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Abstract

IN this dissertation we present extensions of the short time Fourier trans-
form in the quaternionic and Clifford settings and we introduce and
study the properties of new functional calculi based on the S-spectrum.

In recent years there has been a growing interest to generalize integral trans-
forms in the noncommutative setting. This gives the opportunity to deal
with n-dimensional signals. The integral transforms have several applica-
tions in mathematical physics, precisely in signal processing, optics and
time frequency analysis.
In the first part of the thesis we focus on the Bargmann and short time
Fourier transforms in the slice hyperholomorphic and monogenic settings.
Precisely, we study peculiar short time Fourier transforms with window
functions the Gaussian and the weighted Hermite. The constructions are
based on the slice hyperholomorphic Bargmann transform and the slice
polyanalytic Bargmann transform, which main properties are investigated
in this thesis. Moreover we focus on a short time Fourier transform, in the
monogenic Clifford algebra, setting with a generic radial window function.
In the second part of the thesis we introduce new functional calculi based on
the S-spectrum and the Fueter-Sce theorem. By using its integral version
we define the F -functional calculus for n-tuples of commuting operators.
This generates a monogenic functional calculus in the spirit of McIntosh
and collaborators. The other functional calculi that we get are based on the
factorization of the Fueter map, namely the Laplace operator in four real
variables, in terms of the Fueter operator. The functional calculi obtained
are harmonic and polyanalytic of order 2. In this thesis we focus on study-
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ing the main properties of these functional calculi, such as the respective
resolvent equations, the Riesz projectors and the basic algebraic rules.
In the third part, we introduce functional calculi on the S spectrum based
on the factorization of the Fueter-Sce map, a suitable power of the Laplace
operator in n + 1 variables. This suggests the introduction of new classes
of functions that we plan to study more in forthcoming papers. Finally, in
the last section we give an overview on possible open questions left open
by this dissertation.
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Summary

This thesis is divided in three parts. In the first part we study the Segal-
Bargmann transform and the short-Fourier transform in the quaternionic
and Clifford algebra settings. This study is motivated by a recent and in-
creasing interest in the generalization of integral transforms to the noncom-
mutative settings. Such kind of transforms are widely studied, in general,
since they help in the analysis of vector-valued signals and images. In the
non commutative settings one can deal with n-dimensional signals. Indeed,
in image processing it is needed a higher-dimensional counterpart of the 1-
dimensional signal. As a metter of fact, the study of hypercomplex signals
can be useful in other practical fields such as optics and signal processing.
The focus of the first part of the thesis is the study of the short time Fourier
transform in the quaternionic and Clifford algebra settings. This integral
transform can be used in several applications such as predictions of sound
source position emanated by fault machine and the interpretation of ul-
trasonic waveforms. Furthermore, if we consider the normalized Hermite
functions as window functions of the short time Fourier transform we have
to deal with the theory of slice polyanalytic functions. This latter topic is
a new research path that extends the theory of slice regular or slice mono-
genic functions to higher order.

In the second part of the thesis we focus on developing new functional
calculi based on the S-spectrum and related to the Fueter-Sce construction.
Firstly we study the so called F -functional calculus. The crucial object to
define this functional calculus is the Fueter-Sce mapping theorem in inte-
gral form. The Fueter-Sce map can be seen as an integral transform that
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maps slice hyperholomorphic functions into axially monogenic functions.
Thus, the F -functional calculus is a monogenic functional calculus in the
same spirit of McIntosh and collaborators. In this framework, we have been
able to compute a resolvent equation, which is the appropriate tool to gen-
erate the Riesz projectors.
It is well-known that it is possible to factorize the Fueter map in terms of
the Fueter operator. Therefore one can wonder the result of applying the
Fueter operator or its conjugate to a slice hyperholomorphic function. In
the first case we get an axially harmonic function. On the other hand, if we
apply the conjugate Fueter operator to a slice hyperholomorphic function
we do not get the same result, but instead an axially polyanalytic function
of order 2. We are able to write an integral representation of axially har-
monic functions and axially polyanalytic functions of order 2. These are
crucial tools to define the respective functional calculi, both based on the
S-spectrum.

In the third part we investigate the behaviour of the factorization of the
Laplace operator of n + 1 variables elevated to an integer power depend-
ing on n, namely the Fueter-Sce map, and we apply a chosen factorization
to a slice hyperholomorphic function. Due to the various factorizations of
the Fueter-Sce map, the descriptions of intermediate functional calculi are
much more involved. We point out that the case of dimension five, although
it is a specific case, it already shows all the possible functional calculi and
function spaces that can be considered in greater dimensions. It is also im-
portant to observe that all the function spaces appear also in different con-
texts in the literature, but, as far as we know, they are not related each other.
A natural problem is to study all the function spaces that are suggested by
the Fueter-Sce theorem in complex and hypercomplex setting. Moreover, it
would be a challenging problem to figure out if a similar construction holds
when we deal with fractional power of the Laplace operator, namely in the
case of the Fueter-Sce-Qian map, in even dimension.

In this thesis we consider several problems related to the integral trans-
forms in the hypercomplex setting and the study of the related functional
calculi based on the S-spectrum. Precisely, we deal with the following top-
ics: slice hyperholomorphic and monogenic function theories, S-functional
calculus, polyanalytic function theory, Dirac operator in Clifford analysis,
quaternionic Segal Bargmann-transform and Clifford Fourier transform,
quaternionic short time Fourier transform with Gaussian and normalized
Hermite functions as window functions, F -functional calculus and differ-
ent functional calculi based on the S-spectrum. We give a brief account of
the new results obtained in the three part of the thesis.
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The first part of this dissertation is devoted to study hypercomplex inte-
gral transforms. All the new results obtained are summarized below.

• In [70], together with my PhD colleague K. Diki, we study a special
one dimensional quaternion short-time Fourier transform (QSTFT).
Its construction is based on the slice hyperholomorphic Segal-Bargmann
transform. We discuss some basic properties and prove different re-
sults on the QSTFT such as Moyal formula, reconstruction formula
and Lieb’s uncertainty principle. We provide also a formula for the
reproducing kernel associated to the Gabor space considered in this
setting.

• In [71], together with K. Diki, we show that it is possible to extend
the previous results by considering a QSTFT with normalized Hermite
functions as windows. It turns out that such a transform is based on
the recent theory of slice polyanalytic functions on quaternions. We
will use the notions of true and full slice polyanalytic Fock spaces and
Segal-Bargmann transforms. Moreover, we show a closed formula
for the true polyanalytic Bargmann transform in terms of the Hermite
polynomials.

• The Clifford-short time Fourier transform is studied in [68]. We in-
vestigate how the short-time Fourier transform can be extended in a
Clifford algebra setting. We prove some of the main properties of the
Clifford short-time Fourier transform such as the orthogonality rela-
tion, the reconstruction property and the reproducing kernel formula.
Moreover, we show the effects of modulating and translating the sig-
nal and the window function, respectively. The results show different
features with respect to the classic case.

In the second part of the thesis we focus on the study of the new func-
tional calculi based on the S-spectrum and on the Fueter-Sce theorem.
Moreover, we give a description of the Fueter-Sce theorem in terms of the
generalized CK-extension. Below we give summary of the main new re-
sults obtained.

• In [72], jointly with the PostDoc A.Guzmán Adán and with K.Diki,
we provide an alternative description of the Fueter-Sce-Qian theorem
in terms of the generalized CK-extension. The latter characterizes ax-
ial null solutions of the Cauchy-Riemann operator in Rn+1 in terms
of their restrictions to the real line. This leads to a one-to-one corre-
spondence between the space of axially monogenic functions in Rn+1
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and the space of analytic functions of one real variable. We provide
explicit expressions for the Fueter-Sce-Qian map in terms of the gen-
eralized CK-extension for both cases, n even and n odd.

• Using the Cauchy formula of slice hyperholomorphic functions the
Fueter-Sce-Qian theorem admits an integral representation for n odd.
In [38], jointly with Professors F. Colombo, T. Qian and I. Sabadini,
we show that the important relation ∆

(n−1)/2
n+1 S−1

L = FL
n between the

slice monogenic Cauchy kernel S−1
L and the F-kernel FL

n , that appears
in the integral form of the Fueter-Sce-Qian theorem for n odd, holds
also in the case we consider the fractional powers of the Laplace oper-
ator ∆n+1 in dimension n+1, i.e., for n even. Moreover, this relation
is proved by computing explicitly the Fourier transform of the kernels
S−1
L and FL

n as functions of the Poisson kernel. Similar results hold
for the right kernels S−1

R and FR
n .

• By writing the Fueter-Sce-Qian extension theorem in integral form
and it is possible to define the F -functional calculus for n-tuples of
commuting operators. This functional calculus is defined on the S-
spectrum and generates a monogenic functional calculus in the spirit
of McIntosh and collaborators. The main goal of the papers [35, 36],
joint works with Professors F. Colombo and I. Sabadini, is to show
that the F -functional calculus generates the Riesz projectors. The ex-
istence of such projectors is obtained via the F -resolvent equation
which was previously known only in the quaternionic setting and also
its existence was under question. We prove the F -resolvent equation
in the Clifford algebra setting. It is much more complicated than the
one in the quaternionic case since it contains various pieces, however
it still allows to nicely define the Riesz projectors.

• The results obtained in [34], jointly with Professors F. Colombo, S.
Pinton and I. Sabadini, can be considered a seminal work on the intro-
duction of an harmonic functional calculus based on the S-spectrum
and on an integral representation of axially harmonic functions. This
new calculus is a bridge between harmonic analysis and the spectral
theory. The resolvent operator of the harmonic functional calculus
is the commutative version of the pseudo S-resolvent operator. This
calculus also appears, in a natural way, in the product rule for the F -
functional calculus.

• In the second step of the Fueter construction an axially monogenic
function is built by applying the Laplace operator ∆ in four real vari-
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ables to a slice hyperholomorphic function. In the papers [73, 74],
jointly with Professor. S. Pinton, we use the factorization of the Laplace
operator, i.e. ∆ = DD to split the previous procedure. From this split-
ting we get a class of functions that lies between the set of slice hy-
perholomorphic functions and the set of axially monogenic functions:
the set of axially polyanalytic functions of order 2, i.e. null-solutions
of D2. We show an integral representation formula for this kind of
functions. The formula obtained is fundamental to define the associ-
ated functional calculus on the S-spectrum. Moreover we show the
principal properties of this functional calculus. In particular we study
a resolvent equation suitable for proving a product rule and generate
the Riesz projectors.

The last part of this dissertation is devoted to present new functional
calculi based on the S-spectrum and on the factorization of the Fueter-Sce
map ∆

n−1
2 . This case is completely different from the quaternionic case

presented in the second part and it will be the centre of our research for the
next future.

• In [37], jointly with Professors F. Colombo, S. Pinton and I. Saba-
dini, we show that the extension operator from slice hyperholomor-
phic functions to monogenic functions admits various possible fac-
torizations that induce different function spaces. The integral repre-
sentations in such spaces allows to define the associated functional
calculi based on the S-spectrum. The function spaces and the associ-
ated functional calculi define the so called fine structure of the spectral
theories on the S-spectrum. Among the possible fine structures there
are the harmonic and poly-harmonic functions and the associated har-
monic and poly-harmonic functional calculi. The study of the fine
structures depends on the dimension considered.

Based on the techniques developed in this thesis, we already started
some new projects. We aim to tackle them in the near future. We plan
to start new research investigations in the following directions

1) The F -resolvent equation for all dimensions. In this case we have to
deal with fractional powers.

2) Figure out if it is possible to get a sort of commutation rule between
the generalized modulation and translation operator.

3) TheH∞ calculus and the Phillips functional calculus for theF -functional
calculus and the for the all fine structures.
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4) Establish a generalized Cauchy-Kovalevskaya extension for axially
harmonic functions.

5) Study the function spaces that arise from the factorization of the Fueter-
Sce mapping theorem, both in the complex and hypercomplex setting.
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CHAPTER1
Introduction

In the literature there are two possible ways to extend the notion of holo-
morphic function of one complex variable to higher dimensions. An ap-
proach is to consider the systems of Cauchy-Riemann equations for a func-
tion of several complex variables

f : Π ⊆ Cn → C,

where Π is an open set. This gives rise to the theory of holomorphic func-
tions in several complex variables. Another possibility is to consider quater-
nionic or Clifford algebra valued functions. The main advantage, in this
case, is that it is still possible to work with one hypercomplex variable.
This implies however that the commutativity of the product is missing. In
this dissertation we are interested in the second possibility.

In the framework of quaternionic and Clifford analysis there are various
notions of hyperholomorphic functions, among which two are prominent:
the monogenic theory and the slice hyperholomorphic theory, both gener-
alize the notion of holomorphic function of one complex variable. These
different theories are related each other by the Fueter-Sce-Qian extension,
which consists of two steps.
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Chapter 1. Introduction

Step (A) extends the set of holomorphic function to the class of slice
hyperholomorphic functions, by means of the so-called slice operator. This
consists of replacing the complex variable z = u + iv with the paravector
variable x = x0 + x, where the complex unit i is replaced by I = x

|x| in Rn.

Step (B) extends slice hyperholomorphic functions to monogenic func-
tions (or Fueter regular functions in the case of the quaternions). This ex-
tension is performed by the so called Fueter-Sce-Qian map, namely the
Laplace operator in n + 1 variables applied n−1

2
times. If the dimension

n is odd we are dealing with a pointwise differential operator, and we call
this operator Fueter-Sce map. If we work in the quaternionic case, which
coincides with the case n = 3, the operator is called Fueter map. If the
dimension n is even one has to work in the setting of the fractional powers.
We can summarize the Fueter-Sce construction with the following diagram

O(D)
TF−→ SH(ΩD)

∆
n−1
2−→ AM(ΩD),

where O(D) is the set of holomorphic functions defined in the symmetric
open set D ⊆ C, the set SH(ΩD) denotes the set of slice holomorphic
functions defined in ΩD ⊂ Rn+1, which is an open set induced by D, and
AM(ΩD) is the set of axially monogenic functions.

This dissertation is divided in three parts. In the first part we focus on
some specific integral transforms in the slice hyperholomorphic and mono-
genic settings. In the second part of this work we introduce new functional
calculi based on the S-spectrum and on the Fueter-Sce theorem.

By combining the Cauchy formula for slice hyperholomorphic functions
and the Fueter-Sce mapping theorem, it is possible to get an integral trans-
form that maps slice hyperholomorphic functions to axially monogenic
functions. This integral transform is called the Fueter-Sce theorem in in-
tegral form. This, together with the notion of S-spectrum, is fundamental
to define a new monogenic functional calculus: the F -functional calculus.
Moreover by factorizing the Fueter map we obtain a harmonic and polyan-
alytic functional calculus on the S-spectrum.

Finally in the last part of the dissertation, we split the Fueter-Sce map
in the Clifford algebra setting. This suggests the introduction of new func-
tional calculi, two of them are in the well known settings of polyharmonic
and polyanalytic functions. This last part can be considered a seminal work
on the factorization of the Fueter-Sce map and it will be the centre of our
next researches.

Now, we introduce the state of the art of the first part of the thesis. We

2



i
i

“thesis” — 2022/12/4 — 11:25 — page 3 — #21 i
i

i
i

i
i

begin by introducing the definitions of the Bargmann and short time Fourier
transforms in complex analysis.

In [22] the author introduced for the first time a Hilbert space of entire
functions, where the creation and annihilation operators, given by

Mzf(z) := zf(z) and Df(z) :=
d

dz
f(z) (1.1)

are closed, densely defined operators that are adjoints each others. More-
over, these operators satisfy the classical commutation rule

[D,Mz] = I

where [., .] and I are the commutator and the identity operators, respec-
tively. Nowadays, this space is known as Fock or Segal-Bargmann space
and it is given by:

F2(Cn) := {f ∈ O(Cn) |
∫
Cn

|f(z)|2e−2π|z|2dλ(z) <∞},

where dλ(z) is the Lebesgue measure. This space is a reproducing kernel
Hilbert space. It turns out that the operators defined in (1.1) are unitary
equivalent to the position and momentum operators in quantum mechanics
through the so-called Segal Bargmann transform. This is an unitary integral
transform that maps functions in the space L2(Cn) onto the Fock space and
it is defined by

Bf(z) =
∫
Rn

e2π
√
2πx·z−πx·x−πz·zf(x)dx. (1.2)

The Segal-Bargmann transform plays also a very important role in time
frequency analysis. Indeed there is a relation with the short time Fourier
transform with Gaussian window, which is denoted by Vφf(x, ω). The
relation is given by the formula

B(f)
(
z̄√
2

)
= eiπxωe

|x|2π
2 Vφf(x, ω), ω ∈ Rn, z = x+ iω.

The idea of the short-time Fourier transform, for general window functions,
is to obtain information about local properties of the signal f . To this end,
the signal f is restricted to an interval and after its Fourier transform is eval-
uated. However, since a sharp cut-off can introduce artificial discontinuities
and can create problems, it is usually chosen a smooth cut-off function φ
called "window function".

3
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Chapter 1. Introduction

Then for f , g ∈ L2(Rn) the short-time Fourier transform is given by

Vgf(x, ω) =

∫
Rn

f(t)g(t− x)e−2πit·ωdt.

For this kind of transform it is possible to show properties like the Par-
seval identity, the Plancherel formula, an uncertainty principle and a Paley-
Wiener theorem, see [92]. The short-time Fourier transform is used in sev-
eral applications such as the predictions of sound source position emanated
by fault machine and the interpretation of ultrasonic waveforms.

Now we move to illustrate the state of the art related to the second part
of the thesis: the functional calculi based on the S-spectrum.

The first mathematicians who understood the importance of hypercom-
plex analysis to define functions of noncommuting operators on Banach
spaces have been A. McIntosh and his collaborators, starting from prelim-
inary results in [102]. Using the theory of monogenic functions they de-
veloped the monogenic functional calculus and several of its applications,
see [99, 101, 108, 112].

The S-spectrum is based on the slice hyperholomorphic theory of func-
tions and their Cauchy formula. The left slice hyperholomorphic Cauchy
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kernel S−1
L (s, x) is given by

S−1
L (s, x) =

∑
m=0

xms−1−m = (x2 − 2x0s+ |s|2)−1(s− x̄). (1.3)

The series expansions is convergent when |x| < |s|, and the closed expres-
sion is defined for any x /∈ [s]. Thus, we can write any left slice hyperholo-
morphic function as

f(x) =
1

2π

∫
∂(U∩CJ )

S−1
L (s, x) dsJ f(s),

where the set U is a suitable open set contained in the domain of the func-
tion f . For x, s ∈ Rn+1, with x /∈ [s], we have the following identity

−(x2 − 2s0x+ |s|2)−1(x− s̄) = (s2 − 2x0s+ |x|2)−1(s− x̄).

This implies that it is possible to write the slice hyperholomorphic Cauchy
kernel in the following equivalent way

S−1
L (s, x) := (s2 − 2x0s+ |x|2)−1(s− x̄). (1.4)

Even though S−1
L (s, x) written as in (1.3) is more suitable for several

applications, for example for the definition of a functional calculus, it does
not allow easy computations of the powers of the Laplacian in n + 1 vari-
ables ∆ := ∂2x0 +

∑n
j=1 ∂

2
xj
, with respect to the variable x applied to it.

The slice hyperholomorphic Cauchy kernel written as in (1.4) is the one
that allows, by iteration, the computation of ∆

n−1
2 S−1

L (s, x). Indeed, for x,
s ∈ Rn+1 with x /∈ [s] we have

∆
n−1
2 S−1

L (s, x) := FL(s, x) = γn(s− x̄)(s2 − 2x0s+ |s|2)−2, (1.5)

where γn is a suitable constant depending on the dimension of the Clifford
algebras, see (7.47). The function FL(s, x) has different type of regulari-
ties in the two variables: it is right slice hyperholomorphic the variable s
while it is axially monogenic in x. By combining (1.5) and the Cauchy
formula for slice hyperholomorphic functions a Fueter theorem in inte-
gral form has been proved in [54]. The left axially monogenic function
f̆(x) := ∆

n−1
2 f(x), with f a slice hyperholomorphic function, admits the

integral representation

f̆(x) =
1

2π

∫
∂(U∩CJ )

FL(s, x)dsJf(s), (1.6)

5
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Chapter 1. Introduction

where U is a suitable open set which contains the domain of the function
f . The main advantage of (1.6) is that it gives the possibility to get ax-
ially monogenic functions by suitably integrating slice hyperholomorphic
functions.

The Cauchy formula of slice hyperholomorphic functions generates the
S-functional calculus for quaternionic linear operators or for n-tuples of
not necessarily commuting operators. This calculus is based on the notion
of S-spectrum. This was discovered in 2006 by F. Colombo and I. Sabadini
as it is explained in the introduction of the book [59].

Let Vn be a two sided Clifford Banach module and let T : Vn → Vn be
a bounded right (or left) linear operator. The S-spectrum of T is defined as

σS(T ) = {s ∈ Rn+1 : T 2 − 2s0T + |s|2I is not invertible in B(Vn)},

and the S-resolvent set

ρS(T ) := Rn+1 \ σS(T ).

The set B(Vn) denotes the set of bounded right linear operators acting on
Vn.

The existence of an appropriate quaternionic spectrum was suggested by
the formulation of quaternionic quantum mechanics given by G. Birkhoff
and J. von Neumann [26]. A quaternionic formulation of quantum mechan-
ics is systematically studied in the monograph [5]. However, such a formu-
lation of quantum mechanics turned out to be more involved than expected
due to a lack of an appropriate definition of spectrum in the quaternionic
setting. Recently, there have been some progresses in the study of quater-
nionic quantum mechanics. For example, in [86] it was proved that the
equivalence of real and complex quantum mechanics and the equivalence
of complex and quaternionic quantum mechanics are dual problems that
can be solved with the same techniques.

In accordance to (1.3), for s ∈ ρS(T ) we can define the left S-resolvent
operator of T at s as

S−1
L (s, T ) := −(T 2 − 2s0T + |s|2I)−1(T − sI).

This is a B(Vn)-valued slice hyperholomorphic function in the variables s
and so we can define for any left slice hyperholomorphic function f defined
in a suitable open set U , with σS(U) ⊂ U , the S-functional calculus:

f(T ) =

∫
∂(U∩CJ )

S−1
L (s, T )dsJf(s).

6
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The S-functional calculus for n-tuples of operators generalizes the Riesz-
Dunford-functional calculus for holomorphic functions. It is also possible
to define the S-functional calculus for right slice hyperholomorphic func-
tions. The right S-resolvent operator of T at s is defined by

S−1
R (s, T ) := −(T − sI)(T 2 − 2s0T + |s|2I)−1.

Then, we can define the S functional calculus for a right slice hyperholo-
morphic function f , by

f(T ) =

∫
∂(U∩CJ )

f(s)dsJS
−1
R (s, T ).

For the S functional calculus it is possible to show a resolvent equation, that
is called S-resolvent equation. One of the main differences with respect to
the resolvent equation in Riesz-Dunford functional calculus is that both S-
resolvent operators are involved. Precisely, we have

S−1
R (s, T )S−1

L (p, T ) =
[
[S−1
R (s, T )− S−1

L (p, T )]p− s[S−1
R (s, T )− S−1

L (p, T )]
]

(p2 − 2s0p+ |s|2)−1,

for s, p ∈ ρS(T ).
In the sequel, we will consider bounded paravector operators T , with

commuting components Tℓ ∈ B(V ) for ℓ = 0, 1, . . . , n, with n odd. This
set of operators is denoted by BC(Vn), and it is a subset of B(Vn).

The S-functional calculus admits a commutative version. For paravector
operators T = T0+e1T1+. . .+enTn such that T ∈ BC(Vn) the F -spectrum
of T is defined as

σF (T ) = {s ∈ Rn+1 : s2I−s(T+T )+TT is not invertible in B(Vn)},

where we have set T := T0 − e1T1 − . . .− enTn, and the F -resolvent set

ρF (T ) := Rn+1 \ σF (T ).

It turns out that theF -spectrum is the commutative version of the S-spectrum,
i.e., we have

σF (T ) = σS(T ), for T0 + e1T1 + . . .+ enTn ∈ BC(Vn).

In the sequel also for the commutative version of the S-functional calcu-
lus we will use the symbol σS(T ). The definition of the commutative S-
spectrum comes from the Cauchy kernel written in the second form, see

7
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Chapter 1. Introduction

(1.4). In fact, for paravector operators T ∈ BC(Vn), the commutative ver-
sion of left S-resolvent operator is given by

S−1
L (s, T ) := (sI − T )(s2I − s(T + T ) + TT )−1, s ∈ ρS(T ), (1.7)

and the commutative version of the right S-resolvent operator is

S−1
R (s, T ) := (s2I − s(T + T ) + TT )−1(sI − T ), s ∈ ρS(T ). (1.8)

For the sake of simplicity we have still denoted the commutative version of
the S-resolvent operators with the same symbols as for the noncommutative
ones. The operator

Qc,s(T )
−1 := (s2I − s(T + T ) + TT )−1, s ∈ ρS(T ),

is called commutative pseudo S-resolvent operator, for short, pseudo resol-
vent operator. In the sequel, when we mention the S-resolvent operators
we intend their commutative versions.

The Fueter-Sce mapping theorem in integral form is the crucial object
for the definition of the F -functional calculus. It is a mongenic functional
calculus, in the same spirit of McIntosh and collaborators, based on the
commutative version of the S spectrum.

We now define the F -resolvent operators. Let n be an odd number, we
define the left F -resolvent operator as

FL
n (s, T ) := γn(sI − T )(s2I − s(T + T ) + TT )−

n+1
2 , s ∈ ρS(T ) (1.9)

and the right F -resolvent operator as

FR
n (s, T ) := γn(s

2I−s(T +T )+TT )−
n+1
2 (sI−T ), s ∈ ρS(T ). (1.10)

For a left slice hyperholomorphic function f and f̆ = ∆
n−1
2 f we define

the F -functional calculus as

f̆(T ) :=
1

2π

∫
∂(U∩CJ )

FL
n (s, T ) dsJ f(s),

and for right slice hyperholomorphic function the F -functional calculus is
given by

f̆(T ) :=
1

2π

∫
∂(U∩CJ )

f(s) dsJ F
R
n (s, T ).

8
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As for the Riesz-Dunford functional calculus and the S-functional calcu-
lus, the resolvent equation for the F -functional calculus plays an important
role. However, the F -resolvent equation has further differences with re-
spect to the complex resolvent equation and with respect to the S-resolvent
equation. This is a consequence of the fact that the F -functional calculus
is based on an integral transform and not on a Cauchy formula.

The F -resolvent equation for n = 3 is known since some years and it
coincides with the quaternionic F -resolvent equation, precisely it is given
by

FR
3 (s, T )S−1

L (x, T ) + S−1
R (s, T )FL

3 (x, T )

− 1

4

(
sFR

3 (s, T )FL
3 (x, T )x− sFR

3 (s, T )TFL
3 (x, T )

− FR
3 (x, T )TFL

3 (x, T )x+ FR
3 (s, T )T 2FL

3 (x, T )
)

=
[ (
FR
3 (s, T )− FL

3 (x, T )
)
x− s̄

(
FR
3 (s, T )− FL

3 (x, T )
) ]

(x2 − 2s0x+ |s|2)−1.

for T ∈ BC(V3) and for any p, s ∈ ρS(T ), with s ̸∈ [p].
All the constructions presented so far can be summarized in the follow-

ing diagram

SH(ΩD) AM(ΩD)y
Slice Cauchy Formula

TFS2−−−→ Fueter− Sce theorem in integral fromy y
S−Functional calculus F − functional calculus

Description of the contents

The thesis is divided in 13 chapters besides this introduction. In chapter
2 we give a brief overview of the Riesz-Dunford functional calculus for
linear bounded operators. We recall the main properties like the resolvent
equation, the so called Riesz projectors and the product rule. In chapter 3
we give in details the state of the art of the S-functional calculus and the
F -functional calculus. Furthermore we revise the main notions for the the-
ory of slice hyperholomorphic functions and we recall the definition and
some relevant properties of the set of monogenic functions. The main con-
tributions to the research are contained from the chapter 4 to chapter 13.
In the last chapter there is an Appendix, containing computations related

9
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Chapter 1. Introduction

to the complex Hermite functions, which we did not find in literature, and
refinements of the Fueter-Sce construction.

Now, we give a brief description of the contents of each chapter.

• This chapter is based on [70]. We first recall the definitions and the
main properties of the Fock space and the Segal Bargmann transform
in the quaternionic setting. These were originally introduced in [15,
76]. Then, we characterize the range of the Schwartz space under
the Segal Bargmann transform. We also take into account relations
related to the position and momentum operators in this framework.
The main goal is to study a quaternionic analogue of the short time
Fourier transform (QSTFT) in dimension one with Gaussian window
function φ(t) = 21/4e−πt

2 . To this end, we extend the formula

B(f)
(
z̄√
2

)
= eiπxωe

|x|2π
2 Vφf(x, ω), ω ∈ Rn, z = x+ iω,

where B is the complex Bargmann transform, to quaternionic setting.
Note that we need to use the counterpart of the Segal-Bargmann trans-
form in the quaternionic setting and the slice representation of the
quaternions. For f , g ∈ L2(R,H) we have the following Moyal iden-
tity for the QSTFT with Gaussian window

⟨Vφf,Vφg⟩L2(R2,H) = 2⟨f, g⟩L2(R,H).

Moreover, we prove that is possible to reconstruct the signal f if we
know its QSFT. This is the idea behind the reconstruction formula

f(y) = 2−
1
4

∫
R2

e2πJωyVφf(x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

Finally, we show that it is possible to write the quaternionic Fourier
transform in terms of the reproducing kernel of the so-called Gabor
space

GφH := {Vφf, f ∈ L2(R,H)}.

• This chapter is based on [71]. We generalize the previous construc-
tion of the short time Fourier transform for more general windows
functions: the weighted Hermite functions, defined as

ψνn(x) :=
(−1)ne

ν
2
x2 d

n

dxn

(
e−νx

2
)

2n/2νn/2(n!)1/2π1/4ν−1/4
.

10
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If we consider ν = 2π and n = 0 in the previous formula we get the
Gaussian function ϕ0(t) = 21/4e−πt

2 . In order to study the QSTFT
with the weighted Hermite functions as windows we need the theory
of slice polyanalytic functions, developed in [16, 17]. In the first sec-
tion of this chapter we recall the definition and the main properties of
this function theory. Later, we recall the definition of the polyanalytic
Fock space, defined for a given J ∈ S and n ≥ 1 to be

F̃n+1
Slice(H) := {f ∈ SPn+1(H) :

∫
CI

|fI(q)|2e−2π|q|2 dλI(q) <∞},

where dλI(q) is the Lebesgue measure on the slice CI . In the polyan-
alytic theory it is possible to define also a different polyanalytic Fock
space called true quaternionic polyanalytci Fock space, denoted by
Fn
T (H). We show the following relation among the two different Fock

spaces

F̃n+1
Slice(H) =

n⊕
j=0

F j
T (H).

As in the previous chapter our aim is to study a polyanalytic Bargmann
transform in order to get information about the a the QSTFT with
weighed Hermite functions as windows. Moreover, we generalize the
following identity

Vψnφ(x, ω) = e−iπxωGn+1(φ)

(
z̄√
2

)
e−

|z|2π
2 , (1.11)

where Gn+1 is the complex true polyanalytic Bargmann transform.
In this context it is possible to consider a QSTFT of a vector-valued
function φ⃗ = (φ0, ..., φn) with respect to ψ⃗ = (ψ0, ..., ψn). Also for
this kind of signal it is possible to have a relation as (1.11). Let us
consider the formula

Vψ⃗φ⃗(x, ω) = e−πixωGφ⃗

(
z̄√
2

)
e−

π|z|2
2 , (1.12)

where G is the full polyanalytic Bargmann transform in the complex
setting. In this chapter we show that it is possible to write the true
quaternionic Bargmann transform in the following way

Bk+1φ(q) = ck

∫
R
e−π(q

2+x2)+2π
√
2qxHk

(
q + q√

2
− x

)
φ(x)dx,

11
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Chapter 1. Introduction

where ck := 2
3
4 (2kk!(2π)k)−

1
2 and Hk are the Hermite polynomi-

als. This expression is crucial to get a QSTFT with weighted Hermite
functions as windows and to show all the main properties of this inte-
gral transform. In this chapter we show also that in the quaternionic
polyanalytic theory it is possible to define a polyanalytic Bargmann
transform for vector-valued signal φ⃗ = (φ0, ..., φn) and it is defined
as a sum of n+1 quaternionic true polyanalytic Bargmann transform.
By means of this and formula (1.12) we define a QSTFT with vector-
valued signal.

