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Abstract

Recent advancements have allowed reinforcement learning algorithms to achieve outstand-
ing results in a variety of complex sequential decision-making problems, from playing
board and video games to the control of sophisticated robotic systems. However, current
techniques are still very inefficient, in the sense that they require a huge amount of expe-
rience before learning near-optimal behavior. One solution to mitigate this limitation is
knowledge transfer, i.e., the process of reusing experience obtained while facing previous
tasks to speed-up the learning process of new related problems. In this thesis, we offer a
number of contributions to the field of transfer in reinforcement learning, from practical
to theoretical aspects. We do so in the context of structured domains, a concept that we
introduce to model problems with similarities that enable knowledge transfer. We start
by studying how to reuse old experience from a set of source tasks to reduce the sample
complexity for learning a target task. For this problem, we derive two novel algorithms
for batch and online settings, respectively. We then study the problem of generating new
experience, i.e., of exploration in the target task given knowledge from previous tasks. We
first design a practical algorithm that explores the target task driven by a prior distribu-
tion over its solution that is learned from the source tasks. We then study this problem
from a theoretical perspective under the assumption that the underlying task structure, or
an approximation of it, is known. For both multi-armed bandits and Markov decision
processes, we design different algorithms for which we formally establish the benefits of
exploiting structure, while ensuring optimality in specific cases. All together, these results
advance our understanding of knowledge transfer, one of the key components towards the
deployment of reinforcement learning agents to the real world.

I





Contents

1 Introduction 3
1.1 The Reinforcement Learning Paradigm . . . . . . . . . . . . . . . . . . . 4
1.2 Why Transfer in Reinforcement Learning? . . . . . . . . . . . . . . . . . 5
1.3 Main Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Reinforcement Learning 11
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Policies and Decision Rules . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Value Functions and Optimality . . . . . . . . . . . . . . . . . . 14
2.1.3 Bellman Equations and Operators . . . . . . . . . . . . . . . . . 15

2.2 Taxonomy of Reinforcement Learning Methods . . . . . . . . . . . . . . 17
2.3 Exact Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Policy and Value Iteration . . . . . . . . . . . . . . . . . . . . . 20

2.4 Tabular Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Temporal-Difference Learning . . . . . . . . . . . . . . . . . . . 23

2.5 Approximate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Value-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Policy-Gradient Methods . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Actor-Critic Algorithms . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Transfer in Reinforcement Learning 33
3.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III



Contents

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Positive and Negative Transfer . . . . . . . . . . . . . . . . . . . 38

3.4 Survey of Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Multi-task Learning . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Meta-Reinforcement Learning . . . . . . . . . . . . . . . . . . . 43

I Transfer of Samples via Importance Sampling 45

4 The Sample Transfer Problem 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Why Transferring Samples? . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Sample Reuse vs Bias-Variance Trade-off . . . . . . . . . . . . . . . . . 50
4.4 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Self-Normalized Importance Sampling . . . . . . . . . . . . . . 52
4.4.2 Multiple Importance Sampling . . . . . . . . . . . . . . . . . . . 52
4.4.3 Effective Sample Size . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.4 Control Variates . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Importance Weighted Fitted Q-Iteration 55
5.1 Transfer in Batch Reinforcement Learning . . . . . . . . . . . . . . . . . 55
5.2 Importance-Weighted Fitted Q-Iteration . . . . . . . . . . . . . . . . . . 57
5.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Error Bound for Importance-Weighted Regression . . . . . . . . 61
5.3.2 Error Bound for IWFQI . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Estimating the Importance Weights . . . . . . . . . . . . . . . . . . . . . 66
5.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Puddle World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Acrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Water Reservoir Control . . . . . . . . . . . . . . . . . . . . . . 70

6 Sample Reuse in Policy Gradients 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Formal Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Importance-Weighted Policy Gradient . . . . . . . . . . . . . . . . . . . 75
6.4 Gradient Estimators with Known Models . . . . . . . . . . . . . . . . . 77

6.4.1 Multiple Importance Sampling Estimators . . . . . . . . . . . . . 77
6.4.2 Robustness to Negative Transfer . . . . . . . . . . . . . . . . . . 81
6.4.3 Adapting the Batch Size of IWPG . . . . . . . . . . . . . . . . . 83

6.5 The Case of Unknown Models . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.1 Discrete Task Family . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.2 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . 89

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6.1 Linear-Quadratic Regulator . . . . . . . . . . . . . . . . . . . . 91
6.6.2 Cart-pole Balancing . . . . . . . . . . . . . . . . . . . . . . . . 93

IV



Contents

6.6.3 Minigolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II Variational Transfer Methods 95

7 Exploration via Variational Value Transfer 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Variational Value Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Gaussian Variational Transfer . . . . . . . . . . . . . . . . . . . 102
7.3.2 Mixture of Gaussian Variational Transfer . . . . . . . . . . . . . 102
7.3.3 Minimizing the TD Error . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.1 Analysis of the Mellowmax Operator . . . . . . . . . . . . . . . 104
7.4.2 Finite-Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.1 The Rooms Problem . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.2 Classic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.3 Maze Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.4 Comparison to Fast-Adaptation Algorithms . . . . . . . . . . . . 116

III Exploration in Structured Domains 119

8 Learning and Transfer in Structured Domains 121
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Learning in Structured Domains . . . . . . . . . . . . . . . . . . . . . . 123

8.2.1 Structured Bandits . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.2 Structured MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Transfer in Structured Domains . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.1 Learning Structure from Source Tasks . . . . . . . . . . . . . . . 126

9 Arm Elimination in Structured Bandits 127
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2 The Structured UCB Algorithm . . . . . . . . . . . . . . . . . . . . . . . 128
9.3 Structured Arm Elimination . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3.1 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 Anytime SAE and Constant Regret . . . . . . . . . . . . . . . . . . . . . 138
9.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Asymptotically Optimal Exploration in Linear Bandits 143
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.2 Contextual Linear Bandits . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.3.1 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . . 148
10.4 Asymptotically Optimal Linear Primal Dual Algorithm . . . . . . . . . . 151
10.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

V



Contents

10.6 Problem-Dependent Analysis . . . . . . . . . . . . . . . . . . . . . . . . 156
10.6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.6.2 Action Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.6.3 High-Probability Events . . . . . . . . . . . . . . . . . . . . . . 158
10.6.4 Regret Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.7.1 Synthetic Problems . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.7.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

11 Best Policy Identification in MDPs with Misspecified Structure 177
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.2 MDPs with Misspecified Structure . . . . . . . . . . . . . . . . . . . . . 179
11.3 Policy Transfer from Uncertain Models . . . . . . . . . . . . . . . . . . 180

11.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.4 Sample-Complexity Bounds . . . . . . . . . . . . . . . . . . . . . . . . 184

11.4.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12 Conclusion 197
12.1 Open Problems and Future Works . . . . . . . . . . . . . . . . . . . . . 199
12.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

A Proofs of Chapter 6 223
A.1 Proof of Proposition 6.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.2 Proof of Theorem 6.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.3 Proof of Proposition 6.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.4 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B Proofs of Chapter 7 229
B.1 Proof of Lemma 7.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
B.2 Proof of Lemma 7.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C Proofs of Chapter 9 231
C.1 Proof of Lemma 9.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
C.2 Proof of Proposition 9.3.1 and Proposition 9.3.2 . . . . . . . . . . . . . . 232
C.3 Proofs of Section 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

C.3.1 Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . 233
C.3.2 Proof of Theorem 9.4.2 . . . . . . . . . . . . . . . . . . . . . . . 235

D Proofs of Chapter 10 237
D.1 Proof of Lemma 10.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
D.2 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

D.2.1 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . 241
D.2.2 Online Convex Optimization . . . . . . . . . . . . . . . . . . . . 245

D.3 Worst-case Analysis (Proof of Theorem 10.5.2) . . . . . . . . . . . . . . 247

VI



Contents

D.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.3.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

VII





Mathematical Notation

I have tried to keep the notation close to the one adopted in the literature, while being as
consistent as possible throughout the thesis. Unfortunately, staying close to the literature
required different notation for similar problems (e.g., bandits vs MDPs). Here I report a
quick summary.

General notation. For a measurable space (Ω,F), we denote by P(Ω) the set of proba-
bility measures over Ω and by B(Ω, b) the space of measurable functions over Ω bounded
by 0 < b < ∞. That is, ∀f ∈ B(Ω, b),∀x ∈ Ω, |f(x)| ≤ b. Given a probability
measure ν, the `p-norm of a measurable function f is ‖f‖p,µ =

(∫
|f |pdµ

)1/p
. Let Dn

be a sequence (x1, . . . , xn) with values in Ω. The empirical norm of f is ‖f‖pp,Dn :=
1
n

∑n
i=1 |f(xi)|p. We consider the `2-norm whenever omitting the subscript p.

General notation
P(Ω) Set of probability measures over set Ω
B(Ω) Set of bounded measurable functions over Ω
B(Ω, b) Set of measurable functions over Ω bounded by b > 0

‖x‖pp =
∑d
i=1 |xi|

p lp-norm of a d-dimensional vector x ∈ Rd
‖f‖pp,ν =

∫
|f |pdν Weighted lp-norm of a function f

‖f‖pp,Dn := 1
n

∑n
i=1 |f(xi)|p Empirical norm of f on dataset Dn = {xi}ni=1

Divergences
DKL Kullback-Leibler (KL) divergence
DTV Total variation
d2 Exponentiated Renyi divergence

MDPs and bandits. The table below summarizes the main symbols, though we shall
introduce more specific terms in each chapter. Moreover, some direct variants of these
symbols will be used. For instance, we shall consider settings with multiple MDPs or
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parametrized models, for which the corresponding symbols below will have an MDP-
index/parameter subscript. Similarly, the notation for structured bandits will be overloaded
in contextual problems (Chapter 10) by including the specific context dependencies.

Structured Domains
E = (M,D) Structured domain (Chapter 3)
EΘ = (Θ,MΘ,D) Parametrized structured domain (Chapter 8)
M (or MΘ) Set of realizable tasks (MDPs or bandits)
D Task generation process
Θ Set of task parameters (only for parameterized domains)

Markov decision processes
M = (S,A, P, U, ρ, γ) MDP model
S State space
A Action space
P : S ×A → P(S × R) Joint transition kernel
P : S ×A → P(S) Marginal state-transition kernel
U : S ×A → P(R) Marginal reward kernel
r : S ×A → R Mean-reward function
ρ ∈ P(S) Initial state distribution
γ ∈ [0, 1] Discount factor
rmax > 0 Bound on the absolute rewards
V π : S → R Value function of policy π
V ? : S → R Optimal value function
Qπ : S ×A → R Action-value function of policy π
Q? : S ×A → R Optimal action-value function
Tπ : S → R Bellman operator for policy π
T ? : S → R Bellman optimality operator
J(π) Expected return of policy π

Structured Multi-armed bandits
Mθ = (A, µθ) Structured bandit model
A Finite set of arms
K Number of arms
Θ Set of possible parameters
MΘ = {{µθ(a)}a∈A|θ ∈ Θ} Hypothesis space
νθ(a) Reward distribution of arm a
µθ(a) Mean reward of arm a
µ?θ = maxa∈A µθ(a) Optimal reward
a?θ = argmaxa∈A µθ(a) Optimal arm

Rπn(θ,Θ)
Expected regret over n steps of algorithm π
in bandit θ with structure (Θ,MΘ)

∆θ(a) = µ?θ − µθ(a) Sub-optimality gap of arm a ∈ A

2



CHAPTER1
Introduction

Suppose you are about to learn how to drive a car for the first time. Unfortunately, neither
your parents nor an older sibling were so kind to teach you how to do that and left you
alone in the car. You must figure out how to drive it by yourself. Imagine you have driven
another motor vehicle before, like a motorbike, so that you already know the pattern: you
have to start the car, then accelerate to make it move, steer, break, and so on. You push
random buttons until you eventually manage to start the car. Then, you notice there are
two pedals and try to push one. Fortunately, it is the gas pedal. Sadly, the car starts moving
backwards. You see a wall behind you and realize the situation is not looking good. So
you immediately release the accelerator and push the other pedal; the car abruptly stops.
You now realize that the first pedal you pushed did not work as you expected: it should
have moved the car forwards, not backwards. You must have messed up with some buttons
while you were trying to start the car. You carry on this trial-and-error procedure, pushing
buttons and observing their effect, and eventually manage to switch the car back to forward
mode, accelerate, and start driving. So far everything seems quite reasonable, right? Just
an amateur trying to learn how to drive without supervision. However, if this was really
the first time you were to drive a car, how did you know that turning on the ignition was
the first thing to do? Why did you feel danger when the car was moving towards a wall?
How did you know that the gas pedal was not behaving correctly? The answer might
seem trivial: you have never driven a car before, but you have experienced other related
situations, such as driving a motorbike; so you know that a motor vehicle must be started,
that hitting a wall is bad, and that there must be some pedal to make the car move forwards.
More generally, what you did is knowledge transfer, one of the fundamental features of
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Chapter 1. Introduction

Agent Environment

action

reward

state

Figure 1.1: The agent-environment interaction in reinforcement learning. Inspired by
Figure 3.1 of Sutton and Barto (2018).

human learning. That is, you extrapolated knowledge of the problem of driving beyond
the specific vehicle and reused it for the specific task of driving cars. Without this, the only
thing you could do is to press buttons and pedals randomly, which would require years of
practice to control the car instead of a few hours, possibly with the vehicle crashing many
times.

This “trivial” feature of human learning, the ability to reuse and generalize knowledge
from a lifetime of experience, is all this thesis is about. Our main focus is to build artificial
learning agents, framed into the reinforcement learning paradigm, that posses this capabil-
ity. In particular, artificial agents, exactly as humans, should be able to reuse knowledge
obtained in tasks faced throughout their “lives” to quickly learn new related problems,
hence facilitating their deployment to the real world.

The Reinforcement Learning Paradigm

Reinforcement learning (Sutton and Barto, 2018) is a learning paradigm where the decision-
maker, called the agent, interacts with the external world, called the environment, by tak-
ing actions in order to maximize a scalar reward signal. Differently from other learning
paradigms, like supervised learning, the learner is not explicitly told which actions lead to
high rewards, nor is it provided with examples of good actions. Instead, the agent has to
figure out the optimal actions in each possible situation by sole interaction with the envi-
ronment in a trial-and-error fashion. Each “situation” is described by a state, i.e., a set of
variables that summarize the current configuration of the environment as perceived by the
agent. The interaction works as sketched in Figure 1.1. At each decision step, the agent
takes an action based on the currently-observed state of the environment. The environ-
ment, in response, produces a new state and a scalar reward. Both are communicated to
the agent, but the process according to which they are generated is internal to the environ-
ment and unknown. This interaction is then repeated over and over, with the agent taking
actions and the environment producing new states and rewards. Using only this feedback,
the agent aims at maximizing the total reward collected over time. This is motivated by
Sutton and Barto’s reward hypothesis: “that all of what we mean by goals and purposes
can be well thought of as maximization of the expected value of the cumulative sum of a
received scalar signal (reward)” (Sutton and Barto, 2018, Section 3.2).

The fact that the agent does not know how the environment responds to its actions
poses several challenges which are peculiar of the reinforcement learning paradigm. The
exploration-exploitation dilemma is perhaps the most important; on the one hand, the agent
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is tempted to take those actions that are known to be good, e.g., because they performed
best in the past. In such case, we say that the agent exploits the current knowledge. On the
other hand, the agent should take less-played actions, for which poor information is avail-
able, in order to assess whether better decisions exist. In such case, we say that the agent
explores actions to gain information. These two objectives, exploration and exploitation,
are often very competing and how to trade them off is one of the long-standing problems
in the reinforcement learning literature. The other key challenge regards delayed rewards.
While it is quite simple to figure out whether some decision leads to high immediate re-
ward, there might be actions with low immediate reward but that drive, possibly far into
the future, the system to certain states where high rewards can be obtained. This also
opens the credit assignment problem, i.e., the problem of understanding what decisions
in the past led to a certain outcome in the present (such as a very high reward). How to
deal with these problems (and others, as we discuss later) is a central part in the design of
reinforcement learning agents.

Despite the simplicity of this paradigm, recent advances, in particular the combina-
tion with deep neural networks, have allowed reinforcement learning methods to achieve
impressive results in a wide variety of complex tasks. These include beating the world
champions at the game of Go (Silver et al., 2016), obtaining super-human performance in
video-games from the Atari suite (Mnih et al., 2015; Badia et al., 2020) and in the game
of Dota (Berner et al., 2019), and controlling sophisticated robotic systems (Kober and
Peters, 2009; Levine et al., 2016), just to name a few.

Why Transfer in Reinforcement Learning?

While it was popularized first in the supervised learning literature (see, e.g., Pan and Yang
(2009); Weiss et al. (2016); Tan et al. (2018); Da Silva and Costa (2019) and references
therein), knowledge transfer has become a key ingredient in modern reinforcement learn-
ing (Taylor and Stone, 2009; Lazaric, 2012). This is mainly because of two reasons: a
problem and an opportunity. The problem is that, despite the recent outstanding results,
reinforcement learning algorithms are still very sample inefficient. For instance, although
reinforcement learning agents have now mastered games in the Atari suite (Mnih et al.,
2015), a recent empirical study (Tsividis et al., 2017) shows that they require hundreds
of hours of experience to learn skills that a human would learn in a few minutes. This is
because the artificial agent learns each task from scratch, while a human player, though
he/she might have never played Atari before, is able to generalize and reuse the experience
of his/her entire life to quickly learn new tasks. This is exactly what knowledge transfer
aims at achieving in artificial agents:

Knowledge transfer aims at reducing the amount of experience needed for
learning new tasks by reusing knowledge from previously-solved tasks.

The key insight, arising from psychology (e.g., Woodworth and Thorndike, 1901), is that
intelligent agents are able to generalize across different tasks rather than only within the
same task. Let us go back to our car driving example and suppose that, after years of usage,
you sell your old car to buy a new one. Consider driving it for the first time. It might take
some time to perfectly master its control, yet anyone who has driven a car before is likely
to decently drive the new one without any complication. This is because a human can
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generalize the skill of “car driving” beyond the specific car, exactly as one can generalize
“playing a video-game” beyond Atari.

So what is the opportunity? The opportunity is that reinforcement learning agents
deployed to the real world are often required to face multiple different tasks. This might
be, for instance, because the environment evolves over time due to natural phenomena
or due to human intervention; or because the agent’s desiderata (i.e., its goals) change.
In our car driving example, an agent might be required to drive under different weather
conditions (the environment changes naturally), or to drive different cars (the environment
changes due to human intervention), or to drive for different purposes, such as taking a
passenger to a desired location or racing with other cars (the agent’s desiderata change).
Therefore, there is indeed an opportunity for an artificial agent to have prior knowledge
from different (related) tasks, thus making knowledge transfer a primary concern.

Main Research Problems

If we now go back to the goal of transfer in reinforcement learning, using the right ter-
minology (Taylor and Stone, 2009; Lazaric, 2012), the aim is to reuse the knowledge
gathered while facing a set of source tasks to simplify and speed up the learning process
of a related target task. At this point, some questions might arise in the reader’s mind.
(1) What knowledge should be transferred? “Knowledge” is a general concept which does
not specify what components of the past information have to be reused. (2) How should
knowledge transfer be performed? Injecting prior knowledge into a learning process might
be achieved in a multitude of different ways. (3) When should knowledge be transferred?
In other words, is it always safe and beneficial to reuse previous knowledge or are there
cases where it is better not to transfer? It turns out that an answer to these questions lies
at the core of all transfer methods and one of the aims of this thesis is indeed to provide a
better understanding on this matter.

The literature on transfer in reinforcement learning is vast (Taylor and Stone, 2009;
Lazaric, 2012), as we shall throughly survey in Chapter 3. While a variety of approaches
have been proposed with promising results, many open problems, concerning both prac-
tical and theoretical aspects, still exist. On the practical side, one of the long-standing
problems is to build transfer methods that are not tied to a specific setting or learning algo-
rithm, a property that does not hold for the majority of existing works. A related problem is
that of building scalable approaches. Recent advances in deep neural networks have made
progress on this matter by allowing methods with remarkable performance on complex
tasks (Zhu et al., 2020). For instance, meta-learning approaches (e.g., Duan et al., 2016;
Wang et al., 2016a; Finn et al., 2017) learn the reinforcement learning agent itself, and
hence its capabilities to transfer knowledge across domains. These neural-network-based
approaches often have at least two limitations. One is interpretability, i.e., it is often diffi-
cult to understand how and when knowledge is reused. The second is that, though there is
empirical evidence of reduced sample complexity for learning new tasks, this gain is often
reduced to a “task complexity”, i.e., the agent needs to face a large number of tasks before
successfully generalizing to new ones.

On the theoretical side, only few existing works provide formal guarantees on the
performance of the proposed methods (e.g., Mahmud et al., 2013; Zhan et al., 2016; Abel
et al., 2018, just to name a few). This is a primary concern in our setting since, as we shall
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see, careless knowledge transfer might even harm performance rather then improving it
(the so-called negative transfer issue). More generally, while theoretical studies exist (e.g.,
Lazaric and Restelli, 2011; Brunskill and Li, 2013; Azar et al., 2013a), the literature still
lacks a sufficient theoretical understanding of this problem. Several questions remain open,
including: what are the fundamental limits of transfer in reinforcement learning? How can
the agent extrapolate knowledge from solved tasks so as to ease its reuse in new problems?
How should an agent interact with a new task when provided with prior knowledge from
related problems?

Motivated by these open problems, in this thesis we offer a number of contributions
to the field of knowledge transfer in reinforcement learning. The common pattern behind
all the approaches we shall propose, and possibly behind the majority of transfer methods
in the literature, is the concept of structured domain that we introduce in Chapter 3 and
better discuss in Chapter 8. Informally, a structured domain is defined by a collection
of tasks together with a process generating them. Tasks in the same domain possibly
share some underlying structural properties, i.e., they have some similarities that enable
knowledge transfer. An agent that faces multiple tasks from the same domain should be
able to understand their hidden structure, so as to transfer this knowledge to improve the
learning process of new problems. 1

While framing everything in the context of structured domains, we study two comple-
mentary problems in the transfer literature:

(P1) How can the agent reuse experience samples collected while facing a set
of source tasks to speed-up the learning process of a new target task?

(P2) How should the agent generate new experience in the target task (i.e.,
how should it explore the new environment) given the available prior knowl-
edge?

We said that knowledge transfer aims at reducing the amount of experience needed for
learning new tasks. These problems describe perhaps the two main techniques to achieve
this: directly reuse experience from the source tasks to augment the one from the target,
or use it to figure out how to generate better experience from the target itself. In partic-
ular, the first problem is motivated by real-world scenarios where we need to learn some
target task with very limited access to the corresponding environment, while we have a
considerable amount of data from related problems/environments at our disposal. For in-
stance, we might be interested in building a self-driving car and possess navigation data
from many different vehicles; or we might want to control a power plant and have access
to the historical operations of other plants. In this context, one naturally wonders whether
it is really necessary to learn the target task from scratch or whether it is possible to reuse
the available data.

The second problem relates to the exploration-exploration dilemma lying at the core
of all reinforcement learning agents. While the dilemma is well-studied for agents that
learn tasks from scratch, how to properly explore a new environment when provided with
prior knowledge remains one of the key open questions. In particular, optimal exploration
strategies might significantly change under prior knowledge. For instance, in our car driv-
ing example, the agent does not need to explore the consequences of crashing the car to a

1Hence the title “exploiting structure for transfer in reinforcement learning”.
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wall since such situation is already known to be bad from past experience. On the contrary,
an agent learning the task from scratch necessarily needs to experience such situation in
order to label it as undesirable.

In this thesis, we study both practical and theoretical aspects related to these two prob-
lems. On the practical side, our aim is to build knowledge-transfer methods that can be
applied to high-dimensional continuous control problems without imposing restrictive as-
sumptions on the underlying reinforcement learning agents. On the theoretical side, our
aim is to advance the understanding of exploration under prior knowledge. This prior
knowledge might derive from exact knowledge of the underlying structured domain or
from its estimation from previous tasks.

Outline of Contributions

The thesis is organized in three parts, each studying the problem of knowledge transfer in
reinforcement learning from a different perspective. Before diving into our contributions,
we provide the foundations of reinforcement learning in Chapter 2, while in Chapter 3 we
introduce the knowledge transfer problem and summarize the current literature.

Part I. The first part deals with problem (P1) above. In particular, we design methods to
transfer experience samples (i.e., states, actions, and rewards collected from the interac-
tion with different environments) across tasks. We start by formalizing and motivating the
problem in Chapter 4, while discussing its main challenges. We then propose algorithms
for transferring experience samples in batch reinforcement learning (Chapter 5) and online
policy search (Chapter 6). For both settings, we follow the same pattern: we transfer all
the available samples, while weighting their contribution to the learning process using im-
portance sampling to compensate for the distribution mismatch between source and target
domains. This is in contrast to existing works, which either transfer samples directly with-
out accounting for distribution mismatch (Taylor et al., 2008), make strong assumptions
Laroche and Barlier (2017), or carry out an expensive sample selection process (Lazaric
et al., 2008b). Since computing the importance weights requires knowledge of the un-
known source/target environment models, we propose a sound technique to estimate these
quantities by directly reducing the mean square error of the resulting estimators. In both
settings, we provide theoretical insights one the performance of our methods and report
good empirical performance on continuous control tasks.

Part II. In the second part, we begin studying problem (P2) above from a practical per-
spective. In Chapter 7, we use ideas from randomized value functions (Osband et al., 2014,
2019) to design an algorithm that estimates a distribution over the optimal value functions
of tasks in the underlying structured domain and uses it as a prior to enable exploration
via posterior sampling in new tasks. Since computing the corresponding posterior given
target samples is intractable in most cases of practical interest, we propose an efficient
variational approximation (Blei et al., 2017). Notably, the generality of our design allows
our algorithm to be combined with complex value-function approximators (such as neural
networks) and posterior distribution classes. We theoretically study the finite-sample prop-
erties of this approximation and report good results on increasingly-complex continuous
domains.
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Part III. In Part III we address (P2) from a theoretical perspective. In Chapter 8, we
start by better formalizing the problem of transfer in structured domains. We use existing
ideas (Brunskill and Li, 2013; Azar et al., 2013a) to decompose the problem in two sub-
problems: (1) learning structure from previous tasks and (2) exploiting structure to quickly
learn new tasks. We focus on the second sub-problem for the case where the structure is
exactly known and for the one where it is only approximate (e.g., learned from experi-
ence). In Chapter 9, we consider a multi-armed bandit problem with known structure in
a general form and design an arm-elimination strategy that exploits the given structure to
quickly discard sub-optimal arms. Our theoretical results, differently from those of previ-
ous works (Azar et al., 2013a; Lattimore and Munos, 2014), clearly show the performance
gain obtained by using prior knowledge while still certifying that our algorithm never per-
forms worse than an unstructured baseline (UCB, Auer et al. (2002a)). In Chapter 10, we
restrict our attention to structures where the rewards are linear functions of given features
and unknown parameters. We design a computationally-efficient incremental algorithm
that is asymptotically optimal (in a problem-dependent sense) for this specific structure,
while providing finite-time guarantees on its performance. In Chapter 11, we consider
the problem of best policy identification in Markov decision processes with approximate
structure. Under the assumption that a generative model of the target task is accessible,
we design an algorithm that actively demands samples from state-action pairs that yield
high information for finding a near-optimal policy. We derive an upper bound to its sample
complexity that certifies how the algorithm exploits the approximate structure while never
resulting worse than baselines not using structure at all.

We conclude in Chapter 12 with a brief summary of our main results and with possible
directions for future research.

List of Publications

This thesis is based on 6 first-author publications in the main machine learning venues.
The list of these publications, together with the chapters of this document in which they
are presented, is as follows. In all these works, the leading author contributed to the design
of the algorithms, their theoretical analysis, the empirical evaluation, and the realization
of the manuscript.

• Chapter 5. “Importance Weighted Transfer of Samples in Reinforcement Learning”.
Co-authored with Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Published at
ICML 2018.

• Chapter 6. “Transfer of Samples in Policy Search via Multiple Importance Sam-
pling”. Co-authored with Mattia Salvini and Marcello Restelli. Published at ICML
2019.

• Chapter 7. “Transfer of Value Functions via Variational Methods”. Co-authored
with Rafael Rodriguez Sanchez and Marcello Restelli. Published at NeurIPS 2018.

• Chapter 9. “A Novel Confidence-Based Algorithm for Structured Bandits”. Co-
authored with Alessandro Lazaric and Marcello Restelli. Published at AISTATS
2020.
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• Chapter 10. “An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Linear Contextual Bandits” . Co-authored with Matteo Pirotta, Marcello Restelli,
and Alessandro Lazaric. Published at NeurIPS 2020.

• Chapter 11. “Sequential Transfer in Reinforcement Learning with a Generative
Model”. Co-authored with Riccardo Poiani and Marcello Restelli. Published at
ICML 2020.
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CHAPTER2
Reinforcement Learning

In this chapter, we provide the foundations of reinforcement learning and discuss the main
algorithms. Of course, there is not enough space to discuss such a vast literature, so we
shall focus on the main topics that are relevant to this thesis. The presentation follows
those of the most popular books on this topic (Szepesvári, 2010; Sutton and Barto, 2018).
In Section 2.1, we start by describing Markov decision processes, the mathematical model
for the agent-environment interaction described in the introduction. Then, we directly dive
into reinforcement learning algorithms, from exact solutions (Section 2.3 to sample-based
tabular (Section 2.4) and approximate (Section 2.5) methods. We conclude in Section 2.6
with an introduction of stochastic multi-armed bandits (Lattimore and Szepesvári, 2020),
a class of simpler reinforcement learning problems which will be the focus of the final part
of the thesis.

Markov Decision Processes

Markov decision processes (MDPs) are the core mathematical model of the sequential
decision-making problems introduced in the previous chapter. Here we provide their ex-
plicit formulation together with the basic results on top of which most reinforcement learn-
ing algorithms are built. We shall use standard notation and concepts from the main books
on this topic (Puterman, 2014; Bertsekas, 2001; Sutton and Barto, 2018; Szepesvári, 2010).

Definition 2.1.1 (Markov decision process (MDP)). A Markov decision process is a tuple
M := (S,A, P, ρ, γ), where
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• S is a measurable state space;

• A is a measurable action space;1

• P : S × A → P(S × R) is the transition probability kernel. When evaluated at
(s, a) ∈ S × A, the mapping P yields a probability measure over the possible next
state and reward;2

• ρ ∈ P(S) is the initial state distribution which provides the probability of the system
starting in any state;

• γ ∈ [0, 1] is the discount factor.

The state and action spaces can be either finite or infinite (see also Chapter 2 of Puter-
man (2014)). In the first case, we say that the MDP is finite. In the second case, the most
common assumption involves compact subsets of some Euclidean space, and we say that
the MDP is continuous. We shall work under the latter assumption in the first two parts of
this thesis. Note, however, that most of our results hold for more general Borel-measurable
spaces. Occasionally, especially when discussing existing literature, we use notation and
results for finite MDPs, which will be stated explicitly unless clear from the context.

MDPs model discrete-time stochastic processes that are partially controlled by the
agent. In fact, the agent is allowed to take actions, while the evolution of states and re-
wards, as a function of the chosen actions, is governed by the environment. The process
starts at time t = 0, where the initial state S0 ∼ ρ is drawn from the initial state distri-
bution ρ. After observing S0, the agent takes the first action A0. Then, the next state and
reward (S1, R1) ∼ P (·|S0, A0) are drawn from the transition kernel P , and the process is
repeated. The sequence of states, actions, and rewardsHt := (S0, A0, S1, R1, . . . , St, Rt)
is called t-step history. The set of such histories is denoted by Ht. Note that, in an MDP,
the distribution of the next state and reward is fully characterized given the current state
and action, and it does not depend on any variable before the current time step. This is
referred to as the Markov property (hence the name “Markov decision process”).

Given a sequence of states, actions, and rewards as above, we can define the discounted
return up to some horizon T as the random variable

GT :=

T−1∑
t=0

γtRt+1. (2.1)

The decision-maker is concerned with maximizing this variable through the choice of
its actions, as we shall discuss in more details later. The discount factor γ gives more
importance to rewards obtained in earlier steps as opposed to later ones. More precisely,
the contribution of each single reward to the discounted return decays exponentially with
t if γ ∈ (0, 1) and remains constant if γ = 1. The horizon T can be either finite (T <∞),
in which case the MDP is called finite-horizon, or infinite (T = ∞), and the MDP is
called infinite-horizon. There exists a popular class of MDPs called episodic in which each
sequence of states eventually ends up in a terminal or absorbing state, i.e., a state from

1According to the most general formulation (Puterman, 2014), the space of available actions might depend
on the current state. For the sake of simplicity, we use the standard formulation with a fixed action space.

2We recall that P(Ω) denotes the set of probability measures over a generic set Ω.
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which the system cannot escape and where the reward is always zero. More formally, if
the agent is in state St at time t and St is terminal, then Rt+u = 0 and St+u = St for
all u ∈ {1, 2, . . . }. Here the term episode (or trajectory) refers to a sequence of states,
actions, and rewards terminating into an absorbing state. Let S̄ ⊂ S be the subset of
absorbing states. Then, with some abuse of notation, we can define the random variable

T := min
t≥0
{t|St ∈ S̄}, (2.2)

namely the first time step in which the agent ends up in an absorbing state. This acts as
an effective horizon in episodic MDPs, such that G∞ = GT . In this thesis, we focus on
infinite horizon MDPs and, in some cases, we restrict our attention to episodic ones. In the
first case, we require γ ∈ [0, 1) to make sure the discounted return is well-defined.

The transition kernel plays a fundamental role in this framework as it directly gov-
erns the system dynamics (i.e., the temporal evolution of the process). From the joint
state-reward formulation of Definition 2.1.1, we can immediately extract several useful
components. First, by marginalizing over rewards we obtain the state-transition probabil-
ity kernel,

P (·|s, a) :=

∫
R
P (·,dx|s, a), (2.3)

where, with some abuse of notation, we use the same symbol as the full transition kernel.
The distinction is clear from the missing reward argument. Similarly, the other marginal
yields the reward kernel,

U(·|s, a) :=

∫
S
P (ds′, ·|s, a). (2.4)

The immediate expected reward received after taking action a in state s is

r(s, a) := E [Rt+1|St = s,At = a] =

∫
R
U(dx|s, a)x. (2.5)

We shall consider the following standard assumption on the boundedness of rewards.

Assumption 2.1.1. The random rewards are bounded almost surely, i.e., there exists a
constant rmax > 0 such that |Rt+1| ≤ rmax holds with probability one for each t ∈
{0, 1, 2, . . . }.

An immediate implication is that ‖r‖∞ = sups∈S,a∈A |r(s, a)| ≤ rmax also holds.

Policies and Decision Rules
The behavior of the agent (i.e., how actions are chosen) is specified by means of a control
policy (or just policy), i.e., a set of decision rules specifying what actions to take at each
time steps. Formally, a decision rule at time t is a mapping πt : Ht → P(A) that, given a
t-step history, produces a probability measure over actions. A decision rule can be history-
dependent, if the action distribution depends on the history up to time t, or Markov, if it
only depends on the last observed state. Similarly, a decision rule can be deterministic, if
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it assigns probability mass to a single action in A, or stochastic otherwise. A policy π is
simply a collection of decision rules, one for each time step, π := {πt}t≥0. Depending on
the type of its decision rules, a policy inherits the same classification (history-dependent vs
Markov and deterministic vs stochastic). Furthermore, a policy is stationary if its decision
rules are all equivalent, in which case we write π to directly denote the mapping from
histories/states to actions. We say that the agent follows or executes policy π when its
actions are chosen according to π, i.e., At ∼ π(·|Ht). In this thesis, we only consider
stationary Markov policies. When deterministic, with some abuse of notation, we write
π(s) to denote the action prescribed in state s ∈ S. Finally, we use ΠSD (ΠSR) to denote
the set of all stationary Markov deterministic (randomized) policies.

Value Functions and Optimality
Value functions play a fundamental role in solving MDPs. Specifically, they provide the
expected discounted return that the agent obtains when following a certain policy π starting
from some state or state-action pair.

Definition 2.1.2 (Value function). Let π be a policy and s ∈ S be any state. The value
function of π when starting from s is

V π(s) := E

[ ∞∑
t=0

γtRt+1

∣∣∣ S0 = s

]
, (2.6)

where the expectation is taken under At ∼ π(·|St) and (Rt+1, St+1) ∼ P (·, ·|St, At) for
all t ≥ 0.

We say that the value function V π provides an evaluation of policy π, in the sense
that it provides the expected performance of an agent following π for any starting state.
Similarly, we can define the action-value function as follows.

Definition 2.1.3 (Action-value function). Let π be a policy, s ∈ S be any state, and a ∈ A
be any action. The action-value function of π when starting from s and taking a in the first
step is

Qπ(s, a) := E

[ ∞∑
t=0

γtRt+1

∣∣∣ S0 = s,A0 = a

]
, (2.7)

where the expectation is taken under At ∼ π(·|St), for all t ≥ 1, and (Rt+1, St+1) ∼
P (·, ·|St, At) for t ≥ 0.

Similarly to V π(s), Qπ(s, a) provides the expected discounted reward of an agent that
starts in state s, takes action a, and follows π thereafter. The action-value function is also
referred to as Q-function. We shall use this alternative nomenclature later on.

Generally speaking, solving an MDP requires finding an optimal policy π?, i.e., a
policy that maximizes the expected return at all states (if there exists one), so that

∀s ∈ S : V π
?

(s) = sup
π∈ΠSR

V π(s).

14



2.1. Markov Decision Processes

To this purpose, it is convenient to define the optimal value function and the optimal action-
value function respectively as

V ?(s) := sup
π∈ΠSR

V π(s), (2.8)

Q?(s, a) := sup
π∈ΠSR

Qπ(s, a). (2.9)

The suprema above are with respect to the general set of stationary stochastic policies,
though it is known that deterministic ones actually suffice (Bertsekas, 2001; Puterman,
2014). In particular, acting greedily with respect to Q? induces optimal behavior. More
formally, we say that a deterministic policy π is greedy with respect to some action-value
function Q if

π(s) = argmax
a∈A

Q(s, a)

holds for all s ∈ S (and under the assumption that the maximum is attained). Then, we
have that π? is greedy with respect to Q?.

While the one mentioned above is the standard optimality criterion for infinite-horizon
discounted MDPs, there exists a weaker and widely-adopted notion of optimality for the
specific case of episodic MDP, where each episode/trajectory terminates almost surely.
Instead of seeking a policy that maximizes the value function uniformly at all states, we
seek one that maximizes the expected value function under the initial state distribution.

Definition 2.1.4 (Expected discounted return). The expected discounted return of a policy
π is

J(π) := E

[
T−1∑
t=0

γtRt+1

]
, (2.10)

where the expectation is taken with respect to S0 ∼ ρ, At ∼ π(·|St), and (Rt+1, St+1) ∼
P (·, ·|St, At) for t ≥ 0. By the tower rule of expectation, we also have that J(π) :=
ES0∼ρ[V

π(S0)].

Then, the optimal policy π? according to the alternative optimality criterion is such
that

J(π?) = sup
π∈ΠSR

J(π).

In this thesis, we shall consider both optimality criteria and switch between them according
to the specific context.

Bellman Equations and Operators
The Bellman equations (Bellman, 1954) constitute one of the fundamental results towards
the solution of MDPs. We start from the equations for policy evaluation, which allow to
find the value function of a given policy.
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Proposition 2.1.1 (Bellman equations). Let π be any policy, then

Qπ(s, a) = r(s, a) + γ

∫
S
P (ds′|s, a)V π(s′), (2.11)

V π(s) =

∫
A
π(da|s)Qπ(s, a). (2.12)

Intuitively, the action-value function of π evaluated at (s, a) can be computed by sum-
ming the immediate expected reward obtained when executing a in s and the expected
(discounted) value achieved by π in the next random state. Similarly, the value function
of π evaluated at s is simply the expectation of Qπ(s, a) when a is randomly chosen by
π. These two equations can be rewritten in a more convenient form using the notion of
Bellman operator.

Definition 2.1.5 (Bellman operators). Let π be any policy and V ∈ B(S) be any value
function. The Bellman operator Tπ : B(S)→ B(S) for the value function is defined as3

(TπV )(s) :=

∫
A
π(da|s)

(
r(s, a) + γ

∫
S
P (ds′|s, a)V (s′)

)
. (2.13)

Similarly, for Q ∈ B(S × A) and with some abuse of notation, the Bellman operator
Tπ : B(S ×A)→ B(S ×A) for the action-value function is defined as

(TπQ)(s, a) := r(s, a) + γ

∫
S
P (ds′|s, a)

∫
A
π(da′|s′)Q(s′, a′). (2.14)

Using these operators, it is easy to see that the Bellman equations of Proposition 2.1.1
can be rewritten as TπV π = V π and TπQπ = Qπ . In other words, the value function V π

and the action-value function Qπ are fixed-points of their respective operators. Note that
the notation TπV can be interpreted as the function resulting from the application of Tπ to
V . One of the key properties of these operators is that, for γ < 1, they are γ-contractions
with respect to the l∞-norm. That is, if V, V ′ : S → R are any two value functions, then

‖TπV − TπV ′‖∞ ≤ γ‖V − V ′‖∞, (2.15)

and the same holds for the action-value functions.
Analogously to the case of a fixed policy π, we can define the Bellman optimality

equations and operators, which allow computing the optimal policy and value functions of
an MDP.

Proposition 2.1.2 (Bellman optimality equations). The optimal value function V ? and
action-value function Q? satisfy

Q?(s, a) = r(s, a) + γ

∫
S
P (ds′|s, a)V ?(s′), (2.16)

V ?(s) = sup
a∈A

Q?(s, a). (2.17)

3Note that, in order to keep consistent notation with the literature, we use the symbol T to denote both
Bellman operators and the learning horizon. The distinction is clear from the fact that the former ones always
come with a superscript.
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2.2. Taxonomy of Reinforcement Learning Methods

Definition 2.1.6 (Bellman optimality operators). Let V ∈ B(S) andQ ∈ B(S×A) be any
value function and action-value function, respectively. The Bellman optimality operators
T ? : B(S)→ B(S) and T ? : B(S ×A)→ B(S ×A) are respectively defined as

(T ?V )(s) = sup
a∈A

(
r(s, a) + γ

∫
S
P (ds′|s, a)V (s′)

)
, (2.18)

(T ?Q)(s, a) = r(s, a) + γ

∫
S
P (ds′|s, a) sup

a′∈A
Q(s′, a′). (2.19)

As before, we have that V ? and Q? are fixed-points of the corresponding operator, i.e.,
V ? = T ?V ? and Q? = T ?Q?. Moreover, these operators are still γ-contractions with
respect to the l∞-norm.

Taxonomy of Reinforcement Learning Methods

As we already mentioned before, solving an MDP means finding an optimal (or approx-
imately optimal) policy. When the MDP is fully known (i.e., all of its components are
known), this problem is often referred to as planning. It is important to note that planning
is not a learning problem since no experience/data is involved, while the focus is mostly
on the computational aspect. The majority of planning algorithms fall under the class of
dynamic programming methods (Bellman, 1954). We shall review some of them in the
next section as they provide the basic ideas at the core of many reinforcement learning
algorithms.

Differently from planning, reinforcement learning is concerned with learning an opti-
mal policy when the MDP dynamics are not known a priori but it is possible to interact
with the environment. In general, the agent knows the state and action spaces and the
discount factor, but it does not have access to the (joint) transition probability kernel P
and the initial state distribution ρ. In some cases, the immediate expected reward r(s, a),
or r(s, a, s′), might be known, yet the state-transition probabilities are always unknown.
The possibility to interact with the environment means that the agent, at each step t, is in
some St, takes an actionAt (e.g., by executing a policy), and observes its effect, i.e., a new
state St+1 and a reward Rt+1. Though the agent does not fully know the MDP model, it
can use these experience samples to understand how the MDP works and, consequently,
to compute an optimal policy.

In the introduction, we briefly mentioned some of the fundamental problems that are
faced by a reinforcement learning agent, including the exploration-exploitation dilemma,
delayed rewards, and credit assignment. There exist two additional challenges, which are
more easily understood now that we provided the basics of MDPs. (1) Approximation:
when dealing with MDPs with large or continuous state-action spaces, it might not be pos-
sible to exactly represent the quantities of interest (e.g., a policy or a value function). In
this case, the agent has to rely on function approximation. The choice of the specific func-
tional space plays a fundamental role in determining the quality of the resulting solution
(Szepesvári, 2010, Section 3.2.4). (2) Estimation: since solving an MDP mostly involves
the computation of certain statistics (in particular, expected values) under the distributions
induced by the MDP, this cannot be done exactly when the latter is unknown. In this case,
the agent has to rely on sample-based approximations and finding good estimators for the
relevant quantities is crucial.
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The literature on reinforcement learning is extremely wide and the next sections only
introduce those settings/algorithms that are relevant to this thesis. Nevertheless, before
diving in, it is important to become familiar with the main terminology and with the taxon-
omy of reinforcement learning methods. Though later chapters only focus on very specific
settings, these terms will be recurrent throughout the whole document.

Evaluation vs control problems The problem of policy evaluation consists in assessing
the performance of a given policy π. More precisely, the aim is to compute either the value
function V π (equivalently, the action-value function Qπ) or the expected return J(π).
Control, on the other hand, refers to the main problem of finding an optimal policy (i.e.,
of solving the MDP).

Tabular vs approximate methods Reinforcement learning methods for finite MDPs
that exactly represent policies and/or value functions are called tabular. The name comes
from the fact that these quantities can indeed be stored in a table (e.g., a value function
is a |S|-dimensional array while a policy is a |S| × |A| matrix). Approximate methods,
on the other hand, do not represent these quantities explicitly but rather use function ap-
proximation. For instance, an action-value functionQ could be linearly parametrized, e.g.,
Q(s, a) = φ(s, a)Tω for features φ and parameters ω; alternatively, it is possible to use
non-parametric estimators, such as nearest-neighbors or trees. In all cases, it is no longer
necessary to store a single value for each state-action pair, even when the MDP is finite.

Value-based vs policy search vs actor-critic methods Value-based algorithms focus on
computing/approximating a value function and typically do not explicitly model a policy.
For instance, in a control problem a common goal is to find the optimal action-value func-
tion Q?, from which optimal behavior can be extracted by acting greedily as described
before. On the other hand, policy search methods directly look in the space of policies,
usually without modeling any value function. Here it is common to consider parametrized
stochastic policies πθ(a|s), where θ ∈ Θ is some parameter, and seek the optimal param-
eters maximizing the objective function under consideration (e.g., the expected return).
Finally, actor-critic algorithms refer to a combination of these two settings. In particular,
they both learn a (parametrized) policy, which is known as the actor, and a (parametrized)
value function, which is known as the critic. The actor is constantly improved towards
higher returns, while the critic evaluates its performance. Therefore, the learning pro-
cesses of these two components are tightly connected.

On-policy vs off-policy algorithms An algorithm is said on-policy if the policy that is
being learned is also the one that is used to interact with the environment. On the other
hand, in an off-policy algorithm these two policies differ. For instance, in the case of policy
evaluation, the agent might interact with the environment using some behavioral policy πb
with the aim of evaluating a target policy π. When πb 6= π, we say that we are performing
off-policy evaluation, and conversely when πb = π.

Online vs batch methods In an online algorithm, learning and interaction are inter-
leaved. In particular, the agent collects some experience by interacting with the environ-
ment (no matter whether on- or off-policy), uses it to learn something (e.g., improve or
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evaluate its policy), and repeats this process over and over. In a batch setting, on the other
hand, the agent is only provided with a finite batch of data, typically in the form of tuples
(S,A, S′, R), where (S′, R) ∼ P (·, ·|S,A), and cannot interact with the environment or
request more data. Therefore, learning must be carried out without explicit interaction.

Model-based vs model-free algorithms A model-based algorithm learns the dynamic
model (e.g., the transition kernel) of the underlying MDP. These models can then be used
for planning, to simulate experience, and more. Conversely, a model-free algorithm learns
entirely from the collected experience samples, without ever modeling/approximating the
MDP components.

Fully-observable vs partially-observable environments At the beginning of this chap-
ter, when we first introduced MDPs, we mentioned that the agent directly observes the
state St at all time steps. This is the case of a fully-observable environment. However, this
property is not always verified in practice and one often observes only part of the state. For
instance, in a self-driving car, the state might include the positions of the other vehicles
nearby, but not all of them might be directly observed due to the presence of obstacles,
such as buildings, trees, and so on. Environments where this happens are called partially
observable and they are modeled by means of a partially observable Markov decision pro-
cess (POMDP, Monahan, 1982; Cassandra, 1998; Spaan, 2012). In this thesis, we shall
only consider fully-observable environments.

Exact Solution Methods

In this section, we describe some of the basic exact solution methods for MDPs. The
term “exact” refers to the fact that we know all the MDP components (in particular, the
transition kernel P ) and our goal is to either compute the value function of a given policy
(for evaluation problems) or the optimal policy/value function (for control problems).

Policy Evaluation
Policy evaluation is the problem of computing the value function (or the action-value func-
tion) of a given policy π. Suppose, for simplicity, that we are interested in computing V π

(the computation of Qπ follows straightforwardly). Since the MDP is known, we can use
the fixed-point characterization of V π . This property, in conjunction with the contraction
of the Bellman operator Tπ for γ < 1, allows us to utilize the following iterative scheme.
We start from an arbitrarily initialized value function V0. At each iteration k, we apply the
Bellman operator to obtain the next value function,

Vk+1 = TπVk. (2.20)

Banach’s fixed-point theorem ensures that the sequence {Vk}k≥0 converges to V π (i.e.,
the fixed-point of Tπ) at a geometric rate. To see this,

‖Vk − V π‖∞
(a)
= ‖TπVk−1 − TπV π‖∞

(b)

≤ γ‖Vk−1 − V π‖∞
(c)

≤ · · · ≤ γk‖V0 − V π‖∞,
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where (a) uses the update rule for Vk and the fixed-point property of V π , (b) uses the
contraction of Tπ , and (c) applies these steps recursively. Besides working beyond finite
MDPs, this approach only requires the iterative application of the Bellman operator. Fur-
thermore, one can freely decide when to stop and obtain a desired level of accuracy in the
solution. Using the same properties of Vk and Tπ as above, it is easy to show that

‖Vk − V π‖∞ ≤
1

1− γ ‖Vk − Vk+1‖∞,

so that one can use the deviation ‖Vk − Vk+1‖∞ between the value functions computed at
two consecutive iterations (which is directly observable) to assess how far Vk is from V π .
This, in turn, can be used as a stopping condition to ensure the desired accuracy.

Policy and Value Iteration
Policy iteration. We now consider control problems, where the goal is to find an optimal
policy or value function. The policy evaluation discussed before constitutes one of the
two building blocks of the policy iteration algorithm. The idea is quite simple. We start
from an arbitrary policy π0 and we evaluate it to find V π0 (or Qπ0 ). We use the value
function to figure out how to change π0 to increase its performance (i.e., its value at all
states) and obtain a new policy π1. This is called the policy improvement step. Then, this
process is repeated until convergence to an optimal policy. We already discussed the policy
evaluation step in the previous section, so let us focus on policy improvement. Consider
two deterministic policies π and π′. The policy improvement theorem (Sutton and Barto,
2018) states that, if Qπ(s, π′(s)) ≥ V π(s) holds for all s ∈ S, then V π

′
(s) ≥ V π(s)

must also hold for all s ∈ S. Intuitively, this result states that, if the actions prescribed
by π′ are globally no worse than those prescribed by π (according to the evaluation of
π), then π′ itself is globally no worse than π. Suppose that πk is the current policy to
be improved and we have access to Qπk . The policy improvement theorem suggests that
πk+1 should maximize Qπk(s, ·) at all states. This can be achieved by setting πk+1 to the
greedy policy with respect to Qπk , which is what policy iteration does. Overall, policy
iteration computes a sequence of policies and value functions

π0
eval−−→ Qπ0

greedy−−−→ π1
eval−−→ . . .

greedy−−−→ πk

such that πk is never worse than the previous policy πk−1.

Value iteration. One of the limitations of policy iteration is that it requires to evaluate
multiple policies. In practice, this can be a quite expensive procedure and often unneces-
sary. In fact, since each policy evaluation step is itself an iterative procedure, it is often
possible to stop evaluating after few iterations without severely affecting the policy im-
provement. Algorithms that interleave the policy evaluation and improvement processes
without necessarily waiting for their convergence are classified as generalized policy iter-
ation.

The extreme case is when we stop the evaluation after a single iteration. The resulting
algorithm is known as value iteration and its update rule, which combines one step of pol-
icy evaluation and policy improvement, is equivalent as applying the Bellman optimality
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operator T ? to the current value function. Thus, value iteration starts from an arbitrarily
initialized action-value function Q0 (equivalently, value function V0) and, at each iteration
k ≥ 0, uses the update rule

Qk+1 = T ?Qk (or Vk+1 = T ?Vk). (2.21)

Note that this procedure is exactly the one presented for policy evaluation, except that
we apply the Bellman optimality operator. Differently from policy iteration, here there is
no explicit policy being computed at each step. However, the final (optimal) policy can
be extracted as the greedy one with respect to the returned action-value function Qk+1.
The quality of the policies returned by policy iteration is in general better than the one
of those returned by value iteration after the same number of iterations and when starting
from the same initial value functions (Szepesvári, 2010). However, the latter algorithm is
computationally much more efficient.

Tabular Learning Methods

We now review some of the basic tabular methods which, together with the exact methods
described in the previous section, lie at the core of most modern reinforcement learning
algorithms. We recall that tabular methods are designed only for finite MDPs, which are
thus considered in the rest of this section.

Monte Carlo Methods
Monte Carlo (MC) methods are perhaps the simplest form of reinforcement learning al-
gorithms. The main idea is to estimate value functions by averaging the returns of trajec-
tories/episodes collected while interacting with the environment. As such, Monte Carlo
methods are suitable for episodic problems (where each episode indeed terminates).

Evaluation problems Let us start from a simple policy evaluation problem, where the
goal is to estimate the expected return of a given policy π. Suppose we execute π in the
environment for n episodes and observe the resulting trajectories {τi}ni=1, where τi =
(Si,0, Ai,0, Si,1, Ri,1, . . . , Si,Ti , Ri,Ti). Then, the Monte Carlo estimator for the expected
return J(π) is

Ĵn(π) :=
1

n

n∑
i=1

Ti−1∑
t=0

γtRi,t+1. (2.22)

This is effectively the average of n i.i.d. samples, i.e., the returns Gi :=
∑Ti−1
t=0 γtRi,t+1.

As such, it is unbiased, i.e., E[Ĵn(π)] = J(π), and has variance Var[Ĵn(π)] = Var[G]
n .

Therefore, by the law of large numbers, Ĵn(π) converges to J(π) as n tends to infinity.
Let us now complicate the problem a little and suppose we want to find the value

function V π instead of Jπ . The idea remains the same: if we want to estimate V π(s) for
some state s ∈ S, we simply average the sample returns starting from those time steps
where s is observed (i.e., St = s). Since s might occur more than once in each episode,
we have two possibilities. (1) In first-visit Monte Carlo, we only average the returns after
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the first occurrence (also known as visit) of s in each trajectory. Any other occurrence is
discarded. Similarly to the previous problem, first-visit MC is unbiased since it averages
i.i.d. random variables. (2) In every-visit Monte Carlo, the returns after all occurrences of
s are averaged. The resulting estimator is no longer unbiased in general, but might have
lower variance since it averages more variables than first-visit MC. Both first-visit and
every-visit MC have been shown to converge to V π(s) when the number of visits to s goes
to infinity (Sutton and Barto, 2018).

Control Problems Generalizing Monte Carlo evaluation to control problems, where the
aim is to find the optimal policy, is relatively easy by using the generalized policy iteration
(GPI) scheme of the previous section. First, notice that Monte Carlo policy evaluation can
be easily generalized to estimate action-value functions simply by averaging the returns
after each visit to a specific state-action pair. Then, a Monte Carlo GPI scheme could
work as follows. We start from some policy π0 and execute it in the environment for
one or more episodes. Then, we use the observed returns to get a rough estimation of
its action-value function Qπ0 , find the new policy π1 by greedy policy improvement, and
repeat this process until convergence. However, here we face a subtle complication that
was not present in exact GPI: once the policy becomes deterministic (e.g., after one step
of greedy improvement), only one action is taken in each state (e.g., the greedy one) and
so it is not possible to get a reliable estimate of Qπ for the other actions. Unfortunately,
estimating the value of all actions is fundamental to perform policy improvement and so an
approach in this form cannot work. This is indeed the first of a myriad of problems where
the exploration-exploitation dilemma arises: on the one hand, we would like the policy to
be highly stochastic, so that we can guarantee sufficient exploration to reliably estimate the
value of all actions; on the other hand, we would like the policy to be nearly deterministic,
so that it can exploit the current knowledge and collect high rewards. This conflict is
typically resolved by forcing some stochasticity in the policy that is being learned. Two
common ways to achieve this are ε-greedy and Boltzmann exploration. Let Q be the
current action-value function estimate. For ε ∈ [0, 1], an ε-greedy policy with respect to Q
is

π(a|s) =

{
1− ε+ ε

|A| if a = argmaxa′∈AQ(s, a′),
ε
|A| otherwise.

(2.23)

That is, π chooses a random action with probability ε and the greedy action with respect
to Q otherwise. A Boltzmann policy is defined as

π(a|s) =
eQ(s,a)/η∑

a′∈A e
Q(s,a′)/η

, (2.24)

where η > 0 is called temperature. In this case, the policy assigns more probability to
actions with larger values and converges to the greedy one for η → 0. In both types
of exploration, the policy ensures that all actions are taken with non-zero probability. A
common practice is then to run the Monte Carlo control algorithm with either of these
policies and make the corresponding exploration parameter (ε or η) slowly approach zero
with the number of iterations.

22



2.4. Tabular Learning Methods

Temporal-Difference Learning
One of the limitations of Monte Carlo methods is that they cannot learn from incomplete
episodes, i.e., they must wait until the end of the episode to get a sample return and perform
an update. Temporal-difference (TD) methods resolve this issue by allowing updates after
each single transition. Once again, let us consider first an evaluation problem for policy π.
Suppose the agent is in state St, takes action At ∼ π, and observes St+1 and Rt+1. If V
is the current guess for the value function of π, the TD update rule is

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)), (2.25)

where α is a tunable parameter that can be regarded as a learning rate. Intuitively, the
current value V (St) is moved towards the target Rt+1 + γV (St+1). The term inside the
round brackets in 2.25 is called the TD error and roughly indicates how well the current
value estimate matches its target.

It is known that the MC update could be rewritten in the same form as 2.25 with the
return Gt until the end of the episode as target. From the Bellman equations, we have that
the MC and TD target match in expectation if V = V π , i.e.,

V π(s) = E[Gt|St = s] = E[Rt+1 + γV π(St+1)|St = s]. (2.26)

However, since in general V 6= V π , the TD target is biased. Nevertheless, the TD up-
date has often much lower variance since it only involves the randomicity of a one-step
transition, while MC suffers that of a full episode.

The extension of the evaluation method to control problems is straightforward given
the discussion of the previous section. Here we discuss the two main algorithms, the first
on-policy (Sarsa) and the second off-policy (Q-learning).

Sarsa Sarsa is an on-policy control method that directly implements the GPI scheme as
we have seen for MC control, except that the evaluation step is performed by an incre-
mental TD update. In particular, Sarsa maintains and estimate Q of the current policy’s
action-value function. Given a tuple (St, At, St+1, Rt+1, At+1), where actions are taken
by the policy π that is being learning, the TD update is

gt ← Rt+1 + γQ(St+1, At+1)−Q(St, At), (2.27)

Q(St, At)← Q(St, At) + αgt. (2.28)

As before, the policy can be anything that guarantees sufficient exploration while slowly
converging to deterministic behavior, such as ε-greedy or Boltzmann. Convergence have
been established under the condition that all state-action pairs are visited an infinite num-
ber of times and that the policy becomes greedy in the limit (Singh et al., 2000).

Note that the update rule of Equation 2.27-2.28 involves the random actionAt+1 at the
next time-step. Since the Bellman equation, which ideally establishes the target, involves
an expectation of Qπ over the next action and the policy is known, it is possible to directly
calculate such expectation in the update rule,

gt ← Rt+1 + γ
∑
a∈A

π(a|St+1)Q(St+1, a)−Q(St, At), (2.29)

which removes the necessity of knowing At+1. The resulting algorithm is known as ex-
pected Sarsa.
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Q-Learning Q-learning (Watkins, 1989) is an off-policy TD control method. Differently
from Sarsa, its aim is to directly estimate the optimal action-value function Q? rather than
the value function of the adopted policy. The update rule is, regardless of how actions are
chosen,

gt ← Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At), (2.30)

Q(St, At)← Q(St, At) + αgt. (2.31)

This rule is similar to the one used by Sarsa, except for the maximization of Q over ac-
tions in the next state, which resembles an application of the Bellman optimality operator.
Despite its simplicity, several convergence results have been established (Jaakkola et al.,
1994; Tsitsiklis, 1994; Szepesvári, 1998; Melo, 2001). More recently, it has been shown
that Q-learning in combination with classic exploration techniques achieves sub-linear re-
gret (Jin et al., 2018; Yang et al., 2020).

Approximate Methods

So far we have seen how to deal with one of the two challenges introduced in Section
2.2, estimation, for tabular methods that work in small finite MDPs. Here we relax this
assumption and go back to the general case of continuous MDPs, which requires dealing
with the second challenge, approximation. We start from value-based algorithms since
most of them directly extend the (exact) dynamic programming methods of Section 2.3.
We shall discuss modern policy search and actor-critic algorithms in the sections thereafter.

Value-Based Methods
In general, value-based methods fall under the class of approximate dynamic programming
(ADP), a family of algorithms that combine the exact solution methods of Section 2.3 with
function approximation. The idea is to represent value functions in some functional space
F , with the main advantage being that large or even infinite state spaces can be easily
handled for properly-chosen F . The goal is to find a function f ∈ F that approximates
well the optimal value function V ? or action-value function Q?.

Fitted Q-Iteration

Fitted Q-Iteration (FQI, Ernst et al., 2005) is perhaps the most popular algorithm in the
family of ADP. FQI is a batch model-free approach for control that seeks an approximation
to the optimal action-value function Q? given only a finite dataset of n sample transitions
D = {(Si, Ai, Ri, S′i)}ni=1 and with no environment interaction allowed. The idea is quite
simple. Given the hypothesis space F , FQI starts from an initial value function Q0 ∈ F .
At each iteration k ≥ 0, FQI approximates the application of the Bellman optimality
operator to Qk by solving a supervised learning problem. More precisely, this is achieved
by building a regression problem from D and Qk, where the i-th covariate is (Si, Ai) and
the i-th target is Yi := Ri + γmaxa∈AQk(S′i, a). The next approximate value function
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Algorithm 1 Fitted Q-Iteration (FQI)

Require: Number of iterations K, dataset D = {(Si, Ai, Ri, S′i)|i = 1, . . . , n}, hypothe-
sis space F

Ensure: Greedy policy πK
Initialize value function: Q0 ← 0
for k = 0, . . . ,K − 1 do

Build regression targets: Yi ← Ri + γmaxa∈AQk(S′i, a), ∀i = 1, . . . , n

Solve regression problem: Qk+1 ← argmin
f∈F

1
n

∑n
i=1 (f(Si, Ai)− Yi)2

end for
Compute greedy policy: πK(s)← argmaxa∈AQK(s, a), ∀s ∈ S

Qk+1 is then

Qk+1 = argmin
f∈F

1

n

n∑
i=1

(f(Si, Ai)− Yi)2
. (2.32)

Here we framed the problem as a minimization of the mean-square error, but other losses
can be freely chosen. Abstracting a little, the construction of the regression targets can be
seen as an application of an empirical Bellman operator to Qk.

Definition 2.5.1 (Empirical Bellman Optimality Operator). LetD be a dataset of n transi-
tions, D = {(Si, Ai, Ri, S′i)|i = 1, . . . , n}, and Q ∈ F be any approximate action-value
function. The empirical Bellman optimality operator T̂ ? using D is

(T̂ ?Q)(Si, Ai) := Ri + γmax
a∈A

Q(S′i, a). (2.33)

The empirical Bellman operator for policy evaluation can be defined analogously.
Thus, the k-th FQI update step can be described as an application of T̂ ? to Qk and then
a projection of T̂ ?Qk onto the hypothesis space F . The projection step constitutes the
key difference with respect to exact methods. In fact, in exact methods no projection is
required since the value function resulting from an application of the Bellman operator
always lies in the assumed functional space (i.e., the space of all possible value functions).
Here this property does not necessarily hold and hence projection is required. The com-
plete pseudo-code of FQI is provided in Algorithm 1.

Several studies of FQI-based strategies are available in the literature. Ernst et al. (2005)
use tree-based methods to approximate action-value functions and show their good prac-
tical performance, especially with extremely randomized trees (Geurts et al., 2006). A
similar empirical study was conducted by Riedmiller (2005) using neural networks. These
two approximators have become the most commonly adopted for this setting. Other tech-
niques have been proposed, including regularization (Farahmand et al., 2009), advantage-
weighted regression (Neumann and Peters, 2009), and boostingtosatto2017boosted. Though
FQI is intrinsically defined for finite actions, an extension to continuous action spaces was
designed by Antos et al. (2008).
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Q-Learning with Function Approximation

Several approximate variants of Q-learning have been proposed. Suppose that the hy-
pothesis space F for approximating the action-value function Q is a set of functions
parametrized by some vector ω ∈ Rd, i.e., F = {Qω : ω ∈ Rd}. Furthermore, as-
sume that these functions are differentiable with respect to ω. The natural extension of
Q-learning to the approximate setting uses the following update rule:

ωt+1 ← ωt + α(Rt+1 + γmax
a∈A

Qω(St+1, a)−Qω(St, At))∇ωQω(St, At).

This can be easily interpreted as a stochastic gradient update when the overall objective is
to minimize the average squared TD error. The convergence of this scheme has only been
established in specific settings, e.g., by Melo and Ribeiro (2007) for linear approximators
and under other very restrictive assumptions.

Deep Q-networks When using neural networks, Q-learning with function approxima-
tion is often called deep Q-learning or deep Q-network (DQN, Mnih et al., 2015). While
neural networks provide high representation power, their combination with an online off-
policy algorithm such as Q-learning introduces many complications. These complications,
in turns, require several tricks to stabilize and improve learning with respect to the basic
approximate scheme described above. The first is the concept of experience replay. As
mentioned above, approximate Q-learning can be seen as minimizing the average TD error
(over the observed transitions) by stochastic gradient descent. This resembles a supervised
learning problem with the exception that samples are not i.i.d. since states are sequentially
correlated. To break this correlation, a DQN agent stores all the observed transitions (as the
usual four-tuples) into a replay buffer. At each step, n transitions are sampled uniformly
from this buffer and used to estimate the average squared TD error,

f(ω) :=
1

n

n∑
i=1

(
Ri + γmax

a∈A
Qω(S′i, a)−Qω(Si, Ai)

)2

, (2.34)

and its gradient

∇ωf(ω) = − 1

n

n∑
i=1

(
Ri + γmax

a∈A
Qω(S′i, a)−Qω(Si, Ai)

)
∇ωQω(Si, Ai).

Note that, in the computation of the gradient, the targets are assumed fixed and not de-
pendent on ω, which avoids differentiating through the maximum. Then, the Q-network is
updated as described above. Finally, new experience is collected by running a sufficiently-
exploring policy with respect to the current action-value function. The most common
choice is an ε-greedy policy with ε decaying at an appropriate rate, but other techniques
(like Boltzmann exploration) could be adopted.

To avoid the targets from changing too fast (another violation of the supervised learn-
ing assumptions), a target network is frequently used to further stabilize learning. The
idea is to update the parameters of the Q-network used to compute the targets at a slower
rate than the main Q-network used to compute the gradient and for exploration. Another
issue with the computation of the targets is the overestimation of the maximum expected
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value. This can be handled by double Q-learning (Hasselt, 2010) which led to the double
DQN algorithm (Van Hasselt et al., 2015). Other improvements include non-uniform sam-
pling from the replay buffer, called prioritized experience replay (Schaul et al., 2015b),
and the usage of dueling architectures (Wang et al., 2016c) to better model the value/ad-
vantage function structure of the problem. An empirical study of the combination of all
these tricks (and more) was carried out by Hessel et al. (2017).

Policy-Gradient Methods

While value-based algorithms aim at estimating/approximating value functions, policy
search methods directly parametrize control policies and seek the optimal parameters.
They have been shown effective in problems with high-dimensional and continuous state-
action spaces, especially in the field of robotics (Kober and Peters, 2009; Deisenroth et al.,
2013; Mülling et al., 2013; Chatzilygeroudis et al., 2017). These methods are also called
actor-only since only the actor component (i.e., the policy) is learned, while the critic (i.e.,
the value function) is missing. We shall discuss actor-critic algorithms, which combine the
two, in the next section.

Let π : S × Θ → P(A) be a parametrized stochastic control policy, where Θ ⊆ Rd
is the parameter space. We denote by πθ(a|s) the conditional probability density function
evaluated at action a ∈ A given state s ∈ S and parameters θ ∈ Θ. Following Deisenroth
et al. (2013), we shall adopt a trajectory-based notation in an episodic setting. Recall that a
trajectory τ is a sequence of states and actions, τ = (s0, a0, s1, . . . , sT ). With some abuse
of notation, we denote by r(τ) :=

∑T−1
t=0 γtr(st, at) the expected reward associated to

trajectory τ . Each policy πθ induces a probability distribution over trajectories. Let pθ(τ)
denote the corresponding probability density function, which can be factored as

pθ(τ) = ρ(s0)

T−1∏
t=0

P (st+1|st, at)πθ(at|st). (2.35)

Then, the expected return J(θ) = J(πθ) of πθ can be expressed as

J(θ) =

∫
r(τ)pθ(τ)dτ, (2.36)

where the integral is over the space of all possible trajectories. Policy search methods aim
at maximizing this quantity over Θ. Among the class of policy search methods, here we
focus on those based on policy gradients, i.e., those that update parameters iteratively by
gradient ascent. Starting from an arbitrary θ0 ∈ Θ, at each iteration k ≥ 0 the ideal update
rule is

θk+1 = θk + α∇θJ(θ) (2.37)

where∇θJ(θ) is the policy gradient. Since the transition kernel of the underlying MDP is
unknown, the exact policy gradient, similarly to expected returns, cannot be computed and
has to be estimated from sample trajectories. We now discuss the most common techniques
to achieve this.
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REINFORCE

The REINFORCE algorithm is based on the so-called likelihood-ratio trick and was orig-
inally proposed by Williams (1992). The idea is that, using the chain rule, ∇θpθ(τ) =
pθ(τ)∇θ log pθ(τ). This allows to rewrite the policy gradient in a more convenient form.

∇θJ(θ) = ∇θ
∫
r(τ)pθ(τ)dτ =

∫
r(τ)∇θpθ(τ)dτ

=

∫
r(τ)pθ(τ)∇θ log pθ(τ)dτ = Eτ∼pθ [r(τ)∇θ log pθ(τ)] .

Using (2.35),

∇θ log pθ(τ) = ∇θ
(

log ρ(s0) +

T−1∑
t=0

(logP (st+1|st, at) + log πθ(at|st))
)
.

The gradients of ρ and P are zero since these functions do not depend on θ. Therefore, we
arrive at the following important result.

Proposition 2.5.1. The policy gradient can be expressed as

∇θJ(θ) = Eτ∼pθ

[
T−1∑
t=0

∇θ log πθ(at|st)
T−1∑
t=0

γtr(st, at)

]
. (2.38)

This formulation expresses the policy gradient as an expectation over trajectories and
as such can be easily estimated by averaging n i.i.d. episodes collected under policy
πθ. To reduce the variance of the resulting estimate, it is possible to use control variates
(Hammersley and Handscomb, 1964), often referred to as baselines in the policy gradient
literature (Peters and Schaal, 2008b; Deisenroth et al., 2013). For a fixed vector b, it is
easy to show that

∇θJ(θ) = Eτ∼pθ

[
T−1∑
t=0

∇θ log πθ(at|st)
(
T−1∑
t=0

γtr(st, at)− b
)]

, (2.39)

and thus it is possible to find a baseline b that minimizes (component-wise) the variance of
the gradient estimator without changing its expected value. The optimal baseline is given
by

b =

Eτ∼pθ
[(∑T−1

t=0 ∇θ log πθ(at|st)
)2∑T−1

t=0 γtr(st, at)

]
Eτ∼pθ

[(∑T−1
t=0 ∇θ log πθ(at|st)

)2
] , (2.40)

where the expectations can be once again estimated from samples.

G(PO)MDP

G(PO)MDP (Baxter and Bartlett, 2001), which stands for gradient of a (partially observ-
able) Markov decision process, uses the intuition that future actions do not influence past
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rewards to reduce the variance of the REINFORCE gradient estimator. This intuition is
formalized by the following expression of the policy gradient:

∇θJ(θ) = Eτ∼pθ

[
T−1∑
t=0

t∑
h=0

∇θ log πθ(ah|sh)
(
γtr(st, at)− bt

)]
. (2.41)

Similarly to REINFORCE, the optimal (time-dependent) baseline is

bt =

Eτ∼pθ
[(∑t

h=0∇θ log πθ(ah|sh)
)2

γtr(st, at)

]
Eτ∼pθ

[(∑t
h=0∇θ log πθ(ah|sh)

)2
] . (2.42)

Policy Gradient Theorem

The policy gradient theorem (PGT) (Sutton et al., 2000) states yet another formulation of
the policy gradient. For any function bt : S → R,

∇θJ(θ) = Eτ∼pθ

[
T−1∑
t=0

∇θ log πθ(at|st)γt (Qπθ (st, at)− bt(st))
]
. (2.43)

The baseline bt(st) is now allowed to depend on the current state. A common choice is
the value function V πθ (st). The action value function can be estimated by Monte Carlo
methods, Qπθ (st, at) '

∑T−1
h=t γ

h−tr(sh, ah). More sophisticated techniques involve the
usage of function approximation for Q as well. In such case, the resulting PGT-based
algorithm belongs to the class of actor-critic methods, discussed in the next section.

Actor-Critic Algorithms
Actor-critic algorithms implement generalized policy iteration (see Section 2.3). They
are composed of two learned components: (1) the actor, i.e., a parametrized control policy
πθ(a|s) which describes the behavior of the agent; (2) the critic, i.e., a parametrized action-
value function Qω(s, a) (or value function Vω(s)) which evaluates the current agent’s pol-
icy. These two components are learned simultaneously, either synchronously or asyn-
chronously.

