” in 12th
International Workshop on Polyhedral Compilation Techniques (IMPACT), 2022, pp.
1–10;

S. Curzel, S. Jovic, M. Fiorito, A. Tumeo, and F. Ferrandi, “MLIR loop optimiza-
tions for High-Level Synthesis: a case study,” in 31st International Conference on Par-
allel Architectures and Compilation Techniques (PACT), 2022, pp. 1–2;

N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana,
J. Manzano, D. Kaeli, and A. Tumeo, “An MLIR-based Compiler Flow for System-
Level Design and Hardware Acceleration,” in IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2022, pp. 1–9.
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3.1 Overview

HLS tools are effectively compilers, as they translate a programming language into
another one at a lower level of abstraction. In their frontend, they benefit from the
same compiler optimizations that identify instruction, memory, and data parallelism
in software for general-purpose processors; in the backend they work on a low-level
IR close to the actual hardware description, and they perform allocation of resources,
scheduling of instructions, binding of instructions to resources, finally generating HDL
code for the required FPGA or ASIC target (Figure 3.1). Optimizations are usually
triggered by users through annotations or configuration options; the HLS tool then
applies the corresponding transformations to its internal IR.

Behavioral 
specification

Compilation

Internal 
low-level IR

Binding

Code 
generation

SchedulingAllocation

RTL 
architecture

C/C++/LLVM IR

VHDL/
Verilog

High-Level 
Synthesis

Figure 3.1: Steps in the HLS process.

To introduce new optimizations, researchers and developers need access to the code
(which might already be an obstacle, given the proprietary nature of most HLS tools)
and knowledge about the hardware generation process. The alternative is resorting to
modifications on the input code, limiting the exploration of transformations to what
can be expressed through C/C++ code augmented by pragmas, as is typically done
in research works that apply polyhedral optimizations to HLS (e.g., [42, 49]). Such
an approach can produce good results, but it has limited flexibility, and it risks loss
of semantic information as the input specification is translated multiple times across
different formats for different tools.
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What this thesis proposes, instead, is to exploit recent advances in compiler tech-
nology to introduce and apply optimizations outside of the HLS tool in a modular way,
taking advantage of state-of-the-art HLS tools that support LLVM IRs as input. Specifi-
cally, this chapter presents the advantages of using MLIR to build a high-level compiler
frontend for HLS where optimizations can be added at an appropriate level of abstrac-
tion through dedicated dialects, and without relying on tool-specific annotations. An
MLIR implementation of loop pipelining is used as a case study since it has a signif-
icant effect on HLS QoR and it is not as straightforward as loop unrolling (which is
already available in MLIR, in standard compilers, and in HLS frontends).

Loop pipelining overlaps iterations depending on available computational resources
and memory dependencies, with the aim of parallelizing as many operations as possi-
ble; the ideal target is obtaining a loop with an Initiation Interval (II) of one, meaning
that a new iteration can start executing every clock cycle. The MLIR affine dialect
provides structures and methods to analyze and transform loops (in fact, it was initially
introduced to support polyhedral optimizations for ML frameworks), and the higher
level of abstraction allows to identify more complex dependencies than what is possi-
ble on an LLVM IR or low-level HLS IR. Two custom MLIR passes were implemented
in the affine dialect following the principles of software loop pipelining [91], and no
modification was necessary to low-level hardware generation steps inside an HLS tool.
These factors contribute to an improvement in the productivity of developers: imple-
menting loop pipelining (or another nontrivial optimization) within an HLS tool that
does not already support it would typically have required extensive modifications to the
scheduling and code generation steps, and it would have had access to a less powerful
dependency analysis.

Another advantage of the proposed approach is that it generates portable optimized
code, instead of exploiting directives and code patterns that trigger optimizations for
a specific HLS tool. Chapter 6 starts by evaluating the impact of MLIR-based loop
pipelining on an open-source HLS tool, Bambu [16], but the transformed code does
not contain anything specific to Bambu, and it can be synthesized by any other tool
accepting MLIR or LLVM code as input (including recent versions of Xilinx Vitis
HLS [38]). Finally, MLIR passes are modular and they can be easily combined in
a compilation pipeline that acts as a frontend optimizer for HLS tools: this MLIR-
based loop pipelining implementation has been integrated into one such tool, SODA-
OPT [15], which follows the proposed multi-level approach to HLS. Experiments in
Chapter 6 will demonstrate the portability across HLS tools and increased performance
provided by MLIR-based loop pipelining, both in isolation and combined with other
high-level optimizations.
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In summary, this chapter presents the following contributions:

• a high-level implementation of loop pipelining for HLS based on the MLIR affine
dialect;

• a demonstration of the improvements in productivity, portability, and performance
deriving from the use of MLIR;

• an optimization flow that applies selected compiler transformations before HLS
to improve the performance of the generated accelerators.

Section 3.2 introduces the main techniques and tools used in the rest of the chapter,
Section 3.3 presents the proposed design flow and Section 3.4 dives deeper into imple-
mentation details, Section 3.5 presents the integration of the loop pipelining pass in a
frontend optimizer for HLS, Section 3.6 draws conclusions and outlines future research
directions.

3.2 Techniques and tools involved

This section describes techniques and tools that are used throughout the chapter.

3.2.1 Loop pipelining

Loop optimizations have been widely studied both in software and hardware research,
and they are critical to improve the performance of hardware accelerators generated
through HLS. Loop pipelining overlaps the execution of multiple iterations and it is
useful, for example, when there are not enough hardware resources to accommodate an
unrolled loop. The technique has been successfully used in compiler infrastructures for
decades [91], and it generally consists of two steps: loop scheduling and code genera-
tion. Depending on the available computation and memory resources, their latency, and
the presence of inter-iteration dependencies, a pipelined loop can issue the execution of
a new iteration at every clock cycle (II=1).

A simple example useful to illustrate the procedure in more detail is a for loop that
reads values from an array, multiplies them with a constant, and writes them into an-
other array. A single iteration of the loop contains three operations: load, multiply, and
store (Figure 3.2a); clearly, the three operations depend on each other and cannot be ex-
ecuted in parallel. Loop pipelining produces a new loop such as the one in Figure 3.2b,
where each column represents one iteration of the new loop, and operations originating
from the same iteration of the original loop are highlighted with the same color.
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(a) Single loop iteration.
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(b) Pipelined loop.

Figure 3.2: Example of a pipelined loop.

Each iteration of the pipelined loop contains operations from different iterations of
the original loop: as these operations do not depend on each other, they can be executed
in parallel without constraints. By overlapping original iterations, loop pipelining thus
eliminates obstacles to parallelization. Incomplete iterations at the beginning form a
loop prologue; the last few iterations are also incomplete, and they form a loop epi-
logue. The new loop is built of the complete iterations between prologue and epilogue.
In the example shown in Figure 3.2b, iterations I 1 and I 2 belong to the loop prologue,
I N+1 and I N+2 represent the epilogue, while the actual new loop starts from I3. As-
suming that all functional units execute in one clock cycle, the achieved II in this simple
example is equal to 1.

3.2.2 Scheduling

The example loop of Figure 3.2 cannot be pipelined if there are not enough memory el-
ements available to run two operations (one load and one store) simultaneously. Before
generating the pipelined loop, a scheduling step analyzes available hardware resources
and dependencies across operations to produce a schedule, i.e., a list of operations as-
signed to a clock cycle and to a resource, and compute the II. If one load and one store
unit are available for the example loop, and all functional units have a delay of one
cycle, the scheduler will correctly produce a schedule such as the one shown in Figure
3.3, which contains the necessary information to pipeline the loop with II=1.

Achieving an optimal or close to optimal schedule is an NP-complete problem;
rather than building a new scheduling tool, the implementation described in this chap-
ter uses the HatSchet library [92], an open-source scheduling tool for HLS that offers
various algorithms and heuristics for the construction of schedules. HatSchet requires a
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CYCLE LOAD0 STORE0 MUL0

0 LOAD

1 LOAD MUL

2 LOAD STORE MUL

3 LOAD STORE MUL

... ... ...

N+1 STORE MUL

N+2 STORE
EPILOGUE

PROLOGUE

NEW LOOP
ITERATIONS

}

}
}

Figure 3.3: Pipelined loop schedule.

data flow graph (DFG) of the loop body and resource availability information as inputs,
and it produces a schedule in a textual format. The availability of different algorithms
enables to trade scheduling time for quality.

3.2.3 MLIR

MLIR is a recent contribution to the LLVM project that enables and encourages the
implementation of reusable compiler infrastructures; its key feature is providing mech-
anisms to define specialized abstractions (dialects) to solve specialized optimization
problems. MLIR was conceived initially to be applied within ML frameworks; several
ML tools offer an interface to MLIR dialects, and it is expected that more and more
programming frameworks will do the same in the near future.

MLIR defines an IR in static single-assignment (SSA) form consisting of MLIR
operations, which dialects can extend by representing new operations, attributes, and
types sharing a specific purpose. MLIR operations consist of a name, operands, at-
tributes, results, and, optionally, nested regions. A region represents an ordered list of
MLIR blocks, while blocks represent ordered lists of operations with a single termi-
nator operation at the end. Blocks are compiler basic blocks that compose the control
flow graph of a program. MLIR exposes entry points for analysis and transformation
passes which traverse the IR to either collect useful information or modify it.

Many dialects in the main MLIR repository operate at higher levels of abstraction
with respect to C/C++, and to the instruction-level IRs of HLS tools; moreover, it is
possible to combine different dialects in the same representation, opening the way to
the integration of novel compilation passes and optimizations that operate on specific
parts of the program. High-level affine structures can coexist with low-level operations
on SSA values, allowing the application of both polyhedral loop transformations and
traditional compiler optimizations. Lowering passes provide methods to move between
dialects; the last step in the lowering process is the LLVM dialect, which can be di-
rectly translated into an LLVM IR. The proposed implementation of loop pipelining is
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3.2. Techniques and tools involved

based on the affine dialect, but other dialects that can be lowered to affine can exploit it,
and they may provide future opportunities for optimization. Many ML frameworks im-
plement custom MLIR dialects with interfaces to high-level abstractions such as linear
algebra (linalg) or tensor operations (tosa); the proposed approach can thus be applied
to ML algorithms, and to any other application written in a programming environment
or DSL with an interface to MLIR dialects.

The SCF dialect provides a different representation of for loops, and it also offers a
loop pipelining pass; however, it only implements the code generation phase, expecting
developers to manually provide a schedule for the loop operations. As will be explained
in more detail in the following sections, to build an efficient schedule it is essential to
compute the dependencies between operations, and the affine dialect provides informa-
tion about memory dependencies (affine load and store operations) that are lost when
lowering to the SCF dialect (memref load and store operations). Applying a sched-
ule containing affine operations to a set of SCF operations would not be appropriate,
as there can be mismatches between the original and the lowered operations (e.g., an
affine apply operation is lowered to more than one SCF operation), so it was eventually
decided to implement both dependencies extraction and code generation at the affine
level.

3.2.4 HLS tools

Two different HLS tools were used to validate the proposed approach: Bambu and Vitis
HLS. Bambu is a state-of-the-art open-source HLS tool compatible with both C/C++
and LLVM IR inputs; it can perform (some) loop optimizations in the frontend (e.g.,
unrolling) but it has no internal support for loop pipelining. Vitis HLS, instead, is a
commercial tool by Xilinx supporting C/C++ inputs augmented by custom pragmas.
In absence of user-defined directives, if a loop in the code is considered too expensive
to be unrolled Vitis HLS tries to pipeline it with an II of 1, progressively relaxing the
constraint if necessary [93].

Bambu was the first target of the case study, precisely because it is able to synthe-
size LLVM IR (which is a natural target for MLIR lowering), and because it would not
otherwise be able to pipeline loops. Xilinx recently released an open-source LLVM
frontend for Vitis HLS [38], which can be bypassed to use an LLVM IR as input to the
(closed-source) synthesis backend. This way of using Vitis HLS is rather experimental,
with little documentation and support, but it allowed to verify whether high-level trans-
formations can have a similar effect on different HLS tools. By synthesizing annotated
C code with Vitis HLS it is also possible to assess whether MLIR-based loop pipelining
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has a similar or better effect on the generated accelerator performance with respect to
a low-level implementation of the same optimization triggered through pragma annota-
tions.

3.3 Proposed design flow

The goal of the proposed approach is to leverage high-level code optimizations to pro-
vide a pre-transformed input description to HLS, without binding it to the requirements
of a specific HLS tool (most notably in terms of pragma annotations). This section
presents an overview of the proposed design flow, leaving implementation details to the
next section; Figure 3.4 shows the main steps and tools involved.

High-Level Synthesis 
tool

Code generation

Scheduler

Software Programming framework

e.g. 

e.g. linalg, tosa dialects

DFG extraction

Lower to affine dialect

Translate to MLIR IR

sequential loops

DFG and resource info XML

HatSchet

Schedule CSV

Translate to LLVM IR

pipelined loops

Bambu/
Vitis HLS

External tool MLIR framework

Alternative paths to add optimization passes

Figure 3.4: Overview of the proposed optimization flow.

The input code may originate from any high-level programming framework with a
translation into MLIR (e.g., TensorFlow [7] or ONNX-MLIR [94]). After lowering it
to the affine dialect, the code contains one or more sequential for loops, which are ana-
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3.4. Implementation of high-level loop pipelining

lyzed by the first newly introduced pass to extract a DFG representing the operations in
the loop body. The DFG is passed to an external scheduler (HatSchet), together with in-
formation on the available hardware resources. When targeting an FPGA, the resource
constraints may be set iteratively to achieve a specific trade-off between performance
and area consumption, also considering the rest of the design besides the loop(s) of
interest; in simple cases where the number of instructions in the loop body is limited,
it is also acceptable not to impose any resource constraint at this stage. The second
part of the new implementation is a pass that rewrites the input code using the schedule
generated by HatSchet to produce the pipelined loop. Additional optimization passes
can be introduced along the way, before or after pipelining the loop; finally, the MLIR
IR is translated into an LLVM IR and passed to the HLS tool to generate an accelerator
description in Verilog/VHDL.

The proposed design flow represents an alternative to delegating scheduling and
pipelining to the HLS tool itself: this is the standard programming model of Vitis HLS,
where optimizations are controlled by the user through pragmas in the input C code,
or automatically triggered in the backend. Bringing loop pipelining (and other opti-
mizations) outside the scope of the HLS tool has significant advantages: for example,
the developer can immediately verify the application of the optimization techniques, as
their effects are visible in the transformed IR. Moreover, applying transformations on
a specialized, higher-level abstraction increases flexibility, portability, and requires less
time than implementing and exploring different techniques within the HLS tool (when
this is possible, as most HLS tools are closed-source). Finally, MLIR is built to allow
integration and reuse of different compiler passes: this means that loop pipelining may
be combined with other techniques to create pre-optimized inputs to the HLS tool that
result in even more efficient hardware accelerators.

3.4 Implementation of high-level loop pipelining

Two custom MLIR passes were implemented to realize the proposed design flow: one
extracts a DFG from the MLIR loop body, and another one generates the pipelined
loop code according to the schedule produced by HatSchet. In the following, the loop
described in Section 3.3 will be used as example; Figure 3.5a shows its MLIR im-
plementation (affine dialect for loops and memory operations, arith dialect for basic
arithmetic operations).
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func @example(%arg0: memref<1000xi32>) {
affine.for %arg1 = 0 to 1000 {

%0 = affine.load %arg0[%arg1]
%1 = arith.muli %0, %0
affine.store %1, %arg0[%arg1]

}
return

}

(a) Original loop in MLIR (affine and arith dialect).

# II 1
# vertex;            cycle;   functional_unit
affine.load_1;       0;              load0
arith.muli_2;         1;              mul0 
affine.store_3;      2;             store0

(b) HatSchet schedule.