• This chapter is based on [68]. We provide a generalization of the
short time Fourier transform in the Clifford algebra setting. The basic
tool to get a good definition of this transform is to use the so-called
Clifford-Fourier transform

F±f(y) := (2π)−
n
2

∫
Rn

K±(x, y)f(x) dx,

where the kernel K±(x, y) is given by a combination of Bessel func-
tions, see (6.7). In order to show the main properties of the Clifford
short time Fourier transform we recall the definitions of the general-
ized translation and modulation operators, introduced in [66]. Then
we define the Clifford short time Fourier transform as

Vgf(x, ω) = F−(τxḡ · f)(ω),

where τx is the generalized translation operator. If the function g, in
the previous formula, is radial, then we get the following expression

Vgf(x, ω) = (2π)−
n
2

∫
Rn

K−(t, ω)g(t− x)f(t) dt.

Moreover, we show that it is possible to write the Clifford short time
Fourier transform as a combination of the generalized modulation and
translation operators. Precisely, we show the following

Vgf(x, ω) = (2π)−
n
2

∫
Rn

Mωτxg(t)f(t) dt.

We prove that all the properties that usually holds for the short-time
Fourier transform like the orthogonality relation, the Moyal formula
and Lieb’s uncertainty principle are also valid in this context. Further-
more, we show that the behaviour of the generalized modulation and
generalized translation applied to Clifford-valued signal and a radial
window function is different from the classic case.

12
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• In this chapter we give an overview of the Fueter-Sce theorem. We
start by giving, with all the details, the original proof of the Fueter-Sce
theorem done by M.Sce in [126]. He performed the proof in a very
general and pioneering way, because it is done for a generic quadratic
algebra. As particular cases we can find the algebra of quaternions
and the paravectors. In these cases the operator that transforms slice
hyperholomorphic functions in axially monogenic functions is ∆

n−1
2 ,

where ∆ is the Laplace operator in n+1 variables and n is an odd num-
ber. The case n = 3 coincides with the quaternionic case. In the case
n even we have to deal with fractional powers of the Laplacian and so
we have to use the techniques of the Fourier multipliers, see [122]. In
the case of n odd F. Colombo, I. Sabadini and F. Sommen, see [54],
proved an integral version of the Fueter-Sce theorem. Precisely, given
a slice hyperholomorphic function f they were able to get an axially
monogenic function f̆ by an integral transform whose kernel has an
interesting form. In the last section we bring together the Fueter-Sce
theorem and the generalized Cauchy-Kovalevskaya (CK) extension.
This result asserts that axially monogenic functions are completely
determined by their restriction to the real line. Conversely, any real
analytic function has a unique generalized CK extension. This means
that this operator is an isomorphism. Since the Fueter-Sce map is a
surjective map but is not injective, it does not coincide with the gener-
alized CK-extension. We provide a match among the Fueter-Sce map
and the generalized CK-extension in the case of n odd and even. This
part of the chapter is based on [72].

• This chapter is based on [38]. We recall in the previous chapter the
action of the operator ∆

n−1
2 , in the variable x with n being an odd

number, to the slice hyperholomorphic Cauchy kernel written in sec-
ond form see (1.4). The expression is very simple and it is given by

∆
n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+ |x|2)−
n+1
2 . (1.13)

In this chapter, we generalize the previous formula for any n. How-
ever, in the case of n being an even number we have to deal with the
Fourier multipliers

(−∆)
n−1
2 = F−1 (2π| · |)n−1 F (1.14)

in order to give meaning to the fractional powers of the Laplace oper-
ator. First of all, we show that the following function

kL(s, x) := (s− x̄)(s2 − 2x0s+ |x|2)−λ, λ ∈ R,

13
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Chapter 1. Introduction

for s2 − 2x0s + |x|2 ∈ Rn+1 \ (−∞, 0], is left monogenic in the
variable x if and only if h = n−1

2
. In order to generalize formula

(1.13) for any dimension we compute the Fourier transform of the
slice hyperholomorphic Cauchy kernel S−1

L (s, x) with respect to the
variable x. Denoting by F the Fourier transform we get

F[S−1
L (s, ·)](ξ) = cn

ξ̄

(ξ20 + |ξ|2)n+1
2

e−isξ0 , ξ0 + ξ ̸= 0 (1.15)

As further step we compute the Fourier transform of the following
function

FL
n (s, x) := γn(s− x̄)(s2 − 2x0s+ |x|2)−

n+1
2 .

The result obtained is the following

F[FL
n (s, ·)](ξ) = kn

ξ̄

ξ20 + |ξ|2
e−isξ0 , ξ0 + ξ ̸= 0 (1.16)

By putting together (1.15), (1.16) and (1.14) we get the desired result.

• This chapter is based on [35,36]. The main topic is the study of the so-
called F -functional calculus. This arises form the Fueter-Sce theorem
in integral form when we formally replace the paravector variable x
with the operator T . The F -functional calculus is a monogenic func-
tional calculus, in the same spirit of McIntosh and collaborators, based
on the theory of the S-spectrum. This functional calculus was origi-
nally introduced in the paper [41]. In this chapter we solve some of
the main problems left open in that paper. First of all by means of the
Clifford-Appell polynomials, given by

P n
k (x) :=

k∑
s=0

T ks (n)x
k−sxs, x ∈ Rn+1,

where the coefficients T ks (n) are constants depending on the dimen-
sion of the algebra, we write a series expansion of the F -kernels. This
is obtained for paravectors x and s such that |x| < |s| and it is given
by

FL
n (s, x) =

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) x
m+1−n−ℓ x̄ℓ s−1−m, (1.17)

14
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whereKℓ(m,n) are constants depending on the dimension of the alge-
bra. We find also a series expansion for the resolvent operators of the
F -functional calculus. It was enough to replace formally the operator
T to the paravector x in the formula (1.17). We give the following
definition of F -resolvent operator for a paravector operator T with
commuting components

FL
n (s, T ) = γn(sI − T )(s2I − (T + T )s+ TT )−

n+1
2 ,

for n being an odd number. The central aim of this chapter is to
get a resolvent equation for the F -functional calculus in the Clifford-
setting, we denote this object F -resolvent equation. The quaternionic
case has been investigated in [41], but the case of general n (odd num-
ber) has been an open problem for some years. In the case n = 3
(which coincides with the quaternionic case) the F -resolvent equa-
tion is written just in terms of the S-resolvent operators and the F -
resolvent operators. However, this is not always possible in the gen-
eral case. In order to explain how to obtain the F -resolvent equation
in the general case we treat separately the cases n = 5 and n = 7. In
the case n = 5 we show that the equation can be written in a quite
reasonable way in terms of the S-resolvent operators and F -resolvent
operators. The case n = 7 shows that it is not possible to have a sim-
ple closed form for the F -resolvent equation just in terms of the S-
resolvent operators and of the F -resolvent operators. Instead, the use
of the pseudo S-resolvent operators allows a reasonable structure of
the resolvent equation. From the case n = 7 is not anymore possible
to write the F -resolvent equation only in terms of F -resolvent oper-
ators, because it would lead to an equation that is too complicated.
The interesting symmetries that appear in the F -resolvent equation
are fundamental to study the Riesz projectors in this setting, which
are defined by the following operators

P̌ =
1

γn(2π)

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

n−1

=
1

γn(2π)

∫
∂(G2∩CJ )

sn−1dsJF
R
n (s, T ),

where G1 and G2 contain part of the S-spectrum. In the monogenic
functional calculus developed by McIntosh and collaborators the re-
solvent equation is missing. They are able to study the Riesz projec-
tors by using another functional calculus: the Weyl calculus. We start

15
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Chapter 1. Introduction

to study the Riesz projectors in the case n = 5, since in this case we
have a F -resolvent equation written in terms of the F -resolvent oper-
ators. For the cases with n more than five we divide the study in the
cases of the parity of h = n−1

2
.

• This chapter is based on [34]. We establish a new functional calcu-
lus, that can be considered the harmonic version of the Riesz-Dunford
functional calculus. The principle tools to obtain this new functional
calculus are the Fueter mapping theorem and the theory of the S-
spectrum. By factorizing the Laplace operator in terms of the Fueter
operator , namely ∆ = DD, we have a refinement of the Fueter con-
struction given by

O(D)
TF1−−−→ SH(ΩD)

D−−−→ AH(ΩD)
D−−−→ AM(ΩD).

So, in the quaternionic setting, there is the class of axially harmonic
functions that lies between the set of slice hyperholomorphic functions
and axially monogenic functions. All the sets of functions spaces and
the associated functional calculi induced by the factorization of the
Fueter-Sce map are called fine structures. A possible fine structure
of the quaternionic spectral theory on the S-spectrum is given by the
following diagram

SH(ΩD) AH(ΩD) AM(ΩD)y
Slice Cauchy Formula

D−−−−−→ AH in integral form
D−−−−−→ Fueter thm. in integral formy y y

S − Functional calculus Harmonic functional calculus F − functional calculus

In this section we show that we can write an axially harmonic function
f̃(q) in integral form. Precisely, given a left slice hyperholomorphic
function f we have the following formula

f̃(q) = Df(q) = − 1

π

∫
∂(U∩CJ )

Qc,s(q)
−1dsJf(s), (1.18)

for a suitable open set U . By formally replacing the variable q with an
operator T with commuting components we have

f̃(T ) := − 1

π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJf(s),

16
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with f̃ = Df . This is the definition of the harmonic functional cal-
culus on the S-spectrum or equivalently called Q-functional calculus.
We prove several properties of this functional calculus like the basic
algebraic rules and the independence from the set U and the imagi-
nary unit J ∈ S. Furthermore, we get a resolvent equation for the
Q-functional calculus, which is given by

Qc,s(T )
−1S−1

L (p, T ) + S−1
R (s, T )Qc,p(T )

−1 − 2Qc,s(T )
−1TQc,p(T )

−1

= [(Qc,s(T )
−1 −Qc,p(T )

−1)p− s̄(Qc,s(T )
−1 −Qc,p(T )

−1)]

Qs(p)
−1. (1.19)

By means of this equation we show a product formula of the Q-
functional calculus and the interesting symmetries of equation (1.19)
allow to show that the following operators

P̃ (T ) :=
1

2π

∫
∂(G2∩CJ )

s dsJQc,s(T )
−1

=
1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1 dpJp. (1.20)

are projectors, namely P̃ 2 = P̃ . The operator (1.20) is called Riesz
projectors for the Q-functional calculus. The fine structure described
in the following chapter is the suitable tool to obtain a product rule for
the F -functional calculus in the quaternionic case. This is given by

∆(fg)(T ) = ∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ),

with T an operator with commuting components and the functions f
and g are assumed such that the product fg is slice hyperholomorphic.

• This chapter is based on [73, 74]. We study another possible refine-
ment of the Fueter theorem. By applying the operator D to a slice
hyperholomorphic function f . Then the function f̆ 0 := Df , is poly-
analytic of order 2 i.e. it is in the kernel of the operator D2. Therefore,
we have the following diagram

O(D)
TF−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD).

where AP2(ΩD) is the set of axially polyanalytic of order 2. In this

17
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Chapter 1. Introduction

chapter we describe the following fine structure
SH(ΩD) AP2(ΩD) AM(ΩD)y

Slice Cauchy Formula
D−−−−−→ AP2 integral form

D−−−−−→ Fueter thm. in integral formy y y
S−Functional calculus P2 − functionalcalculus F − functional calculus

Basically we describe the central column of this digram. By applying
the conjugate Fueter to the second form of the slice hyperholomorphic
Cauchy kernel we get the following polyanalytic kernel

DS−1
L (s, q) = −FL(s, q)s+q0FL(s, q) =

1∑
k=0

qk0FL(s, q)(−1)k+1s1−k.

This formula together with the slice hyperholomorphic Cauchy for-
mula, imply the following integral representation for axially polyana-
lytic functions of order 2

f̆ 0(q) = − 1

2π

1∑
k=0

(−q0)k
∫
∂(U∩CJ )

FL(s, q)s
1−k dsJ f(s),

where U is a suitable open set and the function f is a left slice hyper-
holomorphic. As for the other functional calculi the integral represen-
tation is the crucial object to define the functional calculus. Given
an operator T with commuting components we define the left P2-
resolvent operator as

PL
2 (s, T ) =

1∑
j=0

T j0 (−1)j+1FL(s, T )s
1−j.

Then we can define the polyanalytic functional calculus of order 2 on
the S-spectrum with the following expression

f̆ 0(T ) =
1

2π

∫
∂(U∩CJ )

PL
2 (s, T ) dsJ f(s), (1.21)

where f is a left slice hyperholomorphic function. The integral (1.21)
does not depend on the set U neither on the imaginary unit J ∈ S.
Even for this fine structure we show a resolvent equation which is
the fundamental tool to show a product rule and to generate the Riesz
projectors.

18
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• This chapter is based on [37]. We continue our investigation on the
fine structures. Let h := n−1

2
be the so-called Sce exponent, and ∆ be

the Laplace operator in dimension n + 1. In the Clifford framework
the operator TFS2 := ∆h maps the slice hyperholomorphic function
f(x) to the set of axially monogenic functions.
Therefore it is possible to repeatedly apply to a slice hyperholomor-
phic function f(x) the Dirac operator and its conjugate, until we reach
the maximum power of the Laplacian, i.e., the Sce exponent. This
implies the possibility to build different sets of functions which lie
between the set of slice hyperholomorphic functions and the set of
axially monogenic functions. In this dissertation we focus on consid-
ering dimension five. In this case the Fueter-Sce map is given by ∆2.
In dimension five there are seven spaces between the set of slice hy-
perholomorphic functions and axially monogenic functions, precisely:
ABH(ΩD) the axially bi-harmonic functions, ACH1(ΩD) the axially
Cliffordian holomorphic functions of order 1, AH(ΩD) the axially
harmonic functions, AP2(ΩD) the axially polyanalytic of order 2,
ACH1(ΩD) the axially anti Cliffordian of order 1, ACP(1,2)(ΩD) the
axially polyanalytic Cliffordian of order (1, 2) , AP3(ΩD) the axially
polyanalytic of order 3, In dimension greater than five there will be
one more function space, that is not indicated in the list above, and
with this addition, all the fine structures can be described using those
function spaces of different orders. We are able to write any func-
tion in the previous sets in integral form. This fact is crucial to give a
definition to the different functional calculi based on the S-spectrum.

• In this last chapter we present some new research directions and per-
spectives that are under investigations at the moment.
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Part I:Integral transforms in the
hypercomplex setting

In this first part we extend to the quaternionic and Clifford algebra settings
the short time Fourier transform. Before we recall some basic notions of
Riesz-Dunford functional calculus and hypercomplex analysis that we will
need in the sequel.

In Chapter 4 and Chapter 5 we develop special one dimensional quater-
nion short-time Fourier transforms by using the slice hyperholomorphic
and the slice polyanalytic Bargmann transforms. In these cases we con-
sider a Gaussian function and the weighted Hermite functions as windows.
Then we study the main properties of these quaternion short time Fourier
transforms.

In Chapter 6, we give an extension of the short-time Fourier transform in
the Clifford algebra setting. The tool to achieve this is the Clifford Fourier
transform, introduced in [66]. In this case we deal with radial window
functions.
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CHAPTER2
The Riesz-Dunford functional calculus

2.1 Introduction

In this chapter we recall some basic concepts of the Riesz-Dunford func-
tional calculus. We will focus only on the functional calculus for linear
bounded operators. The unbounded case is not a topic of this thesis. We
will insert only some of the proofs of the results presented in this chapter.
For more details see [79].

2.2 Vector-Valued functions of a complex variable

We start by recalling the definition of linear bounded operator.

Definition 2.2.1. Let us consider X and Y two complex Banach space.

• We say that the map T : X → Y is a linear operator if

T (λx+ µy) = λTx+ µTy, for all x, y ∈ X, λ, µ ∈ C.

• A linear operator T : X → Y is said to be bounded if there exists a
constant c ≥ 0 such that for any x ∈ X we have

∥Tx∥ ≤ k∥x∥.
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Chapter 2. The Riesz-Dunford functional calculus

• The set of all bounded linear operators T : X → Y with norm defined
by

∥T∥ := sup
x ̸=0

∥Tx∥
∥x∥

is denoted by B(X, Y ). If X = Y we set B(X) := B(X,X).

The classic notion of holomorphic function as well as the classical Cauchy
theorem and Cauchy integral formula can be generalized to function with
values in a normed vector space X .

Definition 2.2.2. Let X be a Banach space and z0 ∈ C. Let us consider a
function f : C → X . The function f is holomorphic in z0 if there exists
an open disk D(z0, r), with r > 0, such that f admits the following power
series expansion

f(z) =
∞∑
n=0

Tn(z − z0)
n, Tn ∈ B(X), n ∈ N,

converging in the norm of X in D(z0, r).

Theorem 2.2.3 (Cauchy theorem). Let U be an open bounded set in C such
that ∂U is a finite union of continuously differentiable Jordan curves. If the
function f : U ∪ ∂U → X is a holomorphic function, then we have∫

∂U

f(z)dz = 0.

Theorem 2.2.4 (Cauchy integral formula). Let U be an open bounded set
in C. We suppose that V ⊂ U such that ∂V ∪ V ⊆ U and ∂V is a finite
union of continuously differentiable Jordan curves. Then if f : U → X is
holomorphic, for each z0 ∈ V we have

f(z0) =
1

2πi

∫
∂V

f(z)(z − z0)
−1dz.

2.3 The functional calculus for linear bounded operators

Let X be a complex Banach space and T ∈ B(X). We define the resolvent
set of T as

ρ(T ) := {λ ∈ C | (λI − T )−1 ∈ B(X)},
where I is the identity operator. The spectrum set of T is defined as

σ(T ) := C \ ρ(T ).

We have the following properties
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2.3. The functional calculus for linear bounded operators

Lemma 2.3.1. Let T ∈ B(X). Then we have

• the resolvent set ρ(T ) is open,

• the closed set σ(T ) is compact and nonempty

The following function

R(λ, T ) := (λI − T )−1, λ ∈ ρ(T ),

is called resolvent operator of T . The number

r(T ) = sup{|λ| : λ ∈ σ(T )}, (2.1)

is called the spectral radius of T . A crucial result is to expand in series the
resolvent operator.

Proposition 2.3.2. Let T ∈ B(X) and λ ∈ C. Then for ∥T∥ < |λ| we have

R(λ, T ) =
∞∑
n=0

T nλ−1−n.

Proof. Since the geometric series
∑∞

n=0 u
n = 1

1−u converges if |u| < 1 we
have

R(λ, T ) = (λI − T )−1 = λ−1(I − λ−1T )−1

= λ−1

∞∑
n=0

(λ−1T )n =
∞∑
n=0

T nλ−1−n.

Proposition 2.3.3. Let T ∈ B(X). Then for every pair λ, µ ∈ ρ(T ) we
have

• The function R(λ, T ) is analytic on ρ(T ),

• R(λ, T )R(µ, T ) = R(µ, T )R(λ, T ),

• The resolvent operator satisfies the following identity

λR(λ, T )− TR(λ, T ) = I. (2.2)

One of the main properties that the resolvent operator enjoys is the fol-
lowing.
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Chapter 2. The Riesz-Dunford functional calculus

Proposition 2.3.4 (Resolvent equation). Let T ∈ B(X). Then for every λ,
µ ∈ ρ(T ) we have

R(λ, T )R(µ, T ) =
R(λ, T )−R(µ, T )

µ− λ
. (2.3)

Proof. By Proposition 2.3.3 we know

λR(λ, T )− TR(λ, T ) = I, (2.4)

and
µR(µ, T )− TR(µ, T ) = I. (2.5)

Moreover, we can write

R(λ, T )R(µ, T ) = R(µ, T )R(λ, T ). (2.6)

If we multiply equation (2.4) by R(µ, T ) we get

λR(λ, T )R(µ, T )− TR(λ, T )R(µ, T ) = R(µ, T ), (2.7)

and if we multiply the equation (2.5) by R(λ, T ) we obtain

µR(µ, T )R(λ, T )− TR(µ, T )R(λ, T ) = R(λ, T ). (2.8)

By taking the difference of the equations (2.7) and (2.8) and by (2.6), we
get the resolvent equation.

Now, we list some properties of the resolvent equation that we will be
useful in the sequel to show important properties for the the Riesz-Dunford
functional calculus.

(I) The product of the resolvent operators R(λ, T )R(µ, T ), at two differ-
ent points λ, µ ∈ ρ(T ), is transformed into the difference R(λ, T ) −
R(µ, T ).

(II) The differenceR(λ, T )−R(µ, T ) is entangled with the Cauchy kernel
1/(µ− λ) of holomorphic functions as follows

R(λ, T )−R(µ, T )

µ− λ
.

(III) The resolvent equation preserves the holomorphicity both in λ and in
µ ∈ ρ(T ).

Definition 2.3.5. Let T ∈ B(X). We denote by F(T ) the family of func-
tions f which are analytic on some neighbourhood of σ(T ).
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2.3. The functional calculus for linear bounded operators

Now, we are ready to define the Riesz-Dunford functional calculus.

Definition 2.3.6. Let f ∈ F(T ), and let U be an open set whose boundary
∂U is a finite union of continuously differentiable Jordan curves, oriented
in the positive sense. Suppose that σ(T ) ⊆ U and that U ∪ ∂U is contained
in the domain of analyticity of f . Then the operator f(T ) is defined by

f(T ) =
1

2πi

∫
∂U

R(λ, T )f(λ)dλ. (2.9)

We observe that the integral in formula (2.9) does not depend on the
open set U , it depends only on f . The previous definition is consistent with
polynomials.

Theorem 2.3.7. Let n ∈ N0 = N ∪ {0} and T ∈ B(T ). We suppose
that U is an open set whose boundary ∂U is a finite union of continuously
differentiable Jordan curves oriented in the positive sense. If σ(T ) ⊂ U we
have

T n =
1

2πi

∫
∂U

R(λ, T )λndλ.

Proof. Let us denote by Br(0) a ball with radius r > ∥T∥. Then by Propo-
sition 2.3.2 we have

1

2πi

∫
∂Br(0)

R(λ, T )λndλ =
∞∑
m=0

T n
1

2πi

∫
∂Br(0)

λ−n+m−1dλ (2.10)

= T n

because ∫
∂Br(0)

λ−n+m−1dλ =

{
1 n = m,

0 n ̸= m.

By the Cauchy theorem, the integral in (2.10) is not affected if we replace
the circle ∂Br(0) by ∂U .

As a consequence of Theorem 2.3.7 we have the following result.

Theorem 2.3.8. Let T ∈ B(T ). We suppose that U is an open set whose
boundary ∂U is a finite union of continuously differentiable Jordan curves
oriented in the positive sense and we assume that the set U contains σ(T ).
For every p(z) =

∑n
ℓ=0 z

ℓaℓ with aℓ ∈ C, we set P (T ) =
∑n

ℓ=0 T
ℓaℓ. Then

P (T ) =
1

2πi

∫
∂U

R(λ, T )p(λ)dλ.
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Chapter 2. The Riesz-Dunford functional calculus

The Riesz-Dunford functional calculus enjoys the following algebraic
properties.

Proposition 2.3.9. Let f , g ∈ F(T ) and α1, α2 ∈ C. Then we have

1) α1f + α2g ∈ F(T ) and (α1f + α2g)(T ) = α1f(T ) + α2g(T ).

2) If f(λ) =
∑∞

n=0 αnλ
n, with {αn}n≥0 ⊂ C, converges in a neighbour-

hood of σ(T ), then f(T ) =
∑∞

n=0 αnT
n.

Proof. 1) The first follows easily from Definition 2.3.6.

2) The second point follows from the fact that the series
∑∞

n=0 αnλ
n con-

verges uniformly on the set Cε : {λ ∈ C : |λ| ≤ r(T ) + ε} for ε > 0.
Then by Proposition 2.3.2 we get

f(T ) =
1

2πi

∫
Cε

∞∑
n=0

αnλ
nR(λ, T )dλ

=
1

2πi

∞∑
n=0

αn

∫
Cε

λnR(λ, T )dλ

=
1

2πi

∞∑
n=0

αn

∫
Cε

(
∞∑
k=0

λ−1−kT k

)
λndλ

=
∞∑
n=0

αnT
n.

One of the main important properties of the Riesz-Dunford functional
calculus is the so called product rule. To show this property we use the
resolvent equation (2.3).

Theorem 2.3.10 (product rule). Let f , g ∈ F(T ) then f · g ∈ F(T ) and
f(T )g(T ) = (f · g)(T ).

Proof. By hypothesis we know that f , g ∈ F(T ) then trivially f ·g ∈ F(T ).
Let us consider two neighbourhoods U1, U2 of σ(T ), whose boundary
∂U1 and ∂U2 are finite unions of continuously differentiable Jordan curves.
Now, we assume that U1 ∪ ∂U1 ⊆ U2 and that U2 ∪ ∂U2 is contained in
a common region of analyticity of f and g. By Definition 2.3.6 and the
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2.3. The functional calculus for linear bounded operators

resolvent equation (2.3) we get

f(T )g(T ) = − 1

4π2

∫
∂U1

f(λ)R(λ, T )dλ

∫
∂U2

g(µ)R(µ, T )dµ

= − 1

4π2

∫
∂U1

∫
∂U2

f(λ)g(µ)R(λ, T )R(µ, T )dµdλ

= − 1

4π2

∫
∂U1

∫
∂U2

f(λ)g(µ)
R(λ, T )−R(µ, T )

µ− λ
dµdλ.

Now, by Fubini’s theorem, Cauchy theorem (see Theorem 2.2.3) and Cauchy
integral formula (see Theorem 2.2.4) we obtain

f(T )g(T ) = − 1

4π2

∫
∂U1

f(λ)R(λ, T )

(∫
∂U2

g(µ)

µ− λ
dµ

)
dλ

+
1

4π2

∫
∂U2

g(µ)R(µ, T )

(∫
∂U1

f(λ)

µ− λ
dλ

)
dµ

=
1

2πi

∫
∂U1

f(λ)g(λ)R(λ, T )dλ

= (f · g)(T ).

Another important application of the resolvent equation is the study of
the so called Riesz projectors.

Theorem 2.3.11 (Riesz projectors). Let T ∈ B(X) and f ∈ F(T ). We
suppose that σ(T ) = σ1(T )∪ σ2(T ) with dist(σ1(T ), σ2(T )) > 0. Then we
consider two open sets Ω1 and Ω2 such that σ(Ti) ⊂ Ωi with i = 1, 2 and
Ω1 ∩ Ω2 = ∅. Then the following operator

P :=
1

2πi

∫
∂Ωi

R(λ, T )dλ, i = 1, 2

is a projector.

Proof. We have to show that P 2 = P . Let G1 and G2 tow open sets that
contain the spectrum σ(T ) and such that ∂Gi is the union of a finite number
of continuously differentiable Jordan curves oriented in the positive sense.
Moreover we suppose that

• σi(T ) ⊂ G1, with i = 1, 2,

• G1 ⊂ G2,
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Chapter 2. The Riesz-Dunford functional calculus

• G2 ⊂ Ωi, with i = 1, 2.

Now, by the Cauchy theorem we can write

P =
1

2πi

∫
∂G1

R(λ, T )dλ =
1

2πi

∫
∂G2

R(µ, T )dµ.

Therefore, by the resolvent equation (2.3) we have

P 2 =
1

(2iπ)2

∫
∂G1

∫
∂G2

R(λ, T )R(µ, T )dλdµ

=
1

(2iπ)2

∫
∂G1

∫
∂G2

R(λ, T )−R(µ, T )

µ− λ
dλdµ

=
1

(2iπ)2

∫
∂G1

R(λ, T )

(∫
∂G2

1

µ− λ

)
− 1

(2iπ)2

∫
∂G2

R(µ, T )

(∫
∂G1

1

µ− λ

)
.

Due to the facts that∫
∂G2

1

µ− λ
= 2πi

∫
∂G1

1

µ− λ
= 0,

we obtain
P 2 =

1

2πi

∫
∂G1

R(λ, T )dλ = P.

Another important result for the Riesz-Dunford functional calculus is
the following.

Theorem 2.3.12 (Spectral mapping theorem). If f ∈ F(T ), then f(σ(T )) =
σ[f(T )].

We state a result, which is a particular case of the spectral mapping
theorem, that shows how to compute the spectral radius defined in (2.1).

Proposition 2.3.13. Let T ∈ B(X), then we have

• σ(T n) = [σ(T )]n := {λn : λ ∈ σ(T )}.

• r(T ) = limn→∞
n
√
T n.

The spectral mapping theorem implies following result.
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2.3. The functional calculus for linear bounded operators

Theorem 2.3.14 (Composition rule). Let f ∈ F(T ), g ∈ F(f(T )), and
F (λ) = g(f(λ)). Then we have

• F ∈ F(T ),

• F (T ) = g(f(T )).
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CHAPTER3
Preliminaries on slice hypercomplex

analysis

In this chapter we recall the main notions of the quaternionic and Clifford
analysis. In the first section of this chapter we mention some basic re-
sults about the slice hyperholomorphic functions theory that we will need
in the sequel. In the second section we revise the main concepts of the S
functional calculus. Most of the results presented in this chapter are well-
known, for this reason we omit all the proofs. For further information see
the books [13, 28, 44, 45, 56, 59, 87, 94].

3.1 Hyperholomorphic functions

The skew-field of quaternions is defined as

H = {q = q0 + q1e1 + q2e2 + q3e3 | q0, q1, q2, q3 ∈ R},
where the imaginary units satisfy the relations

e21 = e22 = e23 = −1

and

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

33



i
i

“thesis” — 2022/12/4 — 11:25 — page 34 — #52 i
i

i
i

i
i

Chapter 3. Preliminaries on slice hypercomplex analysis

Given q ∈ H we call Re(q) := q0 the real part of q and q = q1e1 +
q2e2 + q3e3 the imaginary part. The modulus of q ∈ H is given by |q| =√
q20 + q21 + q22 + q23, the conjugate of q is defined by q = q0 − q and we

have |q| =
√
qq. Moreover for p, q ∈ H we have

pq = qp.

The symbol S denotes the unit sphere of purely imaginary quaternions

S = {q = q1e1 + q2e2 + q3e3 | q21 + q22 + q23 = 1}.

Notice that if J ∈ S, then J2 = −1. Therefore J is an imaginary unit, and
we denote by

CJ = {u+ Jv | u, v ∈ R},
an isomorphic copy of the complex plane. It can be considered as a complex
plane in H passing through 0,1 and J . It is immediate that we have

H =
⋃
J∈S

CJ .

Given a non-real quaternion q = q0+q = q0+Jq|q|, we set Jq = q/|q| ∈
S and we associate to q the 2-sphere defined by

[q] := {q0 + J |q| | J ∈ S}.

The quaternions are a particular case of real Clifford algebras.
Let Rn be the real Clifford algebra over n imaginary units e1, . . . , en sat-
isfying the relations eℓem + emeℓ = 0, ℓ ̸= m, e2ℓ = −1. An element in
the Clifford algebra will be denoted by

∑
A eAxA where A = {ℓ1 . . . ℓr} ∈

P{1, 2, . . . , n}, ℓ1 < . . . < ℓr is a multi-index and eA = eℓ1eℓ2 . . . eℓr ,
e∅ = 1. The Clifford algebras over two units R2 is the algebra of the
quaternions, previously denoted by H.

A point (x0, x1, . . . , xn) ∈ Rn+1 will be identified with the element
x = x0 + x = x0 +

∑n
j=1 xjej ∈ Rn called paravector and the real part

x0 of x will also be denoted by Re(x). The vector part of x is defined by
x = x1e1 + . . . + xnen. The conjugate of x is denoted by x = x0 − x and
the Euclidean modulus of x is given by |x|2 = x20 + . . . + x2n. The sphere
of purely imaginary vectors with modulus 1, is defined by

Sn−1 = {x = e1x1 + . . .+ enxn | x21 + . . .+ x2n = 1}.

