
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Aeronautica

2.2 . | il marchio, il logotipo: le declinazioni

Towards a high-fidelity open-source
simulation framework for coupled

fluid-structure interaction

Master thesis of:
Alice Zanella
Person code: 928277

Supervisor:
Full Prof. Alberto Guardone

Co-supervisors:
Dr. Myles Morelli

Dr. Neda Taymourtash

Anno Accademico 2020/2021

ὅταν βλέπω σε, προσκυνῶ, καὶ τους λόγους.

τῆς παρθένου τὸν οἶκον ἀστρῷον βλέπων

εἰς οὐρανὸν γάρ ἐστι σοῦ τὰ πράγματα,

῾Υπατία σεμνή, τῶν λόγων εὐμορφία,

ἄχραντον ἄστρον τῆς σοφῆς παιδεύσεως.

Quando ti vedo mi prostro davanti a te e alle tue parole,
vedendo la casa astrale della Vergine,

infatti verso il cielo è rivolto ogni tuo atto
Ipazia sacra, bellezza delle parole,

astro incontaminato della sapiente cultura.
(Pallada, Antologia Palatina, IX, 400)

Dedicata ai miei genitori
e a mio nonno

Ringraziamenti

La fine di questo percorso porta con sé emozioni differenti. Da un lato, profonda nostalgia
nel ripensare a quanto passato. Dall’altro, immenso orgoglio dato dal raggiungimento del tra-
guardo tanto desiderato, che mai sarebbe stato possible senza il sostegno di chi mi sta accanto.

Un doveroso e sentito ringraziamento va a chi ha reso possible questa tesi: il Prof. Alberto
Guardone, la Dr.ssa Neda Taymourtash e il Dr. Myles Morelli. Mi sento onorata di aver potuto
lavorare ad un progetto con così tante potenzialità, che senza dubbio mi ha messo alla prova e
mi ha spinto verso traguardi che, fino a qualche mese fa, ritenevo impossibili. Senza il vostro
completo sostegno e la vostra guida, non sarebbe stato possibile niente di tutto questo

Il grazie più grande va a mamma e papà, il mio punto di riferimento più grande. Mi avete dato
tutto per poter intraprendere il percorso al Politecnico, credendo in me molto più di quanto
non abbia mai fatto io.
Mamma, non riesco ad esprimere a parole quanto il tuo sostegno sia per me fondamentale. Sei
la donna a cui aspiro a diventare e che, ogni giorno, mi insegna ad essere migliore. Grazie a te
ho capito che è più importante vivere una vita piena di affetti, piuttosto che di successi. Che
l’altruismo va coltivato e che l’amore va dimostrato sempre, tutti i giorni.
Grazie papà, per essere sempre stato dalla mia parte, anche negli sbagli. Da te ho imparato
che l’amore non conosce distanze, né tempo. Il profondo legame che ci lega è e sarà sempre.

Un grazie importante al nonno Valter, il mio più grande fan. Mi riempie d’orgoglio sapere
quanto sei fiero di me e quando guardo nei tuoi occhi mi sento sicura di aver intrapreso il
percorso giusto

Grazie a Tobia, per essere diventato la persona più importante della mia vita. Grazie a te
ho capito che amarsi incondizionatamente è possibile e bellissimo. Con te al mio fianco mi
sento completa e so che, ovunque ci porti il lavoro, il legame che ci unisce non farà altro che
aumentare.

Grazie a Lucrezia, Caterina, Rebecca, Federica e Laura, amiche da quando alle medie andavamo
alle giostre di Mirandola. Possiamo non vederci per mesi, ma tutto rimane sempre uguale. Se
ci vediamo tutti i giorni, la voglia di vedersi aumenta.
Un grazie particolare a Caterina, con cui, durante il secondo lock-down, ho condiviso non solo
la scrivania, ma risate, pianti e bicchieri di vino.

Grazie a Matilde, Eleonora, Rachele ed Anna. Questi anni mi hanno insegnato che la nostra
amicizia non conosce confini, che saremo sempre insieme con l’anima, anche se fisicamente in
parti diverse del mondo.

Grazie a Gregorio, che più di un amico è un fratello. Insieme da sempre, da quando eravamo
troppo piccoli per capire che sarebbe nato un legame così forte da far paura. Grazie per essere
un punto di riferimento fondamentale. Su di te so di poter contare sempre, qualunque cosa
accada (e ne sappiamo qualcosa).

Grazie a tutti i miei amici del Poli: Marco, Luca, Sere, Ste, Pozzo, Valeria, Dennis e Marco N.

iv

Avete reso le lunghissime giornate in Bovisa più piacevoli, tra una risata e l’altra.

Grazie a mia cugina Chiara per aver condiviso gioie e dolori ogni giorno per 3 anni. Essere
coinquiline oltre che cugine, è stato uno dei più bei regali della mia vita milanese.

Debbo ringraziare, infine, i miei professori del Liceo Pico.
In particolare la Professoressa Mantovani ed il Professor Pederzoli, poiché mi hanno portato ad
essere la persona che sono ora, insegnandomi che il duro lavoro, la perseveranza e la passione
portano sempre al raggiungimento di un traguardo. E’ anche grazie a voi che, durante i periodi
di sconforto, ho resistito e ho superato gli innumerevoli ostacoli.

Per citare Albert Einstein:

" C’è una forza motrice più forte del vapore, dell’elettricità e dell’energia atomica: la
volontà."

v

Abstract

Fluid-structure interaction (FSI) represents one main concern for the aerospace industry, as it
may apply to different scenarios, from wind turbines to rotorcrafts. FSI simulations are used
as a way to predict the deformation of flexible structures subjected to forces exerted by the
surrounding fluid. One possible way is to employ two separate solvers, each adept at solving a
single physical phenomenon in the multi-physics problem.
The aim of this thesis is to create a open-source comprehensive code which couples SU2, the
fluid solver, with MBDyn, the multi-body structural solver, using preCICE, the coupling library.
One of the key aspect is the flexibility. The adapter is designed to be modular, general and
"easy to use", making it possible to use it for different simulations, without directly changing
the code.
Two cases are used as verification of the adapter code. A vertical flap which extends in a
channel and deforms under the fluid force and a fixed square bluff body, with a flexible flap
attached to it immersed in a laminar flow. Both of them compare well with the reference data,
thus confirming the correctness of the present approach.
The comprehensive code has the ultimate goal of being used for rotorcraft FSI simulations, as
in this context not many codes are freely available. Therefore, the HART-II rotor multi-body
model is presented and a complete structural analysis is introduced, which will allow for the
coupled simulation, as a future development.

vi

Sommario

Nel campo dell’ingegneria aerospaziale, l’interazione fluido-struttura (FSI) suscita grande in-
teresse, in quanto è rilevante in molti ambiti, dal design delle turbine eoliche a quello degli
elicotteri. Le simulazioni FSI sono usate per prevedere la deformazione di strutture flessibili
sottoposte alla forza del fluido che le circonda. Esistono diverse soluzioni per creare un accop-
piamento fluido-struttura. Una di queste è l’impiego di due solver separati, ognuno dei quali è
specializzato nella risoluzione del singolo problema. Vengono poi accoppiati, in modo da potersi
scambiare informazioni, creando in tal modo il coupling.
L’obiettivo della presente tesi è di creare un codice open-source che accoppi SU2, il solver CFD,
con MBDyn, solver multi-body strutturale, facendo uso di preCICE, una libreria specifica per
l’accoppiamento di software nell’ambito delle simulazioni multi-physics. Uno degli aspetti chi-
ave è la flessibilità. L’adapter è progettato per essere modulare, generale e facile da usare,
rendendo possibile l’utilizzo per diverse simulazioni, senza modificare direttamente il codice.
Due casi vengono utilizzati come verifica dell’effettivo funzionamento dell’adapter. Un flap
verticale che si estende in un canale e si deforma sotto la forza del fluido e un corpo tozzo cui è
attaccato un flap flessibile, immerso in un flusso laminare. Entrambi trovano un buon riscontro
con i dati di riferimento, confermando così la correttezza del presente approccio.
L’accoppiamento proposto ha l’obiettivo finale di essere utilizzato per simulazioni FSI di elicot-
teri, ambito in cui si distinguono molti simili accoppiamenti, ma quasi nessuno completamente
open-source.
Viene, dunque, presentato il modello multi-body del rotore HART-II di cui viene fatta un’analisi
strutturale completa, che consentirà di effettuare la simulazione accoppiata come sviluppo fu-
turo.

vii

Contents

Nomenclature 1

1 Introduction 4
1.1 Motivation . 4
1.2 Literature Review . 5
1.3 Structure of Work . 9

2 Physical and Computational Aspects 10
2.1 Domains . 10

2.1.1 Fluid Domain . 10
2.1.1.1 ALE RANS . 11

2.1.2 Structural Domain . 13
2.1.3 FSI Interface . 15

2.2 Coupling Approaches . 16
2.2.1 Monolithic vs. Partitioned Approach . 16
2.2.2 Tightly Coupled vs. Loosely Coupled . 17

2.3 Mesh Deformation . 17
2.3.1 Linear Elasticity . 18
2.3.2 Radial Basis Functions . 18

3 Numerical Tools 21
3.1 SU2 . 21
3.2 MBDyn . 22

3.2.1 Nodes . 23
3.2.2 Elements . 24

3.2.2.1 Beams . 24
3.2.2.2 Bodies . 24
3.2.2.3 Joints . 25
3.2.2.4 Forces . 25

3.2.3 Inflow Models . 25
3.3 preCICE . 26

viii

3.3.1 Coupling Strategies . 27
3.3.1.1 Explicit Serial Coupling . 27
3.3.1.2 Explicit Parallel Coupling . 28
3.3.1.3 Implicit Coupling . 28

3.3.2 Acceleration Techniques . 29
3.3.3 Data Mapping . 31
3.3.4 preCICE API . 33
3.3.5 preCICE configuration file . 33

3.4 Socket Communication . 35

4 Verification Test Cases 36
4.1 Vertical Flap . 36

4.1.1 Fluid domain . 37
4.1.2 Solid domain . 38
4.1.3 Coupling . 39
4.1.4 Results . 41

4.2 Flexible Cantilever in Vortical Flow . 43
4.2.1 Fluid Domain . 43
4.2.2 Solid Domain . 46
4.2.3 Coupling . 46
4.2.4 Results . 47

4.2.4.1 Flow Domain . 47
4.2.4.2 Validation . 48
4.2.4.3 Performance Analysis . 52

5 HART-II 54
5.1 Experimental Data . 55
5.2 Structural Model . 56
5.3 Results . 57

5.3.1 Blade Frequencies Analysis . 57
5.3.2 Hover . 61
5.3.3 Descent Flight . 63

6 Conclusions and Future Developments 67
6.1 Future Developments . 67

A Appendix A: MBDyn Adapter Architecture 69
A.1 Design of the Adapter . 69
A.2 mbdynInterface.py . 70
A.3 mbdynAdapter.py . 72
A.4 run.py . 75
A.5 config.json . 76

ix

B Appendix B: SU2 Adapter Architecture 78
B.1 SU2 Configuration . 79
B.2 Changes in SU2 Routine . 80
B.3 Precice Class . 82

C Appendix C: Setting up a Simulation 84

Bibliography 93

x

List of Figures

1.1 Schematic picture of the blade-vortex interaction. Taken from [1]. 8

2.1 1D example of Lagrangian, Eulerian and ALE mesh. Taken from [2]. 12
2.2 ALE approach to mesh movement. 13
2.3 Characterisation of the beam section. Taken from [3]. 15
2.4 Example of a fluid-structure interface. 15
2.5 FSI coupling: exchange of information between fluid and structure. 16
2.6 Monolithic approach. S and F are the solid and the fluid operators. The ad-

vancing of the solution from t to t+ 1 happens simultaneously. 16
2.7 Partitioned approach. The fluid solver waits to receive the displacements from

the structural solver, updates its solution and sends the forces to the structural
solver. The time can advance and the loop repeats. 17

3.1 Examples of the (a) primal, median dual, and centroidal dual grids on a mixed
mesh of quadrilateral and triangular elements, and (b) the primal grid (black)
and median dual grid (white) on a square domain meshed with triangular ele-
ments. Taken from [4]. 22

3.2 MBDyn tiltrotor model. Taken from [5]. 23
3.3 Geometry of the three-node beam element. Taken from MBDyn Input Manual. 24
3.4 External structural element syntax. 25
3.5 preCICE library overview. Taken from preCICE website. 27
3.6 Conventional serial staggered (CSS) procedure. 28
3.7 Conventional parallel staggered (CPS) procedure. 28
3.8 Examples of mapping data between non-coincident meshes: consistent (a) and

conservative (b) schemes. 31
3.9 Nearest neighbour method: shortest Euclidean distance. 32
3.10 Nearest projection method for a 3D case: determining the shortest distance.

The fluid mesh is the green one (unstructured). The structural node is the red
diamond shape. 1) Distance as computed by nearest neighbor. 2) Orthogonal
distance to the nearest edge of the fluid mesh. 3) Orthogonal distance to the
nearest surface. Figure taken from [6]. 33

4.1 Domain of the 2D flap test case. 37

xi

4.2 Unstructured triangular mesh generated by Gmsh. 38
4.3 Vertical flap made of 10 beam elements. 39
4.4 Vertical flap: number of iterations to achieve convergence of force and displace-

ments at every timestep. 41
4.5 Vertical flap: comparison of the tip displacement in x-direction between MBDyn

(red line) and CalculiX (black cross). 41
4.6 Vertical flap: initial configuration (a) and maximum tip displacement (b). The

flow is represented as velocity magnitude. (c) shows the mesh deformation at
maximum flap deflection. 42

4.7 Bluff body with flexible cantilever: fluid domain. 43
4.8 Bluff body with flexible cantilever: convergence study. (a) Coarse mesh. (b)

Fine mesh. (c) Domain view of the fine mesh. 45
4.9 Representation of the flexible cantilever structure. Evidence on beams and nodes. 46
4.10 Bluff body with flexible cantilever: pressure visualization of the flow field in

different phases. 48
4.11 Bluff body with flexible cantilever: FFT plot representing the oscillation fre-

quency. The larger peak is at ∼ 3 Hz, while another small peak is visible at ∼
6 Hz. 50

4.12 Bluff body with flexible cantilever: pressure contours of the fine and coarse mesh.
The difference between the vortical structures size and refinement is clearly visible. 51

4.13 Bluff body with flexible cantilever: vertical tip displacement. 52

5.1 HART-II hingeless rotor model in the DNW wind tunnel. Taken from [7]. . . . 54
5.2 Detail of the Bo105 hingeless rotor head. 56
5.3 Structural properties of the HART-II blades. Taken from [7]. 56
5.4 MBDyn blade discretization. Beam elements and nodes highlighted. 57
5.5 Flap mode shapes: first, second and third. 59
5.6 Flap mode shapes: fourth and fifth. 59
5.7 Lag mode shapes. 60
5.8 Torsion mode shapes. 60
5.9 Frequency diagram of the Bo105 model rotor. MBDyn (colored) and DLR

(black) data compared. The dotted lines are the excitation frequencies [n/rev]. 61
5.10 HART-II hover: thrust. 62
5.11 HART-II hover: pitch moment. 62
5.12 HART-II hover: roll moment. 63
5.13 Flap tip response. 64
5.14 Lead-lag tip response. 64
5.15 Elastic torsion tip response. 65
5.16 Elastic torsion tip response. 65
5.17 Comparison of section normal forces at 87% station. 66

xii

A.1 Schematic representation of the coupling between SU2 and MBDyn via preCICE.
The solver code and the preCICE library (libprecice) are glued together by the
adapter. 69

A.2 Simulation folder structure, where only the MBDyn adapter files are visible. In
the real case, there would be also the fluid solver folder, MBDyn simulation files
and preCICE configuration. 70

B.1 Schematic representation of the SU2 adapter. Taken from [6]. 78

C.1 Preview of the simulation folder with an insight into the MBDyn files. In red,
the MBDyn adapter files. Note that for each simulation, the MBDyn input files
could differ. 84

xiii

List of Tables

1.1 Review of achievements in CFD/CSD coupling applied to rotorcrafts. 8

2.1 Examples of radial basis functions with global support. 20
2.2 Compactly-supported radial basis functions [Wendland 1995] 20

4.1 Vertical flap: mesh properties. 37
4.2 Vertical flap: fluid properties. 37
4.3 Vertical flap: solid properties. 38
4.4 Vertical flap: coupling parameters. 40
4.5 Bluff body with flexible cantilever: geometric and fluid properties. 44
4.6 Bluff body with flexible cantilever: mesh properties. 44
4.7 Bluff body with flexible cantilever: solid properties. 46
4.8 Bluff body with flexible cantilever: coupling parameters. 47
4.9 Bluff body with flexible cantilever: summary of results and convergence study. . 49
4.10 Bluff body with flexible cantilever: performance analysis. 53

5.1 Rotor blade geometry and operating condition 55
5.2 HART-II: natural frequencies at Ωref , DLR and MBDyn results. The unit of

measure is ω/Ωref . 58
5.3 HART-II hover controls. 61
5.4 HART-II descent controls. 63
5.5 Comparison of rotor thrust, pitch and roll moments for different inflow models.

Descent flight. 63

xiv

Nomenclature

Acronyms

ALE Arbitrary Lagrangian Eulerian

API Application Programming Interface

BV I Blade-Vortex Interaction

CFD Computational Fluid Dynamics

CSD Computational Structure Dynamics

FFT Fast Fourier Transform

FSI Fluid-Structure Interaction

HART Higher-Harmonic Control Aeroacoustics Rotor Test

HHC Higher Armonic Control

MAV s Micro-Air Vehicles

MN Minimum Noise

MV Minimum Vibration

NSE Navier Stokes Equations

PDEs Partial Differential Equations

PIV Particle Image Velocimetry

RANS Reynolds Average Navier Stokes

RBF Radial Basis Functions

V TOL Vertical Landing and Take-Off aircraft

WIPP Workshop for Integrated Propeller Prediction

Symbols

ε strain tensor

γ angular momentum

1

ω angular velocity

σ stress tensor

τ viscous stress tensor

f force vector

g gravity constant

I identity matrix

J second order inertia moment

L strain-rate tensor

M mass matrix

m torque vector

n outward normal vector

q linear momentum

S first order inertia moment

v velocity vector

x position vector

λ, µ Lamé constants

µf fluid viscosity

ν Poisson’s ratio

φ holomic constraint

ψ non holomic constraint

ρ density

Cp specific heat

E Young modulus

e0 energy

F c convective fluxes

F v viscous fluxes

H enthalpy

p pressure

Q generic source term

2

T temperature

t time

U conservative variables vector

3

Chapter 1

Introduction

The interaction between fluid and structure has been a primary concern for the aerospace
industry since the beginning and it poses a challenging problem both numerically and com-
putationally. Early research concerning Fluid-Structure Interaction (FSI) primarily focused
on the development of techniques to stabilise the coupled simulation and to achieve accurate
results in a most efficient way.
FSI has a wide range of applications in various engineering fields. From the design of wind tur-
bines in the energy department, to the investigation of blood flowing through the veins in the
bio-engineering field. In a more aeronautical context, FSI finds natural application in a wide
range of problems, like the design of largely-deformable wings, Vertical Take-Off and Landing
(VTOL) aircrafts, flapping wings and, last but not least, rotorcrafts.
Computational FSI analysis has reached a significant level of development since the beginning
in the late 1970s and early 1980s, thanks to the increasing capacity of computers and the ad-
vances in numerical techniques. As a result, the aeronautical industry relies more and more on
FSI and several established CFD solvers have been already used to investigate the aeroelastic
response of flexible wings and rotor blades.
Performing an accurate simulation of the flow field surrounding a helicopter is a complex task,
requiring the consideration of aerodynamics and blade elasticity. There are several flight con-
ditions for which accurate rotor loads prediction is not feasible without taking into account the
aeroelastic effects, such as high speed forward flight or high trust condition. In these cases,
there is a strong coupling between fluid and structure, hence the necessity of a multi-physics
analysis.

1.1 Motivation

Many structural solvers come with an in-house low-fidelity aerodynamic model, which is able
to reproduce the inflow and consequently trim the rotor. With the increasing available com-
putational power and the possibility to parallelize the simulation in always bigger clusters,
high-fidelity solvers are preferable, because of their capability to capture complex phenomena,
such as the blade-vortex interaction (BVI) and the vortical wake.
The common way is to employ two separate solvers, one for the structural part and one for
the fluid one, and have information exchanged between the two solvers. This data exchange is
known as coupling with there being many different coupling approaches. A structural solver
is used to model the blade dynamics and a fluid solver is used to model the aerodynamics of

4

Introduction

the rotor. Subsequently, the aerodynamic predictions include the blade aeroelasticity and the
predicted blade deflections include possible non-linear aerodynamics effects.
The goal of this thesis is to create a completely open-source environment which can solve fluid-
structure interaction problems with a very generalised structure. The future aim is to apply
this general environment to investigate the aeroelastic response of helicopter blades. In this
way, the same case structure can be used for a variety of different simulations, stemming from
simply hover cases to more complex flight conditions, such as high advancing ratio or unsteady
manoeuvring.
Last but not least, one of the key aspects of this work is providing a flexible and user-friendly
scheme. Since it is completely open-source, it can be tested, modified and updated to minimise
computational errors and to improve the fidelity of predictive aeroelastic models.

1.2 Literature Review

This section provides an overview of the advances in the coupling between Computational
Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) solvers, starting from
the first aeronautical applications and moving on to rotorcraft simulations.
Early researches on fluid-structure interaction problems can be dated back to the mid 1970s
and early 1980s, with the works of Belytschko [8]-[9] and of Bathe and Hahn [10]. Emphasis
was placed on computational algorithms, especially finite element method, time integration
and mesh deformation, with various examples, such as pipe flow. In 1982, Donea et al. [11]
presented an Arbitrary Lagrangian-Eulerian (ALE) finite element method for the prediction of
the non-linear response of fluid-structure systems exposed to transient dynamic loading.
The advances in the capacity of computers and the developement of new numerical tools, es-
pecially in the CFD area, have made it feasible to address many complex problems concerning
FSI. The interaction between flexible wings and the surrounding fluid is a central topic for
micro-air vehicles (MAVs): structural flexibility enhances the leading-edge suction via increas-
ing the effective angle of attack, resulting in higher thrust generation [12].
Another area in which computational FSI plays an important role is renewable energy produc-
tion. Wind turbines are largely dependant on the interaction between the rotating blades and
the fluid that surrounds them. Since the blades are long, thin and flexible structures, aeroe-
lasticity has a huge impact on lift production and it is capable of causing flutter, a destructive
condition [13], [14].

The accurate modelling of FSI problems is an essential element to correctly predict the states of
a complex system such as rotorcraft. Consequently, the application of FSI in rotorcraft studies
became more dominant in the 1980’s. In 1986 Tung et al. coupled full-potential aerodynamic
methods with comprehensive codes in a loosely-coupled transonic simulation using CAMRAD
and Full Potential Rotor (FPR) solver [15]. Then again, in 1989, Bridgeman et al. used a
finite element multi-body solver coupled with simplified models based on lifting line theory and
vortex wake models [16].
In the 1990’s, CFD methods were coupled with advanced CSD methods. Bauchau et al. de-
veloped a tightly-coupled solver coupling CAMRAD/JA and OVERFLOW to simulate the
four-bladed UH-60A Blackhawk helicopter rotor [17].
As another example, Euler/Navier-Stokes methodology for rotary wing flows was implemented
to perform a coupled analysis with an elastic rotor blade beam structural model in hovering
flight [18]. The dissertation showed the great impact of the vortex wake on the blades and in-

5

Introduction

vestigated the differences in the aeroelastic predictions using tightly/loosely-coupled analyses.
In the early 2000’s, finite element multi-body solvers were used to model rotor blade structural
dynamics and control during rotorcraft operations [19]. These CSD codes provided simplified
aerodynamic models in order to reduce computational costs. Another example of this comes
from [20], whose purpose was to perform an aeroelastic analysis of a flexible rotorcraft with a
multi-body solver.