#map = affine_map<(d0) -> (d0 - 2)>
func @example(%arg0: memref<1000xi32>, 

%arg1: memref<1000xi32>) {
%c0 = arith.constant 0 : index
%0 = affine.load %arg0[%c0] : memref<1000xi32>
%c1 = arith.constant 1 : index
%1 = affine.load %arg0[%c1] : memref<1000xi32>
%2 = arith.muli %0, %0 : i32
%3:2 = affine.for %arg2 = 2 to 1000 

iter_args(%arg3 = %1, %arg4 = %2) -> (i32, i32) {
%5 = affine.load %arg0[%arg2] : memref<1000xi32>
%6 = arith.muli %arg3, %arg3 : i32
%7 = affine.apply #map(%arg2)
affine.store %arg4, %arg1[%7] : memref<1000xi32>
affine.yield %5, %6 : i32, i32

}
%4 = arith.muli %3#0, %3#0 : i32
%c998 = arith.constant 998 : index
affine.store %3#1, %arg1[%c998] : memref<1000xi32>
%c999 = arith.constant 999 : index
affine.store %4, %arg1[%c999] : memref<1000xi32>
return

}

(c) Scheduled loop in MLIR (affine and arith dialect),
colors highlight different original iterations.

Figure 3.5: Code generation for high-level loop pipelining in MLIR.

3.4.1 Data flow graph extraction pass

A first MLIR pass was implemented to visit all the operations in the loop body and
extract their dependencies; information retrieved by the analysis is used to build a DFG
that HatSchet is able to schedule. Nodes in the graph represent operations; edges rep-
resent dependencies between operations (precedence and data dependencies). Prece-
dence dependency refers to an operation that uses the result of another operation in
the code; data dependency exists between two memory operations accessing the same
memory location. A data dependency can occur between two memory operations only
if at least one of them is a store operation (two loads are always independent of each
other). Data dependencies have a distance attribute to express the distance between the
loop iterations that contain the two operations; precedence dependencies do not have a
distance attribute as the result of an operation in an iteration cannot be used in a differ-
ent iteration without passing through memory. The pass encodes all this information
in an XML file format parsable by HatSchet, and a second XML file is passed to the
scheduler representing the type and amount of available functional units.

The extraction of nodes and precedence edges is performed by visiting all opera-
tions in the loop. Data dependence analysis is simplified by an existing MLIR affine
method, checkMemRefAccessDependence, which analyzes a pair of memory
operations and evaluates whether a dependency exists (the distance can also be deduced
from its output). Existing affine constructs thus simplified the implementation of the
DFG extraction pass, confirming the hypothesis that the MLIR dialect-based approach
provides a convenient framework for the quick introduction of new optimizations.
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3.4. Implementation of high-level loop pipelining

Algorithm 1
1: function EXTRACT_PROLOGUE(schedule, II, originalIterationSize)
2: repeat
3: iteration = new_empty_iteration()
4: start_cycle = 0
5: current_prologue_iteration = prologue.size()
6: while (current_prologue_iteration >= 0) do
7: cycles = schedule.get_cycles(start : start_cycle, end : start_cycle+ II)
8: iteration.schedule_cycles(cycles)
9: current_prologue_iteration = current_prologue_iteration - 1

10: start_cycle = start_cycle + II
11: end while
12: if iteration.size() < originalIterationSize then
13: prologue.add(iteration)
14: end if
15: until iteration.size == originalIterationSize
16: end function

Figure 3.6: Prologue extraction algorithm.

3.4.2 Code generation pass

The second pass that was implemented loads the HatSchet schedule from its textual
format (Figure 3.5b) into a suitable data structure and uses it to generate code for the
pipelined loop. The following paragraphs highlight all the steps that are needed to
transform the original loop of Figure 3.5a into the scheduled loop of Figure 3.5c.

Prologue and epilogue extraction. HatSchet provides only the new loop iteration
schedule, without prologue and epilogue, so the MLIR code generation pass needs to
generate additional instructions for prologue and epilogue. Prologue and epilogue are
not loops, but it is useful to reason in terms of prologue and epilogue iterations to
identify blocks of operations that can be issued in parallel (for example, columns I1
and I2 in Figure 3.2b).

The first prologue iteration will contain operations with an overall latency of II,
extracted from the first original loop iteration. Then, each following prologue iteration
will start a new original loop iteration and continue previously started original iterations
with blocks of operations that cover II cycles. The algorithm for prologue extraction
(Algorithm 1) starts iterations from the original loop sequentially until it arrives at the
first iteration of the new loop: the exit condition of the algorithm is satisfied once it
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generates an iteration containing all operations that are in the schedule (this iteration is
not included in the prologue).

Looking at Figure 3.2b, the loop has II=1 and three operations in each iteration: this
means that the prologue extraction algorithm will schedule a single load operation in
I1, then schedule the load operation from the next iteration, and the multiplication to
continue the previous iteration in I2. The algorithm stops when it generates I3 and sees
that it contains the same operations of the scheduled iteration, so it will be discarded.

The epilogue can be extracted similarly. However, in this case the pass does not start
new iterations but instead finishes the ones started in the new loop: the exit condition
is satisfied when the size of the generated iteration equals zero.

Operations mapping. During code generation, original loop operations are cloned,
and their operands are updated to reference new operation results. MLIR provides a
mechanism to create a deep copy of an operation while assigning new values to its
operands using a map: keys in the map represent the initial results of each operation,
while values contain the results of the new cloned operations. A separate map is built
for each original iteration to ensure that the correct operation dependencies are main-
tained, and a key-value pair is recorded each time a new operation is generated.

In the example code of Figure 3.5c the MLIR pass creates five maps: two for the
original iterations starting in the prologue, one for all original iterations starting in
the new loop, and two for the original iterations finishing in the epilogue. In fact, the
original iterations fully executed within the new loop body can use a single map because
there is no need to distinguish them from each other.

Prologue generation. Prologue generation traverses the prologue extracted from
the schedule and creates operations by cloning the original ones and populating the
correct maps (Algorithm 2). As new operations are created in order, the cloning map
always contains new values needed to substitute old operands. Other operands that need
to be replaced are the ones that depend on the loop index variable: in this case, a new
variable is calculated by summing the lower bound of the loop index with the number
of the original iteration. In simple cases where the lower bound is a constant, the new
expression is also a constant.

In the example, prologue generation needs to generate three operations - two loads
and one multiply. The first load is cloned from the original operation within the loop
and moved in front of the loop. Since the load address depends on the loop index
variable, it needs to be replaced with an additional constant: its value is the sum of
the original iteration number (zero) with the loop lower bound (zero). The second load

30



i
i

“output” — 2022/12/28 — 13:03 — page 31 — #41 i
i

i
i

i
i

3.4. Implementation of high-level loop pipelining

Algorithm 2
1: function GENERATE_PROLOGUE(prologue_iterations, operand_maps)
2: for iteration : prologue_iterations do
3: for cycle : iteration do
4: for operation : cycle do
5: for operand : operation.operands do
6: if operand == original_index_variable then
7: constant_operation =
8: generate_constant_operation(value : original_iteration)
9: operand_maps[original_iteration].insert(operand,

10: constant_operation.result)
11: end if
12: new_op = operation.clone(maps[original_iteration])
13: maps[original_iteration].insert(operation.results, new_op.results)
14: end for
15: end for
16: end for
17: end for
18: end function

Figure 3.7: Prologue generation algorithm

is cloned and moved in the same way; its constant will have a value of one since the
operation comes from the first original iteration. When the multiply operation is cloned
and moved, it correctly uses the result of the first load: in fact, as soon as the load
operation is generated, its result is correctly recorded in the map so that all operations
that used it in the original loop are redirected to its new value.

New loop generation. In a similar way to what happens during prologue genera-
tion, each operation in the new loop is created by cloning the original loop operation
and mapping its operands (Algorithm 3). If an operand requires the result of an oper-
ation from inside the loop body, this is handled by the default mapping mechanism; if
an operand requires the loop index of an iteration started in the prologue, the variable
will be adjusted by a map to refer to the correct value. For example, operation %7 in
Figure 3.5c produces the correct index for the store operation in line 12 by subtracting
2 from %arg2.

Inter-iteration argument passing. Loop pipelining requires the loop to pass results
from one iteration to the next, which is usually solved in hardware through dedicated
registers. As the MLIR implementation works on a higher level of abstraction, this
needs to happen explicitly in the code. MLIR provides a mechanism to pass arguments
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Algorithm 3
1: function GENERATE_NEW_OP(original_op, original_iteration, operand_maps)
2: new_op = original_op.clone(operand_maps[original_iteration])
3: for operand : new_op.operands() do
4: if operand.is_index_substitution_result() == true then
5: apply_op = create_affine_apply(index_variable, affine_map)
6: operand_maps[original_iteration].insert(index_variable, apply_op)
7: end if
8: if operand.is_result_from_prologue() == true then
9: add_prologue_result_to_iter_args()

10: operand_maps[original_iteration].insert(original_op_result, iter_arg)
11: end if
12: operand_maps[original_iteration].insert(original_op.result, new_op.result)
13: end for
14: end function

Figure 3.8: New loop generation algorithm.

to each new iteration of the loop: operations that need to pass their result to a following
iteration of the loop can yield a value, which will be available as iteration argument at
the beginning of the next iteration.

In the example, the new loop body consists of three operations, all from different
original iterations: the load operation does not need any mapping of the operands, the
multiplication uses the result of the load from the prologue (first iteration argument), the
store uses the result of the multiplication from the prologue (second iteration argument).
After each iteration of the new loop, load and multiply results are yielded to serve as
iteration arguments for the next iteration.

Scheduling might overlap instructions in such a way that lifetimes of operation re-
sults span multiple iterations, introducing the risk of overwriting an old value before
using it. Two different solutions to this problem are proposed in [95]: loop unrolling
and rotating register files. Unrolling introduces further code expansion, while rotating
register files requires architectural support that cannot be modeled on such a high level
of abstraction. A simpler solution was implemented using additional iteration argu-
ments, such as the %arg5 iteration argument in Figure 3.9, which is simply shifted to
%arg4 at the end of the iteration.

Epilogue generation and old loop removal. Epilogue generation follows a similar
procedure to prologue generation, with an additional step that maps the results of yield
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3.4. Implementation of high-level loop pipelining

%3:3 = affine.for %arg2 = 2 to 1000 
iter_args(%arg3 = %1, %arg4 = %2, %arg5 = %3) 

-> (i32, i32, i32) {
%5 = affine.load %arg0[%arg2] : memref<1000xi32>
%6 = arith.muli %arg3, %arg3 : i32
%7 = affine.apply #map(%arg2)
affine.store %arg4, %arg1[%7] : memref<1000xi32>
affine.yield %5, %arg5, %6 : i32, i32

}

Figure 3.9: Inter-iteration argument passing.

operations from the last loop iteration to epilogue operands. Finally, the old loop is
removed from the code.

3.4.3 Support for results forwarding

When a loop reads and writes to the same memory address at each iteration (e.g., the
innermost one in a nest accessing an address that depends on loop indexes from outer
loops), this creates an inter-iteration dependency: an iteration cannot start before the
previous one has finished writing to memory, limiting the possibility to apply loop
pipelining. This issue was solved by the introduction of an MLIR pass that forwards
results from one iteration to another: the load and store operations are moved outside of
the innermost loop, and inter-iteration argument passing forwards intermediate results
through yield operations and iteration arguments. The pass is applied before the DFG
extraction pass to facilitate loop pipelining, but it provides performance benefits also in
isolation.

3.4.4 Support for variable loop bounds

The new loop produces correct results under the assumption that all iterations started
in the prologue and at least one iteration of the new loop are always executed (with the
epilogue taking care of finalizing incomplete iterations). If both the lower and upper
bounds of the original loop are constant, and the number of iterations does not satisfy
this condition, the loop transformation pass will not attempt to modify the loop and
return an error message. If one of the loop bounds is a constant and the other one is
a variable (e.g., depending on an input argument or on a parent loop index), it is not
possible to assess at compile time whether enough iterations will be executed to cover
the prologue and new loop iterations. To allow loop pipelining in such a situation, a
check was introduced at runtime to assess whether there are enough new loop iterations
to safely execute the pipelined loop, falling back on the original loop if this is not
the case. This results in having both the original and the pipelined loop in the code,
causing additional area overhead in the generated accelerator but no degradation in

33



i
i

“output” — 2022/12/28 — 13:03 — page 34 — #44 i
i

i
i

i
i

Chapter 3. High-level optimizations

performance. This is a simple and effective solution that can be easily implemented
in MLIR with affine if operations and affine sets, as opposed to modifications within
the HLS tool which would require expertise with low-level abstractions (for example,
to generate a dedicated controller able to stop the pipelined execution at runtime), and
would need to be reimplemented for each different HLS backend.

3.4.5 Support for if-else statements

An if-conversion pass was also implemented in MLIR following [96], which allows to
pipeline loops containing if and else blocks. If-conversion is run as a preprocessing step
before DFG extraction to allow parallelization of the operations inside the if and else
blocks; affine if and else blocks would otherwise be treated as a single operation in the
scheduling phase. If and else constructs are removed, and all operations are extracted
out of them; the if condition is used in a select operation that decides which result is the
correct one (Figure 3.10). The pass is only run if there are no operations that write to
memory or call external functions, to preserve the correctness of results even if both if
and else blocks are speculatively executed. This is a transformation that was designed
for software, but thanks to the higher level of abstraction provided by MLIR it can be
seamlessly applied, in isolation or together with loop pipelining, to benefit HLS results.
Additional transformations such as this one could easily be implemented in the future
as MLIR passes working together with the ones that were presented: an example is
the technique proposed in [97], which tackles nested loop optimizations and merges
epilogue and prologue of adjacent iterations.

#set = affine_set<(d0) : (d0 - 9 >= 0)>
   …
%10 = affine.if #set0(%arg1) -> f64 {
    %11 = arith.mulf %8, %7 : f64
    affine.yield %11 : f64
} else {
    %11 = arith.addf %8, %7 : f64
    affine.yield %11 : f64
}
affine.store %10, %arg6[%arg11, %arg12] : memref<16x18xf64>

   #map = affine_map<(d0) -> (d0 - 9)>
      …
    %10 = arith.mulf %8, %7 : f64
    %11 = arith.addf %8, %7 : f64
    %12 = affine.apply #map(%arg1)
    %c0 = arith.constant 0 : index
    %13 = arith.cmpi sge, %12, %c0 : index
    %14 = arith.select %13, %10, %11 : f64
    affine.store %14, %arg6[%arg11, %arg12] : memref<16x18xf64>

Figure 3.10: Effect of the if-conversion pass.

3.5 A frontend optimizer for HLS

SODA-OPT [15] is an MLIR-based compiler tool supporting system-level design and
hardware acceleration of applications developed in high-level programming frame-
works, and it is part of the SODA Synthesizer, which will be described in more detail

34



i
i

“output” — 2022/12/28 — 13:03 — page 35 — #45 i
i

i
i

i
i

3.6. Conclusion

in Chapter 4. After selecting a kernel for acceleration, SODA-OPT applies a modular
optimization pipeline that restructures it so that it will be better suited for hardware syn-
thesis, exploiting high-level MLIR optimizations. Some of the optimizations available
in SODA-OPT are standard compiler optimizations while some of them are custom
passes, and the loop pipelining implementation that was described in this chapter has
been integrated into the set of available SODA-OPT optimizations (Table 3.1 lists the
most relevant ones). The default set of active optimizations privileges passes that result
in faster accelerators when synthesized, exposing instruction- and data-level parallelism
and removing unnecessary operations. However, the optimization pipeline is not mono-
lithic: developers can easily enable, disable, reuse, or modify optimizations, providing
ample opportunities to customize the process for different applications and implement
automated DSE strategies.

Table 3.1: Partial list of high-level optimizations available in SODA-OPT.