The element I ∈ Sn−1 is such that I2 = −1, so I is an imaginary unit, and
we will denote the complex space with imaginary unit I by CI . Given a
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3.1. Hyperholomorphic functions

non-real paravector x = x0 + x = x0 + Jx|x|, we set Jx := x/|x| ∈ Sn−1,
and we associate to x the (n− 1)- sphere defined by

[x] = {x0 + J |x| | J ∈ Sn−1}.

In the sequel we will give the definition and the properties of slice hy-
perholomorphic functions only in the Clifford algebra setting, since it is
always possible to recover the quaternionic case.

Definition 3.1.1. Let U ⊆ Rn+1.

• We say that U is axially symmetric if, for every u + Iv ∈ U , all the
elements u+ Jv for J ∈ Sn−1 are contained in U .

• We say that U is a slice domain if U∩R ̸= ∅ and if U∩CJ is a domain
in CJ for every J ∈ Sn−1.

Definition 3.1.2. An axially symmetric open set U ⊂ Rn+1 is called slice
Cauchy domain if U ∩ CJ is a Cauchy domain in CJ for every J ∈ Sn−1.
More precisely, U is a slice Cauchy domain if for every J ∈ Sn−1 the
boundary of U ∩ CJ is the union of a finite number of nonintersecting
piecewise continuously differentiable Jordan curves in CJ .

On axially symmetric open sets we define the class of slice hyperholo-
morphic functions, in the case of Clifford algebra valued functions they are
often called slice monogenic functions.

Definition 3.1.3 (Slice hyperholomorphic functions). Let U ⊆ Rn+1 be an
axially symmetric open set and let U := {(u, v) ∈ R2 : u+Jv ∈ U ∀J ∈
Sn−1}. We say that a function f : U → Rn of the form

f(x) = α(u, v) + Jβ(u, v) (3.1)

where x = u + Jv for any J ∈ Sn−1, is left slice hyperholomorphic if α
and β are Rn-valued differentiable functions such that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U , (3.2)

and if α and β satisfy the Cauchy-Riemann system

∂uα(u, v)− ∂vβ(u, v) = 0, ∂vα(u, v) + ∂uβ(u, v) = 0.

We recall that right slice hyperholomorphic functions are of the form

f(x) = α(u, v) + β(u, v)J,

where α, β satisfy the above conditions.
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Chapter 3. Preliminaries on slice hypercomplex analysis

Definition 3.1.4. The set of left (resp. right) slice hyperholomorphic func-
tions on U is denoted with the symbol SHL(U) (resp. SHR(U)). The
subset of intrinsic functions consists of those slice hyperholomorphic func-
tions such that α, β are real-valued function and it is denoted by N (U).

Definition 3.1.5. Let U be an open set in Rn+1. A real differentiable func-
tion f : U → Rn is left monogenic if

Df(x) = ∂x0f(x) +
n∑
i=1

ei∂xif(x) = 0.

It is right monogenic if

f(x)D = ∂x0f(x) +
n∑
i=1

∂xif(x)ei = 0.

In Chapter 7 we will study a connection between the slice hyperholo-
morphic and monogenic functions.

In general the product of slice hyperholomorphic functions is not pre-
served. Indeed for example the function f(x) = xa, with a ∈ Rn \ R,
is left slice hyperholomorphic; but the product f(x) · f(x) = xaxa is not
slice hyperholomorphic. In order to overcome this issue we give a suitable
definition of product among slice hyperholomorphic functions

Definition 3.1.6. For f = α + Jβ, g = γ + Jδ ∈ SHL(U), we define the
left slice hyperholomorphic product as

f ∗L g = (αγ − βδ) + J(αδ + βγ).

For f = α + βI , g = γ + δJ ∈ SHR(U), we define the right slice hyper-
holomorphic product as

f ∗R g = (αγ − βδ) + (αδ + βγ)J.

If we consider the previous example we have that f(x) ∗ f(x) = x2a2,
which is a left slice hyperholomorphic function.

The subclass of intrinsic function plays a very important rule because a
pointwise multiplication with a slice hyperholomorphic function maintains
the property to be slice hyperholomorphic.

Lemma 3.1.7. Let U ⊂ H be axially symmetric. If f ∈ N (U) and g ∈
SHL(U), then fg ∈ SHL(U). If f ∈ SHR(U) and g ∈ N (U), then
fg ∈ SHR(U).

36



i
i

“thesis” — 2022/12/4 — 11:25 — page 37 — #55 i
i

i
i

i
i

3.1. Hyperholomorphic functions

Remark 3.1.8. The slice hyperholomorphic product, in general, is not com-
mutative. It is associative and distributive. However, if the function f is
intrinsic the slice hyperholomorphic product coincides with the classical
pointwise product :

f ∗L g = fg = g ∗L f.
Similarly, if g is intrinsic we have

f ∗R g = fg = g ∗R f.

For the sake of simplicity we recall the following result only for left slice
hyperholomorphic functions.

Theorem 3.1.9 (Representation formula). Let U ⊆ Rn+1 be an axially
symmetric domain and let f be a slice hyperholomorphic function and f be
a left slice hyperholomorphic on U .

• For any x = u+ Jxv ∈ U the following formulas hold

f(x) =
1

2
[1− JxJ ]f(u+ Jv) +

1

2
[1 + JxJ ]f(u− Jv),

and

f(x) =
1

2
[f(u+ Jv) + f(u− Jv) + JxJ [f(u− Jv)− f(u+ Jv)]] .

• Moreover, the two quantities

α(u, v) :=
1

2
[f(u+ Jv) + f(u− Jv)],

and
β(u, v) = J

1

2
[f(u− Jv)− f(u+ Jv)]

do not depend on J ∈ Sn−1.

Definition 3.1.10. Let U ⊂ H be an axially symmetric open set. For any
f ∈ SHL(U) the slice derivative is defined by:

∂Sf(x) = lim
CJ∋s→x

(s− x)−1(f(s)− f(x)).

Similarly, if f ∈ SHR(U), then the function

∂Sf(x) = lim
CJ∋s→x

(f(s)− f(x))(s− x)−1,

is called the slice derivative of f .
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Chapter 3. Preliminaries on slice hypercomplex analysis

We observe that the slice derivative of a left slice hyperholomorphic
function, (respectively right), is again a left slice hyperholomorphic func-
tion, (respectively right). Furthermore, if x ∈ R then the slice derivative
coincides with the partial derivative ∂

∂x0
f .

In a suitable domain we can expand the slice hyperholomorphic into a
power series.

Theorem 3.1.11. If f is a left slice hyperholomorphic function on Br(a), a
ball with radius r > 0 and centre a ∈ R, then

f(x) =
∞∑
n=0

(x− a)n
1

n!
(∂nSf) for x ∈ Br(a).

If f is a right slice hyperholomorphic function on Br(a), then

f(x) =
∞∑
n=0

1

n!
(∂nSf)(x− a)n for x ∈ Br(a).

In [88] Gentili and Struppa proposed another definition to extend the
classical theory of holomorphic functions to the quaternionic setting. In
[58] these concepts was considered in the Clifford algebra setting.

Definition 3.1.12. Let U ⊆ Rn+1 be an axially symmetric slice domain and
let f : U → Rn be a real differentiable function. Let J ∈ Sn−1 and let fJ
be the restriction of the function f to the complex plane CJ . We say that f
is left holomorphic if for every J ∈ Sn−1 we have

1

2

(
∂

∂x
+ J

∂

∂t

)
fJ(x+ Iy) = 0 ∀x+ Jy ∈ U ∩ CJ . (3.3)

We say that f is right holomorphic if for every J ∈ Sn−1 we have

1

2

(
∂

∂x
+

∂

∂y
J

)
fJ(x+ Iy) = 0 ∀x+ Jy ∈ U ∩ CJ . (3.4)

Remark 3.1.13. It is possible to show that any left holomorphic function
(resp. right) defined in an axially symmetric slice domain satisfies the Rep-
resentation formula, see Theorem 3.1.9. This implies that a left holomor-
phic function (resp. right) is a left (resp. right) slice function. Therefore
on axially symmetric slice domain Definition 3.1.3 and Definition 3.1.12
coincide. However, in other sets like open sets that do not intersect the real
axis, there exists functions that are not slice functions but satisfies (3.3) or
(3.4). Thus Definition 3.1.3 is more restrictive than Definition 3.1.12, even
if it is more appropriate for the operator theory, see Remark 3.2.11.
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We now recall the hyperholomorphic Cauchy formulas that are the heart
of the hyperholomorphic spectral theories.

Theorem 3.1.14. Let s, x ∈ Rn+1 with |x| < |s|, then

+∞∑
n=0

xns−n−1 = −(x2 − 2Re(s)x+ |s|2)−1(x− s)

and
+∞∑
n=0

s−n−1xn = −(x− s)(x2 − 2Re(s)x+ |s|2)−1.

Moreover, for any s, x ∈ Rn+1 with x /∈ [s], we have

−(x2 − 2Re(s)x+ |s|2)−1(x− s) = (s− x)(s2 − 2Re(x)s+ |x|2)−1

and

−(x− s)(x2 − 2Re(s)x+ |s|2)−1 = (s2 − 2Re(x)s+ |x|2)−1(s− x).

In view of Theorem 3.1.14 there are two possible representations of the
Cauchy kernels for left slice hyperholomorphic functions and two for right
slice hyperholomorphic functions.

Definition 3.1.15. Let s, x ∈ Rn+1 with x /∈ [s] then we define the two
functions

Qs(x)
−1 := (x2−2Re(s)x+|s|2)−1, Qc,s(x)

−1 := (s2−2Re(x)s+|x|2)−1,

that are called pseudo Cauchy kernel and commutative pseudo Cauchy
kernel, respectively.

Definition 3.1.16. Let s, x ∈ Rn+1 with x /∈ [s] then

• We say that the left slice hyperholomorphic Cauchy kernel S−1
L (s, x)

is written in the form I if

S−1
L (s, x) := Qs(x)

−1(s− x).

• We say that the right slice hyperholomorphic Cauchy kernel S−1
R (s, x)

is written in the form I if

S−1
R (s, x) := (s− x)Qs(x)

−1.
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Chapter 3. Preliminaries on slice hypercomplex analysis

• We say that the left slice hyperholomorphic Cauchy kernel S−1
L (s, x)

is written in the form II if

S−1
L (s, x) := (s− x)Qc,s(x)

−1.

• We say that the right slice hyperholomorphic Cauchy kernel S−1
R (s, x)

is written in the form II if

S−1
R (s, x) := Qc,s(x)

−1(s− x).

In this article, otherwise specified, we refer to S−1
L (s, x) and S−1

R (s, x)
as written in the form II.

We have the following regularity for the (left and right) slice hyperholo-
morphic Cauchy kernels.

Lemma 3.1.17. Let s /∈ [x]. The left slice hyperholomorphic Cauchy kernel
S−1
L (s, x) is left slice hyperholomorphic in x and right slice hyperholomor-

phic in s. The right slice hyperholomorphic Cauchy kernel S−1
R (s, x) is left

slice hyperholomorphic in s and right slice hyperholomorphic in x.

Theorem 3.1.18 (The Cauchy formulas for slice hyperholomorphic func-
tions). Let U ⊂ Rn+1 be a bounded slice Cauchy domain, let J ∈ Sn−1 and
set dsJ = ds(−J). If f is a (left) slice hyperholomorphic function on a set
that contains U then

f(x) =
1

2π

∫
∂(U∩CJ )

S−1
L (s, x) dsJ f(s), for any x ∈ U. (3.5)

If f is a right slice hyperholomorphic function on a set that contains U ,
then

f(x) =
1

2π

∫
∂(U∩CJ )

f(s) dsJ S
−1
R (s, x), for any x ∈ U. (3.6)

These integrals depend neither on U nor on the imaginary unit J ∈ Sn−1.

A Cauchy integral theorem holds also for slice hyperholomorphic func-
tions.

Lemma 3.1.19. Let f and g be left slice monogenic and right slice mono-
genic functions, respectively, defined on an open set U . For any J ∈ Sn−1

and any open bounded set DJ in U ∩ CJ whose boundary is a finite union
of continuously differentiable Jordan curves, we have∫

∂DJ

g(s)dsIf(s) = 0.

40



i
i

“thesis” — 2022/12/4 — 11:25 — page 41 — #59 i
i

i
i

i
i

3.2. S-functional calculus

3.2 S-functional calculus

The Cauchy formula of slice hyperholomorphic functions generates the S-
functional calculus for Clifford linear operators or for n-tuples of not nec-
essarily commuting operators. This calculus is based on the notion of S-
spectrum, see [9, 12, 42, 43, 50–53]. This notion was discovered in 2006 by
F. Colombo and I. Sabadini as it is well explained in the introduction of the
book [45].

The existence of an appropriate quaternionic spectrum was suggested by
the formulation of quaternionic quantum mechanics given by G. Birkhoff
and J. von Neumann [26]. We note that in this framework a spectral theorem
for quaternionic operators is necessary, and this was proved in [10] (see
also the particular cases [11, 86]) and further generalized to fully Clifford
operators in [47].

Preliminary attempts to prove the spectral theorem for quaternionic op-
erators, without a precise notion of quaternionic spectrum, were given in
[131, 135], while in [83] the spectral theorem for quaternionic matrices is
treated on the right spectrum, a subset of the S-spectrum.

Now, we fix the notations. We denote by B(Vn) the Banach space of all
bounded right linear operators acting on a the two sided Clifford Banach
module Vn = V ⊗ Rn, where V is a real Banach space. In the sequel we
will consider operators of the form T = T0+

∑n
j=0 ejTj where Tj ∈ B(Vn)

with j = 0, 1, ..., n. The subset of such operators in B(Vn) will be denoted
by B0,1(Vn).

Now, we give the appropriate definition of spectrum. This is the so-
called S-spectrum, and it is defined in an unconventional way because it
involves the square of the linear operator T .

Definition 3.2.1. Let Vn be a two sided Clifford Banach module and let
T ∈ B0,1(Vn). For s ∈ Rn+1 we set

Qs(T ) := T 2 − 2Re(s)T + |s|2I.

We define the S-resolvent set σS(T ) of T as

σS(T ) := {s ∈ Rn+1 : Qs(T )
−1 is not invertible in B(Vn)},

and we define the S-spectrum ρS(T ) of T as

ρS(T ) := Rn+1 \ σS(T ).

For s ∈ ρS(T ), the operator Qs(T )
−1 is called the pseudo S-resolvent

operator of T at s.
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Chapter 3. Preliminaries on slice hypercomplex analysis

Theorem 3.2.2. Let T ∈ B0,1(Vn) and s ∈ Rn+1 with ∥T∥ < |s|. Then we
have

∞∑
n=0

T ns−n−1 = −Qs(T )
−1(T − sI),

and
∞∑
n=0

s−n−1T n = −(T − sI)Qs(T )
−1.

According to the left or right slice hyperholomorphicity, there exist two
different resolvent operators.

Definition 3.2.3 (S-resolvent operators). Let T ∈ B0,1(Vn) and s ∈ ρS(T ).
Then the left S-resolvent operator is defined as

S−1
L (s, T ) := −Qs(T )

−1(T − sI),

and the right S-resolvent operator is defined as

S−1
R (s, T ) := −(T − sI)Qs(T )

−1.

Proposition 3.2.4. Let T ∈ B0,1(Vn) and s ∈ ρS(T ). Then the left S-
resolvent operator satisfies the equation

S−1
L (s, T )s− TS−1

L (s, T ) = I, , (3.7)

and the right S-resolvent operator satisfies

sS−1
R (s, T )− S−1

R (s, T )T = I. (3.8)

The equations (3.7) and (3.8) cannot be considered the resolvent equa-
tions for the S-functional calculus because they do not satisfy the properties
of the classical resolvent equation. The S-resolvent equation involves both
the S-resolvent operators. Precisely, we have

Theorem 3.2.5 (S-resolvent equation). Let T ∈ B0,1(Vn) then for s, p ∈
ρS(T ), with p ̸∈ [s], we have

S−1
R (s, T )S−1

L (p, T ) =[
(
S−1
R (s, T )− S−1

L (p, T )
)
p+

− s̄
(
S−1
R (s, T )− S−1

L (p, T )
)
]Qs(p)

−1,
(3.9)

where Qs(p) := p2 − 2Re(s)p+ |s|2.
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3.2. S-functional calculus

Remark 3.2.6. The S-resolvent equation can be rewritten by using the left
and right slice hyperholomorphic products with respect to the variables s
and p, which are denoted by ∗L,s, ∗R,p.

S−1
R (s, T )S−1

L (p, T ) =
(
S−1
R (s, T )− S−1

L (p, T )
)
∗L,s S−1

L (p, s)I
or

S−1
R (s, T )S−1

L (p, T ) = S−1
L (p, s)I ∗R,p

(
S−1
R (s, T )− S−1

L (p, T )
)
.

The major differences between the resolvent equations in the S func-
tional calculus (see (3.9)) and in the Riesz-Dunford functional calculus (see
(2.3)) are listed below.

(I-S) The S-resolvent equation contains both the S-resolvent operators and
an important fact to point out is that S−1

L (s, T ) is right slice hyper-
holomorphic and S−1

R (s, T ) left slice hyperholomorphic. The product
S−1
R (s, T )S−1

L (p, T ) preserves the right slice hyperholomorphicity in
s and the left slice hyperholomorphicity in p.

(II-S) The product S−1
R (s, T )S−1

L (p, T ) is transformed into the difference
S−1
R (s, T )−S−1

L (p, T ) of the two S-resolvent operators, as in the com-
plex case.

(III-S) The difference S−1
R (s, T )−S−1

L (p, T ) is entangled with (p−s)(p2−
2s0p+ |s|2)−1, which is the Cauchy kernel of slice hyperholomorphic
functions, and the map

(s, p) 7→
[
[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]
]
(p2 − 2s0p+ |s|2)−1,

for s, p ∈ Rn+1\σS(T ), preserves the right slice hyperholomorphicity
in s and the left slice hyperholomorphicity in p.

Remark 3.2.7. It is important to note that the product S−1
L (p, T )S−1

R (s, T )
cannot be used in the S-resolvent equation because it destroys slice hyper-
holomorphicity.

In order to give the definition of the S-functional calculus we need the
following classes of functions.

Notation: Let T ∈ B0,1(Vn). We denote by SHL(σS(T )), SHR(σS(T ))
andN(σS(T )) the sets of all left, right and intrinsic slice hyperholomorphic
functions f , respectively, with σS(T ) ⊂ dom(f).
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Chapter 3. Preliminaries on slice hypercomplex analysis

Definition 3.2.8 (S-functional calculus). Let T ∈ B0,1(Vn). Let U be a
slice Cauchy domain that contains σS(T ) and U is contained in the do-
main of f . Set dsJ = −dsJ for J ∈ Sn−1, so we define for every
f ∈ SHL(σS(T ))

f(T ) :=
1

2π

∫
∂(U∩CJ )

S−1
L (s, T ) dsJ f(s), (3.10)

and for every f ∈ SHR(σS(T ))

f(T ) :=
1

2π

∫
∂(U∩CJ )

f(s) dsJ S
−1
R (s, T ). (3.11)

The definition of S-functional calculus is well posed since the integrals
in (3.10) and (3.11) depend neither on U and nor on the imaginary unit
J ∈ Sn−1.

Like in the Riesz-Dunford functional calculus the resolvent equation is
fundamental to show a product rule for the S-functional calculus and to
study the Riesz projectors in this setting.

Theorem 3.2.9 (Product rule). Let T ∈ B0,1(Vn) and assume f ∈ N(σS(T ))
and g ∈ SHL(σS(T )). Then we have

(fg)(T ) = f(T )g(T ).

Theorem 3.2.10 (Riesz projectors). Let T ∈ B0,1(Vn) and let σS(T ) =
σ1S(T ) ∪ σ2S(T ), with dist(σ1S(T ), σ2S(T )) > 0. Let U1 and U2 be two
axially symmetric s-domains such that σ1S(T ) ⊂ U1 and σ2S(T ) ⊂ U2 with
U1 ∩ U2 = ∅. Set

Pj :=
1

2π

∫
∂(UJ∩CJ )

S−1
L (s, T )dsJ , j = 1, 2,

Tj :=
1

2π

∫
∂(UJ∩CJ )

S−1
L (s, T )dsJs, j = 1, 2.

Then Pj are projectors and Tj = TjPj = PjTj for j = 1, 2.

Remark 3.2.11. We observe that Definition 3.1.3 is the most appropriate
for the operator theory. One of the reason is that the slice structure of
the function is essential for the properties of slice hyperholomorphic func-
tions such as the Cauchy formulas, which are essential for operator theory.
Moreover, if we consider the S-functional calculus restricted to functions
defined on axially symmetric slice domains, this would prevent the defini-
tion of Riesz projectors via this calculus.
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3.2. S-functional calculus

In [53] a commutative version of of the S-functional is established.
We will consider bounded paravector operators T , with commuting com-

ponents Tℓ ∈ B(V ) for ℓ = 0, 1, . . . , n. By BC(Vn) we denote the subset
of B(Vn) consisting of Clifford operators with commuting components, i.e.,
operators of the type

∑
A eATA whereA = {ℓ1 . . . ℓr} ∈ P{1, 2, . . . , n}, ℓ1 <

. . . < ℓr is a multi-index, T∅ = T0, and the operators TA commute among
themselves. In this case the most appropriate definition of the S-spectrum
is its commutative version, that for historical reasons is also called F -
spectrum, i.e.,

σF (T ) = {s ∈ Rn+1 : s2I−(T +T )s+TT is not invertible in B(Vn)}

where we have set T := T0 − e1T1 − . . .− enTn, and the F -resolvent set

ρF (T ) := Rn+1 \ σF (T ).

It turns out that theF -spectrum is the commutative version of the S-spectrum,
i.e., we have

σF (T ) = σS(T ), for T ∈ BC(Vn).
The definition of the F -spectrum comes from the structure of the com-

mutative S-resolvent operators. In fact, for paravector operators T ∈ BC(Vn),
the commutative version of left S-resolvent operator is defined as

S−1
L (s, T ) := (sI − T )(s2I − s(T + T ) + TT )−1, s ∈ ρS(T ), (3.12)

and the commutative version of the right S-resolvent operator is

S−1
R (s, T ) := (s2I − s(T + T ) + TT )−1(sI − T ), s ∈ ρS(T ). (3.13)

The operator

Qc,s(T )
−1 := (s2I − s(T + T ) + TT )−1, s ∈ ρS(T ), (3.14)

is called commutative pseudo S-resolvent operator (or pseudo resolvent
operator, for short). For the sake of simplicity, we have used in (3.12) and
(3.13) the same symbols used for T with noncommuting components.

We can define the commutative S-functional calculus similarly as in
Definition 3.2.8. Moreover, for this type of functional calculus the structure
of the S-resolvent equation (see (3.9)) is maintained.

45



i
i

“thesis” — 2022/12/4 — 11:25 — page 46 — #64 i
i

i
i

i
i



i
i

“thesis” — 2022/12/4 — 11:25 — page 47 — #65 i
i

i
i

i
i

CHAPTER4
On the quaternionic short-time Fourier and

Segal-Bargmann transforms

4.1 Motivation

In this chapter we introduce an extension of the short-time Fourier trans-
form in dimension one to the quaternionic setting .

To this end, we fix a property that relates the complex short-time Fourier
transform and the complex Segal-Bargmann transform:

Vφf(x, ω) = e−πixωBf(z̄)e
−π|z|2

2 , z = x+ iω, (4.1)

where Vφ is the complex short-time Fourier transform with respect to the
Gaussian window φ (see [92, Def. 3.1]) and Bf(z) denotes the complex
version of the Segal-Bargmann transform, see (1.2). To achieve our aim
we use the quaternionc analogue of the Segal-Bargmann transform studied
in [76].

4.2 Quaternionic Segal-Bargmann transform

We briefly revise the notion of Fock space of slice hyperholomorphic func-
tions, first introduced in [15]. Moreover, we recall the results that we need
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Chapter 4. On the quaternionic short-time Fourier and Segal-Bargmann
transforms

about the slice hyperholomorphic Segal- Bargmann transform, see [76].
For a given J ∈ S and ν > 0 we define the slice hyperholomorphic Fock

space as

F2,ν
Slice(H) := {f ∈ SH(H);

∫
CJ

|fJ(p)|2e−ν|p|
2

dλJ(p) <∞},

where ν > 0, fJ = f |CJ
and dλJ(p) = dxdy, for p = x + yJ , is the

Lebesgue measure on CJ . The right H-vector space F2,ν
Slice(H) is endowed

with the inner product

⟨f, g⟩F2,ν
Slice(H) =

∫
CJ

gJ(q)fJ(q)e
−ν|q|2dλJ(q), ∀f, g ∈ F2,ν

Slice(H). (4.2)

The associated norm is given by

∥f∥2F2,ν
Slice(H)

=

∫
CJ

|fJ(q)|2e−ν|q|
2

dλJ(q).

This quaternionic Hilbert space does not depend on the choice of the imag-
inary unit J . The monomial qn, n = 0, 1, 2, ..., form an orthogonal basis of
the slice hyperholomorphic Fock space with

⟨qm, qn⟩F2,ν
Slice(H) =

m!

µm
δm,n.

Furthermore, if we consider f(q) =
∑∞

n=0 q
nan and g(q) =

∑∞
n=0 q

nbn in
F2,ν
Slice(H) we have

⟨f, g⟩F2,ν
Slice(H) =

∞∑
n=0

n!

νn
bnan.

This implies that a given series f(q) =
∑∞

n=0 q
nan belongs to F2,ν

Slice(H) if
and only if the sequence {an}n≥0 ⊂ H satisfies the condition

∥f∥F2,ν
Slice(H) =

∞∑
n=0

n!

νn
|an|2 <∞. (4.3)

Now, we observe that for q ∈ H we have the following estimate

Lemma 4.2.1. For every f ∈ F2,ν
Slice(H) we have the estimate

|f(q)| ≤ e
ν
2
|q|2∥f∥F2,ν

Slice(H).
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4.2. Quaternionic Segal-Bargmann transform

From the previous result we get that the evaluation map δq : F2,ν
Slice(H) →

H; δq(f) = f(q), is a continuous linear form. Therefore, by the Riesz’s rep-
resentation theorem for quaternionic Hilbert spaces, there exists a unique
element Kν

q ∈ F2,ν
Slice(H) such that

⟨f,Kν
q ⟩F2,ν

Slice(H) = f(q),

for all f ∈ F2ν
Slice(H). The reproducing kernel function Kν : H × H →

H; (p, q) 7→ Kν(p, q) = Kν
q (p) is given by

Kν(p, q) =
∞∑
n=0

νnpnqn

n!
= Kν(q, p).

Precisely, the reproducing kernel for the slice hyperholomorphic Fock space
F2,ν
Slice(H) is given by

Kν(p, q) = Kν
q (p) =

∞∑
n=0

νnpnq̄n

n!
= e∗(νpq̄), (p, q) ∈ H×H. (4.4)

Now, we recall some basic result of the quaternionic Segal-Bargmann
transform. It has as a domain the Hilbert space L2(R, dx) = L2(R,H),
consisting of all the square integrable H-valued functions with respect to

⟨ψ, ϕ⟩ :=
∫
R
ϕ(t)ψ(t)dt.

The range of the quaternionic Segal-Bargmann transform is the slice hyper-
holomorphic Fock space F2,ν

Slice(H). The kernel of the quaternionic Segal-
Bargmann transform is given by:

A(q, x) =
(ν
π

) 3
4
e−

ν
2
(q2+x2)+ν

√
2qx, ∀(q, x) ∈ H× R.

This function can be seen as the generating function of the real weighted
Hermite functions

hνn(x) := (−1)ne
ν
2
x2 d

n

dxn
(e−νx

2

)

that form an orthogonal basis of the space L2(R; dx), with norm given ex-
plicitly by

∥hνn∥2L2(R,dx) = 2nνnn!
(π
ν

) 1
2
.

In particular, we have the following result.
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Chapter 4. On the quaternionic short-time Fourier and Segal-Bargmann
transforms

Proposition 4.2.2. For all q ∈ H and x ∈ R, we have

A(q, x) =
∞∑
k=0

f νk (q)ψ
ν
k(x),

where ψνk denote the normalized weighted Hermite functions:

ψνk(x) :=
hνk(x)

∥hνk(x)∥L2(R,H)

, and f νk (q) :=
qk

||qk||F2,ν
Slice(H)

, ∀k ≥ 0.

Then, for any quaternionic valued function φ in L2(R,H) the slice hy-
perholomorphic Segal-Bargmann transform is defined by

BSH(φ)(q) =
∫
R
AS

H(q, x)φ(x)dx. (4.5)

The following result shows that the integral transform BSH is well defined
on L2(R; dx).

Proposition 4.2.3. For every q ∈ H and every φ ∈ L2(R; dx), we have

|BSH(φ)(q)| ≤
(ν
π

) 1
2
e

ν
2
|q|2∥φ∥L2(R;dx). (4.6)

Moreover, by direct computations, we can obtain the expression of the
slice hyperholomorphic Segal-Bargmann transform acting on Hermite func-
tion hνn.

Lemma 4.2.4. For every quaternion q ∈ H and the nonnegative integer n,
we have

BSH(hνn)(q) =
(ν
π

) 1
2
2

n
2 νnqn,

and
∥BSH(hνn)∥F2,ν

Slice
= ∥hνn∥L2(R,H).

Now, we show an unitary property for the slice hyperholomorphic Segal-
Bargmann transform, which is not found in literature in the following ex-
plicit form.

Proposition 4.2.5. Let f, g ∈ L2(R,H). Then, we have

⟨BSH(f),BSH(g)⟩F2,ν
Slice(H) = ⟨f, g⟩L2(R,H). (4.7)
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4.2. Quaternionic Segal-Bargmann transform

Proof. Any f, g ∈ L2(R,H) can be expanded as

f(x) =
∞∑
k=0

hνk(x)αk,

g(x) =
∞∑
k=0

hνk(x)βk,

where {αk}k≥0, {βk}k≥0 ⊂ H.

⟨f, g⟩L2(R,H) =

∫
R
g(x)f(x) dx =

∞∑
k=0

∫
R
hνk(x)βkh

ν
k(x)αk dx

=
∞∑
k=0

βk

(∫
R
hνk(x)h

ν
k(x) dx

)
αk (4.8)

=
∞∑
k=0

∥hνk(x)∥2L2(R,H)βkαk.

On the other way, since

⟨f, hνk⟩L2(R,H) =
∞∑
j=0

(∫
R
hνk(x)h

ν
j (x) dx

)
αj = ∥hνk(x)∥2L2(R,H)αk.

By [76] we have that

BSH(f)(q) =
∞∑
k=0

qk
⟨f, hνk⟩L2(R,H)

∥hνk(x)∥L2(R,H)∥qk∥F2,ν
Slice

(4.9)

=
∞∑
k=0

qk
∥hνk(x)∥22

∥hνk(x)∥L2(R,H)∥qk∥F2,ν
Slice

αk

=
∞∑
k=0

qk
∥hνk(x)∥L2(R,H)

∥qk∥F2,ν
Slice

αk.

Using the similar computations we obtain

BSH(g)(q) =
∞∑
k=0

∥hνk(x)∥L2(R,H)

∥qk∥F2,ν
Slice

qkβk. (4.10)
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transforms

By putting together (4.9) and (4.10) we obtain

⟨BSH(f),BSH(g)⟩F2,ν
Slice(H) =

∞∑
k=0

∫
CJ

∥hνk(x)∥2L2(R,H)βk
qk

∥qk∥F2,ν
Slice

·

· qk

∥qk∥F2,ν
Slice

αke
−ν|q|2 dλJ(q)

=
∞∑
k=0

∥hνk(x)∥2L2(R,H)βk

(∫
CJ

qk

∥qk∥F2,ν
Slice

·

· qK

∥qk∥F2,ν
Slice

e−ν|q|
2

dλJ(q)

)
αk

=
∞∑
k=0

∥hνk(x)∥2L2(R,H)βk
1

∥qk∥2
F2,ν

Slice

·

·
(∫

CJ

qkqke−ν|q|
2

dλJ(q)

)
αk

=
∞∑
k=0

∥hνk(x)∥2L2(R,H)βk
1

∥qk∥2
F2,ν

Slice

∥qk∥2F2,ν
Slice

αk

=
∞∑
k=0

∥hνk(x)∥2L2(R,H)βkαk

Finally, since (4.8) and (4.11) are equal we obtain the thesis.