Full-scale rotor systems experience strong variations across several Mach regimes during a sin-
gle revolution. The wake system, which usually is in the vicinity of the rotor, can influence the
flow field and produce highly non-linear phenomena, as well as the dynamic stall dominated by
viscous effects. The accuracy of aerodynamic loads obtained from the lower-fidelity simplified
aerodynamic models is therefore questioned. Benefitting from the increasing computational
power available, the use of CFD has dramatically changed the game. Instead of using a com-
prehensive code with lower fidelity, CSD codes have been coupled with CFD tools in different
types of coupling.
Several approaches are based on simultaneously solving the fluid and structural equations,
which are called monolithic methods. Although these methods show a very good convergence,
they require rewriting the existing code, which is developed to solve either the structure or the
fluid domain and potentially is not open-source, hence not accessible.
Hübner et al. [21] proposed a monolithic approach to solve fluid-structure interaction prob-
lems using space-time finite elements and successfully applied it to bi-dimensional test cases
where strong interactions were observed. In case of strong interactions, simultaneous solution
procedures may be preferable in order to ensure stability and to accelerate convergence of the
coupled solution. The concept is simple: simultaneous procedure solve the coupled system in a
single iteration loop with consistent time integration schemes for all physical fields, leading to
time accurate solutions. See, for example, [22], where Alonso and Jameson presented a fully-
implicit approach applied to a transonic aeroelastic simulation of a swept wing. The system
(fluid flow and structural model) is fully coupled and a fully converged solution is achieved at
every time step of the calculation.
Several CFD solvers were coupled with CSD codes in a loosely-coupled methodology, where
the information between CFD and CSD is transferred on a per revolution, periodic basis. This
kind of coupling doesn’t work in case of strong interaction, but can be time-saving when the
airloads are periodic, such as such as the loads generated by a hovering rotor.
NASA FUN3D was coupled with CAMRAD II to compute the rotor airloads on the UH-
60A rotorcraft at several flight conditions and was compared to OVERFLOW, another CFD
code which uses structural grids, as opposed to FUN3D which uses unstructured grids [23].
The same helicopter was used by Potsdam et. al to predict airloads using CAMRAD II and
OVERFLOW-D with a loosely-coupling method [24]. The tested flight conditions are:

1. low speed (µ = 0.15) with blade-vortex interaction,

2. high speed (µ = 0.37) with advancing blade negative lift,

3. high thrust with dynamic stall (µ = 0.24),

4. hover.

The comparison with experimental data showed good agreement and for all cases the loose
coupling methodology is shown to be stable and convergent. One of the key aspect of loose-
coupling is the possibility to trim the rotor, while in the tight-coupling it seems to be a difficult

6

Introduction

task to perform. On the other hand, tight-coupling can achieve higher accuracy and it requires
less rewriting on the existing codes. It is a very general procedure that can be applied to various
flight conditions. Pahlke et al. [25] showed improved correlation on the 7A 7AD model rotors
in high speed forward flight with a loose coupling of FLOWer and DLR CSD code, including
viscous effect.
These studies also demonstrate how easy it can be, with a partitioned approach, to change the
coupled programs without changing the structure of the coupling, something which could never
be achieved with a monolithic approach.
Altmikus et al. provided a comprehensive direct comparison of loosely- and tightly-coupled
rotor blade simulations [26], the result being that the first method naturally yields trimmed
solutions and takes less time, while the second provides more accurate solutions especially at
high advance-ratios, but a trimmed solution is a prerequisite. Because the exchange of data
between the CFD and the CSD codes at each time step is required by the tight coupling, and
because the time step must be sufficiently small to minimise the phase differences in the two
sets of data, the tight coupling process is computationally costly. If the two time steps are
different, as it typically happens, there has to be also a way of sub-cycling in order for the
smaller time step to reach the other and exchange data.
Chunhua Sheng et al. [27] demonstrated how tight coupling can be efficient in simulating
rotors undergoing a manoeuvre, associated with a user prescribed drive which automatically
changes the collective and cyclic controls. Table 1.1 gives a review of the principal rotorcraft
FSI simulations in chronological order.

The Higher harmonic control Aeroacoustics Rotor Test II (HART-II) is an extensive rotor
experimental data set developed through an international collaboration between the German
Aerospace Center (DLR), the German-Dutch Wind Tunnels (DNW), the French Office Na-
tional D’Etudes et de Recherches Aerospatiales (ONERA), NASA Langley Research Center,
and the U.S. Army Aeroflightdynamics Directorate (AFDD) research organisations. The pro-
gram started in October 2001. After the wind tunnel test in 2001 and since the establishment
of the HART-II International Workshop in 2005 numerous publications were based on the re-
leased data.
The test used an aeroelastically scaled model of the BO-105 main rotor that was tested at
DNW. Measured data for the HART-II includes detailed acoustic, aerodynamic, rotor wake,
blade deformation, and rotor airloads data on a pressure instrumented blade [7], [28].
The analyses range from low-order computational structural dynamics (CSD) methods [29],
[30], [31], Navier Stokes/Free wake hybrid methods [32], and CFD-CSD couplings using both
loose and tight methods [33], [34], [24]. A complete insight into HART-II simulations is given
by Smith et al. [35], with an assessment of CFD/CSD state-of-the-art using the HART-II
International Workshop data [36]. The paper establishes simulation and modelling guidelines,
provides a summary of state-of-the-art BVI CFD/CSD predictions, and explores the use of
higher harmonic control (HHC) to reduce or eliminate BVI. Blade–vortex interaction (BVI)
noise is generated from unsteady pressure fluctuations on a blade due to interactions with pre-
viously generated tip vortices during descent or manoeuvring flight. A schematic representation
is given in Figure 1.1.
What emerges is that the CFD code has the most impact on the accuracy of results and that
CFD/CSD coupling is capturing better the BVI than comprehensive codes.

7

Introduction

Figure 1.1: Schematic picture of the blade-vortex interaction. Taken from [1].

Table 1.1: Review of achievements in CFD/CSD coupling applied to rotorcrafts.

Author
(Year)

Coupling
Approach

Fluid Mod-
elling

Structural
Modelling

Strengths Weaknesses

Pahlke et
al. (2001)

loose Euler
(FLOWer)

FEM (S4) trimmed so-
lutions

phase shift,
elastic tor-
sion not ac-
curate

Pomin et al.
(2004)

tight RANS (IN-
ROT)

FEM
(DYNROT)

good corre-
lations

time con-
suming

Potsdam et
al. (2006)

loose RANS
(OVER-
FLOW
-D)

FEM
(CAMRAD
II)

good corre-
lations

not ac-
curate
for high
speed and
dynamic
stall

Ananthan
et al.
(2008)

tight RANS CSD flow phe-
nomena
captured
correctly

bending
moments
not fully
resolved

Sheng et al.
(2013)

tight RANS
(U2NCLE)

multi-body
dynam-
ics (DY-
MORE)

time con-
suming

efficient in
manoeuvre
flight

8

Introduction

1.3 Structure of Work

The remaining work is organised into four distinct chapters. Chapter 2 introduces all the
physical and computational aspects relevant to simulating FSI problems. It starts with a
description of the fluid and structural domains and their respective equations and it continues
with an assessment of the mesh deformation strategies and the different coupling approaches.
In Chapter 3 the software tools used in this thesis are introduced, namely SU2, MBDyn and
preCICE, with a thorough insight into preCICE library and its methods. Chapter 4 describes
the implementation of two test cases, used to validate the coupling, with their respective results.
Chapter 5 is all dedicated to the HART-II rotor. It starts with a description of the model and
the reference data, then the structural model is presented. The results of the frequency analysis,
hover and descent flight are then discussed, in anticipation of a CSD/CFD coupling. Chapter
6 suggests possible future improvements.
The structure of SU2 adapter is given in Appendix B, while the MBDyn adapter is presented in
Appendix A. Appendix C gives an overview of the required steps to setup a coupled simulation.

9

Chapter 2

Physical and Computational Aspects

This chapter introduces the physical and computational principles upon which fluid-structure
interaction problems are based. Firstly, a brief insight into the domains that compose FSI sim-
ulations is proposed in Section 2.1. The division between monolithic and partitioned approach
is addressed in Section 2.2.1. Tightly coupled and loosely coupled methods are compared in
Section 2.2.2. Then the mesh deformation techniques are described in Section 2.3, with special
regard to Radial Basis Functions as a grid movement method applied to rotors.

2.1 Domains

In a FSI model, the fluid deforms the solid because of the forces exerted on the structure. In
Section 2.1.1, the fluid domain and its equations of motion are presented. Then, the same
goes for the solid domain in Section 2.1.2. The interface domain is outlined in Section 2.1.3.
The specific discretization of the equations is presented in Section 3.1 and 3.2, where the two
coupled solvers, namely SU2 and MBDyn, are introduced.

2.1.1 Fluid Domain

In this work, the Navier-Stokes (NS) equations are used to describe the fluid flow. A complete
explanation of the NS equations can be found in references [37] and [38].
A brief summary of the NS equations will now be provided. The following mass (Equation 2.1),
momentum (Equation 2.2) and energy (Equation 2.3) equations can be written as:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂

∂t
(ρv) +∇ · (ρv ⊗ v) +∇p−∇ · τ − ρg = 0 (2.2)

∂

∂t
(ρe0) +∇ · (ρe0v) +∇ · (vp+ q − v · τ)− v · ρg = 0. (2.3)

Where ρ is the fluid density, v is the velocity vector, p is the pressure, τ is the viscous stress
tensor and g is the gravity constant. For a Newtonian fluid, the viscous stress tensor is given
by:

τ = −2

3
µf (∇ · v)I + 2µL (2.4)

10

Physical and Computational Aspects

with µ being the dynamic viscosity and the subscript f representing the fluid. L is the strain-
rate tensor (i.e. the symmetric part of the velocity gradient ∇v):

L =
1

2

(
∇v +∇vT

)
(2.5)

In order to form a closed set of these equations, some other models have to be introduced, such
as the conductive heat flow model, the caloric and the thermodynamic equations of state and
the turbulence models.
SU2 solves various PDEs on a domain Ω ⊂ R3 as long as they can be formulated as:

∂U

∂t
+∇ · F c(U)−∇ · F v(U) = Q in Ωf × [0, t] (2.6)

where U is the vector of conservative variables, where F c(U) are the convective fluxes, F v(U)
are the viscous fluxes and Q is a generic source term.
From this general form a wide variety of PDEs can be derived, including the classical Euler,
Navier-Stokes and Reynolds Averaged Navier Stokes (RANS). For example, the NSE can be
formed using as conservative variables:

U =

 ρ
ρv
ρe0

 . (2.7)

The convective and viscous fluxes are given as

F c(U) =

 ρv
ρv ⊗ v + Ip
ρvH + pv

 , F v(U) =

 0
τ

τ · v + µfCp∇T

 (2.8)

where p denotes the static pressure, I ∈ R3×3 is the identity matrix, H is the fluid enthalpy
and τ the viscous stress tensor. The heat conduction has been discretized with the Fourier
law, with µ being the fluid viscosity and the subscript f representing the fluid, Cp the specific
heat and T the temperature.
This formulation corresponds to an Eulerian description of the fluid domain, where the fluid
properties are written as functions of space and time. The Eulerian perspective fixates on a
particular point in space, and records the properties of the fluid elements passing through that
point.

2.1.1.1 ALE RANS

In FSI problems, the deformation of the structure makes it necessary to account for the dis-
placements of the mesh. The Eulerian point of view must be combined with the Lagrangian
one (see for example [39]), where the particles of fluid are followed as they move through the
flow. These algorithms are widely used in structural mechanics.
Figure 2.1 shows the three different perspectives: Lagrangian, Eulerian and ALE. The first pic-
ture refers to the Lagrangian method: the mesh nodes follow their respective particles through
their movement in time and coincide with them. In the second picture the Eulerian mesh nodes
remain at the same spatial points as time passes, while particles may change their positions.
The last one shows the ALE perspective, where the nodes of the mesh can move independently

11

Physical and Computational Aspects

of the particles. Their only constraint is that the nodes displacements should not distort the
mesh too much, in order to maintain accuracy during the computation. Mesh deformation
techniques will be addressed in Section 2.3.

t Lagrangian description

t Eulerian description

t ALE description

Material point

Node

Particle motion

Mesh motion

Figure 1. One-dimensional example of Lagrangian, Eulerian and
ALE mesh and particle motion.

Figure 1, be moved in some arbitrarily specified way to
give a continuous rezoning capability. Because of this free-
dom in moving the computational mesh offered by the ALE
description, greater distortions of the continuum can be han-
dled than would be allowed by a purely Lagrangian method,
with more resolution than that afforded by a purely Eulerian
approach. The simple example in Figure 2 illustrates the
ability of the ALE description to accommodate significant
distortions of the computational mesh, while preserving the
clear delineation of interfaces typical of a purely Lagrangian
approach. A coarse finite element mesh is used to model the
detonation of an explosive charge in an extremely strong
cylindrical vessel partially filled with water. A compari-
son is made of the mesh configurations at time t = 1.0 ms
obtained respectively, with the ALE description (with auto-
matic continuous rezoning) and with a purely Lagrangian
mesh description. As further evidenced by the details of
the charge–water interface, the Lagrangian approach suf-
fers from a severe degradation of the computational mesh,
in contrast with the ability of the ALE approach to main-
tain quite a regular mesh configuration of the charge–water
interface.

The aim of the present chapter is to provide an in-
depth survey of ALE methods, including both conceptual

(a) (b)

(d)(c)

Figure 2. Lagrangian versus ALE descriptions: (a) initial FE
mesh; (b) ALE mesh at t = 1 ms; (c) Lagrangian mesh at
t = 1 ms; (d) details of interface in Lagrangian description.

aspects and numerical implementation details in view of
the applications in large deformation material response,
fluid dynamics, nonlinear solid mechanics, and coupled
fluid–structure problems. The chapter is organized as fol-
lows. The next section introduces the ALE kinematical
description as a generalization of the classical Lagrangian
and Eulerian descriptions of motion. Such generalization
rests upon the introduction of a so-called referential domain
and on the mapping between the referential domain and
the classical, material, and spatial domains. Then, the fun-
damental ALE equation is introduced, which provides a
relationship between material time derivative and referen-
tial time derivative. On this basis, the ALE form of the basic
conservation equations for mass, momentum, and energy is
established. Computational aspects of the ALE algorithms
are then addressed. This includes mesh-update procedures
in finite element analysis, the combination of ALE and
mesh-refinement procedures, as well as the use of ALE
in connection with mesh-free methods. The chapter closes
with a discussion of problems commonly encountered in
the computer implementation of ALE algorithms in fluid
dynamics, solid mechanics, and coupled problems describ-
ing fluid–structure interaction.

2

Figure 2.1: 1D example of Lagrangian, Eulerian and ALE mesh. Taken from [2].

Therefore, the Navier-Stokes equations have to be reformulated in an Arbitrary Lagrangian-
Eulerian (ALE) framework [11], [40], [2], [41], an attempt to combine the advantages of the
classical kinematic description, while minimising their respective drawbacks.
This method allows more freedom in moving the computational mesh, while preserving the FSI
interface and this makes it suitable to deal with large deformations. The ALE observer moves
arbitrarily with respect to the material particle. In this manner, the fluid mesh nodes at the
interface do not detach from it and the rest of the mesh can move without displaying to much
distortion.
In Figure 2.2 the ALE method can be appreciated: Figure 2.2a depicts the initial undeformed
configuration, while Figure 2.2b shows the deformed mesh when the horizontal flap is at its
maximum deflection. The case is discussed further in Section 4.2.
As before, the conservative variable is defined as U = (ρ, ρv, ρe0). The PDE system can be

12

Physical and Computational Aspects

(a) Undeformed mesh.

(b) Deformed mesh.

Figure 2.2: ALE approach to mesh movement.

rewritten as:
∂U

∂t
+∇ · F c

ALE(U)−∇ · F v(U) = Q in Ωf × [0, t] (2.9)

where F c
ALE(U) is the vector of convective fluxes and F v(U) is the one for viscous fluxes,

defined by

F c
ALE(U) =

 ρ(v − u̇Ω)
ρv ⊗ (v − u̇Ω) + Ip
ρ(v − u̇Ω)e0 + pv

 , F v(U) =

 0
τ

τ · v + µfCp∇T

 (2.10)

with u̇Ω being the velocity of the nodes of the grid.

2.1.2 Structural Domain

The solid domain is usually described with a Lagrangian perspective, since particles do not
travel as much as the fluid ones. The de-Saint Venant-Kirchhoff model [42] is commonly used
to describe the solid mechanics, especially when dealing with large deformations.
The material, both in the validation tests (Chapter 4) and in HART-II case (Chapter 5), is
considered homogeneous, linear elastic and isotropic.
The design of complex mechanical system requires sophisticated models, with reliable approx-
imations. With that in mind, a multi-body dynamics methodology seems to be the most
performing and reliable way to model systems of rigid and deformable bodies, as a helicopter

13

Physical and Computational Aspects

or a wind turbine. It gives the right amount of complexity to every detail, thanks to its own
modular approach and it saves a lot of computational power, compared to more traditional
structural solvers.
The motion of a system of rigid/deformable bodies can be described using the Newton-Euler
equations, which define linear momentum q and angular momentum γ for a set of rigid bodies

q = M · ẋ (2.11)
γ = Jω + S × ẋ (2.12)

where M is the mass matrix, ẋ the velocity vector, S the first order inertia moment, J the
second order inertia moment and ω the angular velocity vector. Each structural node (Section
3.2.1) instantiates a set of q and γ equations. The equilibrium of force and moment is given
by

q̇ = M · ẍ = f (2.13)
γ̇ + ẋ× q = m (2.14)

with acceleration vector ẍ, force vector f and torque vector m [43].
The system then has to be constrained, in order to reduce its degrees of freedom. In MBDyn
this means adding joints (Section 3.2.2). Algebraic constraints in the form φ(x, ẋ, t) = 0 are
added to the previous equations by means of the Lagrange multipliers.
The problem is formulated as a system of algebraic differential equations (DAE):

M · ẋ− q = 0 (2.15)

q̇ − φT,xλφ +ψT,ẋ − f(x, ẋ, t) = 0 (2.16)

φ(x, t) = 0 (2.17)
ψ(x, ẋ, t) = 0 (2.18)

where φT,x is the transpose of the partial derivative of the holonomic constraint φ with respect
to x, ψT,ẋ is the transpose of the partial derivative of the non-holonomic constraint with respect
to ẋ and f contains both the forces and the moments.
An implicit multistep integration scheme is applied to solve the equation system.
Models with reduced dimensionality are used to discretize flexible and slender bodies. In
particular, the beam model is considered when dealing with rotor blades or wind turbines. A
beam is defined as a reference line and a reference orientation stemming from the reference
line, which respectively represent the position in space of a reference point in the section and
the orientation of the section itself (see Figure 2.3) [3].
The beam cross section movement depends on the reference line and all stresses are aggregated
here (axial, shear, torsion, bending stiffness).

14

Physical and Computational Aspects

Chapter 4

Specialization of Continuum
Mechanics to 1-D Domain: Rod,
Bar, Beam, String

From a purely geometric and kinematic standpoint, a beam is defined as a reference line, p(ξ), and a
reference orientation, R(ξ) stemming from the reference line, which respectively represent the position in
space of a reference point in the section, and the orientation of the section itself, as sketched in Fig. 4.1.

The position of an arbitrary point x, formulated in the reference frame of the section, is w̃. In the
reference configuration, this point lies in the plane of the section; after straining, it can move in space.
Such movement with respect to the plane of the section is called “warping”.

���
���
���
���

���
���
���
���

O

p
R

w̃
x = p + w

reference orientation

reference line

global displacement/rotation of the section

local warping of the section

+

Figure 4.1: Beam geometry and kinematics: decomposition in spanwise and section-wise contributions
([1]).

The position of such point in a global reference frame is

x = p + Rw̃ = p + w (4.1)

In our model of the beam, we split the problem in two subproblems:

1. the first one is defined in the plane of the section, as in Fig. 4.2; it considers the warping to
determine the constitutive properties of the section (the axial, shear, torsion and bending stiffness
coefficients, including any cross-couplings) when it is subjected to a sort of “rigid” motion (i.e. as

4-1

Figure 2.3: Characterisation of the beam section. Taken from [3].

2.1.3 FSI Interface

When talking about fluid-structure interaction problems, the most important part is the com-
mon interface. Here, all the quantities are exchanged and some physical conditions must be
met. Mass, momentum, and energy conservation must be respected and this is not automat-
ically the case when distinct solvers are used to compute the fluid and the structure parts.
These criteria provide the main basis for checking the quality of FSI calculations. A schematic
picture of a sample FSI interface is shown in Figure 2.4.
For the sake of clarity, note that all the quantities related to the solid and the fluid domain, as
well as the interface, are sub-scripted with S, F and SF, respectively.
First of all, according to the physics of FSI, the solid and fluid domains should never overlap
nor separate. Then, for a viscous fluid, the flow velocity at the interface must be equal to the
boundary velocity (no-slip condition). This means that the displacements of solid and fluid
domain, as well as their velocities, must be equal at the interface (kinematic requirement):

xF = uS on ΓFS , (2.19)

vF =
∂uS
∂t

on ΓFS . (2.20)

Additionally, an equilibrium of the forces has to be imposed, such that the structure is not torn
apart by the resultant forces. This leads to another condition:

σF · nF = σS · nS on ΓFS (2.21)

where σ ∈ R3×3 is the stress tensor and n ∈ R3 is the outward normal vector of the fluid and
solid domains.

nS

nF

ΓSF

Fluid domain

Solid domain

Figure 2.4: Example of a fluid-structure interface.

15

Physical and Computational Aspects

2.2 Coupling Approaches

In fluid-structure interaction problems, two physical worlds have to interact and communicate
at the interface. The numerical methods used to solve FSI problems may be divided into
two classes: the monolithic approach and the partitioned approach. While in the monolithic
approach, the goal is to solve one global system of equations, in the partitioned approach
separate sets of equations are set up for the fluid and the structure and the coupling is solved
externally. Another distinction has to be made to denote the strength of the interactions
between fluid and structure. If it happens at every timestep, it is called tight-coupling. If the
exchange of information happens once every n iterations, it is called loose-coupling. In Figure
2.5 a very general example of coupling is given, without making any distinction of approach.

Fluid Solver

Forces

Structural Solver

Displacements

Figure 2.5: FSI coupling: exchange of information between fluid and structure.

2.2.1 Monolithic vs. Partitioned Approach

In the monolithic approach the interaction between fluid and structure at the mutual interface
is treated simultaneously (see Figure 2.6) and the conservation of quantities at the interface is
straightforward; see [44], [45], [46]. With such approach, only one solver would be responsible
for both the flow fluid dynamics and the structural dynamics and, if well-implemented, this
could result in a very efficient and robust method. The main drawback is that, usually, this
type of approach is very case-dependent and specialised. Moreover, this kind of solvers are
usually commercial and not open-source, so it could be very cumbersome to maintain.

S(tn)

F(tn)

S(tn+1)

F(tn+1)

∆t

Figure 2.6: Monolithic approach. S and F are the solid and the fluid operators. The advancing
of the solution from t to t+ 1 happens simultaneously.