Optimization pass Effect Default active
Loop unrolling Expose instruction-level parallelism yes
Loop tiling Balance computation and memory transfer no
Loop pipelining Parallelize loop iterations no
If-conversion Speculative execution of if-else blocks yes
Results forwarding Remove unnecessary memory transfers yes
Temporary buffer allocation Reduce accesses to external memory yes
Common sub-expression elimination Remove unnecessary operations yes

3.6 Conclusion

Implementing loop optimizations as compiler transformations in a preliminary step be-
fore HLS, as opposed to implementing them inside the tool, can improve the perfor-
mance of the generated accelerators, increase developer productivity, and decouple the
optimizations from a specific backend tool. To support this claim, a set of compiler
passes supporting loop pipelining has been implemented exploiting the MLIR affine
dialect, a specialized representation designed to enable polyhedral optimizations. Such
an approach opens the way to further research to explore optimization techniques that
can benefit HLS when they are applied at a higher level of abstraction than existing
solutions. Thanks to the modular nature of MLIR, the proposed loop pipelining pass
has been seamlessly integrated into a compiler-based frontend optimizer for HLS.
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CHAPTER4
End-to-end synthesis

THE SOfware Defined Architectures (SODA) Synthesizer is a practical realization
of the multi-level approach to HLS proposed by this thesis: an MLIR-based,
modular hardware compiler that provides an automated path from high-level

programming tools to FPGA/ASIC. SODA answers the demand for specialized hard-
ware accelerators caused by the ever-changing nature of data science workloads, and it
can assemble multiple generated accelerators in a custom dataflow system driven by a
distributed controller.

This chapter contains material from:

S. Curzel, N. Bohm Agostini, V. G. Castellana, M. Minutoli, A. Limaye, J. Man-
zano, J. Zhang, D. Brooks, G.-Y. Wei, F. Ferrandi, and A. Tumeo, “End-to-end Syn-
thesis of Dynamically Controlled Machine Learning Accelerators,” to appear in IEEE
Transactions on Computers;

N. Bohm Agostini, S. Curzel, J. J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Min-
utoli, V. G. Castellana, J. Manzano, D. Brooks, G.-Y. Wei, and A. Tumeo, “Bridging
Python to Silicon: The SODA Toolchain,” IEEE Micro, vol. 42, no. 5, pp. 78–88, 2022.
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Chapter 4. End-to-end synthesis

4.1 Overview

Next-generation edge systems will operate under conditions where exporting all the
acquired data for centralized processing is inconvenient or impossible [58]. For ex-
ample, monitoring infrastructure for highly dynamic systems (e.g., sensor networks for
smart cities, the power grid, and environmental monitoring) will need to operate in low-
power settings with limited bandwidth available for communication [99]. Experimental
instruments such as the ones owned by the US Department of Energy (e.g., particle ac-
celerators, mass spectrometers, and electron microscopes), already generate volumes
of data that are impossible to store or transfer without pre-processing [100]. Extreme
conditions require highly specialized processing systems, optimized along a variety of
metrics that include energy, performance, latency, size, and thermal dissipation; such
requirements combined are usually impossible to meet for general-purpose processors,
so application-specific accelerators become a necessity.

On the application side, domain experts design and validate their algorithms in
high-level programming frameworks. Especially in the fields of data science and ML,
both algorithms and programming frameworks evolve quickly, outpacing conventional
hardware design processes and highlighting their significant productivity limitations:
manually designing custom accelerators is complex, expensive, and time-consuming,
preventing effective exploration of alternative architectures and often requiring a new
design cycle to support innovations efficiently. General and automated solutions are
needed to quickly transition from the formulation of an algorithm to the implementa-
tion of a dedicated accelerator, as no single design can support the extreme diversity
and fast-paced growth of data science.

Hardware designers usually extract key computational patterns from the algorithms
that need to be accelerated, identify parallelism and data reuse opportunities, and de-
sign custom functional units for specific kernels; a common alternative to accelerate
this process is to implement the functional units in C/C++ and convert them to HDL
through HLS tools. In both cases, after functional verification, the kernels are passed
to downstream logic synthesis and physical design tools and finally integrated into a
system. The interaction between multiple Computer-Aided Design (CAD) tools at dif-
ferent levels of abstraction, with part manual coding and part automated processing,
requires considerable effort to propagate changes across different stages of the design
flow, and the quality of the final design highly depends on the designers’ expertise.

The modern perspective on HLS proposed in this thesis addresses these issues
through a multi-level approach, which has been realized in practice through the SOft-
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4.1. Overview

ware Defined Architectures (SODA) Synthesizer [13, 14], an open-source, multi-level,
modular, extensible, no-human-in-the-loop hardware compiler that translates high-level
ML models into domain-specific accelerators. The SODA Synthesizer comprises a
compiler-based frontend that leverages MLIR (SODA-OPT) and a compiler-based back-
end that integrates state-of-the-art HLS methodologies (Bambu); it generates highly
specialized designs that can be synthesized with both commercial and open-source tools
on FPGAs or ASICs, and it allows the exploration of design metrics through compila-
tion passes and parameters, enabling the identification of optimal trade-offs depending
on the target application requirements. Such an exploration would require multiple
expensive redesigns with traditional HDL- or HLS-based approaches; SODA, instead,
provides a no-human-in-the-loop end-to-end exploration flow where no modifications
to the input code are needed, and its modular and extensible approach facilitates the
introduction of new analysis and transformation passes.

Large compute- and memory-intensive ML algorithms (e.g., DNNs) frequently rep-
resent a challenge for HLS tools, and they need to be broken down into smaller ker-
nels as the complexity of the synthesis, and of the generated FSM controller, would
grow exponentially. The issue is especially evident when input models contain mul-
tiple parallel execution flows, e.g., in presence of coarse-grained parallelism, or when
the model needs to process streaming inputs in a pipelined fashion. The SODA Synthe-
sizer can target a system-on-chip (SoC) with a central general-purpose microcontroller
that drives multiple accelerators (based on the FSMD model) implementing different
layers of an ML model; however, in such a system the data movement between the host
microcontroller, the accelerators, and memory quickly becomes a performance bottle-
neck. For this reason, it has been extended to support the generation of a second type
of system: a dynamically scheduled architecture where custom FSMD accelerators are
composed in a dataflow system and are driven by a distributed controller. In this archi-
tecture, multiple accelerators can perform computations in parallel on different portions
of streaming input data, without requiring orchestration from the host microcontroller,
and can communicate with each other without going through external memory.

SODA integrates and improves the methodology presented in [57] to synthesize
parallel C code, annotated with OpenMP-like directives, into a dataflow architecture
with support for spatial parallelism, resource reuse, and memory access parallelism.
That approach could identify certain degrees of parallelism by analyzing program de-
pendencies, but it was constrained by conservative alias analysis; user-provided annota-
tions were needed to simplify the dependency analysis and expose dynamic parallelism.
By leveraging MLIR, instead, the SODA Synthesizer has access to high-level repre-
sentations that explicitly capture hierarchy, parallelism, and how data flows through
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Chapter 4. End-to-end synthesis

operators and memory in a computational graph, removing the need for complex alias
analysis and simplifying the generation of dataflow architectures.

In summary, the contributions of this chapter are:

• an automated, modular, multi-level, compiler-based design flow from high-level
ML frameworks to optimized FPGA or ASIC accelerators implemented following
the FSMD model;

• a search and outlining methodology to automatically extract accelerator kernels
and their dependencies from an MLIR input specification;

• a system integration methodology to assemble FSMD accelerators into a coarse-
grained, dynamically scheduled dataflow architecture with distributed control.

The SODA Synthesizer is introduced in Section 4.2, and detailed in Sections 4.3-
4.4, Section 4.5 draws conclusion and outlines future research directions.

4.2 The SODA Synthesizer

Figure 4.1 provides an overview of the SODA Synthesizer, which is composed of two
main parts: a compiler-based frontend and a compiler-based hardware generation en-
gine. Optimizations at all levels of the toolchain are implemented as compiler passes,
significantly influencing the generated hardware designs in terms of performance, area,
and power; DSE is thus possible by enabling and disabling compiler passes or tuning
their options. The SODA Synthesizer frontend interfaces with high-level programming
frameworks through MLIR, partitions the input applications by identifying key compu-
tational kernels for hardware acceleration, and performs high-level optimizations that
improve the performance of the generated specialized systems. The frontend then gen-
erates an LLVM IR as output, which is the starting point for hardware generation. The
backend integrates Bambu, a state-of-the-art open-source HLS tool, to generate RTL
code for the hardware accelerators. To compile code that will be executed on a host
processor, instead, SODA uses standard LLVM tools.

SODA-OPT [15] is the high-level compilation frontend of the SODA Synthesizer.
One possible entry point to SODA-OPT is through the tf-mlir-translate and
tf-opt tools from TensorFlow, which compile ML models defined and trained in
TensorFlow into an MLIR representation. SODA-OPT implements analysis and trans-
formation passes that parse MLIR inputs from high-level programming frameworks,
identify key operation groups, and mark them for hardware acceleration. Selected

40



i
i

“output” — 2022/12/28 — 13:03 — page 41 — #51 i
i

i
i

i
i

4.2. The SODA Synthesizer
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Figure 4.1: The SODA Synthesizer and its interfaces towards external tools.

kernels undergo an optimization pipeline with progressive lowerings through differ-
ent MLIR dialects (e.g., linalg → affine → SCF → cf → llvm), and they are finally
translated into an LLVM IR purposely restructured for HLS. SODA-OPT can lower the
remaining operations in two different ways, depending on the desired target: they can
represent orchestrating code executed by a host microcontroller in a centralized SoC, or
the relationship between accelerators in a distributed control (dataflow) architecture. In
the first case, SODA-OPT generates another LLVM IR file that will be compiled with
standard LLVM tools, including runtime calls to control the generated accelerators. In
the second case, operations are transformed into a function-based representation (task
graph) that allows to generate the required distributed controller logic and memory in-
terfaces; accelerators and controller modules will then be assembled together to form
the dataflow architecture. Section 4.3 describes more in detail how SODA-OPT oper-
ates the selection and optimization of kernels.

The SODA Synthesizer backend, Bambu [16], leverages state-of-the-art HLS tech-
niques to synthesize the LLVM IR produced by the frontend into a hardware accelerator
for FPGA or ASIC. By default, Bambu synthesizes RTL designs in Verilog following
the FSMD model, but it has also been extended with novel methodologies that enhance
modularity and allow the generation of dynamically scheduled accelerators. For ex-
ample, synthesized modules representing functions within a larger specification can be
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Chapter 4. End-to-end synthesis

reused thanks to the technique presented in [101], providing opportunities for modu-
lar and hierarchical designs. Bambu was extended to allow the integration of FSMD
modules as processing elements in a coarse-grained dataflow design [57], and in mul-
tithreaded parallel accelerators [102]. These synthesis methodologies were initially
developed by integrating support for parallel C specifications annotated with a set of
OpenMP directives: users would identify parallel sections in the input code through
annotations, allowing Bambu to generate custom accelerator modules and to combine
them in a dynamically scheduled or multithreaded architecture. With the proposed
multi-level approach, instead, it is possible to exploit MLIR to significantly improve
and automate the design of systems composed of multiple accelerators. As high-level
MLIR specifications are naturally parallel and hierarchical, there is no requirement for
the user to manually identify code regions of interest; moreover, MLIR facilitates the
implementation of analysis and transformation passes that identify kernels to be accel-
erated, analyze their interactions, and compose them in a system. These are all tasks
that are better solved at higher levels of abstraction, allowing the HLS engine to focus
only on the generation of optimized accelerators.

The SODA Synthesizer can interface with commercial and open-source logic syn-
thesis tools to generate hardware accelerators: Bambu is a multi-platform tool support-
ing both FPGA (from Xilinx, Intel, Lattice, NanoXplore) and ASIC targets (through
OpenROAD or the Synopsis Design Compiler) without any modification in the input
code; such flexibility enables a smooth transition from high-level design, to FPGA pro-
totyping, to ASIC manufacturing and deployment. Finally, it also provides verification
features to ensure that the generated designs are functionally correct, as Bambu includes
a suite of tools that enable automatic testbench generation and validation of results
through external open-source and commercial simulators. The SODA-OPT frontend
feeds simulation inputs to Bambu; Bambu, in turn, generates testbenches, scripts, and
glue code to drive the execution of a simulator and automatically verifies that the out-
put values of the simulation correspond to the results from the execution of the original
application with the same inputs.

4.3 Kernel selection and optimization

As mentioned in Section 4.2, SODA-OPT is the high-level compiler frontend of the
SODA Synthesizer; its main tasks include interfacing with high-level programming
frameworks, selecting relevant kernels for acceleration, and preparing them for hard-
ware generation (Figure 4.2). This process can be divided in search, outlining, opti-
mization, and dispatch phases.
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Figure 4.2: The SODA-OPT high-level compilation frontend.

Entry points to SODA-OPT are any of the MLIR dialects that are maintained in
tree, along with the core MLIR framework; here they will be referred to as built-in
dialects. Built-in dialects include abstractions for linear algebra (linalg), polyhedral
analysis (affine), structured control flow (SCF), and others that are directly contributed
to the MLIR repository for their broad applicability. High-level programming frame-
works for various domains including ML (e.g., TensorFlow, ONNX, PyTorch) imple-
ment custom MLIR dialects, optimization passes, and lowering methods to translate
their programs into built-in MLIR dialects. SODA-OPT introduces a custom dialect as
well, the soda dialect, to partition input algorithms into kernels that will be translated
into hardware accelerators and logic that controls their execution. Table 4.1 describes
the soda dialect operations; the following sections detail the search and outlining pro-
cess that uses them, and subsequent optimization and dispatching phases.

4.3.1 Search phase

SODA-OPT automatically identifies operations that are well suited for acceleration
by matching key patterns at the earliest stages of the compilation process (search
phase). Searched patterns are mainly linear algebra operations or affine structures
wrapping arithmetic operations, selected among the most common computations in
ML applications. SODA-OPT can easily be extended by adding new patterns of in-
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Chapter 4. End-to-end synthesis

Table 4.1: Operations in the soda dialect.

Operation Semantics
soda.launch Marks the beginning of a region with MLIR operations to be outlined

and extracted into a kernel.
soda.terminator Marks the end of a region to be outlined and extracted.
soda.module Block of outlined operations, it will become a unique accelerator.
soda.func Defines an outlined function with its interface.
soda.return Indicates the end of an outlined function.
soda.launch_func Calls the accelerated function from the controller code.

terest beyond ML, as could happen when the input is a scientific computing applica-
tion translated to MLIR from a different domain-specific framework. Search passes
wrap a soda.launch operation around the operations to be outlined, and inject a
soda.terminator operation at its end. Looking at Figure 4.3a, representing a
small portion of a CNN, a user might decide to separately accelerate each node in
the computational graph (one reshape operation, one convolution, one bias add, and
one ReLu activation function). When the model is lowered to the MLIR linalg dialect,
each of them is represented by a linalg.generic construct (Figure 4.3b), which
SODA-OPT recognizes as a region of interest and marks with launch and terminator op-
erations. Users can freely decide which regions to mark when generating accelerators
for a centralized SoC, as there is no constraint on what part of the code is accelerated
when kernel execution is orchestrated by a host microcontroller. When targeting the
dataflow architecture, instead, SODA-OPT individually marks for outlining all opera-
tions in the MLIR file, so that each of them will be synthesized as a dataflow stage and
driven by a distributed controller. In the future, the search strategy can be improved to
support flexible granularity so that operations are fused together or partitioned to gen-
erate accelerators with similar computational intensity, aiming for balanced execution
time and resource utilization across dataflow stages.

4.3.2 Outlining phase

At the beginning of the outlining phase, SODA-OPT extracts each region of code en-
closed within marks during the search phase into a separate MLIR module, inlining
any functions invoked inside it. SODA-OPT adds an attribute to the module to indicate
the target architecture (centralized or dataflow), and to later select the corresponding
backend compilation or synthesis flow. The outlining process proceeds by analyzing
use-def chains of values inside each module to generate the interface of a top-level ker-
nel function, adding to the function arguments also memory buffers allocated outside
the soda.launch region, but referenced inside it. Constant values are instead pulled
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(a) Graphical representation.

func @main(...) {
...
linalg.generic #reshape_trait ... {
^bb0(...):
linalg.yield %arg2 : f32

}
linalg.generic #conv2d_trait ... {
^bb0(...):
%7 = arith.mulf %arg2, %arg3 : f32
%8 = arith.addf %arg4, %7 : f32
linalg.yield %8 : f32

}
linalg.generic #add_trait ... {
^bb0(...):
%7 = arith.addf %arg2, %arg3 : f32
linalg.yield %7 : f32

}
linalg.generic #relu_trait ... {
^bb0(...):
%7 = arith.cmpf olt, %arg2, %cst_0 : f32
%8 = arith.select %7, %cst_0, %arg2 : f32
%9 = arith.cmpf olt, %cst, %arg2 : f32
%10 = arith.select %9, %cst, %8 : f32
linalg.yield %10 : f32

}
return

}

(b) MLIR representation (simplified).