If we consider f = g in Proposition 4.2.5 we have the following result.

Theorem 4.2.6. The quaternionic Segal-Bargmann transform realizes a
surjective isometry from L2(R,H) onto the slice hyperholomorphic Fock
space F2,ν

Slice(H).

4.3 Range of the Schwartz space and some operators

We characterize the range of the Schwartz space under the Segal-Bargmann
transform with parameter ν = 1 in the slice hyperholomorphic setting of
quaternions. We consider also some equivalence relations related to the po-
sition and momentum operators in this setting. The quaternionic Schwartz
space on the real line, that we are considering in this framework, is defined
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by

SH(R) :=
{
ψ : R −→ H : sup

x∈R

∣∣∣∣xα dβdxβ (ψ)(x)
∣∣∣∣ <∞

}
, ∀α, β ∈ N}.

For J ∈ S, the classical Schwartz space is given by

SCJ
(R) :=

{
φ : R −→ CJ ; : sup

x∈R

∣∣∣∣xα dβdxβ (φ)(x)
∣∣∣∣ <∞, ∀α, β ∈ N

}
}.

Clearly, we have that

SCJ
(R) ⊂ SH(R) ⊂ L2

H(R).

Moreover, we prove the following.

Lemma 4.3.1. Let ψ : x 7−→ ψ(x) be a quaternionic valued function. Let
I, J ∈ S be such that I ⊥ J . Then, ψ ∈ SH(R) if and only if there exist
φ1, φ2 ∈ SCJ

(R) such that we have

ψ(x) = φ1(x) + φ2(x)I, ∀x ∈ R.

Proof. Let ψ ∈ SH(R). Then, we can write

ψ(x) = φ1(x) + φ2(x)I,

where φ1 and φ2 are CJ−valued functions. Note that for all α, β ∈ N we
have ∣∣∣∣xα dβdxβ (ψ)(x)

∣∣∣∣2 = ∣∣∣∣xα dβdxβ (φ1)(x)

∣∣∣∣2 + ∣∣∣∣xα dβdxβ (φ2)(x)

∣∣∣∣2 .
In particular, this implies that ψ ∈ SH(R) if and only if φ1, φ2 ∈ SCJ

(R).

Let us now denote by SF(H) the range of SH(R) under the quaternionic
Segal-Bargmann transform BSH. Therefore, we have the following charac-
terization of SF(H).

Theorem 4.3.2. A function f(q) =
∞∑
k=0

qkck belongs to SF(H) if and only

if
sup
k∈N

|ck|kp
√
k! <∞,∀p > 0.

i.e,

SF(H) = {
∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√
k! <∞, ∀p > 0}.
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Proof. Let f ∈ SF(H), then by definition f = BSHψ where ψ ∈ SH(R).
Let I, J ∈ S, be such that I ⊥ J . Thus, Lemma 4.3.1 implies that

ψ(x) = φ1(x) + φ2(x)I,

where φ1, φ2 ∈ SCJ
(R). Therefore, we have

BSH(ψ)(q) = BSH(φ1)(q) + BSH(φ2)(q)I.

Then, we take the restriction to the complex plane CJ and get:

BSH(ψ)(z) = BCJ
(φ1)(z) + BCJ

(φ2)(z)I, ∀z ∈ CJ ,

where the complex Bargmann transform is given by

BCJ
(φl)(z) =

1

π
3
4

∫
R
e−

1
2
(z2+x2)+

√
2zxφl(x)dx, l = 1, 2.

In particular, we set fJ := BSH(ψ), f1 := BCJ
(φ1) and f2 := BCJ

(φ2).
Then, we have f1, f2 ∈ SF(CJ). Thus, by applying the classical result in
complex analysis, see [115] we have

f1(z) =
∞∑
n=0

anz
n and f2(z) =

∞∑
n=0

bnz
n, ∀z ∈ CJ .

Moreover, for all p > 0 the following conditions hold

sup
n∈N

|an|np
√
n! <∞ and sup

n∈N
|bn|np

√
n! <∞.

In particular, we have then

fJ(z) =
∞∑
n=0

anz
n + (

∞∑
n=0

anz
n)I, ∀z ∈ CJ .

Therefore,

fJ(z) =
∞∑
n=0

zncn with cn = an + bnI, for all z ∈ CJ .

Thus, by taking the slice hyperholomorphic extension we get

f(q) =
∞∑
n=0

qncn, ∀q ∈ H.
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4.3. Range of the Schwartz space and some operators

Moreover, note that cn = an+bnI, n ∈ N. Then, |cn| ≤ |an|+|bn|, ∀n ∈ N.
Thus, for all p > 0, we have

sup
n∈N

|cn|np
√
n! ≤ sup

n∈N
|an|np

√
n! + sup

n∈N
|bn|np

√
n! <∞.

Finally, we conclude that

SF(H) = {f(q) =
∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√
k! <∞,∀p > 0}.

Now, let us consider on L2(R,H) = L2
H(R) the position and momentum

operators defined by

X : φ 7→ Xφ(x) = xφ(x) and D : φ 7→ Dφ(x) =
d

dx
φ(x).

Their domains are given respectively by

D(X) := {φ ∈ L2
H(R); Xφ ∈ L2

H(R)} and D(D) := {φ ∈ L2
H(R); Dφ ∈ L2

H(R)}.
First, let us prove the following

Lemma 4.3.3. For all (q, x) ∈ H× R, we have

∂SAS
H(q, x) = (−q +

√
2x)AS

H(q, x).

Proof. Let (q, x) ∈ H × R. Then, by definition of the quaternionic Segal-
Bargmann kernel we can write

AS
H(q, x) := π− 3

4 e−
x2

2 e−
q2

2 e
√
2qx.

In this case, we can apply the Leibnitz rule with respect to the slice deriva-
tive and get

∂SAS
H(q, x) = π− 3

4 e−
x2

2

(
e−

q2

2 ∂S(e
√
2xq) + ∂S(e

− q2

2 )e
√
2xq

)
.

However, using the series expansion of the exponential function and apply-
ing the slice derivative we know that

∂S(e
− q2

2 ) = −qe−
q2

2 and ∂S(e
√
2xq) =

√
2xe

√
2xq.

Therefore, we obtain

∂SAS
H(q, x) = (−q +

√
2x)ASH(q, x).
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transforms

Theorem 4.3.4. Let φ ∈ D(X). Then, we have

(∂S + q)BSH(φ)(q) =
√
2BSH(xφ)(q), ∀q ∈ H.

Proof. Let φ ∈ D(X) and q ∈ H. Then, we have

∂SBSH(φ)(q) =
∫
R
∂SAS

H(q, x)φ(x)dx.

Therefore, using Lemma 4.3.3 we obtain

∂SBSH(φ)(q) =
√
2BSH(xφ)(q)− qBSH(φ)(q).

Finally, we get

(∂S + q)BSH(φ)(q) =
√
2BSH(xφ)(q), ∀q ∈ H.

As a quick consequence, we have

Corollary 4.3.5. The position operator X on L2
H(R) is equivalent to the

operator
1√
2
(∂S + q) on the space F2,1

Slice(H) via the quaternionic Segal-

Bargmann transform BSH. In other words, for all φ ∈ D(X) we have

X(φ) = (BSH)−1 (∂S + q)√
2

BSH(φ).

On the other hand, we have also the following

Theorem 4.3.6. We denote by Mq : φ 7−→ Mqφ(q) = qφ(q) the creation
operator on F2,1

Slice(H). Then, we have

(BSH)−1MqBSH =
1√
2
(X −D) on D(X) ∩ D(D).

Proof. Let φ ∈ D(X) ∩ D(D). Then, we have

BSH(Dφ)(q) =
∫
R
AS

H(q, x)
d

dx
φ(x)dx

= −
∫
R

d

dx
AS

H(q, x)φ(x)dx.

However, note that for all (q, x) ∈ H× R, we have

d

dx
AS

H(q, x) = (−x+
√
2q)AS

H(q, x).
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4.3. Range of the Schwartz space and some operators

Therefore,

BSH(Dφ)(q) = BSH(xφ)(q)−
√
2qBSH(φ)(q).

Thus, we obtain

MqBSH(φ) = BSH
(

1√
2
(X −D)

)
(φ).

Finally, we just need to apply (BSH)−1 to complete the proof.

Corollary 4.3.7. The position operator X on L2
H(R) is equivalent to the

operator
1√
2
(∂S + q) on the space F2,1

Slice(H) via the quaternionic Segal-

Bargmann transform BSH. In other words, for all φ ∈ D(X) we have

X(φ) = (BSH)−1 (∂S + q)√
2

BSH(φ).

On the other hand, we have also the following

Theorem 4.3.8. We denote by Mq : φ 7−→ Mqφ(q) = qφ(q) the creation
operator on F2,1

Slice(H). Then, we have

(BSH)−1MqBSH =
1√
2
(X −D) on D(X) ∩ D(D).

Proof. Let φ ∈ D(X) ∩ D(D). Then, we have

BSH(Dφ)(q) =
∫
R
AS

H(q, x)
d

dx
φ(x)dx

= −
∫
R

d

dx
AS

H(q, x)φ(x)dx.

However, note that for all (q, x) ∈ H× R, we have

d

dx
AS

H(q, x) = (−x+
√
2q)AS

H(q, x).

Therefore,

BSH(Dφ)(q) = BSH(xφ)(q)−
√
2qBSH(φ)(q).

Thus, we obtain

MqBSH(φ) = BSH
(

1√
2
(X −D)

)
(φ).

Finally, we just need to apply (BSH)−1 to complete the proof.
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transforms

4.4 The 1D quaternion Fourier transform

In this section, we study the one dimensional quaternion Fourier transform
(QFT). Namely, we are considering here the 1D left sided QFT studied in
chapter 3 of the book [25]. In order to have less problems with computa-
tions we add −2π to the exponential. The QFT is different from the one
considered for example in [30, 96, 97]. Firs of all, we are making the inte-
gration over the real line, so we are working with a 1-dimensional Fourier
transform. Whereas, Hitzer and collaborators usually integrate in R2 and
they sometimes consider two roots of the unit. They take into consideration
a definition of quaternion Fourier transform where the signal lies between
two exponential functions. Moreover, we have the possibility to have a kind
of convolution theorem, see Remark (4.4.4). This type of result is harder to
obtain in the theory developed by Hitzer and collaborators.

Definition 4.4.1. The left sided 1D quaternionic Fourier transform of a
quaternion valued signal ψ : R −→ H is defined on L1(R; dx) = L1(R;H)
by

FJ(ψ)(ω) =

∫
R
e−2πJωtψ(t)dt

for a given J ∈ S. Its inverse is defined by

∼
FJ(ϕ)(t) =

∫
R
e2πJωtϕ(ω)dω.

Let I ∈ S be such that J ⊥ I . We can split the signal ψ via symplectic
decomposition into simplex and perplex parts with respect to J such that
we have:

ψ(t) = ψ1(t) + ψ2(t)I

where ψ1(t), ψ2(t) ∈ CI . The left sided 1D QFT of ψ becomes

FJ(ψ)(ω) =

∫
R
e−2πJωtψ1(t)dt+

∫
R
e−2πJωtψ2(t)dtJ

so that
FJ(ψ)(ω) = FJ(ψ1)(ω) + FJ(ψ2)(ω)J.

According to [25], most of the properties may be inherited from the clas-
sical complex case thanks to the equivalence between CJ and the standard
complex plane and the fact that QFT can be decomposed into a sum of
complex subfield functions.
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4.4. The 1D quaternion Fourier transform

Now, we define two fundamental operators for time-frequency analysis.

Translation
τxψ(t) := ψ(t− x) x ∈ R.

Modulation
Mωψ(t) = e2πJωtψ(t), ω ∈ R.

As in the classical case we have a commutative relation between the two
operators.

Lemma 4.4.2. Let ψ be a function in L2(R,H) then we have

τxMωψ(t) = e−2πJωxMωτxψ(t), ω, x ∈ R. (4.11)

Proof. It is just a matter of computations

τxMωψ(t) = Mωψ(t− x) = e2πJω(t−x)ψ(t− x)

= e2πJωte−2πJωxψ(t− x)

= e−2πJωxe2πJωtψ(t− x)

= e−2πJωxMωτxψ(t).

From [25, Table 3.2] we have the following properties

FJ(τxψ) =M−xFJ(ψ), (4.12)

FJ(Mωψ) = τωFJ(ψ). (4.13)

From (4.12) and (4.13) follow easily that

FJ(Mωτxψ) = τωM−xFJ(ψ). (4.14)

Then, we prove a version of the Plancherel theorem for 1D QFT.

Theorem 4.4.3. Let ϕ, ψ ∈ L2(R,H). Then, we have

⟨FJ(ϕ),FJ(ψ)⟩L2(R,H) = ⟨ϕ, ψ⟩L2(R,H).

In particular, for any ϕ ∈ L2(R,H) we have

||FJ(ϕ)||L2(R,H) = ||ϕ||L2(R,H).
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transforms

Proof. Let ϕ, ψ ∈ L2(R,H). By inversion formula for the 1D QFT, see
[25], we have

ϕ(ω) =
∼
FJ(FJ(ϕ))(ω), ∀ω ∈ R.

Thus, direct computations using Fubini’s theorem lead to

⟨ϕ, ψ⟩L2(R,H) =

∫
R
ψ(ω)

(∫
R
e2πIωtFJ(ϕ)(t)dt

)
dω

=

∫
R

(∫
R
e−2πIωtψ(ω)dω

)
FJ(ϕ)(t)dt

=

∫
R
FJ(ψ)(t)FJ(ϕ)(t)dt

= ⟨FJ(ϕ),FJ(ψ)⟩L2(R,H).

As a direct consequence, we have for any ϕ ∈ L2(R,H)

||FJ(ϕ)||2L2(R,H) = ⟨FJ(ϕ),FJ(ϕ)⟩L2(R,H)

= ⟨ϕ, ϕ ⟩L2(R,H)

= ||ϕ||2L2(R,H).

The following remark may be of interest in some other contexts.

Remark 4.4.4. The formal convolution of two given signals ϕ, ψ : R −→
H when it exists is defined by

(ϕ ∗ ψ)(t) :=
∫
R
ϕ(τ)ψ(t− τ)dτ.

In particular, if the window function ϕ is real valued the 1D QFT satisfies
the classical property

FJ(ϕ ∗ ψ) = FJ(ϕ)FJ(ψ).

4.5 Quaternion short time Fourier transform with a Gaussian
window

The idea of the short-time Fourier transform is to obtain information about
local properties of the signal f . In order to achieve this aim the signal
f is restricted to an interval and after its Fourier transform is evaluated.
However, since a sharp cut-off can introduce artificial discontinuities and
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4.5. Quaternion short time Fourier transform with a Gaussian window

can create problems, it is usually chosen a smooth cut-off function φ called
"window function".

The aim of this section is to propose a quaternionic analogue of the
short-time Fourier transform in dimension one with a Gaussian window
function φ(t) = 21/4e−πt

2 . For this, we consider the following formula [92,
Prop. 3.4.1]

Vφf(x, ω) = e−πixωBf(z̄)e
−π|z|2

2 , (4.15)

where the variables (x, ω) ∈ R2 have been converted into a complex vector
z = x + iω, and Bf(z) is the complex version of the Segal-Bargmann
transform according to [92]. Therefore, we want to extend (4.15) to the
quaternionic setting. To this end, we use the quaternionic analogue of the
Segal-Bargmann transform and the slicing representation of the quaternions
q = x+ Jω, where J ∈ S.

If the signal is complex we denote the short-time Fourier transform as
Vφ, while if the signal is H-valued we identify the short-time Fourier trans-
form as Vφ.

Definition 4.5.1. Let f : R → H be a function in L2(R,H). We define
the 1D quaternion short time Fourier transform of f with respect to φ(t) =
21/4e−πt

2 as

Vφf(x, ω) = e−JπxωBSH(f)
(
q̄√
2

)
e−

|q|2π
2 , (4.16)

where q = x+Jω and BSH(f)(q) is the quaternionic Segal-Bargmann trans-
form defined in (4.5).

Using (4.5) with ν = 2π, we can write (4.16) in the following way

Vφf(x, ω) = 2
3
4

∫
R
e
−π
(

q̄2

2
+t2

)
+2πq̄t−Jπxω− |q|2π

2 f(t) dt. (4.17)

From this formula we are able to put in relation the 1D quaternion short-
time Fourier transform and the 1D quaternion Fourier transform defined in
section 3.

Lemma 4.5.2. Let f be a function in L2(R,H) and φ(t) = 21/4e−πt
2
, re-

calling the 1D quaternion Fourier transform we have

Vφf(x, ω) =
√
2FI(f · τxφ)(ω). (4.18)
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Proof. By putting q = x+ Jω in (4.17) we have

Vφf(x, ω) = 2
3
4 e−Jπxωe−

x2π
2 e−

ω2π
2

∫
R
e−πt

2

e−
π
2 (x2−ω2−2xωJ) ·

·e2π(x−Jω)tf(t) dt

= 2
3
4

∫
R
e−πt

2−πx2+2πxte−2πJωtf(t) dt

=
√
2

∫
R
e−2πJωtf(t)2

1
4 e−π(t−x)

2

dt

=
√
2

∫
R
e−2πJωtf(t)φ(t− x) dt =

√
2FI(f · τxφ)(ω).

Now, we prove a formula which relates the 1D quaternion Fourier trans-
form and its signal through the 1D short-time Fourier transform.

Proposition 4.5.3. If φ is a Gaussian function φ(t) = 21/4e−πt
2

and f ∈
L2(R,H) then

Vφf(x, ω) =
√
2e−2πJωxVφFJ(f)(ω,−x). (4.19)

Proof. Recalling the definition of modulation and of inner product onL2(R,H),
by Lemma 4.5.2 we have

Vφf(x, ω) =
√
2

∫
R
e2πJωtφ(t− x)f(t) dt (4.20)

=
√
2

∫
R
Mωτxφ(t)f(t) dt =

√
2⟨f,Mωτxφ⟩.

Using the Plancherel theorem for the 1D quaternion Fourier transform, the
property (4.14) and the fact that FJ(φ) = φ we have

Vφf(x, ω) =
√
2⟨FJ(f),FJ(Mωτxφ)⟩

=
√
2⟨FJ(f), τωM−xFJ(φ)⟩

=
√
2⟨FJ(f), τωM−xφ⟩.

Finally, from (4.11) and (4.20) we get

Vφf(x, ω) =
√
2e−2πJωx⟨FJ(f),M−xτωφ⟩ =

√
2e−2πJωxVφFJ(f)(ω,−x).
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4.5.1 Moyal fromula

Now, we prove the Moyal formula and an isometric relation for the 1D
quaternion short-time Fourier transform. This will be showed in two differ-
ent ways. In the first one we use the properties of the quaternionic Segal-
Bargmann transform, whereas in the second way we use Lemma 4.5.2 and
some basic properties of 1D quaternion Fourier transform.

Proposition 4.5.4. For any f ∈ L2(R,H)

∥Vφf∥L2(R2,H) =
√
2∥f∥L2(R,H). (4.21)

Proof. We use the slicing representation of the quaternions q = x+Jω and
formula (4.16) to get

∥Vφf∥2L2(R,H) =

∫
R2

|Vφf(x, ω)|2 dω dx

=

∫
R
|e−Jπxω|2

∣∣∣∣BSH(f)( q̄√
2

)∣∣∣∣2 e−|q|2π dω dx

=

∫
R

∣∣∣∣BSH(f)( q̄√
2

)∣∣∣∣2 e−|q|2π dω dx.

Now, using the change of variable p = q̄√
2

we have that dA(p) = 1
2
dω dx,

hence by Theorem 4.2.6 we have

∥Vφf∥2L2(R,H) = 2

∫
R2

|BSH(f)(p)|2e−2π|q|2 dA(p)

= 2∥BSH(f)∥2F2,2π
Slice

= 2∥f∥2L2(R,H).

Therefore
∥Vφf∥L2(R,H) =

√
2∥f∥L2(R,H).

Thus, the 1D quaternionic short-time Fourier transform is an isometry
from L2(R,H) into L2(R2,H).

Proposition 4.5.5 (Moyal formula). Let f, g be functions inL2(R,H). Then
we have

⟨Vφf,Vφg⟩L2(R2,H) = 2⟨f, g⟩L2(R,H). (4.22)
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Proof. From (4.16) we get

⟨Vφf,Vφg⟩L2(R2,H) =

∫
R2

Vφg(x, ω)Vφf(x, ω) dω dx

=

∫
R2

e−JπxωBSH(g)
(
q̄√
2

)
e−

|q|2π
2 e−Jπxω ·

·BSH(f)
(
q̄√
2

)
e−

|q|2π
2 dω dx

=

∫
R2

BSH(g)
(
q̄√
2

)
eJπxωe−Jπxω ·

·BSH(f)
(
q̄√
2

)
e−|q|2π dω dx

=

∫
R2

BSH(g)
(
q̄√
2

)
BSH(f)

(
q̄√
2

)
e−|q|2π dω dx.

Using the same change of variables as before p = q̄√
2

and from (4.7) we
obtain

⟨Vφf,Vφg⟩L2(R2,H) = 2

∫
R2

BSH(g)(p)B
S
H(f)(p)e

−2|q|2π dω dx

= 2⟨BSH(f),BSH(g)⟩F2,2π
Slice(H) = 2⟨f, g⟩L2(R,H).

Remark 4.5.6. If we put f =
h2πk (t)

∥h2πk (t)∥22
by Lemma 4.2.4 we have

Vφf(x, ω) = e−Jπxωe−
π
2
|q|2 2

3/4

2kk!
q̄k.

Remark 4.5.7. From (4.18) we can prove (4.22) in a different way. This
proof may be of interest in some other contexts.

Let us assume f, g ∈ L2(R,H) and recall φ(t) = 21/4e−πt
2 , by Lemma

4.5.2 and Plancherel theorem for the 1D quaternion Fourier transform we
have

⟨Vφf,Vφg⟩L2(R2,H) =

∫
R2

Vφg(x, ω)Vφf(x, ω) dω dx

= 2

∫
R2

FI(g · τxφ)(ω)FI(f · τxφ)(ω) dω dx

= 2

∫
R2

g(ω) · τxφ(ω)f(ω) · τxφ(ω) dω dx.
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Now, by Fubini’s theorem and the fact that ∥φ∥22 = 1 we get

⟨Vφf,Vφg⟩L2(R2,H) = 2

∫
R

(∫
R
g(ω) · τxφ(ω)f(ω) · τxφ(ω) dx

)
dω

= 2

∫
R

(∫
R
g(ω)f(ω)φ2(x− ω) dx

)
dω

= 2

∫
R
g(ω)f(ω)

(∫
R
φ2(x− ω) dx

)
dω

= 2

∫
R
g(ω)f(ω)∥φ∥22 dω = 2

∫
R
g(ω)f(ω) dω

= 2⟨f, g⟩L2(R,H).

Hence

⟨Vφf,Vφg⟩L2(R2;H) = 2⟨f, g⟩L2(R,H). (4.23)

If we put f = g in (4.23) we obtain (4.21).

4.5.2 Inversion formula and adjoint of QSTFT

The 1D QSTFT with Gaussian window φ satisfies a reconstruction formula
that we prove in the following.

Theorem 4.5.8. Let f ∈ L2(R,H). Then, we have

f(y) = 2−
1
4

∫
R2

e2πJωyVφf(x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

Proof. For all y ∈ R, we set

g(y) = 2−
1
4

∫
R2

e2πJωyVφf(x, ω)e−π(y−x)
2

dxdω.

Let h ∈ L2(R,H). Fubini’s theorem combined with Moyal formula for
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QSTFT leads to

⟨g, h⟩L2(R,H) =

∫
R
h(y)g(y)dy

= 2−
1
4

∫
R3

h(y)e2πJωyVφf(x, ω)e−π(y−x)
2

dxdωdy

= 2−1
√
2

∫
R2

(∫
R
e−2πJωy2

1
4 e−π(y−x)2h(y)dy

)
Vφf(x, ω)dxdω

= 2−1

∫
R2

Vφh(x, ω)Vφf(x, ω)dxdω

= 2−1⟨Vφf,Vφh⟩L2(R2)

= ⟨f, h⟩L2(R,H).

Hence, we have

f(y) = g(y) = 2−
1
4

∫
R2

e2πJωyVφf(x, ω)e−π(y−x)
2

dxdω.

This ends the proof.

We note that the QSTFT admits a left side inverse that we can compute
as follows

Theorem 4.5.9. Let φ denote the Gaussian window φ(t) = 21/4e−πt
2

and
let us consider the operator Aφ : L2(R2,H) −→ L2(R,H) defined for any
F ∈ L2(R2,H) by

Aφ(F )(y) = 2
3
4

∫
R2

e2πJωyF (x, ω)e−π(y−x)
2

dxdω, ∀y ∈ R.

Then, Aφ is the adjoint of Vφ. Moreover, the following identity holds

V∗
φVφ = 2Id. (4.24)

Proof. Let F ∈ L2(R2,H) and h ∈ L2(R,H). We use some calculations
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similar to the previous result and get

⟨Aφ(F ), h⟩L2(R,H) =

∫
R
h(y)Aφ(F )(y)dy

= 2
3
4

∫
R3

h(y)e2πJωyF (x, ω)e−π(y−x)
2

dxdωdy

=

∫
R2

√
2

(∫
R
e−2πJωy2

1
4 e−π(y−x)2h(y)dy

)
F (x, ω)dxdω

=

∫
R2

Vφh(x, ω)F (x, ω)dxdω

= ⟨F,Vφh⟩L2(R2,H).

In particular, this shows that

A(φ)(F ) = V∗
φ(F ), ∀F ∈ L2(R2,H).

From reconstruction formula we obtain (4.24).

Remark 4.5.10. We note that the identity V∗
φVφ = 2Id provides another

proof for the fact that QSTFT is an isometric operator and the adjoint V∗
φ

defines a left inverse.

4.5.3 The eigenfunctions of the 1D quaternion Fourier transform

Through the 1D QSTFT we can prove in another way that the eigenfunc-
tions of the 1D quaternion Fourier transform are given by the Hermite func-
tions.

Proposition 4.5.11. The Hermite functions h2πk (t) are eigenfunctions of the
1D quaternion Fourier transform :

FJ(h
2π
k )(t) = 2−1/2(−I)kh2πk (t), t ∈ R.

Proof. By the first identity of Lemma 4.2.4 we have

Vφ(h2πk )(x,−ω) = eJπxωBSH(h2πk )

(
q√
2

)
e−

π|q|2
2 (4.25)

= eJπxω21/42k/2(2π)k2−k/2qke−
π|q|2

2

= eJπxω21/4(2π)kqke−
π|q|2

2 .
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Recalling that q = x+ Jω and using (4.19) we obtain

VφFJ(h
2π
k )(x,−ω) = 2−1/2e2πJωxVφh2πk (ω, x)

= 2−1/2e2πJωxe−JπωxBSH(h2πk )

(
ω − Ix√

2

)
e−

|q|2π
2

= 2−1/2eπJωxBSH(h2πk )

(
−Iq√

2

)
e−

|q|2π
2

= 2−1/2eπJωx21/42k/2(2π)k(−I)k2−k/2qke−
|q|2π

2

= 2−1/2(−J)keJπωx21/4(2π)kqke−
|q|2π

2 .

Combining with (4.25) we get

VφFJ(h
2π
k )(x,−ω) = 2−1/2(−I)kVφh2πk (x,−ω).

From (4.24) we know that Vφ is injective, hence we have the thesis.

4.5.4 Reproducing kernel property

The inversion formula gives us the possibility to write the 1D QSTFT us-
ing the reproducing kernel associated to the quaternion Gabor space, intro-
duced in [4], with a Gaussian window that is defined by

GφH := {Vφf, f ∈ L2(R,H)}.

Theorem 4.5.12. Let f be in L2(R,H) and φ(t) = 21/4e−πt
2
. If

Kφ(ω, x;ω
′, x′) =

∫
R
e−2πJω′tφ(t− x′)e−2πJωtφ(t− x) dt,

then Kφ(ω, x;ω
′, x′) is the reproducing kernel of the space GφH, i.e.

Vφf(x′, ω′) =

∫
R2

Kφ(ω, x;ω
′, x′)Vφf(x, ω) dxdω.
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Proof. By Lemma 4.5.2 and the reconstruction formula we have

Vφf(x′, ω′) = 23/4
∫
R
e−2πJω′tf(t)e−π(t−x

′)2 dt

= 23/4
∫
R
e−2πJω′te−π(t−x

′)22−
1
4 ·

·
(∫

R2

e2πJωte−π(t−x)
2Vφf(x, ω) dx dω

)
dt

=
√
2

∫
R3

e−2πI(ω′−ω)te−π(t−x
′)2e−π(t−x)

2 ·

·Vφf(x, ω) dx dω dt.

Using Fubini’s theorem we have

Vφf(x′, ω′) =
√
2

∫
R2

(∫
R
e−2πJ(ω′−ω)te−π(t−x

′)2e−π(t−x)
2

dt

)
·

·Vφf(x, ω) dx dω

=

∫
R2

(∫
R
e−2πJω′t21/4e−π(t−x

′)221/4e−2πJωte−π(t−x)2 dt

)
·

·Vφf(x, ω) dx dω

=

∫
R2

(∫
R
e−2πJω′tφ(t− x′)e−2πJωtφ(t− x) dt

)
·

·Vφf(x, ω) dx dω

=

∫
R2

Kφ(ω, x;ω
′, x′)Vφf(x, ω) dxdω.

4.5.5 Lieb’s uncertainty principle for QSTFT

The QSTFT follows the Lieb’s uncertainty principle as the classical com-
plex case. Indeed, we first study the weak uncertainty principle which is
the subject of this result

Theorem 4.5.13 (Weak uncertainty principle). Let f ∈ L2(R,H) be a unit
vector (i.e ||f || = 1), U an open set of R2 and ε ≥ 0 such that∫

U

|Vφf(x, ω)|2dxdω ≥ 1− ε.

Then, we have

|U | ≥ 1− ε

2
,
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where |U | denotes the Lebesgue measure of U .

Proof. We note that using Definition of QSTFT and Proposition 4.2.3 we
obtain

|Vφf(x, ω)| = |BSHf(q̄/
√
2)|e−

|q|2
2
π

= |BSHf(p)|e−π|p|
2

; p = q̄/
√
2

≤
√
2||f ||L2(R).

Thus, by hypothesis we get

1− ε ≤
∫
U

|Vφf(x, ω)|2dxdω ≤ ||Vφf ||2∞|U | ≤ 2|U |.

Hence, we have

|U | ≥ 1− ε

2
.

Theorem 4.5.14 (Lieb’s inequality). Let f ∈ L2(R,H) and 2 ≤ p < ∞.
Then, we have ∫

R2

|Vφf(x, ω)|pdxdω ≤ 2p+1

p
||f ||pL2(R,H)

Proof. Let I, J ∈ S be such that I is orthogonal to J . Then, for f ∈
L2(R,H), there exist f1, f2 ∈ L2(R,CI) such that

f(t) = f1(t) + f2(t)I, ∀t ∈ R

and for which the classical Lieb’s inequality [110] holds , i.e:∫
R2

|Vφfl(x, ω)|pdxdω ≤ 2

p
||fl||pL2(R,CI)

; l = 1, 2.

In particular, by definition of QSTFT we have

Vφf(x, ω) = Vφf1(x, ω) + Vφf2(x, ω)I, ∀(x, ω) ∈ R2.

Thus,

|Vφf(x, ω)|p ≤ (|Vφf1(x, ω)|+ |Vφf2(x, ω)|)p

≤ 2p−1 (|Vφf1(x, ω)|p + |Vφf2(x, ω)|p) .
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We use the classical Lieb’s inequality on each component combined with
the fact that ||fl||p ≤ ||f ||p for l = 1, 2 and get∫

R2

|Vφf(x, ω)|pdxdω ≤ 2p

p

(
||f1||pL2(R) + ||f2||pL2(R)

)
≤ 2p+1

p
||f ||pL2(R,H).