Actor-critic algorithms have become perhaps the most adopted and successful rein-
forcement learning methods. In particular, when combined with neural networks, they
are at the core of the recent field of deep reinforcement learning. Here we briefly review
the main techniques. We refer the reader to recent surveys (Li, 2017; Arulkumaran et al.,
2017; François-Lavet et al., 2018) for more details.

In an early study, Sutton et al. (2000) provided insights on how to design an actor-critic
scheme based on the policy gradient theorem. The key result is that, when the function ap-
proximation used for the action-value function is compatible with the one used for the pol-
icy, in the sense that ∇ωQω(s, a) = ∇θ log πθ(a|s), and ω has converged to a stationary
point of the corresponding objective, thenQω(s, a) can be safely used instead ofQπθ (s, a)
to compute the policy gradient∇θJ(θ) without introducing any error. Similar results were
obtained concurrently by Konda and Tsitsiklis (2000). These results and algorithms were
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refined by Peters and Schaal (2008a) in combination with natural gradients Amari (1998).
More recently, Schulman et al. (2015a) proposed trust-region policy optimization (TRPO),
an approach for optimizing parametrized policy that is derived from a theoretically-sound
monotonically improving (in terms of returns of the computed policies) method. Similarly
to natural gradient methods, TRPO constrains each policy update to stay close (in KL di-
vergence) to the previous policy. Experimentally, the algorithm was shown very effective
in many high-dimensional tasks in which stable and sample-efficient learning are primary
concerns. An algorithm following similar, perhaps simpler, ideas, called proximal policy
optimization (PPO), was proposed by Schulman et al. (2017). Despite its simplicity, PPO
enjoys similar, and sometimes better, performance than TRPO. Schulman et al. (2015b)
derived an approach to estimate the advantage function to be used in conjunction with PGT
(Sutton et al., 2000) or other policy optimization approaches. While all these algorithms
optimize stochastic policies, the optimization of deterministic policies was investigated
by Silver et al. (2014). The authors derived a deterministic version of the policy gradient
theorem, which basically reduces to the expected gradient of the action-value function,
and proposed an off-policy actor-critic method based on this result. Its extension to deep
neural networks, called deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015),
was demonstrated very effective in several high-dimension continuous control tasks. Mnih
et al. (2016) proposed advantage actor-critic (A3C), a standard actor-critic algorithm with
multiple asynchronous actor learners, where the policy is updated by the policy-gradient
theorem (with the advantage function), and the advantage function is updated by a value-
function-based critic, the latter estimated by TD methods. Its synchronous variant (called
A2C) was also shown effective. Recently, Haarnoja et al. (2018a,b) proposed soft actor-
critic (SAC), a method based on maximum entropy reinforcement learning. Differently
from previous works, the aim is to maximize the expected return plus the entropy of the
chosen policy (with the trade-off controlled by a suitable tunable parameter). The algo-
rithm achieved state-of-the-art results in several continuous control tasks, while leading to
more stable learning and better exploration than previous methods.

Multi-Armed Bandits

The stochastic multi-armed bandit (MAB) is one of the simplest reinforcement learning
problems. A stochastic bandit can be described by an MDP with only one state (or, equiv-
alently, no states) and, thus, no state-transition dynamics. Although MDPs and bandits are
tightly connected, the literatures studying these two problems often use slightly different
notation. At the price of generality, and to favor readability, we shall introduce bandits us-
ing the standard notation adopted in the literature (e.g., Bubeck et al., 2012; Lattimore and
Szepesvári, 2020). Formally, a (finite) stochastic bandit can be described by a finite set of
K actionsA (also called arms) and a set of reward distributions ν = {ν(a) : a ∈ A}. The
learning agent interacts with the environment for n rounds. At each round t ∈ {1, . . . , n},
the learner chooses an action At ∈ A and it receives a random reward Yt ∼ ν(At). The
actions are chosen by a a bandit algorithm, i.e., a possibly-randomized history-dependent
policy π = {πt}nt=1, where πt maps (t− 1)-step histories Ht = (A1, Y1, . . . , At−1, Yt−1)
into (probability distributions over) actions. Let µ(a) := EY∼ν(a)[Y ] be the mean reward
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of arm a ∈ A. The learner aims at minimizing the expected regret,

Rπ
n(ν) := nmax

a∈A
µ(a)− Eν,π

[
n∑
t=1

Yt

]
, (2.44)

that is, the difference between the expected cumulative reward obtained by an oracle that
always pulls the optimal arm and the expected cumulative reward obtained by the learner
playing policy π. Minimizing the regret requires the agent to trade off between exploring
arms to understand their uncertain outcomes and exploiting those that have performed best
in the past. In fact, the learner often has only partial information about the underlying
bandit problem ν. The learner is typically provided with a set M of realizable bandit
problems (let us call it a problem class), so that ν ∈ m. The most common assumption
involves sets of the form M = V1 × V2 × · · · × VK , where Va ⊆ P(R) is a subset
of possible reward distributions for arm a ∈ A. These could be, for instance, Gaussian
distributions with fixed variance, Bernoulli distributions, sub-Gaussian distributions, and
so on. We call problem classes of this form disjoint.4 In this case, samples from one arm
do not provide any information about the rewards of other arms since the corresponding
distributions are effectively disjoint. On the other hand, a non-disjoint problem class is
such that different arms might be correlated. Non-disjoint problem classes, which relate
to our concept of structured domain, are thoroughly discussed in Part III. Here we briefly
discuss the main strategies and results for disjoint classes.

Disjoint problems. The classic disjoint MAB problem, in which the rewards of the dif-
ferent arms are uncorrelated, is theoretically well understood. In particular, asymptotic
problem-dependent lower bounds on the regret have been derived by Lai and Robbins
(1985); Burnetas and Katehakis (1996). These characterize the minimum regret that any
“good” bandit algorithm must suffer on a given problem class. Formally, we use the fol-
lowing definition of “good” bandit algorithm.

Definition 2.6.1 (Lai and Robbins (1985)). A bandit algorithm π is uniformly consistent
on a problem class M if, for all ν ∈M and p > 0,

lim sup
n→∞

Rπn(ν)

np
= 0. (2.45)

That is, a uniformly consistent algorithm suffers sub-polynomial regret in all bandit
instances in M.

Theorem 2.6.1 (Problem-dependent lower bound (Burnetas and Katehakis, 1996)). Let
M = V1 × · · · × VK be a disjoint problem class with K arms and π be a uniformly
consistent bandit algorithm over M. Then, for all ν ∈M with ν = {ν(a) : a ∈ A},

lim inf
n→∞

Rπn(ν)

log n
≥

∑
a∈A:∆(a)>0

∆(a)

infν′∈Va{DKL(ν(a)‖ν′) : µ(ν′) > µ?} ,

where ∆(a) = maxa′∈A µ(a′)−µ(a) is the sub-optimality gap of arm a, µ? = maxa∈A µ(a)
is the optimal reward, and µ(ν′) is the expected value of random rewards drawn from ν′.

4In the literature (Lattimore and Szepesvári, 2020), disjoint models are called unstructured, while non-disjoint
models are called structured. Here we avoid these terms since later we shall consider a slightly more general
concept of “structured problem”.
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This bound can be instantiated for any distribution class. For instance, for Gaussian
bandits with variance equal to one, we recover the lower bound of Lai and Robbins (1985),

lim inf
n→∞

Rπn(ν)

log n
≥

∑
a∈A:∆(a)>0

2

∆(a)
. (2.46)

For this setting, the UCB algorithm (that we describe shortly) is asymptotically optimal,
i.e., its regret upper bound matches (2.46). Similarly, the KL-UCB (Garivier and Cappé,
2011) is optimal for Bernoulli distributions. While problem-dependent lower bounds focus
on instance-specific regret, another line of works derive finite-time worst-case (or mini-
max) lower bounds (see e.g., Chapter 15 of Lattimore and Szepesvári (2020)), which focus
on the hardest instance in a given problem class. For instance, it can be shown that, for
Gaussian bandits with K arms, for any horizon n ≥ K, there exists a bandit problem on
which the regret of any policy (not only the consistent ones) is at least Ω(

√
kn).

We now describe two of the most common algorithms in the bandit literature, UCB
and Thompson sampling, whose design relies on fundamental exploration principles.

Upper confidence bound. The upper confidence bound (UCB) algorithm uses the prin-
ciple of optimism in face of uncertainty to trade off exploration and exploitation. The idea
is quite simple: whenever we are uncertain about the expected reward of some arm, we
assume the maximum value that is realizable according to our uncertainty (in some sense,
the best possible world) and pull the optimal arm of the resulting bandit problem. For-
mally, UCB constructs independent confidence intervals for the mean reward of each arm.
At each step, the algorithm chooses

At = argmax
a∈A

{
µ̂t−1(a) +

√
α log t

Nt−1(a)

}
, (2.47)

where Nt−1(a) =
∑t−1
s=1 1 {At = a} is the number of times a ∈ A has been chosen

prior to round t, µ̂t−1(a) = 1
Nt−1(a)

∑t
s=1 Yt1 {At = a} is the empirical mean of the

same arm, and α is a parameter. In other words, UCB chooses the arm with the highest
optimistic mean reward. The algorithm enjoys logarithmic regret for certain values of α
(Auer et al., 2002a) and is asymptotically optimal for Gaussian bandits when combined
with slightly refined confidence intervals (see, e.g., Chapter 8 of Lattimore and Szepesvári
(2020)). UCB also enjoys a worst-case bound ofO(kn log n), which matches the minimax
lower bound except for the logarithmic term.

Thompson sampling. Thompson sampling (Thompson, 1933) is another very popular
exploration principle. It works in Bayesian bandits, i.e., where the learner has a prior
distribution p0 ∈ P(M) over possible bandit problems and updates the corresponding
posterior pt as more experience is collected. In disjoint problems, this distribution reduces
to an independent distribution for each arm. Similarly to optimism, the idea is quite sim-
ple: at each round t, the algorithm samples a bandit problem νt from the current posterior
pt and takes its optimal arm, At = argmaxa∈A EY∼νt(a)[Y ]. While simple, the algorithm
enjoys sub-linear problem dependent and worst-case regret bounds, both in the frequen-
tist and Bayesian settings (Kaufmann et al., 2012; Agrawal and Goyal, 2012; Russo and
Van Roy, 2016; Agrawal and Goyal, 2017).
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CHAPTER3
Transfer in Reinforcement Learning

The purpose of this chapter is two-fold. First, we intend to provide a general taxonomy
of transfer methods that unifies the existing literature and, in particular, the multitude of
problem settings in which knowledge transfer is studied and applied. While we shall
mostly follow the surveys of Taylor and Stone (2009) and Lazaric (2012), we also need to
adapt the taxonomies presented there to cover the vast literature that appeared in the recent
years. Second, we intend to provide a brief survey of transfer methods and related problem
settings, again with a focus on modern research.

The chapter is organized as follows. We start by discussing the main problem settings
where knowledge transfer is applied, and, in particular, we formally define the concept
of structured domain, in Section 3.1. Then, we present the main dimensions according to
which transfer methods can be classified in Section 3.2, while in Section 3.3 we discuss
how these methods can be evaluated, with a focus on the main performance measures.
We conclude in Section 3.4 with a review of existing approaches classified by problem
settings.

Problem Settings

Knowledge transfer is a core component in a multitude of reinforcement learning prob-
lems. In general, the invariant factor among these settings is the presence of multiple
tasks with some commonalities, which makes the adoption of transfer methods possible.
Throughout this thesis, we shall refer to this setting as a structured domain, which is for-
malized as follows.
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Definition 3.1.1 (Structured domain). A structured domain is a tuple E = (M,D), where
M is the task family, i.e., a set of Markov decision processes, and D is the task generation
process.

We use structured domains to model all kind of settings in which knowledge transfer
is applied. Informally, M encodes the set of possible tasks that the agent might face, while
D describes the process that generates these tasks. The term “structured” comes from the
fact that tasks in M might share some hidden structure (e.g., a common representation)
that enables knowledge transfer. That is, an agent facing multiple tasks from E might be
capable of understanding their similarities, thus using them to improve the learning process
in new problems from the same domain. Definition 3.1.1 generalizes the one of Lazaric
(2012) since the task generation process D is kept general so that it can be instantiated in
different ways and, thus, capture the majority of existing problem settings.1

Depending on the specific learning objectives, on how tasks are generated/faced, and
potentially on other factors, the literature can be clustered in different problem settings.

Transfer Learning. By “transfer learning” we refer to the basic problem setting where
knowledge transfer is the primary focus (Taylor and Stone, 2009; Lazaric, 2012). Here
the agent is assumed to have some kind of knowledge from a set of m ≥ 1 source tasks
{M1,M2, . . . ,Mm} ⊆ M. Each task is an MDP Mj := (Sj ,Aj , Pj , ρj , γj) with
potentially different components. For instance, the agent might have solved these tasks,
thus computing approximately-optimal policies/value functions, or it might have estimated
their transition models, or it might have simply collected some experience samples while
interacting with them. Given a target task M0 := (S0,A0, P0, ρ0, γ0), the goal of the
agent is to transfer whatever knowledge is available from the source tasks to improve the
learning process of the target. While the final purpose is to perform well on the unknown
target task, here the focus is on the challenges faced when performing transfer, as discussed
in the introduction and throughout this chapter.

Multi-Task Reinforcement Learning. In multi-task reinforcement learning, it is com-
mon to assume that the task generation process D is some unknown probability distribution
and the goal is to generalize to tasks drawn from D. More precisely, after training on m
source tasks, which are drawn i.i.d. from D, the goal is to perform well on target tasks
drawn from the same distribution. Though knowledge transfer is a fundamental compo-
nent, here the focus is mainly on learning single models (e.g., policies) that solve tasks
from D without further learning (Espeholt et al., 2018; Hessel et al., 2019)2 or on learn-
ing separate models jointly, each for a different task (Lazaric and Ghavamzadeh, 2010;
Calandriello et al., 2014). For instance, in the first case, one could consider the following
optimization problem:

max
π

EM∼ρ

[
EM,π

[ ∞∑
t=0

γtRt+1

]]
. (3.1)

Using the intuition that the multi-task objective can be reduced to a POMDP where the
only hidden variable is the task identity, it is possible to optimize this by using history-

1Lazaric (2012) explicitly model D as a probability distribution generating i.i.d. tasks.
2This is also known as zero-shot generalization/adaptation.
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dependent policies (e.g., using recurrent neural networks). Alternatively, if tasks are pa-
rameterized and their parameters, say ω, are known, it is possible to optimize a task-
conditioned policy π(a|s, ω).

Meta-Reinforcement Learning. Meta-reinforcement learning is an instance of meta-
learning, or learning to learn (see, e.g., Schmidhuber (1987); Thrun and Pratt (2012);
Vanschoren (2018)), where the goal is to directly learn a reinforcement learning agent that
is customized to learning related tasks, i.e., tasks from the same structured domain. The
meta-reinforcement learning setting is conceptually similar to that of multi-task learning;
the agent still aims at performing well on tasks drawn from some unknown distribution.
The main difference is that focus is on the learning process in new tasks rather than com-
puting a single model that solves multiple tasks. More specifically, the goal is to have an
agent that quickly adapts to new tasks drawn from D in a few learning steps. The meta-
reinforcement learning process involves two steps. (1) At meta-training, the agent faces
multiple source tasks drawn from D and optimizes its learning algorithm so that it quickly
adapts to new instances. In this step, it is typically assumed that the agent can freely sam-
ple tasks from D and interact with them. (2) At meta-testing, the agent is evaluated on
tasks drawn from the same distribution. Typically, the agent is allowed to perform only
few learning steps on these tasks and evaluated based on its final performance. This is in
contrast to the multi-task evaluation protocol, which typically focuses on the “zero-shot”
performance in new tasks, without further learning/adaptation allowed.

Lifelong Reinforcement Learning. Lifelong reinforcement learning typically refers to
a setting where the agent faces tasks online and in sequence. In a common lifelong sce-
nario, the agent interacts with each task for a limited number of steps/episodes and then
the environment changes. The agent is typically informed of the change. The setting
is related to that of non-stationary reinforcement learning, where, under the most gen-
eral assumptions, the environment might change arbitrarily without the agent knowing the
change points. Tasks could be generated i.i.d. from a fixed distribution or they might be
sequentially correlated, for instance through a hidden Markov chain (Choi et al., 2000b)
or more general stochastic processes. The sequential and online nature of the lifelong
problem introduce many additional challenges with respect to the previous settings. These
include accumulating and refining knowledge over time without forgetting, understanding
temporal correlations between tasks, optimizing for future problems, and more.

Curriculum Learning. Curriculum learning is mostly based on the idea that solving
simpler tasks might help in learning complex ones through knowledge transfer. Given
some target task, the agent generates and solves a sequence of source tasks, called cur-
riculum, with the final purpose of transferring knowledge to speed up the learning process
of the target. Therefore, differently from the previous settings, the agent does not receive
tasks from some distribution but rather explicitly chooses them, typically from a given set
of alternatives. That is, the task generation process D is explicitly controlled by the agent.
Since curriculum learning is out of the scope of this thesis, we refer the reader to Narvekar
et al. (2020) for a thorough survey.
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Taxonomy

Transfer learning methods can be classified along multiple dimensions (Taylor and Stone,
2009; Lazaric, 2012). Here we highlight the most relevant ones. Since evaluation is often
orthogonal to the specific transfer method, we defer a discussion of performance measures
to the next section.

Task difference. Tasks in the same structured domain might differ in multiple MDP
components. In the most common case, the state and action spaces are fixed, while the
reward and transition probabilities vary between tasks. Occasionally, one of these two
components is assumed fixed and transfer is entirely focused on the other. The most gen-
eral setting, typically referred to as cross-domain, involves tasks with different state-action
spaces. Here the agent is required to learn (or it is provided with) some inter-task map-
pings (Taylor et al., 2007), i.e., functions that map different states/actions to allow efficient
knowledge transfer. In this thesis we only focus on transfer learning with shared state-
action space. We refer the reader to the survey of Taylor and Stone (2009) for an overview
of cross-domain approaches.

Task generation process. The task generation process D is tightly connected to the
problem setting. We distinguish four different processes which cover all those encoun-
tered in the literature. (1) i.i.d. Tasks are generated from a fixed unknown distribution,
either in batch mode or online. This is the most common assumption, encountered in the
transfer, multi-task, and lifelong learning settings. (2) Sequential. Tasks are sequentially
generated online from a general stochastic process that allows temporal correlations. This
is frequently encountered only in the lifelong setting. (3) Arbitrary. There is no assump-
tion on the process generating the tasks, which might be even chosen by an adversary. This
is common in a transfer learning scenario between fixed sources and target. (4) Controlled.
The agent itself can control the generation process, e.g., by choosing the next task to face.
This is the common assumption in the curriculum learning domain.

Knowledge transferred. The kind of reused knowledge is perhaps the feature that mostly
characterize a transfer algorithm. In principle, any component involved in the learning pro-
cess can be transferred, no matter whether it belongs to the environment or to the agent
(i.e., to the learning algorithm). The following are among the most frequent. (1) Experi-
ence samples. The agent reuses the random rewards and next states collected in the source
tasks. These can be, for instance, tuples (St, At, St+1, Rt+1) in a batch setting or entire
trajectories in an online episodic one. (2) Policies. The agent reuses behavior. For in-
stance, the agent can transfer policies that were found to be near-optimal for the source
tasks, hoping that they will lead to good performance in the target task. Alternatively, op-
tions can be transferred, i.e., abstract policies that are executed upon entering a certain start
condition and until some stopping criterion is verified. (3) Value functions. Transferring
the values of some policy makes it possible to share what state/actions are good or bad.
For instance, it can be used to facilitate the estimation of an optimal value function or to
drive exploration in the target task. (4) Representations. After facing the source tasks, the
agent might find good representations that (globally or locally) describe the task family
and thus can be reused. These representations might be, for instance, features extracted
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by a neural network, state abstractions, reward features used for shaping, and so on. (5)
Parameters. Every reinforcement learning algorithm has some tunable parameters that
can be transferred, such as learning rates, batch sizes, exploration factors, and so on. For
instance, based on the learning experience on the source tasks, it is possible to find pa-
rameters that are likely to make the algorithm more efficient on target tasks from the same
distribution. This is what most meta-reinforcement learning methods do. (6) Priors. In a
Bayesian setting, priors naturally embed knowledge about a given problem. These priors
can be learned on the source tasks and transferred to the target. For instance, it possible
to learn the distribution of possible environments (e.g., rewards or transition dynamics) so
that a Bayesian algorithm using it as prior would be more efficient in learning a target task
(with respect to using a non-informative prior).

Other dimensions. While we use the above-mentioned dimensions, together with the
problem setting, to characterize all existing approaches, it is worth noting that others are
considered in the literature. For instance, Taylor and Stone (2009) consider three additional
dimensions. (1) The allowed learners, i.e., what base reinforcement learning algorithm can
be combined with the transfer method. (2) The inter-task mappings for cross-domain set-
tings, i.e., whether the method requires mapping to be provided by an expert or learned. (3)
The source task selection, i.e., whether the algorithm automatically selects what sources
to transfer from or let an expert do the work.

Evaluation

The evaluation of a transfer method is a key aspect since it requires understanding when
and how knowledge transfer is actually beneficial.

Performance Measures
Informally, we mentioned that transfer methods aim at improving the learning process of a
target task. Since this improvement might be reflected along multiple dimensions, different
performance measures have been proposed. Besides for evaluation, these measures are
crucial for algorithm design since knowledge transfer is typically driven by the desired
objectives. We describe the four most common performance measures, though others can
be defined (Taylor and Stone, 2009). A visual overview is offered in Figure 3.1.

Jumpstart. This measure refers to the initial performance of the agent in terms of ex-
pected return. More specifically, we say that the algorithm achieves a “jumpstart” when
its initial policy, computed before interacting with the target task, performs better than the
initial policy of an algorithm that does not transfer knowledge at all. The latter algorithm
is typically randomly initialized and thus the natural baseline is the uniform policy. By
definition, this measure completely ignores the learning process as it only focuses on the
initial performance. It is often the primary concern of multi-task learning approaches.

Asymptotic performance. In this case, the focus is on the final performance in the target
task, i.e., after the learning process has been carried out. While theoretically this means
evaluating the converge after an infinite number of learning steps, in practice the learning
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Figure 3.1: The four performance measures. (1) Jumpstart: only the improvement in
initial performance matters. (2) Asymptotic: the algorithms are evaluated based on
the solution they converge to. (3) Total reward: the improvement is given by the area
between the two learning curves. (4) Sample complexity: total number of samples (i.e.,
time) necessary to reach a certain threshold. Inspired by Figure 3 of Lazaric (2012).

process is stopped after a pre-specified number of iterations and the performance are eval-
uated. The intuition is that, through prior knowledge, a transfer method might be able to
converge to better solutions. Similarly to jumpstart, the behavior during learning does not
matter.

Total reward or regret. This is perhaps the most natural performance measure to ac-
count for the whole learning process. The total reward collected by the agent in all learn-
ing steps of the target task is evaluated. Equivalently, one might look at the regret, the
difference between the total reward of an oracle that executes the optimal policy at each
step and that of the agent. This is where the exploration-exploitation dilemma is most
important, and a transfer method that is able to improve this measure also improves the
trade-off between these two objectives with respect to learning from scratch.

Sample complexity. The last measure involves the total number of experience samples
collected by the agent while interacting with the target environment and before reaching
a certain performance threshold. For instance, it is common to seek ε-optimal policies,
in which case the performance threshold is triggered whenever the agent obtains expected
return that is ε-close to the optimal one. Assuming that collecting each sample takes a fixed
amount of time, this measure is equivalent to the time-to-threshold described by Taylor and
Stone (2009). Differently from regret, here the actual rewards obtained during learning do
not matter. This is closer to the setting of best arm/policy identification (e.g., Audibert and
Bubeck, 2010).

Positive and Negative Transfer

When transferring knowledge to a target task, two important effects might occur. (1) Pos-
itive transfer. In this case, knowledge transfer goes well and there is a strictly positive
improvement over learning from scratch. (2) Negative transfer. In this case, the reused
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knowledge damages the learning process of the target task, which results worse than learn-
ing from scratch. We note that both negative and positive transfer refer to one or more of
the performance measures introduced before. In some sense, it is even possible that an al-
gorithm achieves both positive and negative transfer for the same target task. For instance,
one might obtain positive transfer in jumpstart and negative transfer in regret or sample
complexity since good initial performance does not necessarily imply a good learning pro-
cess.

Avoiding negative transfer is one of the primary concerns in the literature. An algo-
rithm that achieves this property is called robust to negative transfer. The definition of
robustness depends on the chosen performance measure and potentially on other factors.
As such, multiple definitions have been considered (Brunskill and Li, 2013; Mann and
Choe, 2013; Zhan et al., 2016; Wang et al., 2019). Informally, we can say that an algo-
rithm is robust to negative transfer if its performance is never, i.e., for any realizable choice
of source and target tasks, significantly worse than learning the target task from scratch.

Survey of Transfer Methods

We briefly review the literature on transfer in reinforcement learning and related problems.
The discussion is organized by problem setting.

Transfer Learning
Existing algorithms are mostly characterized by the kind of knowledge transferred. We
shall thus group them by this feature according to the main alternatives introduced in
Section 3.2.

Experience samples. Lazaric et al. (2008b) consider transferring samples, in the form
of tuples (St, At, St+1, Rt+1), in batch model-free reinforcement learning. Their method
selects the most promising samples to transfer by computing two similarity measures:
compliance, a measure of global similarity between the samples of source and target task,
and relevance, a measure of local similarity between a single source/target sample. Ex-
perimentally, they show good performance using FQI as the base learner. The same batch
setting is considered by Laroche and Barlier (2017) under the additional assumption that
tasks have the same state-transition dynamics. Their method directly reuses, i.e., with-
out any selection, all reward samples to augment the dataset of FQI. Taylor et al. (2008)
propose a method to transfer samples into a model-based algorithm – specifically, Fitted
RMAX (Jong and Stone, 2007), though any other can in principle be used – when the
tasks have different state-action spaces. The idea is to use an intertask mapping to map the
source state-action space into the target one and then directly reuse the transformed sam-
ples to improve the model estimation of the target. Lazaric and Restelli (2011) analyze
the transfer of samples in batch RL from a theoretical perspective. They demonstrate an
interesting trade-off between the total number of samples and the number of tasks from
which to transfer, a result that also appeared in the supervised learning literature (Cram-
mer et al., 2008). While all these approaches assume to know which task generated each
sample, Zhang and Zavlanos (2020) study the problem of transferring unlabeled instances,
i.e., with unknown task identity.
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Policies and options. Fernández and Veloso (2006) propose one of the earliest approaches
for policy transfer under the assumption that only the reward function changes between
tasks. Given a source policy and any reinforcement learning algorithm, the idea is to ran-
domly choose, at each step, either the exploration mechanism of the base learner or the
action prescribed by source policy itself. Taylor et al. (2007) consider a cross-domain pol-
icy search setting and use intertask mappings to directly transfer neural-network policies.
Mahmud et al. (2013) cluster solved tasks in a few groups to ease policy transfer. Their
approach is mostly useful in problems where the number of source tasks is very large, e.g.,
in sequential/lifelong settings. Once tasks are clustered so that only few source policies
survive, transfer is carried out by a bandit algorithm (EXP3) that iteratively chooses one of
the source policies and or a base learning agent. Azar et al. (2013c) consider the problem
of finding the best policy (i.e., the one with highest return) among a set of source policies.
They propose a UCB-based algorithm for which they derive sub-linear regret. A Bayesian
approach for the same problem is designed by Rosman et al. (2016). Approaches to trans-
fer options instead of policies are proposed by Konidaris and Barto (2007); Croonenborghs
et al. (2007); Asadi and Huber (2007); Mehta et al. (2008). Among these, Konidaris and
Barto (2007) introduce the concept of agent-space, a feature space that is invariant between
task. Their method learns options in this space, thus allowing transfer between tasks with
changing state spaces.

Value functions. Singh (1992) consider a composite target task that can be broken down
into a sequence of simpler source tasks. They propose a methodology to reuse the action-
value functions produced by Q-learning while solving the sub-tasks. Tanaka and Yama-
mura (2003) are among the first to focus on knowledge transfer in a multi-task/lifelong
scenario. Their idea is to keep a running mean and standard deviation of the optimal
action-value functions learned in previous tasks. Given a new task, the mean value func-
tion is used to initialize the learning process, while the standard deviation expresses the
local reliability of this statistics. Taylor and Stone (2005) and Taylor et al. (2007) design
a method to transfer an action-value function from a source domain to a target one with
different state-action space. They use intertask mapping, human-provided transfer func-
tionals that transform the source action-value function so that is applicable in the target
domain. These works are extended by Liu and Stone (2006), who show how to build the
intertask mappings automatically using qualitative dynamic Bayes networks. Abel et al.
(2018) and Mann and Choe (2013) use value transfer with the aim of improving jumpstart.
The idea is to build an optimistic initialization for the value function of the target task by
leveraging the source value functions. By combining this initialization with any PAC al-
gorithm (Strehl et al., 2009), they prove robustness to negative transfer in terms of sample
complexity. While the method of Mann and Choe (2013) works in cross-domain settings
using human-provided intertask mappings, the one of Abel et al. (2018) is discussed in the
broader context of lifelong learning. Liu et al. (2019b) study how to reuse single-agent
knowledge in a deep multi-agent setting. They define a novel measure of MDP similarity
using n-step returns and leverage on it to build a method for value-function transfer.

Representations. The concept of “representation” is quite general and might refer to
several components. Taylor and Stone (2007) define the agent’s representation as either
the learning algorithm, the function approximator, or the parameterization of the latter.
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The authors design different methods to transfer each of these components. Perhaps the
most immediate thing one associate to the concept of representation are state features and
the related state abstractions (Li et al., 2006). These are considered by Walsh et al. (2006)
in a transfer scenario where tasks share an underlying state representation. The proposed
method learns this state abstraction from a set of source MDPs and directly transfers it
to a target task. A similar approach is derived by Banerjee and Stone (2007) with a fo-
cus on value-function features and in the specific context of game playing. Ferrante et al.
(2008) consider a problem where either the rewards or the transition probabilities change
between tasks, but not both. They learn and transfer task representations by using a tech-
nique based on proto-value functions. Barreto et al. (2017) assume that tasks have linear
reward functions in given features, and that both the transition dynamics and these fea-
tures are fixed and shared, so that only the reward weights differ. They show that this
shared feature representation allows to decompose value functions into reward weights
and the so-called successor features, which are related to the transition dynamics and thus
transferable. This enables efficient policy evaluation and improvement in new tasks. In a
follow-up work (Barreto et al., 2018), the authors show that these features can be learned
by deep neural networks without the need of being manually specified. A further extension
is done by Lehnert and Littman (2018) for the case where also transition dynamics might
change between tasks. A different perspective is considered by (Konidaris and Barto,
2006; Konidaris et al., 2012), who focus on reward shaping. The authors consider two
representations for the transfer setting: the problem space, which is specific of each task
and not transferable, and the agent space, which is specific of the agent and thus shared
across tasks. The proposed method learns a shaping function in agent space, i.e., a function
that maps agent-space variables to values and that is used for guiding the learning process
in any new task. In a similar work, Snel and Whiteson (2011) empirically study different
shaping functions learned from a set of source tasks.

Priors. The transfer of priors typically refers to a Bayesian reinforcement learning set-
ting. The common underlying idea is use the source tasks to learn an informative prior on
either an MDP, one of its components, or any higher-level information (such as an opti-
mal policy or value function). Wilson et al. (2007, 2012) propose a hierarchical Bayesian
model for the process generating tasks and experience samples. They effectively learn the
distribution generating MDPs and use it as prior for driving exploration in the target task
in a Thompson sampling fashion. Their framework is applicable in lifelong/multi-task
settings. A similar approach is proposed by Liu et al. (2012) with a focus on linearly-
parameterized value functions.

Multi-task Learning

While some of the works mentioned before characterize themselves as multi-task (e.g.,
Tanaka and Yamamura, 2003; Wilson et al., 2007), the focus is on how to perform knowl-
edge transfer. Here we concentrate on approaches to either learn tasks jointly or to train
single models (e.g., neural networks) that generalize well across tasks from the same dis-
tribution.
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Learning tasks jointly. In this case, the agent is concurrently trained and evaluated on
the same set of tasks, i.e., the source and target tasks coincide. The goal is to improve
over learning each task separately, which can be achieved if the similarities allow to share
knowledge among the learning processes. Lazaric and Ghavamzadeh (2010) consider a
multi-task policy evaluation problem where the goal is to accurately evaluate a policy
simultaneously on all tasks in a given set and assuming limited interactions. Using linear
value functions with shared features, they propose hierarchical Bayesian models for the
case where tasks share the same value-function prior and for the case where they belong
to a small number of clusters. In both cases, they show that evaluating a policy jointly
on similar tasks yields better performance, and requires fewer samples, than evaluation
on each task separately. Calandriello et al. (2014) assume that the weight vectors of the
(linear) action-value functions of the given tasks are jointly sparse, in the sense that they
have the only a small number of non-zero components. They design a multi-task variant of
FQI that leverages this property to simultaneously compute the solutions of all tasks while
sharing this sparse representation.

Training multi-task models. Training single models that generalize across tasks has
become increasingly popular with the successes of deep learning, especially thanks to the
expressiveness power of neural networks. A common technique is to train a single deep
neural network that outputs predictions (e.g., action values or probabilities) for multiple
tasks in parallel while sharing lower-level features (Liu et al., 2016a; Yang et al., 2017;
Hessel et al., 2019; D’Eramo et al., 2019). D’Eramo et al. (2019) theoretically study the
benefits of learning and sharing common representations (i.e., features) while solving sim-
ilar tasks concurrently. Empirical results, where feature sharing in deep neural networks
is combined with different algorithms (including FQI and DQN), support this evidence.
The problem is investigated under a computational perspective by Espeholt et al. (2018).
The authors propose IMPALA, a distributed actor-critic framework that can optimize con-
currently several high-dimensional (e.g., vision-based) tasks. The usage of hierarchical
policies for multi-task learning is explored by Wulfmeier et al. (2019). The authors design
a two-level policy, with the low level component capturing task-independent reusable skills
and the high level one switching between these low-level controllers in a task-aware man-
ner. The method is shown successful in several tasks, notably in a block stacking problem
learned on a real robot. For the specific case of goal-based reinforcement learning (i.e.,
where tasks change only in the goal location), Schaul et al. (2015a) design universal value
function approximators (UVFA). A UVFA is a value function Vω(s, g) that generalizes
over state-goal pairs. This means that, given a UVFA, one can evaluate a policy in any
task (i.e., any goal state g ∈ S). Similarly, the corresponding concept of goal-based pol-
icy πθ(a|s, g) allows to capture (optimal) behavior across all tasks/goals simultaneously.
An efficient way to train such a goal-based policy/value-function is hindsight experience
replay (Andrychowicz et al., 2017), which uses the intuition that each transition in an un-
known environment, despite not moving to the actual goal, leads to a state that could be
the goal of some task and hence yields some information about how to solve the latter.

Some recent works have pointed out that training a single model for very different
tasks is difficult, mostly because of conflicting objectives which might lead to oscillatory
learning trends or to one task dominating all the others. Solutions to these problems are in-
vestigated by Hessel et al. (2019), who show how to make sure that all tasks have roughly

42



3.4. Survey of Transfer Methods

the same contribution to the learning process, by Yu et al. (2019), who show how to mit-
igate the effects of conflicting gradients, and by Bräm et al. (2019), who target the same
problem using attention-based techniques. A different technique involves the distillation
of policies for single tasks into one shared multi-task policy capturing common behavior
(Rusu et al., 2015; Teh et al., 2017; Yin and Pan, 2017; Czarnecki et al., 2019). This policy
distillation technique is mostly concerned of combining given policies, while training of
the latter can be performed separately and thus does not suffer the above-mentioned prob-
lems. Once computed, the distilled policy can be used to guide or regularize the learning
process of the single-task policies.

Meta-Reinforcement Learning
Although the first ideas date back to Schmidhuber (1987), meta-reinforcement learning has
become very popular only recently with the successes of deep neural networks. We classify
the recent literature in three main areas: recurrent methods, gradient-based methods, and
task inference methods.

Recurrent methods. Recurrent methods represent “learning algorithms” by recurrent
neural networks (e.g., LSTMs, Hochreiter and Schmidhuber, 1997) and directly meta-
learn their parameters by backpropagation on tasks drawn from a common distribution.
The resulting network is then evaluated on tasks from the same distribution. Though its
parameters are fixed, the network still exhibits adaptive behavior at test time through its
changing activations (Cotter and Conwell, 1990; Prokhorov et al., 2002). In some sense,
the meta-learned network can be seen as a learning algorithm that is highly customized for
the specific task distribution. While this approach was popularized earlier in supervised
learning (Hochreiter et al., 2001; Santoro et al., 2016), two recent works evaluates it for re-
inforcement learning domains (Wang et al., 2016a; Duan et al., 2016). Here meta-training
can be seen as learning a POMDP in which the current task is the unobserved latent vari-
able. This justifies the usage of recurrent networks to approximate its non-Markovian
optimal policy. Experiments in these works confirm that the meta-learned recurrent net-
works show learning behavior at test time, e.g., by trading off exploration and exploitation
in target tasks.

Gradient-based methods. While recurrent approaches can ideally represent any learn-
ing behavior in a black-box manner, gradient-based methods focus on quickly adapting
to new tasks by policy gradients. MAML (Finn et al., 2017) is perhaps the most popular
algorithm in this class. The idea is to meta-train policy parameters that, when used as an
initialization point for gradient ascent at test time, lead to quick convergence to an opti-
mal policy in one or few steps. Formally, MAML’s meta-training aims at optimizing the
following objective:

max
θ∈Θ

EM∼D
[
J (θ + α∇θJ(θ,M),M)

]
. (3.2)

That is, the optimal policy parameters θ should be such that the expected return after taking
one gradient step for a specific task is maximized in expectation across tasks. Of course
all expectations involved cannot be computed and are approximated by sampling MDPs
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from D and interacting with them. A similar objective can be derived for the case where
multiple gradient steps are performed.

The generality and flexibility of MAML allowed several extensions. Al-Shedivat et al.
(2018) extend MAML to the non-stationary setting where tasks are generated by an under-
lying Markov chain (as opposed to the i.i.d. process of the original paper). The connection
between MAML and inference in hierarchical Bayesian models is explored by Grant et al.
(2018), while Yoon et al. (2018) propose an alternative Bayesian approach based on non-
parametric variational inference. A similar probabilistic variant is presented by Finn et al.
(2018), who meta-learn a distribution over parameters that is used to inject noise into
the gradient updates at test time. Gupta et al. (2018a) propose a variant of MAML that
meta-learns structured exploration strategies. The idea is to augment the policy with la-
tent exploration variables that are meta-learned to inject structured stochasticity into the
learning process.

One of the drawbacks of the objective in Equation 3.2 is that its sample-based approxi-
mation is often very noisy. Liu et al. (2019a) study different variance reduction techniques
that involve the introduction of control variates into the MAML objective. Another lim-
itation is that meta-learning a single vector of parameters for fast adaptation works well
when the task distribution is mostly concentrated around certain tasks (e.g., unimodal),
while it tends to fail when the distribution allows groups of very different tasks (e.g., mul-
timodal). A multimodal extension of MAML which overcomes this problem is proposed
by Vuorio et al. (2018, 2019). Finally, the convergence of gradient-based meta-learners is
investigated by Fallah et al. (2020).

Task inference methods. The methods presented so far optimize a given loss function in
a black box manner without fully exploiting the structure of reinforcement learning prob-
lems. Task inference methods, on the other hand, effectively model and infer uncertainties
about the tasks, i.e., the MDP components or their latent representation. Rakelly et al.
(2019) meta-learn latent context variables z, on which a multi-task policy πθ(a|s, z) is
conditioned, and prior/posterior distributions over them using amortized variational infer-
ence. At test time, these distributions enable efficient posterior sampling for exploring any
new task. A similar approach is proposed by Humplik et al. (2019), who treat the prob-
lem as a POMDP with unobserved task variables and, as opposed to black-box recurrent
methods, meta-learn a belief network able to infer these latent variables. Task inference
at training time is conducted in a supervised way with different levels of privileged in-
formation, e.g., by knowing the true task parameters (which are however unknown at test
time). Lan et al. (2019) train a task encoder to quickly produce a latent representation in
new tasks. They combine it with a multi-task policy that directly produces optimal actions
given the latent task parameterization. Similarly, Yang et al. (2019); Zhou et al. (2019)
meta-learn a probing policy that explores new environments with the purpose of quickly
identifying the latent parameters to be plugged into the multi-task optimal policy. While
these approaches model the distributions of latent task variables as simple Gaussian, the
usage of more complex multi-modal distributions involving Dirichlet priors is explored
by Ren et al. (2020). For the case of tasks varying only in their transition dynamics, Sæ-
mundsson et al. (2018) explore the usage of Gaussian processes (GPs). They model the
global dynamics as a function of latent task variables over which they put a GP prior and
show how to perform efficient inference of the latent task variables.
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Transfer of Samples via
Importance Sampling
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CHAPTER4
The Sample Transfer Problem

Introduction

In this part of the thesis, we focus on the problem of transferring experience samples.
We recall from Chapter 3 that this problem involves reusing instances, the basic informa-
tion that the agent collects while interacting with an environment, across different MDPs.
More specifically, we call experience sample any collection of outcomes observed when
taking one or more actions in some states. This could be either a single-step transition
(st, at, st+1, rt+1) or an entire trajectory (s0, a0, s1, . . . , sT ). We shall consider the same
setting and assumptions as in prior works (Lazaric et al., 2008b; Lazaric and Restelli,
2011). Formally, we are given a set of m + 1 MDPs {M0,M1, . . . ,Mm} ⊆ M where
M0 is the target task and the remaining ones are the source tasks. Each task Mj is an
MDP Mj = (S,A, Pj , Uj , ρj , γ) with shared state-action space and possibly different
state-transition kernel Pj , reward kernel Uj , and initial state distribution ρj .1 While we
assume the same state-action space for all tasks, we note that all the techniques presented
in this part extend easily to cross-domain settings by using inter-task mappings as done
by Taylor et al. (2008). Besides this property, we do not make any additional assumption
on the task generation process D. For each taskMj , we suppose to have a dataset Dj of
nj experience samples (in either of the forms presented above). We require nj > 0 for
the source tasks (j = 1, . . . ,m), while it could be the case that n0 = 0, i.e., we have no
data from the target at our disposal. The goal is to reuse as many as possible of the source

1For ease of exposition, we explicitly work with the marginal distributions Pj and Uj , although we could
straightforwardly consider the joint kernel as defined in Section 2.1.
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samples to effectively increase the amount of data available for learning the target task
M0, hence reducing the overall sample complexity.

Of course the problem poses many challenges. Unless the source tasks are equivalent
to the target task, directly reusing their samples into estimators of target-related variables
introduces bias. At the same time, increasing the amount of data for these estimators
reduces their variance. A sample-reuse method is required to trade-off between these two
quantities so as to maximize the quality (i.e., minimize error) of the resulting estimators.
In some sense, we might say that transferring samples is all about managing the bias-
variance trade-off (Crammer et al., 2008). We shall elaborate more on this topic later on
with a concrete example.

Unfortunately, the amount of bias introduced by transferring from a certain source task
is proportional to how the state-transition and reward kernels of the same task differ from
those of the target. Since the MDP models are unknown for all tasks, whether some source
samples might be useful or dangerous for the target has to be understood entirely from
data. Some previous works ignore this problem, either because they perform direct transfer
(Taylor et al., 2008) or because they make strong assumptions on the similarities between
tasks (e.g., Laroche and Barlier (2017) assume shared transition models). Some more
general approaches (Lazaric et al., 2008b; Lazaric and Restelli, 2011) focus on explicit
selection of the source samples whose distribution appears closer to the target one. The
idea is to compute different similarity measures between MDPs, mostly based on non-
parametric estimators of their models, so as to understand what could be reused. Once
the samples are selected, they are directly used in the learning process of the target task
as if they were generated by the latter. There are at least two limitations. (1) Even if
the distribution of the transferred source samples is similar to the one in the target task,
the direct reuse introduces some bias that is not accounted for. (2) The similarity metrics
proposed by Lazaric et al. (2008b) are mostly heuristics and do not facilitate the analysis.
In particular, it is hard to establish whether the algorithm is robust to negative transfer.
Lazaric and Restelli (2011) derive theoretical results and well-funded sample selection
strategies but for a restricted setting where it is possible to actively generate an arbitrary
amount of samples from the source tasks.

In this part of the thesis, we propose novel approaches for the sample-reuse problem
that, differently from previous methods, do not require any sample selection. We take a
different perspective and transfer all the given samples, while re-weighting their contri-
bution to the learning process of the target task based on the similarity between domains
(i.e., based on how likely their are to be generated from the target itself). For this pur-
pose, we employ importance sampling (Owen, 2013), a standard technique for dealing
with distribution mismatches. More specifically, we propose sample-reuse algorithms for
two different settings: batch reinforcement learning (Chapter 5), which is considered in
all prior works, and online policy search (Chapter 6), which has never been studied be-
fore in this context. In both cases, we propose importance-weighted variants of standard
reinforcement learning algorithms that only require as input the set of source and target
samples together with a corresponding importance weight. Since the whole idea is built
on top of a theoretically-funded concept, this enables the derivation of theoretical results
for both settings. More precisely, we derive error bounds on the resulting estimators and,
under certain conditions, we establish robustness to negative transfer. Since, as we shall
see, computing the ideal importance weights requires evaluating density ratios of the form
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P0(St+1|St,At)
Pj(St+1|St,At) or U0(St+1|St,At)

Uj(St+1|St,At) , we propose different methods to estimate these weights
from samples. Finally, we provide several numerical simulations that show good perfor-
mance on different continuous domains and the superiority over state-of-the-art baselines.2

The remaining part of this chapter is organized as follows. Section 4.2 provides some
motivations on why the transfer of experience samples is important in practice. Section 4.3
provides a concrete example on the relation between sample-reuse and the bias-variance
trade-off. Finally, Section 4.4 gives an overview of the importance sampling techniques
that we adopt.

Why Transferring Samples?

There are at least three reasons why the transfer of experience samples is an appealing
problem to study.

(1) Samples are decoupled from the specific learning algorithms. In fact, any agent
interacting with an environment collects, and possibly stores, state-transitions and rewards.
The process generating these, conditioned on the agent’s actions, is indeed independent of
the learning algorithm and only related to the environment dynamics. More generally,
samples can be generated from any distribution. This is a particularly relevant property
since it implies high flexibility in practice. For instance, samples could be reused across
very different learning algorithms or even from human to artificial agents.

(2) Transferring samples does not require the source tasks to be solved. In fact, regard-
less of the fact that the actions performed in the source instances are optimal or not, the
corresponding transition and reward instances yield some information about the source
environments. When such environments are related to the target one, transferring these
instances could effectively augment the dataset used to perform any estimation task, such
as policy evaluation or improvement. This is a quite important property since the major-
ity of algorithms for knowledge transfer do assume the source tasks to be solved or that
nearly-optimal solutions are available.

(3) A large amount of experience from related environments is often available in prac-
tice. Consider, for instance, training an industrial robot to perform a certain task, such as
moving objects or assessing the quality of given products. In this setting, the same robot
might be required to perform different tasks over time, or the same task might be per-
formed by different robots, e.g., because an outdated component is replaced by a new one.
While different robots have different parameters and, thus, dynamics, one often stores their
historical operations (i.e., our experience samples), which can be used by human operators
or artificial learning agents to tune new controllers. The same situation arises in most real-
world control problems where either the control system, the surrounding environment, or
the desired objectives change over time, including robotics, self-driving vehicles, power
plants, water reservoirs, and so on. The only requirement is that the system stores its
operations over time, regardless of how these operations where performed.

2It is worth noting that a recent MS thesis (Paterniti, 2020) obtained promising results by applying our sample
reuse methods to real driving data to transfer knowledge across cars with different configurations.
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Sample Reuse vs Bias-Variance Trade-off

Consider the following simplified problem with respect to the one introduced at the be-
ginning of this chapter. We have only one source task M1 with a dataset of n1 re-
ward samples D1 = {(Si,1, Ai,1, Ri,1)|i = 1, . . . , n1}. Similarly, we have a dataset
D0 = {(Si,0, Ai,0, Ri,0)|i = 1, . . . , n0} of n0 samples from the target task, potentially
with n0 � n1. Suppose all samples are independent. Moreover, assume that the MDPs
are finite and that the goal is to estimate the mean reward of the target task r0(s, a). For a
fixed state-action pair (s, a), an unbiased estimator using only the target samples is

r̂′0(s, a) =
1

n0(s, a)

n0∑
i=1

Ri,01 {Si,0 = s,Ai,0 = a} ,

where we define nj(s, a) :=
∑nj
i=1 1 {Si,j = s,Ai,j = A} as the number of samples from

(s, a) in task j ∈ {0, 1}. For simplicity, assume that nj are fixed and deterministic.
Recalling that rewards are bounded by rmax and using Hoeffding’s inequality (Boucheron
et al., 2003), it is easy to prove the following concentration result for r̂′0(s, a). For any
δ ∈ (0, 1), with probability at least 1− δ,

|r̂′0(s, a)− r0(s, a)| ≤ rmax

√
8 log 2

δ

n0(s, a)
.

So r̂′0(s, a) converges to its expected value at rate 1/
√
n0(s, a). An alternative estimator

that directly reuses all the source samples is

r̂′′0 (s, a) =
1

n0(s, a) + n1(s, a)

∑
j∈{0,1}

nj∑
i=1

Ri,j1 {Si,j = s,Ai,j = A} .

Let us analyze its properties. Using the independence of the samples, it is easy to see that
its expectation is

E [r̂′′0 (s, a)] =
n0(s, a)r0(s, a) + n1r1(s, a)

n0(s, a) + n1(s, a)
.

Note that, unless r1(s, a) = r0(s, a), E [r̂′′0 (s, a)] 6= r0(s, a), hence the estimator is biased
for r0(s, a). Let us now study its error as above. We have

|r̂′′0(s, a)− r0(s, a)| ≤ |E [r̂′′0 (s, a)]− r0(s, a)|+ |r̂′′0 (s, a)− E [r̂′′0 (s, a)] |

≤ n1(s, a)

n0(s, a) + n1(s, a)
|r0(s, a)− r1(s, a)|︸ ︷︷ ︸

bias

+ rmax

√
8 log 2

δ

n0(s, a) + n1(s, a)︸ ︷︷ ︸
variance

,

where we applied the triangle inequality and Hoeffding’s bound. This in fact reveals a bias-
variance trade-off. The bias vanishes when either r1(s, a) = r0(s, a) or n0(s, a) → ∞.
The variance decreases at a rate of 1/

√
n0(s, a) + n1(s, a). So which estimator is better,

r̂′0(s, a) or r̂′′0 (s, a)? The answer is non-trivial. r̂′′0 (s, a) achieves smaller variance since it
effectively uses more samples than r̂′0(s, a), but it also introduces bias. Intuitively, when
the bias is small because r0(s, a) is similar to r1(s, a) and n0(s, a) � n1(s, a), reusing
the source samples significantly increases the quality of the resulting estimator.
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Importance sampling

In many applications, with reinforcement learning being among the most popular, we are
interested in computing the expected value µ = E [f(X)] of a function f applied to some
random variable X when observing samples from a distribution that is different from the
one that generates X . A common example is off-policy evaluation (e.g., Precup, 2000),
where the goal is to compute the value function V π or the expected return J(π) of some
target policy π provided only with samples from a different behavioral policy πb. Formally,
consider a measurable space (X ,F), a function f : X → R, and two probability measures
p and q absolutely continuous with respect to the Lebesgue measure. With some abuse
of notation, let p and q denote their respective densities. Suppose that p is absolutely
continuous with respect to q (p � q), i.e., p(x) = 0 whenever q(x) = 0. Importance
sampling (IS, Owen and Zhou, 2000) relies on the following simple rewriting of the target
expectation:

Ep[f(X)] =

∫
X
f(x)p(x)dx =

∫
X

p(x)

q(x)
f(x)q(x)dx = Eq

[
p(X)

q(X)
f(X)

]
,

where we write Ep[·] to denote the expectation operator when the underlying probability
measure is p. Therefore, the expectation of f(X) under p can be rewritten as the expecta-
tion of w(X)f(X) under q, where w(X) = p(X)

q(X) is called density ratio or likelihood ratio
or importance weight. In statistics, p is often called nominal distribution, while q is called
proposal or importance distribution. In our transfer setting, we shall often refer to p and q
as target and source distributions, respectively. Assuming that the density ratio w(X) can
be evaluated, the importance sampling estimator for µ = Ep[f(X)] given n i.i.d. samples
from q is

µ̂IS :=
1

n

n∑
i=1

p(Xi)

q(Xi)
f(Xi), Xi ∼ q. (4.1)

The following result characterized the mean and variance of this estimator.

Theorem 4.4.1 (Theorem 9.1 of Owen (2013)). Let p � q and µ̂IS be the importance
sampling estimator for µ = Ep[f(X)] using n i.i.d. samples from q. Then, Eq[µ̂IS] = µ
and

Varq[µ̂
IS] =

1

n

(∫
X

f(x)2p(x)2

q(x)
dx− µ2

)
.

Hence, the IS estimator is unbiased, while its variance is low whenever q is roughly
proportional to fp. Recall that, if µ̂ is the corresponding estimator which uses n i.i.d.
samples directly from p, its variance is

Varp[µ̂] =
1

n

(∫
X
f(x)2p(x)dx− µ2

)
.

Hence, the two estimators are difficult to compare in general and their variance highly
depends on the chosen distributions. Unfortunately, while the variance of µ̂ is always
bounded above if f is bounded, the same property might not hold for µ̂IS, whose variance
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can even become infinite (see, e.g., Example 9.1 of Owen (2013)). This happens when p
and q are quite different, so that p gives high probability mass to regions where q has low
mass and f is large. This is a fundamental problem in our transfer settings where we have
no control (or only partial control) on the distributions involved and we want to prevent
negative transfer. For this reason, we now discuss two more robust estimators than plain
importance sampling.

Self-Normalized Importance Sampling
The self-normalized importance sampling (SNIS) estimator is defined as

µ̂SNIS :=

∑n
i=1 w(Xi)f(Xi)∑n

i=1 w(Xi)
, Xi ∼ q. (4.2)

That is, instead of dividing everything by the number of samples n, we use the total sum
of importance weights. This technique has two main benefits. First, it can be used even
when the distributions p, q can be evaluated only up to a normalization constant. Second,
it has typically much lower variance than the plain IS estimator. Unfortunately, the self-
normalized estimator is consistent but biased (see, e.g., Theorem 9.2 of Owen (2013)).
Although there is no general theoretical dominance, in practice the self-normalize estima-
tor often yields superior performance than the IS one.

Multiple Importance Sampling
Multiple importance sampling (MIS) (Veach and Guibas, 1995; Veach, 1997) deals with
the case where samples from multiple proposal distributions are available. Consider the
same setting as before, now with m+ 1 probability measures p0, p1, . . . , pm, where p0 is
the target one. Suppose that, for j = 1, . . . ,m, we are given nj > 0 i.i.d. samples from
distribution pj , while we have access to n0 ≥ 0 (possibly zero) i.i.d. samples from the
target. The MIS estimator for µ := Ep0

[f(X)] is

µ̂MIS =

m∑
j=0

1

nj

nj∑
i=1

hj(Xi,j)
p0(Xi,j)

pj(Xi,j)
f(Xi,j), Xi,j ∼ pj . (4.3)

The function h is often referred to as heuristics and must be a partition of unity, i.e.,∑m
j=0 hj(x) = 1 for all x ∈ X . It is easy to show (Veach and Guibas, 1995) that the

MIS estimator is unbiased for any choice of h that satisfies this property. For instance, by
choosing hj(x) =

nj∑m
l=0 nl

we recover the standard IS estimator (with multiple proposals).

A common and convenient choice for h is the balance heuristics, hj(x) =
njpj(x)∑m
l=1 nlpl(x) ,

for which the MIS estimator reduces to an IS estimator with a mixture of proposals,

µ̂BH =
1

n

m∑
j=0

nj∑
i=1

p0(Xi,j)

p̄α(Xi,j)
f(Xi,j), Xi,j ∼ pj , (4.4)

where n =
∑m
j=0 nj and p̄α(x) =

∑m
j=0 αjpj(x), with αj =

nj
n . This estimator is also

known in the literature as deterministic mixture sampling or stratification (Hesterberg,
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1995; Owen and Zhou, 2000). It can be shown equivalent to mixture importance sampling
(see Section 9.11 of Owen (2013)), with the difference that samples are not really gener-
ated by the mixture distribution p̄α. A key property is that, when n0 > 0, the resulting
weights are bounded by n

n0
since, for all x ∈ X ,

p0(x)

p̄α(x)
=

p0(x)

n0

n p0(x) +

m∑
j=1

nj
n
pj(x)︸ ︷︷ ︸

≥0

≤ n

n0
.

This fact also implies that the variance of these weights is bounded, a property that, as we
have seen before, rarely holds for plain IS. For these reasons, samples from p0 are often
referred to as defensive.

Effective Sample Size
The effective sample size (ESS) is an important measure of the goodness of an IS estimator.
Informally, the ESS is the number neff such that the variance of the Monte Carlo estimator
using neff independent samples from p matches that of the IS scheme. A common approx-
imation is ESS := n

1+Varq [p(x)/q(x)] (Liu, 1996). Equivalently, since the variance at the

denominator is Varq[p(x)/q(x)] =
∫
X
p(x)2

q(x) dx− 1, we can write ESS = n
d2(p‖q) , where

d2(p‖q) :=

∫
p(x)2

q(x)
dx (4.5)

is the exponentiated second-order Renyi divergence. A connection between moments of
the importance weights and Renyi divergences has been shown by Cortes et al. (2010).
One way to estimate this quantity from samples, though many exist (see, e.g., Martino
et al. (2017)), is

ÊSS =
n

1 + 1
n

∑n
i=1(w(Xi)− 1)2

, Xi ∼ q. (4.6)

Control Variates
Control variates are a widely applied variance reduction technique for general Monte Carlo
estimators (Hammersley and Handscomb, 1964). The underlying idea is that a random
variable with known expectation could be used to reduce the variance of a mean estimator
for another random variable. One example are the baselines adopted in policy gradient
approaches (see Section 2.5.2), which rely on the fact that the log-policy gradients have
null expected value. Owen and Zhou (2000) have popularized the usage of control variates
for IS and MIS. Let ψ be any vector of functions such that Ep[ψ(X)] = 0. Then, the IS
estimator with control variates is

µ̂ISCV :=
1

n

n∑
i=1

p(Xi)f(Xi)− βTψ(Xi)

q(Xi)
, Xi ∼ q, (4.7)
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where β is any vector of parameters. Similarly, the MIS estimator with balance heuristic
and control variates is

µ̂BHCV =
1

n

m∑
j=0

nj∑
i=1

p0(Xi,j)f(Xi,j)− βTψ(Xi,j)

p̄α(Xi,j)
, Xi,j ∼ pj . (4.8)

It is easy to show that these estimators are unbiased for any choice of β, so one can opti-
mize for the latter variable in order to minimize variance. In the specific case of MIS with
balance heuristic, Owen and Zhou (2000) show that the proposal distributions composing
the mixture, whose integral is known to be 1, can be used as very effective control variates.
In this case, we have that ψj(x) =

pj(x)
p̄α(x) − 1 for j = 0, . . . ,m. The following theorem

is one of the most important results in providing the robustness of the MIS estimator with
optimal control variates.

Theorem 4.4.2 (Theorem 2 of Owen and Zhou (2000)). Let µ̂BHCV be the MIS estimator
with balance heuristic and control variates given by ψj(x) =

pj(x)
p̄α(x) − 1 for j = 0, . . . ,m.

Suppose that the estimator uses the control-variate parameters that minimize Var[µ̂BHCV].
Then,

Var[µ̂BHCV] ≤ min
j∈{0,1,...,m}

Varpj [f(X)p0(X)/pj(X)]

nαj
.

In the right-hand side, it is possible to recognize the variances of the single IS estimator
that uses only samples from pj , divided by αj . This implies that the MIS estimator with
optimal control variates is never much worse than the IS scheme using the single best
source distribution available. Notably, when n0 > 0 defensive samples are available, this
theorem implies that the variance of the MIS estimator is never worse than the one of not
using importance corrections at all.

Corollary 4.4.1. Assume the same conditions as in Theorem 4.4.2 and that n0 > 0. Then,

Var[µ̂BHCV] ≤ Varp0 [f(X)]

n0
.

We shall rely on this result later on to guarantee robustness to negative transfer for our
algorithms.
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CHAPTER5
Importance Weighted Fitted Q-Iteration

This chapter is based on the paper “Importance Weighted Transfer of Samples in Rein-
forcement Learning” co-authored with Andrea Sessa, Matteo Pirotta, and Marcello Restelli
and published at ICML 2018.

Transfer in Batch Reinforcement Learning

In this chapter, we focus on the transfer of experience samples in batch reinforcement
learning. This is a particularly relevant setting that is often encountered in practice,
where one has access to historical data from a set of different environments, without
the possibility to collect more, and aims at learning the optimal controller for one of
them. The formal setting is the one introduced in Chapter 4, with a set of m + 1 un-
known tasks {M0,M1, . . . ,Mm} ⊆ M whereM0 is the target one. Each taskMj is
an MDP Mj = (S,A, Pj , Uj , γ), where we ignore the initial state distribution since it
will not be used by the value-based algorithms we consider. From each MDP, we have a
dataset Dj = {(Si,j , Ai,j , S′i,j , Ri,j)|i = 1, . . . , nj} of nj experience samples. We have
that S′i,j ∼ Pj(·|Si,j , Ai,j) and Ri,j ∼ Uj(·|Si,j , Ai,j) for each j = 0, 1, . . . , nj and
i = 1, . . . , nj . For simplicity, we assume that the couples (Si,j , Ai,j) are i.i.d. from a
common fixed distribution ν ∈ P(S×A), regardless of the task index. This assumption is
only for simplifying the exposition and analysis, but it can be relaxed. We require nj > 0
for all tasks, including the target one, possibly with n0 � nj for all j ≥ 1. The goal is
to reuse all these data to augment the dataset used to learn the target MDPM0, so as to
obtain better solutions than learning M0 using only the n0 target samples (i.e., without
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transfer).

Example. Consider the following real-world example, which shall be one of our con-
crete experiments later on. The problem is water reservoir management, where the goal
is to decide the amount of water stored into, and released from, the reservoir (e.g., a lake)
by controlling its dam. The control is driven by different, contrasting, objectives, includ-
ing satisfying water demand from external entities (such as farmers), ensuring a minimum
storage level, and preventing the capacity from exceeding a flooding threshold. According
to our model of the system, which follows a real-world study of Lake Como (Castelletti
et al., 2010), interacting with the environment is extremely time expensive; an action, in
fact, consist of choosing the amount of water to release in a day and its effects are observed
only after 24 hours. This makes learning by online interactions prohibitive. However, we
often have access to historical operational data from the dam, i.e., the system logs actions,
typically taken by a human expert or a manually tuned controller, together with their ef-
fects. Even better, often data from multiple reservoirs can be obtained. These reservoirs
might be located in different geographical regions than the one we intend to control, and
might be controlled to purse different objectives. Climate changes (which impact the water
inflow due to natural causes, such as rains or ice melting) and different objectives imply
that the available datasets follow different distributions, i.e., the underlying MDP models
differ. Anyway, we can still hope to exploit possible similarities to effectively augment
the data available for controlling the target reservoir which, given the prohibitive sample
complexity, might be fundamental for even learning something useful.

Our approach. As is common in batch reinforcement learning (Lange et al., 2012), we
shall design a value-based algorithm whose goal is to approximate the optimal action-
value function Q?(s, a) ofM0. Our proposed solution is an importance-weighted variant
of Fitted Q-Iteration (FQI), our no-transfer baseline. Unlike previous works (Taylor et al.,
2008; Lazaric et al., 2008b; Laroche and Barlier, 2017), our method (1) does not require
any source sample selection, and (2) it decouples rewards and state transitions and trans-
fers them separately. This chapter is mostly devoted to the theoretical analysis of our
algorithm when provided with any set of weights, not necessarily the true unknown im-
portance weights, and to its empirical evaluation. In order to carry out the latter, we also
present a simple method to estimate the true weights from samples, though much better
estimators are presented in the next chapter.

Outline. Our detailed contributions are as follows.

1. We propose Importance-Weighted Fitted Q-Iteration (IWFQI), a novel algorithm
for the transfer of samples in batch reinforcement learning (Section 5.2). IWFQI
transfers all the given samples, while re-weighting their contribution to the learning
process using importance sampling;

2. Building on top of existing results for approximate value iteration, we derive a finite-
sample analysis of IWFQI that is agnostic to the specific weights used by the algo-
rithm (Section 5.3);

3. Using Gaussian process (GP) regression, we design a simple model-based technique
to estimate the importance weights from samples (Section 5.4);
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4. We report numerical simulations in different domains (Section 5.5). The results
showcase the benefits of IWFQI over state-of-the-art baselines (Lazaric et al., 2008b;
Laroche and Barlier, 2017) and its robustness to negative transfer. Our experiments
include a simulated variant of the water-reservoir management problem described
above.

Importance-Weighted Fitted Q-Iteration

Let us begin by recalling how FQI (Ernst et al., 2005) works when applied to solve the
target MDP M0 (refer to Section 2.5.1 for the pseudo-code). Given a hypothesis space
Q ⊂ B(S × A, qmax)1 of limited capacity, FQI starts from an initial guess Q0 ∈ Q for
the optimal action-value function Q?2. Let D0 = {(Si,0, Ai,0, S′i,0, Ri,0)|i = 1, . . . , n0}
be the target dataset. At each iteration k ≥ 0, FQI approximates the application of the
optimal Bellman operator inQ using D0, such that Qk+1 ≈ T ?Qk. Formally, it computes

Qk+1 = argmin
Q∈Q

∥∥∥Q− T̂ ?Qk∥∥∥2

D0

, (5.1)

where T̂ ? is the empirical Bellman operator induced byD0 (see Definition 2.5.1), such that
(T̂ ?Q)(Si, Ai) := Ri+γmaxa∈AQ(S′i, a). Problem (5.1) is an instance of empirical risk
minimization where the couples (Si, Ai) ∼ ν are the covariates, Yi = (T̂ ?Qk)(Si, Ai) are
the targets, and a squared loss function is used. SinceD0 contains only target samples, then∥∥∥Q− T̂ ?Qk∥∥∥2

D0

is an unbiased estimator of the “true” loss function, i.e.,

E
[∥∥∥Q− T̂ ?Qk∥∥∥2

D0

]
= E (Si,Ai)∼ν,

S′i∼P0(·|Si,Ai),
Ri∼U0(·|Si,Ai)

[
1

n0

n0∑
i=1

∣∣∣Q(Si, Ai)− T̂ ?Qk(Si, Ai)
∣∣∣2]

= E(S,A)∼ν

[
ES′∼P0(·|S,A),
R∼U0(·|S,A)

[∣∣∣∣Q(S,A)−R+ γmax
a∈A

Qk(S′, a)

∣∣∣∣2
]]

.

Now suppose that we adopt a naive transfer approach where we form a large dataset D =⋃m
j=0Dj comprising the samples from all given MDPs and directly feed it into FQI to

solve (5.1). This approach suffers from sample selection bias (Cortes et al., 2008) and∥∥∥Q− T̂ ?Qk∥∥∥2

D
is no longer an unbiased estimator. In fact, using the decomposition as

above, it is easy to see that its expected value is

1

n
E(S,A)∼ν

 m∑
j=0

njES′∼Pj(·|S,A),
R∼Uj(·|S,A)

[∣∣∣∣Q(S,A)−R+ γmax
a∈A

Qk(S′, a)

∣∣∣∣2
] ,

1Differently from other works (e.g., Farahmand and Precup, 2012; Tosatto et al., 2017), we suppose, for
the sake of simplicity, the hypothesis space to be bounded by qmax ≤ rmax/(1 − γ). This assumption can
be relaxed by considering truncated functions. We refer the reader to Györfi et al. (2006) for the theoretical
consequences of such relaxation.

2Throughout this chapter, task-dependent quantities, such as optimal value functions or Bellman operators,
for which we do not specify the task implicitly refer to the targetM0
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which differs from the one derived before that involves only expectations underM0. How-
ever, it is easy to obtain an unbiased estimator using any of the importance sampling tech-
niques presented in the previous section. For instance, using plain importance sampling, it
is enough to multiply the squared loss term associated to each instance (Si,j , Ai,j , S

′
i,j , Ri,j)

by the density ratio

wi,j :=
P0(S′i,j |Si,j , Ai,j)U0(Ri,j |Si,j , Ai,j)
Pj(S′i,j |Si,j , Ai,j)Uj(Ri,j |Si,j , Ai,j)

. (5.2)

Imagine for the moment that these weights could be computed exactly for each sample.
This is clearly not possible in practice since we do not know the MDP models and later
on we shall see how these weights can be approximated. Then, by feeding FQI on the full
dataset D with samples weighted by wi,j , we get an algorithm that automatically selects
which samples to transfer, i.e., those that, based on the importance weights, are more
likely to be generated from the target MDP. This approach looks appealing but presents
one important limitation. Consider a simple case where we have a source MDP with the
same state-transition dynamics as the target, but with entirely different reward. Then, the
importance weights defined above are likely to be very close to zero for any source sample,
thus making transfer useless. This because transition and reward samples are transferred
jointly, so it is enough that the distribution of one changes significantly to discard the
entire couple. However, we would like a method able to leverage the fact that transition
dynamics do not change, thus transferring only that part of the sample.

To overcome this limitation, we use the intuition that FQI initialized withQ0(s, a) = 0
fits the target reward function at the first iteration. This leads us to the following variation
of FQI, which effectively decouples reward and transition samples. At the first iteration,
we use all the samples to fit a model r̂0 ≈ r0 of the target reward function. More specifi-
cally, we solve the following weighted regression problem:

r̂0 = argmin
r∈Q

1

n

m∑
j=0

nj∑
i=1

wri,j |r(Si,j , Ai,j)−Ri,j |2 , (5.3)

where Q is the same hypothesis space we consider to represent action-value functions.
Since no state-transition samples are involved in this step, it is enough to consider impor-
tance weights over the reward distributions. For instance, using plain IS,

wri,j :=
U0(Ri,j |Si,j , Ai,j)
Uj(Ri,j |Si,j , Ai,j)

, (5.4)

and similarly for MIS or other weighting schemes. Then, we set Q0 = r̂0 and, at each
iteration k ≥ 0, we update the current action-value function as

Qk+1 = argmin
Q∈Q

1

n

m∑
j=0

nj∑
i=0

wpi,j

∣∣∣Q(Si,j , Ai,j)− T̃ ?Qk(Si,j , Ai,j)
∣∣∣2 , (5.5)

where T̃ such that T̃ ?Qk(Si,j , Ai,j) := r̂0(Si,j , Ai,j) + γmaxaQk(S′i,j , a) is a modified
empirical Bellman operator. Intuitively, instead of considering the random rewards Ri,j ,
we use the initial estimate r̂0 of r0. Similarly as before, since the stochasticity due to the
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Algorithm 2 Importance Weighted Fitted Q-Iteration

Require: Number of iterations K, hypothesis space Q, augmented dataset D̃ =⋃m
j=0

⋃nj
i=1

{
(Si,j , Ai,j , S

′
i,j , Ri,j , w̃

r
i,j , w̃

p
i,j)
}

Ensure: Action-value function QK , greedy policy πK
Fit target reward: r̂0 ← argminr∈Q

1
n

∑m
j=0

∑nj
i=1 w

r
i,j |r(Si,j , Ai,j)−Ri,j |2

Set initial action-value function: Q0 ← r̂0

for k = 0, . . . ,K − 1 do
Compute regression targets:
Yi,j ← T̃ ?Qk(Si,j , Ai,j) := r̂0(Si,j , Ai,j) + γmaxaQk(S′i,j , a)

Update action-value function:
Qk+1 = argminQ∈Q

1
n

∑m
j=0

∑nj
i=0 w

p
i,j |Q(Si,j , Ai,j)− Yi,j |2 ,

end for
Compute greedy policy: πK(s)← argmaxa∈AQK(s, a) ∀s ∈ S
return QK and πK

reward samples is now removed, only the state-transition kernel needs to be included in
the importance weights,

wpi,j :=
P0(S′i,j |Si,j , Ai,j)
Pj(S′i,j |Si,j , Ai,j)

. (5.6)

The resulting method (see Algorithm 2), named Importance-Weighted Fitted Q-Iteration
(IWFQI), uses this decomposition to enable separate transfer of rewards and state transi-
tions. Of course, in practice the MDP models are unknown and thus the exact importance
weights given above (or any variant involving the true distributions) cannot be computed.
Therefore, IWFQI is defined in terms of user-provided weights w̃ri,j and w̃pi,j . This could
be obtained, for instance, by first estimating the MDP models or by directly fitting the
density ratios (Sugiyama et al., 2012). We postpone a discussion of estimation techniques
to Section 5.4. On the other hand, the following section is devoted to a theoretical analysis
of IWFQI as a function of the chosen weights, in a way that is independent of how they
are estimated. Intuitively, we study what happens when combining IWFQI with arbitrary
weights instead of the true ones (which cannot be computed in practice) so as to better
understand the consequences of their estimation from samples.

Theoretical Analysis

Since the main purpose of our analysis is to show what happens when combining an ap-
proximate value iteration algorithm with data from different environments, we consider
the simplified setting where we have n = n1 samples from a single source task (m = 1),
but no samples from the target task (n0 = 0). A generalization to the case where target
samples or samples from more sources are available is straightforward, and it only com-
plicates our derivation. Some hints on what our results would look like in such a more
general case can be found in Section 4.3. Furthermore, we recall that the results provided
in this section are independent from the way the importance weights are estimated. We
note that, differently from existing analyses of the transfer of samples (Crammer et al.,
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2008; Lazaric and Restelli, 2011), whose focus is on the trade-off between transfer bias
and variance, here we concentrate on the implications of correcting distribution shift as in
other works from the supervised learning literature (Cortes et al., 2010; Garcke and Vanck,
2014).