On the other hand, in partitioned approach, the fluid and the solid domain are treated as sepa-
rate and solved by their respective solver. They do collide at the interface, where the coupling
between the two sets of equations takes place. In order to exchange data, at the interface some
conditions must be enforced: the flow solution stalls until the solid one is updated, then the
exchange takes place and the solution updates (Figure 2.7). The loop, as well as the coupling,
requires an additional module (or software) to take care of the interaction and the data ex-
change.
One major drawback is the lack of unconditional stability: partitioned schemes are commonly
energy-increasing, therefore the time-step must be reduced accordingly [47].
The great advantage, though, is the freedom of coupling different solvers, of managing the fluid
and the solid domain discretization independently and by two highly specialized solvers. Exist-
ing solvers can be coupled, from commercial to academic to open-source and the modifications

16

Physical and Computational Aspects

to the codes are minimal.

S(tn)

F(tn)

ForcesDisplacements

∆t

∆t

S(tn+1)

F(tn+1)

ForcesDisplacements

Figure 2.7: Partitioned approach. The fluid solver waits to receive the displacements from the
structural solver, updates its solution and sends the forces to the structural solver. The time
can advance and the loop repeats.

2.2.2 Tightly Coupled vs. Loosely Coupled

In rotor blade simulations, other than monolithic and partitioned approach, there is an addi-
tional choice to make: whether to do a tightly-coupled or a loosely-coupled simulation.
A loosely-coupled simulation only exchanges data periodically, typically once per full blade
revolution [48]. It decreases the computational cost and can produce trimmed solutions. It is
also used to predict the rotor loads [24] and it is very efficient when dealing with hover,free
flight, steady ascent or descent. A first remarkable example of a loose approach was made by
Tung and Cardonna in [15].
In tight coupling, instead, the data is exchanged at every time step [49], [50]. This means
that non-periodic behaviour, which in loose coupling is impossible to capture, can be observed
by the tight procedure. The exchange of displacements and forces is much more reliable and
accurate but it is not advisable to use it to trim the rotor. For the purpose of this work, a
tightly-coupled approach has been developed.

2.3 Mesh Deformation

In this Section, the mesh deformation techniques are addressed, as they are extremely important
in FSI problems and in rotorcrafts simulations, where the nodes of the grid are moving through
the domain and their position has to be adjourned.
The major problem that all mesh deformation techniques have to face is the robustness in
preserving high mesh quality, particularly when dealing with large deformations.
One way is to treat the mesh as an elastic solid using the equations of linear elasticity [51].
The other is to use an interpolation based on radial basis functions.
In SU2, two kinds of mesh deformation are implemented: Linear Elasticity and Radial Basis
Function (RBF) interpolation.

17

Physical and Computational Aspects

2.3.1 Linear Elasticity

The Linear Elasticity approach treats the mesh as an elastic solid and and models each edge
of the mesh as a linear spring connected together at corresponding nodes. This helps prevent
poor mesh quality however large displacements remain problematic [52]. Stein et al. [53] have
applied it with an elastic stiffness varying in inverse proportion to the cell volume, aiming at
preserving quality near the bodies, where there could be boundary layers or high resolution
zones. In [52], a Galerkin finite element method is used to discretize the equations, in order to
account for a much more robust solution to large deformations.
The equations of linear elasticity act on an elastic solid subjected body forces and surface
tractions. Defining u(x) = (u, v, w) the small displacements vector, it can be written

∇ · σ = f on Ω, (2.22)

where f is a body force, Ω is the computational domain and σ is the stress tensor given by the
constitutive relation

σ = λTr(ε)I + 2µε, (2.23)

where ε is the strain tensor and Tr is its trace. λ and µ are the Lamé constants, properties
of the elastic material, usually given as function of the Young’s modulus E and the Poisson’s
ratio ν:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.24)

E indicates the stiffness of the material, so a large E means rigidity. The Poisson’s ratio
measures how much the material shrinks in the lateral direction as it extends in the axial one
(−1 < ν < 1

2 for physical materials).
The kinematic law, Equation 2.25, is used to quantify the deformation of a material fibre in an
elastic body:

ε =
1

2

(
∇u+∇uT

)
(2.25)

Then, the system is closed by applying Dirichlet boundary conditions, u = g on ∂Ω.
In order to discretize this set of equations, a Galerkian method based on test and trial spaces is
applied. Since a complete dissertation about this approach exceed the purpose of the present
thesis, the reader is should refer to [52].
In order to achieve robustness and accuracy, E and ν are the most important parameters to
set (see, for example, the work of Cavagna, Quaranta and Mantegazza [54]).
Different options are available in SU2 when setting E and ν. The first method is called inverse
volume and sets E = 1

Vi
, where Vi is the element volume. This means that the lower is the

volume, the highest is the stiffness. Another method is to set E as a constant, while varying
the value of ν in order to obtain an acceptable stretching of the mesh elements. The third way
is to set the mesh stiffness proportional to the distance from the wall [55].
It is important to consider that all these methods are subjected to the quality of the initial
mesh, especially the progression from the smallest to the largest elements.

2.3.2 Radial Basis Functions

Radial Basis Functions [56] were efficiently used for dealing with rotor blade motions by Rendall
and Allen [57] and they are introduced in SU2 by Morelli and Bellosta [58]. RBF are widely

18

Physical and Computational Aspects

used also in the context of FSI problems, see [59] and [60] just to name two. This technique is
also used by preCICE while dealing with the data mapping between the two meshes (Section
3.3.3).
RBF mesh deformation methods are robust and preserve high-quality mesh even during large
deformations. They do not require any information about mesh connectivity, so the imple-
mentation is very straightforward both for 2D and 3D domains. The main drawback is the
computational cost for large meshes. This concern has been addressed with the introduction of
multi-level greedy surface point selection algorithms [61] and volume point reduction methods
[62] for large scale problems. These methods were implemented in SU2 by [58] in the context
of ice formation on wings and the efficiency has been demonstrated on rotor blades [63] .
The radial basis function interpolation originated in the 1970’s [64] and then the method has
been firstly used to deal with scattered data, but it can be applied to a great variety of situations
[65], [66]. In the context of mesh deformation, RBF generates high quality meshes with well
preserved orthogonality and it can be used on all sorts of grids (structured and unstructured)
because it doesn’t require connectivity.
The main idea is based on a series of functions whose value is related to the distance be-
tween the selected position and a supporting point. A function g : Rd → R for which its
function value only depends on the magnitude of its argument, is called radial. For example,
g(x) = φ(||x||) = φ(r), where φ : [0,∞) → R and r is the length of x. This means that φ is
constant for input vectors of the same length and we call it radial basis function. Suppose we
have a set of data (xi, fi) for i = 1, 2, ..., n. The goal is to find an interpolant g(x),x ∈ Rd,
that satisfies:

g(xi) = fi, i = 1, 2, ..., n. (2.26)

Since we want the interpolant to be a radial basis function, g(x) has to be a linear combination
of translates of φ(x):

g(xi) =
n∑
i=1

λiφ(||x− xi||), x ∈ Rd. (2.27)

Putting this condition into Eq. 2.26 yields

n∑
i=1

λiφ(||xj − xi||) = fj , j = 1, 2, ..., n. (2.28)

In a more compact way, it can be written as

Φλ = f , (2.29)

where Φ is a symmetric matrix. In order to have a unique solution, Φ must be non-singular.
Many choices for radial basis functions exist and some of them are listed in Table 2.1. The
parameter c, present in most of them, is used to adjust the shape of the function.
In SU2 the default option is the Wendland C2 (see Table 2.2):

φ(η) = (1− η)4(4η + 1) (2.30)

where η = ||r−ri||
d , with d being the supporting radius.

19

Physical and Computational Aspects

Table 2.1: Examples of radial basis functions with global support.

RBF Name φ(r) Parameters Order

Gaussian e−(cr)2 c > 0 0
Multiquadratics

√
r2 + c2 c > 0 1

Inverse Multiquadratics 1√
r2+c2

c > 0 0
Inverse Quadratics 1

r2+c2
c > 0 0

Table 2.2: Compactly-supported radial basis functions [Wendland 1995]

RBF Name φ(η)

Wendland (C0) (1− η)2

Wendland (C2) (1− η)4(4η + 1)
Wendland (C4) (1− η)6(35

3 η
2 + 6η + 1)

20

Chapter 3

Numerical Tools

This Chapter introduces the individual solvers used for computing the aerodyanmics and aeroe-
lasticity of the problem as well as the library used for coupling the two solvers.
First, in Section 3.1, SU2, the open-source CFD solver, is presented. Then, MBDyn is intro-
duced in Section 3.2. Finally, preCICE library is illustrated in Section 3.3.

3.1 SU2

SU2, Stanford University Unstructured 1, is an open-source software suite initiated at the
Aerospace Design Laboratory of Stanford University, freely available and licensed under the
GNU Lesser General Public License, version 2.1 [67].
The choice to couple SU2 with preCICE comes from different observations. First of all, pre-
CICE permits to couple any solver, ranging from commercial solid solvers to open-source codes
like SU2. Secondly, preCICE offers a greater, more sophisticated procedure for the mapping of
data between non-matching meshes. It also offers very elaborate acceleration schemes for im-
plicit coupling, which outperform the constant and Aitken relaxation techniques implemented
in SU2. Finally, the goal of this thesis is to create a completely open-source suite made of two
specialised and sophisticated codes, coupled through an efficient library, in order to address the
very time consuming task of solving fluid-structure interaction of a helicopter, during various
flight conditions. This goal is exactly what preCICE can offer.
The SU2 suite deals with partial differential equations (PDE) using a finite volume method, on
arbitrarily unstructured meshes. It uses a vertex-based approach, rather than cell-based, such
that the variables are determined and stored at the vertices (nodes). This approach makes use
of a median-dual grid, as shown in Figure 3.1.
The Navier-Stokes equations are discretized into RANS equations, which is the most used
method in the aerospace field. Different turbulent models are implemented in SU2, such as the
one-equation Spalart-Allmaras [68] and the two-equations k-ω SST [69], introduced in 1994.
The convective fluxes can be discretized using central or upwind methods. Several methods
are implemented in SU2, such as JST, ROE, AUSM, Lax-Friedrich, HLLC and Roe-Turkel.
Second-order accuracy is achieved using a Monotone Upstream-centered Schemes of Conserva-
tion Laws (MUSCL) approach with gradient limitation [70].
In order to evaluate viscous fluxes using a finite volume method, flow quantities and their first

1SU2 website: https://su2code.github.io/

21

https://su2code.github.io/

Numerical Tools

derivatives are required at the faces of the control volumes. The gradients of the flow variables
are calculated using either a Green-Gauss or least-squares method at all grid nodes and then
averaged to obtain the gradients at the cell faces. Recently, SU2 has been extended with a
structural solver based on the finite element method (FEM) for the purpose of solving FSI
problems [40], although it does not permit the same flexibility as using an external coupling
library.
SU2 has also been extensively used for rotorcraft simulations [63], [58]. Many other codes be-
fore have been developed for rotorcrafts, showing with very good predictive capabilities. What
SU2 can add is it being open-source code, with an active and growing community of developers.
The toolkit is continuously updated so to identify new techniques, minimise errors and perform
better Validation and Verfication (VnV).
It is also important to mention that SU2 has been used to simulate the turbulent flow field
around a wing-tip mounted propeller configuration in the context of the Workshop for Inte-
grated Propeller Prediction (WIPP). One of the key aspect of WIPP is the propeller-wing
interaction, which has to be properly captured and resolved. An important feature within SU2
is the discrete adjoint framework, which allows for sensitivity analysis and optimal design of
the full propeller-wing assembly [71].4 TIPTON, CHRISTON, AND INGBER

(a) (b)

Figure 1. Examples of the (a) primal, median dual, and centroidal dual grids on a mixed mesh of
quadrilateral and triangular elements, and (b) the primal grid (black) and median dual grid (white)

on a square domain meshed with triangular elements.

Figure 2. Intersection of the centroidal dual grid and the fluid-solid interface on a cut edge. The
interface location (at the intersection) is denoted xi.

numerical flux is located on unique edges of the median dual grid. These numerical fluxes
must be modified to enforce the fluid-solid interface conditions on edges of the dual grid cut
by the interface. This requires knowledge of the intersection point between the edge of the
centroidal dual grid and the interface as shown in Figure 2. In the following discussion, we
describe a new level-set construction technique and the associated calculations for determining
the intersection between the Lagrangian interface and unstructured fluid mesh.

2.1. The Level-Set Method

The level-set method was originally devised by Osher and Sethian[19] to evolve moving
interfaces under the action of a velocity field. The level-set method implicitly embeds the
location of the interface at the zero level-set in a higher-dimensional function. The level-set

Copyright c° 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 00:1–18
Prepared using fldauth.cls

(a)

4 TIPTON, CHRISTON, AND INGBER

(a) (b)

Figure 1. Examples of the (a) primal, median dual, and centroidal dual grids on a mixed mesh of
quadrilateral and triangular elements, and (b) the primal grid (black) and median dual grid (white)

on a square domain meshed with triangular elements.

Figure 2. Intersection of the centroidal dual grid and the fluid-solid interface on a cut edge. The
interface location (at the intersection) is denoted xi.

numerical flux is located on unique edges of the median dual grid. These numerical fluxes
must be modified to enforce the fluid-solid interface conditions on edges of the dual grid cut
by the interface. This requires knowledge of the intersection point between the edge of the
centroidal dual grid and the interface as shown in Figure 2. In the following discussion, we
describe a new level-set construction technique and the associated calculations for determining
the intersection between the Lagrangian interface and unstructured fluid mesh.

2.1. The Level-Set Method

The level-set method was originally devised by Osher and Sethian[19] to evolve moving
interfaces under the action of a velocity field. The level-set method implicitly embeds the
location of the interface at the zero level-set in a higher-dimensional function. The level-set

Copyright c° 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 00:1–18
Prepared using fldauth.cls

(b)

Figure 3.1: Examples of the (a) primal, median dual, and centroidal dual grids on a mixed
mesh of quadrilateral and triangular elements, and (b) the primal grid (black) and median dual
grid (white) on a square domain meshed with triangular elements. Taken from [4].

.

3.2 MBDyn

MBDyn [43] is free and open-source general purpose Multibody Dynamics analysis software
developed at the Dipartimento di Scienze e Tecnologie Aerospaziali of Politecnico di Milano.
If not stated otherwise, all the information concerning MBDyn is taken from the input manual
and the official documentation2.
MBDyn offers a multibody dynamics approach to analyze complex, multidisciplinary dynamics
problems. Multibody simulations are suited to study the dynamic behaviour of interconnected
rigid and/or flexible bodies undergoing rotations and displacements (see, for example, Fig-
ure 3.2). The calculation time is comparably short, as opposed to more traditional structural
solvers and it makes multibody analysis a very efficient simulation tool for rotorcraft systems.
For a complete and detailed dissertation of multibody dynamics analysis, the interested reader
should consult [72].

2MBDyn website: https://www.mbdyn.org/

22

 https://www.mbdyn.org/

Numerical Tools

MBDyn can simulate linear and non-linear dynamics of rigid and flexible bodies (lumped el-
ements, beams or shells) subjected to kinematic constraints, external forces and control sub-
systems. Another point of strength of MBDyn is the multidisciplinarity and efficiency: it
integrates aerodynamic, electric, thermal and hydraulic domains with the structural domain.
It also offers inflow models, which are used to simulate fixed-wing and rotorcraft aerodynamics
and enable reliable analysis of various flight conditions.
As explained in more detail later, MBDyn can be connected to other software tools to perform
multi-physics simulations. This is the feature used in this thesis, to pass externally computed
forces (from SU2) as an input to MBDyn in order to steer the simulation. This is done with
an adapter, which is explained in detail in Appendix A.
In this section, some relevant features of MBDyn are outlined, with a focus on nodes, beam el-
ements, externals forces, joints, reference systems and inflow models. The mathematical model
upon which MBDyn relies has already been explained in Section 2.

7

SAAB Flygtekniskt Seminarium, 5-6 November 2008, KolmSAAB Flygtekniskt Seminarium, 5-6 November 2008, Kolmåården - Swedenrden - Sweden

Multibody dynamicsMultibody dynamics

Multibody methods:

• usually are general-purpose: can model a wide variety of mechanical systems;

• should support an arbitrary number of a variety of parts, forces, geometries, constraints,

etc.;

• most often use numerical methods to compute solutions;

• often integrated in CAD tools, with Graphical User Interfaces (GUI).

Tilto-rotor multibody modelFigure 3.2: MBDyn tiltrotor model. Taken from [5].

3.2.1 Nodes

Nodes are the most fundamental MBDyn entities: they instantiate kinematic degrees of freedom
and the corresponding equilibrium equations. Different types of nodes exist in MBDyn, we focus
on structural nodes, that can be:

• static nodes, no inertia related to the node.

• dynamic nodes, with inertia. They can have up to 6 DoF (3 positions and 3 orientations)
and they store all the information regarding position and inertia.

• dummy nodes, without inertia. Usually used to directly output the the motion of a point
with an offset from a structural node.

23

Numerical Tools

3.2.2 Elements

Elements are used to connect nodes and they can access nodal properties and write contribu-
tions to the equations. Many types of elements exist in MBDyn, we focus on the ones used in
the context of this work: beams, bodies, joints and forces.

3.2.2.1 Beams

Beams are particularly useful when dealing with slender bodies, as rotor blades [5] or wind
turbines [14], in order to reduce the order of complexity to a 1D finite element model.
Deformable, slender beams are implemented in MBDyn by means of a Finite Volume approach
[73]. They are defined by a reference line and its nodes. Currently, beam3 (with 3 nodes) and
beam2 (with 2 nodes) are implemented in MBDyn, but only three-node beam elements are used
in this context, see Figure 3.3.
Each of the three points the beam element connects is referred to a structural node but can
have an arbitrary offset to allow more freedom in defining the reference line. The FV method
presented in [73] is applied, therefore the forces and moments are evaluated at two points (point
I and point II in Figure 3.3) which are midpoints between the three nodes: at ξ = −1/

√
3 and

ξ = 1/
√

3 of a non-dimensional abscissa −1 ≤ ξ ≤ 1 running from node 1 to node 3.
At each evaluation point, a 6D constitutive law must be defined: it relates the strains and the
curvatures of the beam to the internal forces and moments at the evaluation points. Various
constitutive laws are implemented, from an isotropic beam section to a fully anisotropic one.
In the context of this thesis, the linear viscoelastic generic law is used, both for the
validation cases in Chapter 4 and for HART-II case in Chapter 5.
Other than 3beam elements, aerodynamic beams are also implemented in MBDyn and will be
used for the structural validation of the HART-II model, in order to account for the blade
aerodynamics without SU2 input.

1

1

2

2

3

3

node 1

node 2

node 3

point I

point II

o1

o2

o3

RI

RII

Figure 8.4: Geometry of the three-node beam element.

8.3.2 Three-node beam element

The three-node beam element is described in detail in [13]. Each of the three points the beam element
connects is referred to a structural node but can have an arbitrary offset to allow high generality in
locating the structural reference line of the beam. Figure 8.4 illustrates the geometry of the three-node
beam element.

The finite volume formulation presented in [13] is used. As a consequence, the internal forces and
moments are evaluated at two points that are at about midpoint between nodes 1 and 2, and nodes 2
and 3 (at ξ = −1/

√
3 ∼= −0.57735 and ξ = 1/

√
3 ∼= 0.57735 of a non-dimensional abscissa ξ running from

ξ = −1 at node 1 to ξ = 1 at node 3).
So the constitutive properties must be supplied in these points, as well as the orientation matrices RI

and RII , that express the orientation of the reference system the constitutive properties are expressed
in with respect to the global frame (the axial force is conventionally defined in direction 1). Any of
the supported 6D constitutive laws can be supplied to define the constitutive properties of each beam
section.

The traditional input format is

<elem_type> ::= beam3

<normal_arglist> ::=

<node_1_label> , (Vec3) <relative_offset_1> ,

<node_2_label> , (Vec3) <relative_offset_2> ,

<node_3_label> , (Vec3) <relative_offset_3> ,

(OrientationMatrix) <orientation_matrix_section_I> ,

(ConstitutiveLaw<6D>) <constitutive_law_section_I> ,

{ same | (OrientationMatrix) <orientation_matrix_section_II> } ,

{ same | (ConstitutiveLaw<6D>) <constitutive_law_section_II> }

[, <custom_output>]

The relative_offset_<i>, with i=1,2,3, are the vectors oi, with i=1,2,3, of Figure 8.4.
The orientation matrices orientation_matrix_section_<j>, with j=I,II, are the section orientation

matrices Rj , with j=I,II, of Figure 8.4.

172

Figure 3.3: Geometry of the three-node beam element. Taken from MBDyn Input Manual.

3.2.2.2 Bodies

The body element describes a lumped rigid body when connected to a 6 DoF structural node
or a point mass when connected to a rotationless, 3 DoF structural node. Within the body
element, inertia properties must be specified (mass, center of mass and inertia).

24

Numerical Tools

3.2.2.3 Joints

Joints are used to constrain the kinematics and the degrees of freedom of structural dynamic
nodes. MBDyn offers a great variety of different joints that can impose the lateral and rotational
motion of single nodes or the relative position and orientation between two discrete nodes.
For the validation test cases, clamp and total joint are used, respectively, to ground all 6
degrees of freedom of a node and to allow to arbitrarily constrain specific components of the
relative position and orientation of two nodes (see Section 4.1.2).
The joints used to build the HART-II structural model are the following:

1. revolute hinge to set the relative rotation of fixed and rotating parts of the swashplate

2. axial rotation to set the rotation of the hub

3. total joint to constrain the fixed swashplate to define collective and cyclic motions.

3.2.2.4 Forces

Once again, MBDyn offers a great range of force and torque elements. In the present work,
the external structural element will be considered, which is the only one needed for FSI
simulations.
An external structural force is used to prescribe forces that are calculated by an external soft-
ware (in the present case SU2). The communication is set via socket, a system that establishes
the bidirectional communication between two processes. An exemplary syntax is shown in
Figure 3.4.

3. MBDyn

connect to a previously created socket at the path right away (no). Regarding the coupling
between MBDyn and its peer, two different communication schemes can be selected, namely
a loose and a tight coupling. For a loose coupling the communication occurs at each time
step whereas for a tight coupling it occurs at each iteration. The keyword orientation
followed by the manner in which the orientation of the nodes is defined, i.e. in euler angles,
an orientation vector or an orientation matrix, is set to determine the output structure.
The output of the accelerations of the nodes can be toggled once again by the keywords
yes or no . Some optional parameters and not yet implemented features in the syntax
have been omitted for the sake of convenience. An exemplary external structural force is

force: 2, external structural
socket,
create, yes,
path, "\$MBSOCK",
no signal,
coupling, tight,
orientation, orientation vector,
accelerations, yes,
4,

1,
2,
3,
4;

with forces defined by the peer, sent through the socket and applied to nodes 1, 2, 3 and
4. The additional statement no signal disables the system’s SIGPIPE signal in case
one of the participants’ communication channel shuts down, which prevents the simulation
from crashing completely [40].
Due to the fact that follower forces are of great importance when applying a uniform
pressure, a solution for the lack of this type of force for membrane elements in MBDyn has
been developed. The idea is to compute the current spatial orientation of the membrane
surface with the position of its four nodes (consider Figure 3.2) and consequentially defining
the normal vector to this plane. Hence, this normal vector represents the direction of the
follower force. Since the position of each node at every time step and iteration can be
accessed via a Python interface at runtime (Section 3.2), the force vector for each node is
calculated separately at every time step and transmitted to MBDyn. The procedure printed
in detail in Appendix B.5 is based on the method of Least Squares from the technical
report of Miller [45] and extended to find the averaging plane. The coefficients a, b and c
for the equation of a plane

ax + by + d = cz (3.43)

are solved according to


a
b
d


 =

�
ATA

�−1
ATb. (3.44)

32

Figure 3.4: External structural element syntax.