This ends the proof.

The next result improves the weak uncertainty principle in the sense that
it gives a best sharper estimate for |U |.

Theorem 4.5.15. Let f ∈ L2(R,H) be a unit vector, U an open set of R2

and ε ≥ 0 such that ∫
U

|Vφf(x, ω)|2dxdω ≥ 1− ε.

Then, we have
|U | ≥ cp(1− ε)

p
p−2 ,

where |U | denotes the Lebesgue measure of U and cp =
(

2p+1

p

)− 2
p−2

.

Proof. Let f ∈ L2(R,H) be such that ||f ||L2(R,H) = 1. We first apply

Holder inequality with exponents q =
p

2
and q′ =

p

p− 2
. Then, using

Lieb’s inequality for QSTFT we get∫
U

|Vφf(x, ω)|2dxdω =

∫
R2

|Vφf(x, ω)|2χU
(x, ω)dxdω

≤
(∫

R2

|Vφf(x, ω)|pdxdω
) 2

p

|U |
p−2
p

≤
(
2p+1

p

) 2
p

|U |
p−2
p .

Hence, by hypothesis we obtain

|U | ≥ cp(1− ε)
p

p−2

where cp =
(

2p+1

p

)− 2
p−2

.
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CHAPTER5
On the polyanalytic short-time Fourier

transform in the quaternionic setting

5.1 Motivation

In this chapter we build a short-time Fourier transform for more generic
window functions: the weighted Hermite functions, which are defined as
follows

ψνn(x) :=
(−1)ne

ν
2
x2 d

n

dxn

(
e−νx

2
)

2n/2νn/2(n!)1/2π1/4ν−1/4
. (5.1)

In our case we will consider the parameter ν = 2π. We note that for n = 0
we have ψ0(t) = 21/4e−πt

2 , which is exactly the window function that we
have took into accaount in the previous chapther. Therefore, this chapther
can be considered a generalization of the previous one.
The study of the QSTFT with respect to the weighted Hermite functions
as windows is related to the theory of slice polyanalytic functions of a
quaternionic variable. Recently, this topic has been intensively investigated,
see [6,7,16–18]. We will recall some basic notions in the next section. The
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main idea of the results of this chapter is to fix the following property

Vψnφ(x, ω) = e−πixωGn+1φ(z̄)e−
π|z|2

2 , (5.2)

where Vψn is the complex short-time Fourier transform with respect to the
weighted Hermite functions ψn (see [2, Prop.1]) and Gn+1φ denotes the
complex true polyanalytic Segal-Bargmann transform. We extend (5.2) in
the quaternionic setting. To reach this aim we need the slice version of the
quaternions.
It is possible to introduce a short-time Fourier transform of a vector-valued
function φ⃗ = (φ0, ..., φn)

Vψ⃗φ⃗(x, ω) = e−πixωGφ⃗(z̄)e−
π|z|2

2 ,

where Vψ⃗φ⃗ denotes the complex short-time Fourier transform with respect
to the vector-valued window ψ⃗ = (ψ0, ..., ψn) (see [4, Formula 20]), and
Gφ⃗ is the complex polyanalytic Bargmann transform (full-poly Bargmann).
Also in this case we extend the formula to the quaternions.
Based on the properties of the true quaternionic polyanalytic Bargmann
transform and the full-poly one (see also [24]) we prove the main results of
the QSTFT.

5.2 Preliminaries on slice polyanalytic functions

In this section we recall briefly the main notations and concepts of the the-
ory of slice polyanalytic functions. This extends to higher order the theory
of slice hyperholomoprhic functions summarized in chapter 2.

Example The function F (q) = 1 − q̄qe2, for q = x + Jy ∈ H is not
slice hyperholomorphic, indeed(

∂

∂x
+ J

∂

∂y

)
F (q) = −(x+ Jy)e2, ∀J ∈ S

However, (
∂

∂x
+ J

∂

∂y

)2

F (q) = 0, ∀J ∈ S.

Then we say that the function F is slice polyanalytic of order 2 on H.

Definition 5.2.1 (Slice polyanalytic functions). Let n ∈ N and denote by
Cn(U) the set of continuously differentiable functions with all their deriva-
tives up to order n on an axially symmetric open set U ⊆ H. We set
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U := {(x, y) ∈ R2 : x + Jy ⊂ U}. A function f : U → H is called left
slice function, if it is of the form

f(q) = α(x, y) + Jβ(x, y) for q = x+ Jy ∈ U

with the two functions α, β : U → H that satisfy the compatibility condi-
tions α(x,−y) = α(x, y), β(x,−y) = −β(x, y). If in addition α and β are
in Cn(U) and satisfy the poly Cauchy-Riemann equations of order n ∈ N

1

2n
(∂x + J∂y)

n(α(x, y) + Jβ(x, y)) = 0, for all J ∈ S, (5.3)

Then the function f is called left slice polyanalytic function of order M ∈
N. The set of such kind of functions will be denoted by SPn(H).

The definition is easily adapted in the case of right slice polyanalytic
functions. Moreover, if we consider n = 1 in the previous definition we get
the set of slice hyperholomorphic functions.

Now, we list a series of basic results about slice polyanalytic functions,
see [16, 17], that will be useful in the sequel.

Theorem 5.2.2 (Representation formula). Let f be a slice polyanalytic
function of order n+1 defined on an axially symmetric slice domain Ω ⊂ H.
Let I ∈ S, then for any q = x+ Jy ∈ Ω the following equality holds

f(q) =
1− JI

2
f(x+ Iy) +

1 + JI

2
f(x− Iy).

Lemma 5.2.3 (Splitting Lemma). Let f be a slice polyanalytic function of
order n on a domain Ω ⊆ H. Then, for any imaginary units I and J with
I ⊥ J there exist F,G : ΩJ −→ CJ polyanalytic functions of order n such
that for all z = x+ Jy ∈ ΩJ , we have

fJ(z) = F (z) +G(z)I.

Remark 5.2.4. For n = 1 in Lemma 5.2.3 we obtain the classic Splitting
Lemma (see [87, Lemma 1.3]).

Proposition 5.2.5. (Poly-decomposition) A function f : Ω → H defined
on an axially symmetric slice domain is slice polyanalytic of order n if and
only if there exist unique slice regular functions f0, ..., fn−1 on Ω such that
we have the following decomposition

f(q) :=
n−1∑
k=0

q̄kfk(q); ∀q ∈ Ω.
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Proposition 5.2.6. (Identity Principle) Let f and g be two slice polyana-
lytic functions of order n on a slice domain Ω ⊂ H. If, for some J ∈ S, f
and g coincide on U a subdomain of ΩJ , then f ≡ g everywhere in Ω.

Remark 5.2.7. For n = 1 we obtain the classical Identity Principle.

The Leibniz rule will be useful for our calculations in the next sec-
tion. The proof is based on direct computations using the definition of
slice derivative, see (3.1.10).

Proposition 5.2.8. Let f : H → H be an intrinsic function and g : H → H
be a slice regular function. Then, we have

∂s(fg) = f(∂sg) + (∂sf)g. (5.4)

It is possible to generalize the previous result by applying more time the
slice derivatives.

Proposition 5.2.9. Let f : H → H be an intrinsic function and g : H → H
be a slice regular function. Then, for any k ∈ N, we have

∂ks (fg) =
k∑

m=0

(
k

m

)
(∂ms f)(∂

k−m
s g). (5.5)

In [17] the authors introduced the quaternionic polyanalytic Fock space
defined for a given J ∈ S and n ≥ 1 to be

F̃n+1
J (H) := {f ∈ SPn+1(H) :

∫
CJ

|fJ(q)|2e−2π|q|2 dλJ(q) <∞}, (5.6)

where dλJ(q) is the Lebesgue measure on the slice CJ . It is given by
dλJ(q) = dxdy for q = x + Jy. Moreover, the space is endowed with
the following inner product

⟨f, g⟩F̃n+1
J (H) =

∫
CJ

gJ(q)fJ(q)e
−2π|q|2 dλJ(q).

In [17, Prop. 4.1] and [17, Prop. 4.2] it is showed that the polyanalytic
Fock space is a quaternionic reproducing kernel Hilbert space which does
not depend on the choice of J ∈ S. Thus, from now we will denote the
quaternionic polyanalytic Fock space by F̃n+1

Slice(H).
Now, we give the definition of the quaternionic true polyanalytic Fock
space.
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Definition 5.2.10. Let I ∈ S. A slice function f : H → H belongs to the
quaternionic true polyanalytic Fock space Fn

T (H), if and only if

i)
∫
CJ

|fJ(q)|2e−2π|q|2 dλJ(q) <∞.

ii) There exists a slice regular function H such that

f(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns (e
−2π|q|2H(q)).

Remark 5.2.11. By using similar arguments used in [17, Prop. 4.2] and
[15, 17, 76] one can show that the Definition 5.2.10 do not depend on the
choice of J ∈ S.

We observe that for n = 0 the two different Fock spaces are the same.

5.3 Polyanalytic Bargmann transform

In this section we show the relation between the quaternionic Fock space
and the quaternionic true polyanalytic Fock space for very n ≥ 0. In order
to prove this we show two preliminary results.

Lemma 5.3.1. Let k ≥ 1. Then, for all q ∈ H we have

∂ks e
−2π|q|2 = (−2π)kq̄ke−2π|q|2 . (5.7)

Proof. We prove the formula by induction. Let us start with k = 1, we
observe that

e−2π|q|2 = e−2πqq̄ =
∞∑
n=0

(−2π)n

n!
qnq̄n.

Now, we evaluate the slice derivative and get

∂se
−2π|q|2=

∞∑
n=1

(−2π)n

n!
nqn−1q̄n

=
∞∑
h=0

(−2π)h+1

(h+ 1)!
(h+ 1)qhq̄h+1

= −2π

(
∞∑
h=0

(−2π)h

h!
qhq̄h

)
q̄

= −2πe−2π|q|2 q̄.
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Let us assume that the formula holds for k. We have to prove that it holds
for k + 1

∂k+1
s e−2π|q|2= ∂s(∂

k
s e

−2π|q|2)

= (−2π)kq̄k∂se
−2π|q|2

= (−2π)k+1q̄k+1e−2π|q|2 .

Remark 5.3.2. We use similar arguments to justify that for any k ≥ 1, we
have

∂J
k
e−2π|q|2 = (−2π)kqke−2π|q|2 . (5.8)

Proposition 5.3.3. Let g be a slice regular function on H. We consider the
following function

u(q) =
n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|q|

2

∂ks (e
−2π|q|2g(q)).

Then u is a slice polyanalytic function of order n+ 1 on H.

Proof. By the generalized Leibniz formula (5.5) we have

u(q)=
n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|q|

2

∂ks (e
−2π|q|2g(q))

=
n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|q|

2
k∑

m=0

(
k

m

)
∂ms e

−2π|q|2∂k−ms g(q)

:=
n∑
k=0

ckgk(q), (5.9)

where ck := (−1)k
√

1
(2π)kk!

and g
k
(q) := e2π|q|

2∑k
m=0

(
k
m

)
∂ms e

−2π|q|2∂k−ms g(q).
By Lemma 5.3.1 we get

g
k
(q)= e2π|q|

2
k∑

m=0

(
k

m

)
(−2π)mq̄me−2π|q|2∂k−ms g(q)

=
k∑

m=0

(
k

m

)
(−2π)mq̄m∂k−ms g(q)

:=
k∑

m=0

q̄mβm(q),
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5.3. Polyanalytic Bargmann transform

where βm(q) =
(
k
m

)
(−2π)m∂k−ms g(q).

Since g is a slice regular function and the iteration of slice derivatives is
slice regular too, we get that βm is slice regular. This implies by Proposition
5.2.5 that g

k
is a slice polyanalytic function of order k+1. Finally by (5.9)

we get that u is a slice polyanalytic function of order n+ 1.

For our future purpose we recall the so-called quaternionic Hermite
polynomials (for more details see [80, 132]).

H2π
m,p(q, q̄) := (−1)m+pe2π|q|

2

∂ps∂J
m
e−2π|q|2 , m, p ∈ N. (5.10)

Remark 5.3.4. Using Remark 5.3.2 it is possible to write the quaternionic
Hermite polynomials in another way:

H2π
m,p(q, q̄)= (−1)m+pe2π|q|

2

∂ps [(−2π)mqme−2π|q|2 ]

= (−1)m+pe2π|q|
2

(−2π)m∂ps (q
me−2π|q|2)

= (2π)m(−1)pe2π|q|
2

∂ps (q
me−2π|q|2).

Therefore

H2π
m,p(q, q̄) = (2π)m(−1)pe2π|q|

2

∂ps (q
me−2π|q|2). (5.11)

The following orthogonality relation holds for the quaternionic Hermite
polynomials (for the proof see the Appendix A (Thm. 14.0.2))∫

CJ

H2π
m,p(q, q̄)H

2π
m′,p′(q, q̄)e

−2π|q|2 dλJ(q) =
m!p!(2π)p+m

2
δm,m′δp,p′ .

(5.12)

In the next result we will show that two different quaternionic true poly-
analytic Fock spaces are orthogonal to each other.

Lemma 5.3.5. Let f ∈ F j
T (H) and g ∈ Fm

T (H) with j ̸= m. Then we have

⟨f, g⟩F̃n+1
Slice(H) = 0.

Proof. By Definition 5.2.10 there exist two slice regular functions H and L
such that

f(q) = (−1)j

√
1

(2π)jj!
e2π|q|

2

∂js(e
−2π|q|2H(q))

and

g(q) = (−1)m

√
1

(2π)mm!
e2π|q|

2

∂ms (e
−2π|q|2L(q)).
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Thus, we can use the series expansion theorem for slice regular functions
to write

H(q) =
∞∑
k=0

qkαk and L(q) =
∞∑
p=0

qpβp, {αk}k≥0, {βp}p≥0 ⊂ H.

Therefore, using the quaternionic Hermite polynomials and developing
a bit the calculations we easily get that

f(q) =

√
1

(2π)jj!

∞∑
k=0

H2π
k,j(q, q̄)

(2π)k
αk

and

g(q) =

√
1

(2π)mm!

∞∑
p=0

H2π
p,m(q, q̄)

(2π)p
βp.

Hence, using the orthogonality of the quaternionic Hermite polynomials
(5.12) combined with the condition j ̸= m we obtain

⟨f, g⟩F̃n+1
Slice(H) =

∫
CJ

g(q)f(q)e−2π|q|2dλJ(q)

=

√
1

(2π)jj!

√
1

(2π)mm!

∞∑
k,p=0

βk
(2π)k+p

·

·
∫
CJ

(
H2π
p,m(q, q̄)H

2π
k,j(q, q̄)e

−2π|q|2dλJ(q)
)
αp

=0.

Now, we are ready to prove the relation between the quaternionic poly-
analytic Fock space (see (5.6)) and the quaternionic true polyanalytic Fock
space (see Definition 5.2.10).

Theorem 5.3.6. The quaternionic polyanalytic Fock space F̃n+1
Slice(H) is the

direct sum of true polyanalytic Fock spaces F j
T (H), j = 0, ..., n, i.e.

F̃n+1
Slice(H) =

n⊕
j=0

F j
T (H). (5.13)
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Proof. We prove the equality by double inclusion. Let f ∈ F̃n+1
Slice(H). Let

J ∈ S. We choose I ∈ S be such that I ⊥ J . Since f , in particular, is slice
polyanalytic of order n+1 by the Splitting Lemma (see Lemma 5.2.3) there
exist F,G : CJ → CJ polyanalytic functions of order n+1 in the complex
polyanalytic Fock space F̃n+1(CJ) (see [4]), such that

fJ(z) = F (z) +G(z)I.

By [21, 135] we know that

F̃n+1(CJ) =
n⊕
j=0

F j
T (CJ).

Therefore there exist unique fk, pk ∈ F j
T (CJ) such that

F (z) =
n∑
k=0

fk(z),

G(z) =
n∑
k=0

pk(z).

By definition of the complex true polyanalytic Fock space we have that both
fk and pk satisfy the following integrability conditions∫

CJ

|fk(z)|2e−2π|z|2dλJ(z) <∞, (5.14)

∫
CJ

|pk(z)|2e−2π|z|2dλJ(z) <∞. (5.15)

Moreover, they can be written as

fk(z) = (−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz (e
−2π|z|2sk(z)), (5.16)

pk(z) = (−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz (e
−2π|z|2hk(z)), (5.17)
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where sk, hk are entire functions. Thus, we have

fJ(z)=
n∑
k=0

(fk(z) + pk(z)I)

=
n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz

(
e−2π|z|2(sk(z) + hk(z)I)

)
:=

n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz (e
−2π|z|2g(z)). (5.18)

By hypothesis we know that f is a slice polyanalytic function of order n+1.
Moreover, by Proposition 5.3.3 we know that the following function

u(q) =
n∑
k=0

(−1)k

√
1

(2π)kk!
e2π|q|

2

∂ks (e
−2π|q|2g(q))

is slice polyanalytic of order n+1. Since the functions f and u coincide on
the slice CJ , by the Identity Principle (see Proposition 5.2.6) we have that
f(q) = u(q). Now, we call

uk(q) := (−1)k

√
1

(2π)kk!
e2π|q|

2

∂ks (e
−2π|q|2g(q)), 0 ≤ k ≤ n.

In order to finish this first part we have to prove∫
CJ

|uk,I(q)|2e−2π|q|2dλJ(q) <∞.

Since gJ(z) = sk(z) + hk(z)I , by (5.16) and (5.17) we have

uk,I(z) = (−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz (e
−2π|z|2sk(z))

+(−1)k

√
1

(2π)kk!
e2π|z|

2

∂kz (e
−2π|z|2hk(z))I

= fk(z) + pk(z)I.

Thus by (5.14) and (5.15) we get∫
CJ

|uk,J(q)|2e−2π|q|2dλJ(q) =

∫
CJ

|fk,J(z)|2e−2π|z|2dλJ(z)

+

∫
CJ

|pk,J(z)|2e−2π|z|2dλJ(z) <∞.
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Now, we move on the other inclusion. Let f ∈
⊕n

j=0F
j
T (H). This means

that there exist unique functions fk ∈ F j
T (H), k = 0, ..., n, such that

f(q) =
n∑
k=0

fk(q). (5.19)

By definition of quaternionic true polyanalytic Fock space we have that

fk(q) = (−1)k

√
1

(2π)kk!
e2π|q|

2

∂ks

(
e−2π|q|2H(q)

)
,

where H is a slice regular function. Thus, by Proposition 5.3.3 f is a slice
polyanalytic function of order n+ 1. Finally, we have to prove that∫

CJ

|fJ(q)|2e−2π|q|2 dλJ(q) <∞.

By equality (5.19) and the triangle inequality we have that

|fJ(q)| ≤
n∑
k=0

|fk,J(q)|.

Therefore,

|fJ(q)|2 ≤

(
n∑
k=0

|fk,J(q)|

)2

≤ (n+ 1)
n∑
k=0

|fk,J(q)|2.

Now we multiply by e−2π|q|2 and integrate.∫
CJ

|fJ(q)|2e−2π|q|2 dλJ(q) ≤ (n+ 1)

∫
CJ

n∑
k=0

|fk,J(q)|2e−2π|q|2 dλJ(q)

≤ (n+ 1)

[∫
CJ

|f1,I(q)|2e−2π|q|2 dλJ(q) + ...+ |fn,I(q)|2e−2π|q|2 dλJ(q)

]
<∞.

The previous conclusion holds because fk ∈ F j
T (H), for k = 0, ..., n, by

hypothesis.
The sum in formula 5.13 is a direct sum. Indeed, if we consider g ∈
F i
T (H) ∩ F j

T (H), with i ̸= j, by Lemma 5.3.5 we get that

⟨g, g⟩F̃n+1
Slice

= 0.
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Since F̃n+1
Slice is a quaternionic Hilbert space we get that g = 0. We have

proved that F i
T (H) ∩ F j

T (H) = {0}. Finally, by Lemma 5.3.5 we get that
the direct sum in formula (5.13) is orthogonal.

Remark 5.3.7. A similar result was proved in [24, Thm. 3.4] following a
different method.

Now, we give the definition of the true quaternionic polyanalytic Bargmann
transform for φ ∈ L2(R,H) (inspired from [84])

Bn+1φ(q) := (−1)n

√
1

(2π)nn!

n∑
j=0

(
n

j

)
(−2πq̄)j∂n−js Bφ(q), (5.20)

where Bφ(q) is the quaternionic analogue of the Segal-Bargmann transform
(see (4.5) with ν = 2π). Using the Leibniz rule and Lemma 5.3.1 we get
the following definition.

Definition 5.3.8. The true quaternionic polyanalytic Bargmann transform
of order n+ 1 of a function φ ∈ L2(R,H) is defined by the formula

Bn+1φ(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns [e
−2π|q|2Bφ(q)]. (5.21)

Remark 5.3.9. For n = 0 we obtain the quaternionic Segal-Bargmann
transform B1φ(q) = Bφ(q).

Theorem 5.3.10. The true quaternionic polyanalytic Bargmann transform
Bn+1 : L2(R,H) → Fn

T (H) is an isometric isomorphism.

Proof. Firstly, we remark that by Theorem 5.13 the norm of the true quater-
nionic polyanalytic Fock space Fn

T (H) is induced by the norm of the space
F̃n+1
Slice(H). Thus we get

∥Bn+1(φ)∥Fn
T (H) = ∥Bn+1(φ)∥F̃n+1

Slice(H).

Therefore, we have to prove that

∥Bn+1(φ)∥F̃n+1
Slice(H) = ∥φ∥L2(R,H). (5.22)

Let φ ∈ L2(R,H). We expand it in the following way

φ(x) =
∞∑
k=0

ψ2π
k (x)αk,
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where ψ2π
k (x) are the normalized weighted Hermite functions (see (5.1))

and {αk}k∈N ⊂ H. By Lemma 4.2.4 we have

Bφ(q)=
∞∑
k=0

B
(
ψ2π
k (x)

)
αk

=
∞∑
k=0

21/42k/2(2π)kqk

2k/2(2π)k/2
√
k!2−1/4

αk

=
√
2

∞∑
k=0

(2π)k/2√
k!

qkαk. (5.23)

Now, we insert this in (5.21) and using (5.11) we obtain

Bn+1φ(q)=
√
2

∞∑
k=0

(−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns

[
e−2π|q|2 (2π)

k/2

√
k!

qk
]
αk

=
√
2

√
1

(2π)nn!

∞∑
k=0

(2π)k/2√
k!

(−1)ne2π|q|
2

∂ns

[
e−2π|q|2qk

]
αk

=
√
2

√
1

(2π)nn!

∞∑
k=0

1√
k!(2π)k/2

(−1)n(2π)ke2π|q|
2

∂ns

[
e−2π|q|2qk

]
αk

=
√
2

√
1

(2π)nn!

∞∑
k=0

1√
k!(2π)k/2

H2π
k,n(q, q̄)αk.

Therefore we get

Bn+1φ(q) =
√
2

√
1

(2π)nn!

∞∑
k=0

1√
k!(2π)k/2

H2π
k,n(q, q̄)αk. (5.24)
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Now, we evaluate the F̃n+1
Slice(H) norm of Bn+1φ.

∥Bn+1φ(q)∥2F̃n+1
Slice(H)

=
2

n!(2π)n

∫
CJ

(
∞∑
k=0

1√
k!(2π)k/2

αkH2π
k,n(q, q̄)

)
·

·

(
∞∑
ℓ=0

1√
ℓ!(2π)ℓ/2

H2π
ℓ,n(q, q̄)αk

)
e−2π|q|2 dλJ(q)

=
2

n!(2π)n

∞∑
k,ℓ=0

1√
k!(2π)k/2

1√
ℓ!(2π)ℓ/2

·

·αk
(∫

CJ

H2π
k,n(q, q̄)H

2π
ℓ,n(q, q̄)e

−2π|q|2 dλJ(q)

)
αk.

Due to the orthogonality relation of the quaternionic Hermite polynomials
(5.12) we obtain

∥Bn+1φ(q)∥2F̃n+1
Slice(H)

=
2

n!(2π)n

∞∑
k=0

1

k!(2π)k
αk

(∫
CJ

H2π
k,n(q, q̄)H

2π
k,n(q, q̄)

·e−2π|q|2 dλJ(q)αk

)
=

2

n!(2π)n

∞∑
k=0

1

k!(2π)k
k!n!(2π)k+n

1

2
|αk|2 =

∞∑
k=0

|αk|2.

Thus we have

∥Bn+1φ(q)∥2F̃n+1
Slice(H)

=
∞∑
k=0

|αk|2. (5.25)

On the other hand

∥φ∥2L2(R,H) =

∫
R

(
∞∑
k=0

αkψ2π
k (x)

)(
∞∑
k=0

ψ2π
k (x)αk

)
dx

=
∞∑
k=0

αk

(∫
R
ψ2π
k (x)ψ2π

k (x) dx

)
αk

=
∞∑
k=0

|αk|2.

Therefore we get

∥φ∥2L2(R,H) =
∞∑
k=0

|αk|2. (5.26)
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Since (5.25) and (5.26) are equal we obtain (5.22). Finally, we have to
prove that Bn+1 is surjective. This means that for a function h ∈ Fn

T (H)
we have to find a function ψ ∈ L2(R,H) such that

Bn+1ψ(q) = h(q).

By the definition of the quaternionic true polyanalytic Fock space Fn
T (H)

(see Definition 5.2.10) we know that there exists a slice regular function H
such that

h(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns (e
−2π|q|2H(q)).

From the Splitting Lemma (see Remark 5.2.4) for slice regular functions
we can write H on the slice CJ as

HI(z) = F (z) +G(z)i, z = x+ jy ∈ CJ ,

where F (z) and G(z) are holomorphic functions. Thus

hI(z)= (−1)n

√
1

(2π)nn!
e2π|z|

2

∂nz

(
e−2π|z|2(F (z) +G(z)I)

)
= (−1)n

√
1

(2π)nn!
e2π|z|

2

∂nz

(
e−2π|z|2F (z)

)
+(−1)n

√
1

(2π)nn!
e2π|z|

2

∂nz

(
e−2π|z|2G(z)

)
I

:=P (z) +Q(z)I.

By hypothesis h ∈ Fn
T (H), this implies that∫
CJ

|P (z)|2e−2π|z|2dλJ(z) <∞,

and ∫
CJ

|Q(z)|2e−2π|z|2dλJ(z) <∞.

Moreover, since the functions F and G are holomorphic we obtain that
P (z) and Q(z) belong to the space Fn

T (CJ). Now, since the complex poly-
analytic Bargmann Bn+1

C is an isometric isomorphism from L2(R,CJ) →
Fn
T (CJ) (see [2, Thm. 1]), and in particular is surjective, we can find
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two functions ψ1(s) and ψ2(s), with s ∈ R, which belong to the space
L2(R,CJ) such that

Bn+1
CJ

ψ1(z) = P (z), Bn+1
CJ

ψ2(z) = Q(z).

Hence

hJ(z)= P (z) +Q(z)I = Bn+1
CJ

ψ1(z) +Bn+1
CJ

ψ2(z)I =

= Bn+1
CJ

(ψ1(s) + ψ2(s)I) := Bn+1
CJ

ψI(z).

Finally, we get thesis by the classical Identity Principle, see Remark 5.2.7.

Now, we give the proof of the following corollary for the sake of com-
pleteness.

Corollary 5.3.11. Let φ, ϕ ∈ L2(R,H). Then

⟨Bn+1(φ), Bn+1(ϕ)⟩Fn
T (H) = ⟨φ, ϕ⟩L2(R,H).

Proof. It is known that any φ, ϕ ∈ L2(R,H) can be expanded as

φ(x) =
∞∑
k=0

ψ2π
k (x)αk,

ϕ(x) =
∞∑
k=0

ψ2π
k (x)βk,

where {αk}k≥0, {βk}k≥0 ⊂ H. Since ψ2π
k (x) are normalized Hermite func-

tions we have

⟨φ, ϕ⟩L2(R,H) =
∞∑
k=0

βkαk. (5.27)

On the other hand, by (5.24) we have

Bn+1(φ)(q) =
√
2

√
1

(2π)nn!

∞∑
k=0

1√
k!(2π)k/2

H2π
k,n(q, q̄)αk, (5.28)

Bn+1(ϕ)(q) =
√
2

√
1

(2π)nn!

∞∑
ℓ=0

1√
ℓ!(2π)ℓ/2

H2π
ℓ,n(q, q̄)βk. (5.29)
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Now, we put together (5.28) and (5.29) and by the orthogonality relation of
the quaternionic Hermite polynomials (5.12) we get

⟨Bn+1(φ), Bn+1(ϕ)⟩Fn
T (H) =

∫
CJ

Bn+1(ϕ)(q)Bn+1(φ)(q)e−2π|q|2 dλJ(q)

=
2

n!(2π)n

∞∑
k=0

1

k!(2π)k
βk

(∫
CJ

H2π
k,n(q, q̄)H

2π
k,n(q, q̄)

·e−2π|q|2 dλJ(q)
)
αk

=
∞∑
k=0

βkαk.

Therefore

⟨Bn+1(φ), Bn+1(ϕ)⟩Fn
T (H) =

∞∑
k=0

βkαk. (5.30)

ince (5.27) and (5.30) are equal we obtain the thesis.

This notation will be very useful in the sequel. A function φ⃗ = (φ0, ..., φn)
is in the space L2(R,Hn+1) if

||φ⃗||2L2(R,Hn+1) :=
n∑
j=0

||φj||2L2(R,H) <∞. (5.31)

Moreover, it is also possible to consider an inner product for vector-valued
functions f⃗ = (f0, ..., fn) and g⃗ = (g0, ..., gn) as

⟨f⃗ , g⃗⟩L2(R2,Hn+1) =
n∑
j=0

⟨fj, gj⟩L2(R2,H). (5.32)

See ( [1]) for more details.
Now, we define the quaternionic full-polyanalytic Bargmann transform.

Definition 5.3.12. Let φ⃗ = (φ0, ..., φn) be a vector-valued function in
L2(R,Hn+1). The quaternionic full-polyanalytic Bargmann transform is
defined as

Bφ⃗(q) =
n∑
j=0

Bj+1φj(q), (5.33)

where Bj+1φj(q) is the true quaternionic polyanalytic Bargmann trans-
form, defined in (5.21).
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Remark 5.3.13. For n = 0 in (5.33) we obtain the quaternionic Segal-
Bargmann transform.

Theorem 5.3.14. The quaternionic full-polyanalytic Bargmann transform
B : L2(R,Hn+1) → F̃n+1

Slice(H) is an isometric isomorphism.

Proof. Let φ⃗ = (φ0, ..., φn) be a function in L2(R,Hn+1) such that each
component belongs to L2(R,H). Then, we have

||Bφ⃗(q)||2F̃n+1
Slice(H)

=

∫
CJ

Bφ⃗(q)Bφ⃗(q)e−2π|q|2 dλJ(q) =

=
n∑

j,m=0

∫
CJ

Bj+1(φj)(q)B
m+1(φm)(q)e

−2π|q|2dλJ(q).

From Lemma 5.3.5 everything is zero when j ̸= m, so we focus only on
the case j = m. Then, by Theorem 5.3.10 we obtain

||Bφ⃗(q)||2F̃n+1
Slice(H)

=
n∑
j=0

∥Bj+1φj∥2Fn
T (H) =

n∑
j=0

||φj||2L2(R,H) = ||φ⃗||2L2(R,Hn+1).

Finally, the quaternionic full-polyanalytic Bargmann transform
B : L2(R,Hn+1) −→ F̃n+1

Slice(H) is surjective because is the sum of true
quaternionic polyanalytic Bargmann transforms, which are surjective (see
Theorem 5.3.10).

5.4 Reproducing kernel of the true polyanalytic Fock space

In this section we give an explicit expression of the reproducing kernel of
the quaternionic true polyanalytic Fock space. It is obtained by extending
suitably the kernel of the complex case, see [2]. In order to prove our result
we follow similar arguments of [46]. Before we need the following easy
result, see [6].