Following prior analyses of approximate value iteration methods (Munos and Szepesvári,
2008; Farahmand, 2011), our measure of interest is ‖Q?−QπK‖1,µ, i.e., the expected per-
formance loss, under some distribution µ ∈ P(S × A), of the policy πK returned by
IWFQI (which is greedy with respect to QK) with respect to the optimal policy π?(s) =
argmaxa∈AQ

?(s, a). Here µ is an arbitrary evaluation distribution over S × A that can
be freely chosen. In practice, it might coincide with the sampling distribution ν.

Consider the sequence of action-value functionsQ0, Q1, . . . , QK computed by IWFQI.
At each iteration k ≥ 0, we incur in an error

εk := T ?Qk −Qk+1 (5.7)

in approximating the optimal Bellman operator. Since IWFQI belongs to the family of ap-
proximate value iteration algorithms, we can resort to Theorem 3.4 of Farahmand (2011),
which conveniently decomposes ‖Q? −QπK‖1,µ in terms of the per-iteration errors εk.

Theorem 5.3.1 (Theorem 3.4 of Farahmand (2011)). Let K be a positive integer and
qmax ≤ rmax

1−γ . Then, for any sequence {Qk}Kk=0 ⊂ B(S×A, qmax) and the corresponding
sequence {εk}Kk=0, we have

‖Q? −QπK‖1,µ ≤
2γ

(1− γ)2

2γKqmax + inf
b∈[0,1]

√√√√Cµ,ν(K; b)

K−1∑
k=0

α2b
k ‖εk‖2ν

 .
The coefficients Cµ,ν involve the Radon-Nikodym derivative between the evaluation

distribution µ and the sampling distribution ν. Intuitively, we have state-action pairs drawn
from ν but we evaluate the error according to µ, so the more different are these two dis-
tributions, the larger is the bound. The coefficients αk depend only on the discount factor
and are of minor relevance. We refer the reader to Chapter 3 of Farahmand (2011) for the
full expressions of these two quantities.

The bound given in Theorem 5.3.1 holds for any approximate value iteration algorithm.
The errors ‖εk‖2ν are the only components depending on the specific learning algorithm.
Thus, our problem reduces to bounding such errors for the specific case of IWFQI. Note
that our algorithm performs importance-weighted regression at each iteration, hence these
terms can be interpreted as the corresponding regression errors. Cortes et al. (2010) already
provided a theoretical analysis of importance-weighted regression. However, their results
are not immediately applicable to our case since they consider a regression problem where
the shift is on the covariate distribution and the target variable is a deterministic function
of the input. On the other hand, we have a regression estimation problem where the target
is a random variable whose distribution changes across MDPs, and we want to learn its
conditional expectation given the input. Therefore, before bounding ‖εk‖2ν , we generalize
the results of Cortes et al. (2010) to our setting.
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Error Bound for Importance-Weighted Regression
We consider the following general setting, which characterizes all regression problems
performed by IWFQI. Let H ⊂ B(X , fmax) be the hypothesis space. Suppose we have
a dataset D = {(Xi, Yi)|i = 1, . . . , n} of n i.i.d. samples, where Xi ∼ ν and Yi ∼
p1(·|Xi). With some abuse of notation, we denote by p1ν their joint distribution. The goal
is to approximate the regression function with respect to the target distribution p0,

h?(x) := EY∼p0(·|x)[Y ]. (5.8)

To this purpose, we solve the following weighted regression problem:

ĥ(x) := argmin
h∈H

{
1

n

n∑
i=1

w̃(Xi, Yi)|h(Xi)− Yi|2
}
, (5.9)

where w̃(Xi, Yi) is an arbitrary positive weighting function. Let w(x, y) = p0(y|x)
p1(y|x) be the

“ideal” weight function. The following result bounds the regression error ‖ĥ − h?‖ν . It
is the equivalent of Theorem 4 of Cortes et al. (2010) in our setting and we believe it is of
independent interest.

Theorem 5.3.2. Consider the importance-weighted regression problem outlined above.
Suppose that |Y | ≤ fmax almost surely, d = pdim({|h(x) − y|2 : h ∈ H}) < ∞3,
and EX∼ν,Y∼p1(·|X)[w̃(X,Y )2] < ∞. Then, for any δ > 0, the following holds with
probability at least 1− 2δ:

‖ĥ− h?‖ν ≤ inf
h∈H

‖h− h?‖ν + fmax

√
‖ϕ‖1,ν + 2fmax‖w̃ − w‖p1ν

+ 213/8fmax

√
υ(w̃)

(
d log 2ne

d + log 4
δ

n

) 3
16

,

whereϕ(x) := EY∼p1(·|x)[w̃(x, Y )]−1 and υ(w̃) :=
√
Eν,p1

[w̃(X,Y )2]+

√
ÊD[w̃(X,Y )2],

with ÊD denoting the empirical expectation on D.

Proof. Applying Hölder’s inequality, for all h ∈ H,

Ep1ν

[(
w̃(X,Y )|f(X)− Y |2

)2] ≤ 16f4
maxEp1ν [w̃(X,Y )2] <∞.

Thanks to the fact that the loss has bounded second moment, we can apply Corollary 1 of Cortes
et al. (2010) to Lh(x, y) := w̃(x, y)|h(x)− y|2. We have that, with probability at least 1− δ,

Ep1ν [w̃(X,Y )|ĥ(X)− Y |2] ≤ 1

n

n∑
i=1

w̃(Xi, Yi)|ĥ(Xi)− Yi|2+

213/4f2
max

√
Ep1ν [w̃(X,Y )2]

(
d log 2ne

d
+ log 4

δ

n

)3/8

. (5.10)

3We denote by pdim(·) the pseudo-dimension of a real-valued function class.
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Let us now expand the left-hand side of (5.10):

Ep1ν

[
w̃(X,Y )|ĥ(X)− Y |2

]
= Eν

[
Ep1

[
w̃(X,Y )

(
ĥ2(X) + Y 2 − 2ĥ(X)Y

)
| X
]]

= Eν
[
ĥ2(X)Ep1 [w̃(X,Y ) | X] + Ep1 [w̃(X,Y )Y 2 | X]

− 2ĥ(X)Ep1 [w̃(X,Y )Y | X]± Ep1 [w̃(X,Y )Y | X]2 ± ĥ2(X)
]

= Eν

[(
ĥ(X)− Ep1 [w̃(X,Y )Y | X]

)2

+ ĥ2(X)Ep1 [w̃(X,Y ) | X]

+ Ep1 [w̃(X,Y )Y 2 | X]− Ep1 [w̃(X,Y )Y | X]2 − ĥ2(X)

]
= ‖ĥ− h̃‖2ν + Eν [ĥ2(X) (Ep1 [w̃(X,Y )− 1 | X])] + z,

where z = Eν [Ep1 [w̃(X,Y )Y 2 | X] − Ep1 [w̃(X,Y )Y | X]2] is a constant term (independent of
ĥ) and h̃(x) = Ep1 [w̃(x, Y )Y | x] is the regression function weighted by w̃. Plugging this into
(5.10), we obtain

‖ĥ− h̃‖2ν + Eν [ĥ2(X) (Ep1 [w̃(X,Y )− 1 | X])] + z ≤ 1

n

n∑
i=1

w̃(Xi, Yi)|ĥ(Xi)− Yi|2

+ 213/4f2
max

√
Ep1ν [w̃(X,Y )2]

(
d log 2ne

d
+ log 4

δ

n

)3/8

.

(5.11)

Consider now the hypothesis h0 ∈ H such that h0 = argminh∈H ‖h− h̃‖2ν . Since h0 is inH and
ĥ was defined as the hypothesis minimizing the empirical weighted loss, we have

1

n

n∑
i=1

w̃(Xi, Yi)|ĥ(Xi)− Yi|2 ≤
1

n

n∑
i=1

w̃(Xi, Yi)|h0(Xi)− Yi|2. (5.12)

Similarly to what we did for ĥ, we can bound the empirical error of h0. According to Corollary 1 of
(Cortes et al., 2010), we have that for any δ > 0, with probability at least 1− δ

1

n

n∑
i=1

w̃(Xi, Yi)|h0(Xi)− Yi|2 ≤ Ep1ν [w̃(X,Y )|h0(X)− Y |2]

+ 213/4f2
max

√
ÊD[w̃(X,Y )]

(
d log 2ne

d
+ log 4

δ

n

)3/8

.

Then, using exactly the same argument as before,

1

n

n∑
i=1

w̃(Xi, Yi)|h0(Xi)− Yi|2 ≤ inf
h∈H
‖h− h̃‖2ν + Eν [h2

0(X) (Ep1 [w̃(X,Y )− 1 | X])] + z

+ 213/4f2
max

√
ÊD[w̃(X,Y )]

(
d log 2Ne

d
+ log 4

δ

N

)3/8

.

(5.13)

If we now put (5.11) and (5.13) together by means of (5.12), we get that, with probability at least
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1− 2δ

‖ĥ− h̃‖2ν ≤ inf
h∈H
‖h− h̃‖2ν + Eν

[(
h2

0(X)− ĥ2(X)
)

(Ep1 [w̃(X,Y )− 1 | X])
]

+ 213/4f2
max

(√
Ep1ν [w̃(X,Y )2] +

√
ÊD[w̃(X,Y )2]

)(
d log 2ne

d
+ log 4

δ

n

)3/8

≤ inf
h∈H
‖h− h̃‖2ν + f2

max‖ϕ‖1,ν + 213/4f2
maxυ(w̃)

(
d log 2ne

d
+ log 4

δ

n

) 3
8

.

(5.14)

By taking the square root of both sides of (5.14) and using
√∑

i ai ≤
∑
i

√
ai for ai ≥ 0, we

obtain

‖ĥ− h̃‖ν ≤ inf
h∈H
‖h− h̃‖ν + fmax

√
‖ϕ‖1,ν + 213/8fmax

√
υ(w̃)

(
d log 2ne

d
+ log 4

δ

n

) 3
16

.

(5.15)

Furthermore,
inf
h∈H
‖h− h̃‖ν ≤ inf

h∈H
‖h− h?‖ν + ‖h? − h̃‖ν . (5.16)

We can now bound the expected error of ĥ with respect to h? by

‖ĥ− h?‖ν ≤ ‖ĥ− h̃‖ν + ‖h̃− h?‖ν . (5.17)

We already provided a bound on the first term, so let us analyze the second one. We have

‖h̃− h?‖2ν = Eν [|h̃(X)− h?(X)|2] = Eν [|Ep1 [w̃(X,Y )Y | X]− Ep0 [Y | X]|2]

= Eν [|Ep1 [w̃(X,Y )Y | X]− Ep1 [w(X,Y )Y | X]|2]

= Eν [|Ep1 [Y (w̃(X,Y )− w(X,Y )) | X]|2]

≤ Eν [Ep1 [|Y |2|w̃(X,Y )− w(X,Y )|2 | X]]

≤ f2
maxEp1ν

[
|w̃(X,Y )− w(X,Y )|2

]
= f2

max‖w̃ − w‖2p1ν .

(5.18)

where the first inequality is due to Jensen’s inequality. Thus, ‖h̃ − h?‖ν ≤ fmax‖w̃ − w‖p1ν . By
combining (5.15), (5.16), (5.17), and (5.18), we have

‖ĥ− h?‖ν ≤ ‖ĥ− h̃‖ν + ‖h̃− h?‖ν

≤ inf
h∈H
‖h− h̃‖ν + fmax

√
‖g‖1,ν + 213/8fmax

√
υ(w̃)

(
d log 2ne

d
+ log 4

δ

n

) 3
16

+ ‖h̃− h?‖ν

≤ inf
h∈H
‖h− h?‖ν + fmax

√
‖g‖1,ν + 213/8fmax

√
υ(w̃)

(
d log 2ne

d
+ log 4

δ

n

) 3
16

+ 2‖h̃− h?‖ν

≤ inf
h∈H
‖h− h?‖ν + fmax

√‖g‖1,ν + 2
13
8

√
υ(w̃)

(
d log 2ne

d
+ log 4

δ

n

) 3
16

+ 2‖w̃ − w‖p1ν


which concludes the proof.
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Error Bound for IWFQI

We now use Theorem 5.3.2 to bound the errors ‖εk‖ν . Let us first introduce some useful
definitions. Let w̃r(·|s, a) and w̃p(·|s, a) be the chosen weight functions. The “pipe”
notation is used to indicate that the weights are on the conditional distributions given a
state-action pair. Similarly, letwr andwp be the “true” density rations. We only require the
following assumption, common in importance-weighted regression (Cortes et al., 2010).

Assumption 5.3.1 (Bounded second moment). The second moments of the chosen weight
functions are bounded: ER∼U1(·|s,a)[w̃r(R|s, a)2] <∞ andES′∼P1(·|s,a)[w̃p(S

′|s, a)2] <
∞ for all (s, a) ∈ S ×A.

Similarly to Theorem 5.3.2, letϕr(s, a) = ER∼U1(·|s,a)[w̃r(R|s, a)]−1 andϕp(s, a) =
ES′∼P1(·|s,a)[w̃p(S

′|s, a)]− 1. Furthermore, define the following two functions

υr(w̃r) :=
√
EU1ν [w̃r(R|S,A)2] +

√
ÊD[w̃r(R|S,A)2], (5.19)

υp(w̃p) :=
√
EP1ν [w̃p(S′|S,A)2] +

√
ÊD[w̃p(S′|S,A)2]. (5.20)

As before, we use the notation U1ν and P1ν to denote the joint distributions of state-action
pairs and rewards and next states, respectively. The following corollary is immediate from
Theorem 5.3.2.

Corollary 5.3.1. Suppose that the pseudo-dimension d of Q is finite and that Assumption
5.3.1 holds. Let r̂0 be as defined in (5.3) with n0 = 0 and m = 1. Then, for any δ > 0,
with probability at least 1− 2δ,

||r0 − r̂0||ν ≤ inf
r∈Q

||r − r0||ν + qmax

√
||ϕr||1,ν + 2qmax||w̃r − wr||U1ν

+ 213/8qmax

√
υr(w̃r)

(
d log 2ne

d + log 4
δ

n

) 3
16

.

(5.21)

Moreover, for any k ≥ 0, let Qk+1 be as defined in (5.5) with n0 = 0, m = 1, and
Qk ∈ Q. Then, for any δ > 0, with probability at least 1− 2δ,

||T̄ ?Qk −Qk+1||ν ≤ inf
Q∈Q
||Q− T̄ ?Qk||ν + qmax

√
||ϕp||1,ν

+ 2qmax||w̃p − wp||P1ν + 213/8qmax

√
υp(w̃p)

(
d log 2ne

d + log 4
δ

n

) 3
16

,

(5.22)

where T̄ ?Q(s, a) := r̂0(s, a) +
∫
S P0(ds′|s, a) maxa′ Q(s′, a).

Equipped with this result, we are now ready to state the main error bound for IWFQI.

Theorem 5.3.3. Let {Ql}k+1
l=0 be the sequence of action-value functions produced by

IWFQI using a single source dataset of n = n1 samples and no target sample. Then,
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for any δ > 0, with probability at least 1− 4δ:

‖T ∗Qk −Qk+1‖ν ≤ qmax

√
‖ϕp‖1,ν + 2qmax

√
‖ϕr‖1,ν

+ 2qmax‖w̃p − wp‖P1ν + 4qmax‖w̃r − wr‖U1ν

+ inf
Q∈Q
‖Q− (T ∗)k+1Q0‖ν + 2 inf

r∈H
‖r − r0‖ν

+ 2
13
8 qmax

(√
υp(w̃p) + 2

√
υr(w̃r)

)(
d log 2ne

d + log 4
δ

n

) 3
16

+

k−1∑
i=0

(γCAE(ν))i+1‖εk−i−1‖ν ,

where CAE is the concentrability coefficient of one-step transitions as defined in (Farah-
mand, 2011, Definition 5.2).

Proof. We can decompose the error at iteration k into:

‖εk‖ν = ‖T ?Qk −Qk+1‖ν ≤ ‖T ?Qk − T̄ ?Qk‖ν + ‖T̄ ?Qk −Qk+1‖ν
= ‖r0 − r̂0‖ν + ‖T̄ ?Qk −Qk+1‖ν , (5.23)

where T̄ ? is defined in Corollary 5.3.1 as the optimal Bellman operator of the target task using the
approximated reward function defined in (5.3). The two terms in (5.23) can be bounded straightfor-
wardly by applying Corollary 5.3.1. In the second term, this gives rise to infQ∈Q ‖Q − T̄ ?Qk‖ν ,
which can be further bounded by noticing that

inf
Q∈Q
‖Q− T̄ ?Qk‖ν ≤ inf

Q∈Q
‖Q− T ?Qk‖ν + ‖T ?Qk − T̄ ?Qk‖ν . (5.24)

The second term in (5.24) is again ‖r0 − r̂0‖ν , while the first term has already been bounded in
Theorem 5.3 of Farahmand (2011) as

inf
Q∈Q

‖Q− T ?Qk‖ν ≤ inf
Q∈Q
‖Q− (T ?)k+1Q0‖ν +

k−1∑
i=0

(γCAE(ν))i+1‖εk−i−1‖ν . (5.25)

The proof follows by combining the bounds from Corollary 5.3.1 with (5.24) and (5.25) and rear-
ranging.

Discussion. As expected, four primary sources of error contribute to our bound: (i) the
bias due to estimated weights (first four terms), (ii) the approximation error (fifth and
sixth term), (iii) the estimation error (seventh term), (iv) the propagation error (eighth
term). Notice that, assuming to have a consistent estimator for the importance weights
(an example is given in Section 5.4), the bias term vanishes as the number of samples
n tends to infinity. Furthermore, the estimation error decreases with n, thus vanishing
as the number of samples increases. Thus, in the asymptotic case our bound shows that
the only source of error is due to the limited capacity of the functional space Q under
consideration, as in all approximate value iteration algorithms. Furthermore, we notice
that fitting the reward function and using it instead of the available samples propagates
an error term through iterations, i.e., the approximation error infr∈Q ‖r − r0‖ν . If we
were able to estimate the importance weights for the typical case where both reward and
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transition samples are used, we could get rid of such error. However, since the resulting
weights somehow depend on the joint reward-transition densities, we expect their vari-
ance, as measured by ε(w̃), to be much bigger, thus making the resulting bound even
larger. Furthermore, we argue that, when the reward function is simple enough and only
a limited number of samples is available, a separate fit might be beneficial even for plain
FQI. In fact, the variance of the empirical optimal Bellman operator can be reduced by
removing the source of stochasticity due to the reward samples at the cost of propagating a
small approximation error through iterations. The bounds for approximate value iteration
(e.g., Munos and Szepesvári, 2008; Farahmand, 2011; Farahmand and Precup, 2012) can
be straightforwardly extended to such case by adopting a procedure similar to the one de-
scribed in the proof of Theorem 5.3.3. In many practical applications the reward function
is actually known and, thus, does not need to be fitted. In such cases, it is possible to get
rid of the corresponding terms in Theorem 5.3.3, allowing transfer to occur without errors
even when rewards are completely different between tasks.

Estimating the Importance Weights

We now propose a very simple method to estimate the importance weights. In general,
this goal can be efficiently achieved by directly estimating density ratios (Sugiyama et al.,
2012). Unfortunately, in our settings, this is not an appealing approach for one main rea-
son: density ratios are not transferable, i.e., they must be recomputed for each new target
task. Therefore, we decide to take a more indirect approach and estimate only the missing
components, namely the reward and transition models. To this purpose, Gaussian pro-
cesses (GPs) have been successfully adopted to model stochastic dynamical systems with
high-dimensional and continuous state-action spaces (e.g., Kuss and Rasmussen, 2004;
Deisenroth and Rasmussen, 2011; Doshi-Velez and Konidaris, 2016; Berkenkamp et al.,
2017). Here we show how they can be adopted to estimate the importance weights.

For simplicity, let us focus on the reward model.4 We assume that the mean-reward
function rj of each task is distributed according to a Gaussian process rj ∼ GP(0,Kj)
with a zero-mean prior and covariance function Kj . Furthermore, we consider a Gaussian
reward generation process, i.e., Uj(·|s, a) = N (rj(s, a), σ2

j ). When fitting the GP using
the dataset Dj for the j-th task, we obtain a predictive distribution of the form

R|s, a ∼ N (r̂j(s, a), σ2
j + σ̂2

j (s, a)), (5.26)

where r̂j and σ̂2
j are the predictive mean and variance, respectively. By directly using this

distribution to estimate the importance weights, we obtain

w̃ri,j =
N (Ri,j ; r̂0(Si,j , Ai,j), σ

2
0 + σ̂2

0(Si,j , Ai,j))

N (Ri,j ; r̂j(Si,j , Ai,j), σ2
j + σ̂2

j (Si,j , Ai,j))
. (5.27)

A few remarks are due. First, the estimated weights converge to the true ones when the
GP predictions are perfect, i.e., when r̂j(s, a) → rj(s, a) and σ̂2

j (s, a) → 0 for all j =
0, . . . ,m. This is an advantage over density-ratio estimation approaches (Sugiyama et al.,
2012), where the limited hypothesis space to represent weight functions introduces an

4The transition model can be treated analogously to the reward by considering a separate GP for each state
dimension (Deisenroth and Rasmussen, 2011).
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irreducible approximation error. Second, we note that using the predictive distribution
instead of directly plugging the estimated means r̂k in place of the true ones adds the
predictive variance to the process variance in the weights. This has a sort of regularization
effect. In fact, the variance of the source densities, which is often the main cause behind
large importance weights, is increased whenever the source GP is inaccurate, thus avoiding
the weight from exploding. Finally, we point out that in the original paper (Tirinzoni et al.,
2018b), we actually show that the estimator of Equation 5.27 is somehow related to the
expected importance weights induced by the GP predictions. Here we neglect such result
since it is of minor importance.

Numerical Simulations

We evaluate IWFQI on three different domains with increasing level of complexity. The
first one, puddle world, is a synthetic grid-navigation task where both the transition and
reward models are Gaussian, thus representing a perfect starting point for evaluating our
method. The second one, acrobot, is a control problem in which, more realistically, such
assumption does not hold anymore. However, we show this to have a negligible impact
on our method. The third one is a simulated variant of the water-reservoir management
problem of Section 5.1. We show the intrinsic difficulty of such problem and the impor-
tance of transferring samples from previous experience. In all experiments, we compare
our method to two existing algorithms for transferring samples into FQI: the relevance-
based transfer (RBT) algorithm of Lazaric et al. (2008b) and the shared-dynamics transfer
(SDT) algorithm of Laroche and Barlier (2017). All results are averaged over 20 runs and
are reported with 95% Student’s t confidence intervals. We refer the reader to the original
paper (Tirinzoni et al., 2018b) for additional details on the experiments.

Puddle World

Our first experimental domain is a modified version of the puddle world environment pre-
sented in Sutton (1996). Puddle world is a two-dimensional continuous grid with a goal
area and some elliptical “puddles”. The goal is to drive the agent from a starting position
to the goal area while avoiding the puddles. The state-space is [0, 10]2, while the action-
space is discrete and allows the agent to move in the four cardinal directions. At each
time-step, the agent receives a reward of −1 plus a penalization proportional to the dis-
tance from all puddles: Rt+1 = −1−100

∑
u∈U Wu(St+1), where U is the set of puddles

and Wu(s) is the weight of puddle u for state s. In the goal the reward is zero. In our
experiments, we modeled Wu(s) as a bivariate Gaussian. Each action moves the agent by
α in the corresponding direction. In particular, we consider two versions of the environ-
ment: I) shared dynamics where α = 1 and II) puddle-based dynamics where puddles also
slow-down the agent by α = (1 + 5

∑
u∈U Wu(St))

−1. Finally, a white Gaussian noise of
σ2
r = 0.01 and σ2

p = 0.04 is added to the reward and the transition model, respectively. In
our experiments we set γ = 0.99 and a maximum horizon of 50 time-steps. We consider
three source tasks and one target task, as depicted in Figure 5.1. Notice that the optimal
paths to solve each task have at least a small overlapping, thus allowing some knowledge
transfer. However, the optimal policy for one task is likely to cross a puddle if carelessly
used in another domain. This makes the transfer problem more challenging since the algo-

67



Chapter 5. Importance Weighted Fitted Q-Iteration

Figure 5.1: From left to right: the target task and the three source tasks. The agent always
starts in the bottom-left corner and must reach the goal area (shown in green). Puddles
are shown in black.

rithm has to figure out which samples should be retained and which should be discarded.
For each source task, we generate a dataset of 20 episodes from a nearly-optimal policy.
We run IWFQI with weights computed as in Section 5.4, where we set the model noise
to be ten times the true value. For evaluating our weight estimation procedure, we also
run IWFQI with ideal importance weights (computed as the ratio of the true distributions).
In each algorithm, FQI is run for 50 iterations with Extra-Trees (Ernst et al., 2005). An
ε-greedy policy (ε = 0.3) is used to collect data in the target task.

Shared dynamics. We start by showing the results for α = 1 in Figure 5.2(left). As
expected, FQI alone is not able to learn the target task in such a small number of episodes.
On the other hand, IWFQI has a good jump-start and converges to an optimal policy in only
20 episodes. Interestingly, IWFQI with ideal weights has almost the same performance,
thus showing the robustness of our weight estimation procedure. RBT also learns the
optimal policy rather quickly. However, the limited number of target and source samples
available in this experiment makes it perform significantly worse in the first episodes.
Since in this version of the puddle world the dynamics do not change between tasks, SDT
also achieves good performance, converging to a nearly-optimal policy.

Puddle-based dynamics. We also show the results for the more challenging version of
the environment were puddles both penalize and slow-down the agent (Figure 5.2(right)).
Notice that, in this case, transition dynamics change between tasks, thus making the trans-
fer more challenging. Similarly, as before, our approach quickly learns the optimal policy
and is not affected by the estimated weights. Furthermore, the benefits of over-estimating
the model noise can be observed from the small improvement over IWFQI-ID. RBT is
also able to learn the optimal policy. However, the consequences of inaccurately comput-
ing compliance and relevance are more evident in this case, where the algorithm negatively
transfers samples in the first episodes. Finally, SDT still shows an improvement over plain
FQI, but it is not able to learn the optimal policy due to the bias introduced by the different
dynamics.

Acrobot
Acrobot (Sutton and Barto, 2018) is a classic control problem where the goal is to swing-up
a two-link pendulum by applying positive or negative torque to the joint between the two
links. Due to its non-linear and complex dynamics, Acrobot represents a very challeng-
ing problem, requiring a considerable amount of samples to be solved. The state-space
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Figure 5.2: Puddle world with 20× 3 episodes transferred from 3 source tasks in the case
of shared dynamics (left) and puddle-based dynamics (right).

is composed of the two link angles (θ1, θ2) and their velocities (θ̇1, θ̇2). The agent can
only apply a torque of +2 or −2 to the joint between the two links. The initial state is
(θ1, 0, 0, 0), where θ1 ∼ U(−2, 2). Performance is evaluated starting from multiple states
(θ1, 0, 0, 0), with θ1 evenly spaced in [−2, 2]. In this experiment, we consider a multi-task
scenario where robots might have different link lengths (l1, l2) and masses (m1,m2). Our
target task is the classic Acrobot swing-up problem, where the robot has lengths (1.0, 1.0)
and masses (1.0, 1.0). The swing-up task has reward

Rsw(θ1, θ2, θ̇1, θ̇2) = − cos(θ1)− cos(θ1 + θ2)− 2, (5.28)

and terminates whenever−cos(θ1)− cos(θ1 + θ2) > 1 or 100 time-steps are reached. We
consider two source tasks. The first is another swing-up task where the robot has lengths
(1.1, 0.7) and masses (0.9, 0.6). The second is a constant-spin task, where the goal is to
make the first joint rotate at a fixed constant speed, with lengths (0.95, 0.95) and masses
(0.95, 1.0). The constant-spin task has reward

Rcs(θ1, θ2, θ̇1, θ̇2) = −|θ̇1 − π|, (5.29)

and terminates whenever 100 time-steps are reached. Notice the intrinsic difficulty of
transfer: the first source task has the same reward as the target but very different dynamics,
and conversely for the second source task. Using nearly-optimal policies, we generate 100
episodes from the first source and 50 episodes from the second. We run all algorithms
(except SDT since the problem violates the shared-dynamics assumption) for 200 episodes
and average over 20 runs.

Results. Results are shown in Figure 5.3(left). We notice that both our approach and
RBT achieve a good jump-start and learn faster than plain FQI. However, to better inves-
tigate how samples are transferred, we show the transfer ratio from each source task in
Figure 5.3(right). Since RBT transfers rewards and transitions jointly, it decides to com-
pensate the highly biased reward samples from the constant-spin task by over-sampling
the first source task. However, it inevitably introduces bias from the different dynam-
ics. Our approach, on the other hand, correctly transfers almost all reward samples from
the swing-up task, while discarding those from the constant-spin task. Due to transition
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Figure 5.3: Acrobot swing-up with (100 + 50) episodes transferred from 2 source tasks.
(left) learning performance. (right) relative number of samples transferred from each
source task.
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Figure 5.4: Transfer of samples from the constant-spin task to the swing-up task. (left)
discounted expected reward and (right) number of steps before reaching a goal state.

noise over-estimation, IWFQI achieves an interesting adaptive behaviour: during the ini-
tial episodes, when few target samples are available, and the GPs are inaccurate, more
samples are transferred. This causes a reduction of the variance in the first phases of learn-
ing that is much greater than the increase of bias. However, as more target samples are
available, the transfer becomes useless, and our approach correctly decides to discard most
transition samples, thus minimizing both bias and variance.

We now show what happens when only the constant-spin source task is available.
Clearly, most of the reward samples should be discarded, and conversely for the transi-
tion samples. As we can see from Figure 5.4, RBT now performs significantly worse than
FQI. This is due to the fact that, by transferring samples jointly, it cannot avoid introducing
bias. Our approach, on the other hand, is able to discard the reward samples, thus being
robust to negative transfer. Furthermore, it achieves a little improvement over FQI due to
the few samples transferred.

Water Reservoir Control

In this experiment, we consider a real-world problem where the goal is to learn how to
optimally control a water reservoir system. More specifically, the objective is to learn
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Figure 5.5: Water reservoir control. (left) Inflow profiles for all tasks. (right) Learning
without transfer for 500 years.

a per-day water release policy that meets a given demand while keeping the water level
below a flooding threshold. Castelletti et al. (2010) successfully addressed such problem
by adopting batch RL techniques. However, the authors proved that, due to the highly
non-linear and noisy environment, an enormous amount of historical data is needed to
achieve good performance. Consider now the case where a new water reservoir, for which
no historical data is available, needs to be controlled. Since each sample corresponds to
one day of release, learning by direct interaction with the environment is not practical and
leads to poor control policies during the initial years, when only a little experience has
been collected. Although we do not know the new environment, it is reasonable to assume
that we have access to operational data from existing reservoirs. Then, our solution is
to transfer samples to immediately achieve good performance. However, such reservoirs
might be located in very different environments and weight objectives differently, thus
making transfer very challenging.

We adopt a system model similar to the one proposed in Castelletti et al. (2010). The
state variables are the current water storage st and day t ∈ [1, 365], while there are 8
discrete actions, each corresponding to a particular release decision. The system evolves
according to the simple mass balance equation st+1 = st + it − at, where it is the net
inflow at day t and is modeled as periodic function, with period of one year, plus Gaussian
noise. Given the demand d and the flooding threshold f , the reward function is a convex
combination of the two objectives, r(st, at) = −α max{0, st−f}−β(max{0, d−at})2,
where α, β ≥ 0. Due to the different geographic locations, each task has different inflow
function ij(t) = īj(t) +N (0, σ2

p), where σ2
p = 2.0 is the fixed noise variance. The differ-

ent mean-inflow functions are shown in Figure 5.5(left). Furthermore, each water reservoir
weighs the flooding and demand objectives differently. This is modeled by changing the

Target Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

α 0.3 0.8 0.35 0.7 0.4 0.6 0.45
β 0.7 0.2 0.65 0.3 0.6 0.4 0.55

Table 5.1: Reward parameters for the different water reservoirs.
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Figure 5.6: Water reservoir control. Average cost per day during the first 10 years of
learning. IWFQI outperforms the expert and quickly achieves near-optimal perfor-
mance.

respective weights α and β. The values for all tasks are reported in Table 5.1. Notice that
there is no source task that is globally similar to the target: either some reward structure
is shared or some transition structure is, never both. This makes transfer very challenging
since samples have to be accurately selected to prevent detrimental consequences.

Transfer experiment. We collected 10800 samples, corresponding to 30 years of his-
torical data, from each of 6 source water reservoirs under a hand-coded expert policy. We
compared our approach to FQI and RBT over the first 10 years of learning. An ε-greedy
policy (ε = 0.3) was used to collect batches of 1 year of samples, except for the first batch,
for which an expert’s policy was used. Results, averaged over 20 runs, are shown in Fig-
ure 5.6. We notice that IWFQI immediately outperforms the expert’s policy and quickly
achieves near-optimal performance. RBT, on the other hand, has a good jump-start but
then seems to worsen its performance. Once again, this is because each source task has at
least few samples that can be transferred. However, selecting such samples is very compli-
cated and leads to negative transfer in case of failure. Finally, FQI performs significantly
worse than all alternatives and is, thus, not reported.

Learning from scratch. To better demonstrate the difficulty of this control problem, we
run FQI for 500 episodes (equivalent to 500 years of interaction). Furthermore, to make
the problem simpler, we allow the agent to sample the state-action space arbitrarily, so as
to have a better exploration. The result is shown in Figure 5.5. Although we significantly
simplified the problem and we allowed FQI to gather an enormous amount of data, the
algorithm still needs almost 500 years to achieve optimal performance. This demonstrates
that solving this task by directly interacting with the real environment is clearly imprac-
tical. Thus, transfer of previous knowledge is, in this case, mandatory to achieve good
performance.
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CHAPTER6
Sample Reuse in Policy Gradients

This chapter is based on the paper “Transfer of Samples in Policy Search via Multiple Im-
portance Sampling” co-authored with Mattia Salvini and Marcello Restelli and published
at ICML 2019.

Introduction

All the approaches we have discussed so far for the transfer of experience samples, includ-
ing our IWFQI, are specifically designed for batch value-based reinforcement learning.
As a consequence, they do not easily generalize to the more common setting where the
agent interacts with the environment online, while collecting and directly using long se-
quences of states and actions. This is, for instance, the setting considered by policy search
methods (Peters and Schaal, 2008b; Sutton et al., 2000; Deisenroth et al., 2013), where the
agent optimizes parametrized policies by iteratively collecting batches of trajectories from
the environment. Despite their recent successes, these algorithms typically suffer a large
sample complexity. Motivated by this limitation, the goal of this chapter is to extend our
importance-sampling techniques for sample reuse in online policy search. More precisely,
we shall focus on policy gradient methods. While the most immediate extension would be
to design a variant of IWFQI for fitting a critic in an actor-critic algorithm, here we focus
on actor-only settings. This requires transferring entire trajectories of states and actions
rather than single-step transitions as in IWFQI. We note that a similar problem is the one
of reusing samples collected from different policies under the same environment (Zhao
et al., 2013; Hachiya et al., 2011), which is thus a special case of our setting.
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There are two major complications that prevent a simple extension of the ideas pre-
sented in Chapter 5 to this setting. (1) The importance weights would be on entire trajec-
tories, i.e., high-dimensional random variables which would make the resulting estimators’
variance extremely large. (2) The trivial procedure to estimate the weights of Section 5.4
requires to have a dataset of samples from the target task. While this is the case for batch
reinforcement learning, in online settings the agent initially has no experience from the
target and, thus, this method is not applicable. In this chapter, we propose a method for
trajectory reuse in policy gradients that uses importance sampling to correct distribution
mismatch, exactly as in IWFQI, while addressing the complications above. To address
(1), differently from IWFQI, where we showed good empirical performance with plain
IS, here we necessitate of more robust estimators. We achieve this by leveraging different
techniques, including multiple importance sampling, per-decision importance sampling,
and control variates. To address (2), we propose a novel technique for estimating the
importance weights by solving a well-chosen optimization problem that takes task uncer-
tainty into account. Interestingly, this technique can be applied even in absence of target
samples.

Outline. Our detailed contributions are as follows.

1. We propose an Importance-Weighted Policy Gradient (IWPG) method (Section 6.3),
a simple gradient-based algorithm that uses importance sampling for transferring
trajectories under different policies and environments. IWPG adaptively determines
the batch size for interacting with the target based on the available knowledge from
the sources;

2. For the ideal case where the weights can be computed, we propose different impor-
tance sampling estimators to reuse trajectories generated by different policies and
transition dynamics (Section 6.4). The best combination of these estimators is prov-
ably robust to negative transfer and could be of interest outside our specific settings;

3. For the more realistic case where the weights cannot be computed, we propose a
method to estimate them while taking task uncertainty into account (Section 6.5);

4. We provide numerical simulations to evaluate our approach in different settings
(Section 6.6).

Formal Setting

As standard in policy search, we consider differentiable policies parameterized by θ ∈ Θ.
Refer to Section 2.5.2 for a recap of policy search methods. Let {M0,M1, . . . ,Mm′} ⊆
M be a set of m′ + 1 unknown MDPs1, whereMj = (S,A, Pj , Uj , ρ, γ). Without loss
of generality, we assume the initial state distribution ρ to be shared but possibly unknown.
In order to simplify the exposition, we impose the additional assumption that the target
mean-reward function r0(s, a) = r(s, a) is known. This implies that we do not need
to transfer reward samples and, in fact, the reward distributions Uj of the different tasks
are never used. The extension to the case where the target reward is unknown can be

1We use m′ instead of m to denote the number of source MDPs since m will be used for other purposes.
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done analogously as in Chapter 5. Define a trajectory as a fixed-length sequence τ :=
(s0, a0, s1, . . . , sT ) of T states and actions, without reward samples. If τ is generated by
executing a policy with parameters θ in MDPM, its distribution is

p(τ |θ,M) = ρ(s0)

T−1∏
t=0

πθ(at|st)P (st+1|st, at). (6.1)

Since transfer occurs at trajectory level and the distribution of these trajectories is fully
characterized given both an MDPM and some policy parameters θ, in this chapter only
we define a “source distribution” (or source proposal) as a couple (θ,M). From each
source distribution (θj ,Mj), for j = 1, . . . ,m′, we have a dataset Dj = {τi,j}nji=1 of
nj > 0 trajectories that are i.i.d. from p(·|θj ,Mj). We assume that the policy parameters
θj are known for all j. Note that we might have data from multiple policies for each
source MDP. Let m0 be the total number of source distributions initially available to the
agent (i.e., m′ times the number of policies for each source MDP). While learning the
target taskM0, the agent produces a sequence of policies whose trajectories are added to
the source dataset online, so that the number of source distributions from which to transfer
grows over time.

Additional notation. For a trajectory τ = (s0, a0, s1, . . . , sT ), we define gθ(τ) :=∑T−1
t=0 ∇θ log πθ(at|st) as the log-policy gradient evaluated at τ . Similarly, with some

abuse of notation, we define r(τ) :=
∑T−1
t=0 γtr(st, at) as the total discounted reward

along τ . We recall that Eτ∼p(·|θ,M)[gθ(τ)] = 0 and that J(θ,M) = Eτ∼p(·|θ,M)[r(τ)] is
the expected return of policy πθ in MDPM. Moreover, the corresponding gradient (see
Section 2.5.2) is∇θJ(θ,M) = Eτ∼p(·|θ,M)[gθ(τ)r(τ)].

Importance-Weighted Policy Gradient

Our idea is quite simple: we learn the target taskM0 using standard gradient-based tech-
niques, while using all data at our disposal (source and target trajectories) for estimating
the gradients with the purpose of reducing variance and, thus, achieve faster convergence.
As for IWFQI, we apply importance sampling techniques to compensate the distribution
shift induced by trajectories generated under different policies and/or transition models.
Since the transition models are generally not known, we estimate them from samples in
order to be able to compute the importance weights. We now introduce our main method-
ology, while deferring the specific gradient estimators to Section 6.4 and the model esti-
mation procedure to Section 6.5.

Our importance-weighted policy gradient (IWPG) method is outlined in Algorithm
3. IWPG takes as input the dataset of source trajectories D̃ =

{
({τi,j}nji=1, θj , P̃j)

}m0

j=1

augmented with the policy parameters {θj}m0
j=1 that generated them and the corresponding

(estimated) transition models {P̃j}m0
j=1. While we assume the policies to be known, the

transition models could be estimates of the true ones (hence the “tildes”), as we discuss
in Section 6.5. Moreover, IWPG receives an importance-weighted estimator ∇̂θJ(D̃)

of the gradients under the target MDP M0. More precisely, ∇̂θJ(D̃) is an estimator
of ∇θJ(θ0,M0), where θ0 are the policy parameters used to collect the last batch of
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Algorithm 3 Importance-Weighted Policy Gradient (IWPG)

Require: Source dataset D̃ =
{

({τi,j}nji=1, θj , P̃j)
}m0

j=1
where τi,j ∼ p(·|θj ,Mj), gradi-

ent estimator ∇̂θJ(D̃), effective sample size estimator ÊSS(n0; D̃), minimum effec-
tive sample size ESSmin, minimum batch size nmin, step-size sequence ηk, number of
iterations K

1: Initialize policy θ0 and target model P̃0 from D̃
2: for k = 0, . . . ,K do
3: Find the minimum n0 ∈ {nmin, . . . ,ESSmin} such that ÊSS(n0; D̃) ≥ ESSmin

4: Sample n0 trajectories {τi}n0
i=1 from the target MDPM0 under policy πθk

5: Store samples: D̃ ← D̃ ∪
{

({τi}n0
i=1, θ

k, P̃0)
}

6: Update parameters: θk+1 ← θk + ηk∇̂θJ(D̃)

7: Update target transition model estimate P̃0 using D̃ (Section 6.5)
8: end for

target trajectories (i.e., the zero-th component of D̃, which is added by IWPG as learning
proceeds). The algorithm also receives an estimator ÊSS(n0; D̃) of the effective sample
size that the gradient estimator would have when combining all source data with a batch of
n0 trajectories from the current policy. This is used to adaptively choose the target batch
size, as we shall discuss shortly.

Let us now concentrate on how the algorithm works. First, IWPG initializes the target
policy parameters and transition model (line 1). Both can be done either randomly or by
leveraging the source data, e.g., with the purpose of achieving a good jumpstart (Abel
et al., 2018). Since our primary concern is the optimization rather than the initialization,
we leave this step unspecified. At each iteration, IWPG adaptively computes the target
batch size, i.e., the number of trajectories to collect fromM0 with the current policy. This
is done by seeking the value n0 which would guarantee a minimum ESS for the resulting
importance-weighted estimator (line 3). The rationale is that, if the gradient of the current
policy can be reliably estimated using the source samples, there is no need to collect new
trajectories at all. In order to carry out this step, we derive a lower bound on the increase
rate of the approximate ESS as a function of n0. Since this is specific for a class of MIS
estimators that we propose, we defer the details to the next section. In practice, we impose
a minimum batch size of nmin to avoid degenerate cases (e.g., where we overestimate the
ESS due to not collecting target samples). After collecting the new batch (line 4), IWPG
adds it to the current dataset (line 5) together with the policy θk that generated it. Note
that this implies that the number of policy-model pairs in D̃ grows with the number of
iterations as trajectories from the target task (but policies potentially different from the
current one) are stored. In other words, the number of source distributions grows over
time. Then, IWPG updates the policy parameters using the chosen weighted estimator on
the current dataset (line 6). Similarly, the algorithm updates the current estimate of the
target model. Note that, even if estimated, the source models are never updated during
learning of the target task. We discuss this fact in more detail in Section 6.5.
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Gradient Estimators with Known Models

This section is devoted to the design of robust importance-weighted gradient estimators
that are tailored for policy search under the assumption of known transition models. We
note that the techniques and results that we develop in this section go beyond our specific
setting of transfer across different environments. In particular, our estimators are related
to, and might be of interest for, different RL settings such as off-policy evaluation (Precup,
2000; Hachiya et al., 2009; Thomas and Brunskill, 2016; Guo et al., 2017; Liu et al., 2018),
off-policy learning (Precup et al., 2001; Mahmood et al., 2014; Geist and Scherrer, 2014;
Munos et al., 2016), and sample reuse from different policies (Zhao et al., 2013; Hachiya
et al., 2011). Notably, IWPG is directly applicable to these settings, which involve only
“intra-environment transfer”, i.e., reusing samples generated by different policies.

Freeze IWPG at some iteration and take the dataset D̃ =
{

({τi,j}nji=1, θj , Pj)
}m
j=0

updated after collecting the batch n0 of target trajectories from the current policy θ0. Our
goal is to design ∇̂θJ(D̃), i.e., an estimator of∇θJ(θ0,M0) that uses all data in D̃. Note
that, with respect to the previous section, we replaced P̃j with Pj in D̃ to emphasize that
models are known.

Multiple Importance Sampling Estimators
We note that it is easy to derive an importance-weighted variant of the classic REIN-
FORCE gradient estimator (see Section 2.5.2). We have that

∇̂IS
θ J(D̃) :=

1

n

m∑
j=0

nj∑
i=1

wIS
j (τi,j)gθ0(τi,j)r(τi,j) (6.2)

is an unbiased estimator for∇θJ(θ0,M0), where the importance weightwIS
j (τ) := p(τ |θ0,M0)

p(τ |θj ,Mj)

can be computed in closed-form as

wIS
j (τ) =

T−1∏
t=0

πθ0(at|st)
πθj (at|st)

P0(st+1|st, at)
Pj(st+1|st, at)

. (6.3)

Unfortunately, this IS scheme is likely to fail in most cases of practical interest. It is well
known, especially from the literature on off-policy estimation (Precup, 2000; Hachiya
et al., 2009; Thomas and Brunskill, 2016; Guo et al., 2017; Liu et al., 2018), that impor-
tance sampling on long trajectories is likely to give almost zero or huge weights, thus lead-
ing to estimators with very high (sometimes infinite) variance (Li et al., 2015a; Jiang and
Li, 2016). This drawback is even amplified in our transfer settings, where there is a model
mismatch in addition to the one between the policies. Several variance reduction tech-
niques, typically paying a small amount of bias, have been proposed (e.g., self-normalized
estimators (Kong, 1992), truncation (Ionides, 2008), flattening (Hachiya et al., 2009)).
Fortunately, MIS comes to the rescue in our settings, allowing us to get a low-variance
estimator without introducing any bias. Using Equation 4.3, the MIS gradient estimator is

∇̂MIS
θ J(D̃) =

1

n

m∑
j=0

nj∑
i=1

wMIS
j (τi,j)gθ0(τi,j)r(τi,j), (6.4)
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where wMIS
j (τ) := n

nj
hj(τ)wIS

j (τ) for a general heuristic function h, and wMIS
j (τ) :=

p(τ |θ0,M0)∑m
j=0 αjp(τ |θj ,Mj)

with αj = nj/n for the balance heuristic. For brevity, define qα(τ) :=∑m
j=0 αjp(τ |θj ,Mj) as the mixture of all distributions. As we already discussed in Sec-

tion 4.4.2, MIS provides a more robust way to combine different source distributions than
plain IS. In particular, when we force a minimum amount of samples from the target dis-
tribution, so that n0 > 0 and α0 > 0, the defensive component in the denominator makes
the weights, and thus their variance, bounded. This resolves one of the main limitations of
plain IS when applied to trajectory reuse. However, there is more we can do by exploiting
the structure of trajectories and policy gradients, as we see in the next two sections.

Per-decision Estimators

Per-decision IS (Precup, 2000) is a common variance reduction technique from off-policy
evaluation. It relies on the intuition that future actions cannot influence past rewards, i.e.,
each reward r(st, at) should be weighted only by the probability of a trajectory up to that
time. This technique can be easily combined with MIS, leading to the per-decision MIS
(PD for short) estimator,

∇̂PD
θ J(D̃) =

1

n

m∑
j=0

nj∑
i=1

T−1∑
t=0

γtwPD
j,t(τi,j)gθ0,t(τi,j)r(s

t
i,j , a

t
i,j), (6.5)

where gθ,t(τ) := gθ(τ0:t), with τ0:t being a trajectory up to time t, and wPD
j,t(τ) :=

n
nj
hj,t(τ)wIS

j (τ0:t). Notice that the heuristics is now a function of time. We show that,
if this function is uniformly normalized over time, the resulting estimator remains unbi-
ased.

Theorem 6.4.1 (Unbiasedness of PD estimator). Let hj,t(τ) be a function such that, for
all t ∈ {0, . . . , T − 1} and τ ,

∑m
j=0 hj,t(τ) = 1. Then, the per-decision MIS estimator in

(6.5) is unbiased.

Proof. The proof simply starts from the definition of the per-decision MIS estimator and shows that,
by leveraging the assumption that the heuristic function is a partition of unity, its expected value is
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the policy gradient:

E
[
∇̂PD
θ J(D̃)

]
=

m∑
j=0

Ep(τ |θj ,Mj)

[
T−1∑
t=0

hj,t(τ)
p(τ0:t|θ0,M0)

p(τ0:t|θj ,Mj)
γtr(st, at)gθ0,t(τ)

]

=

m∑
j=0

∫ T−1∑
t=0

hj,t(τ)p(τ0:t|θ0,M0)γtr(st, at)gθ0,t(τ)dτ

=

∫ T−1∑
t=0

p(τ0:t|θ0,M0)γtr(st, at)gθ0,t(τ)

m∑
j=0

hj,t(τ)︸ ︷︷ ︸
=1

dτ

=

∫ T−1∑
t=0

p(τ0:t|θ0,M0)γtr(st, at)gθ0,t(τ)dτ

= Ep(τ |θ0,M0)

[
T−1∑
t=0

γtr(st, at)

t∑
l=0

∇θ log πθ0(al|sl)

]
= ∇θJ(θ0,M0),

where the last equality follows from the unbiasedness of the G(PO)MDP estimator (see Section
2.5.2).

We shall adopt the balance heuristic, for which wPD
j,t(τ) = wMIS

j (τ0:t).

Regression-based Control Variates

While the per-decision estimator effectively reduces the sensitivity to the trajectory length
T , control variates (a.k.a. baselines) are another popular variance-reduction technique in
the policy gradient literature. Here we show how to combine the classic baseline used in
REINFORCE (Williams, 1992) with the control variates for the balance heuristic discussed
in Section 4.4.4. For the d-th dimension of the gradient, consider a vector of functions
Ψd(τ) := [ψ0,d(τ), . . . , ψm+1,d(τ)] such that Eτ∼qα [ψj,d(τ)] = 0 for every j. In our
specific case, we set the first m+ 1 control variates as

ψj,d(τ) =
p(τ |θj ,Mj)

qα(τ)
− 1, j = 0, . . . ,m. (6.6)

These are shown by Owen and Zhou (2000) to be very effective for the balance heuristic,
as discussed in Chapter 4. Moreover, we set the remaining control variate to a weighted
variant of the standard baseline used by REINFORCE,

ψm+1,d(τ) =
p(τ |θ0,M0)[gθ0(τ)]d

qα(τ)
. (6.7)

It is easy to see that all these functions have zero expectation under the mixture distribution
qα. Therefore, our MIS estimator (6.4) using Ψd as control variates is

∇̂CV
θd
J(D̃) = ∇̂IS

θd
J(D̃)− 1

n

m∑
j=0

nj∑
i=1

βTd Ψd(τi,j), (6.8)
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where βd ∈ Rm+1 is the vector of control-variate coefficients, which can be approximated
by solving the regression problem reported in Section 4.4.4. In practice, we can fit βd and
estimate the gradient using different partitions of the current dataset to keep an unbiased
estimator.

Theorem 6.4.2. The estimator (6.8) is unbiased for any βd. Furthermore, under the
optimal coefficients β∗d minimizing the variance of (6.8), we have Var[∇̂CV

θd
J(D̃)] ≤

Var[∇̂MIS
θd
J(D̃)].

Proof. To prove the unbiasedness, recall that

Eτi,j∼p(·|θj ,Mj)

[
∇̂MIS
θd J(D̃)

]
= ∇θdJ(θ0,M0).

Thus, we only need to prove that the second term has expected value equal to zero. Hence,

Eτi,j∼p(·|θj ,Mj)

[
1

n

m∑
j=0

nj∑
i=1

βTd Ψd(τi,j)

]
=

1

n

m∑
j=0

njβ
T
d Eτ∼p(·|θj ,Mj) [Ψd(τ)]

=
1

n

m∑
j=0

nj

m+1∑
l=0

βl,dEτ∼p(·|θj ,Mj) [ψl,d(τ)] .

Control variates ψ0,d, . . . , ψm,d are well-known to have zero expectation (Owen and Zhou, 2000),
so let us concentrate on the (m+ 1)-th term, which is similar to the well-known baseline commonly
adopted in policy gradient methods. Its expectation can be easily verified to be zero:

βm+1,d
1

n

m∑
j=0

njEτ∼p(·|θj ,Mj)

[
p(τ |θ0,M0)[gθ0(τ)]d

qα(τ)

]
= βm+1,d

∫
p(τ |θ0,M0)[gθ0(τ)]ddτ

= βm+1,d

∫
p(τ |θ0,M0)

T−1∑
t=0

∇θd log πθ0(at|st)dτ.

The last integral can be rewritten as

T−1∑
t=0

∫
ρ(s0)

∫
πθ0(a0|s0)· · ·

∫
πθ0(at|st)∇θd log πθ0(at|st)ds0 . . .dat,

which is equal to zero since
∫
∇θdπθ0(a|s)da = 0 for any state s. This concludes the proof of the

first statement.
In order to prove the second statement, let z = [0, 0, . . . , 0] be the (m + 1)-th dimensional

vector of zeros. Then, under the coefficients β∗d minimizing the variance of the CV estimator (6.8),

Var[∇̂CV
θd J(D̃)] = Var

[
∇̂MIS
θd J(D̃)− 1

n

m∑
j=0

nj∑
i=1

βTd Ψd(τi,j)

]

≤ Var

[
∇̂MIS
θd J(D̃)− 1

n

m∑
j=0

nj∑
i=1

zTΨd(τi,j)

]
= Var[∇̂MIS

θd J(D̃)].

The interesting property is that the estimator with optimal control variates has variance
never larger than the one of the corresponding MIS estimator. In practice, however, one
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often observes dramatic variance reduction even without the optimal parameters. Note
that, when the number of dimensions d of the parameter space is large, it is common to
fit a unique β for all d. In this case, simply taking ψm+1(τ) =

p(τ |θ0,M0)
∑
d[gθ0 (τ)]d

qα(τ)
and solving the regression problem is therefore equivalent to (approximately) minimizing
Tr(Cov[∇̂CV

θ J(D̃)]). Finally, we note that the control variates can be combined straight-
forwardly with the PD estimator of Section 6.4.1, which is what we do in our experiments.

Robustness to Negative Transfer

We now show that the MIS estimator with control variates enjoys safety guarantees against
negative transfer. We first propose a definition of negative transfer for policy gradient
algorithms in terms of convergence to ε-optimal stationary points 2. Informally, we say that
an algorithm A negatively transfers against some baseline B if, when running under the
same conditions, there exists an iteration in which B provably converges to an ε-optimal
stationary point, while A does not.

Definition 6.4.1 (Negative transfer). Let A and B be two policy gradient algorithms. Fix
an initial parameter θ0, a learning rate η, a batch size n, and an accuracy ε > 0. Then, A
negatively transfers w.r.t. B (A ≺ B) if there exists an iteration number k ≥ 1 such that
we can guarantee that 1

k

∑k−1
l=0 EB[‖∇θJ(θl)‖22] ≤ ε but 1

k

∑k−1
l=0 EA [‖∇θJ(θl)‖22] > ε.

Let BR be the REINFORCE algorithm (Williams, 1992) and BG be the G(PO)MDP
algorithm (Baxter and Bartlett, 2001), both with optimal baselines. The next result shows
that IWPG using optimal control variates and the MIS estimator (ACV) or the PD estimator
(APDCV) cannot be worse than its no-transfer counterparts.

Theorem 6.4.3. Assume that the expected return J(·,M0) is L-smooth (i.e., its gradient
is L-Lipschitz). Let nmin > 0 be the minimum batch size for ACV (APDCV) and the fixed
batch size for BR (BG). Assume all algorithms start from the same parameter θ0, use a
learning rate 0 < η ≤ 2

L , and that ACV (APDCV) uses the optimal CV coefficients β∗d .
Then, for all ε > 0:

ACV ⊀ BR, APDCV ⊀ BG.

Theorem 6.4.3 is quite remarkable given that even importance sampling techniques
for off-policy corrections, with no model mismatch, tend to fail on long trajectories due
to the variance blowing up. Here, on the other hand, the properties of MIS combined
with optimal control variates make it possible to prove that the resulting estimators are
never worse than their no-transfer counterparts, despite the model mismatch. This in turns,
implies that IWPG cannot converge too slowly with respect to plain policy gradients, as we
prove shortly. We remark that, according to our definition, the fact that A is robust against
B does not necessarily imply that A converges faster than B but only that, whenever we
can prove that B converged, we can also prove that A converged. Hence, we might say
that A cannot be much worse than B, the standard (weaker) notion of negative transfer
that is often considered in the literature (Taylor and Stone, 2009).

2As a standard in non-convex optimization, convergence to stationary points could be replaced with conver-
gence to local maxima at the cost of a more complicated analysis.
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Proof. Let J̃(θ) := −J(θ,M0) and consider the problem argminθ J̃(θ), equivalent to the original
one. Following standard proofs of convergence for non-convex stochastic optimization (see, e.g.,
Appendix B of (Allen-Zhu, 2017)), we can show that, for a fixed parameter θk and algorithm A ,

J̃(θk)− EA

[
J̃(θk+1)

]
≥
(
η − η2L

2

)
‖∇θJ̃(θk)‖22 −

η2L

2
VarA

[
∇̂A
θ (J̃(θk))

]
, (6.9)

where θk+1 = θk − η∇̂A
θ J̃(θk) and the expectations are taken w.r.t. the stochasticity in the estima-

tion of the gradient. Rearranging (6.9), we obtain(
η − η2L

2

)
‖∇θJ̃(θk)‖22 ≤ J̃(θk)− EA

[
J̃(θk+1)

]
+
η2L

2
VarA

[
∇̂A
θ J̃(θk)

]
. (6.10)

Let us now take the expectation under the whole stochastic process θ0:k, with θ0 being deterministic
and fixed, and sum over iterations the first k iterations. Then,(

η − η2L

2

) k−1∑
l=0

EA

[
‖∇θJ̃(θl)‖22

]

≤ J̃(θ0)− EA

[
J̃(θk+1)

]
+
η2L

2

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]

≤ J̃(θ0)− J̃(θ∗) +
η2L

2

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]
,

where θ∗ = argminθ J̃(θ). Rearranging,

1

k

k−1∑
l=0

EA

[
‖∇θJ̃(θl)‖22

]
≤ J̃(θ0)− J̃(θ∗)

k
(
η − η2L

2

) +
ηL

2− ηL
1

k

k−1∑
l=0

EA

[
VarA

[
∇̂A
θ J̃(θl) | θl

]]
.

(6.11)

Let us now compare BR and ACV. From Theorem 2 of Owen and Zhou (2000) (restated in Theorem
4.4.2), we know that, for every j = 0, . . . ,m, a mixture IS estimator with proportions α using the
optimal CV parameter β∗ has a variance that is upper bounded by that of an IS estimator using only
the j-th proposal divided by the proportion αj of samples from such proposal. Furthermore, this
property holds for a MIS estimator as well since its variance is always smaller than the one of the
corresponding mixture estimator. In our context, the algorithm ACV uses the MIS estimator (6.8)
with the optimal CV coefficients. Thus, for any dataset D̃ and dimension d,

Var
[
∇̂ACV
θd

J̃(D̃)
]
≤ min
j=0,...,m

Var
[
∇̂IS-j
θd
J̃(D̃)

]
αj

, (6.12)

where ∇̂IS-j
θd
J̃(D̃) denotes an IS estimator using only the samples in D̃ from the j-th proposal

p(·|θj ,Mj). Recalling that the 0-th proposal corresponds to the current target distribution, p(τ |θ0,M0),
and that, by assumption, the minimum number of trajectories that ACV collects at each step is nmin,
we obtain

min
j=0,...,m

Var
[
∇̂IS-j
θd
J̃(D̃)

]
αj

≤
Var

[
∇̂IS-0
θd
J̃(D̃)

]
α0

=
Var

[
1
n

∑n0
i=1 w

IS
0 (τi)g(τi)r(τi)

]
α0

=
1
n
Var [g(τ)r(τ)]

α0
≤ 1

nmin
Var [g(τ)r(τ)] = Var

[
∇̂BR
θd
J̃(D̃)

]
.
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The second equality follows from the fact that wIS
0 (τ) := p(τ |θ0,M0)

p(τ |θ0,M0)
= 1. Since this holds for all

the policy dimensions d and Var
[
∇̂ACV
θ J̃(D̃)

]
= Tr(Cov[∇̂ACV

θ J̃(D̃)]), we obtain

Var
[
∇̂ACV
θ J̃(D̃)

]
≤ Var

[
∇̂BR
θ J̃(D̃)

]
, (6.13)

i.e., the variance of the transfer algorithm in estimating the gradients is always smaller than the one
of the no-transfer baseline. Furthermore, by assumption, the variance of the no-transfer baseline is
bounded. Let CBR be its bound. Then,

1

k

k−1∑
l=0

EBR

[
‖∇θJ̃(θl)‖22

]
≤ 1

k
(
η − η2L

2

) (J̃(θ0)− J̃(θ∗)
)

+
ηL

2− ηLCBR . (6.14)

Suppose now that the upper bound (6.14) is less or equal then ε, which implies that BR converged.
Since we showed that Var

[
∇̂ACV
θ J̃(θ)

]
≤ CBR , it must be that, using (6.14),

1

k

k−1∑
l=0

EACV

[
‖∇θJ̃(θl)‖22

]
≤ ε.

Hence, whenever we are able to prove that BR converged, we are also able to prove that ACV

converged, which is exactly our definition of robustness against negative transfer.
The proof for APDCV and BG proceeds analogously by noticing that the variance of the former

is always less or equal than the variance of the latter.

Adapting the Batch Size of IWPG
Algorithm 3 requires a measure of ESS in order to evaluate the quality of a gradient esti-
mate and, consequently, to adapt the batch size. Here we propose one such measure that is
suitable for our estimators and, in particular, for the MIS estimator with balance heuristic.
Although several ESS measures for IS have been studied (see, e.g., Martino et al. (2017)),
to the best of our knowledge no measure specifically designed for MIS estimators has
been proposed. Motivated by the recent work of Elvira et al. (2018), who analyzed the
classical ESS (see Section 4.4.3) and empirically demonstrated its effectiveness in MIS,
we consider a variant of this measure.

Recall that the ESS involves computing the variance of the importance weights under
the given proposals. Since for our application we are satisfied with a lower bound on the
ESS, we compute the variance with respect to the mixture of these. This is motivated by
the following proposition, which follows directly from the fact that the former variance is
always smaller than the latter (see Owen and Zhou (2000)).

Proposition 6.4.1. Under the balance heuristics, we have that ESS := n
1+Var[wMIS(τ)] ≥

n
d2(p(·|θ0,M0)‖qα(τ)) .

Thus, all we need to do is to estimate the Renyi divergence between the target distri-
bution and the current mixture of source distributions. To do this, we use the fact that the
expected value of importance weights under trajectory distribution qα is equal to one, so
that: d2(p(·|θ0,M0)‖qα(τ)) = 1 + Varqα [p(·|θ0,M0)

qα
] ' 1 + 1

n

∑m
j=0

∑nj
i=1(wi,j − 1)2,

where the sum is over the trajectories from all the proposals and wi,j are their impor-
tance weights. This is in practice much better than using a naïve estimate of the second
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moment, 1
n

∑m
j=0

∑nj
i=1 w

2
i,j , which would lead to an infinite ESS when the target distri-

bution p gets too far from qα, and better than taking the sample variance of the weights,
1+ 1

n

∑m
j=0

∑nj
i=1(wi,j−w̄)2, which would result in an ESS of n in such case. Since these

degenerate cases are not uncommon in our context (recall the changes in target distribution
during learning), it is extremely important to have a guard against them.

Finally, computing the number n0 of defensive samples to be collected to guaran-
tee a minimum ESS of ESSmin requires the analysis of the increase rate of the function
of Proposition 6.4.1 when adding target trajectories. Although, in the asymptotic case,
this rate is 1 (i.e., every new target sample increases the ESS by 1), this may not hold
when a finite sample is considered. However, we show that, for a given weight vector
w, this rate cannot be worse than c := w̄3+3(1−w̄)

(1+V̂ar[w])2
, where w̄3 = 1

n

∑m
j=0

∑nj
i=1 w

3
i,j ,

w̄ = 1
n

∑m
j=0

∑nj
i=1 wi,j , and V̂ar[w] = 1

n

∑m
j=0

∑nj
i=1(wi,j − 1)2. This leads to the

following proposition, whose proof can be found in Appendix A.

Proposition 6.4.2. The number n0 of defensive samples to guarantee an ESS greater than
or equal to ESSmin can be computed as

n0 = max

{
nmin,min

{
ESSmin,

⌈
ESSmin − n

1+V̂ar[w]

min{1, c}

⌉}}
. (6.15)

This rule is quite intuitive: we look at the difference between the minimum threshold
ESSmin and the current weights’ ESS (estimated as n

1+V̂ar[w]
). The result, rescaled by

1/c, is the number of target samples we need to compensate. Finally, we clip the value in
[nmin,ESSmin]. In practice, we use this rule to compute n0 at each step of IWPG.

The Case of Unknown Models

While we designed the importance-weighted gradient estimators and derived their theo-
retical results under the assumption of known transition models, we now discuss how the
importance weights can be estimated from data, so as to make IWPG applicable in prac-
tice. In general, this goal can be efficiently achieved by directly estimating density ratios
(Sugiyama et al., 2012). Unfortunately, in our settings, this is not an appealing approach.
Besides the fact that, as already mentioned for IWFQI, density ratios are not transferable,
i.e., they must be recomputed for each new policy and/or task, here we have a second
complication: our weights are defined over entire trajectories, high-dimensional random
variables whose distributions have some structure that would not be exploited by a direct
estimator. Therefore, we decide to take a more indirect approach and estimate only the
missing components, namely the transition models. Differently from IWFQI, where we
reported good empirical result with the naive estimator that directly plugs in the estimated
models to compute the importance weights, here we take a more principled approach. In
particular, we use the intuition that any chosen set of models induces a bias-variance trade-
off into the importance weights and, thus, into the resulting gradient estimator. Therefore,
instead of naively plugging in any density estimator or probabilistic model of the uncertain
models, we propose an estimator that is aware of the MIS scheme in which these models
will be adopted by explicitly trading off bias and variance. As briefly outlined in Section
6.3, we suppose that the source transition models are estimated before the learning process
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of the target starts and held fixed. This is reasonable since no additional source data can
be collected by IWPG. Therefore, this section is devoted to the estimation of the target
transition model P0, which is updated in each iteration of IWPG with more data being
collected. We consider the following assumption.

Assumption 6.5.1 (Uncertain Gaussian Target Model). Each task Mj has a Gaussian
transition model Pj(·|s, a) = N (fj(s, a), σ2I) with known σ2 and fj uncertain according
to a distribution ϕj ∈ P(F), where F is the set of all possible transition functions in the
family of tasks M.

Assumption 6.5.1 is standard in the model-based literature (e.g., Deisenroth and Ras-
mussen, 2011), where it is commonly assumed that the system dynamics are characterized
by a non-linear function f(s, a) plus some white Gaussian noise. The distributions ϕj
describe our uncertainty over the true models given the dataset D̃.

As in the previous section, we freeze IWPG at some arbitrary iteration and consider the
current dataset D̃ and target policy θ0. The goal is once again to estimate ∇θJ(θ0,M0).
For this purpose, we consider the MIS estimator (6.4) combined with the balance heuristic
and seek an estimate of the target transition function f̃0 that provably reduces its mean-
square error (i.e., that trades off bias and variance). To make this objective and Assumption
6.5.1 more clear, we rewrite the MIS estimator as

∇̂θJ(D̃, f̃0) :=
1

n

m∑
j=0

nj∑
i=1

p(τi,j |θ0, f̃0)∑m
l=0 αlp(τi,j |θl, f̃l)

gθ0(τi,j)r(τi,j), (6.16)

where we made explicit the dependence on the “target variable” f̃0 and we replacedMj

by fj in the trajectory distributions. Similarly, we make this dependence explicit in the
mixture of proposal distributions, qα(τ |f̃0) =

∑m
j=0 αjp(τ |θj , f̃j). We start by deriving

an upper bound to the mean-square error of the estimator (6.16) that better highlights the
impact of choosing a wrong model f̃0.

Theorem 6.5.1. Let f̃0, . . . , f̃m : S × A → S be arbitrary transition functions and d be
the number of policy parameters. Suppose that ‖g(τ)r(τ)‖∞ ≤ b almost surely. Then,

E
[
‖∇̂θJ(D̃, f̃0)−∇θJ(θ0,M0)‖22

]
≤ b2d

n
d2

(
p(·|θ0, f̃0)

∥∥qα(·|f̃0)
)

+ c1b
2d

m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
‖f̄l(St, At)− f̃l(St, At)‖22

]
+ c1b

2d

m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l) [Tr (Σl(St, At))] + c2, (6.17)

where the expectation is with respect to τi,j ∼ p(τ |θj , fj) and fj ∼ ϕj . Here f̄l(s, a) :=
Efl∼ϕl [fl(s, a)], Σl(s, a) = Covfl∼ϕl [fl(s, a)], and c1, c2 are universal constants.

Proof. In order to simplify notation, let us define ∇̂J(f̃0) := ∇̂θJ(D̃, f̃0) and∇J := ∇θJ(θ0,M0).
We have

E
[
‖∇̂J(f̃0)−∇J‖22

]
= Efj∼ϕj

[
Eτi,j∼p(·|θj ,fj)

[
‖∇̂J(f̃0)−∇J‖22

∣∣{fj}mj=0

]]
.
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Let us fix f0, . . . , fm and focus on the inner expectation. Using a bias-variance decomposition,

E
[
‖∇̂J(f̃0)−∇J‖22

]
=
∑
d

E
[(
∇̂dJ(f̃0)−∇dJ

)2
]

=
∑
d

Var
[
∇̂dJ(f̃0)

]
︸ ︷︷ ︸

(a)

+
∑
d

(
E
[
∇̂dJ(f̃0)

]
−∇dJ

)2

︸ ︷︷ ︸
(b)

.

Term (a). Regarding the variance, we have

Var
[
∇̂dJ(f̃0)

]
= Var

[
1

n

m∑
j=0

nj∑
i=1

p(τi,j |θ0, f̃0)

qα(τi,j |f̃0)
g(τi,j)r(τi,j)

]

=
1

n2

m∑
j=0

njVarτ∼p(·|θj ,fj)

[
p(τ |θ0, f̃0)

qα(τ |f̃0)
g(τ)r(τ)

]

≤ 1

n
Varτ∼qα(τ |f0)

[
p(τ |θ0, f̃0)

qα(τ |f̃0)
g(τ)r(τ)

]

≤ 1

n
Eτ∼qα(τ |f0)

[
p2(τ |θ0, f̃0)

q2
α(τ |f̃0)

g2(τ)r2(τ)

]

≤ b2

n
Eτ∼qα(τ |f0)

[
p2(τ |θ0, f̃0)

q2
α(τ |f̃0)

]
,

where the first equality leverages trajectory independence and the first inequality follows from
Lemma A.4.1 in Appendix A. The last expectation can be further decomposed as

Eτ∼qα(τ |f0)

[
p2(τ |θ0, f̃0)

q2
α(τ |f̃0)

]
=

∫ (
qα(τ |f0)± qα(τ |f̃0)

) p2(τ |θ0, f̃0)

q2
α(τ |f̃0)

dτ

=

∫
p2(τ |θ0, f̃0)

qα(τ |f̃0)
dτ +

∫ m∑
j=0

αj
(
p(τ |θj , fj)− p(τ |θj , f̃j)

) p2(τ |θ0, f̃0)

q2
α(τ |f̃0)

dτ

≤ d2

(
p(τ |θ0, f̃0), qα(τ |f̃0)

)
+

1

α2
0

∫ m∑
j=0

αj

∣∣∣p(τ |θj , fj)− p(τ |θj , f̃j)∣∣∣ dτ
= d2

(
p(τ |θ0, f̃0), qα(τ |f̃0)

)
+

2

α2
0

m∑
j=0

αjDTV

(
p(·|θj , fj), p(·|θj , f̃j)

)
,

where DTV is the total variation divergence. Note that the last inequality is valid since p(τ |θ0,f̃0)

qα(τ |f̃0)
≤

1
α0

thanks to the defensive component in qα(τ |f̃0). Thus,

Var
[
∇̂dJ(f̃)

]
≤ b2

n
d2

(
p(τ |θ0, f̃0), qα(τ |f̃0)

)
+

2b2

α2
0n

m∑
j=0

αjDTV

(
p(·|θj , fj), p(·|θj , f̃j)

)
︸ ︷︷ ︸

(c)

. (6.18)
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Term (b). First note that E
[
∇̂dJ(f̃)

]
can be written as

E
[
∇̂dJ(f̃)

]
=

1

n

m∑
j=0

njEτ∼p(·|θj ,fj)

[
p(τ |θ0, f̃0)

qα(τ |f̃0)
gd(τ)r(τ)

]

=

∫
qα(τ |f0)

qα(τ |f̃0)
p(τ |θ0, f̃0)gd(τ)r(τ)dτ,

while∇dJ =
∫
p(τ |θ0, f0)gd(τ)r(τ)dτ . Then,

∣∣∣E [∇̂dJ(f̃)
]
−∇dJ

∣∣∣ =

∣∣∣∣E [∇̂dJ(f̃)
]
±
∫
p(τ |θ0, f̃0)gd(τ)r(τ)dτ −∇dJ

∣∣∣∣
≤

∣∣∣∣∣
∫ (

qα(τ |f0)

qα(τ |f̃0)
− 1

)
p(τ |θ0, f̃0)gd(τ)r(τ)dτ

∣∣∣∣∣+

∣∣∣∣∫ (p(τ |θ0, f̃0)− p(τ |θ0, f0)
)
gd(τ)r(τ)dτ

∣∣∣∣
≤ b

∫ ∣∣∣∣∣qα(τ |f0)

qα(τ |f̃0)
− 1

∣∣∣∣∣ p(τ |θ0, f̃0)dτ + b

∫ ∣∣∣p(τ |θ0, f̃0)− p(τ |θ0, f0)
∣∣∣ dτ

≤ b

α0

∫ ∣∣∣qα(τ |f0)− qα(τ |f̃0)
∣∣∣ dτ + b

∫ ∣∣∣p(τ |θ0, f̃0)− p(τ |θ0, f0)
∣∣∣dτ

=
b

α0

m∑
j=0

αj

∫ ∣∣∣p(τ |θj , fj)− p(τ |θj , f̃j)∣∣∣dτ + b

∫ ∣∣∣p(τ |θ0, f̃0)− p(τ |θ0, f0)
∣∣∣dτ.