Figure 4.3: Example input to SODA-OPT (section of a CNN model).

inside the kernel. The process ends with the generation of a soda.func for each each
soda.launch block, placed in a separate soda.module; outlined kernels are sub-
stituted by soda.launch_func operations in the top-level code that will orchestrate
their execution (main function in Figure 4.4).

4.3.3 Optimization phase

After outlining, each kernel is optimized separately, passing through progressive low-
ering steps that eventually translate it into an LLVM IR. SODA-OPT exploits several
dialect-specific optimization passes from built-in dialects, together with some custom,
HLS-oriented transformations (as introduced in Section 3.5), providing a modular op-
timization pipeline that restructures the kernels so that the final low-level IR is well
suited for hardware synthesis. The default optimization pipeline produces an LLVM IR
that presents simpler dependency chains, few or no redundant instructions, and regular
load-compute-store patterns: such characteristics improve the resource allocation and
static scheduling of operations performed by the HLS engine, resulting in significant
performance gains. Available optimizations significantly influence the generated hard-
ware designs in terms of performance, area, and power consumption, and they are all
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func @main(...) {
...
soda.launch_func @df0_reshape::@f args(...)
soda.launch_func @df1_conv2d::@f args(...)
soda.launch_func @df2_add::@f args(...)
soda.launch_func @df3_relu::@f args(...)

return

soda.func @f(...) {
linalg.generic #reshape_trait // ...
soda.return

}

soda.func @f(...) {
linalg.generic #conv2d_trait // ...
soda.return

}

soda.func @f(...) {
linalg.generic #add_trait // ...

}

soda.func @f(...) {
linalg.generic #relu_trait // ...
soda.return

}

Figure 4.4: MLIR representation after SODA-OPT search and outlining (simplified).

implemented as compiler passes; users can thus perform an exhaustive exploration of
the design space without manual interventions on the code to find the combination of
passes that better meets the application requirements. While the focus of the optimiza-
tion pipeline is the generation of hardware accelerators, SODA-OPT can be extended
to apply optimizations also on the host code generation path: for example, to enable
parallel execution of different accelerators through non-blocking calls, better use of the
CPU cache hierarchy, and automatic re-use of accelerators when possible.

4.3.4 Dispatch phase

Dispatching separates the kernels from the logic that orchestrates their execution: at
the end of the compilation, SODA-OPT generates a separate file for each kernel that
does not contain references to the rest of the code and collects all orchestrating logic
in another file. Bambu will generate an FSMD accelerator for each of the IR files con-
taining the kernels, later integrated into one of two possible system-level architectures.
The SODA Synthesizer currently supports two types of architectures: a conventional
system-on-chip where a microcontroller drives one or more accelerators connected
through a bus (centralized architecture, Figure 4.5a), and a single accelerator where
kernels are connected together in a dynamically scheduled dataflow architecture (Fig-
ure 4.5b). In the first case, the orchestrating logic extracted by SODA-OPT will contain
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function calls for the outlined kernels, which will be substituted by driver calls to the
corresponding accelerators in the compiled host program. Instead, when targeting the
dataflow architecture, SODA-OPT generates a task graph representing interactions be-
tween the kernels, containing information that will be used to assemble the accelerators
and the distributed controller. In particular, the task graph includes the name of each
kernel with the direction (input/output) of its arguments, and the sizes of exchanged
data structures retrieved by leveraging the memref MLIR dialect. In all cases, SODA-
OPT provides the backend with LLVM IRs for the kernels and test values to verify the
correct behavior of generated accelerators.

CPU Memory

Reshape

System Bus

Conv2D Add Relu

(a) Centralized architecture

Datapath

Distributed Controller

Reshape

Conv2D

Add

Shared Memory

Relu

CPU Memory

System Bus

(b) Dataflow architecture

Figure 4.5: Available architectural targets supported by the SODA Synthesizer.

4.4 Dataflow architecture generation

In the SODA Synthesizer backend, Bambu generates FPGA/ASIC accelerators for each
kernel selected and optimized by the frontend, and the isolated FSMD kernels are then
composed together in one of the two available architectures in Figure 4.5. Bambu
performs standard HLS steps and optimizations (e.g., loop transformations, bitwidth
analysis, scheduling, and binding), and finally generates both RTL code for the acceler-
ators and testbenches for verification. After HLS, Bambu launches a simulator chosen
by the user and verifies that the output values from the generated kernel correspond to
golden results gathered from the execution of the input.

During code generation, HLS tools combine RTL descriptions of functional units
from a resource library implementing the operations present in the IR (adders, subtrac-
tors, multipliers, etc.); to effectively drive the synthesis algorithms, these functional
units are characterized in terms of performance (e.g., latency of the critical path) and
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area for each target technology or device. Area and performance estimates directly af-
fect many optimization passes and synthesis algorithms: for example, they help decide
whether functional units can be chained together by removing intermediate registers
if their combined latency does not exceed the required clock period. The characteri-
zation of functional units through the OpenROAD flow and the FreePDK 45 nm cell
technology library allowed to provide a completely open-source, end-to-end hardware
generation flow from high-level programming frameworks to ASIC.

The process to generate the dynamically scheduled dataflow architecture instanti-
ates components from the Bambu resource library, derived from the ones presented
in [57] and now integrated in the SODA Synthesizer, where the generation process
can take advantage of the outlining, analysis, and transformation passes performed by
SODA-OPT. The main components involved are a distributed controller, that activates
FSMD accelerators at runtime, and a hierarchical memory interface that manages con-
current memory access to shared memory. The distributed controller starts the execu-
tion of each FSMD synthesized from a kernel outlined by SODA-OPT according to
data dependencies described in the task graph (also generated by SODA-OPT).

4.4.1 Distributed controller

The distributed controller employs dedicated hardware components to check, at run-
time, when to start the execution of the FSMD accelerators. By allowing concurrent
execution of multiple modules even when their latency depends on input data, or when
they simultaneously access shared memory, the controller allows pipelined execution
of kernels, which is essential to run ML inference on streaming inputs with low latency.

The controller generation flow instantiates for each FSMD accelerator a dedicated
resource manager (RM), and for each execution of the same accelerator in the task
graph an execution manager (EM); internally, EMs are composed of three parts: the
activation manager (AM), the operation manager (OM), and the status manager (SM),
as can be seen in Figure 4.6. The EM triggers the execution of FSMD accelerators when
activating conditions for an operation are met, while the RM acts as an arbiter to handle
requests for a module that is shared among multiple operations. All EM components
are based on combinational logic, so they do not add delay cycles to the execution time
of the FSMD modules.

Activating conditions for each FSMD accelerator are derived from the data depen-
dencies between operators in the task graph provided by SODA-OPT so that each oper-
ator can start execution as soon as its inputs are ready. Within each execution manager,
the AM module compares the activation conditions for its associated operation against
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Figure 4.6: Execution manager components interfacing with a resource manager.

tokens received from other execution managers; once all necessary tokens are received
from producer operations, the activation manager notifies the operation manager to
start execution. The operation manager interacts with the resource manager to check
whether the required accelerator is available; if this is the case, the status manager can
send required control signals to the FSMD and prevent the associated resource manager
from accepting new requests.

When its execution is concluded, the FSMD module sends a completion signal (FU-
done) to notify consumer operations that its outputs are ready. The signal is received
by all execution managers that share the FSMD module, but it is ignored unless the SM
module indicates that the operation is running; this procedure allows each EM to dis-
criminate between the end of their associated operation and the end of other operations
mapped on the same module. At this point, the EM releases control on the resource
manager and emits OP-done token signals to notify the end of the execution to EMs
associated with consumer operations.

In statically scheduled FSMDs, operations that execute concurrently are not al-
lowed to share the same hardware module, preventing resource conflicts by design;
in a dataflow architecture, instead, resource conflicts are resolved dynamically at run-
time through resource managers. During the synthesis process, the module binding
phase maps operations to resources: in the proposed design flow, operations are neural
network layers (or other coarse-grained linear algebra algorithms), and resources are
the statically scheduled FSMD accelerators. Module binding aims at heuristically re-
ducing the number of resource conflicts stalling the execution. It is implemented as the
solution of clique covering problem on a Weighted Compatibility Graph (WCG) [103]
where nodes represent operations, and edges represent compatibility relations (i.e., if
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two operations are connected, they can share a hardware resource); weights express the
profitability in terms of area and latency of sharing a module between two compatible
operations, with lower values discouraging sharing and higher values favoring it. While
clique covering is an NP-complete algorithm, the heuristic always completes in a rea-
sonable time because it only needs to handle intentionally small graphs, as nodes in
the proposed approach correspond to layers in a neural network (or in any case to large
portions of the input application). After binding, the distributed controller generation
process defines tie-breaking rules for resource managers that will determine how to re-
solve at runtime any structural conflict that may occur if multiple operations request a
module at the same time. In the current implementation, tie-breaking rules are based on
the topological order of the operations in the input task graph; a different method may
lead to a different execution order and overall performance, but the execution output
would remain the same because the system is built to respect dependencies between
operations. When operations require the same module at different times, there is no
competition and RMs simply process requests following the order of arrival.
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Figure 4.7: Dataflow accelerator schematic for the model of Figure 4.3a.

The synthesis process allocates one resource manager for each shared module ac-
cording to the results of module binding, and then it traverses the task graph instanti-
ating an execution manager for each operation, each with a custom activation manager
synthesized according to operation dependencies. Figure 4.7 shows a schematic of the
dataflow accelerator for the ML model of Figure 4.3a: after SODA-OPT optimization
and dispatching, the task graph contains four calls to the different kernel functions; re-
source managers are not shown in the figure as there is only one call for each FSMD
module in the task graph. Bambu synthesizes the four kernel functions using the stan-
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4.4. Dataflow architecture generation

dard FSMD approach, and the necessary distributed controller components are instanti-
ated according to the task graph describing the dependencies between functions. FSMD
modules are then assembled with their execution managers, resource managers, and the
memory interface (Section 4.4.2) to generate the dataflow accelerator.

4.4.2 Hierarchical memory interface

After generating the datapath and the distributed controller, the accelerator needs to
be connected to memory. Bambu provides several options to connect accelerators to
memories: for example, it can generate one read and one store port for a whole module,
or read and store ports for each argument of the module (which can be used concurrently
if the arguments do not alias); then it instantiates and connects the accelerator interfaces
to multi-ported scratchpads (or BRAMs for FPGAs). By default, Bambu connects a
dual-ported scratchpad memory to each couple of load/store ports, assuming a fixed
latency of 1 clock cycle for read operations and 2 clock cycles for store operations.

The dynamically scheduled design leverages a specialized memory controller called
hierarchical memory interface, or HMI, that allows independent accelerators to concur-
rently access shared memory. The HMI is a multi-ported controller that dynamically
assigns concurrent requests to external memory channels, computing destination ad-
dresses at runtime with no additional delay, extended from the design of the custom
memory interface controller described in [104]. Load and store ports from FSMD accel-
erators are connected to the HMI which, in turn, connects them to a multi-ported shared
memory; the design can be connected to high-performance multi-banked scratchpad
memories or interface with external multi-ported DRAM controllers (e.g., Xilinx AXI
DRAM controllers for FPGAs). SODA-OPT analysis passes compute the amount of
data exchanged between kernels, and consequently determine the required size of the
shared memory, accounting for double buffering and concurrent execution of the accel-
erators.

Figure 4.8 shows the schematic representation of the HMI for two generic FSMD
modules x and y: each module has a memory interface (MI) that is connected to the
others in a chain, and only the top-level datapath is directly interfaced with the external
memory (in this case through a single channel). Each MI performs only one memory
operation at a time, but all MIs can operate in parallel; signals that request read and
write access (sel_load and sel_store) are propagated through MIs following the hier-
archy of functions in the task graph. If the destination addresses of different memory
operations collide, the HMI serializes the memory accesses.

As there is a finite number of channels toward external memory, structural con-
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Chapter 4. End-to-end synthesis

Figure 4.8: Structure of the hierarchical memory interface.

flicts may arise when multiple operations request access to the same memory channel.
Statically scheduled designs prevent conflicts by pre-determining the order of opera-
tions and executing only one operation at a time; however, this can degenerate into
sequential execution of modules that could instead execute simultaneously for part of
their computation. In the proposed dataflow architecture, instead, the HMI integrates
additional control logic exploiting resource manager and status manager blocks from
the distributed controller, obtaining a design that can resolve conflicts at runtime: a
resource manager intercepts memory access requests, and if a memory channel is avail-
able it accepts the request notifying a dedicated status manager component associated
with the MI that issued the request. In Figure 4.8, SM_x is associated with the MI of
module x, while SM_y is associated with the MI of y. As in the case of the distributed
controller, the HMI design is modular and easy to assemble; if the top module encap-
sulating x and y also needs to access memory, a third SM and a third MI can easily be
added to the interface.

4.5 Conclusion

The SODA Synthesizer is an example of the modern, multi-level approach to HLS pro-
posed in this thesis, applied to the generation of specialized accelerators for ML: an
open-source, automated hardware compiler that transforms specifications from high-
level programming frameworks into efficient FPGA/ASIC accelerators and composes
them either in a centralized SoC or in a dynamically scheduled dataflow architecture. Its
frontend, SODA-OPT, leverages the MLIR framework to identify kernels for acceler-
ation, generate orchestrating code, and apply high-level optimizations; in the backend,
the SODA Synthesizer integrates the state-of-the-art HLS tool Bambu with novel syn-
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thesis methodologies. SODA can assemble highly optimized FSMD accelerators in a
coarse-grained, dynamically scheduled dataflow design, which provides better perfor-
mance in the case of pipelined execution on streaming inputs compared to a centralized
architecture driven by a microcontroller. The compiler-based toolchain is modular by
construction, and thus it enables further research opportunities to introduce new opti-
mization techniques, automate design space exploration, and explore new architectural
models.
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CHAPTER5
Introduction of a domain-specific abstraction

NEUROMORPHIC computing and spiking neural networks (SNNs) could perform
artificial intelligence tasks with considerably higher efficiency than current
tensor-based ML models and accelerators; however, the generation and map-

ping of specialized hardware for SNNs present significant challenges. The proposed
multi-level and modular approach for hardware generation allows to introduce domain-
specific abstractions as MLIR dialects to solve this kind of challenge; this chapter de-
scribes the implementation of a new dialect that can express the concept of spike se-
quences, enables mapping of spiking neurons to dedicated hardware components, and
supports the synthesis of SNN accelerators. The new abstraction opens opportunities to
integrate existing SNN tools within the hardware compilation infrastructure, providing
a path toward the generation of complex hybrid artificial intelligence systems.

This chapter contains material from:

S. Curzel, N. Bohm Agostini, S. Song, I. Dagli, A. Limaye, C. Tan, M. Minutoli,
V. G. Castellana, V. Amatya, J. Manzano, A. Das, F. Ferrandi, and A. Tumeo, “Auto-
mated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning
Accelerators,” in 2021 IEEE/ACM International Conference On Computer Aided De-
sign (ICCAD), 2021, pp. 1–7.
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Chapter 5. Introduction of a domain-specific abstraction

5.1 Overview

A modern, MLIR-based approach to HLS can adapt more quickly to innovations than
a classic approach based on a library of C/C++ templates, which is a desirable feature
considering the rapid evolution of ML and data science. In fact, MLIR facilitates the
introduction of domain-specific abstractions to solve domain-specific problems, and
parts of the modular compilation pipeline can be enabled or disabled according to the
requirements of different classes of input models. For example, a branch of artificial
intelligence research is dedicated to the exploration of neuromorphic computing, which
mimics how a biological brain operates; the resulting spiking neural networks (SNNs)
are significantly different from classic artificial neural networks such as DNNs and
CNNs. The introduction of a specialized representation within a multi-level design
flow can support SNN simulation, mapping of SNN models to neuromorphic hardware,
and the generation of hardware accelerators for SNNs, highlighting the benefits of an
MLIR-based approach when facing the challenges of a new computational paradigm.