Lemma 5.4.1. If f ∈ SPn(H) and g ∈ SPm(H), then we have

f ∗ g ∈ SPn+m−1(H).

In the following result we use this notation

(g)k∗ = g ∗ ... ∗ g︸ ︷︷ ︸
k− times

.
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5.4. Reproducing kernel of the true polyanalytic Fock space

Proposition 5.4.2. The reproducing kernel of the quaternionic true poly
Fock space Fn

T (H) is given by

Kn+1(q, r) = 2e∗(2πqr)∗

(
n∑
k=0

(−1)k
(

n

n− k

)
1

k!
(2π(q̄q − qr̄ − q̄r + r̄r))k∗

)
.

Proof. Let us start by proving that Kn+1(q, r) is a slice polyanalytic func-
tion of order n+ 1 with respct to the variable q.
We set

φn+1(q, .) :=
n∑
k=0

(−1)k
(

n

n− k

)
1

k!
(2π(q̄q − qr̄ − q̄r + r̄r))k∗.

Now, we know that the function q 7−→ 2e∗(2πqr) is slice regular on H
with respect to the variable q. Moreover, φn+1(q, r) is a slice polyanalytic
function of order n + 1 on H with respect to q, by Remark (5.4.1). Thus,
the function Kn+1(q, r) is a slice polyanalytic function of order n+1 on H
with respect to the variable q. Now, by Theorem 5.2.2 for q = x + Iy we
can write

Kn+1(q, r) =
(1− JI)

2
KCJ
n+1(x+ yI, r) +

(1 + JI)

2
KCJ
n+1(x− yI, r),

where KCJ
n+1 is the reproducing kernel of the complex true polyanalytic

Fock space. From this formula it is clear that Kn+1(q, r) ∈ Fn
T (H). Now,

by applying another time Theorem 5.2.2 we obtain

⟨f(.), Kn+1(q, .)⟩F̃n+1
Slice(H) =

∫
CJ

Kn+1(q, r)f(q)dλJ(q)

=
(1− JI)

2

∫
CJ

KCJ
n+1(x+ yI, r)f(q)dλJ(q) +

+
(1 + JI)

2

∫
CJ

KCJ
n+1(x− yI, r)f(q)dλJ(q)

=
(1− JI)

2
f(x+ Iy) +

(1 + JI)

2
f(x− Iy)

= f(q).

This ends the proof.

Remark 5.4.3. If n = 0 in Proposition 5.4.2 we obtain (4.4) with ν = 2π.

Now, we are ready to show an estimate for the quaternionic-full polyan-
alytic Bargmann transform and the true quaternionic one.
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Proposition 5.4.4. Let φ⃗ = (φ0, ..., φn) be a vector valued function in
L2(R,Hn+1). For every q ∈ H and every φ⃗ ∈ L2(R,Hn+1), we have

|Bφ⃗(q)| ≤
√
2(n+ 1)eπ|q|

2||φ⃗||L2(R,Hn+1).

Proof. From [17, Prop 4.5] we know that for any f ∈ F̃n+1
Slice(H) and q ∈ H

we have

|f(q)| ≤
√

2(n+ 1)eπ|q|
2||f ||F̃n+1

Slice(H).

Now, we specify this inequality for the quaternionic full-polyanalytic
Bargmann transform by setting f(q) := Bφ⃗(q) and get

|Bφ⃗(q)| ≤
√

2(n+ 1)eπ|q|
2||Bφ⃗||F̃n+1

Slice(H).

Thus, by the isometry property proved in Theorem 5.3.14 we obtain

|Bφ⃗(q)| ≤
√

2(n+ 1)eπ|q|
2||φ⃗||L2(R,Hn+1).

Proposition 5.4.5. For every f ∈ Fn
T (H), we have the following estimate

|f(q)| ≤
√
2eπ|q|

2 ||f ||Fn
T (H).

Proof. From the reproducing kernel property of the space Fn
T (H) and the

Cauchy-Schwartz inequality we have

|f(q)| =
∣∣⟨f,Kn+1⟩Fn

T (H)

∣∣ ≤ ||f ||Fn
T (H)||Kn+1||Fn

T (H).

In particular, using Proposition 5.4.2 we have

||Kn+1||2Fn
T (H) = Kn+1(q, q) = 2e2π|q|

2

.

Thus, we have
||Kn+1||Fn

T (H) =
√
2eπ|q|

2

.

Finally, we obtain
|f(q)| ≤

√
2eπ|q|

2 ||f ||Fn
T (H).

Proposition 5.4.6. For every q ∈ H and φ ∈ L2(R,H), we have

|Bn+1φ(q)| ≤
√
2eπ|q|

2 ||φ||L2(R,H).

Proof. We follow a similar reasoning of Proposition 5.4.4, then we apply
Theorem 3.9.

Remark 5.4.7. For n = 0 in Proposition 5.4.4 and Proposition 5.4.6 we
get the same estimate of Proposition 4.2.3 with ν = 2π.
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5.5 Closed formula of the quaternionic polyanalytic Bargmann
transform

Inspired from Vasilevski paper [134] we write the following closed integral
transform of the true polyanalytic Bargmann in the complex case, for φ ∈
L2(C)

B̂k+1φ(z) = 2
3
4 (2kk!(2π)k)−

1
2

∫
R
e−π(z

2+x2)+2π
√
2zxHk

(
z + z̄√

2
− x

)
φ(x)dx,

where Hk are the weighted Hermite polynomials defined as

Hj(y) = (−1)je2πy
2 dj

dyj
e−2πy2 = j!

[ j
2
]∑

m=0

(−1)m(4πy)j−2m

m!(j − 2m)!
, (5.34)

and [.] denotes the integer part. We want to prove the equality between
B̂k+1φ(z) and Bk+1φ(z), which is defined by

Bk+1φ(z) =

√
1

(2π)kk!
(−1)k

k∑
j=0

(
k

j

)
(−2πz)j∂k−jz (Bφ)(z).

Thus, by definition of the Segal-Bargmann transform we have

Bk+1φ(z)= 2
3
4

√
1

(2π)kk!
(−1)k

∫
R

k∑
j=0

(
k

j

)
(−2πz)j∂k−jz

(
e−π(z

2+x2)+2π
√
2zx
)

·φ(x)dx

=2
3
4

√
1

(2π)kk!
(−1)k

∫
R

[
(∂z − 2πz)k e−π(z

2+x2)+2π
√
2zx
]
φ(x)dx.

Then, in order to prove the equality between B̂k+1 and Bk+1 we need the
following result.

Proposition 5.5.1. For any k ≥ 0, z ∈ C and x ∈ R, we have

(∂z − 2πz)k e−π(z
2+x2)+2π

√
2zx = (−1)k2−

k
2 e−π(z

2+x2)+2π
√
2zxHk

(
z + z√

2
− x

)
.

Proof. We prove the statement by induction. For k = 0 we haveH0

(
z+z√

2
− x
)
=

1, thus the result holds in this case. Let us assume that the equality is true
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for k. We will prove the result for k + 1 thanks to the induction hypothesis
and Leibniz rule. Indeed, we have

(∂z − 2πz)k+1e−π(z
2+x2)+2π

√
2zx

=(∂z − 2πz)(∂z − 2πz)k
(
e−π(z

2+x2)+2π
√
2zx
)

=(∂z − 2πz)

[
(−1)k2−

k
2 e−π(z

2+x2)+2π
√
2zxHk

(
z + z√

2
− x

)]
=(−1)k2−

k
2

[
∂z(e

−π(z2+x2)+2π
√
2zx)Hk

(
z + z√

2
− x

)
+e−π(z

2+x2)+2π
√
2zx∂zHk

(
z + z√

2
− x

)
−2πzHk

(
z + z√

2
− x

)
e−π(z

2+x2)+2π
√
2zx

]
.

We write z = u+ iv and develop the computations using formula (14.5)
in Appendix B (with ν = 2π) to get

∂zHk

(
z + z√

2
− x

)
=

1

2

(
∂

∂u
− i

∂

∂v

)
Hk(

√
2u− x)

=

√
2

2

d

du
Hk(

√
2u− x)

= 2
√
2πkHk−1

(
z + z√

2
− x

)

and

∂z

(
e−π(z

2+x2)+2π
√
2zx
)
= (−2πz + 2π

√
2x)e−π(z

2+x2)+2π
√
2zx.

Thus, if we set y =
z + z√

2
− x and by using formula (14.4) in Appendix
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B (with ν = 2π) we obtain

(∂z − 2πz)k+1e−π(z
2+x2)+2π

√
2zx

=(−1)k2−
k
2 e−π(z

2+x2)+2π
√
2zx
[
(−2πz + 2π

√
2x)Hk(y)

+2
√
2πkHk−1(y)− 2πzHk(y)

]
=(−1)k+12

− k
2

√
2

√
2e−π(z

2+x2)+2π
√
2zx
[
2π

√
2yHk(y)− 2

√
2πkHk−1(y)

]
=(−1)k+12−

k+1
2 e−π(z

2+x2)+2π
√
2zx (4πyHk(y)− 4πkHk−1(y))

= (−1)k+12−
k+1
2 e−π(z

2+x2)+2π
√
2zxHk+1(y).

Thus replacing y by z+z√
2
− x we have the result for k + 1.

Due to Proposition 5.5.1 we have that

B̂k+1φ(z) = Bk+1φ(z).

Lemma 5.5.2. The weighted Hermite polynomialsHk

(
q+q√

2
− x
)

, with q ∈
H and x ∈ R, are slice polyanalytic of order k + 1 on H.

Proof. We know that

Hk

(
q + q√

2
− x

)
= k!

[ k
2
]∑

m=0

(−1)m
(
4π( q+q√

2
− x)

)k−2m

m!(k − 2m)!
.

We note that Hk

(
q+q√

2
− x
)

is a slice function since it is the sum of slice
functions. To justify that it is slice polyanalytic of order k + 1, we proceed
by induction on k. In order, to get the thesis it is enough to prove that

∂J
k+1

(
4π

(
q + q√

2
− x

)k−2m
)

= 0, 0 ≤ m ≤
[
k

2

]
.

Let us begin the induction: the case k = 1 is trivial. Now, we assume that
the statement holds for k and we prove it for k + 1. We have by inductive
hypothesis
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∂J
k+2
(
4π

(
q + q√

2
− x

))k+1−2m

= ∂J
k+1

∂J

(
4π

(
q + q√

2
− x

))k+1−2m

=(k + 1− 2m)2
√
2π

·∂J
k+1
(
4π

(
q + q√

2
− x

))k−2m

=0.

This means that when we apply ∂J
k+1

to Hk

(
q+q√

2
− x
)

each member
of the sum is zero. Thus,

∂J
k+1

Hk

(
q + q√

2
− x

)
= 0.

Let us recall B̂k+1φ expression in the quaternionic setting

B̂k+1φ(q) = 2
3
4 (2kk!(2π)k)−

1
2

∫
R
e−π(q

2+x2)+2π
√
2qxHk

(
q + q√

2
− x

)
φ(x)dx.

Since the functionG(q) := e−π(q
2+x2)+2π

√
2x is slice regular andHk

(
q+q̄√

2
− x
)

is intrinsic and we proved that it is slice polyanalytic of order k + 1. Then,
by [17, Prop 3.3] we have that the function e−π(q2+x2)+2π

√
2qHk

(
q+q√

2
− x
)

is slice polyanalytic of order k+1. This means that B̂k+1φ is slice polyan-
alytic of order k + 1.

Proposition 5.5.3. The two true quaternionic full-polyanalytic Bargmann
transforms Bk+1 and B̂k+1 are equal.

Proof. Since Bk+1φ(z) = B̂k+1φ(z) and B̂k+1φ,Bk+1φ are slice polyana-
lytic of order k+1 by the Identity Principle for slice polyanalytic functions
we get that

B̂k+1φ(q) = Bk+1φ(q).

Remark 5.5.4. The formula for B̂k+1φ is a closed formula for the polyan-
alytic Bargmann transform. Moreover, for k = 0 it turns out that B̂k+1φ
reduces to the quaternionic analogue of the Segal-Bargmann transform (see
(4.5) with ν = 2π).
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5.6 Quaternion short-time Fourier transform with normalized
Hermite functions as windows

The short-time Fourier transform provides a simultaneous description of
the temporal and spectral behaviour of a signal, which varies over the time.
In order to find the frequency spectrum of a signal φ at a specific time x,
one can localize the signal φ to neighbourhood of x and after evaluates the
Fourier transform of the restriction. This procedure of localization is made
by choosing a cut-off function, called "window function".
The aim of this section is to introduce a quaternionic analogue of the short-
time Fourier transform in dimension one with normalized weighted Her-
mite functions as windows, ψn(t) =

h2πn (t)
∥h2πn ∥L2(R,H)

, see (5.1). To develop this
concept we need the theory of slice polyanalytic functions, see Section 2.
We start by considering this formula [4, Prop.1]

Vψnφ(x, ω) = e−πixωGn+1φ

(
z̄√
2

)
e−

π|z|2
2 , (5.35)

where the variables (x, ω) ∈ R2 have been converted into a complex vector
z = x + iω, and Gn+1φ(z) is the complex true polyanalytic version of the
Segal-Bargmann transform.
In this context it is possible to consider a quaternion short-time Fourier
transform of a vector-valued function φ⃗ = (φ0, ..., φn) with respect to ψ⃗ =
(ψ0, ..., ψn). Also for this kind of signal it is possible to have a relation as
(5.35). Let us consider the following formula [4, Formula 20]

Vψ⃗φ⃗(x, ω) = e−πixωGφ⃗

(
z̄√
2

)
e−

π|z|2
2 , (5.36)

where G is the complex full-polyanalytic Segal-Bargmann transform. We
want to extend (5.35) and (5.36) to the quaternionic setting.

Definition 5.6.1. Let φ : R → H be a function in L2(R,H). We define
the 1D-true polyanalytic quaternion short time Fourier transform (true-poly
QSTFT) with respect to ψn(t) =

h2πn (t)
∥h2πn ∥L2(R,H)

as

Vψnφ(x, ω) = e−JπxωBn+1(φ)

(
q̄√
2

)
e−

|q|2π
2 , (5.37)

where q = x+Jω andBn+1 is the true quaternionic polyanalytic Bargmann
transform, defined in (5.21).
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It is possible to define a vector-valued quaternionic short-time Fourier
transform.

Definition 5.6.2. Let φ⃗ = (φ0, ..., φn) be a vector-valued function inL2(R,Hn+1).
We define the 1D-polyanalytic quaternion short-time Fourier transform (full-
poly QSTFT) with respect to ψ⃗ = (ψ0, ..., ψn) as

Vψ⃗φ⃗(x, ω) = e−JπxωB(φ⃗)

(
q̄√
2

)
e−

|q|2π
2 , (5.38)

where q = x + Jω and B is the quaternionic full-polyanalytic Bargmann
transform, defined in (5.33).

Remark 5.6.3. For n = 0 in (5.37) and (5.38) we obtain the definition of
the 1D-quaternion short-time Fourier transform with respect to the Gaus-
sian window g(t) = 21/4e−πt

2 , see Definition 4.5.1. Indeed, by (5.1) we
get

ψ0(t) =
h2π0 (t)

∥h2π0 ∥L2(R,H)

=
e−πt

2(
π
2π

) 1
4

= 21/4e−πt
2

.

Moreover, we have already observed that B1φ = Bφ, which is the quater-
nionic analogue of the Bargmann transform. Therefore, with formulas
(5.37) and (5.38) we are working in a more general setting than Chapter
4.

It is possible to put in relation the true-poly QSTFT and the full-poly
one. Indeed, we have the following result.

Proposition 5.6.4. Let φ⃗ = (φ0, ..., φn) be a vector valued function in
L2(R,Hn+1). The sum of the true-poly QSTFTs with respect to ψj of φj ,
with 0 ≤ j ≤ n, is the full-poly QSTFT with respect to ψ⃗ of φ⃗, i.e.

Vψ⃗φ⃗(x, ω) =
n∑
j=0

Vψj
φj(x, ω). (5.39)

Proof. From (5.38) and (5.33) turns out that

Vψ⃗φ⃗(x, ω) = e−JπxωB(φ⃗)

(
q̄√
2

)
e−

|q|2π
2

= e−Jπxω

(
n∑
j=0

Bj+1φj

(
q̄√
2

))
e−

|q|2π
2

=
n∑
j=0

e−JπxωBj+1φj

(
q̄√
2

)
e−

|q|2π
2 .
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Thus, by (5.37) we have

Vψ⃗φ⃗(x, ω) =
n∑
j=0

Vψj
φj(x, ω).

5.6.1 Moyal formulas

Here, we show that a Moyal formula and an isometric relation hold both for
the true-poly QSTFT and the full-poly one.

Theorem 5.6.5. Let φ, ϕ be functions in L2(R,H). Then we have

⟨Vψnφ,Vψnϕ⟩L2(R2,H) = 2⟨φ, ϕ⟩L2(R,H). (5.40)

Proof. By Definition 5.6.1 we have

⟨Vψnφ,Vψnϕ⟩L2(R2,H) =

∫
R2

Vψnϕ(x, ω)Vψnφ(x, ω)dxdω

=

∫
R2

e−JπxωBn+1(ϕ)

(
q̄√
2

)
e−

|q|2π
2 ·

·e−JπxωBn+1(φ)

(
q̄√
2

)
e−

|q|2π
2 dxdω

=

∫
R2

Bn+1(ϕ)

(
q̄√
2

)
eJπxωe−JπxωBn+1(φ)

(
q̄√
2

)
·e−|q|2πdxdω

=

∫
R2

Bn+1(ϕ)

(
q̄√
2

)
Bn+1(φ)

(
q̄√
2

)
e−|q|2πdxdω

We put p = q̄√
2

and by Corollary 5.3.11 we get

⟨Vψnφ,Vψnϕ⟩L2(R2,H) = 2

∫
R2

Bn+1 (ϕ(p))Bn+1 (φ(p)) e−2|p|2πdp

= 2⟨Bn+1φ,Bn+1ϕ⟩Fn
T (H).

= 2⟨φ, ϕ⟩L2(R,H).

Corollary 5.6.6. For any σ ∈ L2(R,H) we have

∥Vψnσ∥L2(R2,H) =
√
2∥σ∥L2(R,H).
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Proof. It follows trivially by Theorem 5.6.5 by putting ϕ = φ := σ.

We prove an isometry property for the full-poly QSTFT.

Theorem 5.6.7. Let φ⃗ = (φ0, ..., φn) be a vector valued function inL2(R,Hn+1),
then

∥Vψ⃗φ⃗∥L2(R2,H) =
√
2∥φ⃗∥L2(R,Hn+1).

Proof. First of all we note that

∥Vψ⃗φ⃗∥
2
L2(R2,H) =

n∑
j=0

∥Vψj
φj∥2L2(R2,H),

where Vψj
are the true-poly QSTFTs. Therefore by Corollary 5.6.6 we have

∥Vψ⃗j
φ⃗∥2L2(R2,H) = ∥Vψ0φ0∥2L2(R2,H) + ...+ ∥Vψnφn∥2L2(R2,H)

= 2∥φ0∥2L2(R,H) + ...+ 2∥φn∥2L2(R,H)

= 2
n∑
j=0

∥φj∥2L2(R,H) = 2∥φ⃗∥2L2(R,Hn+1).

Now, we prove a Moyal formula for the full-poly QSTFT. In order to do
this we need the following polarization identity (see [89, Formula 2.4]) for
u, v ∈ H

⟨u, v⟩ = 1

4

(
∥u+ v∥2 − ∥u− v∥2

)
+
1

4

∑
τ=i,j,k

(
∥uτ + v∥2 − ∥uτ − v∥2

)
τ .

Proposition 5.6.8. Let φ⃗ = (φ0, ..., φn) and ϕ⃗ = (ϕ0, ..., ϕn) be vector
valued functions in L2(R,Hn+1). Then, we have

⟨Vψ⃗ϕ⃗,Vψ⃗φ⃗⟩L2(R2,H) = 2⟨ϕ⃗, φ⃗⟩L2(R,Hn+1).

Proof. By the polarization identity with u := Vψ⃗ϕ⃗ and v := Vψ⃗φ⃗ and the
linearity of the full-poly QSTFT, which comes from the linearity of the

100



i
i

“thesis” — 2022/12/4 — 11:25 — page 101 — #119 i
i

i
i

i
i

5.6. Quaternion short-time Fourier transform with normalized Hermite
functions as windows

quaternionic full-polyanalytic Bargmann, we get

⟨Vψ⃗ϕ⃗,Vψ⃗φ⃗⟩L2(R2,H) =
1

4

(
∥Vψ⃗ϕ⃗+ Vψ⃗φ⃗∥

2 − ∥Vψ⃗ϕ⃗− Vψ⃗φ⃗∥
2
)
+

+
1

4

∑
τ=i,j,k

(
∥Vψ⃗ϕ⃗ · τ + Vψ⃗φ⃗∥

2 − ∥Vψ⃗ϕ⃗ · τ − Vψ⃗φ⃗∥
2
)
τ

=
1

4

(
∥Vψ⃗(ϕ⃗+ φ⃗)∥2 − ∥Vψ⃗(ϕ⃗− φ⃗)∥2

)
+

+
1

4

∑
τ=i,j,k

(
∥Vψ⃗(ϕ⃗ · τ + φ⃗)∥2 − ∥Vψ⃗(ϕ⃗ · τ − φ⃗)∥2

)
τ .

Since the space L2(R,Hn+1) is a right vector quaternionic space we have
that ϕ⃗ ± φ⃗ and ϕ⃗τ ± φ⃗ stay in L2(R,Hn+1). Therefore by Theorem 5.6.7
we have

⟨Vψ⃗ϕ⃗,Vψ⃗φ⃗⟩L2(R2,H) =
1

2

(
∥ϕ⃗+ φ⃗∥2 − ∥ϕ⃗− φ⃗∥2

)
+ (5.41)

+
1

2

∑
τ=i,j,k

(
∥ϕ⃗ · τ + φ⃗∥2 − ∥ϕ⃗ · τ − φ⃗∥2

)
τ .

Using another time the polarization identity with u := ϕ⃗ and v := φ⃗ in
(5.41) we obtain

⟨Vψ⃗ϕ⃗,Vψ⃗φ⃗⟩L2(R2,H) = 2⟨ϕ⃗, φ⃗⟩L2(R,Hn+1).

5.6.2 Reconstruction formula

It is possible to recover the value of the signal if we know its true-poly
QSTFT. In order to show a reconstruction formula we recall the following
formula for the true quaternionic polyanalytic Bargmann (see Section 5).
Let φ ∈ L2(R,H), thus we have

(Bn+1φ)(q) = cn

∫
R
e−π(q

2+t2)+2π
√
2qtHn

(
q + q̄√

2
− t

)
φ(t)dt, (5.42)

where cn := 2
3
4 (2nn!(2π)n)−

1
2 and Hn are the weighted Hermite polyno-

mials, see (5.34).
We have the following relation between the weighted Hermite functions
and the weighted Hermite polynomials

h2πn (u) = Hn(u)e
−πu2 . (5.43)
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Before to prove the reconstruction formula we need the following auxiliary
result.

Lemma 5.6.9. Let φ be a function in L2(R,H) and ψn(t) = h2πn (t)
∥h2πn ∥L2(R,H)

.
Then we have

Vψnφ(x, ω) =
√
2

∫
R
e−2πJωtψn(x− t)φ(t)dt. (5.44)

Proof. From (5.37) and (5.42) we get

Vψnφ(x, ω) = e−Jπxω
(
Bn+1φ

)( q̄√
2

)
e−

|q|2π
2

=2
3
4 (2nn!(2π)n)−

1
2 e−Jπxω

∫
R
e
−π
(

q̄2

2
+t2

)
+2πq̄t

·Hn

(
q̄√
2
+ q√

2√
2

− t

)
φ(t) dt e−

|q|2π
2 .

Now, since q = x+ Jω we get

Vψnφ(x, ω) = 2
3
4 (2nn!(2π)n)−

1
2 e−Jπxωe−

πx2

2 eJπxωe
ω2π
2 e−

πx2

2 e−
ω2π
2 ·

·
∫
R
e−πt

2+2πxt−2πJωtHn (x− t)φ(t)dt

= 2
3
4 (2nn!(2π)n)−

1
2

∫
R
e−2πJωte−πt

2+2πxt−πx2Hn(x− t)φ(t)dt

= 2
3
4 (2nn!(2π)n)−

1
2
∥h2πn ∥L2(R,H)

∥h2πn ∥L2(R,H)

∫
R
e−2πJωte−π(x−t)

2

Hn(x− t)φ(t)dt.

Hence by (5.43) we get

Vψnφ(x, ω) = 2
3
4 (2nn!(2π)n)−

1
2 (2n(2π)nn!2−

1
2 )

1
2

∫
R
e−2πJωt h

2π
n (x− t)

∥h2πn ∥L2(R,H)

φ(t)dt

=
√
2

∫
R
e−2πJωtψn(x− t)φ(t)dt.

This concludes the proof.

It is possible to have something similar also for the full-poly QSFT.

102



i
i

“thesis” — 2022/12/4 — 11:25 — page 103 — #121 i
i

i
i

i
i

5.6. Quaternion short-time Fourier transform with normalized Hermite
functions as windows

Corollary 5.6.10. Let φ⃗ = (φ0, ..., φn) be a vector-valued function in
L2(R,Hn+1). Then for ψ⃗ = (ψ0, ..., ψn) we have

Vψ⃗φ⃗(x, ω) =
√
2

∫
R
e−2πJωt

n∑
j=0

ψj(x− t)φj(t)dt.

Proof. By Proposition 5.6.4 we know that

Vψ⃗φ⃗(x, ω) =
n∑
j=0

Vψj
φj(x, ω).

For each member of the sum we know that the equality (5.44) holds. So we
have

Vψ⃗φ⃗(x.ω) =
√
2

∫
R
e−2πJωt

n∑
j=0

ψj(x− t)φj(t)dt.

Now, we are ready to prove the reconstruction formula for the true-poly
QSTFT.

Theorem 5.6.11. Let φ ∈ L2(R,H). Then for all y ∈ R we have

φ(y) =
1√
2

∫
R2

e2πJωy[Vψnφ(x, ω)]ψn(x− y)dxdω. (5.45)

Proof. Let us set

ϕ(y) :=
1√
2

∫
R2

e2πJωy[Vψnφ(x, ω)]ψn(x− y)dxdω, ∀y ∈ R.

Let Θ ∈ L2(R,H). By Fubini’s theorem, Lemma 5.6.9 and the Moyal
formula (5.40) we get

⟨ϕ,Θ⟩L2(R,H) =

∫
R
Θ(y)ϕ(y)dy

=
1√
2

∫
R3

Θ(y)e2πJωy[Vψnφ(x, ω)]ψn(x− y)dxdωdy

=
1

2

∫
R2

(√
2

∫
R
e−2πJωyψn(x− y)Θ(y)dy

)
Vψnφ(x, ω)dxdω

=
1

2

∫
R2

VψnΘ(x, ω)Vψnφ(x, ω)dxdω

=
1

2
⟨Vψnφ,VψnΘ⟩L2(R2,H) = ⟨φ,Θ⟩L2(R,H).
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Therefore, since for all Θ ∈ L2(R,H) we have ⟨ϕ,Θ⟩L2(R,H) = ⟨φ,Θ⟩L2(R,H)

we conclude that

φ(y) = ϕ(y) =
1√
2

∫
R2

e2πJωy[Vψnφ(x, ω)]ψn(x− y)dxdω.

Remark 5.6.12. It is possible to have a kind of reconstruction formula
also for the full-poly QSTFT. Basically, we use the reconstruction formula
(5.45) for each component of the vector-valued function φ⃗ = (φ0, ..., φn).
Thus for 0 ≤ j ≤ n we have

φj(y) =
1√
2

∫
R2

e2πJωy[Vψj
φj(x, ω)]ψj(x− y)dxdω ∀y ∈ R.

Remark 5.6.13. If n = 0 in (5.45) we obtain the formula proved Theorem
4.5.8.

Both the true-poly QTSFT and the full poly one admit a left-side inverse,
which is possible to compute.

Theorem 5.6.14. Let us consider the operator Aψn : L2(R2,H) → L2(R,H)
defined for any Λ ∈ L2(R2,H) by

Aψn(Λ)(y) =
√
2

∫
R2

e2πJωyΛ(x, ω)ψn(x− y)dxdω, ∀y ∈ R. (5.46)

Then Aψn is the adjoint of Vψn . Moreover, we have the following identity

V∗
ψn
Vψn = 2Id. (5.47)

Proof. Firstly we show that Aψn is the adjoint operator of Vψn . Let h ∈
L2(R,H). The application of Fubini’s theorem and formula (5.44) lead to

⟨Aψn(Λ), h⟩L2(R,H) =

∫
R
h(y)Aψn(Λ)(y)dy

=
√
2

∫
R3

h(y)e2πJωyΛ(x, ω)ψn(x− y)dxdωdy

=

∫
R2

√
2

(∫
R
e−2πJωyψn(x− y)h(y)dy

)
Λ(x, ω)dxdω

=

∫
R2

Vψnh(x, ω)Λ(x, ω)dxdω = ⟨Λ,Vψnh⟩L2(R2,H).
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Now, we prove (5.47). It follows by formula (5.45)

V∗
ψn
(Vψnφ)(y) =

√
2

∫
R2

e2πJωy[Vψnφ(x, ω)]ψn(x− y)dxdω

= 2φ(y).

Remark 5.6.15. The formula (5.46) is the left-side inverse of the true-poly
QSTFT.

We can prove a similar result for the full-poly QSTFT.

Theorem 5.6.16. Let us consider A∗
ψ⃗
: L2(R2,H) → L2(R,Hn+1) defined

for any Λ ∈ L2(R2,H) by

A∗
ψ⃗
Λ =

(
A∗
ψ⃗
Λ, ...,A∗

ψ⃗
Λ
)
, (5.48)

where ψ⃗ = (ψ0, ..., ψn) and A∗
ψ⃗
Λ are defined as follow

A∗
ψ⃗
Λ =

√
2

∫
R2

e2πJωyΛ(x, ω)ψj(x− y)dxdω 0 ≤ j ≤ n.

Then A∗
ψ⃗

is full-poly adjoint operator of Vψ⃗. Moreover,

V∗
ψ⃗
Vψ⃗ = 2IdL2(R,Hn+1). (5.49)

Proof. The construction of the vector (5.48) follows from the definition of
the full-poly adjoint operator and Theorem 5.6.14. Finally, (5.49) follows
from the fact that the full-poly QSTFT is an isometric operator, see Theo-
rem 5.6.7.

Remark 5.6.17. The vectorial operator proposed in formula (5.48) can be
considered a left-side inverse of the full-poly QSTFT.

5.6.3 Reproducing kernel property

Now, we will write the reproducing kernel of the quaternionic Gabor space
associated to the true-poly QSTFT. We define this space as

Gψn

H := {Vψnφ, φ ∈ L2(R,H)}.

We also consider a vector-valued version of the previous space which is
given by
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Gψ⃗
H = {Vψ⃗φ⃗, φ⃗ ∈ L2(R,Hn+1)},

where φ⃗ = (φ0, ..., φn) and ψ⃗ = (ψ0, ..., ψn).

Theorem 5.6.18. Let φ be in L2(R,H) and ψn(t) =
h2πn (t)

∥h2πn ∥L2(R2,H)
. If

Kψn(x, ω;x
′, ω′) =

∫
R
e2πI(ω

′−ω)tψn(x
′ − t)ψn(x− t)dt.

Then, Kψn is the reproducing kernel of the space Gψn

H , i.e

Vψnφ(x
′, ω′) = ⟨Vψnφ,Kψn⟩L2(R2,H).

Proof. We use Lemma 5.6.9, the inversion formula (5.45) and Fubini’s the-
orem to get

Vψnφ(x
′, ω′)=

√
2

∫
R
e−2πJω′tφ(t)ψn(x

′ − t)dt

=

∫
R
e−2πJω′tψn(x

′ − t)

(∫
R2

e2πJωt[Vψnφ(x, ω)]ψn(x− t)dxdω

)
dt

=

∫
R3

e−2πJω′tψn(x
′ − t)e2πJωtψn(x− t)Vψnφ(x, ω)dxdωdt

=

∫
R2

(∫
R
e−2πJt(ω′−ω)ψn(x

′ − t)ψn(x− t)dt

)
Vψnφ(x, ω)dxdω

=

∫
R2

Kψn(x, ω;x
′, ω′)Vψnφ(x, ω)dxdω

= ⟨Vψnφ,Kψn⟩L2(R2,H).