Since the first addendum contains the second one (for j = 0), this equation can be upper bounded
by 2b

α0

∑m
j=0 αj

∫ ∣∣∣p(τ |θj , fj)− p(τ |θj , f̃j)∣∣∣ dτ . Thus,

(
E
[
∇̂dJ(f̃)

]
−∇dJ

)2

≤ 4b2

α2
0

(
m∑
j=0

αj

∫ ∣∣∣p(τ |θj , fj)− p(τ |θj , f̃j)∣∣∣ dτ)2

≤ 4b2

α2
0

m∑
j=0

αj

(∫ ∣∣∣p(τ |θj , fj)− p(τ |θj , f̃j)∣∣∣ dτ)2

=
8b2

α2
0

m∑
j=0

αjDTV

(
p(·|θj , fj)‖p(·|θj , f̃j)

)2

︸ ︷︷ ︸
(d)

.

Then, combining (c) and (d), we obtain

8b2

α2
0

m∑
j=0

αj

DTV

(
p(·|θj , fj)‖p(·|θj , f̃j)

)
4n

+DTV

(
p(·|θj , fj)‖p(·|θj , f̃j)

)2

 .

Since kx ≤ x2 + k2

2
, this equation can be upper bounded by

(c) + (d) ≤ 16b2

α2
0

m∑
l=0

αlDTV

(
p(·|θl, fl)‖p(·|θl, f̃l)

)2

︸ ︷︷ ︸
(e)

+
b2

4α2
0n

2︸ ︷︷ ︸
(f)

.
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Here (f) is the constant c2 in the final bound, while (e) can be upper bounded using Pinsker’s in-
equality as

(e) ≤ 8b2

α2
0

m∑
l=0

αlDKL

(
p(·|θl, f̃l), p(·|θl, fl)

)

≤ 8b2

α2
0

m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
DKL

(
P̃l(·|St, At), Pl(·|St, At)

)]
,

where we applied the recursive property of KL divergences over trajectory distributions. Putting
these terms together, we obtain

E
[
‖∇̂J(f̃0)−∇J‖22|{fj}mj=0

]
≤ b2

n
d2

(
p(τ |θ0, f̃0), qα(τ |f̃0)

)
+

8b2

α2
0

m∑
l=0

αl

T−1∑
t=0

Eτ∼p(·|θl,f̃l)
[
DKL

(
P̃l(·|St, At), Pl(·|St, At)

)]
+ c2.

If we now consider the outer expectation over fj ∼ ϕj , we note that only the bias term depends
on fj . Since DKL

(
P̃j(·|st, at), Pj(·|st, at)

)
= 1

2σ2 ‖fj(st, at) − f̃j(st, at)‖22, the expected KL
divergence is

Efj∼ϕj
[
DKL

(
P̃j(·|St, At), Pj(·|St, At)

)]
=

1

2σ2
‖f̄j(st, at)− f̃j(st, at)‖22 +

1

2σ2
Tr
(
Covfj∼ϕj [fj(s, a)]

)
.

Plugging this into the previous display and summing up over all gradient dimensions concludes the
proof.

Let L(f̃0) denote the value of this bound as a function of f̃0. Then, we seek f̃0 that
minimizes L. Intuitively, we seek for a model that trades off between three different ob-
jectives: (1) when few trajectories are available and the target model is highly uncertain,
it should stay close to the mixture of source distributions in order to reduce the variance
of the resulting estimator (first term); (2) as the number of samples grows, it should move
towards f̄0, our best guess for the true model (second term); (3) finally, it should give pri-
ority to the regions of the state-action space where the target model is more accurate (third
term). The source models {f̃j}mj=1, on the other hand, are computed before learning starts.
For instance, taking f̃j = f̄j for all j = 1, . . . ,m (which, for some uncertainty models,
like GPs, corresponds to the maximum-a-posteriori) is an appealing choice since it makes
the bias term vanish. Note that, although we consider only f̃0 as target model, more source
proposals might be generated under the target MDP. The bound above can be straightfor-
wardly modified to account this fact, though the result would be almost equivalent. Our
MSE-aware approach to model estimation is summarized in Algorithm 4. Although ap-
pealing, optimizing the bound for the optimal transition function is non-trivial. We show
that, by considering additional assumptions on the underlying structured domain, this can
be done efficiently.

Discrete Task Family

We start by considering the simple setting in which F = {f1, f2, . . . , f |F|} is a finite set
of possible transition functions. Our uncertainty model for the target transition function f0
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Algorithm 4 MSE-aware Model Estimation

Require: Model space F, uncertainty model ϕ0, dataset D̃ =
{

({τi,j}nji=1, θj , P̃j)
}m
j=0

1: Update ϕ0 using the target trajectories {τi,0}n0
i=1 in D̃

2: Compute f̃0 ∈ F minimizing the bound of Theorem 6.5.1
3: return f̃0

is therefore a discrete distribution over this set. Assuming a uniform prior ϕ0
0(f) = 1

|F| ,
this distribution can be updated iteratively for every f ∈ F given a batch of n0 target
trajectories {τi}n0

i=1 under policy πθk as

ϕk+1
0 (f) ∝ ϕk0(f)

n0∏
i=1

T−1∏
t=0

πθk(At|St)N (St+1; f(St, At), σ
2I).

Given ϕk0 , the bound of Theorem 6.5.1 can be easily approximated for every f ∈ F. No-
tice that all expectations in (6.17) are under distributions induced by the chosen models
{f̃j}mj=0 and, therefore, they can be approximated by simulating trajectories without inter-
acting with the true environment.

Reproducing Kernel Hilbert Spaces
We now consider a more general functional space for our transition models. Let X =
S × A and consider a positive semi-definite kernel function K : X × X → R. We
suppose that F is the unique reproducing kernel Hilbert space (RKHS) induced by K.
In an RKHS, the reproducing property implies that every function f can be written as
f(x) = 〈f,K(x, ·)〉, where 〈·, ·〉 denotes the dot product on F . For simplicity, we consider
each dimension of our transition models separately. We refer the reader to Micchelli and
Pontil (2005) for the extension to vector-valued RKHS.

We represent the uncertainty over the target model as a Gaussian process (GP) (Williams
and Rasmussen, 2006), f ∼ GP(0,K), with a zero-mean prior and K as covariance
function. As usual in model-based RL (e.g., (Deisenroth and Rasmussen, 2011)), we
train conditionally independent GPs for each dimension of the state space. Suppose
that we get a set of l training inputs X = [x1, . . . , xl]

T and l training targets Y =
[y1, . . . , yl]

T from a batch of trajectories from the target task, where xi = (si, ai) and
yi = f0(xi) +N (0, σ2I). Then, the posterior mean function can be evaluated at any point
x as f̄0(x) = k(x)T (K + σ2I)−1Y (Williams and Rasmussen, 2006), where k(x) is the
vector with entries ki(x) = K(xi, x) and K is the Gram matrix, Kij = K(xi, xj).

Now that we have an uncertainty model for our target transition function, let us move to
optimize our bound L on the MSE. Unfortunately, minimizing L(f̃0) with respect to f̃0 ∈
F is not as simple as in the finite-model case since (1) f̃0 controls the distributions under
which expectations are taken, and (2) it appears as a product over several time steps in
the Renyi divergence term. For these reasons, we now introduce some simplifications that
will lead to a convenient closed-form solution. First, we approximate the two expectations
by drawing a small number of trajectories from our last hypothesized model, so that their
dependence on the function to be computed is removed. Secondly, we further bound our
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objective in a more convenient way. In order to carry out this last step, we derive an upper
bound on the exponentiated Renyi divergence with respect to the Kullback-Leibler (KL)
divergence, which could be of independent interest. The proof can be found in Appendix
A.

Theorem 6.5.2. Let (X ,F ) be a measurable space, P andQ be two probability measures
on X such that P � Q, andQα = αP +(1−α)Q denotes their convex combination with
coefficient α ∈ (0, 1). Suppose there exists a finite constant C > 0 such that ess sup dP

dQ ≤
C. Then,

d2(P ||Qα) ≤ 1 + u(α)DKL(P ||Q), (6.19)

where

u(α) =

{
2C(1−α)2

(αC+1−α)3 if C ≤ 1−α
2α

8
27α otherwise.

Using Theorem 6.5.2, our objective L(M̃) can be bounded in a very convenient way.

Proposition 6.5.1. There exist constants k1, k2, k3 (independent of f̃0) such that objective
L(f̃0) given in (6.17) can be bounded by

L(f̃0) ≤ k1

T−1∑
t=0

Eτ∼p(·|θ0,f̃0)

 m∑
j=1

αj‖f̃0(xt)− f̃j(xt)‖22


+ k2

T−1∑
t=0

Eτ∼p(·|θ0,f̃0)

[
‖f̃0(xt)− f̄0(xt)‖22

]
+ k3.

Our new bound is quite appealing. While the bias term remains unchanged, the vari-
ance is now a mixture of expected l2 distances between f̃0 and the (approximate) source
models f̃j . In practice, we optimize a regularized version of this objective so that the rep-
resenter theorem of RKHS applies. Furthermore, as mentioned above, we approximate the
two expectations by drawing R trajectories from p(·|θ0, f̃0) using our last hypothesized
model. The resulting objective reduces to a regularized least-squares problem,

argmin
f̃0∈F

1

R

R∑
r=1

T−1∑
t=0

(
k1

m∑
j=0

αj‖f̃0(xr,t)− f̃j(xr,t)‖22

+ k2‖f̃0(xr,t)− f̄0(xr,t)‖22

)
+ λ‖f̃0‖2K, (6.20)

where λ > 0 is the regularization parameter. Most importantly, its solution is available in
closed form.

Proposition 6.5.2. The function f∗ ∈ F minimizing (6.20) is

f∗(x) = AT k(x),

where k(x) is the RT -dimensional vector with entries K(xr,t, x) and

A = (k1K + k2K + λRI)−1(k1Fsrc + k2F̄ ),
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with K being the Gram matrix, F̄ = [f̄0(x1,0), . . . , f̄0(xR,T−1)]T , Fsrc =
∑m
j=1 αjFj ,

and Fj = [f̃j(x1,0), . . . , f̃j(xR,T−1)]T .

Proof. Using the representer theorem of RKHS, we have that, for the i-th dimension of the state
space we can write f∗i (x) = aTi k(x) for some vector of parameters ai. The proof follows by taking
the gradient of the objective with respect to ai, equating to zero, and solving for ai.

Discussion. One might be wondering why the estimated transition models are not di-
rectly used for planning in a standard model-based RL algorithm instead of estimating the
importance weights for a model-free approach. It is well-known that even small errors can
lead to disastrous performances when the optimal policy is computed under the estimated
models. Since in our case the learned models are only used to re-weight samples from
the true environment, we argue that the impact of such errors is much more contained. In
fact, as far as the weights keep reasonable values, the learning process could potentially be
carried out effectively. Furthermore, note that our estimators are consistent as the number
of target samples goes to infinity for any hypothesized model, not necessarily the true one.
Finally, note the differences between the model-estimation approach that we propose here
and the one we adopted for IWFQI. The latter is almost equivalent to choosing f̃j = f̄j
for all tasks, i.e., the functions predicted by the GPs. While these are indeed the “best
fit” for the true functions given limited data, they are not necessarily the best candidates
for reducing the mean-square error of an importance-weighted estimator. The technique
developed in this section, on the other hand, explicitly takes this objective into account
and, as we shall confirm in our experiments, is indeed more robust to limited data and
misspecified models.

Experiments

We evaluate the performance of IWPG on different control tasks. We start by analyzing
the different estimators with known models in Section 6.6.1. Then, we consider the full
approach with model estimation in Sections 6.6.2 and 6.6.3. We provide the high-level
description of each experiment. For the specific hyper-parameters, we refer the reader to
Tirinzoni et al. (2019).

Linear-Quadratic Regulator
Our first test domain is the one-dimensional linear-quadratic regulator (LQR) (Dorato
et al., 1995; Peters and Schaal, 2008b), a well-known benchmark from the control lit-
erature. The system has linear dynamics, st+1 = Ast + Bat + ε, with Gaussian noise
ε ∼ N (0, σ2

P), and quadratic rewards.
We begin by evaluating the MIS estimators proposed in Section 6.4. Besides our pro-

posed estimators, we compare to per-decision IS (PD-IS), which is widely adopted in the
literature and can be straightforwardly adapted to our case, and to G(PO)MDP (Baxter and
Bartlett, 2001) as our no-transfer baseline.

Transfer experiment. We used Gaussian policies with a linearly parameterized mean
and fixed variance.. We set the maximum horizon to T = 20. For each run, we randomly
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Figure 6.1: Comparison of the proposed gradient estimators in the LQR domain under
known models. (left) transfer experiment, and (right) sample reuse experiment. Each
curve is the average of 40 independent runs, each re-sampling the source tasks, with
Student’s t 95% confidence intervals

generated 5 source tasks by uniformly sampling A in [0.6, 1.4] and B in [0.8, 1.2], while
the target task was fixed with A = 1 and B = 1. We considered 8 policies with parame-
ters {−0.1,−0.2, . . . ,−0.8} and generated 20 episodes from each model-policy couple to
built our initial source dataset. To have a fair comparison, we used the same learning rate
of 1e-5 and the same initialization θ0 = −0.1 for all algorithms. We set the batch size of
G(PO)MDP to 10 and used nmin = 5 and ESSmin = 20. We learned the target task using
standard SGD. Figure 6.1(left) shows the distance to the optimal target parameter as a func-
tion of the number of episodes. As expected, PD-IS shows a significant amount of negative
transfer with respect to G(PO)MDP. This is due to the fact that the huge variance of the
importance weights forces the algorithm to collect large batches to guarantee the required
ESS. MIS and PD-MIS achieve an improvement over the no-transfer baseline, with the
latter having smaller variance. When introducing CVs, the algorithm enjoys much better
gradient estimates and significantly outperforms all alternatives. Figure 6.2(left) shows the
expected return achieved by all alternatives as a function of the number of episodes. The
results are coherent with Figure6.1(left), although the differences between the algorithms’
performances are harder to appreciate. Figure 6.2(center) shows how the ESS changes at
each iteration. The ESS of PD-IS remains almost constant, which is due to the fact that
general IS estimators highly depend on the chosen proposal distributions. The MIS es-
timators do not suffer this problem and their ESS linearly increases with the number of
iterations. Finally, Figure 6.2 shows the number of samples collected by each algorithm at
each iteration. Coherently with the plot of the ESS, PD-IS needs to collect a high number
of samples to meet the ESSmin requirement. On the other hand, all transfer algorithms
manage to learn while sampling the minimum number of trajectories allowed.

Intra-environment transfer. Our estimators can be successfully adopted to reuse sam-
ples generated by previous policies in standard (no-transfer) policy gradients. Figure
6.1(right) shows the result of learning the same target task as before from scratch (i.e.,
without any source sample), where each algorithm uses the same (fixed) batch size, learn-
ing rate, and initialization. We can appreciate that both the per-decision and our estimator
enjoy a speedup over G(PO)MDP, but the former suffers a much higher variance.
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Figure 6.2: Additional statistics for the LQR experiment of Figure 6.1(left). Expected
return (left), effective sample size (center), and the number of samples collected at
each iteration (right).

Cart-pole Balancing

Our second domain is the well-known Cartpole problem (Sutton and Barto, 2018), where
the goal is to balance a pole on a moving cart. We generate source tasks by uniformly
sampling the mass of the cart in the interval [0.8, 1.2] and the length of the pole in the in-
terval [0.3, 0.7]. The target task is the standard Cartpole with cart mass 1.0 and pole length
0.5. For each of 5 source tasks, we consider a sequence of 10 linear policies generated by
G(PO)MDP during its learning process and collect 10 episodes from each. While the LQR
domain was relatively short-horizon (T = 20), here we allow trajectories up to T = 200
time steps, which allows us to verify the transferability of long state-action sequences.

We now test our model estimation approaches. Besides G(PO)MDP, we report the per-
formance of the sample reuse (SR) variant of our algorithm where we ignore the source
tasks and transfer only past target trajectories. All transfer algorithms use the PD-MIS esti-
mator. We report three different model estimation alternatives combined with IWPG: MSE
(discrete) and MSE (RKHS) use the MSE-aware technique for estimating the target model
with known sources and a discrete family or a RKHS, respectively; “unknown sources”
report the performance of the MSE-aware estimator when the source models are directly
estimated by fitting GPs. Figure 6.3(left) shows the results. Interestingly, all transfer ap-
proaches outperform both G(PO)MDP and SR, which confirms that reusing trajectories
from different environments can significantly improve the quality of the learning process.
Both our model estimation approaches perform comparably to the ideal estimators. While
this should be expected for the discrete estimator, the continuous one works well since
an accurate GP model of the Cartpole dynamics can be obtained with a relatively small
amount of samples. This fact can be verified from the GP curve, where the weights have
been estimated by directly plugging in the GP predictions instead of optimizing our bound.
Not surprisingly, the algorithm that estimates the source models performs comparably to
the best alternatives. However, the fact that the fitted GP leads to accurate estimators
does not imply that it is an accurate model of the system dynamics which can be used for
planning. The gray curve in Figure 6.3(left), which shows the performance achieved by
optimal policies for the estimated dynamics, confirms this statement.
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Figure 6.3: Comparison of our model estimation approach in the Cartpole (left) and
minigolf (right) domains. Each curve is the average of 40 independent runs, each
re-sampling the source tasks, with Student’s t 95% confidence intervals.

Minigolf
In this last domain, we want to study how much the proposed transfer algorithms can
speed up the learning process of an agent playing a minigolf game by reusing the expe-
rience made on different minigolf courses. The various tasks may differ in the length of
the putter (between 70cm and 100cm), in the hole size (between 10cm and 15cm), and
in the dynamic friction coefficient (whose range was measured empirically Penner (2002)
between 0.065 and 0.196). The minigolf domain was originally introduced in the RL field
by Lazaric et al. (2008a). We changed the dynamics following the modeling developed
by Penner (2002) in order to make the problem more realistic (see Appendix D.3 of Tirin-
zoni et al. (2019)).

In this experiment, we adopt Gaussian policies with a fourth-order polynomial basis
function. We generated 5 source tasks by randomly sampling dynamic friction coefficient,
hole size, and putter length from the realistic ranges defined above. Furthermore, we
considered 10 source policies of increasing quality and generated 40 episodes from each
model-policy pair. The target task is fixed with a friction of 0.131, a putter of 100cm, and
a hole of diameter 10cm. All transfer algorithms use the PDCV estimator. The results are
shown in Figure 6.3(right). Unlike the simpler Cartpole domain, G(PO)MDP is not able
to learn the task in such a small number of episodes. Interestingly, due to the high level
of noise present in this environment, direct estimation of weights using the GP predictions
leads to unsatisfactory results. On the other hand, both our model estimation approaches
solve the task with performance comparable to the ideal estimator. We note that the speed-
up over the SR algorithm is not as remarkable as in the previous experiment due to the
little amount of knowledge transfer that can be achieved in this more complicated setting.
We finally point out that most of the simplifications introduced in the previous sections do
not hold in this domain. In fact, the transition models are not Gaussian, while the noise
is heteroscedastic and changes between tasks. Despite these relaxations, our approach can
be applied without suffering any considerable performance degradation.
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CHAPTER7
Exploration via Variational Value Transfer

This chapter is based on the paper “Transfer of Value Functions via Variational Meth-
ods” co-authored with Rafael Rodriguez Sanchez and Marcello Restelli and published at
NeurIPS 2018.

Introduction

In the previous chapters, we have seen how to design methods that efficiently transfer
experience samples across tasks with different transition dynamics and reward functions.
While sample transfer can be potentially combined with any base algorithm and has a
number of real-world applications, its study neglects another fundamental problem in the
transfer literature: how an agent should act, i.e., how it should explore, in a new target
environment when provided with prior knowledge from a set of related source tasks. In
some sense, the two problems are almost orthogonal: sample transfer focuses on how to
reuse old source data in order to augment the agent’s experience in the target task, while
the exploration problem focuses on how to collect new data in the same task, both with
the goal of improving the learning process. While the exploration-exploitation dilemma is
well studied in classic reinforcement learning without prior knowledge (e.g., Auer et al.,
2009; Strehl et al., 2009; Azar et al., 2017), when the agent acts in a structured domain the
problem becomes highly non-trivial. Here a good agent is expected to exploit the source
knowledge to improve its exploration policy. Consider, for instance, a family of tasks
that are equivalent in some region of the state-action space. Then, when provided with
sufficient knowledge from the source tasks, the agent can avoid exploring such region at
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all in the target task. This is in contrast to what the agent would do when learning from
scratch, where a good exploration policy should visit the whole (reachable) state-action
space. In this chapter, we start by studying this problem on the practical side. That is, our
goal is to design algorithms that scale to complex problems with continuous state spaces
and that transfer source knowledge to obtain an informed exploration behavior in new
tasks. We defer a theoretical treatment of this problem in simpler tabular MDP and bandit
settings to Part III.

Under the usual assumption that tasks in the given family are drawn from an unknown
distribution, an intuitive choice to design a transfer algorithm is to characterize the uncer-
tainty over the target task or its solution. Then, an ideal algorithm would leverage prior
knowledge from the source tasks to explore the target task so as to reduce this uncertainty.
This simple intuition makes Bayesian methods appealing approaches for transfer in RL,
and many previous works have been proposed in this direction. These include the hier-
archical Bayesian models of Wilson et al. (2007); Lazaric and Ghavamzadeh (2010) and
the hidden-parameter models of Doshi-Velez and Konidaris (2016); Killian et al. (2017).
However, most of these algorithms require specific, and sometimes restrictive, assump-
tions (e.g., on the distributions involved or the function approximators adopted), which
might limit their practical applicability. The importance of having transfer algorithms that
alleviate the need for strong assumptions and easily adapt to different contexts motivates
us to take a more general approach.

Similarly to Lazaric and Ghavamzadeh (2010), we assume that the tasks share simi-
larities in their value functions and use the given source tasks to learn a distribution over
such functions. Then, we use this distribution as a prior for learning the target task and
we propose a variational approximation of the corresponding posterior which is compu-
tationally efficient1. Leveraging recent ideas from randomized value functions Osband
et al. (2014); Azizzadenesheli et al. (2018); Osband et al. (2019), we design a Thompson
Sampling-based algorithm that efficiently explores the target task by sampling repeatedly
from the posterior and acting greedily with respect to the sampled value function. We
show that our approach is very general, in the sense that it can work with any parametric
function approximator and any prior/posterior distribution models, while we specifically
combine it with Gaussian and mixture-of-Gaussian distributions. For these distributions,
we derive a finite-sample analysis of our approach and numerically evaluate it on different
continuous domains with increasing level of difficulty.

Preliminaries

We consider a structured domain E = (M,D), where M is a family of MDPs with shared
state-action space S × A and the task-generation process D is a probability distribution
over M from which i.i.d. tasks are sampled. We suppose that, after having solved a set
of m source tasks {M1, . . . ,Mm} , the agent is required to solve a new target taskM0.
Each task is an MDP2 Mj = (S,A, Pj , rj , γ) drawn i.i.d. from D, i.e.,Mj ∼ D. In this
chapter, we focus on value-based methods with function approximation. We consider a

1Hence the the name “variational transfer method” refers to algorithms that use variational approximations of
distributions induced by the different tasks for knowledge transfer.

2For simplicity, we assume the reward function of each task to be deterministic, though stochastic rewards
can be treated with no additional efforts.
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parametric family of action-value functions (in the remaining called simply Q-functions),
Q =

{
Qω : S ×A → R | ω ∈ Rd

}
, and we assume each function in Q to be uniformly

bounded by rmax

1−γ . We only require that any function Qω ∈ Q is differentiable with respect
to ω, while we do not pose any other restriction on the chosen function approximator
(which can be, e.g., a linear model or a neural network). We suppose each task to be solved
using the same parametrized functional space, so that the agent is given a set of source
parameters Wsrc = {ω1, ω2, . . . , ωm} such that Qωj ' Q?j for all j = 1, . . . ,m, where
Q?j is the optimal Q-function for task Mj . The goal is to exploit this prior knowledge
to quickly solve the target task, i.e., to find ω0 such that Qω0

' Q?0. No additional prior
knowledge is required besides the source parametersWsrc.

Remark 7.2.1. Since the approaches we derive in this chapter use only the source pa-
rameters Wsrc as prior knowledge and we never refer to the source MDP models, in the
remaining we shall drop the subscript “0” from MDP components denoting the target task
whenever clear from the context.

Finally, we need to specify the measures we adopt to assess the quality of an ap-
proximate Q-function Qω . A possible measure is its Bellman error (or Bellman resid-
ual), defined by Bω := T ?Qω − Qω . If we assume the existence of a distribution ν
over S × A, a sound objective is to directly minimize the squared Bellman error of Qω
under ν, denoted by ‖Bω‖2ν . Unfortunately, it is well known that an unbiased estima-
tor of this quantity requires two independent samples of the next state s′ for each s, a
(e.g., Maillard et al. (2010)). In practice, the Bellman error is typically replaced by the
TD error b(ω), i.e., the random quantity b(ω) = R + γmaxa′ Qω(S′, a′) − Qω(S,A)
which approximates the former using a single transition sample. Finally, given a dataset
D = {(Si, Ai, S′i, Ri}〉ni=1 of n samples, the squared TD error is computed as ‖Bω‖2D =
1
n

∑n
i=1(Ri + γmaxa′ Qω(S′i, a

′)−Qω(Si, Ai))
2 = 1

n

∑n
i=1 bi(ω)2.

Variational Value Transfer

Let us observe that the distribution D over MDPs induces a distribution over their optimal
Q-functions. In other words, if known, this distribution effectively acts as a prior over
the solution (i.e., the optimal Q-function) of tasks drawn from D. Since in our setting
we represent action-value functions by a space Q of limited capacity, we can replace this
distribution by one over Q or, more simply, by one over parameters ω. Call p ∈ P(Rd)
this distribution, such that p puts high probability mass to parameters ω that are likely to
induce near-optimal Q-functions on tasks drawn from D.

Assume, for the moment, that we know the distribution p(ω) and consider a dataset
D = {(Si, Ai, S′i, Ri}〉ni=1 of samples from the target task M0 ∼ D that we want to
solve. Then, we can compute the posterior distribution over parameters given such dataset
by applying Bayes theorem as p(ω|D) ∝ p(D|ω)p(ω). Unfortunately, this cannot be
directly used in practice since we do not have a model of the likelihood p(D|ω). In such
case, it is very common to make strong assumptions on the MDPs or the Q-functions to
get tractable posteriors. However, in our transfer settings, all distributions involved depend
on the family of tasks under consideration and making such assumptions is likely to limit
the applicability to specific problems. Thus, we take a different approach to derive a more
general, but still well-grounded, solution. We use the intuition that, given a dataset D of
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experience samples from the target task, the quality of a Q-function Qω ∈ Q (i.e., how
well it approximates Q?0) can be measured by its TD error ‖Bω‖2D. In order to derive a
meaningful posterior distribution, we take inspiration from PAC-Bayesian theory (Guedj,
2019). Note that, given the prior p(ω), our final goal is to move the total probability mass
over the parameters minimizing this empirical loss measure, i.e., the TD error. Then, from
PAC-Bayesian theory we have that the optimal Gibbs posterior q, which minimizes an
oracle upper bound on the expected loss, takes the form (e.g., Catoni (2007)):

q(ω) =
e−Λ‖Bω‖2Dp(ω)∫
e−Λ‖Bω′‖2Dp(dω′)

, (7.1)

for some parameter Λ > 0. Since Λ is typically chosen to increase with the number of
samples n, in the remaining, we set it to λ−1n, for some constant λ > 0. Note that,
whenever the term e−Λ‖Bω‖2D can be interpreted as the actual likelihood of D, q becomes
a classic Bayesian posterior. Anyway, this specific form has a quite intuitive meaning: a
dataset D is more likely given that ω is approximately optimal if it induces low TD error
on Qω . Although we now have an appealing distribution, the integral at the denominator
of (7.1) is intractable to compute even for simple Q-function models. Thus, we propose a
variational approximation qξ by considering a simpler family of differentiable distributions
parameterized by ξ ∈ Ξ. Then, our problem reduces to finding the variational parameters
ξ such that qξ minimizes the KL divergence with respect to the Gibbs posterior q. From the
theory of variational inference (e.g., Blei et al. (2017)), this can be shown to be equivalent
to minimizing the (negative) evidence lower bound (ELBO):

min
ξ∈Ξ
L(ξ) := Eω∼qξ

[
‖Bω‖2D

]
+
λ

n
DKL (qξ(ω)‖p(ω)) . (7.2)

Intuitively, the approximate posterior balances between placing probability mass over
those weights ω that have low expected TD error (first term), and staying close to the
prior distribution (second term). Assuming that we can compute the gradients of (7.2)
with respect to the variational parameters ξ, our objective can be optimized using any
stochastic optimization algorithm.

Algorithm. The overall idea behind our variational value transfer algorithm is quite sim-
ple: we estimate the prior distribution p(ω) from the source parametersWsrc and use it to
guide the whole learning process of the target task. More precisely, we interact with the
target task online while maintaining and updating the approximate posterior distribution
qξ(ω) from the observed samples. At each time step, we use posterior sampling (Thomp-
son, 1933; Osband et al., 2014) to drive exploration; assuming that the agent is in state St,
we first sample ω from the current posterior qξ and then act greedily with respect to Qω ,
i.e., we choose At = argmaxa∈AQω(St, a). After collecting new experience, we update
the current posterior by stochastic gradient descent on L and repeat the whole process.
The detailed pseudo-code is reported in Algorithm 5. Note that the resulting procedure
resembles approximate Q-learning, e.g., a DQN (Mnih et al., 2015), where, instead of di-
rectly minimizing the TD error, we minimize its expectation under weights drawn from
the learned distribution, which is regularized to stay close to the prior, hence exploiting
source knowledge. Similarly to a DQN, we use experience replay to optimize L, i.e., at
each step we draw a mini-batch from D in order to compute ∇ξL.
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Algorithm 5 Variational Transfer

Require: Unknown target taskM0, source parametersWsrc

1: Estimate prior p(ω) fromWsrc

2: Initialize variational parameters: ξ ← argminξDKL(qξ‖p)
3: Initialize dataset: D = ∅
4: repeat
5: Sample initial state: S0 ∼ ρ0

6: while St is not terminal do
7: Sample weights: ω ∼ qξ(ω)
8: Take greedy action: At = argmaxaQω(St, a)
9: Observe transition St+1 ∼ P0(·|St, At) and reward Rt+1 = r0(St, At)

10: Store data: D ← D ∪ {(St, At, St+1, Rt+1)}
11: Estimate gradient∇ξL(ξ) using a mini-batch D′ ⊆ D
12: Update ξ from∇ξL(ξ) using any optimizer, e.g., ADAM (Kingma and Ba, 2014)
13: end while
14: until forever

Discussion. The key property of our approach is the weight resampling at line 7, which
resembles Thompson sampling (Thompson, 1933) and closely relates to the recent value
function randomization (Osband et al., 2014; Azizzadenesheli et al., 2018; Osband et al.,
2019). At each step we guess what is the task we are trying to solve based on our current
belief and we act as if such guess were true. This mechanism allows an efficient adaptive
exploration of the target task. Intuitively, during the first steps of interaction, the agent
is very uncertain about the current task, and such uncertainty induces stochasticity in the
chosen actions, allowing a rather informed exploration to take place. Consider, for in-
stance, that actions that are bad on average for all tasks are improbable to be sampled,
while this cannot happen in uninformed exploration strategies, like ε-greedy, before learn-
ing takes place. As the learning process goes on, the agent quickly figures out which task
it is solving, thus moving all the probability mass over the weights minimizing the TD
error. From that point, sampling from the posterior is approximately equivalent to deter-
ministically taking such weights, and no more exploration is performed. Finally, notice
the generality of the proposed approach: as far as the objective L is differentiable in the
variational parameters ξ, and its gradients can be efficiently computed, any approximator
for the Q-function and any prior/posterior distributions can be adopted. For the latter, we
describe two practical choices in the next two sections.

We note that our approach relates to recent algorithms for meta-learning or fast adap-
tation of weights in neural networks (Finn et al., 2017; Grant et al., 2018; Amit and Meir,
2018). Such approaches typically assume to have full access to the task distributionD (i.e.,
samples from D can be obtained on-demand) and build meta-models that quickly adapt to
new tasks drawn from the same distribution. On the other hand, we assume only a fixed
and limited set of source tasks, together with their approximate solutions, is available.
Then, our goal is to speed-up the learning process of a new target task from D by transfer-
ring only these data, without requiring additional source tasks or experience samples from
them.
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Gaussian Variational Transfer
The most immediate, and widely-adopted, choice for the prior and posterior families is
to consider Gaussian distributions. As we shall see, this choice makes our algorithm
very efficient and easy to implement. We model the prior as a multivariate Gaussian
p(ω) = N (µp,Σp) and we learn its parameters from the set of source weights using
maximum likelihood estimation (with a small regularization to make sure the covariance
is positive definite). Then, our variational family is the set of all well-defined Gaussian dis-
tributions, i.e., the variational parameters are Ξ =

{
(µ,Σ) | µ ∈ Rd,Σ ∈ Rd×d,Σ � 0

}
.

To prevent the covariance from becoming not positive definite, we consider its Cholesky
decomposition Σ = LLT and we learn the lower-triangular Cholesky factor L instead.
In this case, deriving the gradient of the variational objective L is very simple. The KL
divergence between the prior and approximate posterior can be computed in closed-form
as

DKL (qξ‖p) =
1

2

(
log
|Σp|
|Σ| + Tr

(
Σ−1
p Σ

)
+ (µ− µp)TΣ−1

p (µ− µp)− d
)
,

for ξ = (µ,L) and Σ = LLT . Its gradients with respect to the variational parameters are

∇µDKL (qξ‖p) = Σ−1
p (µ− µp), ∇LDKL (qξ‖p) = Σ−1

p L− (L−1)T

Finally, the gradients w.r.t. the expected likelihood term of the variational objective (7.2)
can be computed using the reparameterization trick (e.g., Hoffman et al. (2013); Rezende
et al. (2014)) as

∇µEω∼N (µ,LLT )

[
||Bω||2D

]
= Ev∼N (0,I)

[
∇ω||Bω||2D

]
for ω = Lv + µ

∇LEω∼N (µ,LLT )

[
||Bω||2D

]
= Ev∼N (0,I)

[
∇ω||Bω||2D · vT

]
for ω = Lv + µ

Mixture of Gaussian Variational Transfer
Although the Gaussian model is very appealing as it allows for a simple and efficient way
of computing the variational objective and its gradients, in practice it rarely allows us
to describe the prior distribution accurately. In fact, even for families of tasks in which
the reward and transition models are Gaussian, the optimal Q-values might be far from
being normally distributed. Depending on the family of tasks under consideration and,
since we are learning a distribution over weights, on the chosen function approximator,
the prior might have arbitrarily complex shapes. When the information loss due to the
Gaussian approximation becomes too severe, the algorithm is likely to fail at capturing
any similarities between the tasks. We now propose a variant to successfully solve this
problem, while keeping the algorithm efficient and simple enough to be applied in practice.

Given the source parameters Wsrc = {ω1, . . . , ωm}, we model our estimated prior
as a mixture with equally-weighted isotropic Gaussians centered at each weight, p(ω) =
1
m

∑m
j=1N (ω|ωj , σ2

pI). This model resembles a kernel density estimator Scott (2015)
with bandwidth σ2

p and, due to its nonparametric nature, it allows capturing arbitrarily
complex distributions. Consistently with the prior, we model our approximate poste-
rior as a mixture of Gaussians. Using c mixture components, our posterior is qξ(ω) =
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1
c

∑c
i=1N (ω|µi,Σi), with variational parameters ξ = (µ1, . . . , µc,Σ1, . . . ,Σc). Once

again, we learn Cholesky factors instead of full covariances. Finally, since the KL diver-
gence between two mixtures of Gaussians has no closed-form expression, we rely on an
upper bound to such quantity, so that the negative ELBO still upper bounds the KL be-
tween the approximate and the exact posterior. Among the many upper bounds available,
we adopt the one derived by Hershey and Olsen (2007). For the sake of completeness, we
state this result, instantiated for our specific setting, in the next theorem.

Theorem 7.3.1 (Hershey and Olsen (2007)). Let p = 1
m

∑m
j=1N (ωj , σ

2
pI) and qξ =

1
c

∑c
i=1N (µi,Σi) be the prior and posterior distributions, respectively. Then, for any

α ∈ Rc×m and β ∈ Rm×c such that
∑m
j=1 βj,i = 1

c and
∑c
i=1 αi,j = 1

m ,

DKL (qξ‖p) ≤ DKL(β‖α) +

c∑
i=1

m∑
j=1

βj,iDKL(N (µi,Σi)‖N (ωj , σ
2
pI)).

As shown by Hershey and Olsen (2007), a simple fixed-point procedure can be adopted
to find α, β that minimize this upper bound:

αi,j =
βj,i

m
∑c
l=1 βj,l

, βj,i =
αi,je

−DKL(N (µi,Σi)‖N (ωj ,σ
2
pI))

c
∑m
l=1 αi,le

−DKL(N (µi,Σi)‖N (ωl,σ2
pI))

.

Using Theorem 7.3.1, we can directly derive an upper bound to the negative ELBO of
Equation 7.2,

L(ξ) ≤ L̃(ξ) :=
1

c

c∑
i=1

Eω∼N (ω|µi,Σi)
[
‖Bω‖2D

]
+

λ

n
DKL(β‖α)

+
λ

n

c∑
i=1

m∑
j=1

βj,iDKL(N (µi,Σi)‖N (ωj , σ
2
pI)). (7.3)

In practice, we optimize the upper bound L̃(ξ) instead of L. Note that L̃(ξ) can be easily
differentiated with respect to ξ = (µ1, ..., µC ,Σ1, ...,ΣC) as we have seen for the Gaus-
sian case.

Minimizing the TD Error
From Sections 7.3.1 and 7.3.2, we know that differentiating the negative ELBO L with
respect to ξ requires differentiating ‖Bω‖2D with respect to ω. Unfortunately, the TD error
is well-known to be non-differentiable due to the presence of the max operator. This issue
is rarely a problem since typical value-based algorithms are semi-gradient methods, i.e.,
they do not differentiate the targets (see, e.g., Chapter 11 of Sutton and Barto (2018)).
However, our transfer settings are quite different from common RL. In fact, our algorithm
is likely to start from Q-functions that are very close to an optimum and aims only to adapt
the weights in some direction of lower error so as to quickly converge to the solution of the
target task. Unfortunately, this property does not hold for most semi-gradient algorithms.
Even worse, many online RL algorithms combined with complex function approximators
(e.g., DQNs) are well-known to be unstable, especially when approaching an optimum,
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and require many tricks and tuning to work well (Schaul et al., 2015b; Van Hasselt et al.,
2016). This property is clearly undesirable in our case, as we only aim at adapting already
good solutions. Thus, we consider using a residual gradient algorithm Baird (1995). To
differentiate the targets, we replace the optimal Bellman operator with the mellow Bellman
operator introduced in Asadi and Littman (2017), which adopts a softened version of max
called mellowmax:

mm
a
Qω(s, a) :=

1

κ
log

1

|A|
∑
a

eκQω(s,a) (7.4)

where κ is a hyperparameter and |A| is the number of actions. The mellow Bellman
operator, which we denote as T̃ , has several appealing properties: (i) it converges to the
maximum as κ→∞, (ii) it has a unique fixed-point, and (iii) it is differentiable. Denoting
by B̃ω = T̃Qω − Qω the Bellman residual with respect to the mellow Bellman operator
T̃ , we have that the corresponding TD error, ||B̃ω||2D, is now differentiable with respect to
ω.

Although residual algorithms have guaranteed convergence, they are typically much
slower than their semi-gradient counterpart. Baird (1995) proposed to project the gradient
in a direction that achieves higher learning speed, while preserving convergence. This
projection is obtained by including a parameter ψ ∈ [0, 1] in the TD error gradient such
that

∇ω
∥∥∥B̃ω∥∥∥2

D
=

2

n

n∑
i=1

b̃i(ω)
(
γψ∇ω mm

a′
Qω(S′i, a

′)−∇ωQω(Si, Ai)
)
,

where b̃i(ω) = Ri + γmma′ Qω(S′i, a
′)−Qω(Si, Ai). Notice that ψ trades-off between

the semi-gradient (ψ = 0) and the full residual gradient (ψ = 1). A good criterion for
choosing such parameter is to start with values close to zero (to have faster learning) and
move to higher values when approaching the optimum (to guarantee convergence). In
our experiments, we shall use the gradient expression above to update parameters, while
treating ψ as a hyper-parameter.

Theoretical Analysis

This section is devoted to the theoretical analysis of our variational value transfer method.
We first analyze the properties of the mellow Bellman operator by providing a result of
independent interest. We then derive a finite-sample analysis of our algorithm combined
with Gaussian and mixture-of-Gaussian distributions. Our results confirm the theoretical
superiority of the latter choice.

Analysis of the Mellowmax Operator
A first important question that we need to answer is whether replacing max with mellow-
max in the Bellman operator constitutes a strong approximation or not. It has been proven
(Asadi and Littman, 2017) that the mellow Bellman operator is a non-expansion under the
L∞-norm and, thus, has a unique fixed-point. However, how such fixed-point differs from
the one of the optimal Bellman operator remains an open question. Since mellow-max
monotonically converges to max as κ→∞, it would be desirable if the fixed point of the
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corresponding operator also monotonically converged to the fixed point of the optimal one.
We confirm that this property actually holds in the following theorem, which we believe is
of independent interest.

Theorem 7.4.1. Let Q? be the fixed-point of the optimal Bellman operator T . Define
the action-gap function g(s) as the difference between the value of the best action and the
second best action at each state s. Let Q̃ be the fixed-point of the mellow Bellman operator
T̃ with parameter κ > 0 and denote by βκ > 0 the inverse temperature of the induced
Boltzmann distribution (as in Asadi and Littman (2017)). Then:

∥∥∥Q? − Q̃∥∥∥
∞
≤ 2γrmax

(1− γ)2

∥∥∥∥∥ 1

1 + 1
|A|e

βκg

∥∥∥∥∥
∞
. (7.5)

Notice that Q̃ converges to Q? exponentially fast as κ (equivalently, βκ) increases and
the action gaps are all larger than zero.

Proof. We begin by noticing that:∥∥∥Q∗ − Q̃∥∥∥
∞

=
∥∥∥TQ∗ − T̃ Q̃∥∥∥

∞
=
∥∥∥TQ∗ − T̃Q∗ + T̃Q∗ − T̃ Q̃

∥∥∥
∞

≤
∥∥∥TQ∗ − T̃Q∗∥∥∥

∞
+
∥∥∥T̃Q∗ − T̃ Q̃∥∥∥

∞
≤
∥∥∥TQ∗ − T̃Q∗∥∥∥

∞
+ γ

∥∥∥Q∗ − Q̃∥∥∥
∞
,

where the first inequality follows from Minkowsky’s inequality and the second one from the con-
traction property of the mellow Bellman operator. This implies that:∥∥∥Q∗ − Q̃∥∥∥

∞
≤ 1

1− γ

∥∥∥TQ∗ − T̃Q∗∥∥∥
∞
. (7.6)

Let us bound the norm on the right-hand side separately. In order to do that, we will bound the
function

∣∣∣TQ∗(s, a)− T̃Q∗(s, a)
∣∣∣ point-wisely for any pair (s, a). By applying the definition of

the optimal and mellow Bellman operators, we obtain:∣∣∣TQ∗(s, a)− T̃Q∗(s, a)
∣∣∣ =

∣∣∣∣r(s, a) + γE
[
max
a′

Q∗(s′, a′)

]
− r(s, a)− γE

[
mm
a′

Q∗(s′, a′)

]∣∣∣∣
= γ

∣∣∣∣E [max
a′

Q∗(s′, a′)

]
− E

[
mm
a′

Q∗(s′, a′)

]∣∣∣∣ ≤ γE [∣∣∣∣max
a′

Q∗(s′, a′)−mm
a′

Q∗(s′, a′)

∣∣∣∣] .
(7.7)

Bounding this quantity reduces to bounding |maxaQ
∗(s, a)−mmaQ

∗(s, a)| point-wisely for any
s. Recall that applying the mellow Bellman operator is equivalent to computing an expectation under
a Boltzmann distribution with inverse temperature βκ induced by κ (Asadi and Littman, 2017). Thus,
we can write:∣∣∣max

a
Q∗(s, a)−mm

a
Q∗(s, a)

∣∣∣ =

∣∣∣∣∣∑
a

Q∗(s, a) (π∗(a|s)− πβκ(a|s))

∣∣∣∣∣
≤
∑
a

|Q∗(s, a)| |π∗(a|s)− πβκ(a|s)|

≤ rmax

1− γ
∑
a

|π∗(a|s)− πβκ(a|s)| , (7.8)

105



Chapter 7. Exploration via Variational Value Transfer

where π∗ is the optimal (deterministic) policy w.r.t. Q∗ and πβκ is the Boltzmann distribution
induced by Q∗ with inverse temperature βκ:

πβκ(a|s) =
eβκQ

∗(s,a)∑
a′ e

βκQ∗(s,a′)
.

Denote by a1(s) the optimal action for state s under Q∗. We can then write:∑
a

|π∗(a|s)− πβκ(a|s)| = |π∗(a1(s)|s)− πβκ(a1(s)|s)|+
∑

a 6=a1(s)

|π∗(a|s)− πβκ(a|s)|

= |1− πβκ(a1(s)|s)|+
∑

a6=a1(s)

|πβκ(a|s)| = 2 |1− πβκ(a1(s)|s)| . (7.9)

Finally, denoting with a2(s) the second-best action in state s, let us bound this last term:

|1− πβκ(a1(s)|s)| =

∣∣∣∣∣1− eβκQ
∗(s,a1(s))∑

a′ e
βκQ∗(s,a′)

∣∣∣∣∣ =

∣∣∣∣∣1− eβκ(Q∗(s,a1(s))−Q∗(s,a2(s)))∑
a′ e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣∣
=

∣∣∣∣1− eβκg(s)∑
a′ e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣
=

∣∣∣∣∣1− eβκg(s)

eβκg(s) +
∑
a′ 6=a1(s) e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣∣
≤
∣∣∣∣1− eβκg(s)

eβκg(s) + |A|

∣∣∣∣ =

∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s)

∣∣∣∣∣ . (7.10)

Combining Eq. (7.8), (7.9), and (7.10), we obtain:∣∣∣max
a

Q∗(s, a)−mm
a
Q∗(s, a)

∣∣∣ ≤ 2rmax

1− γ

∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s)

∣∣∣∣∣ .
Finally, using Eq. (7.7) we get:∣∣∣TQ∗(s, a)− T̃Q∗(s, a)

∣∣∣ ≤ 2γrmax

1− γ E
[∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s′)

∣∣∣∣∣
]
.

Taking the norm and plugging this into Eq. (7.6) concludes the proof.

Finite-Sample Analysis
The second question that we need to answer is whether we can provide any guarantee on
our algorithm’s performance when given limited data. To address this point, we consider
the two variants of Algorithm 5 from Section 7.3.1 and 7.3.2 with linear approximators.
Specifically, we consider the family of linearly parameterized value functions Qω(s, a) =
ωTφ(s, a) with bounded weights ‖ω‖2 ≤ ωmax and uniformly bounded feature functions
‖φ(s, a)‖2 ≤ φmax. We assume only a finite dataset D = {(Si, Ai, S′i, Ri)}ni=1 is avail-
able and provide a finite-sample analysis bounding the expected (mellow) Bellman error
under the variational distribution minimizing the objective (7.2) for any fixed target task
M0. To simplify the analysis, we assume that state-action pairs (Si, Ai) in D are i.i.d.
from some distribution ν. While this is not really the case for the online setting where Al-
gorithm 5 is applied, it does not contradict the main focus of the analysis, i.e., to show that
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the learned posterior distribution concentrate on Q-functions with low Bellman error as
more samples are observed. Unfortunately, an analysis of the online exploration behavior
of our algorithm (e.g., regret or sample complexity bounds) is considerably more difficult
in this context with continuous state spaces and complex function approximators.

Theorem 7.4.2. Let ξ̂ be the variational parameters minimizing the objective (7.2) on a
datasetD of n i.i.d. samples distributed according toM0 and ν. Let ω? = argminω ||B̃ω||2ν
and define υ(ω∗) , EN (ω∗, 1

n I)
[v(ω)], with v(ω) := Eν

[
VarP0

[
b̃(ω)

]]
. Then, there exist

constants c1, c2, c3 such that, with probability at least 1− δ over the choice of the dataset
D,

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+ υ(ω∗) + c1

√
log 2

δ

n

+
c2 + λd log n+ λϕ (Wsrc)

n
+
c3
n2
,

where ϕ(Wsrc) = ‖ω∗ − µp‖2Σ−1
p

when the Gaussian version of Algorithm 5 is used with
prior p(ω) = N (µp,Σp) estimated fromWsrc, while

ϕ(Wsrc) =
1

σ2
p

∑
ω∈Wsrc

e
− 1

2σ2
p
‖ω∗−ω‖22∑

ω′∈Wsrc
e
− 1

2σ2
p
‖ω∗−ω′‖22

‖ω∗ − ω‖22 (7.11)

when the mixture version of Algorithm 5 is used with c components and bandwidth σ2
p for

the prior.

Let us comment on this result before carrying out the proof. Four main terms consti-
tute our bound: the approximation error due to the limited hypothesis space (first term),
the variance (second and third terms), the distance to the prior (fourth term), and a con-
stant term decaying as O(n2). As we might have expected, the only difference between
the bounds for the two versions of Algorithm 5 is in the term ϕ(Wsrc), i.e., the distance
between the optimal weights ω∗ and the source weightsWsrc. Specifically, for the mixture
version we have the softmin (i.e., a smoothened minimum) distance to the source tasks’
weights (Equation (7.11)), while for the Gaussian one we have the distance to the mean of
such weights. This property shows a clear advantage of using the mixture version rather
than the Gaussian one: in order to tighten the bound, it is enough to have at least one
source task that is close to the optimal solution of the target task. In fact, the Gaussian
version requires the source tasks to be, on average, similar to the target task in order to
perform well, while the mixture version only requires this property for one of them. In
both cases, when the term ϕ(Wsrc) is reduced, the dominating error is due to the variance
of the estimates, and, thus, the algorithm is expected to achieve good performance rather
quickly, as new data is collected. Furthermore, as n →∞ the only error terms remaining
are the irreducible approximation error due to the limited functional space and the variance
term υ(ω∗). The latter is due to the fact that we minimize a biased estimate of the Bellman
error and can be removed in cases where double sampling of the next state is possible (e.g.,
in simulation).

107



Chapter 7. Exploration via Variational Value Transfer

Before proving Theorem 7.4.2, we state some important properties (proved in Ap-
pendix B) of the variational approximation introduced in Section 7.3. Our results gener-
alize those of existing works that consider variational approximations of intractable Gibbs
posteriors (Alquier et al., 2016).

Lemma 7.4.1. Let p and q be arbitrary distributions over weights ω, and ν be a probability
measure over S ×A. Consider a dataset D of n i.i.d. samples where state-action couples
are distributed according to ν and define v(ω) := Eν

[
VarP0

[
b̃(ω)

]]
. Then, for any

λ > 0 and δ > 0, with probability at least 1 − δ, the following two inequalities hold
simultaneously:

Eq
[∥∥∥B̃ω∥∥∥2

ν

]
≤ Eq

[∥∥∥B̃ω∥∥∥2

D

]
− Eq [v(ω)] +

λ

n
DKL(q‖p) +

4r2
max

(1− γ)2

√
log 2

δ

2n
,

Eq
[∥∥∥B̃ω∥∥∥2

D

]
≤ Eq

[∥∥∥B̃ω∥∥∥2

ν

]
+ Eq [v(ω)] +

λ

n
DKL(q‖p) +

4r2
max

(1− γ)2

√
log 2

δ

2n
.

From Lemma 7.4.1 we can straightforwardly prove the following result which will be
of fundamental importance in the remaining.

Lemma 7.4.2. Consider the same assumptions as in Lemma 7.4.1 and denote by ξ̂ the
minimizer of (7.2) using dataset D. Then,

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃ω∥∥∥2

ν

]
+ Eqξ [v(ω)] + 2

λ

n
DKL(qξ‖p)

}

+
8r2

max

(1− γ)2

√
log 2

δ

2n
.

It is worth noting the generality of Lemma 7.4.2: in bounding the expected Bellman
error we do not need to assume any particular distribution, nor do we have to assume any
particular function approximator. We are now ready to prove our main result.

Proof of Theorem 7.4.2. The proof is divided in two parts; the first one deals with the Gaussian case
(Section 7.3.1), while the second one deals with mixture-of-Gaussian distributions (Section 7.3.2).

Gaussian distributions. Using Lemma 7.4.2 with variational parameters ξ̂ = (µ̂, Σ̂), we have

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃ω∥∥∥2

ν

]
+ Eqξ [v(ω)] + 2

λ

n
KL(qξ||p)

}
+ 8

r2
max

(1− γ)2

√
log 2

δ

2n

≤ EN (ω∗,kI)

[∥∥∥B̃ω∥∥∥2

ν

]
+ EN (ω∗,kI) [v(ω)] + 2

λ

n
DKL (N (ω∗, kI)‖p) + 8

r2
max

(1− γ)2

√
log 2

δ

2n
,

(7.12)

where the second inequality is due to the fact that, since Lemma 7.4.2 contains an infimum over the
variational parameters, we can upper bound its right-hand side by choosing any specific ξ from Ξ.
Here, we choose µ = ω∗ and Σ = kI , for some positive constant k > 0. Let us now bound these
terms separately.
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(1) Bounding the expected Bellman error. We have

EN (ω∗,kI)

[∥∥∥B̃ω∥∥∥2

ν

]
= EN (ω∗,kI)

[
Eν
[
(T̃Qω −Qω)2

]]
= Eν

[
EN (ω∗,kI)

[
(T̃Qω −Qω)2

]]
= Eν

[
E2
N (ω∗,kI)

[
T̃Qω −Qω

]]
+ Eν

[
VarN (ω∗,kI)

[
T̃Qω −Qω

]]
. (7.13)

Let us bound these two terms point-wisely for each pair 〈s, a〉. For the first expectation, we have

EN (ω∗,kI)

[
T̃Qω −Qω

]
= EN (ω∗,kI)

[
r0(s, a) + γEs′

[
mm
a′

ωTφ(s′, a′)

]
− ωTφ(s, a)

]
= r0(s, a) + γEN (ω∗,kI)

[
Es′
[
mm
a′

ωTφ(s′, a′)

]]
− ω∗Tφ(s, a). (7.14)

To bound the second term, we adopt Jensen’s inequality:

EN (ω∗,kI)

[
Es′
[
mm
a′

ωTφ(s′, a′)

]]
= EN (ω∗,kI)

[
Es′
[

1

κ
log

1

|A|
∑
a′
eκω

T φ(s′,a′)

]]

≤ Es′
[

1

κ
log

1

|A|
∑
a′

EN (ω∗,kI)

[
eκω

T φ(s′,a′)
]]
. (7.15)

Now, since we know that ωTφ(s′, a′) ∼ N (ω∗Tφ(s′, a′), k φ(s′, a′)Tφ(s′, a′)), eκω
T φ(s′,a′) fol-

lows a log-normal law with mean eκω
∗T φ(s′,a′)+ 1

2
κ2kφ(s′,a′)T φ(s′,a′). Thus,

Es′
[

1

κ
log

1

|A|
∑
a′

EN (ω∗,kI)

[
eκω

T φ(s′,a′)
]]

= Es′
[

1

κ
log

1

|A|
∑
a′
eκω
∗T φ(s′,a′)+ 1

2
κ2kφ(s′,a′)T φ(s′,a′)

]

= Es′
[

1

κ
log

1

|A|
∑
a′
eκω
∗T φ(s′,a′)e

1
2
κ2kφ2

max

]

= Es′
[

1

κ
log

1

|A|
∑
a′
eκω
∗T φ(s′,a′)

]
+

1

2
κkφ2

max = Es′
[
mm
a′

ω∗Tφ(s′, a′)

]
+

1

2
κkφ2

max.

Plugging this into (7.15) and then into (7.14), we obtain

EN (ω∗,kI)

[
T̃Qω −Qω

]
≤ r0(s, a) + γEs′

[
mm
a′

ω∗Tφ(s′, a′)

]
+

1

2
γκkφ2

max − ω∗Tφ(s, a)

= B̃ω∗ +
1

2
γκkφ2

max.

This implies that

E2
N (ω∗,kI)

[
T̃Qω −Qω

]
≤
(
B̃ω∗ +

1

2
γκkφ2

max

)2

≤ 2B̃2
ω∗ +

1

2
γ2κ2k2φ4

max,

where the second inequality follows from Cauchy-Schwarz inequality. Going back to (7.13), the first
term can now be upper bounded by:

Eν
[
E2
N (ω∗,kI)

[
T̃Qω −Qω

]]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+

1

2
γ2κ2k2φ4

max.
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Let us now consider the variance term of (7.13) and derive a bound that holds point-wisely for any
s, a. We have:

VarN (ω∗,kI)

[
T̃Qω −Qω

]
= VarN (ω∗,kI)

[
r0(s, a) + γEs′

[
mm
a′

ωTφ(s′, a′)

]
− ωTφ(s, a)

]
= VarN (ω∗,kI)

[
γEs′

[
mm
a′

ωTφ(s′, a′)− 1

γ
ωTφ(s, a)

]]
= VarN (ω∗,kI)

[
γEs′

[
mm
a′

ωT
(
φ(s′, a′)− 1

γ
φ(s, a)

)]]
= γ2VarN (ω∗,I)

[
Es′
[
mm
a′

√
k ωT

(
φ(s′, a′)− 1

γ
φ(s, a)

)]]
.

From Cauchy-Schwarz inequality:

√
k

∣∣∣∣ωT (φ(s′, a′)− 1

γ
φ(s, a)

)∣∣∣∣ ≤ √k ‖ω‖ ∥∥∥∥φ(s′, a′)− 1

γ
φ(s, a)

∥∥∥∥ ≤ √k ωmaxφmax
1 + γ

γ
.

Then, the variance can be straightforwardly bounded using Popoviciu’s inequality as

VarN (ω∗,kI)

[
T̃Qω −Qω

]
≤ γ2 1

4

(
2
√
k ωmaxφmax

1 + γ

γ

)2

= k (ωmaxφmax(1 + γ))2 .

We can finally plug everything into (7.13), thus obtaining

EN (ω∗,kI)

[∥∥∥B̃ω∗∥∥∥2

ν

]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+

1

2
γ2κ2k2φ4

max + k (ωmaxφmax(1 + γ))2 .

(2) Bounding the KL divergence. We have

DKL (N (ω∗, kI)‖p) = DKL (N (ω∗, kI)‖N (µp,Σp))

=
1

2

(
log
|Σp|
kd

+ kTr
(
Σ−1
p

)
+ ‖ω∗ − µp‖2Σ−1

p
− d
)

≤ 1

2
d log

σmax

k
+

1

2
d

k

σmin
+

1

2
‖ω∗ − µp‖2Σ−1

p
.

Now, putting all together into (7.12):

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+

1

2
γ2κ2k2φ4

max + k (ωmaxφmax(1 + γ))2

+ EN (ω∗,kI) [v(ω)] +
λ

n
d log

σmax

k
+
λ

n
d

k

σmin

+
λ

n
‖ω∗ − µp‖2Σ−1

p
+ 8

r2
max

(1− γ)2

√
log 2

δ

2n
.

Since the bound holds for any k > 0, we can set k := 1/n, thus obtaining

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+ υ(ω∗) +

1

n2

(
1

2
γ2κ2φ4

max +
λd

σmin

)

+
1

n

(
ω2

maxφ
2
max(1 + γ)2 + λd(log σmax + logn) + λ ‖ω∗ − µp‖2Σ−1

p

)
+ 8

r2
max

(1− γ)2

√
log 2

δ

2n
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Finally, defining the constants c1 =
8r2max√
2(1−γ)2

, c2 = ω2
maxφ

2
max(1 + γ)2 + λd log σmax, and

c3 = 1
2
γ2κ2φ4

max + λd
σmin

, we obtain

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ 2

∥∥∥B̃ω∗∥∥∥2

ν
+ υ(ω∗) + c1

√
log 2

δ

n
+
c2 + λd logn+ λ ‖ω∗ − µp‖2Σ−1

p

n
+
c3
n2
.

This concludes the proof of the theorem for the Gaussian case.
Mixture-of-Gaussian distributions. Here we apply Lemma 7.4.2 with variational parameters

ξ̂ = (µ̂1, . . . , µ̂c, Σ̂1, . . . , Σ̂c), while upper bounding the minimum empirical loss (i.e., the ELBO)
by choosing µi = ω∗ and Σi = kI for all i = 1, . . . , c. These choices yield exactly the bound (7.12)
obtained for the Gaussian case, with the only difference that the prior p in DKL(N (ω∗, kI)‖p) is
now a mixture of Gaussians. Thus, we only need to upper bound this term in order to carry out the
proof, while the other ones can be treated exactly as in the Gaussian case. Using Theorem 7.3.1,

DKL (N (ω∗, kI)‖p) ≤ DKL(β‖α) +

m∑
j=1

βjDKL(N (ω∗, kI)‖N (ωj , σ
2
pI)), (7.16)

where α, β ∈ Rm are the “optimal” vectors defined in Section 7.3.2 (with the second index ne-
glected since the posterior has now a single component). By instantiating the fixed-point procedure
to compute the optimal vectors, we obtain

αj =
1

m
, βj =

e−DKL(N (ω∗,kI)‖N (ωj ,σ
2
pI))∑m

l=1 e
−DKL(N (ω∗,kI)‖N (ωl,σ

2
pI))

.

Using the closed-form of the KL divergence between two Gaussian distributions,

βj =
e
− 1

2σ2
p
‖ω∗−ωj‖22∑m

l=1 e
− 1

2σ2
p
‖ω∗−ωl‖22

∀j = 1, . . . ,m.

Let us bound the two terms of (7.16) separately. For the first one, we have

DKL(β‖α) =

m∑
j=1

βj log
βj
αj

=

m∑
j=1

βj log βj −
m∑
j=1

βj log
1

m
≤ log(m),

where the inequality holds since the first term is negative. For the second term of (7.16),

m∑
j=1

βjDKL(N (ω∗, kI)‖N (ωj , σ
2
pI)) =

1

2

m∑
j=1

βj

(
d log

σ2
p

k
+ d

k

σ2
p

+
1

σ2
p

‖ω∗ − ωj‖22 − d
)

≤ 1

2
d log

σ2
p

k
+

1

2
d
k

σ2
p

+

m∑
j=1

βj
1

2σ2
p

‖ω∗ − ωj‖22 =
1

2
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where the last equality holds from the definition of βj and ϕ in (7.11). we defined the vector ∆
whose components are ∆j = 1

2σ2
p
‖ω∗ − ωj‖. Putting the two terms together,

DKL (N (ω∗, kI)‖p) ≤ log(m) +
1

2
d log
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+
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2
d
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σ2
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+
1

2
ϕ (Wsrc) .

Notice that, from now on, one can simply apply the same steps as in the Gaussian case with σmax =
σmin = σ2

p and 1
2
‖ω∗ − µp‖2Σ−1

p
replaced by 1

2
ϕ (Wsrc). Thus, by redefining the three constants to
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Start

Goal

Figure 7.1: The rooms problem. The agent starts from the bottom left corner and has to
reach the top right corner, while passing through two doors whose positions change
horizontally across tasks.

c1 =
8r2max√
2(1−γ)2

, c2 = ω2
maxφ

2
max(1 + γ)2 + λd log σ2

p + 2λ log(m), and c3 = 1
2
γ2κ2φ4

max + λd
σ2
p

,
we can write that, with probability at least 1− δ,

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ 2
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ν
+ υ(ω∗) + c1

√
log 2

δ

n
+
c2 + λd logn+ λϕ (Wsrc)

n
+
c3
n2
,

which concludes the proof.

Experiments

We experimentally evaluate our approach in four different domains with increasing level
of difficulty. In all experiments, we compare our Gaussian variational transfer algorithm
(GVT) and the version using a c-component mixture of Gaussians (c-MGVT) to plain no-
transfer RL (NT) with ε-greedy exploration and to a simple transfer baseline in which we
randomly pick one source Q-function and fine-tune from its weights (FT). Each curve in
our plots is the result of 20 independent runs, each re-sampling the target and source tasks,
with 95% confidence intervals. Additional details on the parameters adopted can be found
in Tirinzoni et al. (2018a).

The Rooms Problem
We consider an agent navigating in the environment depicted in Figure 7.1. The agent
starts in the bottom-left corner and must move from one room to another to reach the goal
position in the top-right corner. The rooms are connected by small doors whose locations
are unknown to the agent. The state-space is modeled as a 10× 10 continuous grid, while
the action-space is the set of 4 movement directions (up, right, down, left). After each
action, the agent moves by 1 in the chosen direction and the final position is corrupted by
Gaussian noise N (0, 0.2). In case the agent hits a wall, its position remains unchanged.
The reward is 1 when reaching the goal (after which the process terminates) and 0 oth-
erwise, while the discount factor is γ = 0.99. In this experiment, we consider linearly
parameterized Q-functions with 121 equally-spaced radial basis features. We generate a
set of 50 source tasks for the three-room environment of Figure 7.1 by sampling both door
locations uniformly in the allowed space, and solve all of them by directly minimizing the
TD error as presented in Section 7.3.3. Then, we use our algorithms to transfer from 10
source tasks sampled from the previously generated set. Since the agent does not know
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Figure 7.2: Transfer in the rooms problem. (left) Both doors are uniformly sampled on the
horizontal axis. (right) The bottom door is kept fixed in the center in the source tasks
and allowed to vary in the targe task.

the locations of the doors in advance and receives only very sparse feedback, it must ef-
ficiently explore the environment to figure out (i) their positions, and (ii) how to reach
the goal. While this might be a complicated problem for plain RL, our transfer algorithm
should be able to figure out the door positions quickly. In fact, notice that, although dif-
ferent, the optimal Q-functions for all tasks share some similarities. For example, once
the agent has passed the last door before the goal, the Q-values are exactly the same in
all tasks. The same does not hold for positions nearby the starting state. However, it is
clear that there should be a preference over actions up and right, rather than down and left
(which are worse in all tasks).

Results. The average return over the last 50 learning episodes as a function of the number
of iterations is shown in Figure 7.2(left). As expected, the no-transfer (NT) algorithm
fails at learning the task in so few iterations due to the limited exploration provided by
an ε-greedy policy. On the other hand, all our algorithms achieve a significant speed-
up and converge to the optimal performance in few iterations, with GVT being slightly
slower. FT achieves good performance as well, but it takes more time to adapt a random
source Q-function. Interestingly, we notice that there is no advantage in adopting more
than 1 component for the posterior in MGVT. This result is intuitive since, as soon as the
algorithm figures out which is the target task, all the components move towards the same
region.

To better understand the differences between GVT and MGVT, we now consider trans-
ferring from a slightly different distribution than the one from which target tasks are drawn.
We generate 50 source tasks again but this time with the bottom door fixed at the center
and the other one moving. Then, we repeat the previous experiment, allowing both doors
to move when sampling target tasks. The results are shown in Figure 7.2(right). Inter-
estingly, MGVT seems almost unaffected by this change, proving that it has sufficient
representation power to generalize to slightly different task distributions. The same does
not hold for GVT, which now is not able to solve many of the sampled target tasks, as can
be noticed from the higher variance. Furthermore, the good performance of FT proves that
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Figure 7.3: Exploration in the two-room problem: ε-greedy vs (a) GVT and (b) 1-MGVT.

GVT is, indeed, subject to a loss of information due to averaging the source weights. This
result proves again that assuming Gaussian distributions can pose severe limitations in our
transfer settings.

Finally, we investigate the exploratory behavior induced by our transfer algorithms and
compare it to simple ε-greedy exploration. In Figure 7.3, we show the positions visited by
the agent when running 2000 iterations of NT, GVT, and 1-MGVT. Observing Figure
7.3(left), it is possible to understand the difference between the ε-greedy exploration and
the resulting behavior from GVT. It is noticeable that NT is not capable to lead the agent
to the goal within the given iterations as most of the states visited are sparse within the
first room, whereas GVT is able to concentrate more of its effort in looking for the door
around the middle of the wall. After finding it, within the second room, the positions
concentrate in the path leading to the goal. This is not surprising as the value function
should be equal for all tasks after crossing the door. In the other case, Figure 7.3(right)
shows a similar situation, but it is quite interesting to notice how sparser the exploration
of 1-MGVT is with respect to GVT. Indeed, 1-MGVT is able to actually explore the right
part of the first room within these iterations, which might be seen as the result of the prior
model being able to capture more information than the Gaussian; hence, the higher speed-
up in convergence and robustness to changes in the distribution from which target tasks
are drawn. Indeed, as 1-MGVT is able to allow for more flexible exploration, it is capable
to discover how to best solve the task much faster than GVT.

Classic Control
We now consider two well-known classic control environments: Cartpole and Mountain
Car (Sutton and Barto, 2018). For both, we generate 20 source tasks by uniformly sam-
pling their physical parameters (cart mass, pole mass, pole length for Cartpole and car
speed for Mountain Car) and solve them by directly minimizing the TD error as in the pre-
vious experiment. We parameterize Q-functions using neural networks with one layer of
32 hidden units for Cartpole and 64 for Mountain Car. In this experiment, we use a Dou-
ble Deep Q-Network (DDQN) Van Hasselt et al. (2016) to provide a stronger no-transfer
baseline for comparison.

Results. The results are shown in Figure 7.4. For Cartpole (left plot), all variational
transfer algorithms are almost zero-shot. This result is expected since, although we vary
the system parameters in a wide range, the optimal Q-values of states near the balanced
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Figure 7.4: Transfer in Cartpole (left) and Mountain Car (right).

position are similar for all tasks. On the contrary, in Mountain Car (right plot) the optimal
Q-functions become very different when changing the car speed. This phenomenon hin-
ders the learning of GVT in the target task, while MGVT achieves a good jump-start and
converges in fewer iterations. Similarly to the rooms domain, the naive weight adaptation
of FT makes it slower than MGVT in both domains.

Maze Navigation

Finally, we consider a robotic agent navigating mazes. At the beginning of each episode,
the agent is dropped to a random position in a 10m2 maze and must reach a goal area in the
smallest time possible. The robot is equipped with sensors detecting its absolute position,
its orientation, the distance to any obstacle within 2m in 9 equally-spaced directions, and
whether the goal is present in the same range. The only actions available are move forward
with speed 0.5m/s or rotate (in either direction) with speed of π/8 rad/s. Each time step
corresponds to 1s of simulation. The reward is 1 for reaching the goal and 0 otherwise,
while the discount factor is γ = 0.99. For this experiment, we design a set of 20 different
mazes (see Figure 7.5) with varying degree of difficulty and that hold few similarities
that would be useful for transferring. Moreover, we ensure 4 groups of mazes that are
characterized by the same goal position. We solve them using a DDQN with two layers of
32 neurons and ReLU activations. Then, we fix a target maze and transfer from 5 source
mazes uniformly sampled from such set (excluding the chosen target). To further assess the
robustness of our method, we now consider transferring from the Q-functions learned by
DDQNs instead of those obtained by minimizing the TD error as in the previous domains.
From our considerations of Sections 7.3.3 and 7.4, the fixed-points of the two algorithms
are different, which creates a further challenge for our method.

Results. We show the results for two different target mazes in Figure 7.6. Once again,
MGVT achieves a remarkable speed-up over (no-transfer) DDQN. This time, using 3 com-
ponents achieves slightly better performance than using only 1, which is likely due to the
fact that the task distribution is much more complicated than in the previous domains.
For the same reason, GVT shows negative transfer and performs even worse than DDQN.
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Figure 7.5: Set of mazes for the Maze Navigation task.
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Figure 7.6: Maze navigation task. (left) The target maze is the one of Figure 7.5a and
(right) the target maze is the one of Figure 7.5g.

Similarly, FT performs much worse than in the previous domains and negatively transfer
in the more complicated target maze of Figure 7.6(left).

Comparison to Fast-Adaptation Algorithms
We now show a comparison to the recently proposed meta-learner MAML (Finn et al.,
2017). We repeat the previous experiments, focusing on the navigation tasks, using two
different versions of MAML. In the first one (MAML-full), we perform meta-training
using the full distribution over tasks for a number of iterations that allows the meta-policy
to converge. In the second one (MAML-batch), we execute the meta-train only on the
same number of fixed source tasks as the one used for our algorithm, allowing the meta-
policy to reach convergence again. In both cases, we meta-test on random tasks sampled
from the full distribution. The results are shown in Figure 7.7 in comparison to our best
algorithm (3-MGVT), where each curve is obtained by averaging 5 meta-testing runs for
each of 4 different meta-policies. In both cases, the full version of MAML achieves a
much better jumpstart and adapts much faster than our approach. However, this is no
longer the case when limiting the number of source tasks. In fact, this situation reduces to
the case in which the task distribution at meta-training is a discrete uniform over the fixed
source tasks, while at meta-testing the algorithm is required to generalize to a different
distribution. This is a case that arises frequently in practice for which MAML was not
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Figure 7.7: MAML vs 3-MGVT. (left) The rooms problem and (right) maze navigation.

specifically designed. Things get even worse when we explicitly add a shift to the meta-
training distribution as we did in Figure 7.2(right) for the rooms problem (MAML-shift in
Figure 7.7(left)). Although we meta-trained on the full distribution, the final performance
was even worse than the one using the fixed source tasks. Note that we compare the
algorithms with respect to the number of gradient steps, even if our approach collects only
one new sample at each iteration while MAML collects a full batch of trajectories.
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Part III

Exploration in Structured
Domains
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CHAPTER8
Learning and Transfer in Structured

Domains

Introduction

So far we focused on building practical transfer methods that only require experience from
some unknown source tasks and the ability to interact with an unknown target environment,
while in only few cases we explicitly modeled or made use of the underlying structured
domain. For instance, in Chapter 6 we considered specific task families for deriving our
weight-estimation procedure, while in Chapter 7 we assumed tasks with linear value func-
tions to analyze our method. Besides these assumptions, our algorithms implicitly exploit
structural properties of the underlying domain to transfer knowledge, though it is not clear
to what extent from a theoretical viewpoint.