3.2.3 Inflow Models

The induced velocity element is used by MBDyn to associate the aerodynamic elements
when the inflow related computations are required. The goal of the present work is to use SU2,
a high-fidelity CFD software, to compute the aerodynamic loads that act on the structure, so
there is no need for a mid-fidelity aerodynamic model [74].
Different inflow models for rotors are implemented:

• uniform, where induced velocity is equal to its reference value everywhere

25

Numerical Tools

• glauert, used to approximate the inflow over the rotor disk in forward flight

• mangler, developed under the high speed assumption and to be used only for advance
ratio grater than 0.1

• dynamic inflow, based on Pitt and Peters [75].

3.3 preCICE

preCICE is a coupling library developed by the Technical University of Munich (TUM), the
University of Stuttgart and the University of Erlangen. Its name stands for Precise Code In-
teraction Coupling Environment and it is a free/open-source software.
The preCICE library offers the possibility to couple single-physics specialised software in a
multi-physics simulation, without requiring knowledge about the inner processes of either solver.
This approach is called partitioned as opposed to the monolithic approach, which would require
a multi-physics solver working on the whole problem by itself.
The "black-box" approach seems more feasible and allows the user to do simulations in a plug-
and-play manner with well known and reliable single-physics solvers.
Currently, preCICE can be used for partitioned multi-physics simulations including, but not
restricted to fluid-structure interaction and conjugate heat transfer.
Flexibility is one of the main advantages of preCICE library: it provides technical commu-
nication, data mapping between non-matching grids, and coupling iteration numerics in an
easy-to-use way that speeds up the development process. The user has to provide only the
adapter for the involved solvers, which ensures that the data is formatted in the correct way
and provides the time-step.
preCICE offers official adapters for well-known solvers such as OpenFOAM, deal.II, FEniCS,
Nutils, CalculiX, or SU2, but every user can build their own adapter in a very easy and efficient
way. The adapter can be inserted into the existing code with few calls to the preCICE library
during the simulation loop. In Figure 3.5, all these aspects of preCICE are shown and will be
addressed specifically in the next paragraphs. For the purposes of this work, preCICE library
is chosen for several reasons.
Firstly, because of the possibility to create a general multi-physics environment as opposed to
using ad hoc solutions for each type of problem or each type of solver. At any time, the adapter
can be modified, upgraded or even replaced with a different one.
Secondly, because of the data mapping utility that preCICE offers, which will be thoroughly
explained in Section 3.3.3. Within fluid-structure interaction problems, the fluid mesh and
the structural one does not necessarily coincide: the fluid grid, in fact, is nearly always more
refined. Hence, the need to map data between non-conforming meshes.
Lastly, preCICE can be useful when dealing with different time steps between coupled solvers,
allowing one participant to sub-cycle while waiting for the other.

26

Numerical Tools

Figure 3.5: preCICE library overview. Taken from preCICE website.

3.3.1 Coupling Strategies

preCICE offers different type of coupling schemes, depending on the fluid-structure interaction
at hand. There are four variables which control the interaction between solvers: the coupling
step can be run either parallel or serial and in an explicit or implicit manner.
When the fluid and the solid solutions are computed iteratively until some convergence criteria
is reached within the same time step, the scheme is called implicit. Whereas, if we are executing
a fixed number of iterations (typically one per time step) without any convergence check, then
the scheme is called explicit. The choice between them is crucial, not only because of the
time/cost saving, but also because of the instabilities that could be present and not removed
with an explicit coupling ([76], [77], [78]).
Serial coupling refers to the staggered execution of one participant after the other. Parallel,
on the other hand, refers to the simultaneous execution of both participants and it is usually
preferable for performance reasons.
Concerning notations, S and F represent the operators of the structural and fluid solvers, their
variable being respectively vectors s and f at the FSI interface. n denotes the current time step
of the computation.

3.3.1.1 Explicit Serial Coupling

The first algorithm introduced here is the explicit serial coupling, which is typically called
conventional serial staggered. Here, the fluid solver uses the solid solution at the last time step
to compute its current solution:

fn+1 = Fn(sn). (3.1)

Then, fn+1 is transmitted to the structure solver and used as

sn+1 = Sn(fn+1). (3.2)

This algorithm is represented graphically in Figure 3.6.

27

Numerical Tools

Fn Fn+1 Fn+2

Sn Sn+1 Sn+2

Fn(sn) Fn+1(sn+1)

Sn(fn+1) Sn(fn+2)

sn sn+1 sn+2fn+1 fn+2

Figure 3.6: Conventional serial staggered (CSS) procedure.

3.3.1.2 Explicit Parallel Coupling

The CSS scheme can be improved by the parallel version, called conventional parallel staggered
(CPS). The main difference is that now both fluid and structure solvers use coupling values
from time step n.

fn+1 = Fn(sn) (3.3)

sn+1 = Sn(fn) (3.4)

The run time for the parallel scheme is usually smaller than that of the CSS one, but it could
cause loss of accuracy and stability if used with a non-proper time step [79].
In Figure 3.7 the explicit parallel coupling procedure is shown. Note that now the solvers run
simultaneously.

Fn Fn+1 Fn+2

Sn Sn+1 Sn+2

Fn(sn) Fn+1(sn+1)

Sn(fn) Sn+1(fn+1)

sn fn sn+1 fn+1 sn+2 fn+2

Figure 3.7: Conventional parallel staggered (CPS) procedure.

3.3.1.3 Implicit Coupling

We now discuss implicit schemes, which are preferable when instabilities forbid the use of ex-
plicit coupling schemes. The implicit coupling comes with the necessity of using particular
techniques to stabilise the iterations, which will be briefly described in Section 3.3.2.

28

Numerical Tools

In the following, the letter k will be used to express the k -th sub-iteration of the coupling in
the time step n, e.g. snk .
In the implicit scheme, the coupling conditions at the FSI interface are enforced in each time
step up to a convergence criterion. If the criterion is not met, another sub-iteration within the
same time instance is computed. For this reason, the solution can be approximated with an
increased accuracy.
In preCICE, all implicit coupling methods are based on fixed-point iterations using the con-
ventional staggered or the parallel scheme (as for the explicit case).

fn+1
k+1 = Fn(sn+1

k) (3.5)

sn+1
k+1 = Sn+1(fn+1

k) (3.6)

A general procedure for the implicit serial scheme is illustrated in Algorithm 1. Note that s̃
indicates the solution obtained by the solver without any modification, while s is the post-
processed solution where relaxation has been applied.
The parallel version is similar to the explicit one, as both solvers are run simultaneously and
use the interface value at current time step n+ 1 and at previous iteration k:

fn+1
k+1 = Fn+1(sn+1

k) (3.7)

sn+1
k+1 = Sn+1(fn+1

k) (3.8)

Algorithm 1 Implicit Serial Coupling Algorithm
1: s0 = sp
2: k = 0
3: while convergence criterion not met do
4: F(sk) = fk+1

5: S(fk+1) = s̃k+1

6: compute sk+1 by relaxation
7: k = k + 1

8: end while

As said before, implicit coupling in preCICE employs a fixed-point iteration of the form:

s̃k+1 = S ◦ F(sk). (3.9)

Acceleration techniques are necessary to bring fixed-point equation to convergence. Those
techniques are described in Section 3.3.2.

3.3.2 Acceleration Techniques

A complete coverage of the acceleration techniques is beyond the scope of this thesis, therefore
only a brief insight into the methods offered by preCICE is given.
As explained before, implicit coupling requires some post-processing to make the solution of
the FSI problem converge. In Algorithm 1, s̃k+1 is used to indicate the structural solution
solely obtained by its own solver, without any modification, while sk+1 indicates that such
modification (e.g. relaxation) has taken place.

29

Numerical Tools

We can then define a residual (Equation 3.10), which can be used to obtain a convergence
criterion (Equation 3.11):

rk+1 = S ◦ F(sk)− sk = s̃k+1 − sk, (3.10)

‖ rk+1 ‖< εabs. (3.11)

It is also useful to define a relative convergence criterion, to evaluate the difference between
two subsequent sub-iterations:

‖ rk+1 ‖
‖ s̃k+1 ‖

< εrel. (3.12)

The acceleration techniques which are introduced here are:

• constant under-relaxation

• dynamic Aitken under-relaxation

• quasi-Newton schemes

For a more thorough discussion see [80] and [78].
The simplest approach to stabilise the iterations and to enforce convergence is to use a suitable
under-relaxation leading to a fixed-point iteration with under-relaxation:

sk+1 = (1− ω)sk + ωs̃k+1, (3.13)

with 0 < ω < 1. If we use a value of ω close to 1, the convergence is faster, but the stabilising
effect is lower, whereas for values close to 0 the stabilisation is strong, but the convergence
is slow. Choosing ω is not a simple task, particularly because of the various nature of FSI
problems.
The convergence can be speed up by using a dynamic under-relaxation factor, as done in the
Aitken method, which basically adapts the factor at each iteration with the following relation:

ωk = −ωk−1
(rk−1)T (rk − rk−1)

‖ rk − rk−1 ‖2
(3.14)

Under-relaxation is suitable for easy, stable problems, but issues arise when dealing with more
involved case. These methods are then outperformed by quasi-Newton coupling schemes, which
deal with the unavailability of derivative information (Jacobian) at the interface. This prob-
lem derives from the fact that preCICE treats black box solvers, hence no inner information is
available.
preCICE offers different quasi-Newton methods, for serial and parallel usage. The first al-
gorithm is the IQN-ILS, which stands for Interface-Quasi-Newton with Approximation of the
Inverse of the Interface Matrix by Least-Squares. When the two solvers are executed in a
sequential manner (first the fluid and then the structural), IQN-ILS modifies the structural
solution such that the underlying fixed-point iteration converges, then this solution is fed back
to the fluid solver and the loop restarts, as long as the convergence criterion is not met.
When parallel procedure is called, firstly the two solvers are executed simultaneously, then
IQN-ILS modifies both vectors of kinematic variables. If the convergence criterion is not met,
these modified values are used as input for the next iteration and the cycle is repeated.
There exist other algorithms, like generalised Broyden (IQN-IMVJ), however these methods
are beyond the scope of this thesis. For a further description of these methods, please refer to
[78], [77], [81] and [80].

30

Numerical Tools

3.3.3 Data Mapping

When coupling two participants at a common interface, in general, the two surface meshes do
not match. In FSI simulations, typically, the fluid mesh is finer than the solid one, meaning
that at the interface more fluid nodes than structural appear. Moreover, in our specific case,
MBDyn provides a series of nodes (the beam reference line) while SU2 uses grids made of
elements (tetrahedrons, triangles and so on).
The other, significant, challenge is that the mapper has also to not disrupt the mass and energy
balances. Therefore, preCICE offers different methods to correctly map data between the solid
and the fluid participants, either in a consistent or in a conservative form. An example is
shown in Figure 3.8.
In the consistent mapping, the value of a node in one grid is the same as the value of the
corresponding node in the other. This is the case of temperatures or displacements, as shown
in Figure 3.8a: when displacements are mapped from a single solid node to the fluid nodes, it
is not useful to distribute the single displacement value among the fluid nodes such that the
displacements of the fluid nodes sum up to the displacement of the solid node. Rather, all fluid
nodes assigned to that single solid node experience the same displacement.
The conservative form, on the other hand, makes sure the integral value are preserved. Forces
need to be mapped in a conservative fashion, since the sum of forces on both sides of an interface
needs to be the same (Figure 3.8b).

d = 3mm d = 2mm d = 1mm d = 3mm d = 1mm

d = 2mm d = 3mm

d = 2mm d = 3mm

(a) Consistent mapping of displacements.

F = 1N F = 3N F = 4N F = 2N F = 3N

F = 8N F = 9N

F = 1N F = 4NF = 3N F = 4N F = 2N F = 3N

(b) Conservative mapping of forces.

Figure 3.8: Examples of mapping data between non-coincident meshes: consistent (a) and
conservative (b) schemes.

Different mapping strategies are implemented in preCICE [81]. In the discussion the methods
are presented in the consistent version, but the conservative one is also available:

• Nearest Neighbour : it only requires vertex position information. The value at one
node on the source mesh is assigned to the node of the target mesh that is closest to
its position (Figure 3.9). Note that "closest" is intended in the sense of the shortest

31

Numerical Tools

Euclidean distance. This results in first order accuracy. It is the computationally easiest
method and works well when the two meshes are almost coincident.

Figure 3.9: Nearest neighbour method: shortest Euclidean distance.

• Nearest Projection : it uses three different sources of information and it requires the
connectivity of the source mesh. The target mesh points are projected on the mesh
elements of the source mesh, then the method performs linear interpolation on them and
assigns the interpolated values back on the target mesh. Normally, this method is second
order accurate, due to the small distance between two meshes, in relation to the elements
size. A 3D representation is given in Figure 3.10.

• Radial Basis Functions: it does not require any topological information and works
well on most meshes. A variety of basis functions is implemented in preCICE through
the PETSc library3, but the most used ones are Gaussian and thin plate splines. The
computational complexity of the data mapping can be reduced using a local support for
basis functions. This means that the spatial influence of nodes, from which data is to
be mapped, is limited to a certain range, called support radius. Generally speaking, the
wider the support, the better is the approximation, however the complexity is increasing
and the matrix becomes sparse.

3PETSc: https://www.mcs.anl.gov/petsc/index.html

32

https://www.mcs.anl.gov/petsc/index.html

Numerical Tools

x

y

z 1� 2�

3�

Figure 4.7: Determining the shortest distance with the NP method in a three-dimensional case. The fluid
surface mesh is an unstructured, triangular mesh. Exemplary, the distances of a solid node to the fluid
mesh are depicted by arrows: 1� The distance to the nearest neighboring fluid node. 2� The orthogonal
distance to the nearest edge of the fluid mesh. 3� The orthogonal distance to the nearest surface element
of the fluid mesh.

nodes of a fine mesh to be assigned to a single node of a coarse mesh as mentioned before. For this kind
of mapping, preCICE needs no information regarding mesh connections and elements, the sole position
of the nodes at the wet surface is sufficient ([18]).

Nearest-Projection

In the case of NP mapping, the shortest distance of a node of one mesh to the other mesh is detected. For
a general three-dimensional case, when the interface between fluid and solid is a surface, a node’s shortest
distance to the other mesh may occur at either a node, an edge or a surface element of the partner mesh.
Thus, for each node, preCICE computes the distance to the NN, the nearest edge and the nearest surface
element ([18]). For a graphical representation of this situation, see Figure 4.7. Consequently, the shortest
distance is chosen among those three, which determines whether one node (node is nearest), two nodes
(edge is nearest) or multiple (≥ 3) nodes (surface element is nearest6) have to be taken into account for
mapping. If the shortest distance occurs at an edge or a surface element, in general, not all nodes of the
respective edge or surface element have the same influence on the assigned node of the partner mesh.
Depending on how close these nodes are to the projected one, weights are calculated, which describe the
differently strong influence. As for this method preCICE needs to know not only about the positions of
all interface nodes, but also mesh connections in order to recognize edges and elements, at least one full
mesh representation must be fed to preCICE during startup of a simulation ([18]).

Radial Basis Functions

Interpolation with RBF can be done with either compactly or globally supported functions. This means
that the spatial influence of nodes, from which data is to be mapped, is either limited to a certain
Euclidean range, the support radius r, or not. In the latter case, each node at the wet surface of one
mesh influences each node at the interface of the other mesh. In contrast, with compactly supported
RBF, only those nodes of the partnering mesh are influenced, which are located within a sphere around
a node of the first mesh with radius equal to the support radius. In both cases the exact strength of the
influence (and its dependency on distance between two nodes) is then determined by the RBF itself:

φ(�x�), (4.6)
6Number of involved nodes is dependent on type of element, for a triangular surface element, it would be three.

23

Figure 3.10: Nearest projection method for a 3D case: determining the shortest distance. The
fluid mesh is the green one (unstructured). The structural node is the red diamond shape. 1)
Distance as computed by nearest neighbor. 2) Orthogonal distance to the nearest edge of the
fluid mesh. 3) Orthogonal distance to the nearest surface. Figure taken from [6].

3.3.4 preCICE API

The preCICE library is written in C++. However, different languages can be used when
building an adapter, such as C, C++, Python, Fortran90/95 and Fortran2003. Particularly, the
MBDyn adapter, which is thoroughly explained in Appendix A, is written in Python language.
This choice is dictated by the MBDyn Python bindings for external communication, which
makes it easier to work with the same language. The SU2 adapter which is explained in detail
in Appendix B, instead, is written in C++ due to the core of the SU2 code being written in
this language.

3.3.5 preCICE configuration file

The preCICE configuration file is essential to start up a coupled simulation. An example of it
is shown below, in Listing 3.1. Through the configuration file, the user sets all the information
used by the solvers:

• type and name of the solvers

• meshes used to exchange data

• how solvers communicate with each other

• method used for the mapping

• coupling scheme and timestep related information

33

Numerical Tools

1 <?xml version ="1.0"?>
2

3 <precice -configuration >
4 <solver -interface dimensions="2">
5

6 <data:vector name="Forces0" />
7 <data:vector name="DisplacementDeltas0" />
8

9 <mesh name="SU2_Mesh0">
10 <use -data name="Forces0"/>
11 <use -data name="DisplacementDeltas0"/>
12 </mesh>
13

14 <mesh name="MBDynNodes">
15 <use -data name="DisplacementDeltas0" />
16 <use -data name="Forces0" />
17 </mesh >
18

19 <participant name="SU2_CFD">
20 <use -mesh name="MBDynNodes" from="MBDyn" />
21 <use -mesh name="SU2_Mesh0" provide="yes" />
22 <write -data name="Forces0" mesh="SU2_Mesh0" />
23 <read -data name="DisplacementDeltas0" mesh="SU2_Mesh0" />
24 <mapping:rbf -thin -plate -splines direction="write" from="

SU2_Mesh0" to="MBDynNodes"
25 constraint="conservative" />
26 <mapping:rbf -thin -plate -splines direction="read" from="

MBDynNodes" to="SU2_Mesh0"
27 constraint="consistent" />
28 </participant >
29

30 <participant name="MBDyn">
31 <use -mesh name="MBDynNodes" provide="yes"/>
32 <write -data name="DisplacementDeltas0" mesh="MBDynNodes" />
33 <read -data name="Forces0" mesh="MBDynNodes" />
34 <watch -point mesh="MBDynNodes" name="tip" coordinate="

0.045;0.0" />
35 </participant >
36

37 <m2n:sockets exchange -directory="./../" from="MBDyn" to="
SU2_CFD"/>

38

39 <coupling -scheme:serial -implicit >
40 <participants first="MBDyn" second="SU2_CFD" />
41 <max -time value="10.0" />
42 <time -window -size value="0.001" />
43 <exchange data="Forces0" mesh="MBDynNodes" from="

34

Numerical Tools

SU2_CFD" to="MBDyn" />
44 <exchange data="DisplacementDeltas0" mesh="MBDynNodes"

from="MBDyn" to="SU2_CFD" />
45 <max -iterations value="20"/>
46 <relative -convergence -measure limit="1e-4" data="

DisplacementDeltas0" mesh="MBDynNodes" />
47 <relative -convergence -measure limit="1e-3" data="Forces0"

mesh="MBDynNodes"/>
48 <acceleration:aitken >
49 <data name="Forces0" mesh="MBDynNodes"/>
50 <initial -relaxation value="0.1"/>
51 </acceleration:aitken >
52 </coupling -scheme:serial -implicit >
53 </solver -interface >
54 </precice -configuration >

Listing 3.1: Example of preCICE configuration file.

3.4 Socket Communication

In order for the participants to connect and exchange data, a connection has to be set up.
preCICE offers different methods: MPI, file communication and sockets.
The file communication mechanism is the most basic form of communication implemented in
preCICE. It is based on writing and reading from files located in the computer hard disk. Its
performance is comparatively poor and it is mainly due to the slow data transfer speed.
Message Passing Interface (MPI) and Transmission Control Protocol/Internet Protocol (TCP/IP),
i.e. socket communication, are the most efficient techniques in terms of transfer speed.
The major drawback of MPI is that it requires a specific MPI version and there may be
incompatibilities between solvers. Socket communication is quite as fast and it is free of in-
compatibilities.
On supercomputers, each node involved in the computation might have a different network ad-
dress, not known a priori. This requires checking the available network address and specifying
it in the preCICE configuration file, as it is shown in Listing 3.2. If one does not specify the
network name, only one node can be used.

1 <m2n:sockets exchange -directory="./../" from="MBDyn" network="
bond0" to="SU2_CFD"/>

Listing 3.2: Socket communication in preCICE configuration file. The network name "bond0"
refer to the cluster used at Politecnico di Milano.

35

Chapter 4

Verification Test Cases

Two bi-dimensional test cases have been performed to verify the reliability of the coupling
on simple flows. The first one is a simple 2D vertical beam that interacts with a fluid and
experiences large deformations (Section 4.1). The aim is to compare the coupling of MBDyn
and SU2 with other known solvers, found on the preCICE repository1.
The second case, presented in Section 4.2, is a well known FSI benchmark described in [82]: a
square bluff body with a trailing flap is crossed by a viscous, laminar flow. The computational
aspect is more involved, since fast oscillations of the flap are experienced, along with complex
vortex structures. This test case is well suited to be an intermediate step towards a rotorcraft
simulation.
Each section starts with a short description of the test case, including structural and fluid
parameters, along with a detailed mesh description, then it proceeds presenting the obtained
results.

4.1 Vertical Flap

This first test case is a 2D simulation of a deformable flap which extends in a channel. At the
lower end the flap is clamped to the floor, while the upper end can move freely. Figure 4.1 shows
the geometry of the test case. All the properties and the measures are taken from the preCICE
tutorial repository, in order to do an accurate comparison between different software tools. The
original simulation was itself not designed to produce physical results. Thus, the behaviour of
the MBDyn-SU2 coupling is not intended to fully replicate the results from the original tutorial
and the results from this simple coupling case are not used to validate the thesis work. Instead,
this test case is just used in the initial development of the MBDyn adapter before implementing
more complex models.
The results have been compared in terms of tip displacement with CalculiX2, an open-source
structural solver which uses finite element method, coupled with the same fluid solver, SU2.
The aim is to validate the MBDyn adapter, which has been developed as part of this thesis.

1preCICE test cases: https://github.com/precice/tutorials
2CalculiX website: http://www.calculix.de/

36

https://github.com/precice/tutorials
 http://www.calculix.de/

Verification Test Cases

4m

6m

1m

0.1m

x

y

Figure 4.1: Domain of the 2D flap test case.

4.1.1 Fluid domain

The fluid domain is represented in Figure 4.1. The inlet is on the left with uniform flow velocity,
the outlet is on the far right, while all other boundaries are no-slip walls.
The flow is compressible and inviscid, therefore governed by the Euler equations. The flow
domain is discretized using an unstructured, triangular mesh generated by Gmsh [83], an open
source 3D-2D mesh generator3. The undeformed mesh is shown in Figure 4.2 and its parameters
are listed in Table 4.1.

Table 4.1: Vertical flap: mesh properties.

Parameter Value

number of mesh points np 394
number of mesh elements nel 710

The fluid properties are listed in Table 4.2. It should be stressed that this test case is no
benchmark and serves just as a comparison between the coupling method proposed in this
thesis and the other official adapters offered on preCICE website. For the same reason, no
mesh convergence has been made and the same grid as for the CalculiX-SU2 coupling has been
used.

Table 4.2: Vertical flap: fluid properties.

Parameter Value

fluid density ρ kg m−3 1
kinematic viscosity ν m2 s−1 10−3

Mach 0.1
flow type Euler

3Gmsh website: https://gmsh.info/

37

 https://gmsh.info/

Verification Test Cases

X

Y

Z(a) Vertical flap mesh

X

Y

Z

(b) Detail of vertical flap mesh

Figure 4.2: Unstructured triangular mesh generated by Gmsh.