Artificial neural networks are models of computation inspired by the way neurons
transmit information in a brain and adapted to available computational units; artificial
neurons are commonly used because they are easy to connect in a network and map on
digital devices, but they are only a rough approximation of their biological counterparts.
Spiking neurons, on the other hand, reflect more closely the time-dependent behavior of
biological neurons, and they have sparked interest in the exploration of dedicated neu-
romorphic computing devices. SNNs are composed of neurons that are activated when
their “membrane potential" crosses a threshold, encoding information in the arrival time
of spikes with orders of magnitude higher efficiency than conventional artificial neu-
rons [106]. After training, ML models based on spiking neurons can run on specialized
neuromorphic devices based on digital [71, 72] or analog processing elements [107]
or FPGAs [73, 108, 109] (especially for simulation purposes [110, 111]). Despite the
widespread interest in SNN acceleration, existing approaches are often device-specific,
require non-trivial interfacing between conventional ML frameworks and SNN tools,
and lack support for the integration between analog and digital systems.

This chapter discusses how an end-to-end, multi-level, compiler-based framework
can be adapted to support SNN models and enable research on complex heterogeneous
systems containing both conventional tensor-based accelerators and neuromorphic de-
vices. In particular, the chapter presents the following contributions:

• a new MLIR dialect to model basic SNN concepts (e.g., integrate-and-fire neu-
rons, spike trains with timestamps);
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• a roadmap for the integration of the NeuroXplorer toolchain [112] for SNN map-
ping and simulation in the SODA Synthesizer;

• a perspective on the challenges of automated synthesis of neuromorphic hard-
ware, and on how modern hardware compilers can help to solve them.

Section 5.2 describes the principles of operation of spiking neurons and SNNs and
the traditional compilation flow for neuromorphic hardware; Section 5.3 outlines a
roadmap for the synthesis of SNN accelerator through the SODA Synthesizer, with
Section 5.3.2 describing the dedicated MLIR dialect; Section 5.4 draws conclusions
and outlines future research directions.

5.2 Spiking neural networks and neuromorphic accelerators

Biological neurons are interconnected through synapses that carry electrical signals;
when a neuron is activated it fires, i.e., it produces a current spike on its output synapses.
Neurons in artificial neural networks apply an activation function (e.g., sigmoid or
ReLU) on a weighted sum of their inputs, mimicking with continuous output values the
firing rates of biological neurons; these characteristics allow efficient training through
gradient-based methods and backpropagation, leading to the explosion of deep learn-
ing [113]. However, it has been proved that neurons encode information not by varying
their firing rate, but in the arrival times of current spikes; spiking neurons are thus a
model of computation that more closely resembles the biological process [106]. In a
spiking neuron model, currents injected from input synapses raise the membrane volt-
age of a neuron until its membrane voltage crosses a threshold that causes the neuron
to fire. Figure 5.1 depicts a leaky integrate-and-fire (LIF) spiking neuron model repre-
sented as an RC circuit that integrates the input current U(t); and produces an output
spike when the potential crosses the threshold Vth [114]. Figure 5.2 show the timing
behavior of a LIF neuron; spikes can last from 1 µs to several ms.

R

Vrest

Vth

U(t)

Spike

Figure 5.1: A leaky integrate-and-fire (LIF) neuron model.
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Chapter 5. Introduction of a domain-specific abstraction

(a) Neuron membrane potential. (b) Neuron firing times.

Figure 5.2: Membrane potential and output spikes of a LIF neuron over time.

Neural networks composed of spiking neurons (SNNs) can solve artificial intelli-
gence tasks with similar approaches to standard neural networks based on layers of
artificial neurons, whether through supervised [115], unsupervised [116], or reinforce-
ment learning [117]. Trained neural network models may be converted into SNNs
to run inference on neuromorphic hardware, which is based on dedicated analog cir-
cuits and thus provides orders of magnitude higher energy efficiency than tensor pro-
cessing accelerators for DNNs. More in detail, neuromorphic accelerators such as
TrueNorth [71], Loihi [72], and SpiNNaker [70] are tile-based many-core architec-
tures where processing cores exchange spike packets over a shared interconnect (Figure
5.3a). Each tile contains a processing core with neuron circuitry and synaptic storage,
and a network interface to communicate with a Network-on-Chip (NoC) [118] or a Seg-
mented Bus [119]; processing cores are often designed as a resistive crossbar (Figure
5.3b), i.e., synaptic cells are organized in a two-dimensional grid with neuron circuitry
placed along bitlines and wordlines [120].
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(a) A many-core neuromorphic
accelerator.
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(b) An analog crossbar-based neuromorphic
processing core.

Figure 5.3: Tile-based neuromorphic accelerator and crossbar architecture.
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Compiling and mapping SNNs on neuromorphic hardware is supported by tools
such as NEUTRAMS [121], SpiNeMap [122], Corelet [123], and NeuroXplorer [112].
These software frameworks usually include a compiler to partition an SNN into clus-
ters and a run-time manager to allocate clusters to cores. Compilers ensure that each
cluster fits onto a processing core of the chosen accelerator; run-time managers can
be specialized to improve energy consumption [124], reliability [125], or device life-
time [126, 127].

Dataflow-based techniques are commonly used to analyze and partition an SNN
model [128]. A network is represented as a directed graph GSNN = (N,S) with a
finite set N of nodes representing neurons, and a finite set S of edges representing
synapses between pairs of pre- and post-synaptic neurons (Figure 5.4, left). A dataflow
compiler partitions the graph into clusters containing a subset of neurons and synapses
of the SNN, obtaining a directed clustered graph GCSNN = (C,E) composed of a finite
set C of clusters and a finite set E of edges between them (Figure 5.4, right). The par-
titioning algorithm takes into consideration the resource constraints of a synaptic core
in a specific neuromorphic accelerator so that each cluster can fit in a tile. Moreover,
compilers often use a variant of the Kernighan-Lin graph partitioning heuristic [129]
to minimize communication between clusters and consequently reduce latency on the
shared interconnect, where inter-cluster links are mapped [122, 130, 131].

Partitioning Clustering

Figure 5.4: SNN as a data flow graph partitioned into clusters.

The clustered SNN graph can be represented as a synchronous data flow graph
(SDFG), where each cluster is an actor and inter-cluster communication channels are
edges; actors communicate by exchanging tokens on edges, which represent spikes.
Multiple incoming and outgoing edges may exist between any pair of clusters. When
a neuron in an actor fires, it generates tokens only on the output edges associated with
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Chapter 5. Introduction of a domain-specific abstraction

that neuron; therefore, in the SDFG representation of a clustered SNN graph, tokens
are generated on a subset of the output edges, rather than on all output edges as in a
basic SDFG formalism.

5.2.1 The NeuroXplorer framework

NeuroXplorer [112] is a framework that can compile and simulate neural network mod-
els on neuromorphic hardware (Figure 5.5) using dataflow analysis techniques. Inputs
to NeuroXplorer can be both artificial neural networks (ANN workloads, developed
and trained in high-level frameworks such as Tensorflow and PyTorch) and biology-
inspired SNNs. In the case of ANNs, the model is first converted into an SNN through
the SNN Conversion unit. SNN models, instead, can be specified in PyNN [132] or Py-
CARL [133], which are Python interfaces to SNN simulators such as CARLsim [134],
Brian [135], NEST [136], and Neuron [137].

SNN 
Simulation

SNN 
Conversion

Model 
Clustering

ANN 
Workload

SNN 
Workload

Data-flow 
Analysis

Workload 
Decomposition

Model 
Training

CARLsim Brian NEST Neuron

Figure 5.5: SNN simulation through NeuroXplorer.

NeuroXplorer uses simulators to feed representative training data to the input SNN
and gather spike timing information that will be useful during compilation and map-
ping. The next step in the flow is workload decomposition, where the simulated SNN
model is decomposed into fan-in-of-two (FIT) neural units to allow mapping on the
processing cores of a neuromorphic device [138]; the decomposed SNN workload is
then clustered aiming to minimize inter-cluster spike communication. Finally, Neu-
roXplorer uses dataflow analysis techniques to convert the clustered SNN graph into
SDFG representation and estimate its performance for a given mapping of clusters to
cores of the hardware [139]. Figure 5.6 illustrates how NeuroXplorer performed the
mapping of SDFG actors (circles) generated from a LeNet model [140] converted into
an SNN to the tiles of a neuromorphic device (rectangles).
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Figure 5.6: Mapping of LeNet on neuromorphic hardware.

5.3 Automated synthesis of SNN accelerators

This section discusses how the SODA Synthesizer can be extended and adapted to gen-
erate accelerators for SNNs, integrating features and lessons learned from the NeuroX-
plorer framework described in Section 5.2. The final goal is to exploit MLIR dialects
and optimizations to translate a pre-trained ANN into an SNN, optimize it, and deploy
it on a general-purpose processor for emulation, on existing neuromorphic devices, or
on specialized hardware generated by the SODA Synthesizer. Section 5.3.1 describes
the transformations involved in the SODA SNN deployment flow, while Section 5.3.2
dives into the details of a newly designed dialect to model SNNs.

5.3.1 SNN deployment flow

Figure 5.7 divides the steps needed to generate an SNN accelerator with the SODA
Synthesizer into three groups, which correspond to three different development phases.
In the first phase, the SODA-OPT frontend is modified to allow the conversion of pre-
trained models to SNN and software emulation to gather spike timing data. The second
and third phases represent two alternative deployment flows: one exploits the NeuroX-
plorer tools to program an existing neuromorphic chip, while the other synthesizes a
custom hardware accelerator.
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Phase 1: SNN modeling and software emulation
Phase 3: generation of custom hardware

Phase 2: integration of the NeuroXplorer tools

Figure 5.7: Evolution of the SNN development flow in SODA.

As in the baseline SODA design flow, the input is a neural network model trained in
a software framework for ML and translated to MLIR, containing operations in high-
level dialects such as TensorFlow (tf ) or Tensor Operator Set Architecture (tosa). Any
of the lowering and optimization passes that are already present in the SODA-OPT
frontend can be applied, if beneficial, before lowering the IR to convert the model
into a new domain-specific abstraction, the SNN dialect. The SNN conversion is the
most relevant aspect of this first development phase, as it can impact the accuracy of
the network: this motivates the development of a specific dialect that can represent
neurons, spikes, and other SNN characteristics. A dedicated dialect also exposes further
opportunities for optimizations that are specific to SNN models and not accessible to the
NeuroXplorer design flow. Operations and types of the SNN dialect are then lowered
and translated to LLVM IR for software execution, in order to emulate the behavior
of the network on a test dataset, verify whether the initial accuracy was maintained
within an acceptable error range, and collect data about spike times for all neurons in
the network.

The second development phase aims at integrating NeuroXplorer in the design flow,
providing an automated path to map DNN and SNN models to neuromorphic crossbar-
based accelerators. The first steps of the flow in Figure 5.5 are substituted by the SNN
conversion and software emulation within the SODA Synthesizer; the missing link
before decomposition, clustering, and mapping is a translation from the MLIR SNN
model into an IR compatible with NeuroXplorer, containing information about how
neurons are connected in the network and timing of individual spikes gathered from the
emulation phase.

Instead of relying on existing neuromorphic architectures, the third development
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phase aims at generating custom hardware designs, possibly combining analog and
digital elements: digital neurons can be generated through the HLS backend, while
analog components could be added as pre-existing IP blocks. In this phase, the SNN
model generated by the frontend can undergo further optimizations taking into consid-
eration both information about the target hardware and the spike data gathered during
software emulation. In the existing SODA HLS flow, the SNN model would finally
be translated into an LLVM IR and fed to Bambu HLS to generate Verilog code for
ASIC/FPGA. For a hybrid architecture with neuromorphic elements, a new low-level
IR may be needed to describe both analog and digital blocks, and the interfaces between
them; the backend would then combine pre-existing IPs and custom logic to generate
the design and integrate it into a full system with other accelerators generated by the
SODA Synthesizer.

5.3.2 SNN dialect

The proposed SNN dialect implements an intermediate representation that captures in-
trinsic characteristics of SNN models. The dialect includes types to represent data
exchanged between neurons during SNN execution and operations representing the
transformations applied to the data. Figure 5.8 shows the key concepts that are cap-
tured in the dialect by depicting the operation of a LIF neuron: input spikes arrive at
the neuron as spike trains; the neuron in turn, whenever its membrane potential crosses
a threshold, produces output spikes that form a new train.

LIF
Neuron
Operation

a

a

a

a

Spike Train Bundle

w0

w1

w2

Weights 
Tensor

b

Bias Value

Spike Train

snn.neuron(spike_train_bundle, W, b) -> spike_train

Figure 5.8: The snn.neuron operation and key snn types.

Key types in the SNN dialect are spike trains, i.e., lists of timestamps on which
spikes occur, and N-dimensional bundles of spike trains (Figure 5.9). Conversions
to and from the SNN domain are achieved through spike train conversion operations
(Figure 5.10a), which generate a spike train from a tensor containing a list of times, or
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extract the list of timestamps from a spike train into a tensor.

Bulk conversions of input data can be achieved through spike bundle conversions
(Figure 5.10b), which convert multiple tensors into multiple spike trains. Isolated spike
trains can be grouped in a bundle, and a specific spike train can be extracted from a
bundle (Figure 5.10c); the SNN dialect also implements additional operations to pro-
vide finer grained control on spike train bundles such as adding and removing a spike
train, slicing a bundle into smaller bundles, and exchanging the ordering of spike trains
in a bundle.

!spkt_t = snn.spike_train<?xf32>
!spk1db_t = snn.spike_bundle<?x snn.spike_train<?xf32>>
!spk2db_t = snn.spike_bundle<?x?x snn.spike_train<?xf32>>

Figure 5.9: SNN dialect types.

%spike_train = snn.encode_spike_train(%list_of_times : tensor<?xf32>) : !spkt_t
%list_of_times = snn.decode_spike_train(%spike_train : !spkt_t) : tensor<?xf32>

(a) Spike train conversions.

%spk_bundle = snn.tensor_to_spike_train_bundle(data : tensor<?x?xf32>) : !spk2db_t
%data = snn.spike_bundle_to_tensor(%sb : !spk2db_t ) : tensor<?x?xf32>

(b) Spike bundle conversions.

%spk_train = snn.spike_bundle_select (%spk_bundle[%i, %j] : !spk2db_t) : !spkt_t
%spk_bundle2 = snn.spike_bundle_collect (%spk : !spkt_t , %spk : !spkt_t , ...) :

!spk1db_t

(c) Spike train bundling and selecting.

%id0 = snn.neuron (%in : !spkt_t) : !spkt_t // Input neuron
%id1 = snn.neuron (%in_spikes : !spk1db_t , W : tensor<?xf32> , bias : f32) :

!spkt_t

(d) Neuron operations.

%d_order = snn.get_order(%out_spikes : !spk1db_t) : tensor<?xindex>
%r_order = snn.get_rev_order(%out_spikes : !spk1db_t) : tensor<?xindex>

(e) Ordering operations.

Figure 5.10: SNN dialect operations.

The core operation in the SNN dialect is the neuron operation (Figure 5.10d), which
models the behavior of a LIF neuron as the one depicted in in Figures 5.1 and 5.8. A
neuron operation multiplies input spike trains by a set of weights representing the LIF
neuron resistance R to produce an output spike train; intrinsic neuron attributes include
the threshold voltage Vth, the resting potential Vrest which can be modified through the
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bias value, and a multiplying constant k that affects the neuron discharge rate. Ordering
operations (Figure 5.10e) create a tensor with the direct (or reverse) order of which
spike trains spiked first; they are used to evaluate which category is more important at
the output of an SNN model used to solve a classification problem.