This part is devoted to a theoretical treatment of the general problem of learning and
transfer in structured domains, with a focus on exploration. We recall from Chapter 3 that
a structured domain is a tuple E = (M,D), where M is a set of realizable MDPs and D
is the process from which they are generated (see Definition 3.1.1). An agent acting in a
structured domain E faces one or more MDPs M ∈ M generated from D. As already
mentioned, the name “structured” indicates that tasks in E share some similarities which
provide the agent with prior knowledge and/or enable knowledge transfer. This structure
can manifest in three components:

• The set M of realizable tasks. In some problems there exists only a small subset
of possible MDPs that can be faced by the agent (Azar et al., 2013a; Brunskill and
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Li, 2013). Knowing or learning this set allows to discard a priori some possibilities
when facing a new target task, thus reducing the uncertainty over the latter.

• A shared representation. In some cases the MDPs in M have a common represen-
tation. For instance, M could be a set of MDPs with linear reward functions with
varying parameters and fixed feature bases (Barreto et al., 2017, 2018), or the set
of MDPS with dynamics governed by some hidden parameters (Doshi-Velez and
Konidaris, 2016; Killian et al., 2017).

• The task generation process D. Similarly to the first point, understanding the gen-
eration process can effectively reduce the uncertainty over new tasks. For instance,
some problems present sequential correlations, so that the distribution of each new
task depends on those faced before (Choi et al., 2000b,a).

Depending on what the agent knows about E, we distinguish learning and transfer prob-
lems. Whenever the agent knows M (and potentially D) the problem is that of learning
in a structured domain. In this case, having solved some tasks from E provides little or no
information about the target task since the underlying structure (i.e., the set of realizable
MDPs and their properties) is already known. On the other hand, when the agent has no
knowledge about the structured domain E, facing some source tasks provides information
about E itself, which in turns provides information about the target task. Extrapolating
knowledge about E from the source tasks and using it to speed up the learning process of
the target task corresponds to knowledge transfer. In particular, a general scheme for a
transfer algorithm, that we shall use for our theoretical study, consists in alternating two
main steps:

1. Learn structure from previously-solved tasks. The agent uses knowledge obtained
while facing previous tasks to build/refine its understanding of the underlying struc-
tured domain. For instance, it can try to estimate any of the three components men-
tioned above.

2. Exploit structure to learn new tasks. The agent uses its current knowledge about
the structured domain to quickly learn a new target task. That is, knowledge from
the source tasks is effectively transferred to solve the target through the estimated
structured domain.

These two steps are then repeated over and over, with the agent constantly refining its
knowledge about the structured domain and using it to quickly learn new tasks. This is an
appealing framework for the theoretical study of transfer problems that is indeed adopted
in several previous works (Brunskill and Li, 2013; Azar et al., 2013a; Liu et al., 2016b;
Sun et al., 2020). In particular, it allows to decouple the structure learning and exploitation
steps, so that one can study the two problems (almost) independently.

In this part, we focus on the problem of exploiting structure to improve exploration,
both in the case where the structure is exactly known and in the case where it is learned
from experience and thus possibly misspecified. Among the many open questions (as
oulined in Chapter 1), we shall address the following ones. (1) How to build structure-
aware algorithms that never perform worse than unstructured baselines? (2) How to build
statistically optimal strategies? (3) How to handle misspecified structures? Before diving
into our contributions, we better formalize and discuss the problems of learning (Section
8.2) and transfer (Section8.3) in structured domains.
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Learning in Structured Domains

In order to keep the problem close to the existing literature, we restrict our definition of
structured domain to parametrized tasks.

Definition 8.2.1 (Parameterized structured domain). A parameterized structured domain
is a tuple EΘ = (Θ,MΘ,D), where Θ is a set of parameters, MΘ = {Mθ}θ∈Θ is a
hypothesis space of parametrized task models, and D is the task generation process.

When learning in a parameterized structured domain (from now on simply called struc-
tured domain), the agent knows EΘ, though it does not know the identity of the target task
Mθ? (or, equivalently, of the parameter θ?) that it is required to solve. We focus on fi-
nite MDP and bandit problems in frequentist settings, i.e., we aim at deriving problem-
dependent guarantees for learning the unknown target task parameterized by θ?. For
this reason, we shall never make use of the task generation process D. The families of
parametrized task models MΘ = {Mθ}θ∈Θ that we study are

• Multi-armed bandits (Chapter 9). In this case,Mθ = (A, µθ) is a bandit problem
with a finite setA ofK arms and mean rewards µθ = {µθ(a)}a∈A. Each arm a ∈ A
yields rewards bounded in [0, 1].

• Linear contextual bandits (Chapter 10). We haveMθ = (X ,A, µθ, ρ), where X is
a finite set of contexts, A is a finite set of arms, µθ = {µθ(x, a)}x∈X ,a∈A are the
mean rewards, ρ is the context distribution. The mean reward of each context-arm
pair is µθ(x, a) = φ(x, a)T θ, where φ is a known feature map, while the reward
distribution is Gaussian with known variance σ2.

• Discounted MDPs (Chapter 11). We have thatMθ = (S,A, Pθ, Uθ, γ) is an MDP
with finite states S and actions A, parametrized transition probabilities Pθ and re-
ward distributions Uθ, and discount factor γ.

Since each hypothesis Mθ is known given its parameter θ, in the remaining we shall
alternatively refer to each θ ∈ Θ as (bandit/MDP) problem/instance/model. When learning
in this structured setting, samples from one action/arm might provide information about
θ? which, through the knowledge of EΘ, might provide information about the entire task
model Mθ? . This makes the problem of exploration in a structured domain interesting
and challenging.

Structured Bandits
The problem of learning in structured domains has been widely studied in the bandit lit-
erature. The performance measure for a bandit algorithm π that receives as input the
structured domain EΘ is the expected regret after n steps,

Rπn(θ?,EΘ) := nmax
a∈A

µθ?(a)− Eπ,θ?
[

n∑
t=1

µθ?(At)

]
.

Note that the regret depends on EΘ through the strategy π, which might use structure to
choose its actions. Interestingly, the regret of a structure-aware algorithm on the same
instance θ? might change when provided with different structures.
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The most popular works consider specific structures, i.e., they assume a precise mod-
el/representation for the realizable bandit problems. The model of Definition 8.2.1 formal-
izes bandits with general structures (Agrawal et al., 1988; Graves and Lai, 1997; Burnetas
and Katehakis, 1996; Azar et al., 2013a; Lattimore and Munos, 2014; Combes et al., 2017),
i.e., those that generalize the majority of specific settings considered in the literature. For
instance, an unstructured (disjoint) bandit class with K arms, mean-rewards in [0, 1], and
Gaussian noise with fixed variance σ2 can be formalized by Θ = [0, 1]K , µθ = {θa}a∈A
for θ ∈ Θ, and reward distributions νθ(a) = N (θa, σ

2). In a linear structure the mean
reward of each arm is assumed to be a linear combination of given d-dimensional feature
vectors φ and an unknown parameter θ?, while the observed rewards are corrupted by
zero-mean sub-Gaussian noise. The corresponding structure is thus described by Θ ⊂ Rd
(typically compact) and µθ = {φ(a)T θ}a∈A. Several algorithms have been proposed for
this setting, such as extensions of UCB (Abbasi-Yadkori et al., 2011) and Thompson sam-
pling (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017). Examples of other specific
structures include combinatorial bandits (Cesa-Bianchi and Lugosi, 2012), Lipschitz ban-
dits (Magureanu et al., 2014), ranking bandits (Combes et al., 2015), and unimodal bandits
(Yu and Mannor, 2011). Interestingly, for these structured setting, approaches based on the
popular optimism in the face of uncertainty (such as UCB and, to some extent, Thompson
sampling) are typically not asymptotically optimal in a problem-dependent sense (Latti-
more and Szepesvari, 2017), while they are optimal for unstructured (disjoint) problems
(see Section 2.6). This makes the design of optimal structure-aware strategies an appealing
and challenging direction, as we shall see in Chapter 10.

Recently, there has been a growing interest in designing bandit strategies to exploit
general structures (those of Definition 8.2.1) without any additional specific assumption.
The structured UCB algorithm, proposed almost-simultaneously by Lattimore and Munos
(2014) and Azar et al. (2013a), applies the OFU principle to general structures. Atan et al.
(2018) proposed a greedy algorithm for the special case where all arms are informative,
while Wang et al. (2018) extended these settings to consider correlations only within cer-
tain groups of arms and independence among them. Gupta et al. (2018b) generalized UCB
and TS to exploit the structure and quickly identify sub-optimal arms. One of the inter-
esting findings of these works is that, in some structures, constant regret (i.e., independent
of n) is possible. We shall call these strategies confidence-based since they explicitly
maintain the uncertainties about the true bandit and use these to trade-off exploration/ex-
ploitation. Although conceptually simple, confidence-based strategies are typically hard
to design and analyze in a fully structure-aware manner. In fact, in structured problems,
pulling an arm provides not only a sample of its mean, but also information about the
bandit problem itself through the knowledge of the overall structure. In turn, information
about the problem itself potentially allow to refine the estimates of the means of all arms.
Combes et al. (2017) made a significant step in exploiting this interplay between arms
and bandit problems in the very definition of the algorithm itself. The authors derived a
structure-aware lower bound characterizing the optimal pull counts as the solution to an
optimization problem. Their algorithm, OSSB, approximates this solution and achieves
asymptotic optimality for any general structure. However, since the lower bound depends
on the true (unknown) bandit at hand, this approach requires to force some exploration
to guarantee a sufficiently accurate solution. For this reason, we shall call this kind of
strategy forced-exploration. Recently, Degenne et al. (2020b) propose an algorithm (SPL)
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that addresses these limitations. SPL replaces forced-exploration with confidence intervals
about the true bandit problem and uses an iterative incremental method to solve the opti-
mization problem of the lower bound which makes the approach computationally efficient.
Similarly, Jun and Zhang (2020) design a confidence-based algorithm that is near-optimal
for general structures, though less computationally efficient than SPL.

Structured MDPs

Structured MDPs are formalized analogously as structured bandits, with the only differ-
ence that both reward distributions and transition probabilities are parameterized by θ. For
the problem of regret minimization, the first algorithm that is asymptotically optimal for
MDPs with general structures was designed by Ok et al. (2018). The authors build on top
of the same ideas as OSSB, by iteratively recomputing and tracking the lower bound while
using forced-exploration to guarantee a minimum level of estimation accuracy. Besides
the general structures, the literature focuses on MDPs with linear rewards and/or transi-
tion probabilities (Yang and Wang, 2019; Lattimore and Szepesvari, 2019; Jin et al., 2020;
Zanette et al., 2020) and on reinforcement learning in metric spaces, e.g., Lipschitz MDPs
(Lakshmanan et al., 2015; Jian et al., 2019; Song and Sun, 2019; Sinclair et al., 2019).
Finally, contextual MDPs (Hallak et al., 2015; Modi et al., 2018; Sun et al., 2018) and
hidden-parameter MDPs (Doshi-Velez and Konidaris, 2016; Killian et al., 2017), where
rewards and/or transition probabilities depend on some latent context/parameter, are an-
other popular model for structured problems.

Transfer in Structured Domains

The problem decomposition described in the introduction is popular for the theoretical
study of transfer in reinforcement learning. Brunskill and Li (2013) assume that there
exists an unknown finite set of realizable MDPs. They derive a method to learn this set
from experienced tasks and propose a variant of E3 (Kearns and Singh, 2002) that explores
a target task so as to quickly identify it in the learned set. They derive bounds on the sample
complexity for learning any new task that clearly show the benefits of knowledge transfer.
Liu et al. (2016b) extend these ideas to the more challenging problem of continuous MDPs,
while still showing sample-complexity bounds. Azar et al. (2013a) consider a sequential
multi-armed bandit setting where the agent faces a sequence of bandit problems drawn
i.i.d. from a finite set. They propose a spectral learning method to estimate the set of
possible problems and combine it with a variant of UCB that exploits the given structure.
Their regret guarantees show that the method is robust to negative transfer, i.e., it never
performs worse than plain UCB. Recently, Sun et al. (2020) learn structure in the form
of transition templates that can be readily reused to speed up the learning process of new
tasks. While the considered setting is similar to the one of Brunskill and Li (2013), they
derive refined sample complexity bounds. Mann and Choe (2013) and Abel et al. (2018)
study how to to achieve a jumpstart. They learn structure in the form of an optimistic
initialization to the target action-value function and use it in combination with any PAC
algorithm. The resulting methods provably achieve positive transfer. Mahmud et al. (2013)
aim at reusing policies. The learned structure is in the form of clusters of solved tasks,
which result in a set of policies from which to transfer. To learn the target task, they use
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the adversarial-bandit algorithm EXP3 (Auer et al., 2002b) over the set of source policies
augmented with a base reinforcement learning algorithm. Notably, they prove robustness
to negative transfer, i.e., the method never performs much worse than the base learner.

Learning Structure from Source Tasks
The structure learning method is one of the key components of transfer algorithms that
use the decomposition introduced before. While we shall throughly study the problem
of exploiting given structure in the next chapters, here we briefly summarize the main
methods to estimate the structure from source tasks. These methods can be adapted to
learn the structure for our algorithms, hence enabling their application to transfer settings.

Clustering methods. The idea behind the method of Brunskill and Li (2013) is to clus-
ter the tasks faced by the agent in a few groups, so that each group is likely to contain
only tasks corresponding to the same underlying MDP. The method assumes that an upper
bound to the total number of realizable MDPs (assumed finite) is known and uses it to set
the number of clusters. Clustering is then performed by comparing the empirical MDP
models of each task computed from the observed samples. In particular, when two empir-
ical models are more distant than a given threshold in a single state-action pair (for either
the rewards or transition probabilities), they are put in different clusters. As the authors
formally verify, whenever the realizable MDPs have a known minimum positive distance
(which is used to decide an appropriate threshold) and the empirical model of each task is
accurate, this method groups the faced tasks correctly.

Spectral methods. Consider a structured domain with a finite set of parameters Θ. One
can see the problem as learning a latent variable model, where the latent variable is the task
parameter θ while the observations are the samples collected by the agent (e.g., states, ac-
tions, and rewards). The goal is then to recover the conditional distributions of the observa-
tions given task parameters, i.e., the underlying MDP models. Spectral methods (Anand-
kumar et al., 2012, 2014) have been widely applied for this purpose. In particular, in
reinforcement learning, they have been applied for learning POMDPs (Azizzadenesheli
et al., 2016; Guo et al., 2016) and for learning structure in a sequential i.i.d. transfer
setting (Azar et al., 2013a). The idea is to estimate certain moments of the observed sam-
ples whose tensor decomposition (Anandkumar et al., 2014) yields the underlying models.
Differently from clustering approaches, these methods do not require assumptions on the
minimum gap between models and typically come with strong finite-sample guarantees on
the estimation error. Similarly to the sequential i.i.d. setting, spectral methods can be used
to recover the underlying models when tasks are temporally-correlated through an hidden
Markov chain, as we have shown in Tirinzoni et al. (2020c).

Representation learning. Methods for learning representations that are shared across
multiple tasks are popular especially in the supervised learning community (Pan and Yang,
2009). For instance, some of these methods try to learn shared features for a multi-task
regression setting Argyriou et al. (2007); Li et al. (2015b); Wang et al. (2016b). In rein-
forcement learning, similar ideas are used by Ammar et al. (2014) in a lifelong setting to
learn the common representation of continually evolving tasks.
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CHAPTER9
Arm Elimination in Structured Bandits

This chapter is based on the paper “A Novel Confidence-Based Algorithm for Structured
Bandits” co-authored with Alessandro Lazaric and Marcello Restelli and published at AIS-
TATS 2020.

Introduction

In this chapter, we begin our study of the exploration problem in domains with known
structure. We a consider a structured-bandit domain EΘ (see Definition 8.2.1) with a set of
parameters Θ and a hypothesis space MΘ = {Mθ}θ∈Θ that we fix throughout the whole
chapter. Each modelMθ is a bandit with a setA of K arms and rewards bounded in [0, 1]
with mean µθ(a) for each a ∈ A. We shall never make explicit use of the specific reward
distribution as the algorithms use only the boundedness assumption. Many confidence-
based strategies have been proposed for this bandit setting with general structures (Azar
et al., 2013a; Lattimore and Munos, 2014; Atan et al., 2018; Wang et al., 2018; Gupta et al.,
2018b). While these confidence-based strategies are in general not asymptotically optimal,
they often enjoy good finite-time performance (as opposed to optimal strategies based on
forced exploration). One downside is that the regret bounds derived in these papers do
not fully reflect how the algorithm exploits the given structure. The main complication
in analyzing these approaches is that arms are correlated through the underlying structure
and, thus, should be somehow analyzed jointly. On the other hand, the typical problem-
dependent analyses (on top of which the majority of the above-mentioned prior works
build) consider each arm independently, as if the problem were unstructured.
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Chapter 9. Arm Elimination in Structured Bandits

In this chapter, we make a step forward in understanding bandit strategies for general
structures. We propose a novel confidence-based arm-elimination strategy for which we
derive a regret bound that clearly shows how the algorithm benefit the structure. More
precisely, we propose an algorithm running through phases. At the beginning of each
phase, the set of bandit models compatible with the confidence intervals computed so
far is built and the corresponding optimal arms are repeatedly pulled in a round-robin
fashion, until the end of the phase. For this strategy, we prove an upper bound on the
expected regret that, compared to existing bounds, better shows the potential benefits of
exploiting the structure. The key finding is that the number of pulls to a sub-optimal
arm a can be significantly reduced by exploiting the information obtained while pulling
other arms, and notably the arm that is most informative for this purpose, i.e., the arm for
which the mean of the true bandit differs the most from that of any other bandit in which
arm a is optimal. This is in contrast to existing methods, which rely exclusively on the
samples obtained from arm a to identify its sub-optimality (a property that is true for the
unstructured settings). Since our algorithm requires to know the horizon n, we design
a practical anytime extension for which, under the same assumptions as in (Lattimore
and Munos, 2014), we derive a constant-regret bound with a better scaling in the relevant
structure-dependent quantities. Finally, we report numerical simulations in some simple
illustrative structures that confirm our theoretical findings.

It is worth noting that, in the original paper (Tirinzoni et al., 2020a), we also try to
characterize in what structures our confidence-based strategy is near-optimal. Notably,
we derive a matching lower-bound for certain structures where constant regret is possible.
While these results provide more insights on the overall problem, they require significantly
more complex notation and, thus, they were not reported in this thesis.

Notation. We denote by µ?θ := maxa∈A µθ(a) the optimal reward for bandit θ ∈ Θ
and, for the sake of readability, we assume that the corresponding optimal arm, a?θ :=
argmaxa∈A µθ(a), is unique for all models. The sub-optimality gap of arm a ∈ A is
∆θ(a) := µ?θ−µθ(a), while the model gap with respect to θ′ ∈ Θ is Γa(θ, θ′) := |µθ(a)−
µθ′(a)|. It is known that the gaps ∆ characterize the complexity of a bandit problem in
the unstructured case. We denote by A?(Θ) := {a ∈ A|∃θ ∈ Θ : a?θ = a} the set of arms
that are optimal for at least one model in Θ. Similarly, we call Θ?

a := {θ ∈ Θ|a?θ = a}
the set of models in which arm a ∈ A is optimal. In the remaining, whenever θ is dropped
from a model-dependent quantity, we implicitly refer to the target θ?.

The Structured UCB Algorithm

Before presenting our method, we provide a detailed description of the Structured UCB al-
gorithm, proposed almost simultaneously by Lattimore and Munos (2014) and Azar et al.
(2013a). We also derive a slightly refined analysis of this method so as to facilitate com-
parison with out results.

Structured UCB (SUCB)1 is a natural application of the optimism in face of uncertainty

1The algorithm was originally called UCB-S by Lattimore and Munos (2014) and mUCB by Azar et al.
(2013a). Here we use the general acronym SUCB.
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principle to general structures. At each step t, the algorithm builds a confidence set

Θ̃t =

{
θ ∈ Θ

∣∣∣ ∀a ∈ A : |µθ(a)− µ̂t−1(a)| <
√

α log t

2Nt−1(a)

}
(9.1)

containing the models compatible with all the confidence intervals built separately for each
arm. We recall from Section 2.6 hat Nt−1(a) is the number of times a ∈ A was selected
prior to time t and µ̂t−1(a) is the empirical reward mean. Then, SUCB pulls the optimistic
arm

At = argmax
a∈A

sup
θ∈Θ̃t

µθ(a). (9.2)

In other words, the arm-selection strategy is exactly UCB, while the structure is encoded
into the confidence sets. In particular, the latter are tightened by taking the intersection
between confidence intervals built independently for each arm and the set of hypotheses
MΘ. While taking the optimistic arm ensures that “good” arms are selected, refining the
confidence set Θ̃t allows to exploit the structure to possibly discard arms more rapidly.
Interestingly, SUCB reduces to UCB whenever the structure Θ encodes an unstructured
problem (see Section 8.2).

Lattimore and Munos (2014) derived the same upper bound to the regret as the one of
UCB (see their Theorem 2) without making any assumption on Θ. That is, for a suitable
choice of α, there exist constants c, c′ such that

RSUCB
n (θ?,EΘ) ≤

∑
a 6=a?

θ?

c log n

∆θ?(a)
+ c′. (9.3)

This bound, however, does not fully reflect how the algorithm exploits the given structure.
Azar et al. (2013a) derived a more structure-aware bound, but only for finite Θ. The next
theorem combines the best of these analyses, thus providing a regret bound that scales with
the model gaps rather than the sub-optimality gaps and that holds for any structure.

Theorem 9.2.1. There exist constants c, c′ > 0 (independent of n) such that for any
structure EΘ and instance θ? ∈ Θ, for α > 2, the expected regret over n steps of the
SUCB algorithm is upper-bounded as

RSUCB
n (θ?,EΘ) ≤

∑
a∈A?(Θ)\{a?

θ?
}

c∆θ?(a) log n

infθ∈Θ+
a (θ?) Γa(θ, θ?)2

+ c′,

where we define the following set of optimistic models with respect to θ?:

Θ+
a (θ?) := {θ ∈ Θ|µ?θ > µ?θ? , a

?
θ = a}. (9.4)

This result shows that SUCB is able to leverage the knowledge of Θ to improve over
UCB, which does not use structure at all. First, the summation is limited to arms that
are optimal in at least one model in Θ. Second, the number of pulls of a sub-optimal
arm a 6= a?θ? depends on the model gap Γa(θ+

a , θ
?) with respect to the hardest model

θ+
a ∈ Θ+

a (θ?) to be distinguished from θ? by pulling a. This gap can be much larger (and
provably never smaller) than the sub-optimality gap ∆θ?(a) which appears in unstructured
settings (e.g., UCB), thus significantly reducing the final regret.
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Proof. Let Ft := 1
{
θ? ∈ Θ̃t

}
. Consider any sub-optimal arm a ∈ A and suppose At = a and

Ft = 1. Since a is pulled, there exists some θ̄ ∈ Θ̃t such that θ̄ ∈ Θ+
a . These facts imply

Γa(θ̄, θ?) = |µθ̄(a)− µθ?(a)| ≤ |µθ̄(a)− µ̂t−1(a)|+ |µ̂t−1(a)− µθ?(a)| ≤ 2

√
α log t

2Nt−1(a)
.

Therefore,

Nt−1(a) ≤ 2α log t

Γ2
a(θ̄, θ?)

≤

⌈
2α logn

inf
θ∈Θ+

a
Γ2
a(θ, θ?)

⌉
=: ua(n).

Then,

E[Nn(a)] = E
[
n∑
t=1

1 {At = a}

]
= E

[
n∑
t=1

1 {At = a ∧Nt−1(a) ≤ ua(n)}

]

+ E
[
n∑
t=1

1 {At = a ∧Nt−1(a) > ua(n)}

]

≤ ua(n) + E

 n∑
t=ua(n)+1

1 {At = a ∧Nt−1(a) > ua(n)}


≤ ua(n) + E

 n∑
t=ua(n)+1

1 {At = a ∧ Ft = 0}

 ,
where the last inequality follows since pulling arm a at time step t implies that either Nt−1(a) ≤
ua(n) or the true parameter is not in the confidence set (i.e., Ft = 0). Then,

RSUCB
n (θ?,EΘ)

(a)
=

∑
a∈A?(Θ)

∆θ?(a)E[Nn(a)]

(b)

≤
∑

a∈A?(Θ)

∆θ?(a)

ua(n) + E

 n∑
t=ua(n)+1

1 {At = a ∧ Ft = 0}


(c)

≤
∑

a∈A?(Θ)

∆θ?(a)ua(n) + ∆max

n∑
t=1

P{Ft = 0},

where (a) holds since arms that are sub-optimal for all models in Θ are never pulled, (b) follows
from the bound on the number of pulls derived above, and (c) follows from the definition of ∆max =
maxa∈A?(Θ) ∆θ?(a) and the fact that at each time only one arm is pulled. The second term can
be bounded using Lemma 5 of Lattimore and Munos (2014) (by setting the sub-Gaussian variance
factor to σ2 = 1

4
for bounded rewards and taking the union bound only over A?(Θ)) by

n∑
t=1

P{Ft = 0} ≤ 2|A?(Θ)|
n∑
t=1

t1−α ≤ 2|A?(Θ)|(α− 1)

α− 2
.

The theorem follows by combining the last two displays and renaming the constants.

It is worth noting that this proof is carried out independently for each sub-optimal arm,
without considering the information that the algorithm might collected while pulling other
arms.
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Algorithm 6 Structured Arm Elimnation (SAE)

Require: Set of parameters Θ, hypothesis space MΘ, horizon n, scalars α > 0, β ≥ 1

Initialize confidence set: Θ̃0 ← Θ
Initialize set of active arms: Ã0 ← A?(Θ)
Initialize removal threshold: Γ̃0 ← 1
Foreach phase h = 0, 1, . . . do

Play all active arms until
⌈
α logn

Γ̃2
h

(
1 + 1

β

)2
⌉

pulls are reached for all a ∈ Ãh

Build confidence set: Θ̃h+1 ←
{
θ ∈ Θ

∣∣ ∀a ∈ A : |µ̂h(a)− µθ(a)| <
√

α logn
Nh(a)

}
Update set of active arms: Ãh+1 = A?(Θ̃h+1) ∩ Ãh
Decrease removal threshold: Γ̃h+1 ← Γ̃h

2
End

Structured Arm Elimination

Our structured arm elimination (SAE) strategy (Algorithm 6) is a phased algorithm in-
spired by Improved UCB (Auer and Ortner, 2010). In each phase h, the algorithm keeps a
confidence set Θ̃h of the same form as (9.1). More precisely, the confidence set Θ̃h con-
tains the models such that the mean of each arm a ∈ A does not deviate too much from the
empirical one µ̂h−1(a) according to its number of pulls Nh−1(a), both computed at the
end of the previous phase. Then, all active arms (i.e., those that are optimal for at least one
of the models in the confidence set) are played until a well-chosen count is reached. Such
count is computed to ensure that all models that are sufficiently distant from the target
θ? (according to an exponentially-decaying removal threshold Γ̃h) are discarded from the
confidence set. Once all the models in which a certain arm a ∈ A is optimal have been
eliminated, a is labeled as inactive and no longer pulled. Algorithm 6 can be applied to
any set of models (e.g., not only finite ones) as far as we can determine the set of optimal
arms at each step. This is an optimization problem that can be solved efficiently for, e.g.,
linear, piecewise-linear, and convex structures, while it becomes intractable in general.

Note that SAE is not an optimistic algorithm since it might pull arms that are never
optimistic with respect to θ?. This property is due to the phased nature of the algorithm,
such that no optimistic bias in selecting the active arms is used, unlike in SUCB. While in
unstructured problems SUCB and SAE reduce to UCB and improved UCB, respectively,
and have similar regret guarantees (i.e., each arm is pulled roughly the same amount of
times in the two algorithms), in structured problems they may behave very differently, as
we shall see in the next examples.

Examples. Figure 9.1 presents two simple structures in which SUCB and SAE signifi-
cantly differ. The model set is divided in different regions. Since all bandits in the same
region have, for the purpose of our discussion, the same properties, we call θ1 any model
in the first part, θ2 any model in the second, and so on. Note that the following comments
hold for an ideal realization in which certain high-probability events occur.

In the structure of Figure 9.1(left), arm 2 is never optimistic since its mean is always
below the value of the optimal arm µθ1(a1). Therefore, SUCB never pulls it and needs
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Γ2

1

1

0
θ

µ

Γ4

Γ2

1θ

Arm 1 Arm 2 Arm 3 Arm 4

Figure 9.1: Two structures in which SUCB and SAE significantly differ. The true model is
any in the shaded region. (left) SUCB never pulls an informative arm. (right) SUCB
discards an informative arm too early.

only to discard the optimistic arm 3. This, in turn, takes O(1/Γ2
3(θ1, θ2)) pulls of such

arm, which can be rather large. Since SAE pulls also arm 2, the large gap Γ2(θ1, θ2) (Γ2

in the figure) allows to discard arm 3 much sooner. From the definition of the algorithm,
SAE also needs to discard arm 2. Once again, this can be done quickly due to the large
gap Γ1(θ1, θ3) and the fact that the optimal arm 1 is always pulled.

In the structure of Figure 9.1(right), the optimistic bias makes SUCB pull the arms
starting from the one with the highest value, arm 2, downwards to the optimal one, arm
1. Since the gap Γ2(θ1, θ3) (Γ2 in the figure) is larger than Γ2(θ1, θ4), SUCB implicitly
discards θ3, and so arm 4, before arm 2. Thus, once both these arms have been elimi-
nated, the algorithm takes O(1/Γ2

3(θ1, θ2)) pulls of arm 3 to discard the arm itself. By
simultaneously pulling all four arms, SAE discards arm 3 first using the pulls of arm 4 (the
one prematurely discarded by SUCB) due to the large gap Γ4(θ1, θ2) (Γ4 in the figure).
Finally, the deletion of the remaining two sub-optimal arms occurs with the same number
of pulls as SUCB, and it can be verified that the overall regret is much smaller.

Regret Analysis
We derive a bound to the regret of SAE, the main result of this chapter.

Definitions. Let us start by defining the “good” event under which the true model θ?

is never discarded from the confidence set. Formally, let E := {∀h = 0, . . . , dlog2 ne :
Eh holds}, with Eh denoting the following event:

Eh :=

{
∀a ∈ A : |µ̂h−1(a)− µθ?(a)| < 1

β

√
α log n

Nh−1(a)

}
.

In order to carry out our analysis, we need to characterize the arms pulled in each phase,
which are specified by the sets of active arms

{
Ãh
}
h≥0

. Since these sets are random
quantities, we cannot study them directly. Instead, we introduce a deterministic sequence
of active arm sets {Ah}h≥0 that effectively works as a proxy for

{
Ãh
}
h≥0

and, under the
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good event E, allows us to define how many samples are needed for arms to be discarded.
Formally, we define the following three sequences of sets of arms, whose definitions de-
pend on each other. For each h ≥ 0, we define

Ah+1 := Ah \ Āh, (9.5)

Āh :=

{
a ∈ Ah | Γ̃h ≤ inf

θ∈Θ?a
max

a′∈Ah∪{a}
Γa′(θ, θ

?)

}
, (9.6)

Ah+1 :=

{
a ∈ Ah+1 | Γ̃h > kβ inf

θ∈Θ?a
max

a′∈A?(Θ)

Γa′(θ, θ
?)

2[h−h̄a′ ]+

}
. (9.7)

with A0 = A0 = A?(Θ). The constant kβ is kβ := 1
β−1

√
(β + 1)2 + 1

logn and h̄a′ :=

maxh∈N+{h | a′ ∈ Ah} is the last phase in which arm a′ is active in our deterministic
sequence {Ah}h≥0. These sets play a fundamental role in our analysis. In particular,
under the good event E, Āh is such that each arm a ∈ Āh is certainly eliminated at the
end of phase h. Similarly, Ah is such that each arm a ∈ Ah is certainly active in phase
h (a ∈ Ãh). Finally, Ah contains all those arms that are potentially active in phase h
(that is, we cannot guarantee that they have been eliminated before). The reader might be
wondering why we need to explicitly maintain and distinguish the set of potentially active
and certainly active arms. As we shall see, if we can prove that certain arms are pulled
in a certain phase (hence the sets Ah), we can also show that the algorithm uses their
information (i.e., their model gaps) to discard certain other arms/models faster. Hence,
one of the key novelties, and complications, in our analysis is that we do not only care
about proving that sub-optimal arms are not pulled after certain phases, but also about
guaranteeing that some arms are not discarded too early since their pulls might allow to
discard other models/arms. The parameter β plays an important role for this purpose. In
particular, Ah is essentially the set of arms for which the number of pulls to the active
arms at the previous phase is below the removal threshold by a margin defined by kβ . For
example, for large n, setting β = 3 yields kβ ' 2, which in turn implies that Ah is the set
of arms such that Γ̃h > infθ∈Θ?a

maxa′∈A?(Θ)
Γa′ (θ,θ

?)

2[h−h̄
a′−1]+

. This, as we shall prove shortly,
is close to saying that all the arms that are not certainly eliminated at the end of phase h
are also active in such phase.

Analysis. We begin our analysis by showing that, with high probability, the true model
θ? is always contained in the confidence set by a certain margin (which depends on β).
Unlike previous works, we need this to guarantee that sub-optimal arms are not eliminated
too early. The proof of the following Lemma is quite standard and is thus deferred to
Appendix C.

Lemma 9.3.1. Let α > 0, β ≥ 1, and E be the good event defined above. Then, the
probability that E does not hold can be upper bounded by

P {Ec} ≤ |A?(Θ)|n−2 α
β2 (log2 n+ 2)2.
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In the next results, we shall assume that the “good” event E holds. We now show a
sufficient condition for eliminating a model from the confidence set.

Lemma 9.3.2. Suppose there exist an arm a ∈ A, a model θ ∈ Θ, and a phase h ≥ 0

such that Nh(a) ≥
(

1 + 1
β

)2
α logn

Γ2
a(θ,θ?) . Then, under event E, θ /∈ Θ̃h′ for all h′ > h.

Proof. Suppose there exists a phase h′ > h such that θ ∈ Θ̃h′ . Then,

Γa(θ, θ?) = |µθ(a)− µθ?(a)|
(a)

≤ |µθ(a)− µ̂h′(a)|+ |µ̂h′(a)− µθ?(a)|

(b)
<

(
1 +

1

β

)√
α logn

Nh′−1(a)

(c)

≤
(

1 +
1

β

)√
α logn

Nh(a)
,

where (a) follows from the triangle inequality, (b) from the fact that θ is in the confidence set and E
holds, and (c) from h′ > h and the monotonicity of the number of pulls. Therefore, it must be that

Nh(a) <

(
1 +

1

β

)2
α logn

Γ2
a(θ, θ?)

,

which is a contradiction. Thus, we must have θ /∈ Θ̃h′ .

Lemma 11.4.2 justifies our choice of the number of pulls in each phase: if a ∈ A is
active in phase h and Γa(θ, θ?) ≥ Γ̃h, then θ is eliminated at the end of the phase. The
following result is an immediate consequence of Lemma 11.4.2. It shows a condition on
the number of pulls such that, under the ’good’ event E, an arm is discarded.

Lemma 9.3.3. Let h ≥ 0, a ∈ A, and suppose that, for any model θ ∈ Θ?
a there exists an

arm a′ ∈ A such that Nh(a′) ≥
(

1 + 1
β

)2
α logn

Γ2
a′ (θ,θ

?)
. Then, under event E, i /∈ Ãh′ for all

h′ > h.

Proof. All models with a as optimal arm are discarded in phase h by Lemma 11.4.2. Therefore,
∀θ ∈ Θ?

a : θ /∈ Θ̃h+1, which also implies that a /∈ Ãh′ for all h′ > h.

The interesting consequence of Lemma 9.3.3 is that, thanks to the structure, it is
enough that one active arm a′ ∈ A is pulled sufficiently often to eliminate a potentially
different arm a ∈ A.

While so far we focused on model/arm elimination, we now show a somewhat opposite
result: when all arms have not been pulled too much, some models can be guaranteed to
lie in the confidence set.

Lemma 9.3.4. Let h ≥ 0, θ ∈ Θ, and suppose Nh(a) ≤
(

1− 1
β

)2
α logn

Γ2
a(θ,θ?) for all arms

i ∈ A. Then, under event E, θ ∈ Θ̃h+1.

Proof. Notice that, for all arms a ∈ A, Γa(θ, θ?) ≤
(

1− 1
β

)√
α logn
Nh(a)

. Therefore,

|µ̂h(a)− µθ(a)|
(a)

≤ |µ̂h(a)− µθ?(a)|+ |µθ?(a)− µθ(a)| = |µ̂h(a)− µθ?(a)|+ Γa(θ, θ?)

(b)
<

1

β

√
α logn

Nh(a)
+ Γa(θ, θ?)

(c)

≤

√
α logn

Nh(a)
,

where (a) follows from the triangle inequality, (b) from the fact that E holds, and (c) from the
condition on the number of pulls above. This implies that θ ∈ Θ̃h+1.

134



9.3. Structured Arm Elimination

While it is quite strange to ensure that a model is not discarded, we shall make exten-
sive use of this result. In fact, the presence of a model in the confidence set guarantees
that its optimal arm is pulled. Consequently, by the previous lemmas, knowing what arms
are pulled allows us to characterize what models/arms are discarded. Using this result, w
know show a condition on Γ̃h−1 under which a model θ 6= θ? can be guaranteed to belong
to Θ̃h.

Lemma 9.3.5. Let h ≥ 1, θ ∈ Θ, and α ≥ β2. For all a ∈ A?(Θ), let h̃a ≤ h − 1 be
such that either a /∈ Ãh̃a+1 or h̃a = h− 1. Suppose the following condition holds

Γ̃h−1 ≥ kβ max
a′∈A?(Θ)

Γa′(θ, θ
?)

2h−h̃a′−1
, (9.8)

where kβ := 1
β−1

√
(β + 1)2 + 1

logn . Then, under event E, θ ∈ Θ̃h.

Proof. Fix any arm a ∈ A?(Θ). By assumption a is pulled at most in phase h̃a. Therefore, its
number of pulls at the end of phase h− 1 can be bounded by

Nt−1(a) =

⌈
α logn

Γ̃2
h̃a

(
1 +

1

β

)2
⌉

=

⌈
α logn

4h−h̃a−1Γ̃2
h−1

(
1 +

1

β

)2
⌉

≤ α logn

4h−h̃a−1Γ̃2
h−1

(
1 +

1

β

)2

+ 1,

where the second equality is from Γ̃h̃a = 1

2h̃a
= 2h−1

2h̃a2h−1
= 2h−h̃a−1Γ̃h−1. The constant term

can be upper bounded by

1 =
(β + 1)2 logn

(β + 1)2 logn

(a)

≤ α(β + 1)2 logn

β2(β + 1)2 logn
4h̃a

4h−1

4h−1

(b)
=

1

(β + 1)2 logn

α logn

4h−h̃a−1Γ̃2
h−1

(
1 +

1

β

)2

,

where (a) follows from α ≥ β2 and (b) from the definition of Γ̃h−1. Hence,

Nt−1(a)
(a)

≤
(

1 +
1

(β + 1)2 logn

)
α logn

4h−h̃a−1Γ̃2
h−1

(
1 +

1

β

)2

(b)

≤
(

1− 1

β

)2
α logn

4h−h̃a−1 maxa′∈A?(Θ)

Γ2
a′ (θ,θ

?)

4
h−h̃

a′−1

≤
(

1− 1

β

)2
α logn

Γ2
a(θ, θ?)

,

where in (a) we applied the two inequalities derived above and in (b) we used the condition (9.8) on
Γ̃h−1. This argument can be repeated for all other arms inA?(Θ). Therefore, Lemma 9.3.4 together
with the fact that arms not in A?(Θ) are never pulled, implies θ ∈ Θ̃h.

The following theorem is the key result that will be used to prove the final regret bound.
It shows that the sets Āh and Ah defined in Section 9.3 have the intended meaning. That
is, under the good event E, all arms in Āh are certainly eliminated at the end of phase h,
while all arms in Ah are certainly pulled in the same phase.

Theorem 9.3.1. Let β ≥ 1 andα = β2. Then, under eventE, the following two statements
are true for all h ≥ 0:

∀a ∈ Āh : a /∈ Ãh′ ∀h′ > h, (9.9)

∀a ∈ Ah : a ∈ Ãh. (9.10)
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Proof. We prove the theorem by induction on h.
1) Base case (h = 0, 1). We show both h = 0 and h = 1 as base cases since the recursive

definition of the setsAh starts from h = 1 and depends on Āh. The recursive definition of the latter,
on the other hand, starts from h = 0.

1.1) First phase (h = 0). Since Ã0 = A?(Θ) by the initialization step of Algorithm 6, (9.10)
trivially holds. If Ā0 is empty, (9.9) trivially holds as well. Suppose Ā0 is not empty and fix any
arm a ∈ Ā0. For all arms a′ ∈ A?(Θ),

N0(a′)
(a)
=

⌈
α logn

Γ̃2
0

(
1 +

1

β

)2
⌉

(b)

≥

⌈
α logn

infθ∈Θ?a
maxl∈A?(Θ) Γ2

l (θ, θ
?)

(
1 +

1

β

)2
⌉
,

where (a) is from the number of pulls in Algorithm 6 and the fact that all arms in A?(Θ) are active,
and (b) follows from the definition of Ā0. Therefore, for all θ ∈ Θ?

a there exists some arm a′ ∈
A?(Θ) whose number of pulls at the end of phase 0 is at least

N0(a′) ≥

⌈
α logn

Γ2
a′(θ, θ

?)

(
1 +

1

β

)2
⌉
.

Hence, Lemma 9.3.3 ensures that a /∈ Ãh′ for all h′ > 0, which in turn implies that (9.9) holds.
1.2) Second phase (h = 1). Let us start from (9.10). Take any arm a ∈ A1 := A?(Θ) \ Ā0

and suppose

Γ̃0 > kβ inf
θ∈Θ?i

max
a′∈A?(Θ)

Γa′(θ, θ
?)

2max{−h̄a′ ,0}
(9.11)

holds. Since 2max{−h̄a′ ,0} = 1 for all a′ ∈ A?(Θ), (9.11) implies that there exists some model
θ̄ ∈ Θ?

a such that Γ̃0 ≥ kβ maxa′∈A?(Θ) Γa′(θ̄, θ
?). Thus, we can directly apply Lemma 9.3.5

using h̃a′ = 0 for all a′ ∈ A?(Θ) and obtain θ̄ ∈ Θ̃1. This implies a ∈ Ã1, from which (9.10)
holds.

The proof of (9.9) proceeds similarly as for h = 0. Take any arm a ∈ Ā1 (assuming the set
is not empty). We have just proved that all arms a′ ∈ A1 are pulled in phase h = 1. If arm a has
already been removed, (9.9) trivially holds. Hence, we can safely assume that a ∈ Ã1. Therefore,
arms in A1 ∪ {a} are active and the number of pulls is sufficient to apply Lemma 9.3.3, which
implies (9.9).

2) Inductive step (h > 1). Now assume the two statements hold for h′ = 0, 1, . . . , h− 1. This
implies, in particular, that an arm a ∈ Āh′ , h′ ≤ h− 1, is not pulled after h′. Once again, take any
arm a ∈ Ah. The definition of Ah implies

Γ̃h−1 ≥ kβ max
a′∈A?(Θ)

Γa′(θ̄, θ
?)

2max{h−h̄a′−1,0}

for some θ̄ ∈ Θ?
a. Notice that, by the inductive assumption, all arms a′ ∈ A?(Θ) \ Ah are not

pulled after h̄a′ ≤ h − 1. On the other hand, for all arms a′ ∈ Ah, it must be that h̄a′ ≥ h. Thus,
we can apply Lemma 9.3.5 by setting h̃a′ = h̄a′ for arms a′ ∈ A?(Θ) \ Ah and h̃a′ = h − 1 for
arms a′ ∈ Ah. Hence, θ̄ ∈ Θ̃h and (9.10) holds. Finally, since all arms inAh are pulled in phase h,
we can show that (9.9) holds using exactly the same argument as for the second base case (h = 1).

Main result. We are now ready to state our main result. It shows that the regret incurred
by SAE for pulling a sub-optimal arm a ∈ A is inversely proportional to the maximum
model-gap (taken over the set of arms that are active when arm a is discarded) with respect
to the hardest model to be eliminated in Θ?

a.
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Theorem 9.3.2. Let β ≥ 1, α = β2, n ≥ 64, and cβ := 4(1 + β2). Then,

RSAEn (θ?,EΘ) ≤
∑

a∈A?(Θ)\{a?
θ?
}

4(1 + β2)∆θ?(a) log n

infθ∈Θ?a
maxa′∈A?a Γa′(θ, θ?)2

+ 2|A?(Θ)|,

where A?a = Ah̄a ∪ {a} is the set of arms that are certainly active in the last phase when
a is active.

Proof. The expected regret can be written as

Rn
(a)

≤
n∑
t=1

E [∆θ?(At)|E] + nP {Ec} (b)
=
∑
a∈A

∆θ?(a)E [Nn(a)|E] + nP {Ec} ,

where in (a) we upper bounded the gaps by 1 and used E [1 {Ec}] = P
{
EC
}

, while in (b) we used
the standard rewriting in terms of the number of pulls. We now upper bound the expected number
of pulls of each sub-optimal arm a when conditioned on event E. Since a ∈ Āh̄a , Theorem 9.3.1
ensures that arm a is not pulled after phase h̄a. Hence,

Nn(a)
(a)

≤

⌈
α logn

Γ̃2
h̄a

(
1 +

1

β

)2
⌉

(b)
=

⌈
4α logn

Γ̃2
h̄a−1

(
1 +

1

β

)2
⌉

(c)

≤
⌈

4(1 + β2) logn

infθ∈Θ?a
maxa′∈A?a Γ2

a′(θ, θ
?)

⌉
,

where (a) follows immediately from Theorem 9.3.1 and Algorithm 6, while (b) from Γ̃h̄a =
Γ̃h̄a−1

2
.

To show (c), notice that Γ̃h̄a−1 > infθ∈Θ?a
maxa′∈A?a Γa′(θ, θ

?) from the definition of Āh̄a (if this
did not hold, arm a would be eliminated in phase h̄a−1 sinceAh̄a ⊆ Ah̄a−1). Therefore, the regret
conditioned on event E can be upper bound by∑

a∈A?(Θ)

4(1 + β2)∆θ?(a) logn

infθ∈Θ?a
maxa′∈A?a Γ2

a′(θ, θ
?)

+ |A?(Θ)|,

where we used dxe ≤ x+ 1 and
∑
a∈A?(Θ) ∆θ?(a) ≤ |A?(Θ)|.

Let us now consider the probability ofE not holding. Using Lemma 9.3.1 with α = β2, together
with (log2 n+ 2)2 ≤ n for n ≥ 64, we obtain

nP {Ec} ≤ |A?(Θ)| (log2 n+ 2)2

n
≤ |A?(Θ)|,

which, combined with the previous bound, concludes the proof.

Discussion. First, as a sanity check, we verify that the regret bound of Theorem 9.3.2
is never worse than the one of UCB. That is, SAE is never negatively affected by the
knowledge of the structure and, whenever applied to unstructured problems, the algorithm
is, apart from multiplicative/additive constants, finite-time optimal.

Proposition 9.3.1. The SAE algorithm is always sub-UCB, in the sense that there exist
constants c, c′ > 0 such that its regret satisfies

RSAEn (θ?,EΘ) ≤
∑

a∈A\{a?
θ?
}

c log n

∆θ?(a)
+ c′.
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The proof of this proposition can be found in Appendix C. The key property of Theo-
rem 9.3.2 is that the regret suffered for discarding a sub-optimal arm a does not necessarily
scale with the model gaps of such arm (i.e., Γa(θ, θ?) for θ ∈ Θ?

a) but with those of the
most effective arm inA?a. Compared to SUCB, in which the elimination of a model θ ∈ Θ?

a

requires O(1/Γ2
a(θ, θ?)) pulls of arm a, SAE needs only O(1/maxa′∈A?a Γ2

a′(θ, θ
?)),

which is by definition always smaller. Note that, to be precise, SUCB can potentially
eliminate models using the pulls of any arm since the confidence sets are built as in SAE.
However, in general, it is not possible to prove the same regret bound since the optimism
induces a specific pull order that might prevent the algorithm from choosing the arm with
the largest model gap. Obviously, SAE does not know this arm in advance and, therefore,
ensures it is pulled by choosing all active arms. However, the additional regret incurred to
achieve this property can make the algorithm, in some cases, worse than SUCB. In fact, a
key difference is that SUCB stops playing a sub-optimal arm a when all optimistic mod-
els in Θ+

a are discarded (see Theorem 9.2.1), while SAE needs to eliminate all models in
which arm a is optimal (even non-optimistic ones). Therefore, although SAE improves the
elimination of all optimistic models, it suffers further regret for discarding non-optimistic
ones and, in general, the two algorithms are not comparable. A special case are those struc-
tures in which the hardest models to be eliminated for each arm a are in the optimistic set,
in which SAE provably improves over SUCB (proof in Appendix C).

Proposition 9.3.2. If Θ is such that, for each sub-optimal a ∈ A?(Θ),

inf
θ∈Θ?a

max
a′∈A?a

Γa′(θ, θ
?)2 = inf

θ∈Θ+
a

max
a′∈A?a

Γa′(θ, θ
?)2, (9.12)

SAE is sub-SUCB, in the sense that its regret can be upper bounded by the one of Theorem
9.2.1.

Anytime SAE and Constant Regret

Algorithm 6 cannot be applied whenever the horizon n is unknown, as the length of each
phase explicitly depends on it. This has the additional drawback of preventing constant
regret from being achieved since a log n term naturally appears in the resulting bound. As
shown by Lattimore and Munos (2014), there exist structures in which constant regret can
be obtained and it would be desirable for our strategy to exploit this fact. We, therefore,
propose an anytime extension (Algorithm 7). The idea is once again similar to the one
by Auer and Ortner (2010): we split the horizon into different periods with exponentially
increasing length. Therefore, in Algorithm 7, and throughout this section, we overload our
notation by adding a superscript k to denote the period of each period-dependent quan-
tity. The key property is that our approach does not reset in each period (as Auer and
Ortner (2010) do) but retains the last confidence sets. Though this makes the proofs more
involved, we shall see that it allows us to guarantee a constant regret. One can see the
analogy between our non-resetting phased approach and the standard way of handling un-
known horizons in online algorithms. In the latter case, we typically replace log n with
log t in the confidence sets, while here we do the same with log ñk. Then, after proving
that certain high-probability events occur at each time/period, we can carry out the proofs
without forcing any reset. Due to the additional complications introduced by the anytime
extension (in particular, controlling the sets Ah), we were able to prove only a weaker
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9.4. Anytime SAE and Constant Regret

Algorithm 7 Anytime SAE (ASAE)

Require: Set of parameters Θ, hypothesis space MΘ, scalars α > 0, β ≥ 1, η > 0

1: Initialization: ñ0 ← 2, Θ̃−1 ← Θ
2: Foreach period k = 0, 1, . . . do
3: Initialize confidence sets: Θ̃k

0 ← Θ̃k−1, Ãk0 ← A?(Θ̃k
0)

4: Run Algorithm 6 with n = ñk, Θ̃0 = Θ̃k
0 , and Ã0 = Ãk0

5: Update horizon: ñk+1 ← ñ1+η
k

6: End

bound than the one in Theorem 9.3.2 which, however, retains the same benefits. Since the
proof heavily relies on the one of Therem 9.3.2, we report it in Appendix C.

Theorem 9.4.1. Let η = 1, α = 2, and β = 1. Then,

RASAEn (θ?,EΘ) ≤
∑

a∈A?\{a?
θ?
}

192∆θ?(a) log n

infθ∈Θ?a
maxa′∈{a,a?

θ?
} Γa′(θ, θ?)2

+ 6|A?(Θ)|.

The new bound has the same form as the one of Algorithm 6, except for the fact that the
set of active arms for eliminating each a ∈ A is reduced to {a, a?θ?} ⊆ A?a. Note, however,
that the presence of these two arms is enough to prove Proposition 9.3.1 and 9.3.2.

Remark 9.4.1. Algorithm 7 is sub-UCB and, under the same conditions as in Proposition
9.3.2, is also sub-SUCB.

We now prove a constant-regret bound for Algorithm 7. We need the following as-
sumption from (Lattimore and Munos, 2014), which was proven both necessary and suffi-
cient to achieve constant regret.

Assumption 9.4.1 (Informative optimal arm). Let a? = a?θ? be the optimal arm of the true
bandit θ?. The structure Θ satisfies

Γ? := inf
θ∈Θ\Θ?

a?

Γa?(θ, θ?) > 0.

In words, when a model is Γ?-distant (or less) in arm a? from θ?, its optimal arm is still
a?. Therefore, pulling a? eventually discards all sub-optimal arms. This is fundamental
to guarantee that, after the algorithm has pulled a? a sufficient number of times, no sub-
optimal arm can become active again due to the increasing period length (hence we choose
a? forever).

Theorem 9.4.2. Let η = 1, α = 5
2 , β = 1, t̄ := 20|A?(Θ)| log 2

Γ2
?

+ 2|A?(Θ)|, and suppose
Assumption 9.4.1 holds. Then,

RASAEn (θ?,EΘ) ≤
∑

a∈A?\{a?}

480∆θ?(a) log t̄

infθ∈Θ?a
maxa′∈{a,a?

θ?
} Γa′(θ, θ?)2

+ 9|A?(Θ)|.

Once again, the proof can be found in Appendix C. This bound improves over the one
shown by Lattimore and Munos (2014) for SUCB in its dependence on t̄, which can be
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Figure 9.2: Expected regret in the structured problem of Figure 9.1(left). (left) SUCB
never pulls an informative arm and is outperformed by SAE. (right) The same structure
with non-informative arm 2: SAE pulls a useless arm and performs worse than SUCB.

understood as the time at which the algorithm transitions to the constant regret regime.
While Lattimore and Munos (2014) proved t̄ ' O(max{1/Γ2

?, 1/∆
2
min}), here we show

that such time does not depend on the minimum gap ∆min = mina:∆θ? (a)>0 ∆θ?(a). This
is intuitive since, by Assumption 9.4.1, O(1/Γ2

?) pulls of a? should be enough to identify
the optimal arm. Although the analysis of SUCB can be improved by replacing the mini-
mum sub-optimality gap with the minimum model gap Γ2

min, it seems that this dependence
is tight. As an example, consider a structure in which the optimal arm is very informative
(Γ? � 0) but never optimistic. SUCB will never pull it until all optimistic models are dis-
carded, which requiresO(1/Γ2

min) steps in the worst case. Note that, whenever it is applied
to structures satisfying Assumption 9.4.1, the bound of Theorem 9.4.1 does not show con-
stant regret since the proof uses an implicit worst-case argument (i.e., Assumption 9.4.1 is
assumed false).

Numerical Simulations

We perform two different classes of experiments. In the first one, we consider well-chosen
structures that allow us to better understand the behavior of all algorithms. In the sec-
ond one, we randomize the structures to provide a more general comparison. In all ex-
periments, we run SAE and its anytime version (ASAE), SUCB, and UCB on Bernoulli
bandits. We also compared to the WAGP algorithm of Atan et al. (2018), which however
incurred linear regret in all our experiments (their assumptions never hold in our struc-
tures) and, therefore, is omitted from the plots. We use α = 2 for all algorithms and β = 1
for SAE. Each plotted curve is the average of 100 independent runs with 95% Student’s t
confidence intervals.

Hand-coded Structures We first consider the structure of Figure 9.1(left). We set n =
10, 000 and η = 0.1. The results are shown in Figure 9.2(left). SUCB suffers a large regret
for removing models in which arm 3 is optimal. On the other hand, SAE quickly discards
these models by pulling arm 2, which, in turn, is eliminated by pulling arm 1. Hence the
much lower regret, with the anytime version that performs slightly better. Notice also that
Assumption 9.4.1 is verified and SAE obtains constant regret. SUCB eventually transitions
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Figure 9.3: (left) Expected regret on the structure of Figure 9.1(right): SUCB discards and
informative arm too early. (right) Randomly-generated structures with hard instances
and informative arms: SAE, on average, leverages information to discard the hard
instances.

to constant regret too but needs a longer horizon. Alternatively, we can show an example
where SUCB is expected to perform better. We modify the structure of Figure 9.1(left)
to make arm 2 non-informative (i.e., we set its mean to the highest value in the figure for
all models) and run the experiment under the same setting. Figure 9.2(right) shows that,
as expected, SAE suffers from some additional regret for discarding the useless arm and
performs worse than SUCB. However, it remains sub-UCB as proved in Section 9.3.

We now consider the structure of Figure 9.1(right). We set n = 500, 000, η = 0.01,
and report the results in Figure 9.3(left). The arm ordering induced by SUCB (from the
most optimistic to the optimal one) leads the algorithm to discard arm 4 before even pulling
it once. Such arm, however, could be used to quickly discard arm 3, which is what SAE
does. Notice that the larger regret of SAE with respect to its anytime counterpart is mainly
due to the fact that phased procedures update the confidence sets much less than online
approaches. This drawback is alleviated in the anytime version, which reduces the duration
of some of these phases and retains good empirical performance.

Randomized Structures We now consider random structures. In each run, we first ran-
domize a set of 100 models with 50 arms by drawing their means from the uniform distri-
bution and we randomly choose the true model among them. Then, we build 50 additional
’hard’ models by perturbing a random arm of the true model to become optimal and op-
timistic, and another random arm to become informative. In particular, the mean of the
first random arm is set to µ?(θ?) + 0.2ε, with ε ∼ U([0, 1]), while the second to 1/10 of
the original mean (so that we potentially get a larger model gap). The results are shown
in Figure 9.3(right). Most of the regret suffered by SUCB is due to the hard instances
we introduced. Some of them are likely to be eliminated by informative arms, but this is
not always guaranteed by the SUCB strategy. Both versions of SAE, on the other hand,
implicitly exploit these informative arms, with the anytime version outperforming all al-
ternatives. Once again, the original version suffers a high initial regret due to the phases.
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CHAPTER10
Asymptotically Optimal Exploration in

Linear Bandits

This chapter is based on the paper “An Asymptotically Optimal Primal-Dual Incremen-
tal Algorithm for Linear Contextual Bandits” co-authored with Matteo Pirotta, Marcello
Restelli, and Alessandro Lazaric and published at NeurIPS 2020.

Introduction

In the last chapter, we focused on designing simple confidence-based strategies for gen-
eral structures. These strategies enjoy provably good finite-time performance (notably,
bounded regret whenever possible), they are easy to implement, and they are computa-
tionally efficient for most structures of interest. Unfortunately, they are in general not
asymptotically optimal (except for very specific cases). While finite-time behavior is ul-
timately the performance measure of interest, the study of asymptotic optimality often
yields intuition on how to build strategies that fully exploit the given structure to reduce
regret. An increasingly popular technique to obtain structure-optimal strategies for regret
minimization (Lattimore and Szepesvari, 2017; Combes et al., 2017; Hao et al., 2019; De-
genne et al., 2020b) or pure exploration (Degenne et al., 2019, 2020a; Jedra and Proutiere,
2020; Zaki et al., 2020) is to derive algorithms from asymptotic problem-dependent lower
bounds.

In this chapter, we follow this line of works for the specific case of contextual lin-
ear bandit setting (e.g., Lattimore and Szepesvári, 2020), where at each time step t the

143



Chapter 10. Asymptotically Optimal Exploration in Linear Bandits

learner observes a context Xt drawn i.i.d. from a context distribution ρ, pulls an arm At,
and receives a reward Yt drawn from a distribution whose expected value is a linear com-
bination between the features φ(Xt, At) describing context and arm, and the unknown
parameter θ?. That is, differently from the standard MAB setting introduced in Section
2.6, here the learner observes an additional side information (the context) on which it can
condition its decisions. This setting formalizes a wide range of problems such as online
recommendation systems, clinical trials, dialogue systems, and many others (Bouneffouf
and Rish, 2019). Popular algorithmic principles, such as optimism-in-face-of-uncertainty
and Thompson sampling (Thompson, 1933), have been applied to this setting leading to
algorithms such as OFUL Abbasi-Yadkori et al. (2011) and LINTS Agrawal and Goyal
(2013); Abeille and Lazaric (2017) with strong finite-time worst-case regret guarantees.
Unfortunately, as we already discussed in Chapter 8, these algorithms are not asymptot-
ically optimal (in a problem-dependent sense) as they fail to adapt to the structure of the
problem at hand (Lattimore and Szepesvari, 2017). In fact, in the CLB setting, the values
of different arms are tightly connected through the linear assumption and a possibly sub-
optimal arm may provide a large amount of information about θ? and thus the optimal arm.
Optimistic algorithms naturally discard suboptimal arms and thus may miss the chance to
acquire information about θ? and significantly reduce the regret.

To the best of our knowledge, the recent work of Hao et al. (2019) is the only one to
study asymptotic optimality in contextual linear bandits. The authors introduced OAM,
an asymptotically optimal algorithm for this setting that takes inspiration from OSSB
(Combes et al., 2017). While OAM effectively exploits the linear structure and outper-
forms other bandit algorithms, it suffers from major limitations. From an algorithmic point
of view, similarly to OSSB (Combes et al., 2017), at each exploration step, OAM requires
solving the optimization problem defined in the regret lower bound, which can hardly scale
beyond problems with a handful of contexts and arms. Furthermore, OAM implements a
forcing exploration strategy that often leads to long periods of linear regret and introduces
a linear dependence on the number of arms. Finally, the regret analysis reveals a critical
dependence on the inverse of the smallest probability of a context (i.e., minx ρ(x)), thus
suggesting that OAM may suffer from poor finite-time performance in problems with un-
balanced context distributions.1 While it is not applicable in contextual settings, the SPL
algorithm recently introduced by Degenne et al. (2020b) resolves some of the limitations
of OAM while being asymptotically optimal for general structures. Inspired by efficient
algorithms for best-arm identification (Degenne et al., 2019), Degenne et al. (2020b) refor-
mulate the optimization problem in the lower bound as a saddle-point problem and show
how to leverage online learning algorithms to avoid recomputing the exploration strategy
from scratch at each step. Furthermore, SPL removes any form of forced exploration by
introducing optimism into the estimated optimization problem. As a result, SPL is com-
putationally efficient and achieves better empirical performance in problems with general
structures. Unfortunately, the price SPL has to pay for handling general structures is a
regret that scales linearly with the number of arms even when applied to linear structures
(where simple approaches like LINUCB scale only with the feature dimensions d).

1Interestingly, Hao et al. (2019) explicitly mention in their conclusions the importance of properly managing
the context distribution to achieve satisfactory finite-time performance.
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Outline. In this chapter, we follow similar steps as in Degenne et al. (2020b) and intro-
duce SOLID, a novel asymptotically-optimal algorithm for contextual linear bandits. Our
detailed contributions are as follows.

1. We reformulate the optimization problem of the lower bound for contextual linear
bandits (Combes et al., 2017; Ok et al., 2018; Hao et al., 2019) by introducing an
additional constraint to guarantee bounded solutions and by explicitly decoupling
the context distribution and the exploration policy (Section 10.3). While we bound
the bias introduced by the constraint, we also illustrate how the resulting exploration
policy is better adapted to unbalanced context distributions;

2. Leveraging the Lagrangian dual formulation associated with the constrained lower-
bound optimization problem, we derive SOLID, an efficient primal-dual learning
algorithm that incrementally updates the exploration strategy at each time step (Sec-
tion 10.4). Furthermore, we replace forced exploration with an optimistic version
of the optimization problem by specifically leveraging the linear structure of the
problem. Finally, SOLID does not require any explicit tracking step and it samples
directly from the current exploration strategy;

3. We derive regret guarantees showing that SOLID is asymptotically optimal and
in finite time it removes any dependence on the context distribution, in particular
minx ρ(x) (Section 10.5). Moreover, we remove, for the first time, any linear de-
pendence on the number of arms and our bound only scales with log |A|. Finally,
we derive a Õ(|X |

√
dn) finite-time worst-case regret bound (with |X | contexts, d

features, and horizon n) which shows that SOLID is the first algorithm to be both
minimax optimal and asymptotically optimal for linear (non-contextual) bandits;

4. We empirically compare to a number of state-of-the-art methods for contextual lin-
ear bandits and show how SOLID is more computationally efficient, often has the
smallest regret, and it is robust to unbalanced context distributions (Section 10.7).

Contextual Linear Bandits

We first need to better formalize (and adapt our notation to) the contextual linear bandit
setting. The new notation is exactly the same as before, with the context made explicit in
all context-dependent quantities. Let X be the set of contexts and A be the set of arms
with cardinality |X | <∞ and |A| <∞, respectively. Each context-arm pair is embedded
into Rd through a feature map φ : X × A → Rd. For any reward model θ ∈ Rd,
we denote by µθ(x, a) = φ(x, a)T θ the expected reward for each context-arm pair. Let
a?θ(x) := argmaxa∈A µθ(x, a) and µ?θ(x) := maxa∈A µθ(x, a) denote the optimal arm
and its value for context x and parameter θ. We define the sub-optimality gap of arm a for
context x in model θ as ∆θ(x, a) := µ?θ(x)−µθ(x, a). We make the following assumption
for the given structure.

Assumption 10.2.1. The realizable parameters belong to a compact subset Θ of Rd such
that ‖θ‖2 ≤ B for all θ ∈ Θ. The features are bounded, i.e., ‖φ(x, a)‖2 ≤ L for all
x ∈ X , a ∈ A. The context distribution is supported over the whole context set, i.e.,
ρ(x) ≥ ρmin > 0 for all x ∈ X . Finally, we assume θ? has a unique optimal arm in each
context (see e.g., Combes et al., 2017; Hao et al., 2019).
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That is, the underlying structured domain EΘ (see Definition 8.2.1) is described by
Θ = {θ ∈ Rd : ‖θ‖2 ≤ B} and MΘ = {{θTφ(x, a)}x∈X ,a∈A : θ ∈ Θ}. The learner
knows the fixed feature map φ, the bounds B,L, while as usual it does not know the true
parameter θ? and the context distribution ρ. Here we also assume that each context-arm
pair yields random Gaussian rewards with known variance σ2. Given two parameters
θ, θ′ ∈ Rd, we define

dx,a(θ, θ′) :=
1

2σ2
(µθ(x, a)− µθ′(x, a))2, (10.1)

which corresponds to the Kullback-Leibler divergence between the Gaussian reward dis-
tributions of the two models in context x and arm a. Finally, we redefine a bandit strategy
π := {πt}t≥1 as a sequence of measurable functions πt(Ht−1, Xt) of the current context
Xt and of the past history Ht−1 := (X1, A1, Y1, . . . , Xt−1, At−1, Yt−1). Its expected re-
gret compares the performance of π with those of an oracle strategy that pulls the optimal
arm of each observed context,

Rπn(θ?,EΘ) := Eρ,π

[
n∑
t=1

(µ?θ(Xt)− µθ(Xt, At))

]
. (10.2)

Regularized least-squares estimator. The regularized least-square estimate of θ? using
t samples is θ̂t := V

−1

t Ut, where

V t :=

t∑
s=1

φ(Xs, As)φ(Xs, As)
T + νI (10.3)

is the regularized design matrix, with ν ≥ 1, I the d × d identity matrix, and Ut :=∑t
s=1 φ(Xs, As)Ys. The estimator θ̂t satisfies the following concentration inequality.

Theorem 10.2.1. Let δ ∈ (0, 1), n ≥ 3, and θ̂t be a regularized least-square estimator
obtained using t ∈ [n] samples collected using an arbitrary bandit strategy π := {πt}t≥1.
Then,

P
{
∃t ∈ [n] : ‖θ̂t − θ?‖V t ≥

√
cn,δ

}
≤ δ,

where cn,δ is of order O(log(1/δ) + d log logn).

We derived Theorem 10.2.1 in the original paper (Tirinzoni et al., 2020b) as a result of
independent interest. We refer the reader to such paper for the proof. For the usual choice
δ = 1/n, cn,1/n is of order O(log n+ d log log n), which illustrates how the dependency
on d is on a lower-order term w.r.t. n (as opposed to the well-known concentration bound
derived by Abbasi-Yadkori et al. (2011)). This result is the counterpart of Theorem 8 of
Lattimore and Szepesvari (2017) for the concentration on the reward parameter estimation
error instead of the prediction error.

Lower Bound

We recall the asymptotic lower bound for multi-armed bandit problems with structure
from Lai and Robbins (1985); Combes et al. (2017); Ok et al. (2018). We recall from
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Definition 2.6.1 that a bandit strategy π is uniformly consistent on structure EΘ (satisfying
Assumption 10.2.1) if Rπn(θ,EΘ) = o(nα) for any α > 0 and any θ ∈ Θ.

Proposition 10.3.1. Let π := {πt}t≥1 by a uniformly consistent bandit strategy on struc-
ture EΘ. Then,

lim inf
n→∞

Rn(θ?,EΘ)

log(n)
≥ v?(θ?), (10.4)

where v?(θ?) is the value of the optimization problem

inf
η(x,a)≥0

∑
x∈X

∑
a∈A

η(x, a)∆θ?(x, a)

s.t. inf
θ′∈Θalt

∑
x∈X

∑
a∈A

η(x, a)dx,a(θ?, θ′) ≥ 1,
(P)

where Θalt := {θ′ ∈ Θ | ∃x ∈ X , a?θ?(x) 6= a?θ′(x)} is the set of alternative parameters
such that the optimal arm changes for at least one context.

The variables η(x, a) can be interpreted as the number of pulls allocated to each
context-arm pair so that enough information is obtained to correctly identify the optimal
arm in each context while minimizing the regret. As such, we often refer to a solution η?

of (P) as an optimal exploration strategy.
In the specific case of linear bandit and Gaussian noise, the infimum over alternative

models in the constraint of (P) can be computed in closed form when Θ = Rd as2

2σ2 inf
θ′∈Θalt

∑
x,a

η(x, a)dx,a(θ?, θ′) = min
x∈X ,

a 6=a?θ? (x)

∆θ?(x, a)2

‖φ(x, a)− φ?θ?(x))‖2
V −1
η

, (10.5)

where Vη =
∑
x,a η(x, a)φ(x, a)φ(x, a)T and φ?θ?(x) = φ(x, a?θ?(x)).

Formulating the lower bound in terms of the solution of (P) is not desirable for two
main reasons. First, (P) is not a well-posed optimization problem since the inferior may
not be attainable, i.e., the optimal solution may allocate an infinite number of pulls to some
optimal arms. Second, (P) removes any dependency on the context distribution ρ. In fact,
the optimal solution η? of (P) may prescribe to select a context-arm (x, a) pair a large
number of times, despite x having low probability of being sampled from ρ. While this
has no impact on the asymptotic performance of η? (as soon as ρmin > 0), building on
η? to design a learning algorithm may lead to poor finite-time performance. In order to
mitigate these issues, we propose a variant of the previous lower bound obtained by adding
a constraint on the cumulative number of pulls in each context and explicitly decoupling
the context distribution ρ and the exploration policy ω(x, a) defining the probability of
selecting arm a in context x. Given z ∈ R>0, we define the optimization problem

min
ω∈Ω

zEρ
[∑
a∈A

ω(x, a)∆θ?(x, a)

]
s.t. inf

θ′∈Θalt

Eρ
[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]
≥ 1/z

(Pz)

2When Θ contains only bounded parameters as we assumed in Assumption 10.2.1, the infimum admits no
closed-form expression (see Degenne et al. (2020a)). For simplicity, we shall use this closed-form expression in
our experiments, while it is not needed in our theoretical results.
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where Ω = {ω(x, a) ≥ 0 | ∀x ∈ X :
∑
a∈A ω(x, a) = 1} is the probability simplex.

We denote by ω?z,θ? the optimal solution of (Pz) and u?(z, θ?) its associated value (if the
problem is unfeasible we set u?(z, θ?) = +∞). Inspecting (Pz), we notice that z serves a a
global constraint on the number of samples. In fact, for any ω ∈ Ω, the associated number
of samples η(x, a) allocated to a context-arm pair (x, a) is now zρ(x)ω(x, a). Since ρ is
a distribution over X and

∑
a ω(x, a) = 1 in each context, the total number of samples

sums to z. As a result, (Pz) admits a minimum and it is more amenable to designing a
learning algorithm based on its Lagrangian relaxation. Furthermore, we notice that z can
be interpreted as defining a more “finite-time” formulation of the lower bound. Finally,
we remark that the total number of samples that can be assigned to a context x is indeed
constrained to zρ(x). This constraint crucially makes (Pz) more context aware and forces
the solution ω to be more adaptive to the context distribution. In Section 10.4, we leverage
these features to design an incremental algorithm whose finite-time regret does not depend
on ρmin, thus improving over previous algorithms Lattimore and Szepesvari (2017); Hao
et al. (2019), as supported by the empirical results in Section 9.5. The following lemma
provides a characterization of (Pz) and its relationship with (P).

Lemma 10.3.1. Let z(θ?) := min {z > 0 : (Pz) is feasible}, be the minimum value of z
that induces a feasible optimization problem, z(θ?) := maxx∈X

∑
a6=a?

θ?
(x)

η?(x,a)
ρ(x) , and

z?(θ?) :=
∑
x∈X

∑
a6=a?

θ?
(x) η

?(x, a). Then

1

z(θ?)
= max

ω∈Ω
inf

θ′∈Θalt

Eρ

[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]

and there exists a constant cΘ > 0 such that, for any z ∈ (z(θ?),+∞),

u?(z, θ?) ≤ v?(θ?) +
2zBLz(θ?)

z − z(θ?) · Γ(z, θ?),

where

Γ(z, θ?) :=

1 if z < z(θ?)

min
{

max
{
cΘ
√

2z?(θ?)
σ
√
z

, z
?(θ?)
z

}
, 1
}

otherwise

The proof is provided in Appendix D. The first result characterizes the range of z for
which (Pz) is feasible. Interestingly, z(θ?) < +∞ is the inverse of the sample complexity
of the best-arm identification problem and the associated solution is the one that maximizes
the amount of information gathered about the reward model θ?. As z increases, ω?z,θ?
becomes less aggressive in favoring informative context-arm pairs and more sensitive to
the regret minimization objective. The second result quantifies the bias with respect to the
optimal solution of (Pz). For z ≥ z(θ?), the error decreases approximately at a rate 1/

√
z

showing that the solution of (Pz) can be made arbitrarily close to v?(θ?).