A similar theorem holds for the full-poly QSTFT, that we can state as
follows.

Theorem 5.6.19. Let φ⃗ = (φ0, ..., φn) ∈ L2(R,Hn+1). The following
functions

Kψ⃗(x, ω;x
′, ω′) =

n∑
j=0

∫
R
e2πI(ω

′−ω)tψj(x
′ − t)ψj(x− t)dt

are the reproducing kernel of the space Gψ⃗
H, i.e:

Vψ⃗φ⃗(x
′, ω′) = ⟨VψN

φ⃗,Kψ⃗⟩L2(R2,Hn+1).
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Proof. It follows from the previous theorem and the fact that we can write
the full-poly QSTFT as sums of true-poly QSTFTs (Proposition 5.6.4) and
the definition of inner product of the space L2(R2,Hn+1) (see (5.32)). In
particular, we have

Vψ⃗φ⃗(x
′, ω′) =

n∑
j=0

Vψj
φj(x

′, ω′)

=
n∑
j=0

⟨Vψj
φj, Kψj

⟩L2(R2,H)

= ⟨Vψ⃗φ⃗,Kψ⃗⟩L2(R2,Hn+1).

Remark 5.6.20. If n = 0 in Theorem 5.6.18 and Theorem 5.6.19 we re-
cover the same result of Theorem 4.5.12.

5.6.4 Lieb’s uncertainty principle

In this section we want to extend to the quaternionic polyanalytic theory
the Lieb’s uncertainty principle. Let us recall that the uncertainty princi-
ples state that a signal cannot be simultaneously sharply located both in
time and frequency domains. This is emphasised by the following generic
principle [92]:

"A function cannot be concentrated on small sets in the time-frequency
plane, no matter which time-frequency representation is used."

Theorem 5.6.21. (Weak uncertainty principle) Let φ ∈ L2(R,H) be an
unit vector, U an open set of R2 and ε ≥ 0 such that∫

U

|Vψnφ(x, ω)|2dxdω ≥ 1− ε, (5.50)

then |U | ≥ 1−ε
2
.

Proof. From the definition of true-poly QSTFT and Proposition 5.4.6 we
have

|Vψnφ(x, ω)|= |e−Jπxω|
∣∣∣∣Bn+1φ

(
q̄√
2

)∣∣∣∣ e− |q|2π
2 (5.51)

≤
√
2e

|q|2π
2 ∥φ∥L2(R,H)e

− |q|2π
2

=
√
2.
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Thus by (5.50) we get

1− ε ≤
∫
U

|Vψnφ(x, ω)|2dxdω ≤ ∥Vψnφ∥2∞|U | ≤ 2|U |.

Hence
|U | ≥ 1− ε

2
.

A weak uncertainty principle holds also for the full-poly QSTFT.

Theorem 5.6.22. Let φ⃗ = (φ0, ..., φn) be a vector valued function inL2(R,Hn+1)

with ∥φj∥L2(R,H) = 1, for all 1 ≤ j ≤ n, and ψ⃗ = (ψ0, ..., ψn) be a vector-
valued window function. If U is an open set of R2 and ε ≥ 0 we suppose∫

U

|Vψ⃗φ⃗(x, ω)|
2dxdω ≥ 1− ε, (5.52)

then |U | ≥ 1−ε
2(n+1)2

.

Proof. By Proposition 5.6.4 we know that

Vψ⃗φ⃗ =
n∑
j=0

Vψj
φj(x, ω).

Thus by the estimate (5.51) applied at each members of the sum turns out
that ∣∣∣Vψ⃗φ⃗(x, ω)

∣∣∣ ≤ n∑
j=0

∣∣Vψj
φj(x, ω)

∣∣ ≤ √
2(n+ 1). (5.53)

Therefore by (5.52) and (5.53) we obtain

1− ε ≤
∫
U

|Vψ⃗φ⃗(x, ω)|
2dxdω ≤ ∥Vψ⃗φ⃗∥

2
∞|U | ≤ 2|U |(n+ 1)2.

Then
|U | ≥ 1− ε

2(n+ 1)2
.

In order to improve the estimates of the weak uncertainty principles we
need the following Lp- estimate of the true-poly QSTFT and the full-poly
one. For the first one we omit the proof since it can be shown with exactly
the same computations of Theorem 4.5.14.
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Proposition 5.6.23. Let φ ∈ L2(R,H) and p ∈ [2,∞) then we have∫
R2

|Vψnφ(x, ω)|pdxdω ≤ 2p+1

p
∥φ∥pL2(R,H). (5.54)

Proposition 5.6.24. Let φ⃗ = (φ0, ..., φn) be a vector valued function in
L2(R,Hn+1). For p ∈ [2,∞) we have∫

R2

|Vψ⃗φ⃗(x, ω)|
pdxdω ≤ 2p+1

p
(n+ 1)p−1∥φ⃗∥pL2(R,Hn+1). (5.55)

Proof. From (5.39) we obtain

|Vψ⃗φ⃗(x, ω)|
p ≤

(
n∑
j=0

|Vψj
φj(x, ω)|

)p

≤ (n+ 1)p−1

n∑
j=0

|Vψj
φj(x.ω)|p.

Now, we integrate and apply (5.54) at each member of the sum and we get∫
R2

|Vψ⃗φ⃗(x, ω)|
pdxdω≤ (n+ 1)p−1

n∑
j=0

∫
R2

|Vψj
φj(x, ω)|pdxdω

≤ 2p+1

p
(n+ 1)p−1

n∑
j=0

∥φj∥pL2(R,H)

≤ 2p+1

p
(n+ 1)p−1

(
n∑
j=0

∥φj∥2L2(R,H)

) p
2

=
2p+1

p
(n+ 1)p−1∥φ⃗∥pL2(R,Hn+1).

Next, we show that the inequalities (5.54) and (5.55) yield a sharper
estimate for Theorem 5.6.21 and Theorem 5.6.22, respectively.

Theorem 5.6.25. Let us consider φ⃗ = (φ0, ..., φn) ∈ L2(R,Hn+1), such
that ∥φj∥L2(R,H) = 1, for any 0 ≤ j ≤ n. Let U be an open set of R2, ε ≥ 0
and ∫

U

|Vψ⃗φ⃗(x, ω)|
2dxdω ≥ 1− ε, (5.56)

then

|U | ≥
(
2p+1

p

)− 2
p−2

(1− ε)
p

p−2 (n+ 1)
2−3p
p−2 , for p > 2.
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Proof. The estimate (5.55) implies that

1− ε≤
∫
U

|Vψ⃗φ⃗(x, ω)|
2dxdω =

∫
R2

|Vψ⃗φ⃗(x, ω)|
2χU(x, ω)dxdω

≤
(∫

R2

|Vψ⃗φ⃗(x, ω)|
pdxdω

) 2
p

|U |
p−2
p

≤
(
2p+1

p

) 2
p

(n+ 1)
3p−2

p |U |
p−2
p .

Therefore

|U | ≥
(
2p+1

p

)− 2
p−2

(1− ε)
p

p−2 (n+ 1)
2−3p
p−2 , for p > 2.

Theorem 5.6.26. Let φ be in L2(R,H). If we assume that U is an open set
of R2, ε ≥ 0 and ∥φ∥L2(R,H) = 1 such that∫

U

|Vψnφ(x, ω)|2dxdω ≥ 1− ε.

Then, we have

|U | ≥
(
2p+1

p

)− 2
p−2

(1− ε)
p

p−2 , for p > 2.

Proof. It follows by using similar techniques of Theorem 5.6.25.

Remark 5.6.27. If n = 0 in Theorem 5.6.25 and Theorem 5.6.26, these
results coincide with Theorem 4.5.15.
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CHAPTER6
On the Clifford short-time Fourier transform

and its properties

6.1 Motivation

In this chapter we investigate how the short-time Fourier transform can be
extended in a Clifford algebra setting. It is crucial to use a suitable gen-
eralization of the Fourier transform in the Clifford algebra setting. H.De
Bie explains in [62] that nowadays the emphasis of the research on hyper-
complex integral transform lies on three different methods: the eigenfunc-
tion approach, the generalized roots of −1 approach and the spin group
approach.

In the first one the Clifford-Fourier transform is defined as the following
integral transform

F±f(y) := (2π)−
n
2

∫
Rn

K±(x, y)f(x) dx, (6.1)

where the kernel K±(x, y) is given by an explicit expression. For this kind
of Clifford-Fourier transform many generalizations were found, see [29,61,
63–65] and some important properties such as the uncertainty principle and
Riemann-Lebesgue lemma were proved [81, 82].
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Chapter 6. On the Clifford short-time Fourier transform and its properties

In the second approach the definition of Fourier transform is given in the
following way.

Definition 6.1.1. Denote by In the set {i ∈ Rn| i2 = −1} of geometric
square roots of minus one. Let F1 := {i1, ..., iµ}, F2 = {iµ+1, ..., in} be
two ordered finite sets of such square roots, ik ∈ In, for all k = 1, ..., n.
The geometric Fourier transform FF1,F2 of a function f : Rn → Rn takes
the form

FF1,F2(f)(u) := (2π)−
n
2

∫
Rn

(
µ∏
k=1

e−ikxkuk

)
f(x)

(
n∏

k=µ+1

e−ikxkuk

)
dx.

Finally, in the third approach the Fourier transform is defined as follows

f̂(ϕ) :=

∫
R2

ϕ(x, y)f(x, y)ϕ(−x,−y) dx dy,

where ϕ is a group of morphism.
The aim of this chapter is to generalize the short-time Fourier transform

on the Clifford algebra setting using the first approach.

Now, we recall briefly some notions that we will use in this chapter. The
product of two 1-vectors x =

∑n
j=0 xjej and y =

∑n
j=0 yjej splits into a

scalar part and a 2-vector part

xy = −⟨x, y⟩+ x ∧ y,

with

⟨x, y⟩ =
n∑
j=1

xjyj = −1

2
(xy + yx),

and
x ∧ y =

∑
j<k

ejek(xjyk − xkyj) =
1

2
(xy − yx).

For any x, y ∈ Rn, we have |xy| ≤ 2n|x||y| and |x+ y| ≤ |x|+ |y|.
In the sequel, we consider functions defined on Rn and taking values in

the real Clifford algebra Rn. Such functions can be expressed as

f(x) =
∑
A

eAfA(x),

where eA = ei1ei2 ...eik , 1 ≤ i1 < i2 < ... < ik ≤ n and fA are real valued
functions. We define the modulus |f | of any function f which takes values
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6.1. Motivation

in Rn as

|f | :=
√∑

A

|fA|2. (6.2)

Now, we indicate the Dirac operator in Rn as

∂x =
n∑
i=1

ei∂xi .

We denote by P the space of polynomials taking values in Rn, i.e

P := R[x1, ..., xn]⊗ Rn.

The set of homogeneous polynomials of degree k is then denoted by Pk,
while the space Mk := ker∂x ∩ Pk is called the space of spherical mono-
genics of degree k.

We denote by Lp(Rn) ⊗ Rn as the module of all Clifford-valued func-
tions f : Rn → Rn with finite norm

∥f∥p =

{(∫
Rn |f(x)|pdx

) 1
p , 1 ≤ p <∞,

ess supx∈Rn |f(x)|, p = ∞,

where dx = dx1...dxn represents the usual Lebesgue measure in Rn. We
consider the following inner product for two functions f, g : Rn → Rn

⟨f, g⟩ =
∫
Rn

f(x)g(x) dx.

Let us denote the Schwartz space as S(Rn). In the rest of the chapter
we will consider functions in this space which are radial, so real valued
functions, or which takes value in the Clifford algebra Rn. In this last case
we denote the Schwartz space as S(Rn) ⊗ Rn. For this kind of space it is
possible to introduce a basis {ψj,k,l} (see [128]), which is defined by

ψ2j,k,l(x) := L
n
2
+k−1

j (|x|2)M (l)
k e−

|x|2
2 , (6.3)

ψ2j+1,k,l(x) := L
n
2
+k

j (|x|2)xM (l)
k e−

|x|2
2 , (6.4)

where j, k ∈ N, {M (l)
k ∈ Mk : l = 1, ..., dimMk} is a basis for Mk, and

Lαj are the Laguerre polynomials.
In the sequel we define the commutator of the Clifford operators A, B

in the following way
[A,B] = AB −BA. (6.5)
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Chapter 6. On the Clifford short-time Fourier transform and its properties

6.2 Clifford-Fourier transform

In this section, we recall the definition and some properties of the Clifford-
Fourier transform introduced by H.De Bie and Y.Xu in [66].

Definition 6.2.1 (Clifford-Fourier Transform). On the Schwartz class of
functions S(Rn)⊗ Rn, we define the Clifford-Fourier transform as

F±f(y) := (2π)−
n
2

∫
Rn

K±(x, y)f(x) dx, (6.6)

and their inverses as

F−1
± f(y) := (2π)−

n
2

∫
Rn

K̃±(x, y)f(x) dx,

where
K±(x, y) := e∓i

π
2
Γye−i⟨x,y⟩,

and
K̃±(x, y) := e±i

π
2
Γyei⟨x,y⟩,

Γy :=
∂yy−y∂y

2
+ n

2
= −

∑
j<k ejek(xj∂xk − xk∂xj) is the Gamma operator.

In the paper [66] the authors write an explicit formula of the kernel by
using the Gegenbauer polynomials Cλ

k (ω) and the Bessel functions Jα(t):

K−(x, y) = Aλ +Bλ + (x ∧ y)Cλ, (6.7)

with

Aλ = 2λ−1Γ(λ+ 1)
∞∑
k=0

(in + (−1)k)(|x||y|)−λJk+λ(|x||y|)Cλ
k (⟨ξ, η⟩),

Bλ = −2λ−1Γ(λ)
∞∑
k=0

(k+λ)(in−(−1)k)(|x||y|)−λJk+λ(|x||y|)Cλ
k (⟨ξ, η⟩),

Cλ = −(2λ)2λ−1Γ(λ)
∞∑
k=0

(in+(−1)k)(|x||y|)−λ−1Jk+λ(|x||y|)Cλ+1
k−1 (⟨ξ, η⟩),

where ξ = x
|x| , η =

y

|y| and λ = n−2
2

.
It is important to observe that the kernel is not symmetric, in the sense

that K−(x, y) ̸= K−(y, x). Hence, we adopt the convention that we always
integrate over the first variable in the kernels. Throughout the paper, we
only focus on the kernel K− = ei

π
2
Γye−i⟨x,y⟩, from the following proposi-

tion (see [66, Prop. 3.4]) it is possible to recoverK+(x, y) = e−i
π
2
Γye−i⟨x,y⟩.
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6.2. Clifford-Fourier transform

Remark 6.2.2. The main difference between this Fourier transform and
the ones considered in [30, 96, 97] is that the kernel of the Clifford-Fourier
transform is developed by considering that it is the eigenvalue of a basis of
the Clifford-space L2(Rn) ⊗ Rn. On the other hand, the approach consid-
ered by Hitzer and collaborators consists of replacing the classic complex
imaginary unit i with generalized roots of −1.

Proposition 6.2.3. For x, y ∈ Rn,

K+(x, y) = (K−(x,−y))c,

K̃±(x, y) = (K±(x, y))
c,

where c stands for the complex conjugate.

It is important to remark that in the case d is even Aλ, Bλ, Cλ are real
valued so the complex conjugate in K−(x, y) can be omitted.

From the explicit expression of the kernel it is possible to derive some
easy properties [66, Prop. 5.1].

Proposition 6.2.4. Let n = 2. Then the kernel of Clifford-Fourier trans-
form satisfies

K−(x, z)K−(y, z) = K−(x+ y, z).

If the dimension d is even and n > 2 then

K−(x, z)K−(y, z) ̸= K−(x+ y, z).

If we consider the Clifford conjugate and even dimension (see [109,
Prop. 3.5]) we have

K−(y, x) = K−(x, y). (6.8)

Furthermore, the following trivial formula holds

K−(−x, y) = K−(x,−y). (6.9)

Moreover, in [66] for even dimensions the kernel is rewritten as a finite
sum of Bessel functions (see [66, Thm. 4.3])

K−(x, y) = (−1)λ+1
(π
2

) 1
2 (
A∗
λ(s, t) +B∗

λ(s, t) + (x ∧ y)C∗
λ(s, t)

)
,

where s = ⟨x, y⟩ and t = |x ∧ y| =
√

|x|2|y|2 − s2 and
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Chapter 6. On the Clifford short-time Fourier transform and its properties

A∗
λ(s, t) =

⌊λ+1
2

− 3
4
⌋∑

l=0

sλ−1−2l 1

2ll!

Γ(λ+ 1)

Γ(λ− 2l)
J̃(2λ−2l−1)/2(t),

B∗
λ(s, t) = −

⌊λ+1
2

− 1
2
⌋∑

l=0

sλ−2l 1

2ll!

Γ(λ+ 1)

Γ(λ− 2l + 1)
J̃(2λ−2l−1)/2(t),

C∗
λ(s, t) = −

⌊λ+1
2

− 1
2
⌋∑

l=0

sλ−2l 1

2ll!

Γ(λ+ 1)

Γ(λ− 2l + 1)
J̃(2λ−2l+1)/2(t)

with J̃α(t) = t−αJα(t).
The above formula helps H.De Bie and Y.Xu to prove a very important

estimate of the kernel, [66, Thm. 5.3].

Lemma 6.2.5. Let n be even. For x, y ∈ Rn, one has

|K−(x, y)| ≤ c(1 + |x|)λ(1 + |y|)λ. (6.10)

Some problems for the Clifford-Fourier transform arise when we con-
sider odd dimensions. Indeed in this case it is not known if it is possible to
write K−(x, y) as sums of Bessel functions. Moreover, it seems not possi-
ble to obtain an upper bound of the kernel as in (6.10). So in the rest of the
chapter we focus only on the even dimensions more than two.

Let us define the following space of functions

B(Rn) :=

{
f ∈ L1(Rn) : ∥f∥B :=

∫
Rn

(1 + |y|)λ|f(y)| dy <∞
}
.

(6.11)
Due to the boundedness of the kernel we have the following important the-
orem (see [66, Thm 6.1]).

Theorem 6.2.6. Let d be an even integer. The Clifford-Fourier transform is
well defined on B(Rn)⊗Rn. In particular, for f ∈ B(Rn)⊗Rn, F±f is a
continuous function.

Now, we list some important properties of the Clifford-Fourier trans-
form.

Proposition 6.2.7. [109, Prop. 3.6][Plancherel theorem] If f, g ∈ S(Rn)⊗
Rn then ∫

Rn

f(y)g(y) dy =

∫
Rn

F−(f)(x)F−(g)(x) dx. (6.12)
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6.2. Clifford-Fourier transform

Proposition 6.2.8. [109, Prop. 3.7][Parseval’s identity] If f ∈ S(Rn) ⊗
Rn, then

∥f∥2 = ∥F−(f)∥2. (6.13)

Theorem 6.2.9. [66, Thm. 6.6] For the basis {ψj,k,l} of S(Rn)⊗ Rn (see
(6.3) and (6.4)), one has

F±(ψ2j,k,l) = (−1)j+k(∓1)kψ2j,k,l,

F±(ψ2j+1,k,l) = in(−1)j+1(∓1)k+n−1ψ2j+1,k,l.

When we restrict to the basis {ψj,k,l} we have

F−1
± F± = Id. (6.14)

Moreover, when n is even, (6.14) holds for all f ∈ S(Rn)⊗ Rn.

Now we prove a property, which was proved in a more general setting
in [65, Thm. 6.3].

Theorem 6.2.10. When n is even for the basis {ψj,k,l} of S(Rn)⊗Rn, one
has

F± (F±(ψj,k,l)) = ψj,k,l. (6.15)

Moreover, the formula (6.15) holds for all f ∈ S(Rn)⊗ Rn.

Proof. We distinguish two cases depending on j.
If j is even we apply two times Theorem 6.2.9 and we get

F± (F±(ψj,k,l)) = (−1)j+k(−1)j+k(∓1)k(∓1)kψ2j,k,l = ψ2j,k,l.

If j is odd, as before, we apply two times Theorem 6.2.9 and we obtain

F± (F±(ψj,k,l)) = in(−1)j+1(∓1)k+n−1in(−1)j+1(∓1)k+n−1ψ2j+1,k,l

= (i2)nψ2j+1,k,l = (−1)nψ2j+1,k,l = ψ2j+1,k,l.

This proves formula (6.15).
Finally, since F± is continuous on S(Rn) ⊗ Rn [66, Thm. 6.3] and

{ψj,k,l} is a dense subset of S(Rn)⊗Rn we obtain that for all f ∈ S(Rn)⊗
Rn

F± (F±(f)) (x) = f(x). (6.16)

Remark 6.2.11. Due to the density of S(Rn) ⊗ Rn in L2(Rn) ⊗ Rn the
Plancherel’s theorem, Parseval’s identity, and the equations (6.14) and (6.16)
can be extended to functions in L2(Rn)⊗ Rn.
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Chapter 6. On the Clifford short-time Fourier transform and its properties

6.3 Generalized translation and modulation operators

In this section we introduce the generalized translation and the generalized
modulation, which are fundamental tools for developing a time-frequency
analysis in a Clifford algebra setting. The generalized translation was in-
troduced for the first time in the paper [66], where the authors "fixed" the
well-known property of the translation of the classical Fourier transform
and derived the following definition.

Definition 6.3.1. Let f ∈ S(Rn) ⊗ Rn. For y ∈ Rn the generalized trans-
lation operator f 7→ τyf is defined by

F−τyf(x) = K−(y, x)F−f(x), x ∈ Rn.

By the inversion formula of F−, the translation can be expressed as an
integral operator

τyf(x) = (2π)−
n
2

∫
Rn

(K−(ξ, x))
cK−(y, ξ)F−f(ξ) dξ.

Since we are working with even dimensionsK−(ξ, x) is a real-valued func-
tion so we can omit the complex conjugate

τyf(x) = (2π)−
n
2

∫
Rn

K−(ξ, x)K−(y, ξ)F−f(ξ) dξ. (6.17)

We note that the generalized translation has the following properties, see
[66, Prop. 7.2].

Proposition 6.3.2. If n = 2 for all functions f ∈ S(Rn)⊗ Rn one has

τyf(x) = f(x− y).

If the dimension n is even and n > 2 then in general

τyf(x) ̸= f(x− y).

However, τy coincides with the classical translation operator if f is a
radial function [66, Thm. 7.3].

Proposition 6.3.3. Let f ∈ S(Rn) be a radial function on Rn, f(x) =
f0(|x|), with f0 : R+ 7→ R, then τyf(x) = f(x− y).

Using the generalized translation, it is possible to define a convolution
operation for functions with values in Clifford algebra.
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Definition 6.3.4. For f, g ∈ S(Rn) ⊗ Rn, the generalized convolution is
defined by

(f ∗Cl g)(x) := (2π)−
n
2

∫
Rn

τyf(x)g(y) dy, x ∈ Rn.

We remark that if f and g take value in the Clifford algebra, then f ∗Cl
g is not commutative in general. Moreover, in the case when one of the
two functions is radial we have the following well-known property of the
Fourier transform [66, Thm. 8.2].

Theorem 6.3.5. If g ∈ S(Rn) ⊗ Rn, and f ∈ S(Rn) is a radial function,
then f ∗Cl g satisfies

F−(f ∗Cl g)(x) = F−f(x)F−g(x).

In particular, since f is a scalar function we have the commutativity of the
convolution, i.e.

f ∗Cl g = g ∗Cl f.

Now we have all the tools to build the generalized modulation. Let f
be in S(Rn)⊗ Rn and like the generalized translation we fix the following
property:

F−(Myf)(ξ) = τyF−(f)(ξ), ξ, y ∈ Rn, (6.18)

where My is the generalized modulation operator. By Definition 6.3.1 we
have

F−(Myf)(ξ) = F−1
− (K−(y, x)F− (F−(f)) (x)) (ξ).

Now we apply F− and use Theorem 6.2.10, so we are able to give the
following definition.

Definition 6.3.6. Let f ∈ S(Rn)⊗ Rn. For y ∈ Rn the generalized modu-
lation is defined by

Myf(x) = K−(y, x)f(x), x ∈ Rn.

Remark 6.3.7. As in the classical Fourier analysis we can relate the Clifford-
Fourier transform of the translation with the modulation of the Clifford-
Fourier transform:

F−(τyf(x)) = K−(y, x)F−f(x) =My(F−f(x)). (6.19)

Remark 6.3.8. In the theory that we are going to develop for even dimen-
sions n > 2 there is not a commutative relationship between the modu-
lation operator and the translation operator, as it happens in the classical
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case. Indeed, let f ∈ S(Rn) be a radial function, by Definition 6.3.6 and
Proposition 6.3.3 we get

Mωτyf(x) = K−(ω, x)f(x− y), ω, y ∈ Rn. (6.20)

Now, if we exchange the roles between the translation and modulation op-
erators by formulas (6.17) and (6.18) we have

τyMωf(x) = (2π)−
n
2

∫
Rn

K−(ξ, x)K−(y, ξ)F−(Mωf)(ξ) dξ

= (2π)−
n
2

∫
Rn

K−(ξ, x)K−(y, ξ)τωF−(f)(ξ) dξ, ω, y ∈ Rn.

Therefore

τyMωf(x) = (2π)−
n
2

∫
Rn

K−(ξ, x)K−(y, ξ)τωF−(f)(ξ) dξ. (6.21)

Since (6.20) and (6.21) are very different we do not have any commutative
relations between the generalised translation and modulation operators.

Remark 6.3.9. One my wonder if for dimension d = 2 there exists a com-
mutative formula between the generalized translation and modulation op-
erator. One can verify by Proposition 6.3.2 that for f ∈ S(Rn)⊗ Rn

Mωτyf(x) = K−(ω, x)f(x− y),

τyMωf(x) = K−(ω, x− y)f(x− y).

Now, due to Proposition 6.2.4 and the fact that K− is not symmetric we
deduce that it is not possible to make this computation K−(ω, x − y) =
K−(ω, x)K−(ω,−y). Thus, we conclude that never exists a commutative
formula between the generalized translation and modulation operator.

We end this section proving some easy but important formulas of time-
frequency analysis.

Lemma 6.3.10. If f ∈ S(Rn)⊗ Rn and y, ω ∈ Rn then

F−(τyMωf)(x) =MyτωF−f(x), x ∈ Rn, (6.22)

F−(Mωτyf)(x) = τωMyF−f(x) x ∈ Rn. (6.23)

Proof. Formula (6.22) follows by applying (6.19) and (6.18)

F−(τyMωf)(x) =MyF−(Mωf)(x) =MyτωF−f(x).

Formula (6.23) follows by applying (6.18) and (6.19)

F−(Mωτyf)(x) = τωF−(τyf)(x) = τωMyF−(f)(x).
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6.4 The Clifford short-time Fourier transform

In this section we generalize the short-time Fourier transform, using the
Clifford-Fourier transform. As signal we consider a function f Clifford-
valued and firstly we assume the same hypothesis also for the window func-
tion g.

Definition 6.4.1. Let f, g ∈ S(Rn) ⊗ Rn. The Clifford short-time Fourier
transform of a function f with respect to g is defined as

Vgf(x, ω) = F−(τxḡ · f)(ω), for x, ω ∈ Rn. (6.24)

We want to manipulate formula (6.24) in order to write it as an integral.
From the definition of the Clifford-Fourier transform (6.6) and the formula
of the generalized translation operator (6.17) we get

Vgf(x, ω) = F−(τxḡ · f)(ω)

= (2π)−
n
2

∫
Rn

K−(t, ω)τxḡ(t)f(t) dt

= (2π)−n
∫
R2n

K−(t, ω)K−(ξ, t)K−(x, ξ)F−(ḡ)(ξ)f(t) dξ dt

= (2π)−
3
2
n

∫
R3n

K−(t, ω)K−(ξ, t)K−(x, ξ)K−(z, ξ)

ḡ(z)f(t) dz dξ dt.

Since it is difficult to work with this amount of non commuting kernels
we choose to work with a radial window function. So if g ∈ S(Rn) is a
radial function by definition of the Clifford-Fourier transform and Proposi-
tion 6.3.3 we get

Vgf(x, ω) = (2π)−
n
2

∫
Rn

K−(t, ω)τxg(t)f(t) dt

= (2π)−
n
2

∫
Rn

K−(t, ω)g(t− x)f(t) dt.

Thus we have the following definition.

Definition 6.4.2. Let f ∈ S(Rn)⊗Rn and g ∈ S(Rn) be a radial function.
The Clifford short-time Fourier transform of a function with respect to g is
defined, for x, ω ∈ Rn, as

Vgf(x, ω) = F−(τxḡ · f)(ω) (6.25)

= (2π)−
n
2

∫
Rn

K−(t, ω)g(t− x)f(t) dt.
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Chapter 6. On the Clifford short-time Fourier transform and its properties

In the sequel we will use this integral formula for proving all the prop-
erties of the Clifford short-time Fourier transform.

Now we are going to show that the Clifford short-time Fourier transform
as the Clifford-Fourier transform is well-defined on B(Rn) ⊗ Rn. First of
all we recall the following notion

B(Rn) :=

{
f ∈ L1(Rn) : ∥f∥B :=

∫
Rn

(1 + |y|)λ|f(y)| dy <∞
}

where λ = d−2
2

and d is even more that two. Now, we introduce the follow-
ing spaces of real valued functions for 1 ≤ p <∞

Bp(Rn) :=

{
f ∈ Lp(Rn) : ∥f∥Bp :=

(∫
Rn

(1 + |y|)λ|f(y)|p dy
) 1

p

<∞

}
,

Wpλ(Rn) =

{
f ∈ Lp(Rn) : ∥f∥Wpλ

; =

(∫
Rn

(1 + |y|)λp|f(y)|p dy
) 1

p

<∞

}
.

Remark 6.4.3. If p = 1 all the spaces introduced coincide.

For the spaces Bp(Rn) and Wpλ(Rn) we have the following inclusion.

Lemma 6.4.4. Let n be even more than two. For p ≥ 1 we have

Wpλ(Rn) ⊆ Bp(Rn).

Proof. It is enough to prove that ∥.∥Bp ≤ ∥.∥Wpλ
. Firstly we observe that

since λ = n−2
2

≥ 1 and p ≥ 1 we have

(1 + |y|)λ ≤ (1 + |y|)λp.

Then
(1 + |y|)λ|f(y)|p ≤ (1 + |y|)λp|f(y)|p.

Therefore, by the monotonicity of the integral we have∫
Rn

(1 + |y|)λ|f(y)|p dy ≤
∫
Rn

(1 + |y|)λp|f(y)|p dy.

Thus
∥f∥Bp ≤ ∥f∥Wpλ

.
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6.4. The Clifford short-time Fourier transform

Remark 6.4.5. From the properties of the Lp-spaces we do not have any
relations of inclusion between the spaces B(Rn) and Bp(Rn). For the same
reason there is not any inclusion between B(Rn) and Wpλ(Rn).

Now we prove two inequalities which will be fundamental for defining
the domain of the Clifford short-time Fourier transform.

Lemma 6.4.6. Let d be even more than two. If f ∈ L2(Rn) ⊗ Rn and
g ∈ W2λ(Rn) is a radial function, then f · g ∈ B(Rn)⊗ Rn. In particular
we have,

∥f · g∥B ≤ c∥g∥W2λ
∥f∥2, (6.26)

where c is a positive constant.

Proof. From the Hölder inequality we get

∥f · g∥B ≤ c

∫
Rn

(1 + |y|)λ|f(y)||g(y)| dy

= c

∫
Rn

(1 + |y|)λ|g(y)||f(y)| dy

≤ c

(∫
Rn

(1 + |y|)2λ|g(y)|2 dy
) 1

2
(∫

Rn

|f(y)|2 dy
) 1

2

= c∥g∥W2λ
∥f∥2.