Figure 5.11 shows an example of a 2-input, 2-output fully connected SNN model
described using the SNN dialect. The example demonstrates how the SNN model inter-
faces with digital inputs represented as tensors by using spike train conversions, spike
bundle conversions, and ordering operations, as well as how spike trains are manipu-
lated in the SNN domain to represent the fully connected model.

module attributes {soda.snn.container_module, snn.lif.k=1,
snn.lif.vth=30, snn.lif.vrest=-20}{

!spkt_t = snn.spike_train<?xf32>
!spk1db_t = snn.spike_bundle<?x snn.spike_train<?xf32>>

func @dense_2(%data: tensor<2xf32> ,
%W : tensor<2x2xf32> ,
%B : tensor<2xf32>) -> tensor<2xindex>){

// Use tensor.extract_slice and tensor.extract ops
// to collect %w_1_0, %w_1_1, %b_1_0, %b_1_1
// from %W and %B input arguments.

// Input Layer
%in = snn.tensor_to_spike_train_bundle(%data : tensor<2xf32>) : !spk2db_t
%in_0 = snn.spike_bundle_select (%in[0] : !spk1db_t) : !spkt_t
%in_1 = snn.spike_bundle_select (%in[1] : !spk1db_t) : !spkt_t
%v_0_0 = snn.neuron (%in_0 : !spkt_t)
%v_0_1 = snn.neuron (%in_1 : !spkt_t)
%v_0 = snn.spike_bundle_collect (%v_0_0 : !spkt_t , %v_0_1 : !spkt_t) : !spk1db_t

// Hidden/Output Layer
%v_1_0 = snn.neuron (%v_0 : !spk1db_t , %w_1_0 : tensor<2xf32> , %b_1_0 : f32 )
%v_1_1 = snn.neuron (%v_0 : !spk1db_t , %w_1_1 : tensor<2xf32> , %b_1_1 : f32 )
%v_1 = snn.spike_bundle_collect (%v_1_0 : !spkt_t , %v_1_1 : !spkt_t) : !spk1db_t

// Output transformation
%order = snn.get_order(%out_spikes : !spk1db_t) : tensor<?xindex>
%out = tensor.cast %order : tensor<?xindex> to tensor<2xindex>
return %out

}
}

Figure 5.11: Two-neuron fully connected model described in MLIR.

In addition to the types and operations previously described, Figure 5.11 also in-
cludes important module attributes associated with LIF neurons characteristics shared
by all neurons in a given target chip, i.e., the firing threshold and resting potential in
mV , and the discharge rate multiplying constant. These values must be known to per-
form SNN emulation, and they can guide domain-specific low-level optimizations.

The example contains representations from two domains, a purely digital domain
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Chapter 5. Introduction of a domain-specific abstraction

captured by tensors and the SNN domain abstracted by types and operations in the SNN
dialect but ultimately governed by the analog behavior of LIF neurons. Neuromorphic
devices are based on resistive circuits, but they can be simulated through digital logic
(e.g., on FPGA); the SNN dialect could then be lowered and synthesized through HLS
as an initial step in the integration flow, followed by the addition of dedicated mixed-
circuit designs in the resource library for the generation of hybrid systems with both
traditional and spiking accelerators.

5.4 Conclusion

This chapter discussed the opportunities to integrate conventional artificial neural net-
work techniques and spiking neural network elements through the proposed modern
multi-level hardware compiler. An initial approach was presented for the integration
of the NeuroXplorer framework with the SODA Synthesizer. Leveraging the MLIR
framework, a new specialized IR (the SNN dialect) was introduced to deal with the
complexities related to SNN representation and mapping. The SODA Synthesizer can
generate Verilog code representing spiking neurons in digital logic to be mapped onto
FPGAs or ASICs; in the future, the available compiler-based infrastructure could allow
to define and integrate ML accelerators composed of both digital and analog compo-
nents in a complex heterogeneous system.
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CHAPTER6
Experimental results

THIS chapter presents experimental results obtained through the modern MLIR-
based approach to HLS described in previous chapters; the effectiveness of
the proposed approach is demonstrated by automatically generating ASIC and

FPGA accelerators for polyhedral benchmarks and layers of popular CNN models. The
MLIR implementation of loop pipelining produces accelerators on average 2.1x faster
when used together with Bambu and 1.85x faster with Vitis HLS, demonstrating the
advantages it can provide in terms of performance and portability. High-level MLIR
optimizations result in up to 74x speedup on isolated accelerators for individual CNN
layers, and the dynamically scheduled dataflow architecture yields an additional 3x
performance improvement when combining accelerators to handle streaming inputs.
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Chapter 6. Experimental results

6.1 Overview

The proposed multi-level approach to HLS improves productivity for users and devel-
opers of HLS tools by providing convenient levels of abstraction for the introduction
of new optimizations, removing the need for low-level hardware synthesis expertise,
and providing compiler-based exploration of different design points. Moreover, it also
provides measurable improvements in the QoR of generated accelerators and enables
portability across different HLS backends. This chapter focuses on demonstrating the
latter aspects through a series of experiments on polyhedral and ML benchmarks; in
particular, the experiments described in this chapter were designed to answer the fol-
lowing questions:

• Is MLIR-based loop pipelining effective in improving accelerator performance?
(Section 6.2.1)

• Are MLIR high-level optimizations portable across HLS tools? (Sections 6.2.2
and 6.2.4)

• Can the proposed loop pipelining pass be combined with other high-level trans-
formations? (Section 6.2.3)

• Is the high-level optimization pipeline in SODA-OPT effective in improving ac-
celerator performance? (Sections 6.2.4 and 6.3.1)

• Can the SODA Synthesizer generate efficient ML accelerators? (Sections 6.3.1
and 6.3.2)

• Is the proposed dataflow architecture more efficient than a centralized architecture
driven by a microcontroller? (Section 6.3.3)

6.2 Experiments on polyhedral benchmarks

This section presents experiments on parts of the PolyBench benchmark suite [141],
which provides a collection of kernels containing deeply nested loops with floating-
point arithmetic operations on multi-dimensional tensors. The benchmark suite is
mostly used to test polyhedral optimization techniques, and it contains examples of
representative computation patterns that are common in high-level programming frame-
works for scientific computing and machine learning.
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6.2. Experiments on polyhedral benchmarks

Kernels written in C were taken directly from version 4.2.1 of the benchmark, while
their MLIR counterparts were provided by Polygeist [142]. To test the flexibility of the
proposed tools and techniques, the kernels were synthesized with a variety of data types
and kernel sizes; this also allowed to keep simulation times and resource consumption
reasonably low by selecting smaller loop bounds for floating-point experiments.

6.2.1 Effectiveness of loop pipelining

The MLIR implementation of loop pipelining presented in Chapter 3 has the great-
est impact on the QoR of accelerators generated by Bambu, since Bambu would not
otherwise support loop pipelining. This first set of experiments thus compares the per-
formance of accelerators generated by Bambu through MLIR-based loop pipelining
against the performance of accelerators generated by Vitis HLS through loop pipelining
triggered by pragmas. Such experiments (partially discussed in [89] and [90]) validate
how effective the proposed loop pipelining implementation is in reducing the execution
latency of loops by issuing multiple iterations in parallel.

To this end, the standard C version of PolyBench kernels was synthesized with Vi-
tis HLS 2021.1, adding specific directives that disable other loop optimizations (e.g.,
unrolling, flattening) and turn on/off loop pipelining to obtain baseline and pipelined ac-
celerators. The MLIR affine versions of Polybench kernels were translated into LLVM
IR and synthesized with Bambu 0.9.7, first without any optimization and then applying
the proposed high-level loop pipelining transformations. Concerning scheduling op-
tions (Section 3.2.2), different HatSchet configurations were tested to conclude that, on
PolyBench, the ILP-based modulo scheduling algorithm [143] produces the best result
in an acceptable amount of time. Similarly, it was verified that a model with infinite
resources allows reaching the highest performance, as PolyBench loop bodies con-
tain few instructions (in the range of 5-10 each) that never risk depleting the available
FPGA resources. With both Vitis HLS and Bambu, the target was a Xilinx Zynq-7000
FPGA at 100 MHz frequency; inputs and outputs were assumed to be stored in on-chip
BRAMs. Performance is measured through simulation, resource utilization is reported
post place-and-route.

Figure 6.1 shows the execution time in clock cycles of the generated accelerators,
with two versions of PolyBench kernels: double-precision floating-point operations
on the ‘mini’ dataset size, and 32-bit integer operations on the ‘medium’ dataset size.
(Kernels in the ‘solvers’ category are only meant to be executed in floating-point, so
they are not present in the integer experiments.) Pipelining loops provides a significant
reduction in clock cycles, as expected; this is verified both when pipelining is applied
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(a) Double-precision floating-point, mini dataset.
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(b) 32-bit integer, medium dataset.

Figure 6.1: Execution times with different HLS tools and loop pipelining strategies.

within the HLS tool and when it is implemented as a high-level MLIR optimization.
After scheduling the MLIR affine code, all operations in the new loop body are inde-
pendent and can be executed in parallel; this means that measuring the II corresponds
to measuring the execution latency of one loop iteration, i.e., the latency of the slowest
operation in the loop body. By inspecting the finite state machines generated by Bambu
and the Vitis HLS synthesis logs, it is possible to observe that the II reported by Vitis
HLS is always higher than the iteration latency for the loop synthesized by Bambu in
the floating-point experiments; in general, on double-precision computations Bambu
tends to perform better than Vitis HLS because the floating-point functional units in
the Bambu resource library are faster. For the integer experiments, instead, Vitis HLS
can always reach an II of one, which Bambu sometimes fails to obtain despite always
receiving an input IR with no dependencies between operations in the innermost loop.
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Figure 6.2: Loop pipelining performance improvement and area overhead.

Pipelining loops increases FPGA resource consumption (i.e., digital signal process-
ing elements, registers, look-up tables, and slices) to accommodate the extra states for
prologue and epilogue, and instantiate larger multiplexers in front of each functional
unit; however, by comparing the achieved speedup with the area overhead, in most
cases the price to pay in terms of area is adequately compensated by the reduction in
the number of clock cycles. Figure 6.2 visualizes this trend by plotting the performance
increase with respect to the overhead in slice utilization in the experiments with Bambu
and MLIR-based loop pipelining. While most benchmarks are clustered in the bottom
left corner, some kernels show a disproportionate area overhead (labeled points in the
graph). For example, the innermost loops in syrk and syr2k have an upper bound de-
pending on the induction variable of the outermost loop, which requires introducing
conditional pipelining as described in Section 3.4.4. Gemver, instead, is the only ker-
nel that contains four independent loops to be pipelined, and so it incurs four times the
area overhead for the introduction of prologue and epilogue.

6.2.2 Portability of MLIR-based loop pipelining

An advantage of implementing software pipelining as an MLIR transformation is that it
does not require annotations for a specific backend HLS tool: after applying the newly
introduced passes, the code contains the pipelined loop in the MLIR affine dialect, and
after lowering and translating it only contains standard LLVM code. The generated
LLVM IR can be synthesized through recent versions of Vitis HLS [38] by setting up
a compilation flow that bypasses the C/C++ frontend to feed the LLVM IR directly
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Chapter 6. Experimental results

Table 6.1: QoR of pipelined accelerators generated through different HLS tools.

Kernel Version Tool Cycles Slices Speedup Slices overhead
gemm double, mini Bambu 82 362 1303 1.91x 1.80x
gemm double, mini Vitis HLS 206 821 1119 1.29x 2.54x
gemm int, medium Bambu 21 160 402 506 2.01x 2.11x
gemm int, medium Vitis HLS 31 764 201 322 2.34x 3.39x
syr2k double, mini Bambu 64 249 2826 3.40x 3.19x
syr2k double, mini Vitis HLS 137 463 1736 2.14x 2.71x
syr2k int, medium Bambu 17 285 566 1030 2.35x 4.10x
syr2k int, medium Vitis HLS 28 691 013 794 1.62x 5.79x

into the closed-source backend. (After applying the same MLIR pipeline used in the
Bambu experiments, a final LLVM pass was needed to “downgrade" the IRs, as Xilinx
tools work with an old LLVM version that is not compatible with MLIR; code for
the pass was provided in the Phism project [144].) Table 6.1 reports post place-and-
route results (partially presented in [90]) for two pipelined accelerators synthesized
by Bambu and by Vitis HLS, one with constant and one with variable loop bounds.
Speedups and overheads are calculated with respect to a baseline accelerator derived
from an LLVM IR translated from MLIR code without loop pipelining; the target was
again a Zynq-7000 board at 100 MHz frequency and performance results are obtained
through simulation.

The introduction of loop pipelining as an MLIR high-level optimization positively
affected accelerator performance through both the Bambu and the Vitis HLS backend
in these experiments. While Bambu natively supports LLVM IRs as input, the Vitis
HLS compilation and synthesis flow for LLVM is rather experimental: Vitis HLS is
optimized primarily for annotated C/C++ code; existing documentation describes the
use of pragmas in C/C++, and it is not trivial to understand if and how these would
need to be added in the generated LLVM IR. Nevertheless, results such as the ones pre-
sented in this section provide sufficient motivation to further explore synthesis-oriented
transformations in MLIR that can benefit multiple HLS backends.

6.2.3 Loop pipelining and other high-level transformations

The modularity and flexibility of a multi-level approach to HLS based on MLIR allow
to easily introduce new optimizations in the compilation pipeline with the aim of gen-
erating optimized IRs for hardware synthesis, and, if beneficial, to reuse existing passes
that were originally designed for a different purpose (e.g., generic compiler passes for
software or transformations for a specific hardware architecture). The affine dialect
provides a growing collection of transformations that can be explored in the context
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6.2. Experiments on polyhedral benchmarks

Table 6.2: Effect of affine optimizations on gemm (double, mini).

Optimizations Cycles Slices Speedup Slices overhead
none 157 122 724 baseline baseline
loop pipelining 82 362 1303 1.91x 1.80x
loop permutation + pipelining 81 182 1306 1.93x 1.80x
loop unrolling + pipelining 17 642 8075 8.91x 11.15x

of a frontend to HLS to optimize loop structures; the introduction of loop pipelining
as a high-level pass operating on the affine dialect thus also allows to combine it with
other affine optimizations. As was demonstrated in previous sections, loop pipelining
provides performance benefits on its own, but it can also be coupled with other opti-
mizations to explore design points with different performance/area trade-offs. Even if
some of the techniques implemented by the affine dialect are also available as backend
HLS optimizations triggered by pragmas, applying them at the MLIR level allows to
decouple loop optimizations (which do not necessarily require hardware-related con-
siderations) from the backend HLS tool, and thus enhance portability.

Table 6.2 reports simulated execution time and post place-and-route slices consump-
tion of accelerators obtained by coupling loop pipelining with a few other passes on
the generalized matrix multiplication (gemm) kernel with the Bambu backend, keep-
ing the same experimental setup of the previous sections. The results (partially dis-
cussed in [90]) show that it can be beneficial to increase the number of iterations in
the pipelined loop through loop permutation, which reduces the number of cycles with
an almost nonexistent increase in resource utilization. If the size of the loop body is
increased through unrolling, instead, it is possible to obtain an even faster design at the
cost of significant area consumption. The same exploration of design points would re-
quire manual modifications to the code when done at the C/C++ level; for typical HLS
optimizations such as loop unrolling, this can be as simple as adding a pragma, but it
can require significant code rewriting for other transformations such as loop permuta-
tion. In an MLIR-based framework, instead, all of them are exposed as compiler passes
and compiler options, reducing the risk of errors and the time needed for DSE.

6.2.4 Effects of high-level optimization pipelines on performance

The SODA-OPT frontend (Section 3.5) provides a default optimization pipeline built
of MLIR passes that restructure input IRs in order to improve their performance when
synthesized into hardware through HLS; in this regard, it can be compared to ScaleHLS
[27], which is also an MLIR-based tool providing automated optimizations for HLS.
This section presents results obtained with SODA-OPT and ScaleHLS on PolyBench
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kernels, discussing the strengths and weaknesses of the two tools in light of the abso-
lute execution times and relative performance improvements they achieve (as was also
partially done in [15]). The experiments were run on a version of the kernels that op-
erates on single-precision floating-point data types and with four different kernel sizes
(referring to the size of all dimensions of the involved tensors); the hardware target is a
Xilinx Virtex7 FPGA with 100 MHz frequency.