Lagrangian Formulation
In designing our learning algorithm, we build on the Lagrangian relaxation of (Pz). As we
shall see, it is more convenient to replace the minimization of the action gaps ∆θ? in (Pz)
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by a maximization of the mean rewards µθ? . Therefore, consider the following variant of
(Pz):

max
ω∈Ω

Eρ
[∑
a∈A

ω(x, a)µθ?(x, a)

]
s.t. inf

θ′∈Θalt

Eρ
[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]
≥ 1/z

(P z)

This problem differs from (Pz) since we replaced the action gaps with the means in the ob-
jective function and avoided scaling the latter by z. Let ω?z,θ? the optimal solution of (P z)
and u?(z, θ?) be its associated value (if the problem is unfeasible we set u?(z, θ?) = +∞).
Since the feasibility set is equivalent in (Pz) and (P z) as we only changed the objective
function, the following proposition is immediate.

Proposition 10.3.2. The following properties hold:

1. Both (Pz) and (P z) are feasible for z ≥ z(θ?);

2. ω?z,θ? = ω?z,θ? ;

3. u?(z, θ?) = z (µ? − u?(z, θ?)) where µ? = Eρ[µ?θ?(x)].

Due to the equivalence demonstrated in Proposition 10.3.2, in the remaining we shall
write ω?z to denote both ω?z,θ? and ω?z,θ? .

We now introduce the Lagrangian relaxation of (P z). For any ω ∈ Ω, let f(ω; θ?)
denote the objective function and g(ω; z, θ?) denote the KL constraint:

f(ω; θ?) = Eρ
[∑
a∈A

ω(x, a)µθ?(x, a)
]
,

g(ω; z, θ?) = inf
θ′∈Θalt

Eρ
[∑
a∈A

ω(x, a)dx,a(θ?, θ′)
]
− 1

z
.

The Lagrangian relaxation problem of (P z) is

min
λ≥0

max
ω∈Ω

{
h(ω, λ; z, θ?) := f(ω; θ?) + λg(ω; z, θ?)

}
, (Pλ)

where λ ∈ R≥0 is a multiplier. We denote by λ?(z, θ?) the optimal multiplier for prob-
lem (Pλ). We note that f is linear in ω, while g is concave since it is an infimum of
affine functions. Hence, the maximization in (Pλ) is a non-smooth concave optimization
problem.

Strong duality. We now verify that strong duality holds for the Lagrangian formulation
(Pλ) (with respect to (P z)) when z > z(θ?). This is immediate from the existence of a
Slater point, as shown in the following proposition.

Proposition 10.3.3 (Slater Condition). For any z > z(θ?), there exists a strictly feasible
solution ω, i.e., g(ω; z, θ?) > 0.
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Proof. This is a direct consequence of the fact that (see Lemma 10.3.1)

max
ω∈Ω

inf
θ′∈Θalt

Eρ

[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]
=

1

z(θ?)
>

1

z
.

Thus, the optimal solution of (Pλ) is (λ?(z, θ?), ω?z).

Boundedness of the optimal multipliers. We recall the following basic result.

Lemma 10.3.2 (Lemma 3 of Nedić and Ozdaglar (2009)). For any z > z(θ?), if ωz is a
Slater point for (P z),

λ?(z, θ?) ≤ f(ω?z ; θ?)− f(ωz; θ
?)

g(ωz; z, θ?)

Using Lemma 10.3.2, we can prove the following result which will be very useful for
the regret analysis.

Lemma 10.3.3. For any z ≥ 2z(θ?),

λ?(z, θ?) ≤ 2BLz(θ?). (10.6)

Proof. From Proposition 10.3.3, ω (the solution of the associated pure-exploration problem) is a
Slater point for problem (Pz). Then, by Lemma 10.3.2,

λ?(z, θ?) ≤ f(ω?z ; θ?)− f(ω; θ?)

g(ω; z, θ?)
.

Let kl(ω) denote the expected KL of ω, so that g(ω; z, θ?) = kl(ω)− 1/z. Then,

f(ω?z ; θ?)− f(ω; θ?)

kl(ω)− 1/z
≤ f(ω?z ; θ?)

kl(ω)− 1/z
≤ BL

kl(ω)− 1/z
. (10.7)

Furthermore, since kl(ω) = 1/z(θ?),

λ?(z, θ?) ≤ BLzz(θ?)

z − z(θ?) ≤ 2BLz(θ?),

where the last inequality holds for z ≥ 2z(θ?). This concludes the proof.

We notice that building an algorithm on top of the Lagrangian relaxation of (P z) seems
more straightforward than the technique used by Degenne et al. (2020b) to translate the
constrained optimization appearing in the lower bound into a saddle-point problem by
taking the ratio between information and regret. Not only it is unclear whether a similar
approach can be adapted to the contextual linear case, our formulation naturally leads to
designing an efficient incremental learning algorithm built around a primal-dual projected
gradient approach to the solution of (Pλ).
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Algorithm 8 SOLID

Require: Multiplier λ1, confidence values {βt}t and {γt}t, maximum multiplier λmax,
normalization factors {zk}k≥0, phase lengths {pk}k≥0, step sizes αλk , α

ω
k

Set ω1(x, a)← 1
|A| , V 0 = νI , U0 = 0, θ0 = 0, S0 ← 0

Phase index: K1 ← 0
for t = 1, 2, . . . , n do

Receive context Xt ∼ ρ
Set Kt+1 ← Kt

if infθ′∈Θt−1
‖θ̂t−1 − θ′‖2V t−1

> βt−1 then
// EXPLOITATION STEP
At ← argmaxa∈A µθ̂t−1

(Xt, a)

λt+1 ← λt, ωt+1 ← ωt
else

// EXPLORATION STEP
Sample arm: At ∼ ωt(Xt, ·)
Set St ← St−1 + 1
// UPDATE SOLUTION

Compute qt ∈ ∂ht(ωt, λt, zKt) (see Equation 10.10)

Update policy: ωt+1(x, a)← ωt(x,a)e
αωKt

qt(x,a)∑
a′∈A ωt(x,a

′)e
αω
Kt

qt(x,a
′)

Update multiplier: λt+1 ← min{[λt − αλKtgt(ωt, zKt)]+, λmax}
// PHASE STOPPING TEST

if St − STKt−1 = pk then
Change phase: Kt+1 ← Kt + 1
Reset solution: ωt+1 ← ω1, λt+1 ← λ1

end if
end if
Pull At and observe outcome Yt
Update V t, Ut, θ̂t, ρ̂t using Xt, At, Yt

end for

Asymptotically Optimal Linear Primal Dual Algorithm

We introduce SOLID (aSymptotic Optimal Linear prImal Dual), which combines a
primal-dual approach to incrementally compute the solution of an optimistic estimate of
the Lagrangian relaxation (Pλ) within a scheme that, depending on the accuracy of the
estimate θ̂t, separates exploration steps, where arms are pulled according to the exploration
policy ωt, and exploitation steps, where the greedy arm is selected. The values of the input
parameters for which SOLID enjoys regret guarantees are reported in Section 10.5. In the
following, we detail the main ingredients composing the algorithm (see Algorithm 8).

Estimation. SOLID stores and updates the regularized least-square estimate θ̂t using
all samples observed over time. We denote by µθ̂t(x, a) = φ(x, a)T θ̂t and by a?

θ̂t
(x) =
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argmaxa∈A µθ̂t(x, a) the corresponding estimated reward and estimated optimal arm, re-
spectively. SOLID also estimates the context distribution as ρ̂t(x) = 1

t

∑t
s=1 1 {Xs = x}.

Accuracy test and tracking. Similar to previous algorithms leveraging asymptotic lower
bounds, we build on the generalized likelihood ratio test (e.g., Degenne et al., 2019) to ver-
ify the accuracy of the estimate θ̂t. At the beginning of each step t, SOLID first computes
infθ′∈Θt−1

‖θ̂t−1−θ′‖2V t−1
, where Θt−1 = {θ′ ∈ Θ | ∃x ∈ X , a?

θ̂t−1
(x) 6= a?θ′(x)} is the

set of alternative models.3 This quantity measures the accuracy of the algorithm, where
the infimum over alternative models defines the problem θ′ that is closest to θ̂t−1 and yet
different in the optimal arm of at least one context.4 This serves as a worst-case scenario
for the true θ?, since if θ∗ = θ′ then selecting arms according to θ̂t−1 would lead to linear
regret. If the accuracy exceeds a threshold βt−1, then SOLID performs an exploitation
step, where the estimated optimal arm a?

θ̂t−1
(Xt) is selected in the current context. On the

other hand, if the test fails, the algorithm moves to an exploration step, where an arm At
is sampled according to the estimated exploration policy ωt(Xt, ·). While this approach
is considerably simpler than standard tracking strategies (e.g., selecting the arm with the
largest gap between the policy ωt and the number of pulls), in Section 10.5 we show that
sampling from ωt achieves the same level of tracking efficiency.

Optimistic primal-dual subgradient descent. At each step t, we define an estimated
optimistic version of the Lagrangian relaxation (Pλ) as

ft(ω) :=
∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)
(
µ̄θ̂t−1

(x, a) + ϕt(x, a)
)
, (10.8)

gt(ω, z) := inf
θ′∈Θt−1

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)

(
d̄x,a(θ̂t−1, θ

′) +
2BL

σ2
ϕt(x, a)

)
− 1

z
,

(10.9)

ht(ω, λ, z) := ft(ω) + λgt(ω, z), (10.10)

where ϕt(x, a) :=
√
γt‖φ(x, a)‖

V
−1
t−1

is a confidence interval for the mean reward at x, a

with γt a suitable parameter to define its size. µ̄θ(x, a) := min{max{µθ(x, a),−BL}, BL},
d̄x,a(θ, θ′) := 1

2σ2 (µ̄θ(x, a)−µθ′(x, a))2 are the clipped rewards and KL divergences, re-
spectively. These are such that |µ̄θ(x, a)| ≤ |µθ(x, a)| and d̄x,a(θ, θ′) ≤ dx,a(θ, θ′).

Notice that we do not use optimism on the context distribution, which is simply re-
placed by its empirical estimate. Therefore, ht is not necessarily optimistic with respect
to the original Lagrangian function h. Nonetheless, we prove in Section 10.5 that this
level of optimism is sufficient to induce enough exploration to have accurate estimates of
θ?. This is in contrast with the popular forced exploration strategy (e.g. Lattimore and
Szepesvari, 2017; Combes et al., 2017; Ok et al., 2018; Hao et al., 2019), which prescribes
a minimum fraction of pulls ε such that at any step t, any of the arms with less than εSt
pulls is selected, where St is the number of exploration rounds so far. While this strategy

3In our implementation we use the closed-form for the infimum as in (10.5).
4In practice, it is more efficient to take the infimum only over problems with different optimal arm in the last

observed context Xt. This is indeed what we do in our experiments and all our theoretical results follow using
this alternative definition with only minor changes.
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is sufficient to guarantee a minimum level of accuracy for θ̂t and to obtain asymptotic re-
gret optimality, in practice it is highly inefficient as it requires selecting all arms in each
context regardless of their value or amount of information.

At each step t, SOLID updates the estimates of the optimal exploration policy ωt and
the Lagrangian multiplier λt. In particular, given the sub-gradient qt of ht(ωt, λt, zKt),
SOLID updates ωt and λt by performing one step of projected sub-gradient descent with
suitable learning rates αωKt and αλKt . In the update of ωt, we perform the projection onto
the simplex Ω using an entropic metric, while the multiplier is clipped in [0, λmax]. While
this is a rather standard primal-dual approach to solve the Lagrangian relaxation (Pλ),
the interplay between estimates θ̂t, ρt, the optimism used in ht, and the overall regret
performance of the algorithm is at the core of the analysis in Section 10.5. This approach
significantly reduces the computational complexity compared to algorithms like OSSB
(Combes et al., 2017) and OAM (Hao et al., 2019), which require solving problem P at
each exploratory step. In Section 9.5, we show that the incremental nature of SOLID
allows it to scale to problems with much larger context-arm spaces. Furthermore, we
leverage the convergence rate guarantees of the primal-dual gradient descent to show that
the incremental nature of SOLID does not compromise the asymptotic optimality of the
algorithm (see Section 10.5).

The z parameter. While the primal-dual algorithm is guaranteed to converge to the
solution of (Pz) for any fix z, it may be difficult to properly tune z to control the error
with respect to (P). SOLID uses the fact that the error scales as 1/

√
z (Lemma 10.3.1

for z sufficiently large) and it increases z over time. Given as input two non-decreasing
sequences {pk}k and {zk}k, at each phase k, SOLID uses zk in the computation of the
subgradient of ht and in the definition of ft and gt. After pk explorative steps, it resets the
policy ωt and the multiplier λt and transitions to phase k+1. Since pk = STk+1−1−STk−1

is the number of explorative steps of phase k starting at time Tk, the actual number of steps
during k may vary. Note that at the end of each phase only the optimization variables are
reset, while the learning variables (i.e., θ̂t, V t, and ρ̂t) use all the samples collected through
phases.

Main Results

We state and discuss the main theoretical results before carrying out the analysis. We start
from a finite-time problem-dependent regret bound, the main contribution of this chapter,
where we confirm that SOLID is asymptotically optimal. We then state a worst-case regret
bound where we show that SOLID is also minimax optimal for linear (non-contextual)
bandits and that its regret does not scale with certain quantities that appear in the problem-
dependent bound. The full problem-dependent analysis is reported in the next section. The
worst-case analysis, on the other hand, is a simpler variant of the problem-dependent one
and is thus deferred to Appendix D.

Problem-dependent regret bound We need the following assumption.

Assumption 10.5.1. The maximum multiplier used by SOLID is such that λmax ≥ 2BLz(θ?).
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While an assumption on the maximum multiplier is rather standard for the analysis of
primal-dual projected subgradient (e.g., Nedić and Ozdaglar, 2009; Efroni et al., 2020),
we conjecture that it may be actually relaxed in our case by replacing the fixed λmax by an
increasing sequence as done for {zk}k.

Theorem 10.5.1. Consider a contextual linear bandit with contexts X , arms A, reward
parameter θ?, features bounded by L, zero-mean Gaussian noise with variance σ2 and
context distribution ρ satisfying Assumption 10.2.1. If SOLID is run with confidence
values βt−1 = cn,1/n and γt = cn,1/S2

t
, where cn,δ is defined as in Theorem 10.2.1,

learning rates αλk = αωk = 1/
√
pk and increasing sequences zk = z0e

k and pk = zke
2k,

for some z0 ≥ 1, then it is asymptotically optimal with the same constant as in the lower
bound of Proposition 10.3.1. Furthermore, for any finite n the regret of SOLID is bounded
as

Rn(θ?,EΘ) ≤ v?(θ?)cn,1/n
2σ2

+ Clog(log log n)
1
2 (log n)

3
4 + Cconst, (10.11)

where the two constantsClog andCconst areClog = lin≥0(v?(θ?), |X |, L2, B2,
√
d, 1/σ2)

and Cconst = v?(θ?)B
2L2

σ2 + lin≥0(L,B, z0(z(θ
?)/z0)3, (z(θ

?)/z0)2).5

The first result shows that SOLID run with an exponential schedule for z is asymptotic
optimal, while the second one provides a bound on the finite-time regret. We can identify
three main components in the finite-time regret. 1) The first term scales with the logarith-
mic term cn,1/n = O(log n+ d log log n) and a leading constant v?(θ?), which is optimal
as shown in Proposition 10.3.1. In most cases, this is the dominant term of the regret. 2)
Lower-order terms in o(log n). Notably, a regret of order

√
log n is due to the incremental

nature of SOLID and it is directly inherited from the convergence rate of the primal-dual
algorithm we use to optimize (Pz). The larger term (log n)3/4 that we obtain in the final
regret is actually due to the schedule of {zk} and {pk}. While it is possible to design a
different phase schedule to reduce the exponent towards 1/2, this would negatively impact
the constant regret term. 3) The constant regret Cconst is due to the exploitation steps,
burn-in phase and the initial value z0. The regret due to z0 takes into account the regime
when (Pz) is unfeasible (zk < z(θ?)) or when zk is too small to assess the rate at which
u?(zk, θ

?) approaches v?(θ?) (z < z(θ?)), see Lemma 10.3.1. Notably, the regret due to
the initial value z0 vanishes when z0 > z(θ?). A more aggressive schedule for zk reaching
z(θ?) in few phases would reduce the initial regret at the cost of a larger exponent in the
sub-logarithmic terms.

The sub-logarithmic terms in the regret have only logarithmic dependency on the num-
ber of arms. This is better than existing algorithms based on exploration strategies built
from lower bounds. OSSB (Combes et al., 2017) indeed depends on |A| directly in the
mainO(log n) regret terms. While the regret analysis of OAM is asymptotic, it is possible
to identify several lower-order terms depending linearly on |A|. In fact, OAM as well as
OSSB require forced exploration on each context-arm pair, which inevitably translates into
regret. In this sense, the dependency on |A| is hard-coded into the algorithm and cannot be
improved by a better analysis. SPL depends linearly on |A| in the explore/exploit thresh-
old (the equivalent of our βt) and in other lower-order terms due to the analysis of the

5lin(·) denotes any function with linear or sublinear dependence on the inputs (ignoring logarithmic terms).
For example, lin≥0(x, y2) ∈ {a0 + a1x+ a2y + a3y2 + a4xy2 : ai ≥ 0}.
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tracking rule. On the other hand, SOLID never requires all arms to be repeatedly pulled
and we were able to remove the linear dependence on |A| through a refined analysis of the
sampling procedure that we carry out shortly. This is inline with the experimental results
where we did not notice any explicit linear dependence on |A|.

The constant regret term depends on the context distribution is z(θ?) (Lemma 10.3.1).
Nonetheless, this dependency disappears whenever z0 is a fraction z(θ?). This is in strik-
ing contrast with OAM, whose analysis includes several terms depending on the inverse
of the context probability ρmin. This confirms that SOLID is able to better adapt to the
distribution generating the contexts. While the phase schedule of Theorem 10.5.1 leads to
an asymptotically-optimal algorithm and sublinear-regret in finite time, it may be possible
to find a different schedule having the same asymptotic performance and better finite-time
guarantees, although this may depend on the horizon n.

As shown in (Hao et al., 2019), when the features of the optimal arms span Rd, the
asymptotic lower bound vanishes (i.e., v?(θ?) = 0). In this case, selecting optimal arms is
already informative enough to correctly estimate θ? and no explicit exploration is needed
and SOLID, like OAM, has sub-logarithmic regret.

Worst-case analysis. The constant terms in Theorem 10.5.1 are due to a naive bound
which assumes linear regret in those phases where zk is small (e.g., when the optimization
problem is infeasible). While this simplifies the analysis for asymptotic optimality, we
verify that SOLID always suffers sub-linear regret, regardless of the values of zk. For the
following result, we do not require Assumption 10.5.1 to hold.

Theorem 10.5.2 (Worst-case regret bound). Let zk be arbitrary, pk = erk for some con-
stant r ≥ 1, and the other parameters be the same as in Theorem 10.5.1. Then, for any n
the regret of SOLID is bounded as

Rn(θ?,EΘ) ≤ 3BLπ2

(
4 +

λmaxBL

σ2

)
+

2erλ2
max

r

√
n+ Csqrt

(
1 +

λmaxBL

σ2

)
log(n)

√
n,

where Csqrt = lin≥0(|X |,
√
d,B,L).

Notably, this bound removes the dependencies on z(θ?) and z(θ?), while its derivation
is agnostic to the values of zk. Interestingly, we could set λmax = 0 and the algorithm
would completely ignore the KL constraint, thus focusing only on the objective func-
tion. This is reflected in the worst-case bound since all terms with a dependence on σ2

or a quadratic dependence on BL disappear. The key result is that the objective function
alone, thanks to optimism, is sufficient for proving sub-linear regret but not for proving
asymptotic optimality. More precisely, the resulting bound is Õ(|X |

√
nd), which matches

the minimax optimal rate apart from the dependence on |X |. The latter could be reduced to√
|X | by a better analysis, but a polynomial dependence on |X | is likely to be unavoidable

since SOLID makes explicit use of the set of contexts. It remains an open question how
to design an asymptotically optimal algorithm for the contextual case whose regret does
not scale with |X |.
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Problem-Dependent Analysis

Outline
We start by analyzing the action sampling strategy (Section 10.6.2) on top of which we
construct some high-probability events (Section 10.6.3). We carry out the fool proof in
Section 10.6.4. An outline is as follows.

Step 1. (Section 10.6.4) Using the confidence set of Theorem 10.2.1, we show that the
regret suffered when the algorithm enters the exploitation step is finite;

Step 2. (Section 10.6.4) Using the properties of our action sampling strategy, we reduce
the regret incurred during exploration rounds to the sum of objective values of the
policies computed incrementally by primal-dual gradient ascent;

Step 3. (Section 10.6.4) By combining standard tools from convex optimization with the
properties of our confidence intervals, we relate the sum of objective values at each
phase to the corresponding optimal value and constraint violations;

Step 4. (Section 10.6.4) We relate the sum of constraints to the exploitation test used by
SOLID. In particular, using the fact that the algorithm is not in the exploitation step,
we show that the sum of constraints cannot be larger than O(log n);

Step 5. (Section 10.6.4) We combine the results obtained in the previous steps to show
a first bound on the expected regret suffered during the exploration rounds. Our
bound has the optimal dependency on v?(θ?) log n but scales with the expected
number E [Kn] of phases executed by the algorithm;

Step 6. (Section 10.6.4) By relating the upper bound on the sum of constraints computed
at Step 3 and a lower bound on the same quantity, we obtain an upper bound on Kn

as a function of the chosen sequences pk, zk;

Step 7. (Section 10.6.4) We derive the final result by combining the bound on Kn of Step
5 using the exponential schedule for pk, zk with the partial regret bound of Step 4.

Additional notation. Since most of our proof involves bounding the regret incurred dur-
ing the exploration rounds, we introduce some additional notation to better characterize
such rounds. Let

Et := 1

{
inf

θ′∈Θt−1

‖θ̂t−1 − θ′‖2V t−1
≤ βt−1

}
(10.12)

be the event that exploration occurs at time t. We denote by St :=
∑t
s=1 1 {Et} the num-

ber of exploration rounds up to time t and byNE
t (x, a) :=

∑t
s=1 1 {Xt = x,At = a,Et}

the number of visits to (x, a) in these exploration rounds. We use Kt ∈ {0, 1, . . . } to de-
note the phase index at time t and Tk to denote the time at which phase k starts. Moreover,
Tk := {t ∈ [n] : Kt = k} is the set of time steps in phase k and T Ek := {t ∈ Tk : Et} are
the exploration rounds in phase k.
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Action Sampling
SOLID does not use standard tracking approaches for action selection (e.g., cumulative
tracking (Garivier and Kaufmann, 2016; Degenne et al., 2019) or direct tracking (Combes
et al., 2017; Hao et al., 2019)) but a sampling strategy. Despite being simpler and more
practical than tracking, we show that sampling from ωt enjoys nice theoretical guarantees.
In the following results we define the filtration Ft as the σ-algebra generated by the t-step
history, Ht = (X1, A1, Y1, . . . , Xt, At, Yt).

The following result bounds the deviation between expectations of measurable func-
tions under the sequence of conditional probabilities played by the algorithm and the same
functions evaluated at the observed contexts/arms. This result will be very useful in the
regret analysis to avoid undesirable linear dependencies on the number of arms.

Lemma 10.6.1. Let {ωt}t≥1 be such that ωt ∈ Ω and ωt is Ft−1-measurable. Let
{Xt}t≥1 be a sequence of i.i.d. contexts distributed according to ρ and {At}t≥1 be such
that At ∼ ωt(Xt, ·). Let {ϕit}t≥1,i∈[m] be a sequence of functions ϕit : X × A → [−b, b]
such that ϕit(x, a) is Ft−1-measurable for all i ∈ [m]. Then,

∑
t≥1,
i∈[m]

P

Et,
∣∣∣∣∣∣∣
∑

s≤t:Es

ϕis(Xs, As)−∑
x∈X
a∈A

ρ(x)ωs(x, a)ϕis(x, a)


∣∣∣∣∣∣∣ > b

√
St
2

log(mS2
t )

 ≤ π2

3
.

Proof. Fix i ∈ [m]. Let Zt := ϕit(Xt, At) and τs be a random variable such that the s-th ex-
ploration round occurs at time τs + 1. Notice that {τs}s≥1 is a strictly-increasing sequence (i.e.,
τs+1 > τs) of stopping times w.r.t. {Ft}t≥1. Furthermore, define

Ws := Zτs+1 −
∑
x∈X

∑
a∈A

ρ(x)ωτs+1(x, a)ϕiτs+1(x, a)

and let Gs := Fτs+1 . Using Lemma 10 in Jian et al. (2019), we have that {Ws,Gs}s≥1 is a
martingale difference sequence (with differences bounded by b). Therefore, by Azuma’s inequality

P
{∣∣∣∣∣

s∑
i=1

Wi

∣∣∣∣∣ > b

√
s

2
log

2

δ

}
≤ δ.

Let at := b
√

St
2

log (mS2
t ) and fix some t̄ ≥ 1. Then,

t̄∑
t=1

1

Et,
∣∣∣∣∣∣
∑

s≤t:Es

(
Zs −

∑
x∈X

∑
a∈A

ρ(x)ωs(x, a)ϕis(x, a)

)∣∣∣∣∣∣ > at


≤
∑
s≥1

1

{∣∣∣∣∣
s∑
j=1

(
Zτj+1 −

∑
x∈X

∑
a∈A

ρ(x)ωτj+1(x, a)ϕiτj+1(x, a)

)∣∣∣∣∣ > aτs+1, τs + 1 ≤ t̄

}

≤
∑
s≥1

1

{∣∣∣∣∣
s∑
j=1

Wj

∣∣∣∣∣ > b

√
s

2
log(ms2)

}
.

In the last inequality, we used the fact that aτs+1 = b
√

s
2

log(ms2). Taking expectations and
applying Azuma’s inequality with δ = 2

ms2
,

t̄∑
t=1

P

Et,
∣∣∣∣∣∣
∑

s≤t:Es

(
Zs −

∑
x∈X

∑
a∈A

ρ(x)ωs(x, a)ϕis(x, a)

)∣∣∣∣∣∣ > at

 ≤∑
s≥1

2

ms2
=

π2

3m
.
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The result holds for all t̄ ≥ 1 and the proof follows by summing over all i ∈ [m].

Choosing m = |X ||A| and ϕx,at (x′, a′) = 1 {x′ = x, a′ = a}, so that b = 1, directly
yields the following corollary.

Corollary 10.6.1. Let {ωt}t≥1 be such that ωt ∈ Ω and ωt is Ft−1-measurable. Let
{Xt}t≥1 be a sequence of i.i.d. contexts distributed according to ρ and {At}t≥1 be such
that At ∼ ωt(Xt, ·). Then,

∑
t≥1

∑
x∈X

∑
a∈A

P

Et,
∣∣∣∣∣∣NE

t (x, a)− ρ(x)
∑

s≤t:Es

ωs(x, a)

∣∣∣∣∣∣ >
√
St
2

log (S2
t |X ||A|)

 ≤ π2

3
.

Corollary 10.6.1 provides an analogous result to those obtained by tracking strategies,
where the empirical pull counts are shown close to the sequence of conditional probabili-
ties computed by the optimizer. Despite being simpler, our sampling rule achieves similar
efficiency as existing tracking rules. In particular, our bound scales with log |A|, a factor
that appears in the tightest known analysis of cumulative tracking (Degenne et al., 2020b).
The factor

√
St logSt is not typically found in tracking strategies for MABs. However,

we note that such dependency would naturally appear when generalizing these strategies
to the contextual case.

High-Probability Events
We now report the high-probability events used throughput the proof.

Let Φx,a := φ(x, a)φ(x, a)T . We define the following events:

true regret close to objective values

G∆
t :=


∣∣∣∣∣∣∣
∑

s≤t:Es

∆θ?(Xs, As)−
∑
x∈X
a∈A

ρ(x)ωs(x, a)∆θ?(x, a)


∣∣∣∣∣∣∣ ≤ 2LB

√
St logSt

 ,

(10.13)

true confidence intervals close to expected confidence intervals

Gφt :=


∣∣∣∣∣∣∣
∑

s≤t:Es

‖φ(Xs, As)‖V̄−1
s−1
−
∑
x∈X
a∈A

ρ(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1


∣∣∣∣∣∣∣ ≤

L

ν

√
St logSt

 ,

(10.14)

true design matrix close to expected design matrix

Gdt :=


∥∥∥∥∥∥∥
∑

s≤t:Es

ΦXs,As −
∑
x∈X
a∈A

ρ(x)ωs(x, a)Φx,a


∥∥∥∥∥∥∥
∞

≤ L2
√
St log (dSt)

 , (10.15)

well-estimated context distribution

Gρt :=

∀x ∈ X : |ρ̂t−1(x)− ρ(x)| ≤ 2 max

√ log(|X |S2
t )

2St
,

2

t

 , (10.16)

well-estimated parameters

Gθt :=
{
‖θ̂t−1 − θ?‖V t−1

≤ √γt
}
. (10.17)
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Furthermore, we defineGt := {G∆
t , G

φ
t , G

d
t , , G

ρ
t , G

θ
t } as the “good” event and letMt =∑t

s=1 1 {Es,¬Gs} be the number of exploration rounds in which the good event does not
hold. This can be bounded in expectation as follows.

Lemma 10.6.2. Let Mt =
∑t
s=1 1 {Es,¬Gs} be the number of exploration rounds in

which the good event does not hold, then

E [Mt] ≤
3π2

2
.

Proof. Using the definition of Gs together with the union bound,

E [Mt] =

t∑
s=1

P {Es,¬Gs} ≤
t∑

s=1

P
{
Es,¬G∆

s

}
+

t∑
s=1

P
{
Es,¬Gφs

}
+

t∑
s=1

P
{
Es,¬Gds

}
+

t∑
s=1

P {Es,¬Gρs}+

t∑
s=1

P
{
Es,¬Gθs

}
.

The first and second term can be bounded by Lemma 10.6.1 by noticing that ∆θ?(x, a) ≤ 2LB and
that ‖φ(x, a)‖

V̄−1
s−1

is Fs−1-measurable and upper-bounded by L
ν

at all time steps. Thus,

t∑
s=1

P
{
Es,¬G∆

s

}
+

t∑
s=1

P
{
Es,¬Gφs

}
≤ 2π2

3
.

Similarly, the third term can be bounded by Lemma 10.6.1 by taking a union bound over all elements
of Φx,a (for a total of d2 elements) and noting that each term is bounded by L2. Thus,

t∑
s=1

P
{
Es,¬Gds

}
≤ π2

3
.

The fourth term is

t∑
s=1

P {Es,¬Gρs} ≤
∑
s≥1,
x∈X

P
{
Es, |ρ̂s−1(x)− ρ(x)| > 2 max

(√
log(|X |S2

s )

2Ss
,

2

s

)}

≤
∑
s≥1,
x∈X

P
{
Es, |ρ̂s−1(x)− ρ̂s(x)|+ |ρ̂s(x)− ρ(x)| > 2 max

(√
log(|X |S2

s )

2Ss
,

2

s

)}

≤
∑
s≥1,
x∈X

P
{
Es, |ρ̂s−1(x)− ρ̂s(x)| > 2

s

}
+
∑
s≥1,
x∈X

P
{
Es, |ρ̂s(x)− ρ(x)| >

√
log(|X |S2

s )

2Ss

}
≤ π2

3
.

Here we used the fact that the absolute difference between two consecutive empirical means with
samples bounded by 1 cannot be larger than 2

s
. We also used Lemma D.2.1 to bound the second

term. Finally, the fifth term can be directly bounded by Lemma D.2.2:

t∑
s=1

P
{
Es,¬Gθs

}
≤ π2

6
.

Combining the five bounds concludes the proof.
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Regret Proof

We start decomposing the regret based on whether Et holds or not:

Rn =

n∑
t=1

∆θ?(Xt, At)1 {¬Et}+

n∑
t=1

∆θ?(Xt, At)1 {Et} = Rexploit
n +Rexplore

n .

Throughout the proof, as stated in the main theorem, we use βt−1 := cn,1/n and
γt := cn,1/S2

t
.

Regret during Exploitation

We show that the regret suffered when exploitation occurs is finite. Let βt−1 := cn,1/n,

where cn,δ was defined in Theorem 10.2.1. Then Ft := 1
{
‖θ̂t−1 − θ?‖2V t−1

≤ cn,1/n
}

is the event under which the true model belongs to the confidence set, which holds with
probability at least 1−1/n by the same theorem. We leverage this to decompose the regret
during exploitation as:

Rexploit
n =

n∑
t=1

∆θ?(Xt, At)1 {¬Et, Ft}+

n∑
t=1

∆θ?(Xt, At)1 {¬Et,¬Ft} .

The expectation of the second term is bounded by

E

 n∑
t=1

∆θ?(Xt, At)︸ ︷︷ ︸
≤2LB

1 {¬Et,¬Ft}

 ≤ 2LB · E
[
n∑
t=1

1 {¬Ft}

]
≤ 2LB

n∑
t=1

P {¬Ft}︸ ︷︷ ︸
≤1/n

≤ 2LB,

where we bounded P {¬Ft} ≤ 1
n by using Theorem 10.2.1 with δ = 1/n. Regarding the

first term, we have two possible cases. If a?
θ̂t−1

(Xt) = a?θ?(Xt), then the algorithm suffers
no regret since by definition it pulls the empirically optimal arm (which is the optimal arm
in this case). If a?

θ̂t−1
(Xt) 6= a?θ?(Xt), then it must be that θ? ∈ Θt−1, that is, the true

model is in the set of alternative models for the current context. Under ¬Et, this implies
that

‖θ̂t−1 − θ?‖2V t−1
≥ inf
θ′∈Θt−1

‖θ̂t−1 − θ′‖2V t−1
> βt−1 = cn,1/n,

which is a contradiction with respect to Ft. Therefore, ¬Et and Ft cannot hold at the same
time and the algorithm suffers no regret. Combining these results, we conclude

E
[
Rexploit
n

]
≤ 2LB.

Regret under Exploration

The key challenge is to bound the regret during the exploration rounds. We proceed by
following the steps outlined in Section 10.6.1.
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From Regret to Objective Values

We decompose the regret incurred during exploration as

Rexplore
n :=

n∑
t=1

∆θ?(Xt, At)1 {Et} ≤
n∑
t=1

∆θ?(Xt, At)1 {Et, Gt}+ 2LB

n∑
t=1

1 {Et,¬Gt}︸ ︷︷ ︸
:=Mn

.

Refer to Section 10.6.3 for the definition of Gt. The second term is Mn, the number of
exploration rounds in which the good event does not hold, and can be bounded in expec-
tation by using Lemma 10.6.2. The first one can be bounded by using the good event.
Suppose, without loss of generality, that En and Gn hold (if they do not, the following
reasoning can be repeated for the last time step at which these events hold). Then, using
G∆
t (see Section 10.6.3),

n∑
t=1

∆θ?(Xt, At)1 {Et, Gt} =
∑

t≤n:Et

∆θ?(Xt, At)

≤
∑

t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) + 2LB
√
Sn logSn.

Using the definition of phase, we can rewrite the first summation as

∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) =

Kn∑
k=0

∑
t∈T E

k

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a).

Recall that Kt is the (random) phase index at time t, while T Ek is the set of exploration
rounds in phase k. Let k := min{k ∈ N|zk ≥ 2z(θ?)}. We split the sum into phases
before and after k. For those before, we have∑

k<k

∑
t∈T E

k

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) ≤ 2LB
∑
k<k

|T Ek | ≤ 2LB
∑
k<k

pk,

which yields at most finite regret since {pk} is increasing. Let us now fix a phase k ≥
k and bound the regret during its exploration rounds (T Ek ). Note that the optimization
problem in each phase k ≥ k is feasible. We have∑
t∈T E

k

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a)

=
∑

t∈T E
k

:Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)∆θ?(x, a) +
∑

t∈T E
k

:¬Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)(µ?θ?(x)− µθ?(x, a))

≤
∑

t∈T E
k

:Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)∆θ?(x, a) +Mn,kµ
? −

∑
t∈T E

k
:¬Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)µθ?(x, a).

Here we defined µ? :=
∑
x∈X ρ(x)µ?θ?(x) andMn,k as the number of exploration rounds

during phase k where the good event does not hold. The last term can be bounded by
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Mn,kBL. Regarding the remaining two,∑
t∈T E

k
:Gt

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) +Mn,kµ
?

= (pk −Mn,k)µ? +Mn,kµ
? −

∑
t∈T E

k
:Gt

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)µθ?(x, a)

= pkµ
? +

∑
t∈T E

k
:Gt

∑
x∈X

(ρ̂t−1(x)− ρ(x))
∑
a∈A

ωt(x, a)µθ?(x, a)

︸ ︷︷ ︸
(a)

−
∑

t∈T E
k

:Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)µθ?(x, a)

︸ ︷︷ ︸
(b)

.

Term (a) can be bounded by

(a) ≤ LB
∑

t∈T E
k

:Gt

∑
x∈X

|ρ̂t−1(x)− ρ(x)|

︸ ︷︷ ︸
ζn,k

.

The second term ζn,k will be bounded shortly over all phases by means of Lemma D.2.5.
We now provide a lower bound to term (b). The first step is to relate this to the objective
function optimized by the algorithm. Using the definition of Gt and Lemma D.2.3,

(b) ≥
∑

t∈T E
k

:Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)
(
µ̄θ̂t−1

(x, a)−√γt‖φ(x, a)‖
V̄−1
t−1

)
±

∑
t∈T E

k
:¬Gt

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a) µ̄θ̂t−1
(x, a)︸ ︷︷ ︸

|·|≤LB

±
∑
t∈T E

k

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)
√
γt‖φ(x, a)‖

V̄−1
t−1

≥
∑
t∈T E

k

ft(ωt)−Mn,kBL− 2
∑
t∈T E

k

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)
√
γt‖φ(x, a)‖

V̄−1
t−1

≥
∑
t∈T E

k

ft(ωt)−Mn,kBL− 2
√
γnΨn,k. (10.18)

In the last step, we used
√
γt ≤ √γn (which is by definition O(logSn)) and defined

Ψn,k :=
∑
t∈T Ek

∑
x∈X ρ̂t−1(x)

∑
a∈A ωt(x, a)‖φ(x, a)‖V̄ −1

t−1
.

To wrap-up the regret bound we have obtained so far, summing over all phases,

Rexplore
n ≤ 2LB

∑
k<k

pk +

Kn∑
k≥k

pkµ
? + LB

Kn∑
k≥k

ζn,k︸ ︷︷ ︸
≤ζn

−
Kn∑
k≥k

∑
t∈T E

k

ft(ωt)

+ 2LB

Kn∑
k≥k

Mn,k︸ ︷︷ ︸
≤Mn

+2LBMn + 2
√
γn

Kn∑
k≥k

Ψn,k︸ ︷︷ ︸
≤Ψn

+2LB
√
Sn logSn.
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Here we defined

ζn :=
∑

t≤n:Et:Gt

∑
x∈X

|ρ̂t−1(x)− ρ(x)|, Ψn :=
∑

t≤n:Et

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)‖φ(x, a)‖
V̄−1
t−1

.

ζn can be bounded by Lemma D.2.5 and Ψn by Lemma D.2.6. Both terms are of order
O(
√
Sn logSn). In order to simplify notation, we keep the specific bounds implicit in the

remaining. Therefore, our partial regret bound is

Rexplore
n ≤ 2LB

∑
k<k

pk +

Kn∑
k≥k

pkµ
? −

Kn∑
k≥k

∑
t∈T E

k

ft(ωt)

+ 4LBMn + 2
√
γnΨn + LBζn + 2LB

√
Sn logSn. (10.19)

Bounding the Sum of Objective Values

Our goal here is to lower bound the sum of objective values. As before, fix some phase
index k ≥ k and let λ ≥ 0 be arbitrary. By recalling that the optimization process is reset
at the beginning of each phase and using Corollary D.2.1 with αλk = αωk = 1/

√
pk and

ω = ω?zk (the optimal solution of problem (Pzk )),∑
t∈T E

k

ft(ωt) ≥
∑
t∈T E

k

ht(ω
?
zk , λt, zk)− λ

∑
t∈T E

k

gt(ωt, zk)

−
(

log |A|+ b2ω + b2λ
2

+
(λ− λ1)2

2

)
√
pk. (10.20)

We recall that bλ and bω are the maximum sub-gradients in λ and ω, respectively. We
now lower-bound the first term on the right-hand side. Since ht(ω?zk , λt, zk) = ft(ω

?
zk

) +

λtgt(ω
?
zk
, zk), ft(ω?zk) ≥ −LB, gt(ω?zk , zk) ≥ − 1

zk
, and λt ≤ λmax, this term, evaluated

on steps where Gt does not hold, can be lower-bounded by
∑
t∈T Ek :¬Gt ht(ω

?
zk
, λt, zk) ≥

−(LB + λmax/zk)Mn,k. For any step t ∈ T Ek in which Gt holds, the optimism property
(Lemma D.2.4) yields

ft(ω
?
zk ) ≥

∑
x∈X

(ρ̂t−1(x)− ρ(x))
∑
a∈A

ω?zk (x, a)µθ?(x, a)︸ ︷︷ ︸
|·|≤LB

+f(ω?zk )

≥ f(ω?zk )− LB
∑
x∈X

|ρ̂t−1(x)− ρ(x)|,

and

gt(ω
?
zk , zk) ≥ inf

θ′∈Θalt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω?zk (x, a)dx,a(θ?, θ′)− 1

zk
± g(ω?zk )

≥ inf
θ′∈Θalt

∑
x∈X

(ρ̂t−1(x)− ρ(x))
∑
a∈A

ω?zk (x, a)dx,a(θ?, θ′) + g(ω?zk )

≥ g(ω?zk )− 2L2B2

σ2

∑
x∈X

|ρ̂t−1(x)− ρ(x)|.
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Combining these two and using λt ≤ λmax,∑
t∈T E

k
:Gt

ht(ω
?
zk , λt, zk) ≥

∑
t∈T E

k
:Gt

(
f(ω?zk ) + λtg(ω?zk )

)
− LB

(
1 +

2LBλmax

σ2

)
ζn,k.

Note that g(ω?zk) ≥ 0 since by assumption ω?zk is feasible for the optimization prob-
lem (Pzk). Furthermore,

∑
t∈T Ek :Gt

f(ω?zk) =
∑
t∈T Ek f(ω?zk) −∑t∈T Ek :¬Gt f(ω?zk)︸ ︷︷ ︸

|·|≤LB

≥

pkf(ω?zk) − LBMn,k. Therefore, we obtain the following lower-bound on the sum of
optimal objective values:∑
t∈T E

k

ht(ω
?
zk , λt, zk) ≥ pkf(ω?zk )− LB

(
1 +

2LBλmax

σ2

)
ζn,k − (2LB + λmax/zk)Mn,k.

Plugging this back into (10.20),∑
t∈T E

k

ft(ωt) ≥ pkf(ω?zk )− λ
∑
t∈T E

k

gt(ωt, zk)− aλ
√
pk

− LB
(

1 +
2LBλmax

σ2

)
ζn,k − (2LB + λmax/zk)Mn,k, (10.21)

where, for simplicity, we defined aλ :=
(

log |A|+ b2ω+b2λ
2 + (λ−λ1)2

2

)
. Summing over

all phases,
Kn∑
k≥k

∑
t∈T E

k

ft(ωt) ≥
Kn∑
k≥k

pkf(ω?zk )− λ
Kn∑
k≥k

∑
t∈T E

k

gt(ωt, zk)− aλ
Kn∑
k≥k

√
pk

− LB
(

1 +
2LBλmax

σ2

)
ζn − (2LB + λmax)Mn, (10.22)

where we used
∑Kn
k≥kMn,k ≤Mn,

∑Kn
k≥k ζn,k ≤ ζn, and zk ≥ 1.

Bounding the sum of constraints

Our next step is to upper bound
∑Kn
k≥k

∑
t∈T Ek :Et

gt(ωt, zk), the sum of constraints of the
policies played by the algorithm during feasible phases (those with zk ≥ 2z(θ?)). The
intuition is that this term cannot be large (i.e., it cannot be above O(log n)), otherwise
the exploitation test would trigger and we would not be exploring at step n. Using the
definition of gt(ω, zk) (Equation 10.9) and splitting the sum based on the good event
Kn∑
k≥k

∑
t∈T E

k

gt(ωt, zKt)

≤
∑

t≤n:Et

inf
θ′∈Θ̄t−1

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)d̄x,a(θ̂t−1, θ
′) +

2LB

σ2

√
γnΨn −

Kn∑
k≥k

∑
t∈T E

k

1

zk

≤
∑

t≤n:Et,Gt

inf
θ′∈Θ̄t−1

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)d̄x,a(θ̂t−1, θ
′)

︸ ︷︷ ︸
1©

+
2L2B2

σ2
Mn +

2LB

σ2

√
γnΨn −

Kn∑
k≥k

pk
zk
.
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Note that in the first step above we implicitly upper bounded the sum of KLs on the
feasible phases with the sum of KLs over all exploration rounds. We can use the definition
of Gt and the optimism (Lemma D.2.4) to upper bound the first sum by

1© ≤
∑

t≤n:Et,Gt

inf
θ′∈Θ̄t−1

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′) +
2LB

σ2

√
γnΨn

≤
∑

t≤n:Et,Gt

inf
θ′∈Θ̄t−1

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)︸ ︷︷ ︸
2©

+
2L2B2

σ2

∑
t≤n:Et,Gt

∑
x∈X

|ρ(x)− ρ̂t−1(x)|

︸ ︷︷ ︸
=ζn

+
2LB

σ2

√
γnΨn.

Furthermore, the first term can be upper bounded by replacing each set Θ̄t−1 over which
the infimum is taken by Θalt (if the two sets were different, such term would be zero).
Therefore,

2© ≤
∑

t≤n:Et,Gt

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)

≤ inf
θ′∈Θalt

∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)

︸ ︷︷ ︸
3©

, (10.23)

where we moved the infimum outside the outer sum and added the remaining steps where
Gt does not hold. Let Φx,a := φ(x, a)φ(x, a)T and Vn,e :=

∑
t≤n:Et

ΦXt,At be the
design matrix of the exploration rounds. Using the definition of dx,a,

3© =
1

2σ2
inf

θ′∈Θalt
(θ? − θ′)T

 ∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)Φx,a ± Vn,e

 (θ? − θ′)

≤ inf
θ′∈Θalt

 1

2σ2
‖θ? − θ′‖2Vn,e +

1

2σ2
‖θ? − θ′‖22

∥∥∥∥∥∥∥
∑

t≤n:Et

∑
x∈X
a∈A

ρ(x)ωt(x, a)Φx,a − Vn,e

∥∥∥∥∥∥∥
2


≤ inf
θ′∈Θalt

∑
x∈X
a∈A

NE
n (x, a)dx,a(θ?, θ′) +

2B2

σ2

∥∥∥∥∥∥∥
∑

t≤n:Et

∑
x∈X
a∈A

ρ(x)ωt(x, a)Φx,a − Vn,e

∥∥∥∥∥∥∥
2

≤ inf
θ′∈Θalt

∑
x∈X
a∈A

NE
n (x, a)dx,a(θ?, θ′) +

2B2
√
d

σ2

∥∥∥∥∥∥∥
∑

t≤n:Et

∑
x∈X
a∈A

ρ(x)ωt(x, a)Φx,a − Vn,e

∥∥∥∥∥∥∥
∞

.

Recall that Gn holds. Then, by using the definition of Gd to bound the norm,

3© ≤ inf
θ′∈Θalt

∑
x∈X

∑
a∈A

NE
n−1(x, a)dx,a(θ?, θ′)︸ ︷︷ ︸
4©

+
2B2L2

σ2
+

2B2L2

σ2

√
dSn log (dSn).
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Here we used Nn(x, a) = Nn−1(x, a) + 1 {Xn = x,An = a} and upper bounded the
KL at round n by its maximum value. Moreover, similarly to Lemma D.2.4 we can show
that

4© ≤ inf
θ′∈Θalt

∑
x∈X

∑
a∈A

NE
n−1(x, a)d̄x,a(θ̂n−1, θ

′) +
2LB
√
γn

σ2

∑
x∈X

∑
a∈A

NE
n−1(x, a)‖φ(x, a)‖

V̄−1
n−1︸ ︷︷ ︸

≤Ψn

.

The upper bound on the second term can be extracted from the proof of Lemma D.2.6.
The first term can be finally related to the exploitation test:

inf
θ′∈Θalt

∑
x∈X

∑
a∈A

NE
n−1(x, a)d̄x,a(θ̂n−1, θ

′) ≤ inf
θ′∈Θ̄n−1

∑
x∈X

∑
a∈A

NE
n−1(x, a)d̄x,a(θ̂n−1, θ

′)

=
1

2σ2
inf

θ′∈Θ̄n−1

‖θ̂n−1 − θ′‖2Vn−1

≤ 1

2σ2
inf

θ′∈Θ̄n−1

‖θ̂n−1 − θ′‖2V̄n−1
≤ βn−1

2σ2
,

where the equality follows from (10.5), the second-last inequality holds since V̄n−1 �
Vn−1, and the last inequality holds since the algorithm is exploring at step n. By gathering
all the results together, we get

Kn∑
k≥k

∑
t∈T E

K
:Et

gt(ωt, zKt) ≤
βn−1

2σ2
−

Kn∑
k≥k

pk
zk

+
2L2B2

σ2
Mn +

6LB

σ2

√
γnΨn +

2B2L2

σ2
ζn

+
2B2L2

σ2

(√
dSn log (dSn) + 1

)
. (10.24)

Back to the regret during exploration

So far we have (1) reduced the total regret during exploration to the sum of objective values
(Equation 10.19), (2) related this quantity to the optimal values of each phase (Equation
10.22), and (3) derived an upper bound to the total sum of constraints (Equation 10.24).
We now combine all these results. If we first plug (10.22) into (10.19),

Rexplore
n ≤ 2LB

∑
k<k

pk +

Kn∑
k≥k

pkµ
? −

Kn∑
k≥k

pkf(ω?zk ) + λ

Kn∑
k≥k

∑
t∈T E

k

gt(ωt, zk) + aλ

Kn∑
k≥k

√
pk

+ (6LB + λmax)Mn + 2
√
γnΨn + LB

(
2 +

2LBλmax

σ2

)
ζn + 2LB

√
Sn logSn.

(10.25)

Then, plugging (10.24) into this inequality,

Rexplore
n ≤ 2LB

∑
k<k

pk +

Kn∑
k≥k

pkµ
? −

Kn∑
k≥k

pkf(ω?zk ) + λ
βn−1

2σ2
− λ

Kn∑
k≥k

pk
zk

+ aλ

Kn∑
k≥k

√
pk

+

(
λ

2L2B2

σ2
+ 6LB + λmax

)
Mn +

(
2 +

6LBλ

σ2

)
√
γnΨn + 2LB

√
Sn logSn

+ LB

(
2 +

2LB(λmax + λ)

σ2

)
ζn +

2λB2L2

σ2

(√
dSn log (dSn) + 1

)
. (10.26)
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Let us simplify this expression so that it becomes more readable. First, we note that

Kn∑
k≥k

pkµ
? −

Kn∑
k≥k

pkf(ω?zk ) =

Kn∑
k≥k

pk
zk
zk(µ? − f(ω?zk ))︸ ︷︷ ︸

=u?(zk,θ
?)

=

Kn∑
k≥k

pk
zk
u?(zk, θ

?).

Taking the expectation of both sides, we obtain

E
[
Rexplore
n

]
≤ 2LB

∑
k<k

pk + E

Kn∑
k≥k

pk
zk
u?(zk, θ

?)

+ λ
βn−1

2σ2
− λE

Kn∑
k≥k

pk
zk


+ aλE

Kn∑
k≥k

√
pk

+ E
[
O(
√
Sn logSn)

]
.

The remaining expectations on the right-hand side are due to the fact that Kn (hence Sn)
is still random. Setting λ = v?(θ?) and combining the second and fourth terms, we get

Kn∑
k≥k

pk
zk
u?(zk, θ

?)− λ
Kn∑
k≥k

pk
zk

=

Kn∑
k≥k

pk
zk

(u?(zk, θ
?)− v?(θ?))

=
∑

k≥k:zk<z̄(θ
?)

pk
zk

(u?(zk, θ
?)− v?(θ?)) +

Kn∑
k:zk≥z̄(θ?)

pk
zk

(u?(zk, θ
?)− v?(θ?)) ,

where z̄(θ?) := maxx∈X
∑
a6=a?

θ?
(x)

η?(x,a)
ρ(x) was defined in Lemma 10.3.1. For k ≥ k,

we can use the perturbation bound (Lemma 10.3.1) on both terms. We obtain,∑
k≥k:zk<z̄(θ

?)

pk
zk

(u?(zk, θ
?)− v?(θ?)) ≤ BLz(θ?)

∑
k≥k:zk<z̄(θ

?)

pk
zk − z(θ?)

and
Kn∑
k≥k:

zk≥z̄(θ?)

pk
zk

(u?(zk, θ
?)− v?(θ?)) ≤ BLz(θ?)z?(θ?)

Kn∑
k≥k:

zk≥z̄(θ?)

pk
zk − z(θ?)

max

{
cΘ
√

2

σ
√
zk
,

1

zk

}
.

Partial regret bound Plugging these bounds into the expected regret,

E
[
Rexplore
n

]
≤ 2BL

∑
k<k

pk︸ ︷︷ ︸
I

+BLz(θ?)
∑
k≥k:

zk<z̄(θ
?)

pk
zk − z(θ?)

︸ ︷︷ ︸
II

+ v?(θ?)
βn−1

2σ2︸ ︷︷ ︸
III

+ aλE

Kn∑
k≥k

√
pk


︸ ︷︷ ︸

IV

+BLz(θ)z?(θ?)E

 Kn∑
k:zk≥z̄(θ?)

pk
zk − z(θ?)

max

{
cΘ
√

2

σ
√
zk
,

1

zk

}
︸ ︷︷ ︸

V

+E
[
O(
√
Sn logSn)

]
︸ ︷︷ ︸

VI

.

(10.27)

The six terms constituting the bound are (from left to right):
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I. finite regret suffered in the phases where the optimization problem is infeasible;

II. finite regret suffered in the phases in which we do not know much about the conver-
gence rate of u?(z, θ?) to v?(θ?). This term is likely an artefact of the analysis;

III. asymptotically-optimal regret rate;

IV. regret suffered due to the incremental gradient updates and inversely proportional to
the step sizes;

V. regret suffered due to the fact that we solve (Pz) instead of (P);

VI. other low-order terms mostly due to the concentration bounds.

Note that, since βn−1 = cn,1/n and cn,1/n → 2σ2 log n as n→∞,

lim sup
n→∞

v?(θ?)βn−1

2σ2 logn
= v?(θ?),

which is the asymptotically-optimal regret rate as prescribed by (P).

Bounding the total number of phases

So far we proved an upper bound on the regret incurred during exploration which depends
on the (random) number of phases. We now upper bound this random variable as a function
of zk and pk. In particular, we achieve this by focusing on the constraints only. The
intuition is that, if the primal-dual algorithm works, then the sequence of policies played
cannot violate the constraints at each phase too much. At the same time, these policies
cannot satisfy the constraints too much, otherwise the exploitation test would trigger and
the algorithm would not be exploring at step n. Relating these two we obtain a bound on
Kn.

Recall that, as we assumed before, n is an exploration step in which the good event
Gn holds. Using (10.23) and the equations thereafter, we have

inf
θ′∈Θalt

∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)

≤ βn−1

2σ2
+

2LB

σ2

√
γnΨn +

2B2L2

σ2

(√
dSn log (dSn) + 1

)
. (10.28)

where the last two terms are O(
√
Sn logSn).

We now provide a lower-bound on the same quantity. Fix a phase index k ≥ k. From
(10.21), we have∑

t∈T E
k

(ft(ωt) + λgt(ωt, zk)) ≥ pkf(ω?zk )− aλ
√
pk − (2LB + λmax)Mn,k

− LB
(

1 +
2LBλmax

σ2

)
ζn,k, (10.29)
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The left-hand side can be upper-bounded by using the optimism property to obtain the
true objective and constraint. Regarding the objective function, we have∑
t∈T E

k

ft(ωt) =
∑

t∈T E
k

:Gt

ft(ωt) +
∑

t∈T E
k

:¬Gt

ft(ωt)

≤
∑
t∈T Ek :
Gt

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)µ̄θ̂t−1
(x, a) +

∑
t∈T Ek :
¬Gt

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)µ̄θ̂t−1
(x, a) +

√
γnΨn,k

≤
∑

t∈T E
k

:Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)µ̄θ̂t−1
(x, a)

︸ ︷︷ ︸
(a)

+BLMn,k +
√
γnΨn,k.

Regarding the sum over the good events, using Lemma D.2.4,

(a) ≤
∑

t∈T E
k

:Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)µθ?(x, a) +
√
γnΨn,k

≤
∑
t∈T E

k

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)µθ?(x, a)︸ ︷︷ ︸
=f(ωt)

+BL
∑

t∈T E
k

:Gt

∑
x∈X

|ρ̂t(x)− ρ(x)|

︸ ︷︷ ︸
ζn,k

+
√
γnΨn,k.

(10.30)

Therefore, ∑
t∈T E

k

ft(ωt) ≤
∑
t∈T E

k

f(ωt) +BLζn,k + 2
√
γnΨn,k +BLMn,k.

We can follow the same reasoning to upper bound the sum of constraints. Since the KLs
are upper-bounded by 2B2L2/σ2,∑

t∈T E
k

gt(ωt, zk) ≤
∑
t∈T E

k

g(ωt, zk) +
2B2L2

σ2
ζn,k +

4BL

σ2

√
γnΨn,k +

2B2L2

σ2
Mn,k.

Combining the bounds on f and g,∑
t∈T E

k

(f(ωt) + λg(ωt, zk)) ≥ pkf(ω?zk )−
(

3BL+ λmax + λ
2B2L2

σ2

)
Mn,k − aλ

√
pk

− 2BL

(
1 +

(λmax + λ)BL

σ2

)
ζn,k −

(
2 +

4BLλ

σ2

)
√
γnΨn,k.

Let ω̄t,k := 1
pk

∑
t∈T Ek ωt be the average policy played in phase k. Since f is linear and

g is concave,
∑
t∈T Ek (f(ωt) + λg(ωt, zk)) ≤ pkf(ω̄t,k) + λpkg(ω̄t,k, zk). We now set

λ =

{
2λmax if [g(ω̄t,k, zk)]− 6= 0

0 otherwise

where [x]− = min{x, 0}. Therefore,

pk
(
f(ω̄t,k)− f(ω?zk ) + 2λmax[g(ω̄t,k, zk)]−

)
≥ −

(
3BL+ λmax + λmax

4B2L2

σ2

)
Mn,k

− aλmax

√
pk − 2BL

(
1 +

3λmaxBL

σ2

)
ζn,k −

(
2 +

8BLλmax

σ2

)
√
γnΨn,k.
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Lemma 10.3.3 together with Assumption 10.5.1 ensures that, for k ≥ k, λ?(zk, θ?) ≤
λmax. Thus, we can apply Theorem 42 of Efroni et al. (2020) and obtain

pkg(ω̄t,k, zk) ≥ pk[g(ω̄t,k,zk)]− ≥ −
(

3BL+ λmax + λmax
4B2L2

σ2

)
Mn,k

2λmax
−
aλmax

√
pk

2λmax

− 2BL

(
1 +

3λmaxBL

σ2

)
ζn,k

2λmax
−
(

2 +
8BLλmax

σ2

) √
γnΨn,k

2λmax
.

Summing both sides over all phases,
Kn∑
k≥k

pkg(ω̄t,k, zk) =

Kn∑
k≥k

pk

(
inf

θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

ω̄t,k(x, a)dx,a(θ?, θ′)− 1

zk

)

=

Kn∑
k≥k

 inf
θ′∈Θalt

∑
t∈T E

k

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)− pk
zk


≤ inf
θ′∈Θalt

∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)dx,a(θ?, θ′)−
Kn∑
k≥k

pk
zk
.

Therefore,

inf
θ′∈Θalt

∑
t≤n:Et

∑
x∈X
a∈A

ρ(x)ωt(x, a)dx,a(θ?, θ′) ≥
Kn∑
k≥k

pk
zk
−
(

3BL+ λmax + λmax
4B2L2

σ2

)
Mn

2λmax

−
aλmax

√
pk

2λmax
− 2BL

(
1 +

3λmaxBL

σ2

)
ζn

2λmax
−
(

2 +
8BLλmax

σ2

) √
γnΨn

2λmax
.

Combining this with (10.28), we obtain the following inequality:
Kn∑
k≥k

pk
zk
≤ βn−1

2σ2
+
aλmax

√
pk

2λmax
+

2LB

σ2

√
γnΨn +

2B2L2

σ2

√
dSn log (dSn)

+

(
3BL+ λmax + λmax

4B2L2

σ2

)
Mn

2λmax

+ 2BL

(
1 +

3λmaxBL

σ2

)
ζn

2λmax
+

(
2 +

8BLλmax

σ2

) √
γnΨn

2λmax
.

Recall that, by definition, Sn =
∑Kn
k=0 pk. Furthermore, by Cauchy-Schwartz inequality,∑Kn

k=0

√
pk ≤

√
Kn

∑Kn
k=0 pk. Simplifying this a little,

Kn∑
k≥k

pk
zk
≤ βn−1

2σ2
+O


√√√√Kn

Kn∑
k=0

pk

+O


√√√√(Kn∑

k=0

pk

)
log

(
Kn∑
k=0

pk

) . (10.31)

Choosing zk and pk

We choose the exponential schedule zk = z0e
k and pk = zke

rk, where r will be specified
later. The left-hand side of (10.31) is

Kn∑
k≥k

pk
zk

=

Kn∑
k≥k

erk ≥ erKn ,
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while the right-hand side is

βn−1

2σ2
+O


√√√√Kn

Kn∑
k=0

e(r+1)k

+O


√√√√(Kn∑

k=0

e(r+1)k

)
log

(
Kn∑
k=0

e(r+1)k

)
≤ βn−1

2σ2
+O

(√
K2
ne(r+1)Kn

)
.

For r > 1, the resulting inequality yieldsKn ≤ O( 1
r log βn−1), i.e.,Kn ≤ O( 1

r log log n)
by definition of βn−1. Let us recall (10.27):

E
[
Rexplore
n

]
≤ 2BL

∑
k<k

pk︸ ︷︷ ︸
I

+BLz(θ?)
∑

k≥k:zk<z̄

pk
zk − z(θ?)︸ ︷︷ ︸

II

+ v?(θ?)
βn−1

2σ2︸ ︷︷ ︸
III

+ aλE

Kn∑
k≥k

√
pk


︸ ︷︷ ︸

IV

+BLz(θ)z?(θ?)E

 Kn∑
k:zk≥z̄(θ?)

pk
zk − z(θ?)

max

{
cΘ
√

2

σ
√
zk
,

1

zk

}
︸ ︷︷ ︸

V

+E
[
O(
√
Sn logSn)

]
︸ ︷︷ ︸

VI

.

(10.32)

We bound the remaining terms separately.

Term I∑
k<k

pk = z0

∑
k<k

e(r+1)k ≤ z0e
(r+1) log

(
2z(θ?)
z0

)
log

(
2z(θ?)

z0

)
= z0

(
2z(θ?)

z0

)r+1

log

(
2z(θ?)

z0

)
,

where we used that, from the definition of k and zk, it must be that k < log(2z(θ?)/z0).
Thus, I ≤ 2BLz0(2z(θ?)/z0)r+1 log(2z(θ?)/z0).

Term II∑
k≥k:zk<z̄(θ

?)

pk
zk − z(θ?)

=
∑

log
(

2z(θ?)
z0

)
≤k<log

(
z̄(θ?)
z0

)
z0e

(r+1)k

z0ek − z(θ?)

=
∑

log
(

2z(θ?)
z0

)
≤k<log

(
z̄(θ?)
z0

)
z0e

k

z0ek − z(θ?)︸ ︷︷ ︸
≤2

erk ≤ 2(z̄(θ?)/z0)r log(z̄(θ?)/z0).

Thus,

II ≤ 2BLz(θ?)(z̄(θ?)/z0)r log(z̄(θ?)/z0).

Term IV The total number of exploration rounds is

Sn =

Kn∑
k=0

pk = z0

Kn∑
k=0

e(r+1)k ≤ z0e
(r+1)(Kn+1) ≤ O((logn)

r+1
r ).
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Therefore,

IV ≤

√√√√Kn

Kn∑
k=0

pk ≤ O((log logn)1/2(logn)
r+1
2r ).

Term V We consider two cases, based on which of the inner terms is the maximum. In
the first case, we need to bound

Kn∑
k:zk≥z̄(θ?)

pk
(zk − z(θ?))

√
zk

=

Kn∑
k≥log

(
z̄(θ?)
z0

)
z0e

(r+1)k

(z0ek − z(θ?))
√
z0ek

=
1√
z0

Kn∑
k≥log

(
z̄(θ?)
z0

)
z0e

k

(z0ek − z(θ?))︸ ︷︷ ︸
≤2

e(r−1/2)k ≤ 2√
z0

Kn∑
k≥log

(
z̄(θ?)
z0

) e(r−1/2)k

≤ 2√
z0

∫ Kn+1

log
(
z̄(θ?)
z0

) e(r−1/2)kdk =
2√
z0

[
e(r−1/2)k

r − 1/2

]Kn+1

log
(
z̄(θ?)
z0

)
=

2

(r − 1/2)
√
z0

(
e(r−1/2)(Kn+1) − (z̄(θ?)/z0)r−1/2

)
.

Since Kn ≤ O( 1
r log log n), this term is O((log n)

r−1/2
r ). If the other term is the maxi-

mum, then the same procedure yields a O((log n)
r−1
r ) dependency. Thus,

V ≤ O((logn)
r−1/2
r ).

Term VI We have VI ≤ O((log n)
r+1
2r ) as in Term IV.

Final Bound Using r = 2, we obtain the following bound on the expected regret during
exploration:

E
[
Rexplore
n

]
≤ 2BLz0(2z(θ?)/z0)3 log(2z(θ?)/z0)

+ 2BLz(θ?)(z̄(θ?)/z0)2 log(z̄(θ?)/z0) + v?(θ?)
βn−1

2σ2
+O((log logn)

1
2 (logn)

3
4 ),

which is asymptotically optimal.

Numerical Simulations

We compare SOLID to LinUCB, LinTS, and OAM. For SOLID, we set βt = σ2(log(t)+
d log log(n)) and γt = σ2(log(St)+d log log(n)) (i.e., we remove all numerical constants)
and we use the exponential schedule for phases defined in Theorem 10.5.1. For OAM,
we use the same βt for the explore/exploit test and we try different values for the forced-
exploration parameter ε. LinUCB uses the confidence intervals from Theorem 2 in Abbasi-
Yadkori et al. (2011) with the log-determinant of the design matrix, and LinTS is as defined
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Figure 10.1: Toy problem with 2 contexts and (left) ρ(x1) = 0.5, (center) ρ(x1) = 0.9,
(right) ρ(x1) = 0.99.

in Agrawal and Goyal (2013) but without the extra-sampling factor
√
d used to prove its

frequentist regret. Both are without numerical constants as for SOLID. All plots are the
results of 100 runs with 95% Student’s t confidence intervals.

Synthetic Problems

Toy contextual linear bandit with structure. We start with a problem with |X | = 2
and |A|, d = 3. Let xi (ai) be the i-th context (arm). We have φ(x1, a1) = [1, 0, 0],
φ(x1, a2) = [0, 1, 0], φ(x1, a3) = [1 − ξ, 2ξ, 0], φ(x2, a1) = [0, 0.6, 0.8], φ(x2, a2) =
[0, 0, 1], φ(x2, a3) = [0, ξ/10, 1 − ξ] and θ? = [1, 0, 1]. We consider a balanced con-
text distribution ρ(x1) = ρ(x2) = 0.5. This is a two-context counterpart of the example
presented by (Lattimore and Szepesvari, 2017) to show the asymptotic sub-optimality of
optimism-based strategies. The intuition is that, for ξ small, an optimistic strategy pulls a2

in x1 and a1 in x2 only a few times since their gap is quite large, and suffers high regret
(inversely proportional to ξ) to figure out which of the remaining arms is optimal. On the
other hand, an asymptotically optimal strategy allocates more pulls to “bad" arms as they
bring information to identify θ?, which in turns avoids a regret scaling with ξ. This indeed
translates into the empirical performance reported in Figure 10.1-(left), where SOLID
effectively exploits the structure of the problem and significantly reduces the regret com-
pared to LinTS and LinUCB. Actually, not only the regret is smaller but the “trend” is
better. In fact, the regret curves of LinUCB and LinTS have a larger slope than SOLID’s,
suggesting that the gap may increase further with n, thus confirming the theoretical finding
that the asymptotic performance of SOLID is better. OAM has a similar behavior, but the
actual performance is worse than SOLID and it seems to be very sensitive to the forced
exploration parameter, where the best performance is obtained for ε = 0.0, which is not
theoretically justified.

We also study the influence of the context distribution. We first notice that solving (P)
leads to an optimal exploration strategy η? where the only sub-optimal arm with non-
zero pulls is a1 in x2 since it yields lower regret and similar information than a2 in x1.
This means that the lower bound prescribes a greedy policy in x1, deferring exploration
to x2 alone. In practice, tracking this optimal allocation might lead to poor finite-time
performance when the context distribution is unbalanced towards x1, in which case the
algorithm would take time proportional to 1/ρ(x2) before performing any meaningful ex-
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Figure 10.2: Randomly generated bandit problems with d = 8, |X | = 4, and |A| =
4, 8, 16, 32.

ploration. We verify these intuitions empirically by considering the case of ρ(x1) = 0.9
and ρ(x1) = 0.99 (middle and right plots in Figure 10.1 respectively). SOLID is con-
sistently better than all other algorithms, showing that its performance is not negatively
affected by ρmin. On the other hand, OAM is more severely affected by the context distri-
bution. In particular, its performance with ε = 0 significantly decreases when increasing
ρ(x1) and the algorithm reduces to an almost greedy strategy, thus suffering linear regret in
some problems. In this specific case, forcing exploration leads to slightly better finite-time
performance since the algorithm pulls the informative arm a2 in x1, which is however not
prescribed by the lower bound.

Random problems. We evaluate the impact of the number of actions |A| in randomly
generated structured problems with d = 8 and |X | = 4. We run each algorithm for n =
50000 steps. For OAM, we set forced-exploration ε = 0.01 and solve (P) every 100 rounds
to speed-up execution as computation becomes prohibitive. The plots in Figure 10.2 show
the regret over time for |A| = 4, 8, 16, 32. This test confirms the advantage of SOLID
over the other methods. Interestingly, the regret of SOLID does not seem to significantly
increase as a function of |A|, thus supporting its theoretical analysis. On the other hand,
the regret of OAM scales poorly with |A| since forced exploration pulls all arms in a round
robin fashion.

Real Data
We use the Jester Dataset (Goldberg et al., 2001) which consists of joke ratings in a con-
tinuous range from −10 to 10 for a total of 100 jokes and 73421 users. We select a subset
of 40 jokes and 19181 users rating all these 40 jokes.

We build a linear contextual problem as follows. We first extract separate 36-dimensional
user (context) and joke (arm) features via a low-rank matrix factorization. Then, we con-
catenate these user and joke features (thus obtaining vectors with 72 entries) and fit a
64× 64 neural-network with ReLU non-linearities to predict the ratings of a random sub-
set of 75% of the users, using these feature vectors as inputs. We obtain R2 ' 0.95 on
the remaining 25% users. Finally, we take the features extracted in the last layer of the
network as the features for our bandit problem and the parameters of the same layer as
θ?. Rewards in our bandit problem are generated from this linear model by perturbing the
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Figure 10.3: Experiment on a real dataset (Jester).

prediction with N (0, 0.52) noise. We thus obtain a problem with d = 65 (the 64 hidden
neurons plus the bias term), 40 arms (the jokes), and a total of 19181 users.

We run the algorithms for 2 · 106 steps, with each run randomizing a subset of 1%
of the total users (hence |X | = 191) and using all 40 arms. For SOLID, we use the same
parameters as in the experiment with random models. Due to the computational bottleneck
demonstrated in the previous experiments, we could not run OAM on this problem. The
results are shown in Figure 10.3 and confirm that SOLID achieves superior performance
than the other baselines.
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CHAPTER11
Best Policy Identification in MDPs with

Misspecified Structure

This chapter is based on the paper “Sequential Transfer in Reinforcement Learning with a
Generative Model” co-authored with Riccardo Poiani and Marcello Restelli and published
at ICML 2020.

Introduction

So far we have studied the problem of exploration in structured domains under the as-
sumption of known structure. Unfortunately, this assumption rarely holds when the struc-
ture itself is learned from experience, e.g., from a sequence of tasks as in Section 8.3. In
fact, as in any estimation problem, one must suffer an estimation error due the structure
being learned from a finite set of previously-faced tasks (Brunskill and Li, 2013; Azar
et al., 2013a) and possibly an approximation error due to a wrong modeling of the space
of possible structures (see, e.g., Ghosh et al. (2017) for linear bandits). When the structure
provided as input to the agent is misspecified (i.e., it is only an approximation of the true
one), one must be more careful in exploiting it to bias the learning process. In fact, di-
rectly using a highly-misspecified structure as we have seen in the previous chapters could
lead to the learning process being worse than learning without prior knowledge, that is,
to negative transfer. Here we would expect a good agent to be able to take advantage
of the structure whenever the level of misspecification is small, while falling back to the
“no-transfer” case, without suffering any performance loss, whenever the misspecification
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is large.
In this chapter, we study the problem of learning with misspecified structure in the

context of best policy identification in MDPs, where the goal is to actively interact with
the target MDP so as so identify a near-optimal policy while suffering a small sample com-
plexity. In particular, we represent the structured domain as a finite set of possible MDPs
that contains the one to be faced, and suppose that the agent is provided only with an ap-
proximation to this MDPs. For this structured/transfer setting, two classes of approaches
exist. Approaches in the first class (Mann and Choe, 2013; Abel et al., 2018) seek jump-
start initializers. The idea is to use the given structure to compute a provably optimistic
initialization for any existing PAC algorithm (Strehl et al., 2009) which is directly used to
learn a near-optimal policy for the target task. Assuming this initialization to be tighter
than the one used when learning from scratch, the overall sample complexity is reduced.
However, since these initializers are computed before receiving the new task, the agent,
though starting from good performance, might still take a long time before converging to
near-optimal behavior. An alternative approach is to spend some initial interactions with
the target to gather information about the task itself, so as to better decide what to transfer.
For instance, the agent could aim at identifying which of the MDPs in the approximate
structure is most similar to the target. If the similarity is actually large, transferring its
optimal policy would instantaneously lead to near-optimal behavior. This task identifica-
tion problem has been studied by Dyagilev et al. (2008); Brunskill and Li (2013); Liu et al.
(2016b). One downside is that these approaches do not actively seek information to reduce
identification time (or, equivalently, sample complexity), in part because it is non-trivial
to find which actions are the most informative given misspecified structural knowledge.
In fact, as we have seen for bandits, when provided with structure, different state-action
pairs might provide very different information about the underlying MDP model and, thus,
about its solution.