4.1.2 Solid domain

The MBDyn model uses the solid properties of Table 4.3 and it is composed of 10 beam3
elements. This requires 11 node elements to define the structure, as it is shown in Figure 4.3.
The beam is clamped at one end and free at the other.

Table 4.3: Vertical flap: solid properties.

Parameter Value

solid density ρ kg m−3 3000
Elastic modulus E Pa 4 · 106

Poisson coefficient ν 0.3
damping factor 0.0001
width (z-dir) h m 0.14

38

Verification Test Cases

The beam section is uniform and rectangular and the physical proprieties (ρ, E, ν) are constant
throughout the beam length. The chosen constitutive law is linear viscoelastic generic,
which adds a structural damping to the beam proportional to the stiffness matrix with a
coefficient of 1 · 10−4. The inertia of the structure is provided by two body elements per beam:

m = ρwh
l

2
(4.1)

I =
m

12

(l2 + w2) 0 0
0 (h2 + w2) 0
0 0 (l2 + h2)

 (4.2)

Since MBDyn treats 3D movements, all the nodes are constrained with total joint elements
to move only in the xy plane.

node

beam

l

y

x

L

Figure 4.3: Vertical flap made of 10 beam elements.

4.1.3 Coupling

Table 4.4 summarises the coupling configurations. The FSI simulation is started from a single-
physics fluid solution, in order to allow the flow field to fully develop and to speed up the
convergence. This simulation is done with a fully rigid flap and the solely participation of SU2.
Then, the real coupled simulation can start.
MBDyn provides displacements to SU2 which sends back forces. These forces are applied to the
structure nodes through the external structural element (see Section 3.2) at every iteration.
This last information defines the type of coupling as tight, meaning that kinematic variables are
passed at every timestep, as opposed to once per n-timesteps (loose coupling), as it is normally
done when a strong interaction between fluid and structure takes place.

39

Verification Test Cases

Table 4.4: Vertical flap: coupling parameters.

Parameter Value

total time s 3
time step ∆t s 10−2

coupling scheme serial implicit
acceleration algorithm IQN-ILS
displacement rel. convergence limit 10−4

forces rel. convergence limit 10−3

data mapping RBF: thin-plate-splines

As Table 4.4 reports, the simulation is run with an implicit coupling (see Section 3.3.1): MBDyn
starts and feeds the displacements to SU2, which gives back forces. IQN-ILS has been chosen
as the acceleration algorithm, with a QR2 filter (see 3.3.2) and a limit of 1 · 10−2. For this
simple test case a RBF mapping method (see Section 3.3.3) has been used for the interface mesh.
The coupling scheme is reported in Listing 4.1, which shows part of the preCICE configuration
file.

1 <!-- === Coupling scheme ================================ -->
2 <coupling -scheme:serial -implicit >
3 <participants first="MBDyn" second="SU2_CFD" />
4 <max -time value="5.0" />
5 <time -window -size value="1e-2" />
6 <exchange data="Forces0" mesh="MBDynNodes" from="

SU2_CFD" to="MBDyn" />
7 <exchange data="DisplacementDeltas0" mesh="MBDynNodes" from

="MBDyn" to="SU2_CFD" />
8 <max -iterations value="50"/>
9 <relative -convergence -measure limit="1e-3" data="

DisplacementDeltas0" mesh="MBDynNodes" />
10 <relative -convergence -measure limit="1e-3" data="Forces0" mesh=

"MBDynNodes"/>
11 <extrapolation -order value="2"/>
12

13 <acceleration:IQN -ILS>
14 <data name="Forces0" mesh="MBDynNodes"/>
15 <preconditioner type="residual -sum"/>
16 <filter type="QR2" limit="1e-2"/>
17 <initial -relaxation value="0.5"/>
18 <max -used -iterations value="100"/>
19 <time -windows -reused value="15"/>
20 </acceleration:IQN -ILS>
21 </coupling -scheme:serial -implicit >

Listing 4.1: Coupling scheme as written in precice-config.xml

40

Verification Test Cases

4.1.4 Results

The simulation is performed on 4 cores and takes approximately 2 minutes. In total, 1074
iterations are needed for the simulation, thus on average 2.15 iterations are necessary for the
convergence of the FSI system per time step. The number of iterations required during the
implicit coupling is shown in Figure 4.4.
The comparison with CalculiX has been made in terms of tip displacement in x-direction (flow-
wise). As said before, the goal of this case is to test the passing of data in our coupling, not to
reproduce exactly the SU2-CalculiX simulation, especially given that the case has non-physical
meaning. The tip displacement is shown in Figure 4.5.

0 100 200 300 400 500

timestep

0

1

2

3

4

5

6

7

8

it
e
ra

ti
o
n
s

Figure 4.4: Vertical flap: number of iterations to achieve convergence of force and displacements
at every timestep.

-0.04

-0.02

	0

	0.02

	0.04

	0.06

	0.08

	0.1

	0.12

	0.14

	0.16

	0.18

	0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 	5.5

X-
Di
sp
la
ce
m
en
t	[
m
]

Time	[s]

Displacement	of	the	Flap	Tip

Calculix-SU2
MBDyn-SU2

Figure 4.5: Vertical flap: comparison of the tip displacement in x-direction between MBDyn
(red line) and CalculiX (black cross).

41

Verification Test Cases

The flow field and the displacement of the flap tip is reported in Figure 4.6. Here it is observed
the expected behaviour: the flap bends in the direction of the flow and then it oscillates back
and forth 3 times. In Figure 4.6c, the mesh deformation can be appreciated.

(a) t = 0 s

(b) t = 1 s

(c) grid movement at t = 1 s

Figure 4.6: Vertical flap: initial configuration (a) and maximum tip displacement (b). The
flow is represented as velocity magnitude. (c) shows the mesh deformation at maximum flap
deflection.

42

Verification Test Cases

4.2 Flexible Cantilever in Vortical Flow

The first test case aimed at verifying the correct exchanging of displacements and forces be-
tween the two solvers. The second test case, instead, is used to validate the performance of
the system, mapping and coupling schemes included. The chosen example was first proposed
in 1998 by Wall and Ramm [82], then studied by many [84], [44], [85], [86] and has also been
used as a benchmark for fluid-structure interaction.
We consider a fixed square bluff body, with a flexible flap attached to it, immersed in a com-
pressible flow (as opposed to almost all studies which consider an incompressible flow). The
problem is computed in 2D, but presents various complexities. The square cylinder sheds vor-
tices, which generate an area of low-pressure on its wake perceived by the flexible appendix.
This alternate force generates vortex-induced vibrations on the structure which result in a
structure driven vortex shedding. The domain is shown in Figure 4.7. Two parameters are
extensively used in literature as a validation criterion: the frequency of the flap oscillation
and the maximum amplitude of the vertical displacement at the cantilever tip. The reported
frequencies range from 3.0 to 3.2 Hz, while the tip displacements range from 0.95 to 1.31 cm
(See Section 4.2.4).

IV. Numerical Results & Discussion

The current implementation of the coupled solver allows both for a loosely-coupled, Conventional Serial
Staggered (CSS) time coupling and for a strongly-coupled, Block Gauss-Seidel method with relaxation, using
a fixed or a dynamic Aitken’s parameter, as explained in section II.D. The spatial coupling will be limited
here to a common discretization of the interface for fluid and structure. The structural solver is able to run
either linear analysis or non-linear analysis both in terms of geometry and material properties. In order to
address the verification and validation of the fluid solver with an ALE formulation, the reader may refer to
section V.A.5 in the paper by Palacios et al.20 To investigate the implementation of the FSI problem, we
will study the behavior of a flexible beam attached on the downwind side of a rigid square, a problem that
has been used extensively as benchmark for Fluid-Structure Interaction applications.14,18, 23,26, 39,41,63

IV.A. Problem description

The geometrical and physical description of the case is shown in Fig. 14 and Table 1. The problem is
computed in 2D, and consists of a square cylinder immersed in a low-Reynolds number flow. The cylinder
sheds vortices, which generate areas of low-pressure on its wake. A flexible cantilever is attached on the
downwind side of the square, and receives an alternated force generated by the vortex street, therefore
suffering from vortex-induced vibrations. For a linear model, the first natural bending mode of the structure
corresponds to 3.03 Hz. The boundary conditions are set to inlet on the upwind side, outlet on the downwind
side, and slip walls on the upper and lower boundaries. The square and the appendix are set to no-slip walls.

8

slip-wall

12 H

14.5 H5 H

H x

L

y

slip-wall

outlet

u

t

H

Figure 14. Fluid-Structure Interaction test case (not to scale)

Table 1. Problem definition

Geometry

H 1 cm

L 4 cm

t 0.06 cm

Fluid Structure

u∞ 0.513 m/s E 2.5 ·105 Pa

ρf 1.18 kg/m3 ρs 100 kg/m3

µf 1.82 ·10−5 kg/m·s ν 0.35

Re 332

Ma 0.2

This problem was originally proposed in 1998 by Wall and Ramm,63 and has since then been used as
benchmark for numerous FSI implementations. Two parameters that are extensively used in the literature

18 of 31

American Institute of Aeronautics and Astronautics

Figure 4.7: Bluff body with flexible cantilever: fluid domain.

4.2.1 Fluid Domain

As previously said, the domain is computed in 2D and consists of a square cylinder immersed
in a low-Reynolds number compressible flow. The square and the flap are non-slip walls, while
the upper and the lower boundaries are slip walls.
The geometrical and physical properties of the case are shown in Figure 4.7 and in Table 4.5.
Two unstructured meshes have been used for the validation of the fluid sub-problem, called
respectively coarse and fine. They are generated by Gmsh [83] and their properties are listed
in Table 4.6. Both of them have been run using two different time discretizations, with ∆t =
0.0005 s and ∆t = 0.001 s, with this last being the chosen one, considering a trade-off between
time-saving and accuracy. The meshes are shown in Figure 4.8.

43

Verification Test Cases

Table 4.5: Bluff body with flexible cantilever: geometric and fluid properties.

Parameter Value

inlet velocity u∞ m/s 0.513
fluid density ρf kg/m3 1.18
kinematic viscosity µf kg/m·s 1.82 · 10−5

Re 332
Ma 0.2
temperature T K 0.0164
flow type NS laminar

H cm 1
L cm 4
t cm 0.06

Table 4.6: Bluff body with flexible cantilever: mesh properties.

Parameter Value

Coarse mesh number of mesh points np 7622
number of mesh elements nel 14563

Fine mesh number of mesh points np 3246
number of mesh elements nel 6127

As for the previous test case, the coupled simulation is started from a single-physics one where
the flap is maintained rigid. This permits the rapid development of the vortex shedding and
improves the efficiency of the coupling.
The key configuration parameters used in the SU2 configuration file are briefly discussed here. A
backward Euler with dual time stepping is used as time discretization, with an average number
of internal iterations of 10-15. Dual time stepping is particularly appropriate for unsteady
problems and can increase accuracy, provided that a convergence is reached. A multi-grid
technique has also been used, in order to reach convergence in fewer iterations.
As a convective numerical method, Roe (upwind) is chosen instead of JST (centred) because of
the nature of the problem, that is low-Re and low-Mach. To achieve second order Roe scheme
has been used with MUSCL reconstruction.

44

Verification Test Cases

X

Y

Z

(a) Coarse mesh.

X

Y

Z

(b) Fine mesh.

X

Y

Z
(c) View of the entire domain (fine mesh).

Figure 4.8: Bluff body with flexible cantilever: convergence study. (a) Coarse mesh. (b) Fine
mesh. (c) Domain view of the fine mesh.

45

Verification Test Cases

4.2.2 Solid Domain

The MBDyn model uses the solid properties of Table 4.7 and it is composed of 10 beam3
elements, as the vertical flap case in Section 4.1. The beam is clamped at the left end
and free at the other. The beam section is uniform and rectangular and the physical prop-
erties (ρ, E, ν) are constant throughout the beam length. The chosen constitutive law is
linear viscoelastic generic, with a damping factor of 0.005, which appeared to be high
enough to give a smooth solution without being excessively damping. The thickness of the
cantilever beam as well as the material properties are chosen so that its first eigen-frequency
is close to the frequency of the vortex shedding.
A representation of the flexible appendix MBDyn model is shown in Figure 4.9.

Table 4.7: Bluff body with flexible cantilever: solid properties.

Parameter Value

solid density ρ kg m−3 100
Elastic modulus E Pa 4 · 2.5 · 105

Poisson coefficient ν 0.35
damping factor 0.005
width (z-dir) h m 0.1

x

y

beam

Figure 4.9: Representation of the flexible cantilever structure. Evidence on beams and nodes.

4.2.3 Coupling

Since the problem is strongly coupled, only implicit algorithms have been used, with various
acceleration methods in order to evaluate their overall performance.
As already stated, the simulation is started from a previous state, computed with a rigid flap,
in order to speed up the transient. The coupling parameters are listed in Table 4.8.

46

Verification Test Cases

Table 4.8: Bluff body with flexible cantilever: coupling parameters.

Parameter Value

total time s 10
time step ∆t s 10−3

coupling scheme serial implicit
acceleration algorithm IQN-ILS
displacement rel. convergence limit 10−4

forces rel. convergence limit 10−3

data mapping RBF: thin-plate-splines

4.2.4 Results

The results of the bluff body with flexible cantilever are hereby presented. Firstly, the complex
phenomena involved are showed and explained, then the comparison between the present case
and the other studies is assessed and finally, a performance analysis is proposed.

4.2.4.1 Flow Domain

The first simulation to be run is the one with a rigid structure. After a few seconds, the flow
exhibits a periodic behaviour with vortices separating from the corner of the square, as in Fig-
ure 4.10a. This is coherent with the low Reynolds number and the expected Strouhal number
(∼ 0.117) which corresponds to a vortex shedding frequency of ∼ 3.7 Hz.
Then the actual coupled simulation can start and a transition from flow-driven vibrations to
beam-driven vibrations is observed (Figure 4.10b). The aforementioned vortices induce alter-
native drop and increase in the pressure field behind the square. The vortex shedding causes
oscillations of the flexible flap. A vortex lock-in regime is reached, with periodic oscillations of
the flap (Figure 4.10c, 4.10d, 4.10e, 4.10f). The rapid motion of the cantilever starts to feed
the vortex-pattern and these low and high pressure cores are increased by it. The flow field is
represented in terms of pressure field.

47

Verification Test Cases

(a) Startup simulation: rigid appendix.
Flow-driven vibrations.

(b) Initial transient of the coupled simu-
lation. Transition.

(c) T = 0. Beam driven vibrations. (d) T = π
2 .

(e) T = 3
2π. (f) T = 2π.

Figure 4.10: Bluff body with flexible cantilever: pressure visualization of the flow field in
different phases.

4.2.4.2 Validation

The comparison with the other studies has been made in terms of tip displacement in y-
direction and frequency of oscillation and it is reported in Table 4.9. This work presented a
tip displacement of 1.04 cm and a frequency of 3.10 Hz ,both of which agree very well with the
literature. The frequency peak is clearly visible in the FFT plot in Figure 4.11.
Another small peak is present at a frequency of 6 Hz and has been reported also by other
studies as the starting vibration of the beam, which then settles to ∼ 3 Hz [40]. Dettmer &
Perić [84] discussed about the modulation of this higher frequency with spatial discretization,
meaning that with finer meshes the higher frequency has more impact.
This is clearly visible when comparing the two FFT plot: in the coarse mesh the peak at 6
Hz has almost disappeared (Figure 4.11a), in contrast with the one in the fine mesh (Figure
4.11b).

48

Verification Test Cases

Table 4.9: Bluff body with flexible cantilever: summary of results and convergence study.

Average
frequency (Hz)

Max tip
tip disp. (cm)

Strouhal
number

Wall and Ramm [82] 3.08 1.31 0.06
Matthies and Steindorf [87] 2.99 1.33 0.058
Dettmer and Peric [84] 2.96 - 3.31 1.1 - 1.4 0.058 - 0.065
Wood et al. [88] 2.78 - 3.125 1.1 - 1.2 0.054 - 0.061
Kassiotis et al. [85] 3.17 1.0 0.062
Habchi et al. [89] 3.25 1.02 0.063
Froehle and Persson [86] 3.18 1.12 0.062

Hübner et al. [44] (rigid cantilever) 0.117

Present study, Coarse 3.11 1.04 0.061
Present study, Fine 3.10 1.08 0.060

49

Verification Test Cases

0 2 4 6 8 10

f (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

|F
(f

)|

(a) FFT of the coarse mesh.

0 2 4 6 8 10

f (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

|F
(f

)|

(b) FFT of the fine mesh.

Figure 4.11: Bluff body with flexible cantilever: FFT plot representing the oscillation frequency.
The larger peak is at ∼ 3 Hz, while another small peak is visible at ∼ 6 Hz.

It should also be reported that for the finer discretization, the vortical structures appear more
defined (Figure 4.12a and 4.12c) compared to the coarse mesh (Figure 4.12b and 4.12d).
Figure 4.13 shows the tip displacement history: the vertical oscillation reaches a periodic regime
after 2 seconds in the coarse mesh. A slight difference between the two meshes is also visible.
The coarse mesh (red line) settles to a more evenly distributed oscillation before, while the fine
one takes a few more seconds to do so. The average amplitude of the displacement is 1.04 cm
for the coarse mesh and 1.08 cm for the fine mesh (refer to Table 4.9).

50

Verification Test Cases

(a) fine mesh. 3 vortices highlighted. (b) coarse mesh.

(c) fine mesh. 1 vortex highlighted. (d) coarse mesh.

Figure 4.12: Bluff body with flexible cantilever: pressure contours of the fine and coarse mesh.
The difference between the vortical structures size and refinement is clearly visible.

51

Verification Test Cases

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

T
ip

 d
is

p
.
[m

]

(a) Plot of the tip displacement in y-direction of the coarse
mesh.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

T
ip

 d
is

p
.
[m

]

(b) Plot of the tip displacement in y-direction of the fine mesh.

Figure 4.13: Bluff body with flexible cantilever: vertical tip displacement.

4.2.4.3 Performance Analysis

This section is dedicated to an analysis of the various coupling methods. Particularly, with
respect to the type of acceleration algorithm and the filter used (refer to Section 3.3.2 for a
thorough explanation), in order to see the effect that it has on the performance, especially time.
The baseline case, used for the validation with the other studies, used the traditional IQN-ILS
quasi-Newton method with a QR2 filter with a threshold of 10−2, which is the suggested one
to start with by preCICE documentation. The simulation takes approximately 8 hours using
4 cores.
In Table 4.10 the various acceleration methods with their filter are listed. The mesh used
for this scope is the fine one. The filter has a great importance during the complicated task
of computing the estimated Jacobian matrix. What can be noted is that both QR1 and QR2

52

Verification Test Cases

filters work similarly, and the best in terms of time managing seems to be QR1 with a threshold
of linear Independence of 10−4, which is the suggested one from preCICE website. With QR2,
lowering the threshold, reduces significantly the number of iterations, with an average of ∼ 6
iterations per time-step. QR1 is more involved and less predictable, as the number of iterations
jumps continuously during runtime. Moreover, not every threshold can achieve convergence.
It should be noted that, during this analysis, the relaxation parameter and the number of
reused time-steps have been left unchanged to the suggested values of, respectively, 0.1 and
100, however the solver uses only ∼ 15 previous time-step during the acceleration process.
Using the coarse mesh reduces quite a lot the required time, since with both QR1 and QR2
filters it takes ∼ 4 iterations to converge. This could be due to a lesser difference between the
solid and the fluid discretization during the grid mapping process.

Table 4.10: Bluff body with flexible cantilever: performance analysis.

IQN-ILS

Filter Threshold Avg. iter

QR2

10−1 6.11
10−2 9.50
10−3 diverged

QR1

10−4 8.19
10−5 9.64
10−6 diverged

53

Chapter 5

HART-II

HART-I data analysis revealed the necessity of collecting the wake data, including the vortex
formation, aging and its interaction with the blade. In October 2001, the Higher harmonic
control Aeroacustics Rotor Test II (HART-II) was performed by a joint effort from US Army
AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW. The main objective
was to focus on rotor wake measurement using a PIV (Particle Image Velocimetry) technique
along with the comprehensive data of blade deflections, airloads, and acoustics. The program
focuses on a 40% geometrically and aeroelastically scaled Bo105 hingeless main rotor that was
tested in an open-jet anechoic test section of the German-Dutch Wind tunnel (DNW), shown
in Figure 5.1.
After the HART-II test in 2001 and since the enstablishment of the HART-II International
Workshop in 2005 numerous publications were based on the released data. An overview of
these is given in Section 1.2.

Figure 5.1: HART-II hingeless rotor model in the DNW wind tunnel. Taken from [7].

This Chapter is divided as follows: the HART-II test case description is given in Section 5.1,
then in Section 5.2 the structural model is presented. Results are discussed starting from the
mode shapes and frequencies analysis, in Section 5.3.1. The hover test case results are presented
in Section 5.3.2, while the descent flight condition is analysed in Section 5.3.3.

54

HART-II

5.1 Experimental Data

As mentioned before, in the HART-II campaign, a 40% Mach scaled hingeless Bo105 model
rotor was used (Figure 5.2). The scaling is done in a way such that the natural frequencies
in terms of non-dimensional values (n/rev) are matching the full-scale ones for the first three
flapping modes, the first two lead-lag and the first torsion. Since direct scaling doesn’t match
the Reynolds number at atmospheric pressure, the chord is increased by 10% (and thus the
solidity). The rotor is made of 4 rectangular blades with a linear twist, a 5.4mm trailing edge
tab (4.46%c) of 0.8mm thickness (0.66%c) on the NACA23012 airfoil and a precone as in the
full-scale rotor. All these parameter can be found listed in Table 5.1. The reference operating
condition used throughout the thesis is the HART-II baseline case (BL) as defined in Table 5.1.
Two other operational conditions exist: the minimum noise (MN) and the minimum vibration
(MV) case. The first, as the name suggests, applies higher harmonic control (HHC) to reduce
the BVI noise radiation, while the latter makes use of HHC to reduce rotor vibrations.

Table 5.1: Rotor blade geometry and operating condition

Characteristic Symbol Value

Rotor geometry
Rotor radius R 2 m
Blade chord c 0.121 m
Number of blades Nb 4
Rotor solidity σ 0.077
Non-dim. root cutout ra 0.22
Non-dim. zero twist radius rtw 0.75
Blade linear twist per span Θtw -8°
Airfoil (trailing edge tab) NACA23012

Operational Data (BL case)
Rotational speed Ω 109.12 rad/s
Hover blade tip Mach no. Mh 0.639
Rotor shaft angle of attack αs 5.3°
Wind tunnel interference angle ∆αs -0.8°
Advance ratio µ 0.151
Rotor thrust T 3300 N
Thrust coefficient CT 0.00457
Rotor loading coefficient CT /σ 0.0594
Rolling moment Mx 20 Nm
Pitching moment My -20 Nm
Rotor power P 18.3 kW
Collective control at rtw Θ75 3.8°
Lateral cyclic control ΘC 1.92°
Longitudinal cyclic control ΘS -1.34°
Mean steady el. tip twist Θel -1.09°

55

HART-II

Figure 5.2: Detail of the Bo105 hingeless rotor head.