Table 6.3 reports execution times and highlights for every kernel and every size
which is the configuration that resulted in the lowest number of clock cycles after
simulation. Before drawing a direct comparison between SODA-OPT and ScaleHLS,
an important observation must be made on the different backends that the two tools
support: SODA-OPT supports Bambu and Vitis HLS (through its LLVM frontend),
ScaleHLS only supports Vivado HLS, which is an older version of the Xilinx HLS tool.
To account for differences in performance that derive from capabilities of the backends
rather than optimizations in the frontends, the table reports separate baselines: syn-
thesis of unoptimized LLVM IR with Bambu 0.9.7, synthesis of unoptimized C with
Vitis HLS 2021.1, and synthesis of unoptimized C with Vivado HLS 2019.2. Errors
sometimes occurred when ScaleHLS produced annotated C++ code that was correctly
synthesized by Vivado HLS, but later failed in the place-and-route phase: ScaleHLS
performs DSE by analyzing high-level IRs and early HLS estimates, which may lead to
an underestimation of resource consumption; when this happens, designs produced by
ScaleHLS cannot conclude place-and-route because they require more resources than
the ones available in the target FPGA.

Looking at absolute numbers of clock cycles, SODA-OPT outperforms ScaleHLS
in 26 kernels out of 36, through either the Bambu or the Vitis HLS backend. The
SODA-OPT default optimization pipeline is particularly well suited to kernels with dot
product or matrix multiplication structures (e.g., it provides 66.38x performance in-
crease on 2mm and 50.43x on gemm); its effect is more limited, instead, on kernels
that contain irregular loop structures such as syr2k. A regular structure also benefits
the default optimization process in baseline Vitis HLS designs, which for example sur-
passes the performance of designs optimized by SODA-OPT for smaller versions of the
doitgen kernel. Similarly, it is reasonable to assume that it is the irregular structure of
syr2k loops that causes ScaleHLS to generate accelerators with lower performance than
baseline Vivado HLS designs. Atax designs generated by ScaleHLS, instead, encounter
an error during IP export for logic synthesis, probably due to an error in the synthesis
of accelerator interfaces.

On average, both ScaleHLS and SODA-OPT for Bambu provide considerable per-
formance improvements over the respective baselines, while the performance improve-
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6.2. Experiments on polyhedral benchmarks

Table 6.3: Execution times of accelerators optimized with different frontend tools.

Kernel Frontend Backend Size 2 Size 4 Size 8 Size 16 Avg. speedup
2mm none Bambu 176 1375 11218 87842
2mm SODA-OPT Bambu 25 43 98 784

66.38

2mm none Vitis HLS 43 115 599 4239
2mm SODA-OPT Vitis HLS 26 48 106 848

3.67

2mm none Vivado HLS 162 1138 9698 75586
2mm ScaleHLS Vivado HLS 38 63 114 410

72.94

3mm none Bambu 220 1743 14042 111410
3mm SODA-OPT Bambu 22 40 320 2560

35.24

3mm none Vitis HLS 37 109 593 4233
3mm SODA-OPT Vitis HLS 23 45 103 824

3.73

3mm none Vivado HLS 207 1467 12723 99939
3mm ScaleHLS Vivado HLS 57 97 169 797

54.86

atax none Bambu 76 299 1171 4643
atax SODA-OPT Bambu 21 34 60 157

15.38

atax none Vitis HLS 37 58 125 361
atax SODA-OPT Vitis HLS 22 39 74 163

1.77

atax none Vivado HLS 66 242 1058 4162
atax ScaleHLS Vivado HLS Error Error Error Error

n.a.

bicg none Bambu 73 294 1162 4626
bicg SODA-OPT Bambu 13 28 45 141

18.69

bicg none Vitis HLS 27 47 121 339
bicg SODA-OPT Vitis HLS 12 22 47 143

2.33

bicg none Vivado HLS 33 121 529 2081
bicg ScaleHLS Vivado HLS 22 31 49 64

12.18

doitgen none Bambu 165 2486 38986 344338
doitgen SODA-OPT Bambu 15 166 1158 9624

24.20

doitgen none Vitis HLS 25 100 590 57602
doitgen SODA-OPT Vitis HLS 33 146 1090 8443

2.20

doitgen none Vivado HLS 161 2361 35025 541473
doitgen ScaleHLS Vivado HLS 14 26 94 1367

217.75

gemm none Bambu 103 794 6538 42514
gemm SODA-OPT Bambu 16 28 71 568

50.43

gemm none Vitis HLS 24 52 140 5635
gemm SODA-OPT Vitis HLS 15 29 71 259

6.78

gemm none Vivado HLS 99 669 5593 42801
gemm ScaleHLS Vivado HLS 19 27 56 Error

43.29

gemver none Bambu 154 606 2377 9620
gemver SODA-OPT Bambu 36 49 75 300

20.10

gemver none Vitis HLS 73 117 251 715
gemver SODA-OPT Vitis HLS 39 56 90 255

2.39

gemver none Vivado HLS 142 512 2076 8116
gemver ScaleHLS Vivado HLS 61 87 103 261

14.87

mvt none Bambu 74 290 1155 4611
mvt SODA-OPT Bambu 13 21 45 141

19.47

mvt none Vitis HLS 34 63 147 399
mvt SODA-OPT Vitis HLS 12 22 47 143

2.90

mvt none Vivado HLS 66 242 1058 4162
mvt ScaleHLS Vivado HLS 36 62 72 120

13.78

syr2k none Bambu 99 706 4834 35650
syr2k SODA-OPT Bambu 19 270 1417 8835

3.82

syr2k none Vitis HLS 97 367 2627 18179
syr2k SODA-OPT Vitis HLS 50 159 509 1785

4.90

syr2k none Vivado HLS 73 265 1089 4225
syr2k ScaleHLS Vivado HLS 93 353 1665 Error

0.73
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ment is smaller when comparing SODA-OPT for Vitis HLS against the Vitis HLS base-
line. This is however not surprising, as Vitis HLS is the only backend tool that applies
loop optimizations even in absence of user directives; accelerators produced by Vitis
HLS are thus significantly faster than the other baseline designs, and the optimizations
introduced by SODA-OPT provide only a slight improvement over the default ones
applied by Vitis HLS. The optimizations introduced by ScaleHLS greatly improve ac-
celerator performance with respect to baseline designs synthesized by Vivado HLS;
however, not supporting Vitis HLS puts ScaleHLS at a disadvantage, as the pragma
syntax changed enough between the two versions that annotated C++ code for Vivado
HLS is not guaranteed to maintain the same performance when synthesized with Vi-
tis HLS. The MLIR-based approach of SODA-OPT, instead, transforms the input code
before feeding it to the HLS tool ensuring portability across different backends; by
not relying on pragma annotations, SODA-OPT obtains designs with performance that
does not depend on whether the backend HLS tool recognizes optimization directives
or not.

6.3 Experiments on neural network models

This section reports experimental results obtained by generating neural network accel-
erators through the end-to-end design flow of the SODA Synthesizer, as also presented
in [98]. The kernels used for the experiments are convolutions, batch normalization
layers, and activation functions from ResNet and MobileNet CNN models in 32-bit
floating-point (Figure 6.3), implemented and trained in TensorFlow and later translated
into high-level built-in MLIR dialects through tf-opt and tf-mlir-translate.
Each kernel is synthesized in isolation at first and then composed together with the
others to evaluate the difference between the two available system architectures (i.e.,
centralized SoC and dataflow accelerator).

(a) Operators from ResNet50.

(b) Operators from MobileNetV2.

Figure 6.3: DNN operators used in the experiments of Section 6.3.
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6.3. Experiments on neural network models

All experiments target the generation of ASIC accelerators with 45 nm technology
through Bambu 0.9.7 and the OpenRoad flow, with an operating frequency of 500MHz;
each synthesized kernel has two ports connecting it to shared memory with 2 cycles of
read latency, and 1 cycle of write latency. The SODA Synthesizer is also able to gener-
ate different solutions for memory interfacing, with dedicated load/store ports for each
kernel argument and a parametric number of load/store ports; however, these exper-
iments only employ two ports per kernel to limit the growth of the HMI complexity
when they are subsequently combined in the dataflow design (Section 4.4). Memory
parallelism is achieved in multi-accelerator system architectures through the concurrent
operation of interconnected FSMD modules.

6.3.1 QoR of generated designs

For the experiments described in this section, individual operators from Figure 6.3 were
automatically outlined and synthesized in two different configurations to assess the im-
pact of the SODA-OPT high-level optimization pipeline on ASIC accelerators for ML.
In the baseline configuration, each operator is outlined, lowered without applying op-
timization passes, translated to LLVM IR, and synthesized. In the optimized config-
uration, the SODA-OPT default optimization pipeline is introduced with the goal of
reducing execution time.

As discussed in Sections 3.5 and 4.3, SODA-OPT automatically optimizes IRs by
exploiting existing and custom MLIR passes to increase instruction-level and data-level
parallelism and reduce the number of redundant instructions. The transformations allow
Bambu to compute more efficient schedules and better leverage the available hardware
resources, resulting in shorter execution times. For large and arithmetically intensive
kernels such as convolutions, SODA-OPT can perform loop tiling to balance computa-
tion and memory transfer and apply the optimization pipeline to the inner tile, obtaining
a smaller accelerator that is invoked multiple times to execute a long operation. In that
case, the execution time is measured by multiplying the latency of the accelerated tile
by the number of invocations needed to complete the computation.

Table 6.4 shows post floorplanning characteristics of the optimized version of neural
network accelerators generated by the SODA Synthesizer. The efficiency in GFLOP-
S/W is calculated by counting the total number of floating point arithmetic operations
(mostly multiplications and sums) performed during the execution of a kernel, and di-
viding the number by the latency and power consumption reported by OpenROAD after
floorplanning. All the generated accelerators reach high energy efficiency, with power
consumption ranging from 20 to 440 mW; simple operators such as ReLU achieve up
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Table 6.4: QoR of DNN accelerators synthesized with high-level optimizations.

ResNet50
Operator Cycles Area(um2) Power(W) GFLOPS/W
B_00_conv2d 2,554,953,728 175,874 0.069 10.3
B_01_fbn 25,619,335 662,899 0.042 19.1
B_02_relu 3,353,684 70,949 0.032 141.3
B_03_conv2d 2,860,150,784 517,396 0.237 6.2
B_04_fbn 6,602,595 639,438 0.042 19.7
B_05_relu 870,770 48,977 0.021 185.6
B_06_conv2d 1,277,263,872 173,603 0.069 10.8
B_07_fbn 26,395,323 638,947 0.044 19.2
C_00_add 5,724,970 78,439 0.0378 17.8
C_01_relu 3,480,074 49,253 0.0217 183.0
T_00_conv2d 2,552,758,272 174,580 0.0627 11.6
T_01_fbn 26,395,323 638,929 0.042 19.5
B (bottom), T (top) and C (centered) refer to the branches of Figure 6.3.

MobileNetV2
Operator Cycles Area(um^2) Power(W) GFLOPS/W
00_conv2d 6,058,752 1,281,674 0.440 7.2
01_add 707,350 83,958 0.049 8.7
02_relu 648,214 42,050 0.023 82.2
03_dwconv2d 3,622,080 407,501 0.204 7.3
04_fbn 3,468,402 758,623 0.055 7.5
05_relu 648,214 42,050 0.023 82.2
06_conv2d 4,246,144 724,024 0.383 11.8
07_add 117,910 81,636 0.041 62.1

to hundreds of GFLOPS/W efficiency, while more complex operators such as convo-
lutions reach ∼10 GFLOPS/W. Such disparity is a consequence of the SODA-OPT
optimization strategy, which increases the number of computational units in parallel
and therefore produces large accelerators with increased power consumption; smaller
kernels, even if completely unrolled, consume less power than larger kernels and reach
higher efficiency.

Figure 6.4 compares the performance, area, and power consumption of accelera-
tors obtained with the baseline and optimized configurations. By enabling the SODA-
OPT high-level optimization pipeline, the execution time in clock cycles decreases,
obtaining an average speedup of 7.2x over baseline results for ResNet50 operators, and
an average speedup of 23.5x with peaks of ∼52-74x in the convolutional layers for
MobileNetV2 operators. In all cases, introducing the SODA-OPT pipeline results in
a trade-off between performance and area/power consumption, with power and area
overheads increasing proportionately to the obtained speedup. This effect is to be ex-
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(a) ResNet50 operators.
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(b) MobileNetV2 operators.

Figure 6.4: Speedup, area overhead, and power overhead introduced by SODA-OPT.

pected, as the default version of the SODA-OPT optimization pipeline aims at reducing
execution time by generating bigger designs with more resources that can operate in
parallel (especially through loop unrolling). Application developers that require a dif-
ferent trade-off between performance, area, and power consumption metrics can easily
modify the default pipeline by enabling, disabling, or modifying available passes to
obtain accelerators with the desired QoR.

6.3.2 Qualitative comparison with ML accelerators and design flows

Countless commercial and academic designs have been proposed to accelerate the exe-
cution of DNN models such as the ones considered in the previous set of experiments,
with degrees of generality and efficiency that vary, depending on application require-
ments, from ultra-low-power wearable devices to cloud servers. A one-to-one com-
parison between accelerators generated by the SODA Synthesizer and state-of-the-art
designs is complicated by the different technology nodes, operating frequencies, and
degree of programmability; nevertheless, this section attempts a qualitative comparison
of energy efficiency between matrix multiplication accelerators generated by the SODA
Synthesizer and metrics for a selection of DNN accelerators as reported in [145].
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Table 6.5: Comparison among DNN accelerators.

Floating-point accelerators
Platform Technology Precision Power Clock GFLOPS/W Notes

node (W) (MHz)
V100 GPU 12 nm FP32 300 1246 52.33 Theoretical peak
A100 GPU 7 nm FP32 400 1410 48.75 Theoretical peak
TPU v3 16 nm FP32 450 940 8.89 Theoretical peak
SODA MatMul 45 nm FP32 0.42 500 17.46 Derived from execution time

Accelerators with different numerical formats
Platform Technology Precision Power Clock GOPS/W Notes

node (W) (MHz)
A100 GPU 7 nm TF32 400 1410 780 Theoretical peak
TPU v3 12 nm FP16 450 940 273.33 Theoretical peak
TPU v4 7 nm BF16 175 N/A 1432.29 Theoretical peak
SIGMA Sparse 28 nm FP16 22.3 500 480 Average across GEMMs
DNNBuilder 20 nm Fixed16 22.9 235 90.2 Batch execution of VGG
SODA MatMul 45 nm Fixed16 0.05 500 162.25 Derived from execution time

The evaluated MatMul accelerator was lowered from an MLIR matrix multiplica-
tion operation on single-precision floating-point in the linear algebra dialect, optimized
through SODA-OPT, and synthesized by Bambu with 8 parallel memory ports for an
ASIC target with the 45 nm OpenROAD backend; the same process was repeated for a
version of the kernel operating on 16-bit fixed-point data. The SODA Synthesizer gen-
erates FSMD accelerators where the number of functional units depends on the amount
of exposed parallel arithmetic operations in the kernel (which is controlled by high-
level optimizations), while other devices based on systolic arrays (e.g., TPUs) contain
thousands of processing units that may or may not be fully utilized depending on the
operation that is mapped on them. This is the main factor that prevents quantitative
comparisons: programmable devices such as GPUs and TPUs advertise peak execu-
tion rates that may or may not be achieved depending on how optimized is the input
code; instead, accelerators generated through tools and techniques proposed by this
thesis are extremely specialized and always execute the same operation (e.g., matrix
multiplication, matrix-vector multiplication, or ML operators and models). In fact, the
G(FL)OPS/W efficiency results reported in Table 6.5 are all calculated from theoretical
peak throughput, power consumption, and frequency, except for the accelerators gener-
ated by SODA where the actual throughput and efficiency are calculated based on their
latency.