In this chapter, we follow this second line of works. We propose Policy Transfer
from Uncertain Models (PTUM), an algorithm that, under the availability of a generative
model, actively explores the target MDP to identify a near-optimal policy while using the
misspecified structure to reduce the sample complexity for this purpose. Our approach
sheds light on how to actively explore the target MDP when provided with imprecise
structure, i.e., on what state-action pairs are most informative for discriminating between
imprecise MDP models. Furthermore, it can be readily combined with a structure learning
mechanism in a multi-task/sequential transfer setting (see Section 8.3).1 The idea behind
PTUM is quite simple. The algorithm maintains a confidence set of all MDP models
in the given structure that are “compatible” with the previously-observed samples. At
each step, it queries the state-action pair where two MDP models in the confidence set
are maximally distant, with the distance computed both in terms of their rewards and
transition probabilities. This is used as a proxy for the state-action pair whose samples
would be maximally informative for discriminating any “wrong” MDP from the true one
being faced. We show that the sample complexity of PTUM is proportional to the one of
an oracle strategy visiting the state-action pairs that yield the maximum information for
discriminating between models, despite these state-action pairs being unknown a-priori.

1In the original paper (Tirinzoni et al., 2020c), we actually show how to combine PTUM with a spectral
method for structure learning in a sequential setting with temporally-correlated tasks. Since this result mostly
builds on top of the work of Azar et al. (2013a), it was not reported in this document.
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Finally, we empirically verify our theoretical results, in particular by studying the different
behaviors of identification and (optimistic) jumpstart strategies.

MDPs with Misspecified Structure

We consider a family of parameterized MDPs MΘ = {Mθ}θ∈Θ,Mθ = (S,A, Pθ, Uθ, γ).
For simplicity, we assume that the set of realizable parameters Θ (and thus MΘ) is finite,
though our approach and its analysis easily extend to the case of infinite/continuous pa-
rameters as in Chapter 9. We assume, without loss of generality, that reward distributions
Uθ are supported in [0, 1] for all MDPs in Θ and denote by rθ the corresponding mean
rewards. We use an infinite-horizon discounted formulation and denote by V πθ (s) the
value function of a (deterministic) policy π in MDP Mθ, and similarly for V ?θ (s). We
define σrθ(s, a)2 := VarUθ(·|s,a)[R] as the variance of the reward in s, a for taskMθ, and
σpθ (s, a; θ′)2 := VarPθ(·|s,a)[V

?
θ′(S

′)] as the variance of the optimal value function ofMθ′

under the transition model ofMθ. To simplify the exposition, we shall alternatively use
the standard vector notation. For instance, V ?θ ∈ R|S| is the vector of optimal values,
pθ(s, a) ∈ R|S| is the vector of transition probabilities from s, a, rθ ∈ R|S||A| is the flat-
tened reward matrix, and so on. We the define the following two measures of distance
between two MDPsMθ,Mθ′ :

Γrs,a(θ, θ′) := |rθ(s, a)− rθ′(s, a)|, (11.1)

Γps,a(θ, θ′) := |(pθ(s, a)− pθ′(s, a))TV ?θ |. (11.2)

This measures how much the expected return of an agent taking s, a and acting optimally
inMθ changes when the first transition is underMθ′ .

Problem Setting. The agent faces an unknown task θ? ∈ Θ. Differently from the pre-
vious chapters, the agent has not access to the exact set of models MΘ but only to an
approximation M̃Θ = {M̃θ}θ∈Θ, where we overload the notation by using tildes to in-
dicate quantities related to approximate models. We assume that an upper bound to the
approximation error is known.

Assumption 11.2.1 (Maximum approximation error). There exists a known scalar ∆ ≥ 0
such that, for each θ ∈ Θ,

max
s∈S,a∈A

|rθ(s, a)− r̃θ(s, a)| ≤ ∆,

max
s∈S,a∈A

max
θ′∈Θ

|(pθ(s, a)− p̃θ(s, a))T Ṽ ?θ′ | ≤ ∆,

max
s∈S,a∈A

|σrθ(s, a)− σ̃rθ(s, a)| ≤ ∆,

max
s∈S,a∈A

max
θ′∈Θ

|σpθ (s, a; θ′)− σ̃pθ (s, a; θ′)| ≤ ∆.

The last two conditions are needed since the algorithm we shall propose explicitly con-
siders the local variances to find informative state-action pairs. We note that this assump-
tion can be satisfied in practice when learning the MDP models with suitable techniques,
such as spectral methods (Azar et al., 2013a). Given ε, δ > 0 as input, the agent’s goal is to
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Algorithm 9 Policy Transfer from Uncertain Models (PTUM)

Require: Set of approximate MDPs {M̃θ}θ∈Θ, accuracy ε, confidence δ, number of sam-
ples n, maximum approximation error ∆

Ensure: An ε-optimal policy forMθ? with probability 1− δ
1: Initialize: Θ̃0 ← Θ
2: // CHECK ACCURACY CONDITION
3: If ∆ ≥ ε(1−γ)

4(1+γ) → Stop and run (ε, δ)-PAC algorithm
4: // TRANSFER MODE
5: for t = 1, 2, . . . , n do
6: // STEP 1. BUILD EMPIRICAL MDP MODEL
7: r̂t(s, a)← 1

Nt−1(s,a)

∑t−1
h=1 1 {Sh = s,Ah = a}Rh

8: p̂t(s
′|s, a)← 1

Nt−1(s,a)

∑t−1
h=1 1 {Sh = s,Ah = a, S′h = s′}

9: σ̂rt (s, a)2 ← 1
Nt−1(s,a)−1

∑t−1
h=1 1 {Sh = s,Ah = a} (Rh − r̂t(s, a))2

10: σ̂pt (s, a; θ′)2 ← 1
Nt−1(s,a)−1

∑t−1
h=1(Ṽ ?θ′(S

′
h)− p̂t(s, a)T Ṽ ?θ′)

2

11: // STEP 2. UPDATE CONFIDENCE SET
12: Θ̃t ←

{
θ ∈ Θ̃t−1

∣∣ (11.3)-(11.6) hold for all s, a and θ′ ∈ Θ
}

13: // STEP 3. CHECK STOPPING CONDITION
14: If there exists θ ∈ Θ̃t such that for all θ′ ∈ Θ̃t and s ∈ S we have Ṽ π̃

?
θ

θ′ (s) ≥
Ṽ ?θ′(s)− ε+ 2∆(1+γ)

1−γ → Stop and return π̃?θ
15: // STEP 4. QUERY GENERATIVE MODEL
16: Irt (s, a)← maxθ,θ′∈Θ̃t

Irs,a(θ, θ′)
17: Ipt (s, a)← maxθ,θ′∈Θ̃t

Ips,a(θ, θ′)
18: (St, At)← argmaxs,a max {Irt (s, a), Ipt (s, a)}
19: Obtain S′t ∼ Pθ?(·|St, At) and Rt ∼ Uθ?(·|St, At)
20: end for
21: If the algorithm did not stop→ Run (ε, δ)-PAC algorithm

identify a policy that, with probability at least 1− δ, is ε-optimal forMθ? . We recall that
a policy π is ε-optimal forMθ if V πθ (s) ≥ V ?θ (s)− ε for all states s. We assume that the
agent can access a generative model of state-action pairs forMθ? . Similarly to experimen-
tal optimal design (Pukelsheim, 2006), the agent can perform at most n > 0 experiments
for identification, where each experiment consists in choosing an arbitrary state-action pair
s, a and receiving a random next-state S′ ∼ Pθ?(·|s, a) and reward R ∼ Uθ?(·|s, a). After
this identification phase, the agent, if possible, has to output an ε-optimal policy and starts
interacting with the environment in the standard online fashion.

Policy Transfer from Uncertain Models

We introduce Policy Transfer from Uncertain Models (PTUM),2 whose pseudo-code
is provided in Algorithm 9. Given the approximate models {M̃θ}θ∈Θ, whose maximum

2The name “policy transfer” derives from the sequential transfer setting in the original paper (Tirinzoni et al.,
2020c) where the agent approximates the set of MDPs using the source tasks and uses PTUM to quickly identify
a near-optimal policy to transfer to the target.
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error is bounded by ∆ from Assumption 11.2.1, and two values ε, δ > 0, PTUM returns
a policy which, with probability at least 1 − δ, is ε-optimal for the target taskMθ? . The
main intuition behind how the algorithm exploits structure is that, if the approximate mod-
els are accurate enough so that one is close to the targetMθ? , then it is possible to restrict
the search for an ε-optimal policy to the set of optimal policies {π̃?θ}θ∈Θ for the MDPs
in M̃Θ. In order to achieve this, PTUM starts by checking if the approximate models
are too inaccurate (i.e., ∆ is large) in line 3. If this is the case, the transfer of a policy
among the optimal ones of M̃Θ might actually lead to poor performance in the target task,
i.e., negative transfer occurs. In this case, PTUM stops and it falls back to not exploiting
structure at all by running any (ε, δ)-PAC3 algorithm to obtain an ε-optimal policy. Al-
though the condition at line 3 seems restrictive, as ∆ is required to be below a factor of ε,
we conjecture this dependency to be nearly-tight (at least in a worst-case sense). In fact,
Feng et al. (2019) have recently shown that the sole knowledge of a poorly-approximate
model cannot reduce the worst-case sample complexity of any agent seeking an ε-optimal
policy. If the condition at line 3 fails, i.e., the models are accurate enough, we say that
the algorithm enters the transfer mode. That is, the approximate models can be safely
relied on and PTUM seeks one of their optimal policies to transfer. Here, the generative
model is queried online until an ε-optimal policy is found. Similarly to existing works on
model identification Dyagilev et al. (2008); Brunskill and Li (2013), the algorithm pro-
ceeds by elimination. At each time-step t (up to at most n), we keep a set Θ̃t ⊆ Θ of those
models, called active, that are likely to be (close approximations of) the target θ?. Then,
the algorithm chooses the next state-action pair St, At to query the generative model so
that the samples from St, At are informative to eliminate one of the “wrong” models from
the active set. This process is iterated until the algorithm finds a policy that is ε-optimal
for all active models, in which case the algorithm stops and returns such policy, or un-
til n samples are reached, in which case the algorithm runs any (ε, δ)-PAC method. We
shall discuss later how to make use of the information collected with the generative model
whenever PTUM does not stop in the allowed sample budget. We now describe these main
steps in detail.

Step 1. Building the empirical MDP. In order to find the set of active models Θ̃t at time
t, the algorithm builds an empirical MDP as a proxy for the true one. Let Nt−1(s, a) :=∑t−1
h=1 1 {Sh = s,Ah = a} be the number of samples collected from s, a up to time t− 1.

First, the algorithm estimates, for each s, a, the empirical rewards r̂t(s, a) and transition
probabilities p̂t(s, a) (lines 7-8). If Nt−1(s, a) = 0, these quantities are arbitrarily initial-
ized. Then, it computes the empirical variance of the rewards σ̂rt (s, a)2 and of the optimal
value functions σ̂pt (s, a; θ′)2 for each θ′ ∈ Θ (lines 9-10). Similarly, if Nt−1(s, a) < 2,
these quantities and arbitrarily initialized.

Step 2. Building the confidence set We define the confidence set Θ̃t as the set of models
that are “compatible" with the empirical MDP in all steps up to t. Formally, a model θ ∈ Θ
belongs to the confidence set Θ̃t at time t if it was active before (i.e., θ ∈ Θ̃t−1) and the

3We recall that an algorithm is (ε, δ)-PAC if, with probability 1− δ, it computes an ε-optimal policy using a
polynomial number of samples in the relevant problem-dependent quantities Strehl et al. (2009).
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following conditions are satisfied for all s ∈ S, a ∈ A, and θ′ ∈ Θ:

|r̂t(s, a)− r̃θ(s, a)| ≤ Crt,δ(s, a), (11.3)

|(p̂t(s, a)− p̃θ(s, a))T Ṽ ?θ′ | ≤ Cpt,δ(s, a, θ′), (11.4)

|σ̂rt (s, a)− σ̃rθ(s, a)| ≤ Cσrt,δ(s, a), (11.5)

|σ̂pt (s, a; θ′)− σ̃pθ (s, a; θ′)| ≤ Cσpt,δ(s, a). (11.6)

Intuitively, an approximate model belongs to the confidence set if its distance to the em-
pirical MDP does not exceed, in any component, a suitable confidence interval Ct,δ(s, a).
Alternatively, we say that a model is eliminated from the confidence set (i.e., it will never
be active again) as soon as it is not compatible with the empirical MDP. These confidence
intervals are obtained from standard applications of Bernstein’s inequality Boucheron et al.
(2003) as follows:

Crt,δ(s, a) :=

√
2σ̂rt (s, a)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

7 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)
+ ∆,

Cpt,δ(s, a) :=

√
2σ̂pt (s, a; θ′)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

7
1−γ log 8|S||A|n(|Θ|+1)

δ

3(Nt−1(s, a)− 1)
+ ∆,

Cσ
r

t,δ(s, a) :=

√
2 log 4|S||A|n(|Θ|+1)

δ

Nt−1(s, a)− 1
+ ∆,

Cσ
p

t,δ (s, a) :=
1

1− γ

√
2 log 4|S||A|n(|Θ|+1)

δ

Nt−1(s, a)− 1
+ ∆.

We set the confidence intervals to infinity if Nt(x, a) < 2. As we shall see, these confi-
dence values are chosen so that, with probability at least 1 − δ, the target task θ? is never
eliminated from Θ̃t. We note that the dependences on the sample budget n can be removed
by using adaptive (e.g., log t) schedules.

Step 3. Checking whether to stop After building the confidence set, the algorithm
checks whether the optimal policy of some active model is (ε − 2∆ 1+γ

1−γ )-optimal in all
other models in Θ̃t, in which case it stops and returns this policy. The extra 2∆ 1+γ

1−γ factor
is needed to handle the model approximation error and, as we shall see in our analysis, it
ensures that the returned policy is also ε-optimal forMθ? .

Step 4. Deciding where to query the generative model The final step involves choos-
ing the next state-action pair St, At from which to obtain a sample. This is a key point
as the sampling rule is what directly determines the sample-complexity of the algorithm.
As discussed previously, our algorithm eliminates the models from Θ̃t until the stopping
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condition is verified. Therefore, a good sampling rule should aim at minimizing the stop-
ping time, i.e., it should aim at eliminating as soon as possible all models that prevent the
algorithm from stopping. The design of our strategy is driven by this principle. Given the
set of active models Θ̃t, we compute, for each s, a, a score It(s, a), which we refer to as
the index of s, a, that is directly related to the information to discriminate between any two
active models using s, a only (lines 16-18). Then, we choose the s, a that maximizes the
index, which can be interpreted as sampling the state-action pair that allows us to discard
an active model in the shortest possible time. We confirm this intuition in our analysis
later. Formally, our information measure is defined as follows.

Definition 11.3.1 (Information for model discrimination). The information for discrimi-
nating between any two models θ and θ′ using reward/transition samples from s, a are,
respectively,

Irs,a(θ, θ′) = min


(

Γ̃rs,a(θ, θ′)− 8∆

σ̃rθ(s, a)

)2

, Γ̃rs,a(θ, θ′)− 8∆

 ,

Ips,a(θ, θ′) = min


(

Γ̃ps,a(θ, θ′)− 8∆

σ̃pθ (s, a; θ′)

)2

,
Γ̃ps,a(θ, θ′)− 8∆

1/(1− γ)

 .

The total information is the maximum of these two,

Is,a(θ, θ′) = max
{
Irs,a(θ, θ′), Ips,a(θ, θ′)

}
.

The information I is a fundamental tool for our analysis and it can be understood as
follows. The terms on the left-hand side are ratios of the squared deviation between the
means of the random variables involved and their variance. If these random variables were
Gaussian, this would be proportional to the Kullback-Leibler divergence between the dis-
tributions induced by the two models, which in turn is related to their mutual information.
The terms on the right-hand side arise from our choice of Bernstein’s confidence intervals
but have a minor role in the algorithm and its analysis.

Discussion
The sampling procedure of PTUM (Step 4) relies on the availability of a generative model
to query informative state-action pairs. We note that the definition of informative state-
action pair and all other components of the algorithm are independent on the assumption
that a generative model is available. Therefore, one could use ideas similar to PTUM even
in the absence of a generative model. For instance, taking inspiration from E3 (Kearns
and Singh, 2002), we could build a surrogate “exploration" MDP with high rewards in
informative state-action pairs and solve this MDP to obtain a policy that autonomously
navigates the true environment to collect information. Alternatively, we could use the
information measure Is,a as an exploration bonus (Jian et al., 2019). We conjecture that
the analysis of this kind of approaches would follow quite naturally from the one of PTUM
under the standard assumption of finite MDP diameter D < ∞ (Jaksch et al., 2010),
for which the resulting bound would have an extra linear scaling in D as in prior works
(Brunskill and Li, 2013).
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PTUM calls an (ε, δ)-PAC algorithm whenever the models are too inaccurate or when-
ever n queries to the generative model are not sufficient to identify a near-optimal policy.
This algorithm can be freely chosen among those available in the literature. For instance,
we could choose the MaxQInit algorithm of Abel et al. (2018) which uses an optimistic
value function to initialize the learning process of a PAC-MDP method (Strehl et al., 2009).
In our case, the information about θ? collected through the generative model could be used
to compute much tighter upper bounds to the optimal value function than those obtained
solely from previous tasks, thus significantly reducing the overall sample complexity. Al-
ternatively, we could use the Finite-Model-RL algorithm of Brunskill and Li (2013) or the
Parameter ELimination (PEL) method of Dyagilev et al. (2008) by passing the set of sur-
vived models Θ̄n instead of Θ, so that the number of remaining eliminations is potentially
much smaller than |Θ|.

Sample-Complexity Bounds

We now analyze the sample complexity of Algorithm 9. The analysis is carried out under
the following two assumptions.

Assumption 11.4.1. The approximation error is such that ∆ < ε(1−γ)
4(1+γ) .

Assumption 11.4.2. The sample budget n is large enough to allow Algorithm 9 to identify
an ε-optimal policy.

These two assumptions allow us to analyze only the core part of PTUM (i.e., the trans-
fer mode), thus excluding trivial cases in which the chosen (ε, δ)-PAC algorithm is called.
In fact, if Assumption 11.4.1 does not hold, the sample complexity for computing an ε-
optimal policy is equivalent to the one of the chosen algorithm. Similarly, if Assumption
11.4.2 does not hold, the sample complexity is n (the samples collected by the generative
model) plus the sample complexity of the chosen algorithm.

Main Result
We start by stating and discussing our main sample complexity bound.

Theorem 11.4.1. Suppose that Assumption 11.4.1 and Assumption 11.4.2 hold. Let τ be
the random stopping time and πτ be the returned policy. Then, with probability at least
1 − δ, πτ is ε-optimal for θ? and the total number of queries to the generative model can
be bounded by

τ − 1 ≤ 128 min{|S||A|, |Θ|} log(8|S||A|n(|Θ|+ 1)/δ)

minθ∈Θε maxs,a Is,a(θ?, θ)
,

where, for κε := (1−γ)ε
4 − ∆(1+γ)

2 , the set Θε ⊆ Θ is

Θε :=

{
θ ∈ Θ

∣∣∣ ‖r̃θ − r̃θ?‖ > κε ∨ ‖(p̃θ − p̃θ?)T Ṽ ?θ?‖ >
κε
γ

}
.

The proof, provided in the next section, combines standard techniques used to analyze
PAC algorithms (Azar et al., 2013b; Zanette et al., 2019) with some of the novel ideas
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that we used to analyze SAE in Chapter 9. At first glance, Theorem 11.4.1 looks quite
different from the standard sample complexity bounds available in the literature Strehl
et al. (2009). We shall see now that it reveals many interesting properties. First, this result
implies that PTUM is (ε, δ)-PAC as the sample complexity is bounded by polynomial
functions of all the relevant quantities. Next, we note that, except for logarithmic terms,
the sample complexity scales with the minimum between the number of tasks and the
number of state-action pairs. As in practice, we expect the former to be much smaller
than the latter, we get a significant gain compared to the no-transfer case, where, even
with a generative model, the sample complexity is at least linear in |S||A| (Azar et al.,
2013b). The set Θε can be understood as the set of all models in Θ whose optimal policy
cannot be guaranteed as ε-optimal for the target θ?. As we shall see in our analysis, it is
sufficient to eliminate all models in this set to ensure stopping. Our key result is that the
sample complexity of PTUM is proportional to the one of an "oracle" strategy that knows
in advance the most informative state-action pairs to achieve this elimination. Note, in
fact, that the denominator involves the maximum information to discriminate any model
in Θε with θ?, but the latter is not known to the algorithm. The following result provides
further insights into the improvements over the no-transfer case.

Corollary 11.4.1. Let Γ be the minimum gap between θ? and any other model in Θ,

Γ := min
θ 6=θ?

max
{
‖r̃θ − r̃θ?‖, ‖(p̃θ − p̃θ?)T Ṽ ?θ?‖

}
.

Then, with probability at least 1− δ,

τ ≤ Õ
(

min{|S||A|, |Θ|} log(1/δ)

max{Γ2, ε2}(1− γ)4

)
.

Proof. We notice that each model θ ∈ Θε is, by definition, such that either ‖r̃θ−r̃θ?‖ ≥ max{Γ, κε}
or ‖(p̃θ − p̃θ?)T Ṽ ?θ?‖ ≥ max{Γ, κε}. By the transfer condition, we also have that κε ≥ (1−γ)ε

8
.

Then, it is easy to see that

min
θ∈Θε

max
s,a
Is,a(θ?, θ) ≥ max{Γ2, κ2

ε}(1− γ)2 ≥ 1

8
max{Γ2, ε2}(1− γ)4,

where we use the previous lower bounds and upper bounded the value-function variance by 1/(1−
γ)2. Then, the result follows by rewriting in Õ notation.

This result reveals that the sample complexity of Algorithm 9 does not scale with ε,
which is typically regarded as the main term in PAC bounds. That is, when ε is small, the
bound scales with the minimum gap Γ between the approximate models. Interestingly, the
dependence on Γ is the same as the one obtained by Brunskill and Li (2013), but in our case
it constitutes a worst-case scenario since Γ can be regarded as the minimum positive in-
formation for model discrimination, while Theorem 11.4.1 scales with the maximum one.
Moreover, since our sample complexity bound is never worse than the one of Brunskill and
Li (2013) and theirs achieves robustness to negative transfer, PTUM directly inherits this
property. We note that Γ > 0 since, otherwise, two identical models would exist and one
could be safely neglected. The key consequence is that one could set ε = 0 and the algo-
rithm would retrieve an optimal policy. However, this requires the models to be perfectly
approximated so as to enter the transfer mode. Interestingly, our sample-complexity scales
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only linearly with the number of models |Θ| while the bound derived by Brunskill and Li
(2013) suffers a quadratic dependence. The intuition is that the algorithm of Brunskill and
Li (2013) allocates samples to state-action pairs that discriminate among all the models,
yielding in total O(|Θ|2) informative state-action pairs. On the other hand, the analysis
of PTUM reveals that the algorithm always eliminates at least one model when allocat-
ing samples to a single informative state-action pair, yielding at most a linear dependence
on |Θ|. We remark that the optimal dependence on the discount factor was proved to be
O(1/(1 − γ)3) Azar et al. (2013b). Here, we get a slightly sub-optimal result since, for
simplicity, we naively upper-bounded the variances with their maximum value, but a more
involved analysis (e.g., those by Azar et al. (2013b); Sidford et al. (2018)) should lead to
optimal dependence. Finally, we note that tighter problem-dependent analyses of best pol-
icy identification algorithms have been concurrently provided (Zanette et al., 2019). How
to combine these ideas with our structured setting is an interesting direction for future
work.

Analysis

We define the event E := {∀t = 1, ..., n : θ? ∈ Θ̃t} under which the true model is never
eliminated from the active model set. We begin by showing that this event holds with high
probability, i.e., that the true model is never eliminated from the confidence sets.

Lemma 11.4.1 (Valid confidence sets). For any δ > 0, the event E := {∀t = 1, ..., n :
θ? ∈ Θ̃t} holds with probability at least 1− δ.

Proof. Take any step t ≥ 1, any state-action pair (s, a) ∈ S×A, any model θ′ ∈ Θ, and let δ′ > 0.
We need to show that the conditions of (11.3)-(11.6) hold with high probability. First notice that
these conditions trivially hold if Nt−1(s, a) ≤ 1. Thus, suppose that Nt−1(s, a) > 1 so that the
confidence intervals are well-defined. Using the triangle inequality we have that

|r̂t(s, a)− r̃θ?(s, a)| ≤ |r̂t(s, a)− rθ?(s, a)|+ ∆,

|(p̃θ?(s, a)− p̂t(s, a))T Ṽ ?θ′ | ≤ |(pθ?(s, a)− p̂t(s, a))T Ṽ ?θ′ |+ ∆,

|σ̂rt (s, a)− σ̃rθ?(s, a)| ≤ |σ̂rt (s, a)− σrθ?(s, a)|+ ∆,

|σ̂pt (s, a; θ′)− σ̂pθ?(s, a; θ′)| ≤ |σ̂pt (s, a; θ′)− σpθ?(s, a; θ′)|+ ∆.

Using the empirical Bernstein’s inequality (Maurer and Pontil, 2009), we have that, with probability
at least 1− δ′,

|r̂t(s, a)− rθ?(s, a)| ≤

√
2σ̂rt (s, a)2 log 4

δ′

Nt−1(s, a)
+

7 log 4
δ′

3(Nt−1(s, a)− 1)
.

Similarly, for any θ′ ∈ Θ, we have that, with probability at least 1− δ′,

|(pθ?(s, a)− p̂t(s, a))T Ṽ ?θ′ | ≤

√
2σ̂pt (s, a; Ṽ ?θ′)

2 log 4
δ′

Nt−1(s, a)
+

7
1−γ log 4

δ′

3(Nt−1(s, a)− 1)
.
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From Theorem 10 of Maurer and Pontil (2009),

|σ̂rt (s, a)− σrθ?(s, a)| ≤

√
2 log 2

δ′

Nt−1(s, a)− 1

and

|σ̂pt (s, a; θ′)− σpθ?(s, a; θ′)| ≤ 1

1− γ

√
2 log 2

δ′

Nt−1(s, a)− 1

hold with probability at least 1 − δ′, respectively. Taking union bounds over all state action pairs
and over the maximum number of samples n, these four inequalities hold at the same time with
probability at least 1−2|S||A|(|Θ|+1)nδ′. The result follows after setting δ = 2|S||A|n(|Θ|+1)δ′

and rearranging.

Next we bound the number of samples required from some state-action pair in order to
eliminate a “wrong” model from the confidence set.

Lemma 11.4.2 (Model elimination). Let θ ∈ Θ, (s, a) ∈ S ×A, and define

n̄rθ(s, a) := min
θ′′∈Θ̃t

max

{
σ̃rθ′′(s, a)2

[Γ̃rs,a(θ?, θ)− 4∆]2+
,

1

[Γ̃rs,a(θ?, θ)− 4∆]+

}
,

n̄pθ(s, a) := min
θ′∈Θ,θ′′∈Θ̃t

max

{
σ̃pθ′′(s, a; θ′)2

[Γ̃ps,a(θ?, θ)− 4∆]2+
,

1/(1− γ)

[Γ̃ps,a(θ?, θ)− 4∆]+

}
.

Then, under event E, if

Nt−1(s, a) > n̄θ(s, a) := 32 log
8|S||A|n(1 + |Θ|)

δ
min{n̄rθ(s, a), n̄pθ(s, a)},

we have that θ /∈ Θ̃t.

Proof. We split the proof into two parts, dealing with rewards and transitions separately. We then
combine these results to obtain the final statement.

Elimination by rewards. Assuming θ ∈ Θ̃t, we must have, for all state-action pairs and all
θ′′ ∈ Θ̃t,

Γ̃rs,a(θ?, θ) ≤ |r̃θ(s, a)− r̂t(s, a)|+ |r̃θ?(s, a)− r̂t(s, a)| ≤ 2Crt,δ(s, a)

≤ 2

√
2σ̂rt (s, a)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

14 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)
+ 2∆

≤ 2

√
2σ̃rθ′′(s, a)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

4 log 8|S||A|n(|Θ|+1)
δ

(Nt−1(s, a)− 1)
+

14 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)
+ 4∆

≤ 2

√
2σ̃rθ′′(s, a)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

26 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)
+ 4∆

where we applied the triangle inequality and used Lemma 11.4.1 to upper bound the empirical vari-
ance by the variance of a model θ′′ in the confidence set. We note that, if the approximation error
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∆ is too high and the denominators of n̄θ(s, a) are zero, it is not possible to eliminate θ from the
rewards of this state-action pair. If this is not the case, for Nt−1(s, a) ≥ n̄θ(s, a) we have that

2

√
2σ̃rθ′′(s, a)2 log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
<

Γ̃rs,a(θ?, θ)− 4∆

2

and

26 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)
<

Γ̃rs,a(θ?, θ)− 4∆

2
.

Plugging these two inequalities in the first upper bound leads to the contradiction Γ̃rs,a(θ?, θ) <

Γ̃rs,a(θ?, θ), hence it must be that θ /∈ Θ̃t.
Elimination by transition. The proof proceeds analogously to the previous case. Let θ′ ∈ Θ

and θ′′ ∈ Θ̃t, then

Γ̃ps,a(θ?, θ) ≤ |(p̂t(s, a)− p̃θ?(s, a))T Ṽ ?θ′ |+ |(p̂t(s, a)− p̃θ(s, a))T Ṽ ?θ′ |

≤ 2

√
2σ̂pt (s, a; θ′) log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

14 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)(1− γ)
+ 2∆

≤ 2

√
2σ̃pθ′′(s, a; θ′) log 8|S||A|n(|Θ|+1)

δ

Nt−1(s, a)
+

26 log 8|S||A|n(|Θ|+1)
δ

3(Nt−1(s, a)− 1)(1− γ)
+ 4∆,

where once again we applied the triangle inequality and Lemma 11.4.1 to upper bound the empirical
variance. Hence, applying the same reasoning as before we obtain a contradiction, which in turns
implies that θ /∈ Θ̃t. We finally note that if n̄θ(s, a) = +∞, i.e., the approximate models are too
inaccurate, it is not possible to eliminate θ using this state-action pair.

We now state different results to bound the deviation in value function between dif-
ferent MDPs. We need to define the discounted state-action visitation frequencies (Sutton
et al., 2000) starting from state s and executing π in MDPMθ as

νπθ (s′, a′; s) :=

∞∑
t=0

γtPπθ {St = s′, At = a′|S0 = s}. (11.7)

Note that here, with some abuse of notation, the random variables St, At are not the state-
action pairs chosen by PTUM but those generated by an interaction withMθ using policy
π.

Lemma 11.4.3 (Simulation lemma). Let θ, θ′ ∈ Θ, s ∈ S, and π be any policy. Then,

|V πθ (s)− V πθ′ (s)| ≤
∑
s′,a′

νπθ′(s
′, a′; s)ξπs′,a′(θ, θ

′),

where

ξπs′,a′(θ, θ
′) := Γrs′,a′(θ, θ

′) + γ|(pθ(s′, a′)− pθ′(s′, a′))TV πθ |.

Similarly, the optimal value functions of θ and θ′ satisfy, for any s ∈ S,

|V ?θ′(s)− V ?θ (s)| ≤ max
π∈{π?θ ,π?θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

[
Γrs′,a′(θ, θ

′) + γΓps′,a′(θ, θ
′)
]
.

188



11.4. Sample-Complexity Bounds

Proof. See, e.g., Lemma 3 of (Zanette et al., 2019) for the first inequality and Lemma 2 of (Azar
et al., 2013b) or Lemma 2 of (Zanette et al., 2019) for the second one.4

Corollary 11.4.2 (Value-function error decomposition). Let θ, θ′ ∈ Θ and s ∈ S. Then,

|V ?θ′(s)− V
π?θ
θ′ (s)| ≤ 2 max

π∈{π?θ ,π?θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

[
Γrs′,a′(θ, θ

′) + γΓps′,a′(θ, θ
′)
]
.

Proof. The proof is straightforward by using the triangle inequality,

|V ?θ′(s)− V
π?θ
θ′ (s)| ≤ |V ?θ′(s)− V ?θ (s)|︸ ︷︷ ︸

(a)

+ |V ?θ (s)− V π
?
θ

θ′ (s)|︸ ︷︷ ︸
(b)

,

and bounding (a) using the second inequality in Lemma 11.4.3 and (b) using the first inequality in
Lemma 11.4.3 (note that V ?θ = V

π?θ
θ ).

Using this result, we now show that, if the algorithm does not stop at a certain time t,
certain models belong to the confidence set. In other words, the following Lemma builds
a set of models Θε ⊆ Θ whose elimination is sufficient to guarantee that PTUM stops.

Lemma 11.4.4 (Stopping condition). Let τ be the random stopping time of Algorithm 9
and

Θε :=

{
θ ∈ Θ

∣∣∣ ‖r̃θ − r̃θ?‖ > κε ∨ ‖(p̃θ − p̃θ?)T Ṽ ?θ?‖ >
κε
γ

}
,

where κε := (1−γ)ε
4 − ∆(1+γ)

2 . Then, under event E, for all t < τ , there exists at least one
model θ ∈ Θε such that θ ∈ Θ̃t.

Proof. We note that, for all t < τ , under event E, it must be that

∃θ ∈ Θ̃t, s ∈ S : Ṽ
π̃?θ?
θ (s) < Ṽ ?θ (s)− ε+ 2∆

(1 + γ)

1− γ ,

otherwise the algorithm would stop before τ since the optimal policy ofMθ? (which belongs to the
confidence set by event E) satisfies the stopping condition. This implies that |Ṽ ?θ (s)− Ṽ π̃

?
θ?

θ (s)| >
ε− 2∆ (1+γ)

1−γ holds as well and, using Corollary 11.4.2,

2 max
π∈{π̃?

θ?
,π̃?
θ
}

∑
s′,a′

νπθ (s′, a′; s)
[
Γ̃rs′,a′(θ

?, θ) + γΓ̃ps′,a′(θ
?, θ)

]
> ε− 2∆

(1 + γ)

1− γ

holds for some θ ∈ Θ̃t and s ∈ S. Assume that all models in Θε have been eliminated. Then, using
that ν sums up to 1/(1−γ) and that, from the definition of Θε, all models must be sufficiently close
to θ? (Γ̃rs′,a′(θ

?, θ) ≤ κε and Γ̃ps′,a′(θ
?, θ) ≤ κε/γ), the left-hand side of this inequality can be

upper bounded by ε − 2∆ (1+γ)
1−γ . Hence, we obtain a contradiction and it must be that θ ∈ Θ̃t for

some θ ∈ Θε.

Before stating and proving the main result, we need to ensure that, at each step t in
which PTUM does not stop, the algorithm collects strictly positive information.

4Note that, although the inequalities of, e.g., Azar et al. (2013b) and Zanette et al. (2019) relate the value
functions of a fixed MDP with those of its empirical counterpart, they actually hold for any two MDPs.
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Lemma 11.4.5 (Positive index). Let τ be the random stopping time of Algorithm 9, then,
under event E,

∀t < τ : It(St, At) > 0

Proof. Recall that the algorithm enters the transfer mode if ∆ < ε(1−γ)
4(1+γ)

. Take any time t < τ .

Under event E, we have θ? ∈ Θ̃t and Lemma 11.4.4 implies that θ ∈ Θ̃t for some θ ∈ Θε. The
definition of Θε implies that either ‖r̃θ − r̃θ?‖ > κε or ‖(p̃θ − p̃θ?)T Ṽ ?θ?‖ > κε

γ
and both these

quantities are strictly greater than zero since κε > ε(1−γ)
8

. Since the index contains a maximum
over models involving these two, the result follows straightforwardly.

The following lemma is the key result that allows us to bound the sample complexity
of Algorithm 9. It shows that, at any time t, the number of times the chosen state-action
action pair (St, At) has been chosen before is bounded by a quantity proportional to mini-
mum number of samples required from any state-action pair to eliminate any of the active
models.

Lemma 11.4.6 (Fundamental lemma). Let (St, At) be the state-action pair chosen at time
t. Then, under event E, the number of queries to such couple prior to time t can be upper
bounded by

Nt−1(St, At) <
128 log(8|S||A|n(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̃t
Is,a(θ?, θ)

.

Proof. Let Ft = 1 {∀s, a ∈ S ×A : Irt (St, At) ≥ It(s, a)} be the event under which, at time t,
the maximizer of the index is attained by the reward components. The proof is divided in two parts,
based on whether Ft holds or not.

Event Ft holds. Let Θt := argmaxθ,θ′∈Θ̃t
Irt (St, At) be the set of active models that attain

the maximum in the reward index. Similarly, define

θt := argmax
θ∈Θt

Γ̃rSt,At(θ
?, θ), θt := argmin

θ∈Θt

Γ̃rSt,At(θ
?, θ),

as the farthest and closest models from θ? among those used to compute the index, respectively.
Assume, without loss of generality, that the maximums/minimums are attained by single models.
If more than one model attains them, the proof follows equivalently by choosing arbitrary ones.
Furthermore, let θvt be the (random) model among those in Θt whose reward-variance is used to
attain the maximum in the index. We proceed as follows. First, we prove that an upper bound to
the index of the chosen state-action pair directly relates to the sample complexity for eliminating θt.
Then, we use this result to guarantee that (St, At) cannot be chosen more than the stated quantity
prior to time step t, otherwise θt could not be an active model. By assumption we have

It(St, At) = Irt (St, At) = min

{
(Γ̃rSt,At(θt, θt)− 8∆)2

σ̃rθvt
(St, At)2

, Γ̃rSt,At(θt, θt)− 8∆

}

(a)

≤ min


(

Γ̃rSt,At(θt, θ
?) + Γ̃rSt,At(θ

?, θt)− 8∆
)2

σ̃rθvt
(St, At)2

, Γ̃rSt,At(θt, θ
?) + Γ̃rSt,At(θ

?, θt)− 8∆


(b)

≤ min

{
(2Γ̃rSt,At(θt, θ

?)− 8∆)2

σ̃rθvt
(St, At)2

, 2Γ̃rSt,At(θt, θ
?)− 8∆

}

≤ 4 min

{
(Γ̃rSt,At(θt, θ

?)− 4∆)2

σ̃rθvt
(St, At)2

, Γ̃rSt,At(θt, θ
?)− 4∆

}
,
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where (a) follows from the triangle inequality and (b) from the definition of θt (which was de-
fined as the farthest from the estimate of θ?). Note that to prove this inequalities we also need that
Γ̃rSt,At(θt, θt)− 8∆ ≥ 0, which is implied by Lemma 11.4.5. Since (St, At) is chosen at time t, it
must be that It(St, At) ≥ It(s, a) for all s, a ∈ S ×A. This implies that, for all s, a ∈ S ×A and
θ ∈ Θ̃t,

4 min

{
(Γ̃rSt,At(θt, θ

?)− 4∆)2

σ̃rθvt
(St, At)2

, Γ̃rSt,At(θt, θ
?)− 4∆

}
≥ It(s, a)

≥ Is,a(θ?, θ), (11.8)

where the second inequality holds since the index of (s, a) is by definition larger than the one using
the models θ? and θ. Note that Lemma 11.4.2 and 11.4.5 ensure that a number of queries to (St, At)
of

32 log
8|S||A|n(|Θ|+ 1)

δ
max

{
σ̃rθvt (St, At)

2

(Γ̃rSt,At(θt, θ
?)− 4∆)2

,
1

Γ̃rSt,At(θt, θ
?)− 4∆

}
suffices for eliminating Θ̃t. In particular, the positivity of the index from Lemma 11.4.5 implies that
Γ̃rSt,At(θt, θt) > 8∆, which, in turn, implies that Γ̃rSt,At(θt, θ

?) > 4∆. Therefore, Equation 11.8
above implies that a number of queries of

128 log(8|S||A|n(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̃t
Is,a(θ?, θ)

.

also suffices. We note that the maximums at the denominator can be introduced since (11.8) holds
for all s, a and θ. Hence, it must be thatNt−1(St, At) is strictly less than this quantity, otherwise the
model θt would be eliminated at time step t− 1 and it could not be active at time t. This concludes
the first part of the proof.

Event Ft does not hold. In this case, the maximizer of the index must be attained using the
transition components, thus It(St, At) = Ipt (St, At). The proof follows exactly the same steps as
before and is therefore not reported. Since the result is the same, combining these two parts proves
the main statement.

Before proving the main theorem, we need to ensure that, whenever PTUM terminates
due its stopping condition, the returned policy is indeed ε-optimal forMθ? .

Lemma 11.4.7 (Correctness). Let τ be the random stopping time of Algorithm 9 and πτ
be the returned policy. Then, under event E, πτ is ε-optimal forMθ? .

Proof. Recall that πτ is ε-optimal if, for all states, V πτθ? (s) ≥ V ?θ?(s) − ε. Furthermore, πτ is
optimal for one of the active models at time τ , i.e., πτ = π̃?θ for some θ ∈ Θ̃τ . Since under E we
have θ? ∈ Θ̃τ , a sufficient condition is that ‖V ?θ′ − V

π̃?θ
θ′ ‖ < ε holds for all θ′ ∈ Θ̄τ . Let us upper

bound the left-hand side as

‖V ?θ′ − V
π̃?θ
θ′ ‖ ≤ ‖Ṽ

π̃?θ
θ′ − V

π̃?θ
θ′ ‖︸ ︷︷ ︸

(a)

+ ‖V ?θ′ − Ṽ ?θ′‖︸ ︷︷ ︸
(b)

+ ‖Ṽ π̃
?
θ

θ′ − Ṽ
?
θ′‖︸ ︷︷ ︸

(c)

.

Using Lemma 11.4.3, we can bound the first term by

(a) ≤
∑
s′,a′

ν
π̃?θ
θ′ (s′, a′; s)(|rθ′(s, a)− r̃θ′(s, a)|+ γ|(pθ′(s, a)− p̃θ′(s, a))T Ṽ

π̃?θ
θ′ |

≤
∑
s′,a′

ν
π̃?θ
θ′ (s′, a′; s)(∆ + γ∆) ≤ ∆(1 + γ)

1− γ
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and the second term by

(b) ≤ max
π∈{π?

θ′ ,π̃
?
θ′}

∑
s′,a′

νπθ′(s
′, a′; s)

(
|rθ′(s, a)− r̃θ′(s, a)|+ γ|(pθ′(s, a)− p̃θ′(s, a))T Ṽ ?θ′ |

)
≤ max
π∈{π?

θ′ ,π̃
?
θ′}

∑
s′,a′

νπθ′(s
′, a′; s)(∆ + γ∆) ≤ ∆(1 + γ)

1− γ .

Therefore, the stopping condition, (c) = ‖Ṽ π̃
?
θ

θ′ − Ṽ
?
θ′‖ ≤ ε−2∆ (1+γ)

1−γ , implies that ‖V ?θ′−V
π̃?θ
θ′ ‖ ≤

ε, which in turn implies the ε-optimality of πτ .

Proof of Theorem 11.4.1. Lemma 11.4.1 ensures that event E holds with probability at
least 1 − δ. Therefore, we shall carry out the proof conditioned on E. We split the proof
into two parts. In the first one, we bound the number of times each state-action pair can
be visited before the algorithm stops. In the second part, we directly bound the number of
steps in which each model can be active.

Bound over S×A. Take any state-action pair (s, a) ∈ S×A. For any sequence {nt}t≥1,
its number of visits Nτ−1(s, a) can be written as

τ−1∑
t=1

1 {St = s,At = a|E} =

τ−1∑
t=1

1 {St = s,At = a,Nt−1(s, a) < nt|E}︸ ︷︷ ︸
(a)

+

τ−1∑
t=1

1 {St = s,At = a,Nt−1(s, a) ≥ nt|E}︸ ︷︷ ︸
(b)

.

For

nt :=
128 log(8|S||A|n(|Θ|+ 1)/δ)

maxs,a maxθ∈Θ̃t
Is,a(θ?, θ)

,

Lemma 11.4.6 ensures that, under event E, (b) = 0. Thus, we only need to bound (a). For
all t < τ , Lemma 11.4.4 implies that there exists a model θ ∈ Θε which also belongs to
the confidence set at time t, θ ∈ Θ̃t. Therefore, for all t < τ and (s′, a′) ∈ S×A, we have
maxθ∈Θ̃t

Is′,a′(θ?, θ) ≥ minθ∈Θε Is′,a′(θ?, θ). Since we removed all random quantities
from nt, we can now bound (a) as

(a) <
128 log(8|S||A|n(|Θ|+ 1)/δ)

minθ∈Θε maxs,a Is,a(θ?, θ)
. (11.9)

This immediately yields a bound on the total number of queries to the generative model,

τ − 1 =
∑
s,a

Nτ−1(s, a) <
128|S||A| log(8|S||A|n(|Θ|+ 1)/δ)

maxs,a minθ∈Θε Is,a(θ?, θ)
.
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Bound over Θ From the first part of the proof, we know that, for t < τ , the confi-
dence set Θ̃t must contain a model that is also in Θε, otherwise the algorithm would stop.
Therefore, the stopping time can be bounded by

τ ≤
n∑
t=1

1
{
∃θ ∈ Θ̃t : θ ∈ Θε|E

}
.

By definition of the algorithm, the state-action pair chosen at each time step does not
change until the set of active models Θt (those that control the maximizer of the index
as in the proof of Lemma 11.4.6) does not change. Furthermore, once a model has been
eliminated, it cannot become active again. Consider a sequence {τh}h≥1 with τ1 = 1. We
can partition the time line into different contiguous intervals (from now on called phases)
Th := [τh, τh+1 − 1] such that the set of active models does not change within Th and
a change of phase occurs only when a model is eliminated. Let Θh be the set of active
models in phase h. We have τh+1 = inft≥1{t | ∃θ ∈ Θh : θ /∈ Θ̃t}. That is, the beginning
of the new phase h+1 is the step where one of the previously-active models is eliminated.
Let θ̄h be any such model and h(t) be the (unique) phase containing time t. Note that, for
each θ ∈ Θ \ {θ?}, there exists at most one phase h(θ) where θ̄h(θ) = θ. Then,

τ ≤
∑

θ∈Θ\{θ?}

n∑
t=1

1
{
θ̄h(t) = θ ∧ ∃θ′ ∈ Θ̃t : θ′ ∈ Θε|E

}

≤
∑

θ∈Θ\{θ?}

τh(θ)+1−1∑
t=τh(θ)

1
{
θ̄h(t) = θ ∧ ∃θ′ ∈ Θ̃t : θ′ ∈ Θε|E

}
≤ 128(|Θ| − 1) log(8|S||A|n(|Θ|+ 1)/δ)

minθ∈Θε maxs,a Is,a(θ?, θ)
,

where in the last inequality we applied Lemma 11.4.6 by noticing that, within the same
phase, the chosen state-action pair does not change and used the fact that a model in Θε

still survives to upper bound the minimum over models in the confidence set. The proof
follows by taking the minimum of the two bounds.

Numerical Simulations

The goal of our experiments is twofold. First, we analyze the performance of PTUM when
the task models are known (i.e., ∆ = 0), focusing on the comparison between identifica-
tion and jumpstart strategies. Then, we perform some ablation studies that confirm our
theoretical results by verifying how the sample complexity of PTUM changes as a func-
tion of ε, |S|, and the model misspecification ∆. All our plots report averages of 100 runs
with 99% Student’s t confidence intervals. We refer the reader to Tirinzoni et al. (2020c)
for additional details.

Identification vs Jumpstart For this experiment, we adopt a standard 12 × 12 grid-
world divided into two parts by a vertical wall (i.e., the 4-rooms domain of Sutton et al.
(1999) with only two rooms). The agent starts in the left room and must reach a goal state
in the right one, with the two rooms connected by a door. We consider 12 different tasks,
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Figure 11.1: Policy transfer from known models. (left) Jumpstart (optimistic) policies
gain sufficient information. (right) High-reward states are poorly informative.

whose models are known to the agent, with different goal and door locations. We compare
PTUM with four baselines: RMAX (Brafman and Tennenholtz, 2002), which does not
perform any transfer, RMAX with MaxQInit (Abel et al., 2018), in which the Q-function
is initialized optimistically to achieve a jumpstart, PEL (Dyagilev et al., 2008), which per-
forms model identification, and Finite-Model RL (Brunskill and Li, 2013), that is the most
conceptually similar to PTUM. Not to give advantage to PTUM, as the other algorithms
run episodes online with no generative model, in our plots we count each sample taken by
PTUM as one episode and assign it the minimum reward value. Once PTUM returns a pol-
icy, we report its online performance. The results in Figure 11.1(left) show that the three
identification methods find an optimal policy in a very small number of episodes. The
jumpstart of MaxQInit is delayed since the optimistic Q-function directs the agent towards
the wall, but finding the door takes many samples. PEL, which is also optimistic, instantly
identifies the solution since attempts to cross the wall in locations without a door immedi-
ately discriminate between tasks. This is in fact an example where the optimism principle
leads to both rewards and information. Unfortunately, we know that in structured settings
this is not always the case and optimism might not be the best thing to do. To demonstrate
this fact, we run the same experiment by removing the wall and adding multiple goal loca-
tions with different reward values. Some goals have uniformly high values over all tasks
(thus they provide small information) while others are more variable (thus with higher
information). In Figure 11.1(right), we see that PEL, MaxQInit, and Finite-Model RL
achieve a high jumpstart, as they immediately go towards one of the goals, but converge
much more slowly than PTUM, which focuses on the informative ones. The performance
drop of Finite-Model RL is due to the fact that, at some point, the algorithm eliminates a
wrong MDP model whose optimal policy is actually near-optimal in the true task (hence
causing the initial jumpstart).

Sample complexity vs accuracy. The setting in this case is a grid of dimension 12x12
where a reward of 1 is given when reaching a goal state and 0 otherwise. The agent has
knowledge of 12 possible perfect models, each of which has a single goal state located
in the opposite corner from the starting one. The door position is different in each task.
We set γ to 0.99, δ to 0.01, n to 1000000, and test our algorithm for different values of ε.
Figure 11.2(left) shows how the sample complexity changes as a function of ε. First, we
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11.5. Numerical Simulations
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Figure 11.2: Ablation studies for the main parameters of PTUM. (left) The sample com-
plexity is a piece-wise constant and bounded function of ε. (middle) The sample com-
plexity grows logarithmically with the grid size (i.e., the number of states). (right) The
excess in sample complexity (w.r.t. the one with perfect models) decreases with the
approximation error ∆.

notice that the function is piece-wise constant, which is a direct consequence of the finite
set of models. In fact, varying ε changes the set of models Θε that must be discarded by
the algorithm before stopping. Second, we notice that the function is bounded in ε, i.e.,
we are allowed to set ε = 0 and the algorithm returns an optimal policy after discarding
all the models different from the true one.

Sample complexity vs number of states. In this experiment, the agent faces grids of
increasing sizes. The agent obtains reward 1 when ending up in a goal state and 0 other-
wise. We consider three known models, each with the goal state in a corner different from
the starting one and a different door position. We set ε to 0.0001, γ to 0.99, δ to 0.01,
and n to 100000. Figure 11.2(middle) shows how the sample complexity changes when
the grid size (i.e., the number of states) increases. As expected, we obtain a logarithmic
growth due to the union bounds used to form the confidence sets. As before, the function
is piece-wise due to the finite number of models.

Sample complexity vs model error A grid of fixed size 6x6 is considered. The agent
has knowledge of 6 models, each of which has the goal state placed in the opposite corner
w.r.t. the starting one. All models have reward 1 when reaching the goal state and 0
otherwise. Each task differs from the others in the door position. We set ε to 0.13, γ to
0.9, δ to 0.1, and n to 1000000. Here we study the sample complexity of PTUM with
the exact set of models when varying the maximum uncertainty ∆. Figure 11.2(right)
shows the excess in sample complexity w.r.t. the case with perfect models when the bound
∆ on the approximation error decreases. Once again, we obtain a piece-wise constant
function since, similarly to ε, a higher error bound ∆ changes the set of models that must
be discarded by the algorithm and hence its sample complexity. Notably, we do not require
∆ = 0 to recover the "oracle" sample complexity.
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CHAPTER12
Conclusion

We studied different aspects of knowledge transfer in reinforcement learning. From the
very beginning, we introduced the concept of structured domain, defined by a collection
of possibly-related tasks that could be faced by the agent together with a process gen-
erating them. We showed the generality of this concept, which allows to formalize the
majority of transfer-related settings that are studied in the literature, including multi-task
learning, meta-learning, lifelong learning, and curriculum learning. We framed all our
problems into this context, while building our algorithms to exploit, either implicitly or
explicitly, the properties of the underlying structured domain. In particular, we studied
two main knowledge-transfer problems in this setting. The first one concerns how to reuse
old experience samples collected in previous tasks to learn a new target task. The second is
somewhat complementary: how to generate new experience samples, i.e., how to explore,
in the new target task given knowledge from the source tasks.

Part I dealt with the first problem. In particular, we designed algorithms to transfer
experience samples across tasks without any assumption on the underlying structured do-
main. One of our main objectives was the practical applicability of these methods, hence
we built them on top of approaches for continuous MDPs. The general idea behind our
methods was to transfer all source samples, while correcting the distribution mismatch
between source and target models using importance sampling. This is in contrast to prior
works, which either require an expensive sample selection process (Lazaric et al., 2008b),
or make strong assumptions (Laroche and Barlier, 2017), or directly transfer samples with-
out accounting for domain mismatch (Taylor et al., 2008). In Chapter 5, we designed
IWFQI, an algorithm that instantiates this sample transfer technique in batch reinforce-
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ment learning. We conducted a finite-sample analysis showing the effect of wrong im-
portance weights onto the value-function errors of IWFQI, while in practice we computed
these weights by directly estimating reward/transition models using Gaussian processes.
In Chapter 6, we proposed IWPG, an extension of this algorithm to the policy-gradient
setting. This required significant additional effort in designing importance-sampling es-
timators of the policy gradient that reuse entire trajectories. Interestingly, we established
robustness to negative transfer for the most powerful of our estimators (a combination of
multiple importance sampling scheme and control variates) with exact importance weights.
For the realistic case where the weights are unknown, we derived a sound approach to es-
timate them by directly minimizing the mean-square error of the resulting estimator. For
both IWFQI and IWPG, we provided numerical simulations that confirm the effectiveness
of our methods in continuous control problems.

In Part II, we began studying the problem of exploration in structured domains from
a practical perspective, with the aim of designing scalable and general methods that can
be applied to large continuous MDPs. Similarly to Lazaric and Ghavamzadeh (2010),
we assumed that tasks share structure in their optimal action-value functions. We used
the source tasks to learn a prior distribution over these value functions and proposed a
simple variational approximation of the corresponding posterior given samples from the
target task. Using ideas from value-function randomization (Osband et al., 2014, 2019),
we designed an algorithm that explores the target task by posterior sampling on these dis-
tributions. We derived a finite-sample analysis of the proposed method in simple settings
and verified empirically that the algorithm extrapolates interesting exploration behavior
from the source tasks and outperforms different baselines. The main advantage of this
method is generality, in the sense that it can be combined with any value-function approx-
imator (such as neural networks) and any posterior distribution class (such as Gaussian
and mixtures of Gaussian).

We concluded in Part III with a theoretical study of the problem of exploration in struc-
tured domains. We considered a popular decomposition of the transfer problem (Brun-
skill and Li, 2013; Azar et al., 2013a) into learning structure from previous tasks and
exploiting structure to quickly learn new tasks. While we discussed the main existing
approaches for learning structure from experience, we concentrated our contributions on
the problem of exploiting given structure. We started from bandit problems with known
structure. In Chapter 9, we designed SAE, an arm elimination strategy which exploits a
given structure in a general form (i.e., without any specific assumption). SAE uses this
structure to build tighter confidence sets about the true (unknown) bandit problem being
faced, which in turn allows eliminating some sub-optimal arms quickly. Our main re-
sult is a theoretical analysis that, differently from those in previous works (Azar et al.,
2013a; Lattimore and Munos, 2014) shows the possibility to discard some sub-optimal
arms using the information from other arms. In Chapter 10, we restricted our attention
to linear contextual structures and, in particular, to the problem of designing asymptoti-
cally problem-dependent-optimal strategies. We took inspiration from works that derive
algorithms from asymptotic problem-dependent lower bounds (Lattimore and Szepesvari,
2017; Combes et al., 2017; Hao et al., 2019; Degenne et al., 2020b), and designed SOLID,
a computationally-efficient incremental algorithm that is asymptotically optimal for lin-
ear contextual problems. We confirmed this property by deriving both problem-dependent
and worst-case finite-time regret bounds. Notably, we showed that SOLID is the first algo-
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rithm to be simultaneously asymptotically problem-dependent optimal and finite-time min-
imax optimal for linear (non-contextual) bandits. Experiments on both real and synthetic
data confirmed competitive (often superior) performance with respect to state-of-the-art
baselines (Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013). In Chapter 11, we
considered the problem of best policy identification in MDPs with learned (approximate)
structure under the assumption that a generative model of the target task is available. We
assumed that the target task belongs to a finite set of MDPs which are known only up
to some approximation error. Along the lines of Brunskill and Li (2013), we designed
PTUM, an elimination-based algorithm which aims at discarding “wrong” MDP models
so as to quickly identify one that yields a near-optimal policy. In particular, PTUM actively
queries the generative model of the target for state-action pairs whose samples yield high
information for discriminating between realizable (approximate) MDP models. Notably,
our theoretical analysis revealed that the sample complexity of PTUM is proportional to
the one of an oracle strategy that chooses the state-action pairs that yield the maximum
information for discriminating between MDP models, though these state-action pairs are
not known in advance.

Open Problems and Future Works

As usual, all our approaches have limitations which leave us with some open problems. We
conclude by discussing the ones that we believe to be more interesting for future research.

Transfer of samples. Perhaps the most important open question is whether our sample
transfer methods are provably robust to negative transfer when the importance weights are
estimated. In fact, for IWFQI we only provided a sample complexity bound as a function
of the estimated weights, but we did not provide a technique for estimating the weights
that provably reduces this sample complexity; for IWPG, on the other hand, we ensured
robustness to negative transfer in the ideal case of known models, while we did not report
any theoretical results for the estimated weights. We conjecture that the MSE-aware model
estimation procedure of Chapter 6 might enjoy some robustness guarantees, though we left
its analysis as an interesting direction for future work.

Variational transfer. While we designed our approach specifically for value-based set-
tings, the most immediate extension would be to learn and exploit prior distributions over
different components than action-value functions. For instance, since the main goal of
the learned prior distribution is to drive the exploration in the target task, one could learn
distributions over optimal policies. Interestingly, the resulting mixture-based algorithm
would be quite similar to policy distillation methods (Rusu et al., 2015; Teh et al., 2017;
Yin and Pan, 2017; Czarnecki et al., 2019), with the target policy being learned using an
additional regularization that keeps it close to the source optimal policies. More gener-
ally, one could directly model distributions over latent task parameters, while learning a
task-conditioned optimal policy to enable posterior sampling. While approaches in this
direction have been proposed by Yang et al. (2019) and Rakelly et al. (2019), they assume
the possibility to repeatedly sample tasks at train time. This is not possible in our setting
where only a small finite set of source tasks is available, so we wonder whether similar
ideas can be still applied.
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One of the main messages from Part III is that exploration techniques build on top of
the optimism principle or Thompson sampling might not be the optimal way to approach
structured domains. Therefore, the second big question is whether other exploration strate-
gies than posterior sampling should be adopted. In particular, one might try to learn the
exploration strategy itself from the source tasks. Some meta-learning approaches have
been proposed in this direction (see, e.g., Zintgraf et al. (2019); Kamienny et al. (2020)
and discussion therein). Once again, their extension to our setting might be highly non-
trivial since a meta-learning method would require to interact with the source tasks using
different exploration strategies to assess which one is most suitable for the given domain.

Theory of structured domains. In the structured-bandit setting (with known structure),
the literature is now quite vast. We have algorithms for general structures with good
finite-time performance (like SUCB Lattimore and Munos (2014) or our SAE) but without
asymptotic optimality, and algorithms with asymptotic optimality (Combes et al., 2017;
Degenne et al., 2020b) which might sacrifice finite-time behavior. The most natural ques-
tion is whether we can obtain the best of these two worlds and obtain finite-time optimal
algorithms. Unfortunately, at the present time, we have no idea about what the finite-time
problem-dependent lower bound for general structures looks like. We do not exclude that,
when the learning horizon is small, ignoring the information from sub-optimal arms and
acting optimistically might be the optimal way to behave.

For contextual linear bandits, we made a step in this direction by establishing an op-
timal problem-dependent regret bound for SOLID together with strong finite-time worst-
case guarantees. While the algorithm is minimax optimal in linear (non-contextual) ban-
dits, in contextual problems SOLID suffers and extra linear dependence on the number
of contexts. This is in contrast to standard algorithms such as LinUCB (Abbasi-Yadkori
et al., 2011) or LinTS Agrawal and Goyal (2013), which apply even to infinite contexts.
We wonder whether this dependence could be reduced or removed, thus making SOLID
minimax optimal for contextual problems. Another interesting question is whether this
approach could be extended to deal with infinite/continuous contexts. Unfortunately, at
the present time we do not know the problem-dependent lower bound for continuous con-
texts. One idea would be to consider a class of parameterized policies and derive the lower
bound with respect to the best in-class policy.

Differently from bandits, in structured MDPs there is still a considerable amount of
work to be done. Regarding regret minimization, the only asymptotically optimal algo-
rithm for general structures (Ok et al., 2018) has limitations. On the computational side,
similarly to OSSB, the algorithm is quite inefficient as it requires solving the optimization
problem of the lower bound. In this sense, one could use ideas from SPL (Degenne et al.,
2020b) and SOLID to design an efficient incremental approach. On the theoretical side,
the lower bound itself is derived for ergodic MDPs (Burnetas and Katehakis, 1996). That
is, the assumption is that each state is visited by any policy with positive probability, which
could make the optimal asymptotic exploration strategy very inefficient in finite time. One
direction would be to extend this lower bound to, e.g., communicating MDPs (Puterman,
2014), though this might require significant theoretical efforts.

Regarding the best policy identification setting, the assumption that a generative model
of the target task is available is quite restrictive. The most natural direction for future work
would be to remove this assumption, as we already hinted in Section 11.3.1. While PTUM
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provably reduces the sample complexity for learning new tasks by exploiting structure (as
compared to the unstructured approaches), one might be wondering whether it is possible
to design strategies that are optimal in some sense. For instance, one could take inspiration
from asymptotically optimal strategies for pure exploration in bandits (Garivier and Kauf-
mann, 2016; Degenne et al., 2019, 2020a) and derive a lower bound on the minimal sample
complexity needed for identifying an ε-optimal policy of the specific problem. This would
lead to an optimal allocation of samples to collect from different state-action pairs that an
algorithm could try to realize in practice.

Finally, existing methods for learning structure from previous tasks with theoretical
guarantees have limitations. The clustering-based approach of (Brunskill and Li, 2013) re-
quires strong assumptions on the number of underlying MDP models and on their minimal
distance, while spectral methods (Azar et al., 2013a) are very computationally demand-
ing. We wonder whether methods that overcome these limitations can be designed while
still providing theoretical guarantees on the learned structures. This might be possible by
considering non-parametric models (Bonilla et al., 2008; Passos et al., 2012) or by assum-
ing specific structures, e.g., by learning shared features in linear models (Argyriou et al.,
2007).

Concluding Remarks

At last, we have reached the final sentences of this (long) thesis. I hope to have convinced
the reader that knowledge transfer is a fundamental component to enable reinforcement
learning agents in the real world. While, as usual, we open more problems than we solve,
there are definitely many promising and exciting directions for future research.
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Gupta, S., Joshi, G., and Yağan, O. (2018b). Exploiting correlation in finite-armed structured bandits.
arXiv preprint arXiv:1810.08164.

Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2006). A distribution-free theory of nonparamet-
ric regression. Springer Science & Business Media.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P., et al. (2018b). Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

Hachiya, H., Akiyama, T., Sugiayma, M., and Peters, J. (2009). Adaptive importance sam-
pling for value function approximation in off-policy reinforcement learning. Neural Networks,
22(10):1399–1410.

Hachiya, H., Peters, J., and Sugiyama, M. (2011). Reward-weighted regression with sample reuse
for direct policy search in reinforcement learning. Neural Computation, 23(11):2798–2832.

209



Bibliography

Hallak, A., Di Castro, D., and Mannor, S. (2015). Contextual markov decision processes. arXiv
preprint arXiv:1502.02259.

Hammersley, J. and Handscomb, D. (1964). Monte Carlo Methods. Methuen’s monographs on
applied probability and statistics. Methuen.

Hao, B., Lattimore, T., and Szepesvari, C. (2019). Adaptive exploration in linear contextual bandit.
arXiv preprint arXiv:1910.06996.

Hasselt, H. V. (2010). Double q-learning. In Advances in neural information processing systems,
pages 2613–2621.

Hershey, J. R. and Olsen, P. A. (2007). Approximating the kullback leibler divergence between
gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,
B., Azar, M., and Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement
learning. arXiv preprint arXiv:1710.02298.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., and van Hasselt, H. (2019). Multi-
task deep reinforcement learning with popart. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3796–3803.

Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distributions.
Technometrics, 37(2):185–194.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pages 87–94. Springer.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference. The
Journal of Machine Learning Research, 14(1):1303–1347.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A., Teh, Y. W., and Heess, N. (2019). Meta
reinforcement learning as task inference. arXiv preprint arXiv:1905.06424.

Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative dynamic
programming algorithms. In Advances in neural information processing systems, pages 703–710.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11:1563–1600.

Jedra, Y. and Proutiere, A. (2020). Optimal best-arm identification in linear bandits. arXiv preprint
arXiv:2006.16073.

Jian, Q., Fruit, R., Pirotta, M., and Lazaric, A. (2019). Exploration bonus for regret minimization
in discrete and continuous average reward mdps. In Advances in Neural Information Processing
Systems, pages 4890–4899.

210



Bibliography

Jiang, N. and Li, L. (2016). Doubly robust off-policy value evaluation for reinforcement learning. In
Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 652–661,
New York, New York, USA. PMLR.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018). Is q-learning provably efficient? In
Advances in Neural Information Processing Systems, pages 4863–4873.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020). Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, pages 2137–2143.

Jong, N. K. and Stone, P. (2007). Model-based exploration in continuous state spaces. In Interna-
tional Symposium on Abstraction, Reformulation, and Approximation, pages 258–272. Springer.

Jun, K.-S. and Zhang, C. (2020). Crush optimism with pessimism: Structured bandits beyond asymp-
totic optimality. arXiv preprint arXiv:2006.08754.

Kamienny, P.-A., Pirotta, M., Lazaric, A., Lavril, T., Usunier, N., and Denoyer, L. (2020). Learning
adaptive exploration strategies in dynamic environments through informed policy regularization.
arXiv preprint arXiv:2005.02934.

Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson sampling: An asymptotically optimal
finite-time analysis. In International conference on algorithmic learning theory, pages 199–213.
Springer.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine
learning, 49(2-3):209–232.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-Velez, F. (2017). Robust and efficient transfer
learning with hidden parameter markov decision processes. In Advances in Neural Information
Processing Systems, pages 6250–6261.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kober, J. and Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances in
neural information processing systems, pages 849–856.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014.

Kong, A. (1992). A note on importance sampling using standardized weights. University of Chicago,
Dept. of Statistics, Tech. Rep, 348.

Konidaris, G. and Barto, A. (2006). Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages 489–
496.

Konidaris, G. and Barto, A. (2007). Building portable options: skill transfer in reinforcement learn-
ing. In Proceedings of the 20th international joint conference on Artifical intelligence, pages
895–900.

Konidaris, G., Scheidwasser, I., and Barto, A. G. (2012). Transfer in reinforcement learning via
shared features. The Journal of Machine Learning Research, 13(1):1333–1371.

211



Bibliography

Kuss, M. and Rasmussen, C. E. (2004). Gaussian processes in reinforcement learning. In Advances
in Neural Information Processing Systems 16, pages 751–758. MIT Press.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22.

Lakshmanan, K., Ortner, R., and Ryabko, D. (2015). Improved regret bounds for undiscounted
continuous reinforcement learning. In International Conference on Machine Learning, pages
524–532.

Lan, L., Li, Z., Guan, X., and Wang, P. (2019). Meta reinforcement learning with task embedding and
shared policy. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 2794–2800. AAAI Press.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer.

Laroche, R. and Barlier, M. (2017). Transfer reinforcement learning with shared dynamics. In
Thirty-First AAAI Conference on Artificial Intelligence.

Lattimore, T. and Munos, R. (2014). Bounded regret for finite-armed structured bandits. In Advances
in Neural Information Processing Systems, pages 550–558.

Lattimore, T. and Szepesvari, C. (2017). The end of optimism? an asymptotic analysis of finite-
armed linear bandits. In Artificial Intelligence and Statistics, pages 728–737.

Lattimore, T. and Szepesvari, C. (2019). Learning with good feature representations in bandits and
in rl with a generative model. arXiv preprint arXiv:1911.07676.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Lazaric, A. (2012). Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pages 143–173. Springer.

Lazaric, A. and Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning.

Lazaric, A. and Restelli, M. (2011). Transfer from multiple mdps. In Advances in Neural Information
Processing Systems, pages 1746–1754.

Lazaric, A., Restelli, M., and Bonarini, A. (2008a). Reinforcement learning in continuous action
spaces through sequential monte carlo methods. In Advances in neural information processing
systems, pages 833–840.

Lazaric, A., Restelli, M., and Bonarini, A. (2008b). Transfer of samples in batch reinforcement
learning. In Proceedings of the 25th international conference on Machine learning, pages 544–
551. ACM.

Le Cam, L. (1986). Asymptotic methods in statistical decision theory. Springer Science & Business
Media.

Lehnert, L. and Littman, M. L. (2018). Transfer with model features in reinforcement learning.
arXiv preprint arXiv:1807.01736.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334–1373.

212



Bibliography

Li, L., Munos, R., and Szepesvari, C. (2015a). Toward Minimax Off-policy Value Estimation. In
Lebanon, G. and Vishwanathan, S. V. N., editors, Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine Learn-
ing Research, pages 608–616, San Diego, California, USA. PMLR.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction for
mdps.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.

Li, Y., Tian, X., Liu, T., and Tao, D. (2015b). Multi-task model and feature joint learning. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Liu, H., Socher, R., and Xiong, C. (2019a). Taming maml: Efficient unbiased meta-reinforcement
learning. In International Conference on Machine Learning, pages 4061–4071.

Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection sampling and
importance sampling. Statistics and Computing, 6(2):113–119.

Liu, L. T., Dogan, U., and Hofmann, K. (2016a). Decoding multitask dqn in the world of minecraft.

Liu, M., Chowdhary, G., and How, J. P. (2012). Transfer learning for reinforcement learning with
dependent dirichlet process and gaussian process.

Liu, Q., Li, L., Tang, Z., and Zhou, D. (2018). Breaking the curse of horizon: Infinite-horizon
off-policy estimation. In Advances in Neural Information Processing Systems, pages 5361–5371.

Liu, Y., Guo, Z., and Brunskill, E. (2016b). Pac continuous state online multitask reinforcement
learning with identification. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pages 438–446.

Liu, Y., Hu, Y., Gao, Y., Chen, Y., and Fan, C. (2019b). Value function transfer for deep multi-agent
reinforcement learning based on n-step returns. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 457–463. AAAI Press.

Liu, Y. and Stone, P. (2006). Value-function-based transfer for reinforcement learning using structure
mapping. In Proceedings of the 21st national conference on Artificial intelligence-Volume 1,
pages 415–420.

Magureanu, S., Combes, R., and Proutiere, A. (2014). Lipschitz bandits: Regret lower bounds and
optimal algorithms. arXiv preprint arXiv:1405.4758.

Mahmood, A. R., van Hasselt, H. P., and Sutton, R. S. (2014). Weighted importance sampling for
off-policy learning with linear function approximation. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems 27, pages 3014–3022. Curran Associates, Inc.

Mahmud, M., Hawasly, M., Rosman, B., and Ramamoorthy, S. (2013). Clustering markov decision
processes for continual transfer. arXiv preprint arXiv:1311.3959.

Maillard, O.-A., Munos, R., Lazaric, A., and Ghavamzadeh, M. (2010). Finite-sample analysis of
bellman residual minimization. In Proceedings of 2nd Asian Conference on Machine Learning,
pages 299–314.

213



Bibliography

Mann, T. A. and Choe, Y. (2013). Directed exploration in reinforcement learning with transferred
knowledge. In European Workshop on Reinforcement Learning, pages 59–76.

Martino, L., Elvira, V., and Louzada, F. (2017). Effective sample size for importance sampling based
on discrepancy measures. Signal Processing, 131:386–401.

Maurer, A. and Pontil, M. (2009). Empirical bernstein bounds and sample variance penalization.
arXiv preprint arXiv:0907.3740.

Mehta, N., Natarajan, S., Tadepalli, P., and Fern, A. (2008). Transfer in variable-reward hierarchical
reinforcement learning. Machine Learning, 73(3):289.

Melo, F. S. (2001). Convergence of q-learning: A simple proof.

Melo, F. S. and Ribeiro, M. I. (2007). Convergence of q-learning with linear function approximation.
In 2007 European Control Conference (ECC), pages 2671–2678. IEEE.

Micchelli, C. A. and Pontil, M. (2005). On learning vector-valued functions. Neural computation,
17(1):177–204.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529–533.

Modi, A., Jiang, N., Singh, S., and Tewari, A. (2018). Markov decision processes with continuous
side information. In Algorithmic Learning Theory, pages 597–618.