5.2 Structural Model

In this section the structural model of HART-II rotor is taken into account along with the
structural dynamics analysis, required to assess the quality of the discretization.
The Bo105 is a 4 blades hingeless rotor with only one physical hinge for the blade pitch, while the
flap and lag main deflections are obtained through the deflection of an ad hoc designed flexbeam
located at the blade root. In the MBDyn multibody model, the swashplate and the pitch links
are represented with rigid bodies, and each blade is modelled using seven geometrically exact
finite volume nonlinear beam elements. The beam section stiffness and and mass data of the
original Bo105 blades are known and reported in Figure 5.3.

x-CG: offset +ve toward leading edge from Elastic Axis (EA)

x-TA: offset +ve toward leading edge from Elastic Axis (EA)

x-EA: offset +ve toward leading edge from quarter chord

EI_FLAP = flapwise bending stiffness

EI_LAG = lagwise bending stiffness

GJ = torsional stiffness

station x-CG x-TA x-EA EA EI_FLAP EI_LAG GJ Twist

m m m m N N-m^2 N-m^2 N-m^2 deg

0.00 0.00000 0.00000 0.00000 1.26E+08 3000 14000 380 4.24

0.075 0.00000 0.00000 0.00000 1.26E+08 3000 14000 380 4.24

0.15 0.00000 0.00000 0.00000 2.11E+07 675 3390 380 4.24

0.19 0.00000 0.00000 0.00000 2.11E+07 675 4420 442 4.24

0.24 0.00060 0.00330 0.00000 2.11E+07 675 5370 500 4.24

0.29 0.00180 0.00370 -0.00195 2.05E+07 594 5930 460 4.24

0.34 0.00190 0.00430 -0.00415 2.11E+07 480 6610 390 4.24

0.39 0.00440 0.00730 -0.00625 1.87E+07 400 5710 320 4.24

0.415 0.00290 0.00920 -0.00835 1.69E+07 290 5710 280 4.24

0.44 -0.00550 0.00030 0.00535 1.17E+07 250 5200 160 4.24

2.00 -0.00550 0.00030 0.00535 1.17E+07 250 5200 160 -2.00

Mass moment of inertias radii of gyration

edgewise flap

station Mass Edgewise Flapwise Polar km_z km_e

m kg/m kg-m kg-m kg-m m m

0.00 3.67 0.000400 0.000400 0.000800 0.00738 0.00738

0.075 3.67 0.000400 0.000400 0.000800 0.00738 0.00738

0.15 1.57 0.000290 0.000052 0.000342 0.01378 0.00098

0.19 1.57 0.000290 0.000052 0.000342 0.01378 0.00098

0.24 1.72 0.000410 0.000052 0.000462 0.01530 0.00109

0.29 1.71 0.000450 0.000045 0.000495 0.01588 0.00113

0.34 1.67 0.000460 0.000035 0.000495 0.01607 0.00115

0.39 1.47 0.000530 0.000030 0.000560 0.01822 0.00130

0.415 1.45 0.000690 0.000024 0.000714 0.02071 0.00148

0.44 0.95 0.000730 0.000017 0.000747 0.02617 0.00187

2.00 0.95 0.000730 0.000017 0.000747 0.02617 0.00187

Table 20: Structural properties of the HART II blades.

60

Figure 5.3: Structural properties of the HART-II blades. Taken from [7].

Figure 5.3 shows that the properties are changing within the first part of the blade, then

56

HART-II

from station x = 0.44, where the aerodynamic section begins, the structural properties remain
constant.
In Figure 5.4, a 2D planar view of the rotor blade is shown and the MBDyn discretization is
evinced: seven beams and 13 nodes are used, where four beams are for aerodynamic section,
where properties are constant.
Aerodynamic loads of the rotor can be computed using blade-element theory and linear inflow
models, while operating in different flight conditions, including hover and forward flight. A
C81 table for a NACA20312 airfoil with a tab is also utilised. The HART-II rotor is trimmed
to match the target values of the rotor thrust, the hub pitching, and rolling moments, all of
which are provided by [36].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

r/R

beam ref. line

beam node

Figure 5.4: MBDyn blade discretization. Beam elements and nodes highlighted.

Regarding the hub modelling, the swashplate is represented with a total joint (the fixed
part) which also defines collective and cyclic motions and a revolute hinge which fixes the
relative rotation of the moving part. The Bo105 is a hingeless rotor, hence the only physical
hinge is the one responsible for the pitch, modelled as a revolute hinge with a distance joint
element representing the pitch link.

5.3 Results

In this section, the HART-II results obtained from MBDyn are presented.
The blade frequencies analysis is addressed in Section 5.3.1. Then the hover (Section 5.3.2) and
the descending flight conditions (Section 5.3.3) are analysed and compared with the literature.
The results are in agreement with the experimental data [7] and the other codes [35]. MBDyn
offers different inflow models for rotors and three of them have been chosen for a comparison:
uniform, glauert and dynamic inflow (explained in Section 3.2.3).

5.3.1 Blade Frequencies Analysis

In order to perform an accurate rotor simulation, the natural oscillation behaviour of the rotor
blade in vacuo must be assessed. This is performed with the sole use of MBDyn without
any type of inflow and provides both the natural frequencies and the coupled mode shapes of
the rotor blade. Both depend on the rotational frequency and on the structural properties.
Experimental data of natural frequencies are taken from [7], while other reference simulations
data are taken from [35].
The frequency diagram and the mode shapes are computed in vacuo for a collective pitch
setting of 5°, in order to match the reference paper. The nominal rotational speed is Ωref =
109.12 rad/s. At 100% RPM the sequence of modes (from low frequencies to high) is 1st lag,
1st and 2nd flap, 1st torsion, 2nd lag, 3rd and 4th flap, 2nd torsion, 3rd lag, and 5th flap.
These frequencies are listed in Table 5.2, with a comparison between MBDyn model and DLR

57

HART-II

experimental data.
The frequency diagram is shown in Figure 5.9 and a comparison with the DLR data from [7] is
made. At nominal RPM, most of the flap mode results are very close to the reference. The 1st
lag mode is almost overlying the reference for all the speed range, while the 2nd lag of MBDyn
shows a higher frequency than the reference. Great differences emerges from higher modes,
particularly the 2nd torsion and 3rd lag, especially from lower RPM. This is also observed from
ONERA, KU and all the other partners’ which are compared in [35]. The variations could be
due to different modelling of the blade pith attachment with either a soft-in-torsion element at
the blade bold area, or a free end with a torsional spring at this position.

Table 5.2: HART-II: natural frequencies at Ωref , DLR and MBDyn results. The unit of measure
is ω/Ωref .

Mode DLR MBDyn

1L 0.782 0.787
1F 1.125 1.135
2F 2.835 2.840
1T 3.845 3.810
2L 4.592 4.617
3F 5.168 5.080
4F 7.7566 7.874

At 100% RPM the mode shapes are extracted and discussed in the next figures.
The 1st, 2nd and 3d flap modes are almost completely superpositioned (see Figure 5.5). The
4th and 5th flap shows some differences especially near the root (see Figure 5.6).
Good agreement is found also for the lag mode shape, though some differences are observed
in the 3rd lag (see Figure 5.7). The torsion mode shapes (Figure 5.8) are quite similar to the
reference, with the differences at the root, where the different boundary conditions are applied.
These differences are observed also in the other codes compared in [35]. MBDyn results are
very similar to the ONERA ones.

58

HART-II

0 0.5 1 1.5 2

X

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
h

i

DLR

MBDyn

2F

1F

Figure 5.5: Flap mode shapes: first, second and third.

0 0.5 1 1.5 2

X

-1

-0.5

0

0.5

1

1.5

P
h

i

DLR

MBDyn

5F

4F

Figure 5.6: Flap mode shapes: fourth and fifth.

59

HART-II

0 0.5 1 1.5 2

X

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
h

i

DLR

MBDyn

2L

3L

1L

Figure 5.7: Lag mode shapes.

0 0.5 1 1.5 2

X

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
h

i

DLR

MBDyn

1T

2T

Figure 5.8: Torsion mode shapes.

60

HART-II

0 0.2 0.4 0.6 0.8 1 1.2

ref
)

0

1

2

3

4

5

6

F
re

q
u
e

n
c
y
 (

/r
e
v
)

DLR

MBDyn

1L

1F

2F

1T

2L

3F

Figure 5.9: Frequency diagram of the Bo105 model rotor. MBDyn (colored) and DLR (black)
data compared. The dotted lines are the excitation frequencies [n/rev].

5.3.2 Hover

The HART-II test campaign does not include the hover condition, hence no validation with
experimental data can be made. This simulation is used only as a first assessment of the
HART-II multi-body model. The controls are listed in Table 5.3. The shaft is vertical and no
roll or pitch moments are expected, since the rotor is trimmed to stay in hover.

Table 5.3: HART-II hover controls.

Collective 3.8°
Lateral cyclic 0°
Longitudinal cyclic 0°
Rotor shaft angle of attack 0°

A rotor thrust of 1200 N is obtained, with no pitching or rolling moment. The three different
inflow models yield to identical results, which is expected. In Figure 5.10 it is clearly visible
that after a brief transient, the rotor thrust settles on the nominal value, whereas pitch and
roll are null (Figures 5.11 and 5.12).

61

HART-II

0 1 2 3 4 5 6

Time [s]

-1000

-500

0

500

1000

1500

2000

T
h
ru

s
t
[N

]

Figure 5.10: HART-II hover: thrust.

0 1 2 3 4 5 6

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

P
it
c
h
 m

o
m

e
n
t
[N

m
]

Figure 5.11: HART-II hover: pitch moment.

62

HART-II

0 1 2 3 4 5 6

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

R
o
ll

m
o
m

e
n
t
[N

m
]

Figure 5.12: HART-II hover: roll moment.

5.3.3 Descent Flight

The descent flight condition is then analysed. Validations are performed for the baseline rotor
(BL) at an advance ratio of 0.151. The rotor is trimmed to reach the requested thrust with the
controls listed in Table 5.4. The shaft angle is tilted upward of 4.5°.

Table 5.4: HART-II descent controls.

Collective 3.8°
Lateral cyclic 1.92°
Longitudinal cyclic -1.34°
Rotor shaft angle of attack 4.5°

The predicted thrust is in agreement with the experimental data as well as with the prediction
of the other codes involved in the HART-II workshop. The pitch and roll moments are expected
to be improved after the coupling with SU2. In Table 5.5 it is given a comparison between
three MBDyn inflow models used in this context.

Table 5.5: Comparison of rotor thrust, pitch and roll moments for different inflow models.
Descent flight.

Thrust Pitch Roll

DLR (reference) 3300 N -20 Nm 20 Nm
Uniform inflow 3326.83 N -273 Nm 465 Nm
Glauert inflow 3364.71 N -86 Nm 163 Nm
Dynamic inflow 3263.37 N -177 Nm 79 Nm

Figure 5.13, 5.14 and 5.15 show the time histories of flap, lead-lag and elastic torsion at the
blade tip. MBDyn is compared with the experimental results as well as with other codes

63

HART-II

involved in the HART-II workshop. The flap response is in very good agreement, as shown
in Figure 5.13. The lead-lag, instead, is similar to the experimental result but there is a
constant offset between the predicted and experimental result for all the codes (Figure 5.14).
The elastic torsion (Figure 5.15) predicted by MBDyn inflow models is quite different from the
experimental data and the other comprehensive codes. The torsion mode highly depends on
the aerodynamic moments and an improvement can be expected with the coupling approach.
Figure 5.16 presents the minimal differences in the torsion elastic response with respect to the
inflow models, namely Glauert, dynamic and uniform.

0 50 100 150 200 250 300 350

Azimuth,deg

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

B
la

d
e

 f
la

p
 r

e
s
p

o
n

s
e

,
m

MBDyn

Exp.

CAMRAD II

DLR S4

HOST

Figure 5.13: Flap tip response.

0 50 100 150 200 250 300 350

Azimuth,deg

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

B
la

d
e

 l
e

a
d

-l
a

g
 r

e
s
p

o
n

s
e

,
m

MBDyn

Exp.

CAMRAD II

DLR S4

HOST

Figure 5.14: Lead-lag tip response.

64

HART-II

0 50 100 150 200 250 300 350

Azimuth,deg

-5

-4

-3

-2

-1

0

1

B
la

d
e
 e

la
s
ti
c
 t
o
rs

io
n
 r

e
s
p
o
n
s
e
,
d
e
g

MBDyn

Exp.

CAMRAD II

DLR S4

HOST

Figure 5.15: Elastic torsion tip response.

0 50 100 150 200 250 300 350

Azimuth,deg

-5

-4

-3

-2

-1

0

1

B
la

d
e

 e
la

s
ti
c
 t

o
rs

io
n

 r
e

s
p

o
n

s
e

,
d

e
g

 Glauert inflow

Dynamic inflow

Uniform inflow

Figure 5.16: Elastic torsion tip response.

Figure 5.17 presents the comparison of sectional normal load, M2Cn, obtained at 87% span-
wise location. Dynamic inflow is used for the MBDyn data. The airloads show an acceptable
correlation, although the need for a coupling with a CFD software is clear, particularly in
regards to BVI peaks.

65

HART-II

0 50 100 150 200 250 300 350

Azimuth,deg

-0.05

0

0.05

0.1

0.15

0.2

M
2
C

n

MBDyn

Exp.

CAMRAD II

DLR S4

HOST

Figure 5.17: Comparison of section normal forces at 87% station.

66

Chapter 6

Conclusions and Future Developments

The aim of this thesis was to develop an open-source comprehensive solver using MBDyn
and SU2 with the coupling library preCICE. The need for an open-source solver arises from
the fact that many existent couplings employ two closed-source solvers and do not allow any
modification of the source code. In addition to this, these solvers are not freely available so
that any developer could modify and improve the code.
In order to perform a coupled simulation between two solvers, preCICE has to be integrated
with the solver and this is done by the adapter. An adapter for SU2 was already available for
Version 6.0.0. In the context of this thesis, the adapter has been ported to the newest SU2
version, which presents many differences in the routines. The design of the MBDyn adapter
started from a version already developed by Politecnico di Milano [5] and specifically made for
coupling with DUST, a mid-fidelity aerodynamic solver.
The adapter has been greatly modified, firstly to enable the connection with SU2, then also
to allow for higher compatibility and flexibility. The solver-specific parameters are read from
the configuration file (JSON) and the user does not have to specify them elsewhere. Now the
adapter can support 2D and 3D domains, with more than one FSI interface.
The verificatiton of the proposed adapter has been made with two test cases. The first one was
a flexible vertical flap immersed in an Euler flow. The structural parameters combined with
the freestream velocity resulted in very large displacements, which served as a test both for the
robustness of the mesh mapping and for the data exchange. The results were compared with
other couplings present in literature, all of which employed preCICE as the coupling library.
The second, more involved, test case was a flexible flap behind a bluff body immersed in a
Navier-Stokes laminar flow, a largely studied case in the context of fluid-structure interaction
simulations [82]. Initially, vortex shedding generates from the square as a result of the sharp
edges. Then, this vortex trail causes the flap to start oscillate, which results in another vortex
trail detaching. The results showed good agreement with the literature and were used also to
compare the various implicit coupling methods offered by the coupling library.

6.1 Future Developments

The final aim of the thesis was to apply the open-source comprehensive solver to rotorcraft
simulations. For this reason, HART-II test case has been chosen as a starting point and a
preliminary analysis of the structural model was made. The multi-body model was compared
to the experimental data of the HART-II campaign and with other codes present in literature.

67

Conclusions and Future Developments

First, the frequencies of the blade in vacuo were assessed and a fan-plot obtained for the fre-
quencies up to the 3rd flap. Then, hover and descending flight conditions were assessed with
MBDyn inflow models. The preliminary results obtained with the mid-fidelity aerodynamic
model showed an acceptable accuracy, which can be raised by the coupling with SU2.
The next step will be the coupled simulation, first of the hover condition, then of the descent
flight with high advance ratio, which is the most interesting one, where BVI and other complex
aeroelastic phenomena can be observed and the accuracy of the CFD solver can be appreciated.
In order to simulate rotors, the displacements from MBDyn should be collected in rotating ref-
erence frames, to allow the mesh to rotate other than deform. This procedure was implemented
in the SU2 Version 7.1.1 adapter and it is already compatible with the RBF mesh deformation
implemented in the software.
One possible step that has to be made in order to ease the coupled simulation is to create an
intermediate mesh to map between the 1D beam reference line of MBDyn and the 3D very
refined mesh of SU2. This will help the mapping process and the overall accuracy, since one of
the crucial step of FSI coupling is the interface between the fluid and the solid mesh.
Regarding the MBDyn adapter, an advancement would be adding other type of elements, such
as plate elments, i.e. shells or membranes. These type of elements are already implemented in
another version of the MBDyn adapter, which can be found on the preCICE repository1 and
could be added in order for the adapter to be fully general.
In the context of rotorcraft simulations, a method for exchanging data in a loosely-coupled way
should be implemented, as preCICE supports only tight-coupling at present time.

1MBDyn adapter, from preCICE github repository: https://github.com/precice/mbdyn-adapter

68

https://github.com/precice/mbdyn-adapter

Appendix A

Appendix A: MBDyn Adapter
Architecture

In order to perform a coupled simulation between two solvers, preCICE has to be integrated
with the solver via API (Section 3.3.4) and what results from this operation is the adapter, as
depicted in Figure A.1.

SU2 MBDyn

libprecice adapter

XML

preCICE Config

Figure A.1: Schematic representation of the coupling between SU2 and MBDyn via preCICE.
The solver code and the preCICE library (libprecice) are glued together by the adapter.

In this Appendix, the adapter for the communication between preCICE and MBDyn is pre-
sented. Section A.1 gives a description of the general structure of the adapter, then the two
main classes which constitute the adapter are explained in Section A.2 and A.3. The simulation
is set up by the run.py script, presented in Section A.4. Finally, the only file that the user has
to modify is explained in Section A.5.

A.1 Design of the Adapter

The MBDyn adapter is written in Python, which is also the language of the chosen MBDyn
API. The Python wrapper is defined in MBDyn’s library mbpy.
The MBDyn adapter was originally created by Mikko Folkersma at Delft University of Tech-
nology [90] and it concerned only membrane elements, as the main objective was to do a FSI
simulation of kites [91] .
A first modification was introduced by Politecnico di Milano with the aim of using it for rotors

69

Appendix A: MBDyn Adapter Architecture

and wind turbines [5] and to couple it with DUST, a mid-fidelity aerodynamic solver developed
again at Politecnico di Milano [92]. This led to the introduction of beam elements and generated
a greatly modified adapter 1.
In the context of this thesis, the existing code has been further modified, in order to make it
more user-friendly and suitable for the coupling with SU2, which requires different kinematic
variables. While DUST accepts position, orientation, velocity and angular velocity, SU2 ac-
cepts only displacements. The additions to the existing code developed for the MBDyn-DUST
coupling are:

• write displacements of the nodes instead of positions;

• accept either 2D or 3D simulations;

• accept more than one FSI interface. This concerns the method in which multiple interfaces
are classified in SU2 adapter (refer to B).

The adapter does not require any installation and this is one of its main assets. It is composed
of 2 layers of communication, mbdynInterface.py and mbdynAdapter.py:

• mbdynInterface.py collects the interface needed for converting data between MBDyn
API and preCICE library,

• mbdynAdapter.py collects the adapter class and methods for exchanging data with SU2
through preCICE library.

MBDyn is then executed through a case-dependent Python script, whose variables can be set
by a JSON file. In Figure A.2 the adapter structure is shown.

/
├─ structural/
│ ├─ mbdynInterface.py
│ ├─ mbdynAdapter.py
│ ├─ run.py
├─ config.json

Figure A.2: Simulation folder structure, where only the MBDyn adapter files are visible. In
the real case, there would be also the fluid solver folder, MBDyn simulation files and preCICE
configuration.

A.2 mbdynInterface.py

mbdynInterface.py is the first layer of communication and it contains all the methods respon-
sible for collecting the data from MBDyn and converting them into preCICE language.
At the beginning of the file (Listing A.1, all the required methods are imported. The first
difference from the MBDyn-DUST code is the presence of json module: mbdynInterface.py

1MBDyn-DUST code: https://gitlab.com/davideMontagnani/dust-mbdyn

70

https://gitlab.com/davideMontagnani/dust-mbdyn

Appendix A: MBDyn Adapter Architecture

reads from a configuration file called config.json two types of information: the number of
FSI interfaces and the domain dimension, either 2D or 3D (Listing A.7).

1 import sys
2 from mbc_py_interface import mbcNodal
3

4 import precice
5 from precice import *
6

7 import numpy as np
8

9 import json
10 json_file = open(’./../ config.json’)
11 variables = json.load(json_file)
12 json_file.close ()
13

14 dm = variables[’dimensions ’]
15 x = variables[’FSI -interfaces ’]

Listing A.1: Initial part of mbdynInterface.py.

The code contains the class mbdynInterface, which is made of some methods and fields:

• .data is a dictionary which contains the kinematic variables that are exchanged through
MBDyn API, namely Position, DisplacementDeltas and Forces. Each item can be
either a vector or a scalar and has attached the type read or write to indicate whether
it is a force read from SU2 or a displacement written by MBDyn. The true variable that
is passed to SU2 is DisplacementDeltas, but in order to initialize the simulation and to
retrieve the nodes coordinates, also Position has to be collected;

• .socket is an inner class, which contains the parameters to set up the socket (Listing
A.2). Host and port are useful if an Internet socket is desired. If neither of them is
specified, a local host is assumed. timeout indicate for how long the socket waits for the
solver connection and a value of -1 removes this limit. if verbose is set to 1, a detailed
list of the processes is given. data and next signalises MBDyn to expect forces and send
positions. labelsis only important if a reference node was described in the .mbd file which
instructs the peer to send the forces and their orientations relative to the reference node.
nnodes indicates the number of exposed nodes through the external structural force
element. This value should be set in the config.json file, which will be discussed in
Section A.5 and must coincide with the number defined in the syntax of the external
structural force;

1 #> Inner class --
2 class Socket:
3 """ Class containing the socket parameters """
4 """ for comm between MBDyn and mbc_py """
5 def __init__(self , \
6 path="", host="", port=0, \
7 timeout=-1, verbose=0, data_and_next =1, \
8 refnode=0, nnodes=1, labels = 0, rot=0x100 , \
9 accels =0):

10 self.path = path
11 self.host = host
12 self.port = port
13 self.timeout = timeout
14 self.verbose = verbose

71

Appendix A: MBDyn Adapter Architecture

15 self.data_and_next = data_and_next
16 self.refnode = refnode
17 self.nnodes = nnodes
18 self.labels = labels
19 self.rot = rot
20 self.accels = accels

Listing A.2: Socket set up

• nodal is an object of mbcNodal class defined in the mbc_py_interface (MBDyn Python
library). Within this class the methods .negotiate(), .recv() and .send() are in-
stantiated: the first is used to access the nodes, the second writes the kinematics to the
external solver and the third sends back the forces to MBDyn;

• initialize() is used to establish a connection with MBDyn;

• finalize() closes all communications;

• refConfigNodes() reads the initial configuration of the nodes needed to compute the
displacements. The input file is refConfigNodes.in and it has to be compiled with an
ordered list of the coordinates of all the nodes (Listing A.3).

1 0.0000 0.0000
2 0.0000 0.1000
3 0.0000 0.2000
4 0.0000 0.3000
5 0.0000 0.4000
6 0.0000 0.5000
7 0.0000 0.6000
8 0.0000 0.7000
9 0.0000 0.8000

10 0.0000 0.9000
11 0.0000 1.0000

Listing A.3: refConfigNodes example file. x y coordinates of 11 nodes.

A.3 mbdynAdapter.py

mbdynAdapter.py is the second layer of communication, the one that takes care of the actual
coupling and connects SU2 with MBDyn. The basics steps are:

• provide access to all the necessary fields for the coupling (Position and Forces),

• initialize the coupling data,

• compute the displacements from the nodes position,

• steer the simulation,

• finalize the simulation.