Another challenge for qualitative comparisons is the support for different numerical
formats: as the accuracy of DNN models has been proven to be resilient to the loss
of precision in weights and computation, DNN accelerators often employ specialized
data types that trade off accuracy for efficiency, including ML-specific floating-point
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Table 6.6: Comparison among acceleration toolchains.

Toolchain Input Backend tools F1 F2 F3 F4 F5
ScaleHLS MLIR Vivado HLS ✓ ✗ ✓ ✓ ✗

CIRCT HLS MLIR CIRCT ✓ ✗ ✗ ✗ ✓

hls4ml DNN model Multiple HLS tools ✓ ✗ ✗ ✓ ✗

FINN DNN model Vivado HLS ✓ ✗ ✗ ✓ ✗

HeteroCL Python Intel or Vitis HLS ✗ ✗ ✗ ✓ ✗

POLSCA C/C++ Vitis HLS ✓ ✗ ✗ ✓ ✗

SODA MLIR Bambu, Vitis HLS ✓ ✓ ✓ ✓ ✓

F1: OPTIMIZATIONS WITHOUT MANUAL CODE REWRITING; F2: PARTITIONING OF HOST AND KERNEL CODE;
F3: DESIGN SPACE EXPLORATION; F4: FPGA SUPPORT; F5: ASIC SUPPORT.

formats (e.g., bfloat16 in recent versions of Google TPUs and tensorfloat32 in Nvidia
Tensor Cores). FPGA-based custom accelerators, instead, typically focus on integer/-
fixed point formats because implementing floating-point units on fine-grained recon-
figurable devices is considered to be inefficient; for example, DNNBuilder targets a
Kintex UltraScale FPGA and leverages a fixed-point 16-bit format. The modular and
extensible nature of the SODA Synthesizer would easily allow to introduce passes that
parse quantized models and generate functional units with specialized number formats.

In conclusion, matrix multiplication accelerators generated by the SODA Synthe-
sizer present an energy efficiency sim15 GFLOPS/W on floating-point and sim160 on
fixed-point computation; a raw performance comparison with existing ML accelerators
needs to consider that these values have been calculated from actual execution latency
rather than theoretical peak throughput and that the 45 nm technology node is con-
siderably older than the ones used to fabricate the other devices. Finally, accelerators
generated through the SODA Synthesizer did not require any manual hardware design
or DSE effort to reach the reported efficiency; there is ample room to introduce further
optimizations in the process that would produce even better QoR.

A second qualitative comparison can be drawn between the SODA Synthesizer and
other toolchains that facilitate the generation of specialized architectures starting from
high-level programming frameworks. Table 6.6 (adapted from [15]) lists a selection
of tools among the ones presented in Chapter 2, highlighting key features that reduce
the effort needed to translate the software description of an algorithm into a hardware
accelerator. The SODA Synthesizer is the only toolchain in the list to provide both
automated optimizations and DSE through compiler optimizations, and system-level
design features such as partitioning between host code and accelerator code or generat-
ing multi-accelerator architectures.
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6.3.3 Dataflow architecture and centralized architecture

The SODA Synthesizer can compose multiple generated FSMD accelerators into one
of two different types of system, i.e., the centralized architecture and the dataflow ar-
chitecture. The centralized architecture is a system like the one depicted in Figure 4.5a,
where individual accelerators are attached to a central bus, a microcontroller drives
their execution, and the data they exchange is stored in and retrieved from external
memory. The dataflow architecture, instead, is a system that uses the distributed con-
troller proposed in Section 4.4 to orchestrate the execution of accelerators accessing
shared memory, as depicted in Figure 4.5b. This section compares the performance of
the two architectures by using the blocks of DNN layers of Figure 6.3, which are first
synthesized and simulated individually with the SODA-OPT high-level optimizations
enabled, and then connected together. The evaluation considers two application scenar-
ios: a single input image processed by all operators in sequence, and a stream of 100
input images.

While the simulation already accounts for shared memory accesses, the cost of com-
munication between accelerators and external memory needs to be estimated taking into
consideration the type and size of the inputs and outputs for each kernel. The estima-
tion considers a memory bandwidth of 6400MB/s, typical of DDR3 RAM modules
using 45 nm technology cells, to calculate transfer times as seen by the accelerator
in terms of clock cycles at 500MHz. In the centralized architecture, every accelera-
tor communicates with its producers and consumers through external memory; in the
dataflow architecture, instead, only input arguments to the first kernel and output ar-
guments of the last one go through external memory, while intermediate results are
kept within a shared on-chip scratchpad memory. The shared scratchpad memory is
assumed to have as many ports as there are FSMD accelerators in the system, so that by
using the HMI memory interface described in Section 4.4 the architecture can support
conflict-free concurrent accelerator execution, allowing pipelined execution of stream-
ing workloads. This assumption is reasonable, as high-performance scratchpad designs
with up to 16 independent banks already exist, which is enough to support the bench-
marks used in these experiments. Accesses to the shared scratchpad are accounted for
in the same way as other accesses to on-chip memories, i.e., with 2 cycles latency for
read operations and 1 cycle latency for write operations.

The overall latency of the centralized architecture is estimated by summing the ex-
ecution time of each accelerator with the time it takes to transfer data to/from external
memory before and after its execution. The streaming latency is calculated by mul-
tiplying the single input execution latency by the number of inputs in the stream; in
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Table 6.7: Execution times on the centralized and dataflow architecture.

ResNet50
Single Input Streaming (100 inputs)

Architecture Computation Memory Total Computation Memory Total
Centralized 1,146,101,992 7,152,635 1,153,254,627 114,610,199,200 715,263,486 115,325,462,686
Dataflow 806,742,427 656,320 807,398,747 34,677,385,627 656,320 34,678,041,947
Speedup 1.4 10.9 1.4 3.3 1089.8 3.3

MobileNetV2
Single Input Streaming (100 inputs)

Architecture Computation Memory Total Computation Memory Total
Centralized 19,517,066 3,726,301 23,243,367 1,951,706,600 372,630,149 2,324,336,749
Dataflow 19,517,066 64,345 19,581,411 625,392,266 64,345 625,456,611
Speedup 1.0 57.9 1.2 3.1 5,791.2 3.7

fact, although the synthesized accelerators could execute in parallel on different inputs,
SODA-OPT currently does not support the generation of host code with non-blocking
function calls.

The model to estimate the performance of the dataflow architecture, instead, takes
into account the support for concurrent and pipelined execution provided by the dis-
tributed controller. The execution time for a single input is calculated by looking at
the application task graph and identifying the longest path from input to output; the la-
tency of all kernels along the critical path is then summed together with memory access
latency at the beginning at the end of the execution. In this way, the model accounts
for fork-join patterns in the application data flow graph, where multiple branches can
be executed in parallel and the overall latency is determined by the execution of the
slowest branch. In the streaming execution scenario, the dataflow architecture latency
is calculated as the latency of a single input execution plus N - 1 times the initiation in-
terval, where N is the number of elements in the input stream, and the initiation interval
is the latency of the slowest kernel or memory transfer.

Table 6.7 reports the execution latency in clock cycles for the two blocks of layers in
Figure 6.3, and uses the results from the centralized architecture as a baseline to assess
the performance improvement provided by the dataflow architecture. For the Resnet50
block, using the proposed dataflow architecture, accelerators implementing operators
in the upper edge of the graph in Figure 6.3a can execute in parallel with accelerators
implementing operators in the lower branch; compared to the centralized architecture
baseline, this results in a speedup of 1.4x during single input execution, and a speedup
of 3.5x when streaming a batch of 100 inputs. For MobileNetV2, although the task
graph does not have parallel branches, the dataflow architecture still provides significant
improvements due to the reduced access to external memory; in fact, the centralized
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system spends 57.9x more cycles with a single input and 5,791.2x more cycles in the
streaming scenario to transfer data between accelerators and external memory.

6.4 Conclusion

The experiments described in this chapter demonstrated the benefits of a modern multi-
level approach to HLS in terms of increased performance, productivity, and portability.
Results obtained by generating accelerators for polyhedral benchmarks proved that the
MLIR-based implementation of loop pipelining described in Chapter 3 improves per-
formance with a reasonable area overhead, that performance improvement obtained
through high-level optimizations is portable across HLS tools, and that custom trans-
formations can be combined with existing MLIR passes to explore different design
points. The high-level SODA-OPT optimization pipeline described in Chapters 3 and
4 was tested on polyhedral benchmarks and ML operators to assess its effect on ac-
celerator QoR, also in comparison to state-of-the-art tools and techniques. Finally, the
end-to-end hardware generation flow described in Chapter 4 was applied to DNN mod-
els to assess its capabilities to synthesize efficient accelerators, qualitatively comparing
them to other existing solutions, and to compare the two different system architectures
it supports.

84



i
i

“output” — 2022/12/28 — 13:03 — page 85 — #95 i
i

i
i

i
i

CHAPTER7
Conclusions

MODERN tools and techniques presented in this thesis contribute to enabling do-
main scientists and high-level application developers to efficiently use HLS
tools. Thanks to the diffusion of the MLIR framework, the proposed ap-

proach can be applied to synthesize hardware accelerators for a growing number of
input applications; transformations applied as MLIR passes are portable across differ-
ent HLS tools, and they do not require manual intervention on the code. Finally, the
modularity of the proposed design flow and the availability of multiple levels of ab-
straction facilitate the exploration of multiple design alternatives and the introduction
of innovative optimization techniques. This chapter concludes the thesis by summariz-
ing its main contributions and presenting further research opportunities in the field of
design automation.
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7.1 Summary of contributions

In the last few years, High-Level Synthesis has become an invaluable tool to simplify
the development of hardware accelerators on FPGA and ASIC, providing higher and
higher quality of results to users with little expertise in low-level RTL design. State-of-
the-art HLS tools support C/C++ and LLVM IR inputs; however, they often require
manually annotating the input code with compiler directives to guide the synthesis
process and overcome the semantic mismatch between hardware design and general-
purpose programming languages. Such a programming model still expects some hard-
ware design knowledge from users, especially when the accelerator needs to be opti-
mized to meet tight application requirements or when different configurations need to
be evaluated looking for a specific trade-off between quality metrics.

This requirement prevents widespread adoption of HLS by domain scientists that
develop data science and artificial intelligence algorithms in high-level, Python-based
programming frameworks. Moreover, research that aims at improving the efficiency of
the HLS process itself or the quality of generated accelerators is typically limited by the
expressiveness of C/C++ code and by the annotations supported by a specific, closed-
source backend tool. This thesis has proposed to solve the two issues by coupling
established HLS tools with the modern compiler infrastructure provided by the MLIR
framework: such a multi-level approach allows seamless integration with high-level
ML frameworks, encourages the introduction of innovative optimization techniques at
specific levels of abstraction, and can exploit multiple state-of-the-art HLS tools in the
backend.

The proposed design flow allows to implement and apply high-level optimizations
before HLS, as compiler passes supported by dedicated MLIR abstractions (dialects);
such an approach can improve productivity, performance, and portability of optimiza-
tions. A new implementation of loop pipelining based on the MLIR affine dialect has
been introduced as a case study, to test whether high-level compiler transformations can
benefit HLS results without needing to modify the HLS tool itself. The proposed imple-
mentation can analyze dependencies between operations in the loop body and overlap
the execution of iterations to increase parallelism; it can also forward results from one
iteration to the other, support loops with variable bounds, and speculate execution of
if-else blocks. All these transformations contribute to increasing the performance of
the generated accelerators, and, since they do not introduce tool-specific annotations
or code patterns, they also allow portability across different HLS tools. Productivity is
increased on the user’s side, as optimizations can be explored more easily and safely
through compiler passes than through manual code rewriting, but also on the devel-
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oper’s side: dedicated MLIR dialects are built to solve domain-specific optimization
problems, and there is no need to access the backend HLS code nor to be expert in
low-level synthesis techniques.

Loop pipelining has been used as an example of the intrinsic optimization potential
in a multi-level design and optimization flow; it has also been seamlessly integrated
into the SODA-OPT frontend for HLS thanks to the modular nature of MLIR. SODA-
OPT is part of the SODA Synthesizer, an end-to-end automated hardware compiler
based on the multi-level approach to HLS presented in its thesis; among other features,
SODA-OPT provides a set of compiler passes that can be enabled or disabled to ex-
plore different design points and a default optimization pipeline aimed at improving
the performance of the generated accelerators.

The SODA Synthesizer is a practical realization of the concepts explored in this
thesis, applied to generate optimized FPGA and ASIC accelerators for ML through
an open-source, modular, compiler-based design flow. Its frontend provides a search
and outlining methodology to automatically extract accelerator kernels and their data
dependencies from an MLIR input specification; optimized kernels are synthesized by
the backend HLS tool to generate FSMD accelerators and later composed in multi-
accelerator systems. The SODA Synthesizer integrates a low-level synthesis methodol-
ogy for the generation of coarse-grained, dynamically scheduled dataflow architectures
with distributed control which are particularly suited to support streaming execution;
analysis and transformation passes in the MLIR frontend support the low-level synthe-
sis process and improve its results.

A multi-level compiler-based framework can adapt more easily to innovative in-
put algorithms and hardware targets with respect to tools that generate code for HLS
through a library of annotated C/C++ templates. For example, spiking neural net-
works are built of biologically-inspired integrate-and-fire neurons, and they are usually
mapped on analog neuromorphic hardware; a new MLIR dialect has been introduced
in the SODA Synthesizer to support the synthesis of SNN models into neuromorphic
components. The dialect models concepts from the analog domain of spiking neurons
through new types and operations that describe sequences of current spikes as lists of
timestamps signaling their arrival. A plan has been drafted to integrate the NeuroX-
plorer toolchain into the SODA Synthesizer through the new dialect, first to simulate
SNN models and map them onto neuromorphic devices, and later to generate hybrid
systems composed of both digital and analog accelerators.
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7.2 Future research directions

This thesis is the first step in a new line of research that integrates established HLS
tools and novel compiler infrastructure to improve the automated synthesis process of
accelerators for high-level applications. The proposed multi-level approach is modular
and extensible by design, so different parts can be easily reused and adapted to the needs
of different input applications, requirements, and research scenarios. Experimental
results showed strengths and weaknesses of the approach, indicating possible next steps
to improve the QoR of generated accelerators and the applicability of the proposed tools
and techniques.

The proposed high-level loop pipelining pass can be further improved to support
more irregular loop structures, and an extensive study can be carried out to identify
which combinations of existing and custom MLIR passes are most profitable to HLS.
More complex polyhedral analysis and optimization techniques can be implemented
as affine passes and integrated into the proposed design and optimization flow. The
SODA-OPT frontend provides initial support for DSE of available compiler passes,
which can be enhanced through learning-based techniques to predict the best combina-
tion of optimizations without going through long synthesis runs. The current outlining
strategy of the SODA Synthesizer can lead to imbalanced execution times and utiliza-
tion in the dataflow architecture, as small kernels remain idle waiting until larger kernels
have completed; the outlining process can be improved to analyze the computational
graph and fuse operators together, or further partition them into smaller primitives, aim-
ing at kernels with similar computational intensity and utilization of resources. Further
improvements to the dataflow architecture include extending the memory interface de-
sign to support FSMD accelerators with multiple ports and better managing buffers
between nodes, increasing memory parallelism. The SODA Synthesizer can generate
Verilog code representing spiking neurons in digital logic to be mapped onto FPGAs
or ASICs; in the future, it could allow to integrate ML accelerators composed of both
digital and neuromorphic components in a complex heterogeneous system.

The availability of multiple levels of abstraction and domain-specific representa-
tions opens the door to new possibilities to study and implement innovative design
automation methods, ranging from the exploration of techniques that can benefit HLS
when applied at a high level of abstraction to the introduction of new synthesis method-
ologies and architectural models. Code for the tools developed in this thesis has been
released in open-source to foster collaboration; parts of them can be easily reused or
integrated with future research efforts.
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