Monahan, G. E. (1982). State of the art–a survey of partially observable markov decision processes:
theory, models, and algorithms. Management science, 28(1):1–16.

Mülling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3):263–279.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016). Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pages 1054–
1062.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(May):815–857.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E., and Stone, P. (2020). Curricu-
lum learning for reinforcement learning domains: A framework and survey. arXiv preprint
arXiv:2003.04960.
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APPENDIXA
Proofs of Chapter 6

Proof of Proposition 6.4.2

Suppose our current dataset D contains n trajectories, with the target distribution being p(τ) =
p(τ |θ0,M0) and the mixture of source proposals being qα(τ) =

∑m
j=1 αjpj(τ), with pj(τ) =

p(τ |θj ,Mj). Notice that qα(τ) does not necessarily contain the target distribution p since the
number of defensive samples has still to be computed. If we add n0 defensive samples, the resulting
ESS (according to the lower bound of Proposition 6.4.1) is

ESS(n0;D) =
n+ n0∫ p(τ)2∑m

j=1

nj
n+n0

pj(τ)+
n0

n+n0
p(τ)

dτ
=

n+ n0

Eτ∼qα(τ ;n0)

[
p(τ)2

qα(τ ;n0)2

]
=

n+ n0

1 + Varτ∼qα(τ ;n0)

[
p(τ)

qα(τ ;n0)

] =
n+ n0

1 +
∫
qα(τ ;n0)

(
p(τ)

qα(τ ;n0)
− 1
)2 ,

where we use qα(τ ;n0) to denote the updated mixture after collecting n0 defensive trajectories from
p. Let us now approximate the variance term using our current samples. To simplify the notation, let
us index the samples with i = 1, . . . , n, while dropping the index j of the proposal which generated
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the sample itself (under the balance heuristics, the weight does not depend on j). We have

Varτ∼qα(τ ;n0)

[
p(τ)

qα(τ ;n0)

]
' 1

n

n∑
i=1

qα(τi;n0)

qα(τi)

(
p(τi)

qα(τi;n0)
− 1

)2

=
1

n

n∑
i=1

p(τi)
2

qα(τi)qα(τi;n0)
+

1

n

n∑
i=1

qα(τi;n0)

qα(τi)
− 2

n

n∑
i=1

p(τi)

qα(τi)

= (n+ n0)

n∑
i=1

a2
i

bi(bi + ain0)
+

n

n+ n0
+

n0

n+ n0

n∑
i=1

ai
bi
− 2

n∑
i=1

ai
bi
,

where we defined the constants ai := p(τi) and bi :=
∑m
j=1 njpj(τi). Thus, the ESS improvement

as a function of n0 can be approximated as

ÊSS(n0; D̃) =
n+ n0

1 + (n+ n0)
∑n
i=1

a2
i

bi(bi+ain0)
+ n

n+n0
+ n0

n+n0

∑n
i=1

ai
bi
− 2

∑n
i=1

ai
bi

=
1∑n

i=1

a2
i

bi(bi+ain0)
+ n

(n+n0)2
+ n0

(n+n0)2

∑n
i=1

ai
bi

+ 1
n+n0

(
1− 2

∑n
i=1

ai
bi

) .
Note that ÊSS(0; D̃) = n

1+ 1
n

∑n
i=1

(
p(τi)
qα(τi)

−1
)2 , which is exactly our ESS measure. Furthermore,

this function is strictly increasing for n0 ≥ 0 and limn0→∞
ESS(n0;D)

n0
= 1, i.e., the asymptotic in-

crease rate is linear with slope 1. Therefore, ÊSS(n0; D̃) ≥ ÊSS(0; D̃)+n0 infx∈(0,+∞) ÊSS
′
(x; D̃).

It is easy to check that infx∈(0,+∞) ÊSS
′
(x; D̃) is either 1, when the function grows at a rate that is

always grater than the asymptotic one, or c, when the initial rate is smaller. Thus,

ÊSS(n0; D̃) ≥ n

1 + 1
n

∑n
i=1

(
p(τi)
qα(τi)

− 1
)2 + min{1, c}n0.

Using this equation and setting the right-hand side to ESSmin, we get that the number n0 of defensive
samples to guarantee an ESS of at least ESSmin can be approximated as

n0 =

⌈
ESSmin − n

1+V̂ar[w]

min{1, c}

⌉
.

Finally, we clip this value to nmin below, as required by our algorithm, and to ESSmin above since
the collecting ESSmin samples is sufficient to guarantee an ESS of at least such value. In fact, if we
have ESSmin samples from the target p in our dataset, d2(p‖qα) ≤ n

ESSmin
since the importance

weights are bounded by 1
α0

= n
ESSmin

. Hence, n
d2(p‖qα)

≥ ESSmin.

Proof of Theorem 6.5.2

Since the proof relies on the theory of f -divergences (Csiszár, 1967), let us first recall some basic
definitions. Let f : (0,∞) → R be a convex function such that f(1) = 0. Then, the f -divergence
between P and Q is defined as:

Df (P‖Q) =

∫
f

(
dP

dQ

)
dQ. (A.1)
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An example of f -divergence, which we will adopt in the remaining, is the chi-square divergence
(Pearson, 1900), which is given by

Dχ2(P ||Q) =

∫ (
dP

dQ

)2

dQ− 1, (A.2)

or, equivalently, as the f -divergence with fχ2(w) = (w − 1)2. Then,

d2(P‖Qα) =

∫ (
dP

dQ

)2

dQ = Dχ2(P ||Qα) + 1. (A.3)

Let us now introduce an f -divergence ∆α(P ||Q) defined by the function

f∆α(w) =
(w − 1)2

α
1−αw + 1

. (A.4)

This diverge can be seen as a skewed version of the triangular discrimination ∆(P ||Q) (Le Cam,
1986), which is given by (A.4) for the particular case α = 1

2
. Furthermore, it is easy to check that

Dχ2(P ||Qα) = (1 − α)∆α(P ||Q). Thus, in order to bound d2(P‖Qα) we only need to bound
∆α(P ||Q).

Note that f∆α is twice differential on (0,∞) and that, by assumption, ess sup dP
dQ
≤ C. Then,

we can apply Theorem 3.1 of Taneja (2004)1 to obtain

∆α(P ||Q) ≤ DKL(P ||Q) sup
w∈(0,C)

wf ′′∆α(w). (A.5)

Let us now compute the constant multiplying the KL divergence on the right-hand side. A simple
algebra shows that the first derivative of f∆α is

f ′∆α(w) =
(w − 1)

(
α

1−αw + α
1−α + 2

)
(

α
1−αw + 1

)2 ,

while the second derivative is

f ′′∆α(w) =
2
(

α
1−α + 1

)2

(
α

1−αw + 1
)3 .

Let us define g∆α(w) := wf ′′∆α(w). Then,

g′∆α(w) =
2
(

α
1−α + 1

)2 (
1− 2 α

1−αw
)

(
α

1−αw + 1
)4 .

This function is positive for w ≤ 1−α
2α

and negative for w ≥ 1−α
2α

. Thus,

sup
w∈(0,C)

g∆α(w) = g∆α(C) =
2C
(

α
1−α + 1

)2

(
α

1−αC + 1
)3

1Technically speaking, Taneja (2004) consider only discrete spaces. However, their result generalizes straight-
forwardly to general probability measures.
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for C ≤ 1−α
2α

, while

sup
w∈(0,C)

g∆α(w) = g∆α

(
1− α

2α

)
=

8

27

1

α(1− α)

in the opposite case. The theorem follows after multiplying these two constants by 1 − α and
plugging everything into (A.3).

Proof of Proposition 6.5.1

From Theorem 6.5.2 we know that d2

(
p(·|θ0, f̃0)‖qα(·|f̃0)

)
≤ 1+u(α)DKL

(
p(·|θ0, f̃0)‖q̄α(·|f̃0)

)
,

where we write q̄ to denote the normalized mixture of proposals without the defensive component
p(·|θ0, f̃0). Neglecting the constant term (which does not depend on f̃ ), we have

DKL

(
p(·|θ0, f̃0), q̄α(·|f̃0)

)
≤ 1

1− α0

m∑
j=1

αjDKL

(
p(·|θ0, f̃0)‖p(·|θj , f̃j)

)

=
1

1− α0

m∑
j=1

αjEτ∼p(·|θ0,f̃0)

[
log

p(τ |θ0, f̃0)

p(τ |θj , f̃j)

]

=
1

1− α0

m∑
j=1

αjEτ∼p(·|θ0,f̃0)

[
T−1∑
t=0

log
P̃0(St+1|St, At)
P̃j(St+1|St, At)

]

+
1

1− α0

m∑
j=1

αjEτ∼p(·|θ0,f̃0)

[
T−1∑
t=0

log
πθ0(At|St)
πθj (At|St)

]

=
1

1− α0

m∑
j=0

αj

T−1∑
t=0

Eτ∼p(·|θ0,f̃0)

[
DKL(P̃0(·|St, At), P̃j(·|St, At))

]
+ const

=
1

1− α0

1

2σ2

T−1∑
t=0

Eτ∼p(·|θ0,f̃0)

[
m∑
j=0

αj‖f̃0(xt)− f̃j(xt)‖22

]
+ const,

where the first inequality follows from the convexity of the function 1/x and Jensen’s inequality.
Note that the expected KL divergence between policies can be considered constant since, according
to the approximation introduced in Section 6.5.2, the expectation is not computed under the current
model f̃0. The last term in (6.17) can be safely regarded as a constant since the integrand does not
depend on f̃0, and so do all terms involving only source models. Noting that the bias term remained
unchanged, the proposition is obtained after renaming the constants.

Auxiliary Results

Lemma A.4.1. Let Q1, . . . , Qm be probability measures over (X ,F ), Qα =
∑m
j=1 αjQj be a

mixture of these measures with coefficients αj ≥ 0 such that
∑m
j=1 αj = 1, and f : X → R be any

measurable function. Consider µ̂ = 1
n

∑m
j=1

∑nj
i=1 f(xi,j) where xi,j are i.i.d. samples and n =∑m

j=1 nj . Then, choosing αj =
nj
n

, for each j ∈ {1, . . . ,m}, Varxi,j∼Qj [µ̂] ≤ Varxi,j∼Qα [µ̂].
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Proof. Let µ = Ex∼Qα [f(x)] and µj = Ex∼Qj [f(x)]. Then,

Varxi,j∼Qα [µ̂] =
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µ)2dx

=
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µ± µj)2dx

=
1

n2

m∑
j=1

nj

∫
qj(x)(f(x)− µj)2dx+

1

n2

m∑
j=1

nj

∫
qj(x)(µj − µ)2dx

= Varxi,j∼Qj [µ̂] +
1

n

m∑
j=1

αj(µj − µ)2

≥ V arxi,j∼Qj [µ̂].
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Proofs of Chapter 7

Proof of Lemma 7.4.1

From Hoeffding’s inequality we have

P
{∣∣∣∣Eν,P0

[∥∥∥B̃ω∥∥∥2

D

]
−
∥∥∥B̃ω∥∥∥2

D

∣∣∣∣ > ε

}
≤ 2 exp

− 2nε2(
2 rmax

1−γ

)4


which implies that, for any δ > 0, with probability at least 1− δ:∣∣∣∣Eν,P0

[∥∥∥B̃ω∥∥∥2

D

]
−
∥∥∥B̃ω∥∥∥2

D

∣∣∣∣ ≤ 4
r2
max

(1− γ)2

√
log 2

δ

2n
.

Under independence assumptions, the expected TD error can be re-written as

Eν,P0

[∥∥∥B̃ω∥∥∥2

D

]
= Eν,P0

[
1

n

n∑
i=1

(ri + γmm
a′

Qω(s′i, a
′)−Qω(si, ai))

2

]

= Eν,P0

[
(r0(s, a) + γmm

a′
Qω(s′, a′)−Qω(s, a))2

]
= Eν

[
EP0

[
b̃(ω)2

]]
= Eν

[
VarP0

[
b̃(ω)

]
+ EP0

[
b̃(ω)

]2]
= v(ω) +

∥∥∥B̃ω∥∥∥2

ν
,
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Thus, ∣∣∣∣∥∥∥B̃ω∥∥∥2

ν
+ v(ω)−

∥∥∥B̃ω∥∥∥2

D

∣∣∣∣ ≤ 4
r2
max

(1− γ)2

√
log 2

δ

2n
. (B.1)

From the change of measure inequality (Seldin et al., 2012), we have that, for any measurable func-
tion f(ω) and any two probability measures p and q,

logEp
[
ef(ω)

]
≥ Eq [f(ω)]−DKL(q‖p).

Thus, multiplying both sides of (B.1) by λ−1n and applying the change of measure inequality with

f(ω) = λ−1n

∣∣∣∣∥∥∥B̃ω∥∥∥2

ν
+ v(ω)−

∥∥∥B̃ω∥∥∥2

D

∣∣∣∣, we obtain

Eq [f(ω)]−DKL(q‖p) ≤ logEp
[
ef(ω)

]
≤ 4

r2
maxλ

−1n

(1− γ)2

√
log 2

δ

2n
,

where the second inequality holds since the right-hand side of (B.1) does not depend on ω. Finally,
we can explicitly write:

Eq
[∣∣∣∣∥∥∥B̃ω∥∥∥2

ν
+ v(ω)−

∥∥∥B̃ω∥∥∥2

D

∣∣∣∣] ≤ λ

n
DKL(q‖p) + 4

r2
max

(1− γ)2

√
log 2

δ

2n

from which the lemma follows straightforwardly.

Proof of Lemma 7.4.2

Let us use Lemma 7.4.1 for the specific choice q = qξ̂. Using the first inequality in Lemma 7.4.1,

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ Eq

ξ̂

[∥∥∥B̃ω∥∥∥2

D

]
− Eq

ξ̂
[v(ω)] +

λ

n
DKL(qξ̂‖p) + 4

r2
max

(1− γ)2

√
log 2

δ

2n

≤ Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

D

]
+
λ

n
DKL(qξ̂‖p) + 4

r2
max

(1− γ)2

√
log 2

δ

2n

= inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃ω∥∥∥2

D

]
+
λ

n
DKL(qξ‖p)

}
+ 4

r2
max

(1− γ)2

√
log 2

δ

2n
,

where the second inequality holds since v(ω) > 0, while the equality holds from the definition of ξ̂.

We can now use the second ineuquality in Lemma 7.4.1 to bound Eqξ
[∥∥∥B̃ω∥∥∥2

D

]
, thus obtaining:

Eq
ξ̂

[∥∥∥B̃ω∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃ω∥∥∥2

ν

]
+ Eqξ [v(ω)] + 2

λ

n
DKL(qξ‖p)

}
+ 8

r2
max

(1− γ)2

√
log 2

δ

2n
.

This concludes the proof.
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Proof of Lemma 9.3.1

Using the union bound, we can decompose P {Ec} into

P
{
∃h = 1, . . . , dlog2 ne, ∃a ∈ A : |µ̂h−1(a)− µθ∗(a)| ≥ 1

β

√
α logn

Nh−1(a)
∧Nh−1(a) > 0

}

≤
dlog2 ne∑
h=1

∑
a∈A∗(Θ)

P
{
|µ̂h−1(a)− µθ∗(a)| ≥ 1

β

√
α logn

Nh−1(a)
∧Nh−1(a) > 0

}
,

where the sum starts from h = 1 since in phase 0 no arm has been pulled and all models are therefore
contained in the confidence set. Furthermore, A can be replaced by A∗(Θ) since arms that are sub-
optimal for all models are never pulled and so the corresponding event above never holds. Let us
now consider the inner term for a fixed phase h and arm a. Notice that, at the end of phase h − 1,
the possible number of pulls of arm a are

ks :=

⌈
α logn

Γ̃2
s

(
1 +

1

β

)2
⌉
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for s = 0, 1, . . . , h − 1. Thus, by taking a further union bound on the possible values of Nh−1(a)
and using Chernoff-Hoeffding inequality, we obtain

P
{
|µ̂h−1(a)− µθ∗(a)| ≥ 1

β

√
α logn

Nh−1(a)

}

= P
{
h−1⋃
s=0

|µ̂h−1(a)− µθ∗(a)| ≥ 1

β

√
α logn

Nh−1(a)
∧Nh−1(a) = ks

}

≤
h−1∑
s=0

P
{
|µ̂i,ks − µθ∗(a)| ≥ 1

β

√
α logn

ks

}

≤
h−1∑
s=0

2e
−2ks

α logn

β2ks = 2hn
−2 α

β2 .

Notice that, with some abuse of notation, we define µ̂a,ks as the empirical mean of arm a after ks
pulls of such arm. Putting everything together,

P {Ec} ≤
dlog2 ne∑
h=1

∑
a∈A∗(Θ)

2hn
−2 α

β2 = 2|A∗(Θ)|n−2 α
β2

dlog2 ne∑
h=1

h ≤ |A∗(Θ)|n−2 α
β2 (log2 n+ 2)2,

which concludes the proof.

Proof of Proposition 9.3.1 and Proposition 9.3.2

Proposition 9.3.1. First notice that each sub-optimal arm a is also in the set of armsA∗a available
to remove a itself. Consider now any model θ̄a ∈ Θ∗a that must be removed from the confidence set
in order to eliminate a. We have two cases.

1) θ̄a is an optimistic model w.r.t. θ∗ This implies that µ∗θ̄a = µθ̄a(a) > µ∗θ∗ which, in turns,
implies that Γa(θ̄a, θ

∗) > ∆θ∗(a). Therefore, the regret for such arms can be upper bounded by

c∆θ∗(a) logn

maxa′∈Ah̄a∪{a}
Γ2
a′(θ̄a, θ

∗)
+ c′ ≤ c∆θ∗(a) logn

Γ2
a(θ̄a, θ∗)

+ c′ ≤ c logn

∆θ∗(a)
+ c′.

2) θ̄a is not an optimistic model w.r.t. θ∗ This implies that µ∗θ̄a = µθ̄a(a) ≤ µ∗θ∗ . If

µθ̄a(a) ≥ µ∗θ∗−
∆θ∗ (a)

2
, then Γa(θ̄a, θ

∗) ≥ ∆θ∗ (a)

2
. If, on the other hand, µθ̄a(a) ≤ µ∗θ∗−

∆θ∗ (a)

2
,

then Γa∗(θ̄a, θ
∗) ≥ ∆θ∗ (a)

2
since µθ̄a(a∗) < µθ̄a(a). Furthermore, under event E, a∗ ∈ Ãh for all

h ≥ 0 (and thus a∗ ∈ Ah). Therefore,

c∆θ∗(a) logn

maxa′∈Ah̄a∪{a}
Γ2
a′(θ̄a, θ

∗)
+ c′ ≤ c∆θ∗(a) logn

max
{

Γ2
a(θ̄a, θ∗),Γ2

a∗(θ̄a, θ
∗)
} + c′ ≤ 2c logn

∆θ∗(a)
+ c′.

This concludes the proof of Proposition 9.3.1.

Proposition 9.3.2. In the proof of Proposition 9.3.1, we have already shown that the model gaps
with respect to optimistic models are always larger than the action gaps. Therefore,

inf
θ∈Θ∗a\Θ

+
a

max
a′∈A∗a

Γa′(θ, θ
∗) ≥ inf

θ∈Θ+
a

max
a′∈A∗a

Γa′(θ, θ
∗) ≥ ∆θ∗(a).

The proof follows straightforwardly.
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Proofs of Section 9.4

Throughout this section, we override the notation of the previous results to account for the periods
introduced in Algorithm 7. We use Nk,h(a) to denote the number of pulls of arm a at the end
of phase h in period k. Furthermore, we define Nk(a) as the number of pulls of a at the end of
period k. Similarly, Tk,h(a) denotes the number of pulls of a at end of phase h but counting only
those pulls occurred in period k. For all other period- and phase-dependent random variables, we
shall use a superscript k to denote the period and a subscript h to denote the phase. For variables
depending only on the period, we shall move k to a subscript. We will make these dependencies
explicit whenever not clear from the context.

Proof of Theorem 9.4.1
We first extend Lemma 9.3.1 to bound the probability that the true model is not contained in the
confidence set by a margin in some phase of period k.

Lemma C.3.1. Let α > 0, β ≥ 1, k ≥ 0, and Ek denote the following event:

Ek :=
{
∀h = 0, . . . , dlog2 ñke : θ∗ ∈ Θ̃k

h

}
. (C.1)

Then, the probability that Ek does not hold can be upper bounded by

P {Eck} ≤ |A∗(Θ)|(log2 ñk + 3)2ñ
−2 α

β2

k

k−1∑
k′=0

ñk′ .

Proof. First assume that k > 0. Using the union bound, we have that P {Eck} can be written as

P
{
∃h = 0, . . . , dlog2 ñke, ∃i ∈ A : |µ̂kh−1(a)− µθ∗(a)| ≥ 1

β

√
α log ñk
Nk,h−1(a)

∧Nk,h−1(a) > 0

}

≤
dlog2 ñke∑
h=0

∑
a∈A∗(Θ)

P
{
|µ̂kh−1(a)− µθ∗(a)| ≥ 1

β

√
α log ñk
Nk,h−1(a)

∧Nk,h−1(a) > 0

}
,

where A can be replaced by A∗(Θ) since arms that are sub-optimal for all models are never pulled
and so the corresponding event above never holds. Let us now consider the inner term for a fixed
phase h and arm a. The number of pulls of a can be decomposed into Nk,h−1(a) = Nk−1(a) +
Tk,h−1(a). Nk−1(a) could be any value s between 1 and s̄k :=

∑k−1
k′=0 ñk′ . On the other hand,

Tk,h−1(a) can lead only to h+ 1 different number of pulls,

pu :=

⌈
α log ñk

Γ̃2
u−1

(
1 +

1

β

)2
⌉

for u = 1, . . . , h and pu = 0 for u = 0. Therefore, the number of pulls of a given s pulls up to
period k−1 and pu pulls in period k are qs,u = max{s, pu}. Thus, by taking a further union bound
on the possible values of Nk,h−1(a) and using Chernoff-Hoeffding inequality, we obtain

P
{
|µ̂kh−1(a)− µθ∗(a)| ≥ 1

β

√
α log ñk
Nk,h−1(a)

}
= P

{
s̄k⋃
s=1

h⋃
u=0

|µ̂a,qs,u − µθ∗(a)| ≥ 1

β

√
α log ñk
qs,u

}

≤
s̄k∑
s=1

h∑
u=0

P
{
|µ̂a,qs,u − µθ∗(a)| ≥ 1

β

√
α log ñk
qs,u

}

≤
s̄k∑
s=1

h∑
u=0

2e
−2qs,u

α log ñk
β2qs,u = 2(h+ 1)ñ

−2 α
β2

k s̄k.
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Notice that, with some abuse of notation, we define µ̂a,s as the empirical mean of arm a after s pulls
of such arm. Putting everything together,

P {Eck} ≤
dlog2 ñke∑
h=0

∑
a∈A∗(Θ)

2(h+ 1)ñ
−2 α

β2

k s̄k = 2|A∗(Θ)|ñ
−2 α

β2

k s̄k

dlog2 ñke∑
h=0

(h+ 1)

≤ |A∗(Θ)|(log2 ñk + 3)2ñ
−2 α

β2

k s̄k.

Notice that for k = 0 the bound is even smaller since we can avoid the union bound over the pulls
in previous periods. This concludes the proof.

Proof of Theorem 9.4.1. Let Lk :=
∑ñk
t=s̄k+1 ∆θ∗(At), with s̄k :=

∑k−1
k′=0 ñk′ , be the regret

incurred in period k. Then,

Rn = E
[
n∑
t=1

∆θ∗(At)

]
(a)

≤ E

 k̄∑
k=0

Lk

 = E

 k̄∑
k=0

Lk1 {Ek = 1}

+ E

 k̄∑
k=0

Lk1 {Ek = 0}


(b)

≤
k̄∑
k=0

E [Lk|Ek = 1]︸ ︷︷ ︸
(i)

+

k̄∑
k=0

P {Ek = 0} ñk︸ ︷︷ ︸
(ii)

,

where (a) follows from the definition of the maximum period k̄ = mink∈N+{k|ñk ≥ n} and (b) by
bounding the regret of each period by ñk. We now bound the two terms separately.

Term (i). Fix a period k. We have

E [Lk|Ek = 1] =
∑

a∈A∗(Θ)

∆θ∗(a)E [Nk(a)−Nk−1(a)|Ek = 1] ,

where we recall Nk(a) is the total number of pulls of a at the end of period k (not necessarily only
in period k), so that Nk(a) − Nk−1(a) is the total number of pulls occurred in period k. Fix a
sub-optimal arm a. Let

h̄a := min
h∈N+

{
h | Γ̃h ≤ inf

θ∈Θ∗a
max

a′∈{a,a∗}
Γa′(θ, θ

∗)

}
.

Lemma 9.3.3, together with the fact that a∗ is pulled in all phases, ensures that if a ∈ Ãkh̄a , a will
not be pulled again in period k. Therefore,

Nk(a)−Nk−1(a)
(a)

≤

⌈
α log ñk

Γ̃2
h̄a

(
1 +

1

β

)2
⌉

(b)
=

⌈
4α logn

Γ̃2
h̄a−1

(
1 +

1

β

)2
⌉

(c)

≤

⌈
4α log ñk

infθ∈Θ∗a maxa′∈{a,a∗} Γ2
a′(θ, θ

∗)

(
1 +

1

β

)2
⌉

(d)

≤ 16α log ñk
infθ∈Θ∗a maxa′∈{a,a∗} Γ2

a′(θ, θ
∗)

+ 1

(e)

≤ 24α log ñk
infθ∈Θ∗a maxa′∈{a,a∗} Γ2

a′(θ, θ
∗)
,
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where (a) follows from the previous comments, (b) from Γ̃h =
Γ̃h−1

2
, (c) from the definition of h̄a,

(d) after setting β = 1, and (e) by noticing that 1 ≤ 3
2

log ñk for all k ≥ 0. This allows us to bound
the expected regret due to arms in A∗(Θ) by

(i) ≤
∑

a∈A∗(Θ)

24α∆θ∗(a)
∑k̄
k=0 log ñk

infθ∈Θ∗a maxa′∈{a,a∗} Γ2
a′(θ, θ

∗)
≤

∑
a∈A∗(Θ)

96α∆θ∗(a) logn

infθ∈Θ∗a maxa′∈{a,a∗} Γ2
a′(θ, θ

∗)
.

To understand the second inequality, notice that ñk = 22k for all k ≥ 0 since η = 1. Furthermore,
since k̄ < log2 log2 n+ 1,

∑k̄
k=0 log ñk = (log 2)

∑k̄
k=0 2k ≤ 2k̄+1 log 2 ≤ 4 logn.

Term (ii). We have

(ii)
(a)

≤ |A∗(Θ)|
k̄∑
k=0

ñ
2−2 α

β2

k (log2 ñk + 3)2 (b)
= |A∗(Θ)|

k̄∑
k=0

2
2k(2−2 α

β2 )
(2k + 3)2

(c)

≤ |A∗(Θ)|
2∑
k=0

2
2k(2−2 α

β2 )
(2k + 3)2 + |A∗(Θ)|

∞∑
k=3

1

2
2k(2 α

β2−3)

(d)

≤ 5.76|A∗(Θ)|+ 0.026|A∗(Θ)| ≤ 6|A∗(Θ)|,

where (a) follows from Lemma C.3.1 and
∑k−1
k′=0 ñk′ ≤ ñk, (b) from the definition of ñk, (c) from

the fact that for k ≥ 3 we have (2k + 3)2 ≤ 22k , and (d) after setting α = 2, β = 1, and some
numerical calculations.

Combining (i) and (ii), we obtain the stated bound on Rn.

Proof of Theorem 9.4.2

As for Theorem 9.4.1, we define Lk :=
∑ñk
t=s̄k+1 ∆θ∗(At) to be the regret incurred in period k.

Similarly to Lattimore and Munos (2014), we decompose the expected regret into that incurred up
to a fixed (constant in n) period k and that incurred in the remaining periods. LetOk := {∃a 6= a∗ :
a ∈ Ãk0} be the event under which some sub-optimal arm is pulled in period k. Then,

Rn = E
[
n∑
t=1

∆θ∗(At)

]
(a)

≤ E

 k̄∑
k=0

Lk

 (b)

≤
k̄∑
k=0

E [Lk|Ek = 1] +

k̄∑
k=0

P {Ek = 0} ñk

(c)
=

k∑
k=0

E [Lk|Ek = 1] +
k̄∑

k=k+1

E [Lk|Ek = 1] +
k̄∑
k=0

P {Ek = 0} ñk

(d)

≤
k∑
k=0

E [Lk|Ek = 1]︸ ︷︷ ︸
(i)

+

k̄∑
k=k+1

ñkP {Ok = 1|Ek = 1}

︸ ︷︷ ︸
(ii)

+

k̄∑
k=0

P {Ek = 0} ñk︸ ︷︷ ︸
(iii)

,

where (a) and (b) are as in the proof of Theorem 9.4.1, (c) is trivial, and (d) follows since if Ok = 0
then only the optimal arm is pulled in period k and thus no regret is incurred.

Using exactly the same argument as done in the proof of Theorem 9.4.1,

(i) ≤
∑

a∈A∗(Θ)

24α∆θ∗(a)
∑k
k=0 log ñk

infθ∈Θ∗a maxa′∈{a,a∗} Γ2
a′(θ, θ

∗)
.
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Similarly, we obtain (iii) ≤ 3|A∗(Θ)|, where the smaller constant is due to the fact that we in-
creased α.

Let us now deal with (ii). First, we define k as

k := min
k∈N+

{
k
∣∣∣ ⌊ ñk
|A∗(Θ)|

⌋
≥ 10 log ñk+1

Γ2
∗

}
.

By the union bound,

(ii) ≤
k̄∑

k=k+1

ñkP {Ok = 1 ∧ Ek−1 = 1|Ek = 1}+
k̄∑

k=k+1

ñkP {Ok = 1 ∧ Ek−1 = 0|Ek = 1}

≤
k̄∑

k=k+1

ñkP {Ok = 1|Ek = 1 ∧ Ek−1 = 1}

︸ ︷︷ ︸
(iv)

+

k̄∑
k=k+1

ñkP {Ek−1 = 0|Ek = 1}

︸ ︷︷ ︸
(v)

.

By recalling that ñk = ñ2
k−1 and that α was increased to 5

2
, (v) can be bounded by 6|A∗(Θ)| as

done for (iii) in Theorem 9.4.1. It only remains to bound (iv). Fix a period k ≥ k + 1. We have

P {Ok = 1|Ek = 1 ∧ Ek−1 = 1} = P
{
∃a 6= a∗ : a ∈ Ãk0 |Ek = 1 ∧ Ek−1 = 1

}
(a)
= P

{
∃a 6= a∗ : a ∈ A∗(Θ̃k

0)|Ek = 1 ∧ Ek−1 = 1
}

(b)

≤ P
{
Nk−1(a∗) <

α log ñk
Γ2
∗

(
1 +

1

β

)2

|Ek = 1 ∧ Ek−1 = 1

}
(c)

≤ P
{
Nk−1(a∗) <

⌊
ñk−1

|A∗(Θ)|

⌋
|Ek = 1 ∧ Ek−1 = 1

}
(d)

≤ 0,

where (a) follows from the definition of Ãk0 . In (b) we exploit the fact that, under event Ek, if a∗ is
pulled more than that quantity at the end of period k− 1 then no model with a different optimal arm
than a∗ belongs to Θ̃k

0 . (c) is from the definition of k and k − 1 ≥ k. (d) holds since, under Ek−1,
a∗ is pulled in all phases in period k − 1. Therefore, even if all other arms are pulled as well, the
round robin schedule of the pulls ensures Nk−1(a∗) ≥

⌊
ñk−1

|A∗(Θ)|

⌋
.

Therefore, (ii) ≤ 6|A∗(Θ)|. Combining (i), (ii), and (iii) we obtain

Rn ≤
∑

a∈A∗(Θ)

24α∆θ∗(a)
∑k
k=0 log ñk

minθ∈Θ∗a maxa′∈{a,a∗} Γ2
a′(θ, θ

∗)
+ 9|A∗(Θ)|.

Since
∑k
k=0 log ñk = log 2

∑k
k=0 2k ≤ 2k+1 log 2, let us finally bound k. From its definition,⌊

22k−1

|A∗(Θ)|

⌋
<

20 log 22k−1

Γ2
∗

=⇒ 22k−1

2k−1
≤ 20|A∗(Θ)| log 2

Γ2
∗

+ 2|A∗(Θ)|.

Since k − 1 ≤ 2k−2, we obtain

k ≤ log2 log2

(
20|A∗(Θ)| log 2

Γ2
∗

+ 2|A∗(Θ)|
)

+ 2.

Therefore,
k∑
k=0

log ñk ≤ 2k+1 log 2 ≤ 8 log

(
20|A∗(Θ)| log 2

Γ2
∗

+ 2|A∗(Θ)|
)
,

which concludes the proof.
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APPENDIXD
Proofs of Chapter 10

Proof of Lemma 10.3.1

Feasibility of (Pz). We start from the first result in Lem. 10.3.1, which states the minimal value
of z for which (Pz) is feasible. Clearly, the maximal value that the left-hand side of the KL constraint
can assume is

max
ω∈Ω

inf
θ′∈Θalt

Eρ

[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]
,

which can also be interpreted as the solution to the associated pure-exploration (or best-arm identi-
fication) problem (e.g., Degenne et al., 2019). Therefore,

z(θ?) := min {z > 0 : (Pz) is feasible}

= min

{
z > 0 : max

ω∈Ω
inf

θ′∈Θalt

Eρ

[∑
a∈A

ω(x, a)dx,a(θ?, θ′)

]
≥ 1

z

}

=
1

maxω∈Ω infθ′∈Θalt
Eρ
[∑

a∈A ω(x, a)dx,a(θ?, θ′)
] .

This proves the first statement in Lem. 10.3.1.
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Connection between (P) and (Pz). In order to prove the second result, let us rewrite (Pz) in
the following more convenient form:

minimize
η(x,a)≥0

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)∆θ?(x, a)

subject to inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) ≥ 1,

∑
a∈A

η(x, a) = z ∀x ∈ X .

(P′z)

Note that (P′z) is obtained from (Pz) in the main paper by performing the change of variables
η(x, a) = zω(x, a), hence the two problems are equivalent. Recall that v?(θ?) is the optimal value
of (P) and u?(z, θ?) is the optimal value of (P′z) and (Pz) (if there exists one). We are interested in
bounding the deviation between u?(z, θ?) and v?(θ?) as a function of z.

Let us first define the following set of confusing models:

Θ̃alt :=
{
θ′ ∈ Θalt : ∀x ∈ X , µ?θ?(x) = µθ′(x, a

?
x)
}
,

where, for the sake of readability, we abbreviate a?x = a?θ?(x). These models are indistinguishable
from θ? by pulling only optimal arms. The following proposition, which was proved in (Degenne
et al., 2020b), connects models in the alternative set Θalt with the confusing ones in Θ̃alt.

Proposition D.1.1 ((Degenne et al., 2020b)). There exists a constant cΘ > 0 such that, for all
θ′ ∈ Θalt, there exists θ′′ ∈ Θ̃alt such that,

∀x ∈ X , a ∈ A |µθ′(x, a)− µθ′′(x, a)| ≤ cΘ|µ?θ?(x)− µθ′(x, a?θ?(x))|.

We now prove the bound on u?(z, θ) reported in Lem. 10.3.1.

Second result of Lemma 10.3.1. We start from the Lagrangian version of (P′z).

min
η≥0

{∑
x∈X

ρ(x)
∑
a∈A

η(x, a)∆θ?(x, a) + λ?(z, θ?)

(
1− inf

θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)

)}
,

subject to
∑
a∈A η(x, a) = z for each context x ∈ X . The optimal value of this problem is u?(z, θ).

Here λ?(z, θ?) is the optimal value of the Lagrange multiplier for the same problem. We distinguish
two cases.

Case 1: z < maxx∈X 1
ρ(x)

∑
a6=a?

θ?
(x) η

?(x, a). Let

η(x, a) = z ·


η?(x,a)/ρ(x)

maxx∈X 1
ρ(x)

∑
a 6=a?

θ?
(x) η

?(x,a)
if a 6= a?θ?(x)

1−
∑
a 6=a?

θ?
(x) η

?(x,a)/ρ(x)

maxx∈X 1
ρ(x)

∑
a 6=a?

θ?
(x) η

?(x,a)
otherwise

where η? is the optimal solution of (P). Since
∑
a η(x, a) = z, we have that u?(z, θ?) is less or

equal to the value of the Lagrangian for η = η, i.e.,

u?(z, θ?) ≤ v?(θ?) + λ?(z, θ?)

(
1− inf

θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)

)
,
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where we used the fact that∑
x∈X

ρ(x)
∑
a∈A

η(x, a)∆θ?(x, a) =
z

maxx∈X
1

ρ(x)

∑
a6=a?

θ?
(x) η

?(x, a)︸ ︷︷ ︸
<1

∑
x∈X

∑
a6=a?

θ?
(x)

η?(x, a)∆θ?(x, a)

︸ ︷︷ ︸
=v?(θ?)

.

since ∆θ?(x, a?θ?(x)) = 0. Since the KL divergence dx,a(θ?, θ′) is lower-bounded by zero, in case
1 we have

u?(z, θ?) ≤ v?(θ?) + λ?(z, θ?).

Case 2: z ≥ maxx∈X 1
ρ(x)

∑
a6=a?

θ?
(x) η

?(x, a). Let

η(x, a) =

η
?(x, a)/ρ(x) if a 6= a?θ?(x)

z −
∑
a6=a?

θ?
(x) η

?(x, a)/ρ(x) otherwise

where, as before, η? is the optimal solution of (P). Since z ≥
∑
a6=a?

θ?
(x) η

?(x, a)/ρ(x) for any
x ∈ X , η is well defined. Since η also sums to z for each context, we have that u?(z, θ) is less or
equal to the value of the Lagrangian for η = η, i.e.,

u?(z, θ?) ≤ v?(θ?) + λ?(z, θ?)

(
1− inf

θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)

)
.

We first lower bound the infimum on the right hand side. We have

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) = min

{
inf

θ′∈Θ̃alt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)︸ ︷︷ ︸
I
Θ̃alt

,

(D.1)

inf
θ′∈Θalt\Θ̃alt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)︸ ︷︷ ︸
I
Θalt\Θ̃alt

}
.

(D.2)

By definition of η and η?, the infimum over the set of confusing models can be written as

IΘ̃alt
= inf
θ′∈Θ̃alt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) = inf
θ′∈Θ̃alt

∑
x∈X

∑
a6=a?x

η?(x, a)dx,a(θ?, θ′) ≥ 1,

(D.3)

where the equality holds since the KLs are zero in the optimal arms, which are the only arms where
the values of η differ from those of η?, and the inequality holds since η? is feasible. Regarding the
infimum over the non-confusing models,

IΘalt\Θ̃alt
= inf
θ′∈Θalt\Θ̃alt


∑
x∈X

ρ(x)η(x, a?x)dx,a?x(θ?, θ′)︸ ︷︷ ︸
(i)

+
∑
x∈X

∑
a 6=a?x

η?(x, a)dx,a(θ?, θ′)

︸ ︷︷ ︸
(ii)

 .

(D.4)
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We partition the set of non-confusing models in two subsets:

Θ̃
(1)
alt :=

{
θ′ ∈ Θalt \ Θ̃alt : ∀x ∈ X , |µ?θ?(x)− µθ′(x, a?θ?(x))| < εz

}
, (D.5)

Θ̃
(2)
alt :=

{
θ′ ∈ Θalt \ Θ̃alt : ∃x ∈ X , |µ?θ?(x)− µθ′(x, a?θ?(x))| ≥ εz

}
. (D.6)

The value of εz will be specified later. We have, for θ′′ ∈ Θ̃alt,

inf
θ′∈Θ̃

(1)
alt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′)
(a)

≥ inf
θ′∈Θ̃

(1)
alt

∑
x∈X

∑
a6=a?x

η?(x, a)dx,a(θ?, θ′) (D.7)

(b)

≥ inf
θ′∈Θ̃

(1)
alt

∑
x∈X

∑
a6=a?x

η?(x, a)

(
dx,a(θ?, θ′′)− 1

σ2
|µθ′(x, a)− µθ′′(x, a)|

)
(D.8)

(c)

≥ 1− 1

σ2
sup

θ′∈Θ̃
(1)
alt

∑
x∈X

∑
a6=a?x

η?(x, a)|µθ′(x, a)− µθ′′(x, a)| (D.9)

(d)

≥ 1− cΘ
σ2

sup
θ′∈Θ̃

(1)
alt

∑
x∈X

∑
a6=a?x

η?(x, a) |µ?θ?(x)− µθ′(x, a?x)|︸ ︷︷ ︸
<εz

(D.10)

(e)

≥ 1− cΘεz
σ2

∑
x∈X

∑
a6=a?x

η?(x, a), (D.11)

where (a) uses the fact that (i) ≥ 0 and the definition of η, (b) uses the Lipschitz property of the
KL divergence between Gaussians, (c) uses the fact that η is feasible for confusing models (see
Eq. D.3), (d) uses Prop. D.1.1 and (e) uses the definition of Θ̃

(1)
alt . Regarding the second set of

alternative models,

inf
θ′∈Θ̃

(2)
alt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) (D.12)

(f)

≥ inf
θ′∈Θ̃

(2)
alt

∑
x∈X

ρ(x)

z − ∑
a6=a?

θ?
(x)

η?(x, a)/ρ(x)

 dx,a?x(θ?, θ′) (D.13)

(g)
= inf

θ′∈Θ̃
(2)
alt

∑
x∈X

ρ(x)

z − ∑
a6=a?

θ?
(x)

η?(x, a)/ρ(x)

 1

2σ2
(µθ?(x, a?x)− µθ′(x, a?x))2︸ ︷︷ ︸

≥ε2z
(D.14)

(k)
=

ε2z
2σ2

z −∑
x∈X

∑
a6=a?

θ?
(x)

η?(x, a)

 . (D.15)

where (f) uses the fact that (ii) ≥ 0 and the definition of η, (g) uses the definition of KL for Gaus-
sian distributions and (k) uses the definition of Θ̃

(2)
alt . Let z?(θ?) :=

∑
x∈X

∑
a6=a?

θ?
(x) η

?(x, a).
Putting together the results so far, we have

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) ≥ min

{
1, 1− cΘεzz

?(θ?)

σ2
,
ε2z

2σ2

(
z − z?(θ?)

)}
.

(D.16)
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Setting εz =
√

2σ2

z
,

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) ≥ max

{
min

{
1− cΘ

√
2z?(θ?)

σ
√
z

, 1− z?(θ?)

z

}
, 0

}
,

(D.17)

Therefore, in case 2 we have

u?(z, θ?) ≤ v?(θ?) + λ?(z, θ?) min

{
max

{
cΘ
√

2z?(θ?)

σ
√
z

,
z?(θ?)

z

}
, 1

}
.

Bounding λ?(z, θ?). Finally, we show that the optimal multiplier λ?(z, θ?) is bounded (regard-
less of which case z falls into). Let η = zω, where ω = ω?z,θ? is the pure-exploration solution
obtained solving problem (Pz) with z(θ?). Recall from the first statement of Lem. 10.3.1 that

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

ω(x, a)dx,a(θ?, θ′) =
1

z(θ?)
.

Thus, η is strictly feasible for problem (P̃z) and has constraint value

inf
θ′∈Θalt

∑
x∈X

ρ(x)
∑
a∈A

η(x, a)dx,a(θ?, θ′) =
z

z(θ?)
> 1 (D.18)

since z > z(θ?) by assumption. Using the Slater’s condition (see e.g., Lem. 3 in (Nedić and
Ozdaglar, 2009)),

0 ≤ λ?(z, θ?) ≤
∑
x∈X ρ(x)

∑
a∈A∆θ?(x, a)(η(x, a)− η?z (x, a))

infθ′∈Θalt

∑
x∈X ρ(x)

∑
a∈A η(x, a)dx,a(θ?, θ′)− 1

(D.19)

≤ z
z

z(θ?)
− 1

∑
x∈X

ρ(x)
∑
a∈A

∆θ?(x, a)︸ ︷︷ ︸
≥0

(
ω(x, a)− η?z (x, a)/z︸ ︷︷ ︸

≥0

)
(D.20)

≤ z
z

z(θ?)
− 1

∑
x∈X

ρ(x)
∑
a∈A

∆θ?(x, a)︸ ︷︷ ︸
∈[0,2BL]

ω(x, a) ≤ 2BL
zz(θ?)

z − z(θ?) . (D.21)

Auxiliary Results

Concentration Inequalities
Lemma D.2.1 (Concentration of ρ during exploration). For any context x ∈ X ,

∑
t≥1

∑
x∈X

P

Et, |ρ̂t(x)− ρ(x)| >

√
log(|X |S2

t )

2St

 ≤ π2

3
. (D.22)

Proof. The proof follows Lem. B.1 in (Combes and Proutière, 2014). Fix some t ≥ 1 and x ∈ X .
Then,

t∑
t=1

1

Et, |ρ̂t(x)− ρ(x)| >

√
log(|X |S2

t )

2St

 ≤∑
s≥1

1

{
|ρ̂τs(x)− ρ(x)| >

√
log(|X |s2)

2s
, τs ≤ t

}
.
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where τs is the random time the s-th exploration round occurs. Thus, by taking the expectation of
both sides,

t∑
t=1

P

Et, |ρ̂t(x)− ρ(x)| >

√
log(|X |S2

t )

2St

 ≤∑
s≥1

P
{
|ρ̂τs(x)− ρ(x)| >

√
log(|X |s2)

2s
, τs ≤ t

}
.

Since τs is a stopping-time upper bounded by t and the number of samples used to compute ρ̂τs(x)
is at least s, we can apply Lemma 4.3 of (Combes and Proutière, 2014):

t∑
t=1

P

Et, |ρ̂t(x)− ρ(x)| >

√
log(|X |S2

t )

2St

 ≤∑
s≥1

2e−2s
log(|X|s2)

2s =
2

|X |
∑
s≥1

1

s2
=

π2

3|X | .

The reasoning above holds for any t and x ∈ X . Summing over X concludes the proof.

Lemma D.2.2 (Confidence set for exploration). With some abuse of notation, let γt := cn,1/S2
t

.
Then, under the same conditions as in Theorem 10.2.1,

n∑
t=1

P
{
Et, ‖θ̂t−1 − θ?‖V t−1

>
√
γt
}
≤ π2

6
.

Proof. Let {τs}s≥1 be a sequence of stopping times with respect to F such that if τs = t, then the
s-th exploration round occurs at time t+ 1. Then,

n∑
t=1

1
{
Et, ‖θ̂t−1 − θ?‖V t−1

>
√
γt
}
≤
∑
s≥1

1
{
‖θ̂τs − θ

?‖V τs >
√
γτs+1, τs ≤ n

}
. (D.23)

Since Sτs+1 = s, we have γτs+1 = cn,1/s2 . Taking expectations and applying Theorem 10.2.1,∑
s≥1

P
{
‖θ̂τs − θ

?‖V τs >
√
γτs+1, τs ≤ n

}
≤
∑
s≥1

1

s2
=
π2

6
.

The following result is immediate from the definition of good event.

Lemma D.2.3. Let t ∈ [n] be a time step in which the good event Gt holds. Then,

∀x ∈ X , a ∈ A : |µ̄θ̂t−1
(x, a)− µθ?(x, a)| ≤ √γt‖φ(x, a)‖

V
−1
t−1

.

Proof. Fix any x ∈ X and a ∈ A. We distinguish three cases.
Case 1. If µθ̂t−1

(x, a) ∈ [−BL,BL], we have µ̄θ̂t−1
(x, a) = µθ̂t−1

(x, a). Thus, by Cauchy-
Schwartz inequality, we can write

|µθ̂t−1
(x, a)− µθ?(x, a)| = |φ(x, a)T (θ̂t−1 − θ?)| = |φ(x, a)T V̄

−1/2
t−1 V̄

1/2
t−1 (θ̂t−1 − θ?)|

≤ ‖φ(x, a)‖
V̄−1
t−1
‖θ̂t−1 − θ?‖V̄t−1

≤ √γt‖φ(x, a)‖
V̄−1
t−1

.

Case 2. If µθ̂t−1
(x, a) < −BL, then µ̄θ̂t−1

(x, a) = −BL. Since µθ?(x, a) ≥ −BL, it must
be that

|µ̄θ̂t−1
(x, a)− µθ?(x, a)| < |µθ̂t−1

(x, a)− µθ?(x, a)| ≤ √γt‖φ(x, a)‖
V̄−1
t−1

,

and the result follows as in Case 1.
Case 3. Finally, if µθ̂t−1

(x, a) > BL, then µ̄θ̂t−1
(x, a) = BL and the result follows using the

same argument as in Case 2.
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Lemma D.2.4. Let γt := cn,1/S2
t

and n ≥ 3. Then, for any time step t in which the good event Gt
(see App. 10.6.3) holds,

ft(ω) :=
∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)

(
µ̄θ̂t−1

(x, a) +
√
γt‖φ(x, a)‖

V
−1
t−1

)
≥
∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)µθ?(x, a),
(D.24)

and

gt(ω) := inf
θ′∈Θt−1

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)

(
d̄x,a

(
θ̂t−1, θ

′
)

+
2LB

σ2

√
γt‖φ(x, a)‖

V
−1
t−1

)
≥ inf
θ′∈Θalt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)dx,a(θ?, θ′).
.

(D.25)

Proof. Since ρ̂ and ω are non-negative, the first inequality is trivial by upper bounding the true mean
µθ?(x, a) for each x, a by using the definition ofGθt and Lemma D.2.3. Let us prove the second one.
Fix any model θ′ ∈ Θ. By using the definition of KL divergence of Gaussians with fixed variance,
we have that:

dx,a(θ?, θ′) =
(µθ′(x, a)− µθ?(x, a))2

2σ2
≤ d̄x,a(θ̂t−1, θ

′) +
2LB

σ2
|µ̄θ̂t−1

(x, a)− µθ?(x, a)|

≤ d̄x,a(θ̂t−1, θ
′) +

2LB

σ2

√
γt‖φ(x, a)‖

V
−1
t−1

,

where the first inequality is from |(a− c)2 − (b− c)2| = |(a+ b− 2c)(a− b)| ≤ 4LB|a− b| and
the second one is once again from the definition of Gt and Lemma D.2.3. Therefore,

inf
θ′∈Θalt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)dx,a(θ?, θ′) (D.26)

≤ inf
θ′∈Θalt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)

(
d̄x,a(θ̂t−1, θ

′) +
2LB

σ2

√
γt‖φ(x, a)‖

V
−1
t−1

)
.

We now upper bound the infimum over models in the alternative set. Note that such set can be fully
specified once we assign an optimal arm to each context. Let {ax}x∈X and define

Θ({ax}x∈X ) = {θ′ ∈ Θ|∃x ∈ X : a?θ′(x) 6= ax}.

Note that Θalt = Θ({a?θ?(x)}x∈X ). Then,

inf
θ′∈Θalt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)d̄x,a(θ̂t−1, θ
′) (D.27)

≤ max
{ax}x∈X

inf
θ′∈Θ({ax}x∈X )

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)d̄x,a(θ̂t−1, θ
′) (D.28)

≤ inf
θ′∈Θt−1

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω(x, a)d̄x,a(θ̂t−1, θ
′). (D.29)

To see the last inequality, note that for all {ax}x∈X which do not contain only the optimal arms of
θ̂t−1 (i.e., {ax}x∈X 6= {a?θ̂t−1

(x)}x∈X ), we have θ̂t−1 ∈ Θ({ax}x∈X ), and therefore the infimum
is zero. Thus, the maximum must be attained by {a?

θ̂t−1
(x)}x∈X , which yields Θ({a?

θ̂t−1
(x)}x∈X ) =

Θt−1. This concludes the proof.
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Lemma D.2.5. For all time steps t,

∑
s≤t:Es,Gs

∑
x∈X

|ρ̂s−1(x)− ρ(x)| ≤ 4|X |
(√

St log(|X |S2
t ) + logSt + 1

)
. (D.30)

Proof. Using the definition of Gs,

∑
s≤t:Es,Gs

∑
x∈X

|ρ̂s−1(x)− ρ(x)| ≤ |X |
∑

s≤t:Es,Gs

2 max

(√
log(|X |S2

s )

2Ss
,

2

s

)

≤ 2|X |
St∑
s=1

max

(√
log(|X |s2)

2s
,

2

s

)

≤ 2|X |
√

log(|X |S2
t )

2

St∑
s=1

1√
s

+ 4|X |
St∑
s=1

1

s

≤ 4|X |
(√

St log(|X |S2
t ) + logSt + 1

)
,

where the last inequality holds since

m∑
t=1

√
1

t
≤ 1 +

∫ m

1

x−1/2dx = 1 + [2x1/2]m1 = 2
√
m− 1 < 2

√
m

and
∑m
t=1

1
t
≤ logm+ 1.

Lemma D.2.6. Let t be such that both Et and Gt occur and suppose ν ≥ 1. Define

Ψt :=
∑

s≤t:Es

∑
x∈X

ρ̂s−1(x)
∑
a∈A

ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

.

Then,

Ψt ≤
4L|X |√

ν

(√
St log(|X |S2

t ) + logSt + 1

)
+
MtL√
ν

+
L

ν

√
St logSt.+

√
2dSt log

ν + StL2/d

ν
.

Proof. We start by noticing that, for all x, a and s ≥ 0,

‖φ(x, a)‖2
V̄−1
s−1

= φ(x, a)T V̄ −1
s−1φ(x, a) ≤ σmax(V̄ −1

s−1) ‖φ(x, a)‖22︸ ︷︷ ︸
≤L

≤ L2

σmin(V̄s−1)
≤ L2

ν
,

and thus ‖φ(x, a)‖
V̄−1
s−1
≤ L/

√
ν. Here σmax(·) and σmin(·) denote the maximum and minimum
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eigenvalue of a matrix, respectively. Splitting the steps where the good event does and does not hold,

Ψt =
∑

s≤t:Es,Gs

∑
x∈X
a∈A

ρ̂s−1(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

+
∑

s≤t:Es,¬Gs

∑
x∈X
a∈A

ρ̂s−1(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

≤
∑

s≤t:Es,Gs

∑
x∈X
a∈A

(ρ̂s−1(x)− ρ(x))ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

+
MtL√
ν

+
∑

s≤t:Es,Gs

∑
x∈X
a∈A

ρ(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

≤ L√
ν

∑
s≤t:Es,Gs

∑
x∈X

|ρ̂s−1(x)− ρ(x)|+ MtL√
ν

+
∑

s≤t:Es,Gs

∑
x∈X
a∈A

ρ(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

≤ 4L|X |√
ν

(√
St log(|X |S2

t ) + logSt + 1

)
+
MtL√
ν

+
∑

s≤t:Es,Gs

∑
x∈X
a∈A

ρ(x)ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

,

where in the first and second inequality we bounded the expected feature-norms by their maximum
value and added/subtracted the first term with the true context distribution. In the last step we applied
Lemma D.2.5. We now focus exclusively on the third term. Using the fact that the good event holds
at time t,∑
s≤t:Es,Gs

∑
x∈X

ρ(x)
∑
a∈A

ωs(x, a)‖φ(x, a)‖
V̄−1
s−1
≤

∑
s≤t:Es

∑
x∈X

ρ(x)
∑
a∈A

ωs(x, a)‖φ(x, a)‖
V̄−1
s−1

≤
∑

s≤t:Es

‖φ(Xs, As)‖V̄−1
s−1

+
L

ν

√
St logSt.

Finally, let V̄e,t :=
∑
s≤t:Es φ(Xs, As)φ(Xs, As)

T + νI denote the regularized design matrix
computed using only the exploration rounds. Then, we have V̄t � V̄e,t (since sum of rank-one
matrices), which implies V̄ −1

t � V̄ −1
e,t and thus ‖φ(x, a)‖

V̄−1
s−1
≤ ‖φ(x, a)‖

V̄−1
e,s−1

. Here� denotes

the Loewner ordering, i.e., for two symmetric matrices A,B we have A � B (A � B) if A−B is
positive semi-definite (positive definite). Therefore,

∑
s≤t:Es

‖φ(Xs, As)‖V̄−1
s−1
≤

∑
s≤t:Es

‖φ(Xs, As)‖V̄−1
e,s−1

(a)

≤
√
St

∑
s≤t:Es

‖φ(Xs, As)‖2
V̄−1
e,s−1

(b)

≤
√

2St log
det(V̄e,t)

νd

(d)

≤
√

2dSt log
ν + StL2/d

ν
,

where in (a) we equivalently rewritten the first term as a sum over exploration rounds, (b) is from
Cauchy-Schwartz inequality, in (c) we used Lemma 11 of Abbasi-Yadkori et al. (2011), and in (d)
we used the determinant-trace inequality (Lemma 10 of Abbasi-Yadkori et al. (2011)) to bound the
determinant of V̄e,t by (ν + StL

2/d)d. The final statement follows by combining the previous
bounds.

Online Convex Optimization
Here we recall some basic results from online convex optimization. See (e.g., Beck and Teboulle,
2003) for detailed proofs and discussion of these results.
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Lemma D.2.7 (Recursion bound for subgradient descent). Let supt≥1:Et
|gt(ωt, zk)|2 ≤ bλ. For

any phase k ≥ 0, t ∈ T Ek , and λ ∈ R+, the incremental updates to the Lagrange multiplier
{λt}t∈T E

k
of Algorithm ?? satisfy

∑
s≤t:s∈T E

k

gs(ωs, zk)(λs − λ) ≤ 1

2αλk
(λ− λ1)2 +

αλkb
2
λ

2
St,k.

Proof. Recall that the optimization process is reset at the beginning of each phase. Let τs,k be a
random variable indicating the time at which the s-th exploration round of phase k occurs. Note that
λτ1,k = λ1. In order to simplify the exposition, and with some abuse of notation, let λs = λτs,k
and gs = gτs,k (ωτs,k , zk). By definition of the update rule, for each s ≥ 1,

(λs+1 − λ)2 = (min{[λs − αλkgs]+, λmax} − λ)2 = min{[λs − αλkgs]+ − λ, λmax − λ}2

≤ (λs − αλkgs − λ)2 = (λs − λ)2 + (αλkgs)
2 + 2αλk(λ− λs)gs.

Dividing by 2αλk and rearranging,

(λs − λ)gs ≤
(λs − λ)2 − (λs+1 − λ)2

2αλk
+
αλk
2
g2
s .

Summing over all s up to St and noting that the first sum on the right-hand side is telescopic,

St∑
s=1

(λs − λ)gs ≤
1

2αλk
(λ1 − λ)2 − 1

2αλk
(λSt+1 − λ)2 +

αλk
2

St∑
s=1

g2
s .

The proof is concluded by upper-bounding the second term by zero and mapping the exploration
counter s back to time steps.

Lemma D.2.8. [Recursion bound for Online Mirror Descent (OMD)] Let ω1 be the uniform distri-
bution over actions for each context and supt≥1:Et

‖qt‖∞ ≤ bω . For any phase k ≥ 0, t ∈ T Ek ,
and ω ∈ Ω, the OMD updates of Algorithm ?? satisfy

∑
s≤t:s∈T E

k

hs(ωs, λs, zk)−
∑

s≤t:s∈T E
k

hs(ω, λs, zk) ≥ − log |A|
αωk

− αωk b
2
ω

2
St,k.

Proof. We can follow the same steps as before, mapping time steps to exploration counters and then
applying the standard recursion bound for OMD (e.g., Beck and Teboulle, 2003).

Corollary D.2.1. [Recursion bound for primal-dual algorithm] For any phase k ≥ 0, t ∈ T Ek ,
ω ∈ Ω, and λ ∈ R+, under the same conditions as in Lemma D.2.8 and D.2.7,

∑
s≤t:s∈T E

k

fs(ωs) ≥
∑

s≤t:s∈T E
k

hs(ω, λs, zk)− λ
∑

s≤t:s∈T E
k

gs(ωs, zk)− log |A|
αωk

− αωk b
2
ω

2
St,k

− 1

2αλk
(λ− λ1)2 − αλkb

2
λ

2
St,k.

Proof. The proof is straightforward by expanding
∑
s≤t:s∈T E

k
hs(ωs, λs, zk) =

∑
s≤t:s∈T E

k
(fs(ωs)+

λsgs(ωs, zk)) and combining Lemma D.2.8 with Lemma D.2.7.
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Worst-case Analysis (Proof of Theorem 10.5.2)

Outline

The proof follows a similar argument as the one of Thm. 10.5.1 but it is considerably simpler and
shorter. In particular, the main simplifications come from two worst-case arguments. (1) While
bounding the regret during exploration rounds, we use the naive bound Sn ≤ n. This is equivalent
to assuming that SOLID never enters the exploitation step and it allows us to entirely avoid the
bound on the number of phases of Sec. 10.6.4. (2) We completely ignore the sequence zk and
proceed as if the optimization problem (Pz) was infeasible in all phases. This makes the multiplier
saturate to λmax and facilitate the analysis of the resulting Lagrangian1. An outline of the proof,
together with the main differences w.r.t. the one of Thm. 10.5.1, is as follows.

1. We decompose the regret suffered during exploitation and exploration rounds. Using the same
steps as in Sec. 10.6.4, we bound the former by a constant and reduce the latter to the sum of
objective values.

2. Instead of relating to the objective values of the optimal policies ω?zk at each phase k (as was
done in Sec. 10.6.4, we reduce our bound to the optimal solution of our bandit problem, i.e.,
the policy that only pulls optimal arms. This makes the sum of objective values cancel since
the optimal policy achieves zero regret.

3. Using the results of Sec. 10.6.4, we show that the sum of constraints is O(logn).

4. We use the naive bound Sn ≤ n to conclude the proof.

Proof

We start from the same regret decomposition as in Sec. 10.6.4,

Rn =

n∑
t=1

∆θ?(Xt, At)1 {¬Et}+

n∑
t=1

∆θ?(Xt, At)1 {Et} = Rexploit
n +Rexplore

n .

The regret suffered during the exploitation rounds was bounded in Sec. 10.6.4 as E
[
Rexploit
n

]
≤

2LB. Regarding the regret suffered during the exploration rounds, we have

Rexplore
n :=

n∑
t=1

∆θ?(Xt, At)1 {Et} ≤
n∑
t=1

∆θ?(Xt, At)1 {Et, Gt}+ 2LB

n∑
t=1

1 {Et,¬Gt}︸ ︷︷ ︸
:=Mn

.

(D.31)

Refer to Sec. 10.6.3 for the definition of Gt. The second term is Mn, the number of explo-
ration rounds in which the good event does not hold, and can be bounded in expectation by using
Lem. 10.6.2. The first one can be bounded by using the good event. Suppose, without loss of gener-
ality, that En and Gn hold (if they do not, the following reasoning can be repeated for the last time

1Recall that the regret of SOLID is not defined in terms of the optimization problem (Pz) or its Lagrangian,
but only in terms of the rewards of the chosen arms compared to those of the optimal arms. This makes it possible
to obtain good regret guarantees even when solving an infeasible optimization problem.
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step at which these events hold). Then, using G∆
t (see Sec. 10.6.3),

n∑
t=1

∆θ?(Xt, At)1 {Et, Gt} ≤
∑

t≤n:Et

∆θ?(Xt, At)

≤
∑

t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) + 2LB
√
Sn logSn.

(D.32)

We now proceed using similar steps as in Sec. 10.6.4, except that we ignore the phases. We decom-
pose the first term as∑
t≤n:Et

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a)

=
∑

t≤n:Et,Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)∆θ?(x, a) +
∑

t≤n:Et,¬Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)(µ?θ?(x)− µθ?(x, a))

≤
∑

t≤n:Et,Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)∆θ?(x, a) +Mnµ
? −

∑
t≤n:Et,¬Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)µθ?(x, a).

Here we defined
µ? :=

∑
x∈X

ρ(x)µ?θ?(x). (D.33)

The last term can be bounded by MnBL. Regarding the remaining two,∑
t≤n:Et,Gt

∑
x∈X

ρ(x)
∑
a∈A

ωt(x, a)∆θ?(x, a) +Mnµ
?

= (Sn −Mn)µ? +Mnµ
? −

∑
t≤n:Et,Gt

∑
x∈X
a∈A

ρ(x)ωt(x, a)µθ?(x, a)

= Snµ
? +

∑
t≤n:
Et,Gt

∑
x∈X
a∈A

(ρ̂t−1(x)− ρ(x))ωt(x, a)µθ?(x, a)

︸ ︷︷ ︸
(a)

−
∑
t≤n:
Et,Gt

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)µθ?(x, a)

︸ ︷︷ ︸
(b)

.

Term (a) can be bounded as

(a) ≤ LB
∑

t≤n:Et,Gt

∑
x∈X

|ρ̂t−1(x)− ρ(x)|

︸ ︷︷ ︸
ζn

.

For the sake of readability, we keep the dependence on ζn explicit. We will bound this term by
Lem. D.2.5 at the end of the proof. Regarding term (b), using the definition of Gt and Lem. D.2.3,

(b) ≥
∑

t≤n:Et,Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)
(
µ̄θ̂t−1

(x, a)−√γt‖φ(x, a)‖
V̄−1
t−1

)
±

∑
t≤n:
Et,¬Gt

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a) µ̄θ̂t−1
(x, a)︸ ︷︷ ︸

|·|≤LB

±
∑

t≤n:Et

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)
√
γt‖φ(x, a)‖

V̄−1
t−1

≥
∑

t≤n:Et

ft(ωt)−MnBL− 2
∑

t≤n:Et

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ωt(x, a)
√
γt‖φ(x, a)‖

V̄−1
t−1

≥
∑

t≤n:Et

ft(ωt)−MnBL− 2
√
γnΨn.
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We recall that
√
γt ≤

√
γn and Ψn :=

∑
t≤n:Et

∑
x∈X ρ̂t−1(x)

∑
a∈A ωt(x, a)‖φ(x, a)‖

V̄−1
t−1

.

As for ζn, we keep the dependence on Ψn explicit and defer bounding this term to the end of the
proof. Using the bounds on (a) and (b) and plugging everything back into (D.32) and then into
(D.31), we obtain

Rexplore
n ≤ Snµ? −

∑
t≤n:Et

ft(ωt) + 4MnBL+ ζnBL+ 2
√
γnΨn + 2BL

√
Sn logSn.

(D.34)

We now lower bound the sum of objective values. Here we proceed in a slightly different way
with respect to the proof of the asymptotically optimal regret bound. Instead of relating to the
objective values of the optimal policies ω?zk at each phase k, we reduce our bound to the optimal
solution of our bandit problem, i.e., the policy that only pulls optimal arms. Let

ω?θ?(x, a) :=

{
1 if a = a?θ?(x)

0 otherwise
(D.35)

Recall that
∑
t≤n:Et

ft(ωt) =
∑Kn
k=0

∑
t∈T E

k
ft(ωt). Fix some phase index k ≥ 0 and let λ ≥ 0

be arbitrary. Using Corollary D.2.1 with αλk = αωk = 1/
√
pk and ω = ω?θ? ,∑

t∈T E
k

ft(ωt) ≥
∑
t∈T E

k

ht(ω
?
θ? , λt, zk)− λ

∑
t∈T E

k

gt(ωt, zk)− aλ
√
pk, (D.36)

where aλ :=
(

log |A|+ b2ω+b2λ
2

+ (λ−λ1)2

2

)
and bλ and bω are the maximum sub-gradients in λ

and ω, respectively. Note that, since we apply Corollary D.2.1 to bound the sum of objective values
over the whole phase, we have Sn,k = pk. We now lower-bound the first term on the right-hand
side. We have∑

t∈T E
k

ht(ω
?
θ? , λt, zk)

(c)
=
∑
t∈T E

k

ft(ω
?
θ?) +

∑
t∈T E

k

λtgt(ω
?
θ? , zk)

(d)

≥
∑
t∈T E

k

ft(ω
?
θ?)−

∑
t∈T E

k

λt
zk

(e)

≥
∑
t∈T E

k

ft(ω
?
θ?)− λmaxSn,k

zk
, (D.37)

where (c) uses the definition of ht and gt (see Eq. 10.9 and Eq. 10.10), (d) uses the positivity of KL
divergences and confidence intervals, and (e) uses λt ≤ λmax and Sn,k := |T Ek |. Let us focus on
the sum of objective values. Since ft(ω?θ?) ≥ −LB, we have

∑
t∈T E

k
:¬Gt ft(ω

?
θ?) ≥ −Mn,kBL.

For any step t ∈ T Ek in which Gt holds, the optimism property (see Sec. 10.6.3 and Lem. D.2.4)
yields∑
t∈T E

k
:Gt

ft(ω
?
θ?) ≥

∑
t∈T E

k
:Gt

∑
x∈X

ρ̂t−1(x)
∑
a∈A

ω?θ?(x, a)µθ?(x, a)

=
∑

t∈T E
k

:Gt

∑
x∈X

(ρ̂t−1(x)− ρ(x))
∑
a∈A

ω?θ?(x, a)µθ?(x, a)︸ ︷︷ ︸
|·|≤BL

+
∑

t∈T E
k

:Gt

f(ω?θ?)︸ ︷︷ ︸
=µ?

≥ (Sn,k −Mn,k)µ? −BL
∑

t∈T E
k

:Gt

∑
x∈X

|ρ̂t−1(x)− ρ(x)|

︸ ︷︷ ︸
:=ζn,k

,
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where we used the fact that f(ω?θ?) = µ? by definition (D.35) and (D.33) and
∑
t∈T E

k
1 {Gt} =∑

t∈Tk
1 {Et} −

∑
t∈Tk

1 {Et,¬Gt} = Sn,k −Mn,k. Plugging this back into (D.37) and then
into (D.36),∑
t∈T E

k

ft(ωt) ≥ (Sn,k −Mn,k)µ? −BLζn,k −
λmaxSn,k

zk
− λ

∑
t∈T E

k

gt(ωt, zk)− aλ
√
pk −Mn,kBL.

Summing over all phases and recalling that
∑Kn
k=0 Sn,k = Sn,

∑Kn
k=0 Mn,k = Mn, and

∑Kn
k=0 ζn,k =

ζn, we obtain

∑
t≤n:Et

ft(ωt) ≥ (Sn −Mn)µ? −BLζn −
Kn∑
k=0

λmaxSn,k
zk

− λ
∑

t≤n:Et

gt(ωt, zKt) (D.38)

− aλ
Kn∑
k=0

√
pk −MnBL. (D.39)

Using the definition of gt (see Eq. 10.9),∑
t≤n:Et

gt(ωt, zKt) :=
∑

t≤n:Et

inf
θ′∈Θt−1

∑
x∈X
a∈A

ρ̂t−1(x)ωt(x, a)

(
dx,a

(
θ̂t−1, θ

′
)

+
2LB

σ2

√
γt‖φ(x, a)‖

V
−1
t−1

)

−
∑

t≤n:Et

1

zKt
.

By the definition of phase, the second term is
∑
t≤n:Et

1
zKt

=
∑Kn
k=0

Sn,k
zk

. The first term can be

bounded using exactly the same steps as in Sec. 10.6.4.2 We obtain

∑
t≤n:Et

gt(ωt, zKt) ≤
βn−1

2σ2
−

Kn∑
k=0

Sn,k
zk

+
2L2B2

σ2
Mn +

6LB

σ2

√
γnΨn +

2L2B2

σ2
ζn

+
2B2L2

σ2

(√
dSn log (dSn) + 1

)
. (D.40)

If we now set λ = λmax and plug (D.40) into (D.38),

∑
t≤n:Et

ft(ωt) ≥ (Sn −Mn)µ? −BL
(

1 +
2λmaxBL

σ2

)
(ζn +Mn) +

Kn∑
k=0

λmaxSn,k
zk

−
Kn∑
k=0

λmaxSn,k
zk︸ ︷︷ ︸

=0

− λmaxβn−1

2σ2
− aλmax

Kn∑
k=0

√
pk −

6λmaxLB

σ2

√
γnΨn −

2λmaxB
2L2

σ2

(√
dSn log (dSn) + 1

)
.

We can finally plug this into (D.34), thus obtaining

Rexplore
n ≤Mn µ?︸︷︷︸

|·|≤BL

+BL

(
5 +

2λmaxBL

σ2

)
(ζn +Mn) +

λmaxβn−1

2σ2
+ aλmax

Kn∑
k=0

√
pk

+

(
2 +

6λmaxLB

σ2

)
√
γnΨn +

2λmaxB
2L2

σ2

(√
dSn log (dSn) + 1

)
+ 2BL

√
Sn logSn.

2Note that the bound on the sum of constraints of Sec. 10.6.4 uses only the properties of the confidence
intervals and of the exploitation test. Thus, it is applicable regardless of the feasibility of the optimization
problems at each phase.
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D.3. Worst-case Analysis (Proof of Theorem 10.5.2)

Let k̄n := min{k : pk ≥ n}, then Kn ≤ k̄n. Using the exponential schedule pk = erk, k̄n =
d 1
r

logne and

Kn∑
k=0

√
pk ≤

k̄n∑
k=0

e
r
2
k ≤

∫ k̄n+1

0

e
r
2
xdx =

[
2

r
e
r
2
x

]k̄n+1

0

=
2

r
e
r
2

(d 1
r

logne+1) − 2

r
≤ 2er

r

√
n.

Taking expectations of both sides of the regret bound above and using Sn ≤ n and E [Mn] ≤ 3π2

2

by Lem. 10.6.2,

E
[
Rexplore
n

]
≤ 3BLπ2

2

(
6 +

2λmaxBL

σ2

)
+
λmaxβn−1

2σ2
+

2eraλmax

r

√
n+ 2BL

√
n logn

+

(
2 +

6λmaxLB

σ2

)
E [
√
γnΨn] +

2λmaxB
2L2

σ2

(√
nd log (nd) + 1

)
+BL

(
5 +

2λmaxBL

σ2

)
E [ζn] .

After bounding Sn ≤ n, by Lem. D.2.6, Ψn ≤ O
(
L|X |

√
n logn+

√
nd logn

)
while, by Lem. D.2.5,

ζn ≤ O
(
|X |
√
n logn

)
. Therefore, recalling that the regret during exploitation rounds was bounded

by 2BL and noting that 2 < 3π2

2
,

E [Rn] ≤ 3BLπ2

(
4 +

λmaxBL

σ2

)
+

2erλ2
max

r

√
n+ Csqrt

(
1 +

λmaxBL

σ2

)
log(n)

√
n,

where Csqrt = lin≥0(|X |,
√
d,B, L). Here we included λmaxβn−1

2σ2 and the components of aλmax

(except λ2
max which is kept explicit) into the last term above. This concludes the proof.
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