The class MBDynAdapter contains various fields and methods:

• Participant class sets the name of the solid solver, MBDyn;

72

Appendix A: MBDyn Adapter Architecture

• Mesh class similarly sets the name of the mesh. This name must coincide with the one
declared in the precice-config.xml(Section 3.3.5);

• __init__() constructor initializes the object of MBDynAdapter class and the communi-
cation with SU2. It reads all the fields previously described and sets up the mesh;

• getDisplacements() method computes the displacements from the nodes position;

• runPreCICE() method initiates the actual coupling loop, which is explained in detail
below.

The runPreCICE() method contains the actual loop of the data exchange. Listing A.4 reports
all the cycle. Here parameters such as the MBDyn time-step and the preCICE time-step
(dt_precice) are retrieved: if they do not match, the smaller one is chosen. This way, the
structural solver can have a lower time-step than the coupled fluid solver, which is also known
as “subcycling”. It is important to mention that forces and displacements are only exchanged
at each time step and not at each substep.
The execution phases include:

1. reload state if previous iteration did not converge with write_iteration_checkpoint()
and read_iteration_checkpoint() (implicit coupling). This is the first thing done in
the while loop with the boolean argument isCouplingOngoing(), which is the preCICE
way of controlling if the simulation is still going on

2. retrieve nodes position from MBDyn and compute displacements

3. write nodes displacements to SU2 with write_block_vector_data

4. read forces from the fluid solver with read_block_vector_data

5. check convergence: iterate or finalize the time-step with is_action_required

6. preCICE exits the loop and terminates the communication with finalize(), otherwise
the loop is repeated.

1 def runPreCICE(self):
2

3 dt_set = variables[’mbdyn -timestep ’]
4

5 n = self.mbd.socket.nnodes; nd = 3
6

7 cowic = precice.action_write_iteration_checkpoint ()
8 coric = precice.action_read_iteration_checkpoint ()
9

10 dt_precice = self.dt_precice
11

12 force = np.zeros((n, nd))
13

14 t = 0.
15 previousDisplacements = self.getDisplacements ()
16 is_ongoing = self.interface.is_coupling_ongoing ()
17 while (is_ongoing):
18

19 if (self.interface.is_action_required(cowic)):

73

Appendix A: MBDyn Adapter Architecture

20 pos_t = self.mbd.data[’Position ’][’data’][:,[0,dm -1]]
21

22 for k in range(0,x):
23 delta_t_k = []
24 delta_t_k = self.mbd.data[’DisplacementDeltas%d’%(k)][’data’][: :]
25 self.interface.mark_action_fulfilled(cowic)
26

27 #> Set MBDyn nodal values of forces and moments
28 for i in np.arange(n):
29 for k in range(0,x):
30 self.mbd.nodal.n_f[i*dm:(i+1)*dm]=self.mbd.data[’Forces%d’%(k)][

’data’][i,:] # force[i,:]
31

32 dt = min(dt_set , dt_precice)
33

34 #> === Communication with MBDyn ===========================
35 if (self.mbd.nodal.send(False)):
36 break
37

38 # Receive data from MBDyn
39 if (self.mbd.nodal.recv()):
40 print(’**** break , after nodal.recv() ****’); break
41

42 #> Read position and velocity from MBDyn
43 displacements = self.getDisplacements ()
44 relDisplacements = displacements - previousDisplacements
45 self.mbd.data[’Position ’][’data’] = np.reshape(self.mbd.nodal.n_x , (n,

nd))
46

47 for k in range(0,x):
48 self.mbd.data[’DisplacementDeltas%d’%(k)][’data’] = relDisplacements
49

50 #> Write to SU2
51 for fie in self.p[’fields ’]:
52 if (self.p[’fields ’][fie][’io’] == ’write ’):
53 if (self.p[’fields ’][fie][’type’] == ’scalar ’):
54 self.interface.write_block_scalar_data(\
55 self.p[’fields ’][fie][’id’], \
56 self.p[’mesh’][’node_id ’], \
57 self.mbd.data[fie][’data’])
58 if (self.p[’fields ’][fie][’type’] == ’vector ’):
59 self.interface.write_block_vector_data(\
60 self.p[’fields ’][fie][’id’], \
61 self.p[’mesh’][’node_id ’], \
62 self.mbd.data[fie][’data’])
63

64 dt_precice = self.interface.advance(dt)
65 is_ongoing = self.interface.is_coupling_ongoing ()
66

67 #> Receive data from SU2 and set nodal.n_f field
68 for fie in self.p[’fields ’]:
69 if (self.p[’fields ’][fie][’io’] == ’read’):
70 if (self.p[’fields ’][fie][’type’] == ’scalar ’):
71 self.mbd.data[fie][’data’] = \
72 self.interface.read_block_scalar_data(\
73 self.p[’fields ’][fie][’id’], \
74 self.p[’mesh’][’node_id ’])
75 if (self.p[’fields ’][fie][’type’] == ’vector ’):

74

Appendix A: MBDyn Adapter Architecture

76 self.mbd.data[fie][’data’] = \
77 self.interface.read_block_vector_data(\
78 self.p[’fields ’][fie][’id’], \
79 self.p[’mesh’][’node_id ’])
80

81 #> Check convergence: iterate or finalize the timestep
82 if (self.interface.is_action_required(coric)): # dt not converged
83 self.mbd.data[’Position ’][’data’] = pos_t
84

85 for k in range(0,x):
86 self.mbd.data[’DisplacementDeltas%d’%(k)][’data’] = delta_t_k
87 self.interface.mark_action_fulfilled(coric)
88 else: # dt converged
89 previousDisplacements = displacements.copy()
90

91 if (self.mbd.nodal.send(True)):
92 break
93 # Receive data from MBDyn
94 if (self.mbd.nodal.recv()):
95 print(’**** break , after nodal.recv() ****’); break
96 t = t + dt
97

98 self.interface.finalize ()
99 print(’ Finalize coupling ’)

Listing A.4: Coupling loop

A.4 run.py

This section illustrates the role of the case dependent file run.py, which is the one actually
called to start the simulation.
In the first part of the script, all the required Python and preCICE libraries are imported,
including the json package, useful to read the config.json file (Section A.5) where all the case
dependent variables can be set. The path to MBDyn Python API mbpy has to be set as well and
the variables for socket communication are initialized. Last but not least,mbdynInterface.py
and mbdynAdapter.py are imported (A.5.

1 import time
2 import sys;
3

4 import json
5 json_file = open(’./../ config.json’)
6 variables = json.load(json_file)
7 json_file.close ()
8

9 dt_set = variables[’mbdyn -timestep ’]
10 nnodes = variables[’exposed -nodes’]
11 file_name = variables[’input -file -mbdyn’]
12

13 # set to path of MBDyn support for python communication
14 sys.path.append(’/usr/local/mbdyn/libexec/mbpy’);
15

16 import os;
17 import tempfile;
18 tmpdir = tempfile.mkdtemp(’’, ’.mbdyn_ ’);

75

Appendix A: MBDyn Adapter Architecture

19 path = tmpdir + ’/mbdyn.sock’;
20

21 os.environ[’MBSOCK ’] = path;
22 os.system(’mbdyn -f %s -o output > output.txt 2>&1 &’ %(file_name)) ;
23

24 from mbc_py_interface import mbcNodal
25 from numpy import *
26 import numpy as np
27

28 import precice
29 from precice import *
30

31 from mbdynInterface import MBDynInterface
32 from mbdynAdapter import MBDynAdapter

Listing A.5: First part of run.py

The interface between MBDyn and preCICE is initialized with MBDynInterface() class.
Then, the adapter is initialized and the runPreCICE() method is called to start the simulation
(A.6).

1 #> Initialize MBDyn/mbc_py interface: negotiate and recv()
2 mbd = MBDynInterface ()
3 mbd.initialize(path=path , verbose=1, nnodes=nnodes , accels=1, \
4 dumpAuxFile=True)
5

6 print(" Initialize MBDyn adapter ")
7 adapter = MBDynAdapter(mbd)
8

9 if (adapter.debug):
10 print(’ participant: ’, adapter.p["name"])
11 print(’ solver : ’, adapter.p["mesh"]["name"])
12 print(’ fields : ’, adapter.p["fields"])
13

14 #> Start coupled simulation with PreCICE
15 adapter.runPreCICE ()

Listing A.6: Second part of run.py

A.5 config.json

The config.json is the only file that the user has to modify when setting up the simulation
(Listing A.7).

1 {
2 "mbdyn -timestep": 0.01,
3 "exposed -nodes": 26,
4 "dimensions": 2,
5 "FSI -interfaces": 2,
6 "input -file -mbdyn": "wing"
7 }

Listing A.7: config.json file

Below, an explanation of the variables that have to be set is given:

• mbdyn-timestep is the value set as MBDyn time-step

76

Appendix A: MBDyn Adapter Architecture

• exposed-nodes is the value of the nodes exposed through the external structural force

• dimensions is used to set the simulation in 2D or 3D

• FSI-interfaces lets the user set the number of FSI interfaces

• input-file-mbdyn is the name of the main MBDyn input file.

77

Appendix B

Appendix B: SU2 Adapter
Architecture

The SU2 adapter was originally developed by Alexander Rusch and presented in his Bachelor’s
Thesis [6], where a thorough description of the adapter is given. The adapter was created for
SU2 version 4.1 and has been updated by the author until version 6.0.0. Since the latest
release of SU2 introduced many changes in the code structure, the adapter has been ported to
version 7.1.1 "Blackbird" in the context of the present thesis. In Figure B.1, a schematic
illustration of the adapter structure is given.

5. Description of the Coupling
Adapter and its Integration

SU2 code
changes preCICEAPI

Coupling

Adapter

Figure 5.1: The source code of SU2 is extended by minimally invasive code changes, which allow to use
the adapter. The adapter makes use of the API of preCICE that is part of the coupling tool’s source
code.

In order to couple SU2 with preCICE, a C++ adapter class named Precice1 is developed in the scope of
this work. A header file precice.hpp and a source file precice.cpp are the practical outcome. The Precice
class encapsulates all coupling related activities and separates them from the original SU2 source code.
It makes use of the high-level API provided by preCICE. Since the adapter is integrated into the source
code of SU2, it is completely compiled with it (for a description on how to install SU2 with preCICE,
see Appendix B). This way, coupling is achieved with minimally invasive code changes in SU2 and an
adaption of the original code is, thus, possible with only small effort, basically reduced to copy-paste
tasks. The adapter allows for usage of both explicit and implicit coupling strategies implemented in
preCICE and fully conforms with intra- and interfield parallelism. Moreover, usage of the adapter is
assimilated to the regular configuration process of SU2, thus, it is embedded smoothly into the software
suite. All options concerning the usage of preCICE (e.g. switching it on or off, specifying name and
location of the preCICE configuration file, etc.) are set via the SU2 configuration file. Consequently, no
recompilation of SU2 is necessary when the user decides to use/not to use preCICE. In addition, a single
executable, SU2_CFD, is enough to account for single-physics simulations (without preCICE) as well as
for FSI computations via preCICE. Figure 5.1 shows a schematic representation of the code coupling
approach.

Concerning notation of code shown in this chapter (and in the corresponding referenced sections of the
appendix), it is important to state that SU2 uses several "containers" for storing information (technically,
they are multiple pointers). E.g. a "config_container” is an instance of CConfig or a "geometry_container"
refers to CGeometry. Furthermore, all shown code excerpts are reduced to the necessary information.
Therefore, not all arguments of functions are stated but only the relevant ones. Also, ellipses (...) are

1Note that Precice and preCICE do not denote the same. The former refers to the adapter developed in this work, while
the latter is used to describe the coupling tool.

33

Figure B.1: Schematic representation of the SU2 adapter. Taken from [6].

Unlike the MBDyn adapter (Appendix A), SU2 adapter introduces some changes to the exist-
ing solver code and requires a ad hoc installation.
A C++ class named Precice made of a header file precice.hpp and a source file precice.cpp
is the addition to SU2 original code. It encapsulates all coupling related activities and keeps
them separated from the solver source code. As said before, some routines have to be mod-
ified in order to encapsulate preCICE. These changes are confined into SU2_CFD module,
which contains the solvers for direct, adjoint problems and into the configuration file setup
(CConfig.cpp and CConfig.hpp).
The usage of the adapter is completely embedded into the normal SU2 execution, therefore no
changes to the common way of starting a simulation are required, whether it is a single-physics
or a multi-physics problem. All options concerning the usage of preCICE (e.g. switching it on
or off, specifying the name of the FSI interfaces and of the preCICE configuration file) can be
set in the SU2 configuration file, in order to minimize even more the impact that the adapter

78

Appendix B: SU2 Adapter Architecture

has on the suite and on the user.
This Appendix is organized in the following way: in Section B.1 the changes in the SU2 con-
figuration file are presented, with an explanation of all the new features. Then, in Section B.2,
the additions to the main routine SU2_CFD and the configuration setup files are described.
Finally, in Section B.3, the adapter class Precice is thoroughly described, enancing the changes
made in the context of this thesis in order to port the adapter to the newest SU2 version.

B.1 SU2 Configuration

Every option needed for the simulation is set up in the SU2 configuration file. Here, the user
chooses, for example, the type of solver, the time-step and the freestream values.
The file has the extension .cfg. The syntax is very simple: an option in the file is written as
option_name = value, where option_name is the name of the option and value is the desired
option value.
For instance, the unsteady time step is set as in Eq. B.1 and the inlet is indicated as in Eq.
B.2.

UNST_TIMESTEP = 0.001 (B.1)

MARKER_INLET = (inlet) (B.2)

The new options introduced by the adapter for the usage of preCICE are listed in the following:

PRECICE_USAGE = NO,YES (B.3)
PRECICE_CONFIG_FILENAME = ./../precice-config.xml (B.4)

MARKER_PRECICE = (flap1, flap2) (B.5)
PRECICE_VERBOSITYLEVEL_HIGH = NO,YES (B.6)

PRECICE_LOADRAMPING = NO, YES (B.7)
PRECICE_LOADRAMPING_DURATION = 10 (B.8)

The PRECICE_USAGE (Eq. B.3) is a flag used for determining wheter a simulation should
be run with or without preCICE. The default value is NO, which means that a normal single-
physics simulation is set. The other options are reasonable only if this flag is set to YES.
PRECICE_CONFIG_FILENAME (Eq. B.4) specifies the name of the preCICE cofiguration
file (ref. Section 3.3.5) and its location.
MARKER_PRECICE is used to set the marker name of the FSI interfaces. This option is
slightly modified from the original SU2 adapter [6]: instead of having to enter a default and
not changeable name for the FSI interfaces, the new version lets the user decide which marker
name to use. For example, referring to the first validation case (ref. Section 4.1) where the FSI
interface was the vertical flap, the user should specify here the boundary marker set also in the
mesh file. In the first version of the adapter, the only name accepted was "wetSurface".
Another useful improvement is that now the adapter calculates automatically the number of
interfaces, so if the domain is composed of 4 blades, as in Section 5, the user just has to set
the 4 blades name in MARKER_PRECICE.
The option PRECICE_NUMBER_OF_WETSURFACES is therefore deprecated.
In order to have more insight into the sequence of operations that preCICE is doing during the
simulation, the user can set PRECICE_VERBOSITYLEVEL_HIGH flag to YES (Eq. B.6).
Another useful option is the PRECICE_LOADRAMPING (Eq. B.7), which helps to ease the

79

Appendix B: SU2 Adapter Architecture

initial part of the simulation using a ramp function to pass the forces to the structural solver.
It lets the user decide also for how many iteration this should be done (Eq. B.8).
The dynamic mesh capabilities should also be allowed:

SURFACE_MOVEMENT = DEFORMING (B.9)

And the marker of the surface that should be deformed has to be specified:

MARKER_MOVING = (flap1, flap2) (B.10)

B.2 Changes in SU2 Routine

The usage of preCICE within the SU2 suite impacts also the solver routine, but in a minimal
way, with this being the goal of the adapter author [6]. The key feature is that the solver
executable can be run with or without preCICE, without having to recompile it. While porting
the adapter to the latest SU2 version, the same philosophy has been followed.
In this section, the additions and modification to all the modules will be highlighted, particu-
larly with regard to the new SU2 code structure.
The only additional variables required by SU2_CFD are max_precice_dt, dt and calling the
Precice class:

• CDriver.cpp (and its header), responsible for instantiating all of the geometry, physics
packages, and numerical methods needed to solve a particular problem

• CSinglezoneDriver.cpp (and its header), contains the main subroutines for driving
single-zone problems

In the CSinglezoneDriver.cpp preCICE functions have to be called in the while loop. The
first thing that has to be set is the max_precice_dt, which allows the adapter to know if
sub-cycling is necessary, that is if SU2 timestep coincide with the preCICE one (Section 3.3.1).
Listing B.1 shows the insertion of the declarations and memory allocation of preCICE-related
variables, as well as the startup of the coupling procedure.

1 precice_usage = config_container[ZONE_0]->GetpreCICE_Usage ();
2 if (precice_usage) {
3 precice = new Precice(config_container[ZONE_0]->

GetpreCICE_ConfigFileName (), rank , size , geometry_container[
ZONE_0], solver_container[ZONE_0], config_container ,
grid_movement[ZONE_0]);

4 dt = new double(config_container[ZONE_0]->GetDelta_UnstTimeND
());

5 max_precice_dt = new double(precice ->initialize ());
6 }

Listing B.1: Instantiate Precice into the while-loop.

Then, preCICE needs to be able to shut down SU2 when the FSI simulation should be
ended: at the beginning of Listing B.2 the number of iterations required is checked and if
isCouplingOngoing() returns false the simulation is ended (line 2). Moreover, if the selected

80

Appendix B: SU2 Adapter Architecture

coupling method is implicit, the usual checkpointing procedure starts (line 5). If at the end of
the sub-iterations the convergence criterion is not met, the solver has to be set to restart the
time-step.
Therefore, at the beginning of each iteration the current state has to be saved (line 6), in case it
should be reloaded (line 29). If the convergence is reached, the simulation can proceed and the
adapter begins the advancing phase (lines 9-16). advance() uses the current solver timestep
size as input and returns the new maximum limit for the next time instance, as it is explained
in Section 3.3.1.

1 //*--- Run the problem until the number of time iterations
required is reached. ---*/

2 while ((TimeIter < config_container[ZONE_0]->GetnTime_Iter ()
&& precice_usage && precice ->isCouplingOngoing ()) || (
TimeIter < config_container[ZONE_0]->GetnTime_Iter () && !
precice_usage)) {

3

4 // preCICE implicit coupling: saveOldState ()
5 if(precice_usage && precice ->isActionRequired(precice ->

getCowic ())){
6 precice ->saveOldState (&StopCalc , dt);
7 }
8

9 // preCICE - set minimal time step size as new time step size
in SU2

10 if(precice_usage){
11 dt = min(max_precice_dt ,dt);
12 config_container[ZONE_0]->SetDelta_UnstTimeND (*dt);
13 // preCICE - Advancing
14 if(precice_usage){
15 *max_precice_dt = precice ->advance (*dt);
16 }
17

18 // preCICE implicit coupling: reloadOldState ()
19 bool suppress_output_by_preCICE = false;
20 bool initialTimeStep = false;
21

22 if(precice_usage && precice ->isActionRequired(precice ->
getCoric ())){

23

24 if (TimeIter == config_container[ZONE_0]->GetRestart_Iter ()
|| TimeIter == 0) {

25 initialTimeStep = true;
26 }
27

28 //Stay at the same iteration number if preCICE is not
converged and reload to the state before the current iteration

29 precice ->reloadOldState (&StopCalc , dt, initialTimeStep);
30 suppress_output_by_preCICE = true;

81

Appendix B: SU2 Adapter Architecture

31 TimeIter --;
32 }
33

34 /* --- Output the solution in files. ---*/
35 if (! suppress_output_by_preCICE){
36 Output(TimeIter);
37 }
38

39 }

Listing B.2: Main while-loop in CSinglezoneDriver.cpp

The finalization of preCICE is done in the CDriver.cpp: communications are closed along with
the deallocation of used memory (Listing B.3).

1 // preCICE - Finalize
2 if(precice_usage){
3 precice ->finalize ();
4 if (dt != NULL) {
5 delete dt;
6 }
7 if (max_precice_dt != NULL) {
8 delete max_precice_dt;
9 }

10 if (precice != NULL) {
11 delete precice;
12 }
13 }

Listing B.3: Finalization in CDriver.cpp

B.3 Precice Class

The actual adapter class for coupling SU2 with preCICE for FSI is precice.cpp (along with
its header precice.hpp). Here, all the methods and variables needed by preCICE to perform
the coupling are declared and used, in a similar way to the MBDyn adapter (Appendix A).
The adapter is also connected to preCICE library through the instantiation of a SolverInterface
object.
The adapter has to take care of

• force calculation at the interface,

• managing parallelization of SU2,

• converting data from SU2 representation to preCICE and viceversa,

• deform the mesh,

• all the steps that concern the implicit coupling (checkpointing, saving and loading states).

82

Appendix B: SU2 Adapter Architecture

The first step is the initialization, done by the initialize() method. A list of functions is
performed inside it:

• CheckDimensionalConsistency() checks whether SU2 and preCICE have the same di-
mensions

• GetPreciceMeshID() gets the correct mesh name ID

• SetnLocalPreciceMarkers() sets the number of preCICE markers

• CheckWorkingProcess() checks if the process is still ongoing

• SetMarkerMapping() handles the storing of marker values in a data array

• SetMeshVertices() sets the mesh vertices used for the data exchange

• SetTimeStep() sets the preCICE time-step

The adapter also has to compute forces and this is done inside the ComputeForces() function.
Assuming a general 3D viscous case, the force vector is composed by pressure forces and friction
forces:

fi = −(ptot − pstat)niA+ τijnjA ∀i = 1, 2, 3, with (B.11)

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
µ
∂vk
∂xk

δij ∀i, j = 1, 2, 3 (B.12)

where f is the force vector, ptot is the total pressure, pstat is the static one, n is the outward
normal unit vector and τ is the viscous stress tensor (cfr. Eq. 2.4).
After the forces evaluation and their translation into preCICE language, the solverInterface
class is called and the forces are written with writeBlockVectorData, as fofr the MBDyn
adapter. The same goes for the displacements, which are retrieved using readBlockVectorData
and translated into SU2 language.
Then, the actual loop can start and the common preCICE functions are called:

• isCouplingOngoing() checks if the coupling is still on, finalize() is directly called

• isActionRequired() is used to read or write checkpoints (implicit coupling)

• getCoric and getCowic are used to differentiate read or write checkpoints

• saveOldState() and reloadOldState() are called after the checkpoint, if implicit cou-
pling is chosen. The first is used to save the old state in the event that the convergence
criterion wasn’t met and the iteration had to be rerun (no advancing of the time-step)

• advance() is called in order to restart the loop. Within this function, the forces com-
putation and the displacements reading is done. While advancing, the adapter also need
to prescribe the maximum allowed timestep and, if implicit coupling is chosen, preCICE
also executes acceleration techniques.

• finalize() closes all communications, deallocate used memory and stops the simulation.

83

Appendix C

Appendix C: Setting up a Simulation

This Appendix will provide a short guide to the set up of a coupled simulation.
Firstly, let us take a look into the simulation folder (Figure C.1a). Here, the user should have a
sub-folder for SU2, called Fluid, and one for MBDyn, called structural, where all the simulation
files needed by each solver are. SU2 needs the mesh file and the configuration file .cfg. MBDyn
needs the main file .mbd and its auxiliary files, as shown in the example of Figure C.1b. Then,
the preCICE configuration file, namely precice-config.xml should be present, along with
config.json, which is the MBDyn adapter configuration file.

coupled simulation/
├─ Fluid/
├─ structural/
├─ precice-config.xml
├─ config.json

(a) Simulation folder structure.

structural/
├─ beam.elm
├─ beam.nod
├─ joint.elm
├─ mbdynAdapter.py
├─ mbdynInterface.py
├─ refConfigNodes.in
├─ run.py
├─ wing.mbd

(b) MBDyn sub-folder.

Figure C.1: Preview of the simulation folder with an insight into the MBDyn files. In red, the
MBDyn adapter files. Note that for each simulation, the MBDyn input files could differ.

In order for SU2 to communicate with preCICE, the beginning of the configuration file should
look like Listing C.1. In the proposed example there are two surfaces which interact with the
structure, namely BLADE 1 and BLADE 2. An initial load ramping to ease the computation
is set, for a total duration of 30 iterations.

1

2 % ------------- PRECICE PROBLEM DEFINITION ------------%
3

4 PRECICE_USAGE= YES
5 %
6 PRECICE_CONFIG_FILENAME= precice -config.xml
7 %
8 MARKER_PRECICE= (BLADE_1 , BLADE_2)

84

Appendix C: Setting up a Simulation

9 %
10 PRECICE_VERBOSITYLEVEL_HIGH= NO
11 %
12 PRECICE_LOADRAMPING= YES
13 %
14 PRECICE_LOADRAMPING_DURATION= 30

Listing C.1: First flags of SU2 configuration file.

The user should, then, set up the precice-config.xml and the config.json. In the preCICE
configuration file, which is shown in Section 3.3.5, the most relevant variables to set are:

• solver-interface dimensions

• name of the data vector that should be exchange. E.g., for one FSI interface it should be
"Forces0" and "DisplacementDeltas0"

• type of mapping. See Section 3.3.3

• type of coupling scheme, along with the timestep and the related parameters. Note that
the used timestep can be different for the two participants, hence the data transfer will
occur at the largest timestep, while the other participant will sub-cycle. See Section 3.3.1.

The MBDyn adapter directly reads most of the parameters from the config.json file, as
Listing C.2. The user should specify here:

• mbdyn-timestep, the value set as MBDyn time-step

• exposed-nodes, number of nodes exposed through the external structural force

• dimensions, 2D or 3D simulation

• FSI-interfaces, number of FSI interfaces

• input-file-mbdyn, name of the main MBDyn input file.

1 {
2 "mbdyn -timestep": 0.001 ,
3 "exposed -nodes": 10,
4 "dimensions": 2,
5 "FSI -interfaces": 1,
6 "input -file -mbdyn": "structural/wing.mbd"
7 }

Listing C.2: config.json file.

The simulation can now be properly started. The two participants require to be called in two
separate shell environments from the principal folder. For SU2, the standard command is used:

mpirun -n NP SU2_CFD Fluid/config_file_name.cfg

where mpirun is used to run a parallel simulation and NP represents the number of processors.
The MBDyn adapter is called with:

python3 run.py

85

Appendix C: Setting up a Simulation

In order to do that, another execution file, called run.sh can be added to the principal folder,
in order to simplify the execution of both participants. An example is given in Listing C.3

1 SU2_CONFIG=Fluid/config_SU2_coupled.cfg
2 mpirun -n 4 SU2_CFD ${SU2_CONFIG} > Fluid.log 2>&1 &
3

4 python3 structural/run.py > Solid.log 2>&1

Listing C.3: Optional script used to start the simulation.

86

Bibliography

[1] R. Schlinker and R. Amiet. Rotor-vortex interaction noise. 1983.

[2] Jean Donea, Antonio Huerta, J.-Ph. Ponthot, and A. Rodríguez-Ferran. Arbitrary La-
grangian–Eulerian Methods, chapter 14. American Cancer Society, 2004.

[3] Masarati Pierangelo. Dynamics and Control of the Flexible Aircraft. Lectures from DCFA
course, 2020.

[4] David Gregory Tipton, Mark Allen Christon, and Marc Stuart Ingber. A super-sampled
projection method for level-set construction in fluid-solid interaction problems. Interna-
tional Journal for Numerical Methods in Fluids, 2009.

[5] Alessandro Cocco, Alberto Savino, Davide Montagnani, Matteo Tugnoli, Federico Guer-
roni, Michele Palazzi, Andrea Zanoni, Alex Zanotti, and Vincenzo Muscarello. Simulation
of tiltrotor maneuvers by a coupled multibody-mid fidelity aerodynamic solver. In 46th
European Rotorcraft Forum (ERF 2020), 09 2020.

[6] Alexander Rusch. Extending su2 to fluid-structure interaction via precice. Bachelor’s
thesis, Technische Universität München, 2016.

[7] Berend G. van der Wall. 2nd hhc aeroacoustic rotor test (hart ii) - part i: Test documen-
tation -. Technical report, 2003. LIDO-Berichtsjahr=2003,.

[8] Ted Belytschko. Methods and programs for analysis of fluid-structure systems. Nuclear
Engineering and Design, 42(1):41–52, 1977.

[9] Ted Belytschko. Fluid-structure interaction. Computers & Structures, 12(4):459–469, 1980.

[10] K.J. Bathe and W.F. Hahn. On transient analysis of fluid-structure systems. Computers
& Structures, 10(1):383–391, 1979.

[11] J. Donea, S. Giuliani, and J. Halleux. An arbitrary lagrangian-eulerian finite element
method for transient dynamic fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33:689–723, 1982.

[12] Thomas P. Combes, Arif S. Malik, Götz Bramesfeld, and Mark W. McQuilling. Efficient
fluid-structure interaction method for conceptual design of flexible, fixed-wing micro-air-
vehicle wings. AIAA Journal, 53(6):1442–1454, 2015.

[13] Coupled Analysis of an Offshore Monopile Wind Turbine Subjected to Wind and Waves,
volume All Days of International Ocean and Polar Engineering Conference, 10 2020.
ISOPE-I-20-1161.

87

Appendix C: Setting up a Simulation

[14] Yuanchuan Liu, Qing Xiao, and Atilla Incecik. A coupled cfd/multibody dynamics analysis
tool for offshore wind turbines with aeroelastic blades. In ASME 2017 36th International
Conference on Ocean, Offshore and Arctic Engineering, page V010T09A038, 06 2017.

[15] Chee Tung, Francis X. Caradonna, and Wayne R. Johnson. The prediction of transonic
flows on an advancing rotor. Journal of the American Helicopter Society, 31(3):4–9, 1986.

[16] J. Bridgeman, R. Strawn, F. Caradonna, and Ching-Shung Chen. Advanced rotor compu-
tations with a corrected potential method. In Proceedings of the 45th American Helicopter
Society Annual Forum, Boston, MA, 1989.

[17] O. Bauchau and J. Ahmad. Advanced CFD and CSD methods for multidisciplinary appli-
cations in rotorcraft problems, chapter Technical Papers. Pt. 2, pages 1441–1451. AIAA,
NASA and ISSMO, 1996.

[18] Marilyn Jones Smith. A fourth order Euler/Navier-Stokes prediction method for the aero-
dynamics and aeroelasticity of hovering rotor blades. PhD thesis, Georgia Inst. of Tech.,
Atlanta, GA., January 1994.

[19] O.A. Bauchau, C.L. Bottasso, and Y.G. Nikishkov. Modeling rotorcraft dynamics with
finite element multibody procedures. Mathematical and Computer Modelling, 33(10):1113–
1137, 2001.

[20] T. Hablowetz. Advanced helicopter flight and aeroelastic simulation based on general
purpose multibody code. In AIAA Dynamics Specialists Conference Atlanta, GA, USA,
2000.

[21] Björn Hübner, Elmar Walhorn, and Dieter Dinkler. A monolithic approach to
fluid–structure interaction using space–time finite elements. Computer Methods in Ap-
plied Mechanics and Engineering, 193(23):2087–2104, 2004.

[22] J. Alonso and A. Jameson. Aiaa 94-0056 fully-implicit time-marching aeroelastic solutions.
2000.

[23] J. Ahmad and R. Biedron. Code-to-code comparison of cfd/csd simulation for a helicopter
rotor in forward flight. In 2011 AIAA Applied Aerodynamics Conference, Honolulu, Hi,
2011.

[24] Mark Potsdam, Hyeonsoo Yeo, and Wayne Johnson. Rotor airloads prediction using loose
aerodynamic/structural coupling. Journal of Aircraft, 43(3):732–742, 2006.

[25] K. Pahlke and Berend G. van der Wall. Calculation of multibladed rotors in high-
speed forward flight with weak fluid-structure-coupling. In 27th European Rotorcraft
Forum, Moscow (Russia), 11-14 September 2001, pages 27.1–27.11, 2001. LIDO-
Berichtsjahr=2001,.

[26] Altmikus, Wagner, Beaumier, and Servera. A comparison: Weak versus strong modular
coupling for trimmed aeroelastic rotor simulations. In American Helicoper Society 58th

Annual Forum, Montreal, Canada, 2002.

[27] Chunhua Sheng, Jacob Ickes, Jingyu Wang, and Qiuying Zhao. CFD/CSD Coupled Sim-
ulations for Helicopter Rotors in Forward and Maneuver Flights.

88

Appendix C: Setting up a Simulation

[28] Berend G van der Wall and Casey L Burley. 2nd hhc aeroacoustic rotor test (hart ii)-part
ii: representative results. 2005.

[29] Joon Lim, C. Tung, Y.H. Yu, Casey Burley, T. Brooks, D. Jr, Berend Wall, O. Schnei-
der, Hugues Richard, M. Raffel, P. Beaumier, J. Bailly, Yves Delrieux, K. Pengel, and
E. Mercker. Hart ii: Prediction of blade-vortex interaction loading. 01 2003.

[30] Joon Lim and Berend Wall. Investigation in the effect of a multiple trailer free wake model
for descending flights. pages TechnicalSession:DynamicsII–, 01 2005.

[31] Hyeonsoo Yeo and Wayne Johnson. Assessment of comprehensive analysis calculation of
airloads on helicopter rotors. Journal of Aircraft - J AIRCRAFT, 42:30, 01 2004.

[32] Byung-Young Min, Lakshmi Sankar, JVR Prasad, and Daniel Schrage. A physics-based
investigation of gurney flaps for rotor vibration reduction. 65th Annual AHS Forum,
1:139–149, 01 2009.

[33] Jeonghwan Sa, Younghyun You, Jae-Sang Park, Sung Jung, Soo Hyung Park, and Y.H. Yu.
Assessment of cfd/csd coupled aeroelastic analysis solution for hart ii rotor incorporating
fuselage effects. 1:736–748, 01 2011.

[34] J. W. Lim. An assessment of rotor dynamics correlation for descending flight using cfd/csd
coupled analysis. 64th Annual AHS Forum, 1:239–260, 2008.

[35] Marilyn Smith, Joon Lim, Berend Wall, James Baeder, Robert Biedron, D. Jr, Buvana
Jayaraman, Sung Jung, and Byung-Young Min. An assessment of cfd/csd prediction state-
of-the-art using the hart ii international workshop data. volume 1, pages 1–41, 05 2012.

[36] B. G. van der wall. A comprehensive rotary-wing data base for code validation: the hart
ii international workshop. The Aeronautical Journal, 115(1164):91–102, 2011.

[37] John D. Anderson. Fundamentals of aerodynamics. McGraw-Hill, 5th edition, 2011.

[38] Pijush K. Kundu, Ira M. Cohen, and David R. Dowling. Fluid Mechanics (Sixth Edition).
Academic Press, Boston, sixth edition edition, 2016.

[39] L. E. MALVERN. Introduction to the mechanics of a continuous medium. Englewood
Cliffs, N.J: Prentice-Hall, 1969.

[40] R. Sánchez, R. Palacios, T. Economon, H. Kline, J. Alonso, and F. Palacios. Towards a
fluid-structure interaction solver for problems with large deformations within the open-
source su2 suite. Aiaa Journal, 2016.

[41] M. Nazem, J.P. Carter, and D.W. Airey. Arbitrary lagrangian–eulerian method for dy-
namic analysis of geotechnical problems. Computers and Geotechnics, 36(4):549–557, 2009.

[42] R.W. Ogden. Non-linear Elastic Deformations. Dover Civil and Mechanical Engineering.
Dover Publications, 1997.

[43] Pierangelo Masarati, Marco Morandini, and Paolo Mantegazza. An Efficient Formulation
for General-Purpose Multibody/Multiphysics Analysis. Journal of Computational and
Nonlinear Dynamics, 9(4), 07 2014. 041001.

89

Appendix C: Setting up a Simulation

[44] Björn Hübner, Elmar Walhorn, and Dieter Dinkler. A monolithic approach to fluid-
structure interaction using space-time elements. Computer Methods in Applied Mechanics
and Engineering, 193:2087–2104, 06 2004.

[45] C. Michler, S.J. Hulshoff, E.H. van Brummelen, and R. de Borst. A monolithic approach
to fluid–structure interaction. Computers & Fluids, 33(5):839–848, 2004. Applied Mathe-
matics for Industrial Flow Problems.

[46] Frederic J. Blom. A monolithical fluid-structure interaction algorithm applied to the piston
problem. Computer Methods in Applied Mechanics and Engineering, 167(3):369–391, 1998.

[47] Serge Piperno, Charbel Farhat, and Bernard Larrouturou. Partitioned procedures for
the transient solution of coupled aroelastic problems part i: Model problem, theory and
two-dimensional application. Computer Methods in Applied Mechanics and Engineering,
124(1):79–112, 1995.

[48] Gaëlle Servera, Philippe Beaumier, and Michel Costes. A weak coupling method between
the dynamics code host and the 3d unsteady euler code waves. Aerospace Science and
Technology, 5(6):397–408, 2001.

[49] LONG CHEN, YIZHAO WU, and JIAN XIA. Aeroelastic analysis of rotor blades using
cfd/csd coupling in hover mode. Modern Physics Letters B, 24(13):1307–1310, 2010.

[50] A Zaki, N Reveles, Marilyn Smith, and Olivier Bauchau. Using tightly-coupled cfd/csd
simulation for rotorcraft stability analysis. Annual Forum Proceedings - AHS International,
4, 01 2010.

[51] T. Baker and P. Cavallo. Dynamic adaptation for deforming tetrahedral meshes. In 14th
Computational Fluid Dynamics Conference, 1999.

[52] Richard P Dwight. Robust mesh deformation using the linear elasticity equations. In
Computational fluid dynamics 2006, pages 401–406. Springer, 2009.

[53] K. Stein, Tayfun Tezduyar, and R. Benney. Mesh moving techniques for fluid-structure
interactions with large displacements. Journal of Applied Mechanics, 70:58–63, 01 2003.

[54] Luca Cavagna, Giuseppe Quaranta, and Paolo Mantegazza. Application of navier–stokes
simulations for aeroelastic stability assessment in transonic regime. Computers & Struc-
tures, 85(11):818–832, 2007. Fourth MIT Conference on Computational Fluid and Solid
Mechanics.

[55] Hariyo Pratomo, Fandi Suprianto, and Teng Sutrisno. Preliminary study on mesh stiffness
models for fluid-structure interaction problems. E3S Web of Conferences, 130:01014, 01
2019.

[56] A. de Boer, M.S. van der Schoot, and H. Bijl. Mesh deformation based on radial ba-
sis function interpolation. Computers & Structures, 85(11):784–795, 2007. Fourth MIT
Conference on Computational Fluid and Solid Mechanics.

[57] T. C. S. Rendall and C. B. Allen. Parallel efficient mesh motion using radial basis functions
with application to multi-bladed rotors. International Journal for Numerical Methods in
Engineering, 81(1):89–105, 2010.

90

Appendix C: Setting up a Simulation

[58] Myles Morelli, Tommaso Bellosta, and Alberto Guardone. Efficient radial basis func-
tion mesh deformation methods for aircraft icing. Journal of Computational and Applied
Mathematics, 392:113492, 2021.

[59] Marco Biancolini. FSI Workflow Using Advanced RBF Mesh Morphing, pages 225–256.
Springer, Cham, 01 2017.

[60] M. Lombardi, Nicola Parolini, and Alfio Quarteroni. Radial basis functions for inter-grid
interpolation and mesh motion in fsi problems. Computer Methods in Applied Mechanics
and Engineering, 256:117–131, 04 2013.

[61] Gang Wang, Haris Hameed Mian, Zheng-Yin Ye, and Jen-Der Lee. Improved point selec-
tion method for hybrid-unstructured mesh deformation using radial basis functions. AIAA
Journal, 53(4):1016–1025, 2015.

[62] Liang Xie and H. Liu. Efficient mesh motion using radial basis functions with volume grid
points reduction algorithm. J. Comput. Phys., 348:401–415, 2017.

[63] Myles Morelli, Tommaso Bellosta, and Alberto Guardone. Development and preliminary
assessment of the open-source cfd toolkit su2 for rotorcraft flows. Journal of Computational
and Applied Mathematics, 389:113340, 2021.

[64] Rolland L. Hardy. Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research (1896-1977), 76(8):1905–1915, 1971.

[65] M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, 2000.

[66] Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 2004.

[67] Thomas D Economon, Francisco Palacios, Sean R Copeland, Trent W Lukaczyk, and
Juan J Alonso. Su2: An open-source suite for multiphysics simulation and design. Aiaa
Journal, 54(3):828–846, 2015.

[68] Philippe Spalart and Steven Allmaras. A one-equation turbulence model for aerodynamic
flows. AIAA, 439, 01 1992.

[69] Florianr Menter. Zonal two equation kw turbulence models for aerodynamic flows. In 23rd
fluid dynamics, plasmadynamics, and lasers conference, page 2906, 1993.

[70] Bram van Leer. Towards the ultimate conservative difference scheme. v. a second-order
sequel to godunov’s method. Journal of Computational Physics, 32(1):101–136, 1979.

[71] Beckett Yx Zhou, Myles Morelli, Nicolas R. Gauger, and Alberto Guardone. Simulation
and Sensitivity Analysis of a Wing-Tip Mounted Propeller Configuration from the Work-
shop for Integrated Propeller Prediction (WIPP).

[72] W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System
Dynamics, 1:149–188, 1997.

[73] Gian Ghiringhelli, Paolo Mantegazza, and Pierangelo Masarati. Multibody implementa-
tion of finite volume c beams. Aiaa Journal - AIAA J, 38:131–138, 01 2000.

91

Appendix C: Setting up a Simulation

[74] Giuseppe Quaranta, Giampiero Bindolino, Pierangelo Masarati, and Paolo Mantegazza.
Toward a computational framework for rotorcraft multi-physics analysis: Adding compu-
tational aerodynamics to multibody rotor models. 30th European Rotorcraft Forum, 2005,
04 2012.

[75] Dale Pitt and David Peters. Theoretical prediction of dynamic-in ow derivatives. Vertica,
5, 01 1981.

[76] J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels. Stability of a coupling
technique for partitioned solvers in fsi applications. Computers & Structures, 86:2224–
2234, 2008.

[77] J. Degroote, K. Bathe, and J. Vierendeels. Performance of a new partitioned procedure
versus a monolithic procedure in fluid-structure interaction. Computers & Structures,
87:793–801, 2009.

[78] Bernhard Gatzhammer. Efficient and flexible partitioned simulation of fluid-structure
interactions. PhD thesis, Technische Universität München, 2015.

[79] S. Étienne and D. Pelletier. A general approach to sensitivity analysis of fluid–structure
interactions. Journal of Fluids and Structures, 21(2):169–186, 2005.

[80] Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl, Klaudius
Scheufele, Alexander Shukaev, and Benjamin Uekermann. precice – a fully parallel library
for multi-physics surface coupling. Computers & Fluids, 141:250–258, 2016. Advances in
Fluid-Structure Interaction.

[81] Miriam Mehl, Benjamin Uekermann, Hester Bijl, David Blom, Bernhard Gatzhammer,
and Alexander van Zuijlen. Parallel coupling numerics for partitioned fluid–structure
interaction simulations. Computers & Mathematics with Applications, 71(4):869–891, 2016.

[82] E Ramm and W Wall. Fluid-structure interaction based upon a stabilized (ale) finite
element method. In 4th World Congress on Computational Mechanics: New Trends and
Applications, CIMNE, Barcelona, pages 1–20, 1998.

[83] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh gener-
ator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009.

[84] Wulf Dettmer and D. Perić. A fully implicit computational strategy for strongly coupled
fluid–solid interaction. Archives of Computational Methods in Engineering, 14:205–247, 09
2007.

[85] Christophe Kassiotis, Adnan Ibrahimbegovic, Rainer Niekamp, and Hermann Matthies.
Nonlinear fluid-structure interaction problem. part i: Implicit partitioned algorithm, non-
linear stability proof and validation examples. Computational Mechanics, 47:305–323, 03
2011.

[86] Bradley Froehle and Per-Olof Persson. A high-order discontinuous galerkin method for
fluid–structure interaction with efficient implicit–explicit time stepping. Journal of Com-
putational Physics, 272:455–470, 09 2014.

92

Appendix C: Setting up a Simulation

[87] Hermann Matthies and Jan Steindorf. Partitioned strong coupling algorithms for fluid-
structure interaction. Computers & Structures, 81:805–812, 05 2003.

[88] Clare Wood, Antonio Gil, O. Hassan, and Javier Bonet. A partitioned coupling approach
for dynamic fluid–structure interaction with applications to biological membranes. Inter-
national Journal for Numerical Methods in Fluids, 57:555 – 581, 06 2008.

[89] Habchi C., Russeil S., Bougeard D., Harion J.-L.and Lemenand T., Ghanem A., Valle D.,
and Peerhossaini H. Partitioned solver for strongly coupled fluid-structure interaction.
Computers and Fluids, 71(11 - 12):793 – 801, 2013.

[90] M Folkersma. Coupling openfoam and mbdyn with precice coupling tool. In Proceedings
ofCFD with OpenSource Software, 2018.

[91] Niklas Johannes Adam. Computational simulation of fluid-structure interaction of soft
kites. Master’s Thesis, Universität Stuttgart, 2018.

[92] Matteo Tugnoli, Davide Montagnani, Federico Fonte, Alex Zanotti, Monica Syal, and
Giovanni Droandi. Mid-fidelity analysis of unsteady interactional aerodynamics of complex
vtol configurations. In 45th European Rotorcraft Forum, 09 2019.

93

	Nomenclature
	Introduction
	Motivation
	Literature Review
	Structure of Work

	Physical and Computational Aspects
	Domains
	Fluid Domain
	ALE RANS

	Structural Domain
	FSI Interface

	Coupling Approaches
	Monolithic vs. Partitioned Approach
	Tightly Coupled vs. Loosely Coupled

	Mesh Deformation
	Linear Elasticity
	Radial Basis Functions

	Numerical Tools
	SU2
	MBDyn
	Nodes
	Elements
	Beams
	Bodies
	Joints
	Forces

	Inflow Models

	preCICE
	Coupling Strategies
	Explicit Serial Coupling
	Explicit Parallel Coupling
	Implicit Coupling

	Acceleration Techniques
	Data Mapping
	preCICE API
	preCICE configuration file

	Socket Communication

	Verification Test Cases
	Vertical Flap
	Fluid domain
	Solid domain
	Coupling
	Results

	Flexible Cantilever in Vortical Flow
	Fluid Domain
	Solid Domain
	Coupling
	Results
	Flow Domain
	Validation
	Performance Analysis

	HART-II
	Experimental Data
	Structural Model
	Results
	Blade Frequencies Analysis
	Hover
	Descent Flight

	Conclusions and Future Developments
	Future Developments

	Appendix A: MBDyn Adapter Architecture
	Design of the Adapter
	mbdynInterface.py
	mbdynAdapter.py
	run.py
	config.json

	Appendix B: SU2 Adapter Architecture
	SU2 Configuration
	Changes in SU2 Routine
	Precice Class

	Appendix C: Setting up a Simulation
	Bibliography