Proposition 6.4.7. Let d be even more than two. If f ∈ B2(Rn)⊗ Rn and
g ∈ B2(Rn) is a radial function, then f · g ∈ B(Rn) ⊗ Rn. In particular,
we have

∥f · g∥B ≤ c∥f∥B2∥g∥B2 , (6.27)

where c is a positive constant.

Proof. From the Hölder inequality we obtain

∥f · g∥B ≤ c

∫
Rn

(1 + |y|)λ|f(y)||g(y)| dy

= c

∫
Rn

(1 + |y|)
λ
2 |f(y)|(1 + |y|)

λ
2 |g(y)| dy

≤ c

(∫
Rn

(1 + |y|)λ|f(y)|2 dy
) 1

2
(∫

Rn

(1 + |y|)λ|g(y)|2dy
) 1

2

= c∥f∥B2∥g∥B2 .
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Chapter 6. On the Clifford short-time Fourier transform and its properties

Now we show that the space Wpλ(Rn) is invariant under translation of
radial functions.

Lemma 6.4.8. Let d be even more than two and p ≥ 1. If g is a radial
function in Wpλ(Rn) then τxg ∈ Wpλ(Rn), i.e

∥τxg∥Wpλ
≤ (1 + |x|)λ∥g∥Wpλ

, x ∈ Rn. (6.28)

Proof. Since g is a radial function by Proposition 6.3.3 we have

∥τxg∥pWpλ
=

∫
Rn

(1 + |t|)pλ|τxg(t)|p dt =
∫
Rn

(1 + |t|)pλ|g(t− x)|p dt.

Now, we put t− x = z and by the triangle inequality we obtain

∥τxg∥pWpλ
=

∫
Rn

(1 + |z + x|)pλ|g(z)|p dt

≤
∫
Rn

(1 + |z|+ |x|)pλ|g(z)|p dz

≤
∫
Rn

(1 + |z|)pλ(1 + |x|)pλ|g(z)|p dz

= (1 + |x|)pλ
∫
Rn

(1 + |z|)pλ|g(z)|p dz

= (1 + |x|)pλ∥g∥pWpλ
.

So we gain the thesis.

Remark 6.4.9. Using the same techniques and the hypothesis of Lemma
6.4.8 it is possible to prove that also the space Bp(Rn) is invariant under
translation. Indeed

∥τxg∥Bp ≤ (1 + |x|)
λ
p ∥g∥Bp , x ∈ Rn. (6.29)

Now, we have all the tools for proving that Vgf ∈ B(Rn)⊗ Rn.

Theorem 6.4.10. Let n > 2 and even. If f ∈ B2(Rn)⊗Rn and g ∈ B2(Rn)
is a radial function, then the Clifford short-time Fourier transform is well
defined.

Proof. If we prove that τxg · f ∈ B(Rn)⊗ Rn, then by Theorem 6.2.6 and
Definition 6.4.2 we have the thesis.
So, we focus on proving that τxg · f ∈ B(Rn)⊗Rn. By inequalities (6.27)
and (6.29) we have

∥τxg · f∥B ≤ c∥τxg∥B2∥f∥B2 ≤ c(1 + |x|)
λ
2 ∥g∥B2∥f∥B2 <∞,

where c is a positive constant.
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6.5. Elementary properties of the Clifford short-time Fourier transform

It is possible to prove the well-posedness of the Clfford short-time Fourier
transform choosing different spaces for the signal f and the window func-
tion g.

Theorem 6.4.11. Let n > 2 and even. If f ∈ L2(Rn) ⊗ Rn and g ∈
W2λ(Rn) is a radial function, then the Clifford short-time Fourier transform
is well defined.

Proof. As before it is an application of Theorem 6.2.6. So we focus on
proving that τxg · f ∈ B(Rn) ⊗ Rn. By inequalities (6.26) and (6.28) we
have

∥τxg · f∥B ≤ c∥τxg∥W2λ
∥f∥2 ≤ c(1 + |x|)λ∥g∥W2λ

∥f∥2 <∞,

where c is positive constant.

In the rest of the chapter we consider (except some cases) the signal
f ∈ L2(Rn)⊗Rn and the window function g ∈ W2λ(Rn) a radial function.

6.5 Elementary properties of the Clifford short-time Fourier
transform

In this section we prove some basic properties of the Clifford short-time
Fourier transform.

Proposition 6.5.1. Let n > 2 and even. If f ∈ L2(Rn) ⊗ Rn and g ∈
W2λ(Rn) is a radial function then

1 (Right linearity) If λ, µ ∈ Rn and h ∈ L2(Rn)⊗ Rn then

[Vg(fλ+ hµ)](ω, x) = Vg(f)(x, ω)λ+ Vg(h)(x, ω)µ.

2 (Parity)
Vgf(x, ω) = Vgf(−x, ω).

Proof. The first one follows from the Definition 6.4.2. The second one
follows from the hypothesis of radiality of g.

In the next proposition we list some equivalent forms of the Clifford
short-time Fourier transform.

Proposition 6.5.2. Let n > 2 and even. We suppose that g ∈ W2λ(Rn) is a
radial function and f ∈ L2(Rn)⊗ Rn. Then
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Chapter 6. On the Clifford short-time Fourier transform and its properties

1.

Vgf(x, ω) = (2π)−
n
2

∫
Rn

Mωτxg(t)f(t) dt, (6.30)

2.

Vgf(x, ω) = (2π)−
n
2

∫
Rn

τωMx(F−g)(t)(F−f)(t) dt, (6.31)

3.

Vgf(x, ω) = VF−(g)F−(f)(ω, x) (6.32)

−(2π)−
n
2

∫
Rn

[τx,Mω]g(t)f(t) dt,

4.

Vgf(x, ω) = F− (F−(f) · τωF−(g)) (x) (6.33)

−(2π)−
n
2

∫
Rn

[τx,Mω]g(t)f(t) dt,

where [. , .] is the commutator defined in (6.5).

Proof. 1. To prove the equality (6.30) we use Definition 6.4.2, the rela-
tion (6.8) and the radiality of the function g

Vgf(x, ω) = (2π)−
n
2

∫
Rn

K−(t, ω)τxg(t)f(t) dt

= (2π)−
n
2

∫
Rn

K−(ω, t)τxg(t)f(t) dt

= (2π)−
n
2

∫
Rn

Mωτxg(t)f(t) dt.

2. We prove (6.31) using (6.30), Plancherel’s theorem (see Proposition
6.2.7) and the formula (6.23)

Vgf(x, ω) = (2π)−
n
2

∫
Rn

(F− (Mωτxg) (y)F−(f)(y) dy

= (2π)−
n
2

∫
Rn

τωMxF−(g)(y)F−(f)(y) dy.
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6.5. Elementary properties of the Clifford short-time Fourier transform

3. To show (6.32) we observe that since g is a radial function also its
Clifford-Fourier transform is radial. Thus by relation (6.8) we have

VF−(g)F−(f)(ω, x) = (2π)−
n
2

∫
Rn

K−(t, x)τωF−g(t)F−f(t) dt

= (2π)−
n
2

∫
Rn

K−(x, t)τωF−g(t)F−f(t) dt

= (2π)−
n
2

∫
Rn

MxτωF−g(t)F−f(t) dt.

Finally, using Plancherel’s theorem, Theorem 6.2.10 and the relation
(6.23) we obtain

VF−(g)F−(f)(ω, x) = (2π)−
n
2

∫
Rn

F− (MxτωF−g(t))f(t) dt

= (2π)−
n
2

∫
Rn

τxMωg(t)f(t) dt. (6.34)

Since the generalized translation and generalized modulation does not
commute (see Remark 6.3.8) we cannot exchange the rules of τx and
Mω. To change the order we use the commutator defined in (6.5), so
we can relate this formula with the Clifford short-time Fourier trans-
form of f with respect to g by using (6.30):

VF−(g)F−(f)(ω, x) = (2π)−
n
2

∫
Rn

[τx,Mω]g(t)f(t) dt+

+(2π)−
n
2

∫
Rn

Mωτxg(t)f(t) dt

= (2π)−
n
2

∫
Rn

[τx,Mω]g(t)f(t) dt+ Vgf(x, ω).
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Chapter 6. On the Clifford short-time Fourier transform and its properties

4. Finally, formula (6.33) follows from the relations (6.8) and (6.30)

F− ((F−(f) · τωF−(g)) (x) = (2π)−
n
2

∫
Rn

K−(y, x)F−(f)(y)

·τωF−(g)(y) dy

= (2π)−
n
2

∫
Rn

K−(x, y)τωF−(g)(y)

·F−(f)(y) dy

= (2π)−
n
2

∫
Rn

MxτωF−(g)(y)

·F−(f)(y) dy

= VF−(g)F−(ω, x).

Using formula (6.32) we obtain the thesis.

Remark 6.5.3. The formulas proved in Proposition 6.5.2 are similar to the
classical case ( see [92, Lemma 3.1.1]). The main difference is the presence
of the following integral ∫

Rn

[τx,Mω]g(t)f(t) dt.

This is due to the lack of commutativity.

Remark 6.5.4. Another difference with respect to the classical case is that
it is not possible to write the Clifford short-Fourier transform as a convolu-
tion of the Clifford-Fourier transfrom of the signal and the Clifford-Fourier
transform of the window function. For example it is not possible to prove a
formula like this

Vgf(x, ω) = (MxF−(g) ∗Cl F−(f))(ω).

Indeed, by the definition of convolution (see Definition 6.3.4) we have

(MxF−(g) ∗Cl F−(f))(ω) = (2π)−
n
2

∫
Rn

τyMxF−(g)(ω)F−(f)(y) dy.

Now, it is not possible to compute τyMxF−(g) using the classic formula of
the translation becauseMxF−(g) is no longer radial and so it is not possible
to derive a relation with the Clifford short-time Fourier transform.

Now we study the continuity of the Clifford short-time Fourier trans-
form.
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6.5. Elementary properties of the Clifford short-time Fourier transform

Theorem 6.5.5. Let n > 2 and even. If g ∈ W2λ(Rn) is a radial function
and f ∈ L2(Rn) ⊗ Rn then the Clifford short-time Fourier transform is a
continuous operator on L2(Rn)⊗ Rn.

Proof. We remark that g ∈ W2λ(Rn) ⊆ L2(Rn), hence by the formula
(6.30) it is enough to prove the continuity of the operators τx and Mω. The
continuity of the translation operator follows from the following fact

lim
x→0

∥τxg − g∥2 = 0.

On the other side the continuity of the modulation operator follows from
the formula (6.18) and the Parseval’s identity (see Proposition 6.2.8)

lim
ω→0

∥Mωg − g∥2 = lim
ω→0

∥τωF−(g)−F−(g)∥2 = 0.

Before to state the next result, we have to introduce some notations. We
call f ⊗ g the tensor product between f and g and it acts in the following
way

(f ⊗ g)(x, t) = f(x)g(t).

Let T be the asymmetric coordinate transform of a function f on R2n

T f(x, t) = f(t, t− x). (6.35)

Definition 6.5.6 (Partial Clifford-Fourier transform). Let f ∈ S(R2n)⊗Rn.
We define the partial Clifford-Fourier transform in the following way

F2−f(x, ω) = (2π)−
n
2

∫
Rn

K−(t, ω)f(x, t) dt. (6.36)

Remark 6.5.7. The partial Clifford-Fourier transform is the Cliffrod Fourier
transform defined in (6.6) with respect to the second variable, hence the
variable x is considered as a parameter.

Remark 6.5.8. All the properties which hold for the Clifford-Fourier trans-
form as the Plancherel’s theorem and the Parseval’s identity hold also for
the partial Clifford-Fourier transform.

Now, we show another way to write the Clifford short-time Fourier
transform using the tensor product and the partial Clifford-Fourier trans-
form, as in the classical case [92].

Lemma 6.5.9. If g ∈ W2λ(Rn) is a radial function and f ∈ L2(Rn) ⊗ Rn

then
Vgf(x, ω) = F2− (T (f ⊗ g)(x, ω)) .
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Chapter 6. On the Clifford short-time Fourier transform and its properties

Proof. From the definition of the partial Clifford-Fourier transform and the
definition of T (see formula (6.35)) we obtain

F2− (T (f ⊗ g)(x, ω)) =

∫
Rn

K−(t, ω)T (f ⊗ g) (x, t) dt

=

∫
Rn

K−(t, ω)T (f(x)g(t)) dt

=

∫
Rn

K−(t, ω)f(t)g(t− x) dt.

Now, using the fact that the window function g is real-valued, thus can
commute, and Definition 6.4.2 we get

F2− (T (f ⊗ g)(x, ω)) =

∫
Rn

K−(t, ω)f(t)g(t− x)

=

∫
Rn

K−(t, ω)g(t− x)f(t) dt

= Vgf(x, ω).

Now, we prove a sort of "covariance" property. The main difference
from the classical case (see [92, Lemma 3.1.3]) is that we do not have an
equality, this is due to the lack of commutativity.

Lemma 6.5.10. Let n > 2 and even. We suppose that g ∈ W2λ(Rn) is a
radial function and f ∈ L2(Rn)⊗ Rn, thus for x, µ, ω, η ∈ Rn we have

|Vgf(x−µ, ω−η)| ≤ c(1+ |ω|)λ(1+ |η|)λ(1+ |x|)λ(1+ |µ|)λ∥f∥2∥g∥W2λ
,

where c is a positive constant.

Proof. Firstly we use Lemma 6.2.5

|Vgf(x− µ, ω − η)| ≤ c

∫
Rn

|K−(t, ω − η)||f(t)g(t− x+ µ)| dt

≤ c

∫
Rn

(1 + |t|)λ(1 + |ω − η|)λ|f(t)g(t− x+ µ)| dt

≤ c(1 + |ω|)λ(1 + |η|)λ
∫
Rn

(1 + |t|)λ|f(t)||g(t− x+ µ)| dt,

where c is a positive constant. Now, by Hölder inequality we get

|Vgf(x−µ, ω−η)| ≤ c(1+|ω|)λ(1+|η|)λ∥f∥2
(∫

Rn

(1 + |t|)2λ|g(t− x+ µ)|2 dt
) 1

2

.
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Putting t− x+ µ = z in the integral above we obtain

|Vgf(x− µ, ω − η)| ≤ c(1 + |ω|)λ(1 + |η|)λ∥f∥2(∫
Rn

(1 + |z + x− µ|)2λ|g(z)|2 dz
) 1

2

≤ c(1 + |ω|)λ(1 + |η|)λ∥f∥2

·
(∫

Rn

(1 + |z|+ |x|+ |µ|)2λ|g(z)|2 dz
) 1

2

≤ c(1 + |ω|)λ(1 + |η|)λ(1 + |x|)λ(1 + |µ|)λ∥f∥2

·
(∫

Rn

(1 + |z|)2λ|g(z)|2 dz
) 1

2

= c(1 + |ω|)λ(1 + |η|)λ(1 + |x|)λ(1 + |µ|)λ∥f∥2∥g∥W2λ
.

6.6 Modulation and translation of the signal and of the win-
dow function

In this section we discuss what happens if we modulate and translate the
signal and the window function, respectively. Surprisingly, there are some
differences with respect to the classical Fourier analysis: the estimates de-
pends on the Clifford-Fourier transform of f and the convolution between
a function and g.

Proposition 6.6.1. Let n > 2 and even. If f ∈ S(Rn) ⊗ Rn and g is a
radial function in S(Rn), then for θ, η, µ, x, ω ∈ Rn we have

|VτθgτµMηf(x, ω)| ≤ c(1 + |ω|)λ(1 + |µ|)λ(1 + |θ|)2λ
(
(1 + |.|)2λ ∗ |g|

)
(x)

·
∫
Rn

(1 + |.|)2λ|τηF−f(.)|d·

where . is a fixed variable and c is a positive constant.

Proof. By Definition 6.4.2 we get

|VτθgτµMηf(x, ω)| ≤ c

∫
Rn

|K−(t, ω)||τθg(t− x)||τµMηf(t)| dt. (6.37)

Since by hypothesis the function g is radial to compute the translation of
the function g(t−x) we can use the ordinary formula of the translation (see
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Proposition 6.3.3), thus

τθg(t− x) = g(t− x− θ). (6.38)

On the other hand, in order to compute τµMηf(t), since we are not trans-
lating a radial function, we have to use the formula (6.17) and the relation
(6.18)

τµMηf(t) = (2π)−
d
2

∫
Rn

K−(ξ, t)K−(µ, ξ)F−(Mηf)(ξ) dξ

= (2π)−
d
2

∫
Rn

K−(ξ, t)K−(µ, ξ)τη(F−f)(ξ) dξ.

Therefore

τµMηf(t) = (2π)−
d
2

∫
Rn

K−(ξ, t)K−(µ, ξ)τη(F−f)(ξ) dξ. (6.39)

Putting (6.38) and (6.39) in (6.37) we obtain

|VτθgτµMηf(x, ω)| ≤ c

∫
R2n

|K−(t, ω)||g(t− x− θ)||K−(ξ, t)||K−(µ, ξ)|

·|τηF−f(ξ)| dξ dt.

Using the upper bound of the kernel K− (see Lemma 6.2.5) we get

|VτθgτµMηf(x, ω)| ≤ c(1 + |ω|)λ(1 + |µ|)λ
∫
R2n

(1 + |t|)2λ(1 + |ξ|)2λ|g(t− x− θ)|

|τηF−f(ξ)| dξ dt.

Now, we put z = t− θ

|VτθgτµMηf(x, ω)| ≤ c(1 + |ω|)λ(1 + |µ|)λ
∫
R2n

(1 + |z + θ|)2λ(1 + |ξ|)2λ|g(z − x)|

·|τηF−f(ξ)|dξdz

≤ c(1 + |ω|)λ(1 + |µ|)λ(1 + |θ|)2λ
∫
R2n

(1 + |z|)2λ|g(z − x)| ·

·(1 + |ξ|)2λ|τηF−f(ξ)| dξ dz.

Now, since g is radial we have the following equality

g(z − x) = g(x− z) = τzg(x). (6.40)
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6.6. Modulation and translation of the signal and of the window function

By Fubini’ theorem and the definition of convolution we get

|VτθgτµMηf(x, ω)| ≤ c(1 + |ω|)λ(1 + |µ|)λ(1 + |θ|)2λ
(
(1 + |z|)2λ ∗ |g|

)
(x)

·
∫
Rn

(1 + |ξ|)2λ|τηF−f(ξ)| dξ.

We observed that in Clifford-Fourier analysis there is not a commutative
relations between the modulation and the translation operator (see Remark
6.3.8). This is confirmed by the following estimate where we exchange the
order of the modulation and translation in the signal.

Proposition 6.6.2. Let n > 2 and even. If f ∈ S(Rn) ⊗ Rn and g is a
radial function in S(Rn), then for θ, η, µ, x, ω ∈ Rn we have

|VτθgMητµf(x, ω)| ≤ c(1 + |ω|)λ(1 + |η|)λ(1 + |µ|)λ(1 + |θ|)3λ(
(1 + |.|)3λ∗|g|

)
(x)

∫
Rn

(1 + |.|)2λ|F−f(.)|d·

where . is a fixed variable and c is a positive constant.

Proof. By Definition 6.4.2 and the radiality of g we get

|VτθgMητµf(x, ω)| ≤ c

∫
Rn

|K−(t, ω)||g(t−x− θ)||Mητµf(t)| dt. (6.41)

To translate the function f we need the formula (6.17) (because f is not
radial), thus

Mητµf(t) = K−(η, t)τµf(t)

= K−(η, t)

∫
Rn

K−(ξ, t)K−(µ, ξ)F−f(ξ) dξ. (6.42)

Putting (6.42) in (6.41) we obtain

|VτθgMητµf(x, ω)| ≤ c

∫
R2n

|K−(t, ω)||g(t− x− θ)||K−(η, t)|

·|K−(ξ, t)||K−(µ, ξ)||F−f(ξ)| dξdt.

Now by the upper bound of the kernel (see Lemma 6.2.5) we get

|VτθgMητµf(x, ω)| ≤ c(1 + |ω|)λ(1 + |η|)λ(1 + |µ|)λ
∫
R2n

(1 + |t|)3λ(1 + |ξ|)2λ

·|g(t− x− θ)||F−f(ξ)| dξdt.
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Putting z = t− θ, using the equality (6.40) and the Fubini’s theorem we
obtain

|VτθgMητµf(x, ω)| ≤ c(1 + |ω|)λ(1 + |η|)λ(1 + |µ|)λ
∫
R2n

(1 + |z + θ|)3λ

·(1 + |ξ|)2λ|g(z − x)||F−f(ξ)| dξdz
= c(1 + |ω|)λ(1 + |η|)λ(1 + |µ|)λ(1 + |θ|)3λ

·
(
(1 + |z|)3λ ∗ |g|

)
(x)

∫
Rn

(1 + |ξ|)2λ|F−f(ξ)| dξ.

Remark 6.6.3. One can wonder if it is possible to have an estimate for

|VMqτθgMητµf(x, ω)|, q, θ, η, µ, x, ω ∈ Rn. (6.43)

Basically with respect to Proposition 6.6.2 we make the modulation of the
window function. However, it is not possible to have an estimate for (6.43).
From Definition 6.4.2 we have

|VMqτθgMητµf(x, ω)| ≤ c

∫
Rn

|K−(t, ω)||τxMqτθg(t)||Mητµf(t)| dt.
(6.44)

It is not possible to use the ordinary formula of translation for computing
τxMqτθg, because we are not translating a radial function. Thus by formula
(6.17) and the property (6.23) we obtain

τxMqτθg(t) = (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)F−(Mqτθg)(z) dz

= (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)τqMθF−(g)(z) dz.

Therefore

τxMqτθg(t) = (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)τqMθF−(g)(z) dz. (6.45)

Putting (6.42) and (6.45) in (6.44) we get

|VMqτθgMητµf(x, ω)| ≤ c

∫
R3d

|K−(t, ω)||K−(z, t)||K−(x, z)||K−(η, t)|

·|K−(ξ, t)||K−(µ, ξ)||τqMθF−(g)(z)||F−f(ξ)| dzdξdt.
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6.6. Modulation and translation of the signal and of the window function

Using the upper bound of the kernel (see Lemma (6.2.5)) and the Fubini’s
theorem we obtain

|VMqτθgMητµf(x, ω)| ≤ c(1 + |ω|)λ(1 + |x|)λ(1 + |η|)λ(1 + |µ|)λ ·∫
R
(1 + |t|)4λ dt ·

∫
Rn

(1 + |z|)2λ|τqMθF−(g)(z)| dz

·
∫
Rn

(1 + |ξ|)2λ|F−(f)(ξ)| dξ.

Since λ = d−2
2

and n > 2 is even we have that the integral
∫
R(1 + |t|)4λ dt

is not convergent. Therefore it is not possible to have an estimate for
|VMqτθgMητµf(x, ω)|.

A similar reasoning proves that we cannot obtain estimates also for
|VτθMqgMητµf(x, ω)|, |VτθMqgτµMηf(x, ω)|, |VMqτθgτµMηf(x, ω)|.

Remark 6.6.4. It is not possible to repeat the same estimates of Proposition
6.6.1 and Proposition 6.6.2 using as a window function the modulation of
g. Below, we perform the computation to show where the problem arises.
Let θ, µ, η, x, ω ∈ Rn, we want to make an estimate of |VMθgτµMηf(x, ω)|.
From the Definition 6.4.2 we have

|VMθgτµMηf(x, ω)| ≤ c

∫
Rn

|K−(t, ω)||τxMθg(t)||τµMηf(t)| dt. (6.46)

Since Mθg is no longer radial we have to use the formula (6.17) for com-
puting the translation. Thus by formula (6.18) we get

τxMθg(t) = (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)F−(Mθg)(z) dz

= (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)τθF−(g)(z) dz.

Therefore

τxMθg(t) = (2π)−
d
2

∫
Rn

K−(z, t)K−(x, z)τθF−(g)(z) dz. (6.47)

Putting (6.47) and (6.39) in (6.46) and using the upper bound of the kernel
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Chapter 6. On the Clifford short-time Fourier transform and its properties

we obtain

|VMθgτµMηf(x, ω)| ≤ c

∫
Rn

|K−(t, ω)||K−(z, t)||K−(x, z)||τθF−(g)(z)| ·

·|K−(ξ, t)||K−(µ, ξ)||τηF−(f)(ξ)| dzdξdt

≤ c(1 + |ω|)λ(1 + |x|)λ(1 + |µ|)λ
∫
Rn

(1 + |t|)3λdt ·

·
∫
Rn

(1 + |z|)2λ|τθF−(g)(z)|dz
∫
Rn

(1 + |ξ|)2λ

|τηF−(f)(ξ)|dξ.

As in the previous remark the integral
∫
Rn(1 + |t|)3λdt does not converge,

so it not possible to have an estimate. The same considerations hold also
for |VMθgMητµf(x, ω)|.

6.7 Further properties of the Clifford short-time Fourier trans-
form

There are some properties for the Clifford short-time Fourier transform
which hold also for the complex case and quaternionic case (see [111]).

Theorem 6.7.1 (Orthogonality relation). Let n > 2 and even. Let g1, g2 ∈
S(Rn) be radial functions and f1, f2 ∈ L2(Rn)⊗ Rn. Then we have∫

R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx = ⟨f1, f2⟩
(∫

Rn

g1(z)g2(z) dz

)
.

(6.48)

Proof. From Definition 6.4.2 and the Plancherel’s theorem (see Proposition
6.2.7) we have∫
R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx =

∫
R2n

F−(τxḡ1 · f1)(ω)F−(τxḡ2 · f2)(ω)

dω dx

=

∫
R2n

(τxḡ1 · f1)(t)(τxḡ2 · f2)(t) dt dx.

Now, since g1 and g2 are real valued functions we can omit the conjugate.
Moreover, the window functions g1, g2 can commute. Thus∫
R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx =

∫
R2n

f1(t)f2(t)g1(t−x)g2(t−x) dt dx.
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6.7. Further properties of the Clifford short-time Fourier transform

By hypothesis we can use Fubini’s theorem for changing the order of inte-
gration∫

R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx =

∫
Rn

f1(t)f2(t)(∫
Rn

g1(t− x)g2(t− x) dx

)
dt.

Finally, by a change of variable we get∫
R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx =

∫
Rn

f1(t)f2(t)

(∫
Rn

g1(z)g2(z) dz

)
dt

= ⟨f1, f2⟩
(∫

Rn

g1(z)g2(z) dz

)
.

Remark 6.7.2. We can prove the above theorem also using Lemma 6.5.9,
and this proof may be of interest in some other contexts. Supposing the
same hypothesis of Theorem 6.7.1, by Plancherel’s theorem and the fact
that g1 and g2 are real valued, then we have∫
R2n

Vg1f1(x, ω)Vg2f2(x, ω) dω dx =

∫
R2n

F2−T (f1 ⊗ g1)(x, ω)

·F2−T (f2 ⊗ g2)(x, ω) dω dx

=

∫
R2n

T (f1 ⊗ g1)(x, t)

·T (f2 ⊗ g2)(x, t) dt dx

=

∫
R2n

f1(t)f2(t)g1(t− x)g2(t− x) dt dx.

Using the same arguments of Theorem 6.7.1 we obtain the equality (6.48).

Corollary 6.7.3. Let n > 2 and even. If g ∈ S(Rn) is a radial function
and f ∈ L2(Rn)⊗ Rn then

∥Vgf(x, ω)∥22 = ∥f∥22
∫
Rn

g2(z) dz.

Proof. If we put f1 = f2 := f and g1 = g2 := g in the equality (6.48) we
obtain the thesis.
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Chapter 6. On the Clifford short-time Fourier transform and its properties

Theorem 6.7.4 (Reconstruction formula). Let us assume that f ∈ L2(Rn)⊗
Rn , g ∈ S(Rn) is a radial function and

∫
Rn g

2(z) dz ̸= 0. Then for all
f ∈ L2(Rn)⊗ Rn we have

f(y) =
1∫

Rn g2(z) dz

∫
R2n

Mωτxg(y)Vgf(x, ω) dω dx.

Proof. Let us assume

f̃(y) :=
1∫

Rn g2(z) dz

∫
R2n

Mωτxg(y)Vgf(x, ω) dω dx.

Let h ∈ L2(Rn) ⊗ Rn. By the equality (6.30), the orthogonality relation
(see Theorem 6.7.1) and Fubini’s theorem we obtain

⟨f̃ , h⟩ =

∫
Rn

f̃(y)h(y) dy =
1∫

Rn g2(z) dz

(∫
R3d

Mωτxg(y)Vgf(x, ω) dω dx
)

h(y) dy

=
1∫

Rn g2(z) dz

∫
R3d

Mωτxg(y)Vgf(x, ω)h(y) dω dx dy

=
1∫

Rn g2(z) dz

∫
R3d

Vgf(x, ω) Mωτxg(y)h(y) dy dω dx

=
1∫

Rn g2(z) dz

∫
R2n

Vgf(x, ω)
(∫

Rn

Mωτxg(y)h(y) dy

)
dω dx

=
1∫

Rn g2(z) dz

∫
R2n

Vgf(x, ω)Vgh(x, ω) dω dx

=
1∫

Rn g2(z) dz
⟨f, h⟩

∫
Rn

g2(z) dz = ⟨f, h⟩.

We proved that for all h ∈ L2(Rn)⊗ Rn

⟨f̃ , h⟩ = ⟨f, h⟩.

This implies f̃(y) = f(y).

The inversion formula gives us the possibility to write the Clifford short-
time Fourier transform using the reproducing kernel associated to the Clif-
ford Gabor space, introduced in [4], defined by

GgRn
:= {Vgf, f ∈ L2(Rn)⊗ Rn},

where g is a radial window function.
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6.7. Further properties of the Clifford short-time Fourier transform

Theorem 6.7.5 (Reproducing kernel). Let n > 2 and even. If f ∈ L2(Rn)⊗
Rn and g is a radial function in S(Rn), we have that

Kg(ω, x;ω
′, x′) =

1

(2π)
d
2

∫
Rn g2(z) dz

∫
Rn

K−(t, ω
′)g(t−x′)K−(t, ω)g(t− x) dt

is the reproducing kernel of the space GgRn
, i.e

Vgf(x′, ω′) =

∫
R2n

Kg(ω, x;ω
′, x′)Vgf(x, ω) dω dx.

Proof. By the reconstruction formula (see Theorem 6.7.4), Fubini’s theo-
rem and since g is a real valued function we have

Vgf(x′, ω′) = (2π)−
n
2

∫
Rn

K−(t, ω
′)g(t− x′)f(t) dt

= (2π)−
n
2

∫
Rn

K−(t, ω
′)g(t− x′)

1∫
Rn g2(z) dz(∫

R2n

Mωτxg(t)Vgf(x, ω) dω dx
)
dt

= (2π)−
n
2

∫
R3d

K−(t, ω
′)g(t− x′)

1∫
Rn g2(z) dz

Mωτxg(t)Vgf(x, ω)dωdxdt

= (2π)−
n
2

∫
R3d

K−(t, ω
′)g(t− x′)

1∫
Rn g2(z) dz

K−(ω, t)

g(t− x)Vgf(x, ω) dt dω dx

=

∫
R2n

(∫
Rn

K−(t, ω
′)g(t− x′)

1

(2π)
d
2

∫
Rn g2(z) dz

K−(ω, t)g(t− x)dt

)
Vgf(x, ω)dωdx

=

∫
R2n

Kg(ω, x;ω
′, x′)Vgf(x, ω) dω dx.

For this reproducing kernel it is possible to have the following bound.

Corollary 6.7.6. Let n > 2 and even. Let us assume that f ∈ L2(Rn)⊗Rn

and g ∈ S(Rn) is a radial function, then we have that

|Kg(ω, x;ω
′, x′)| ≤ C(1 + |ω|)λ(1 + |ω′|)λ(1 + |x|)2λ(1 + |x′|)2λ,

where C is a constant.
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Chapter 6. On the Clifford short-time Fourier transform and its properties

Proof. By the relation (6.8) and the fact that g is a real valued function we
have that

Kg(ω, x;ω
′, x′) =

1

(2π)
d
2

∫
Rn g2(z) dz

∫
Rn

K−(t, ω
′)K−(ω, t)g(t−x′)g(t−x) dt.

Using the upper bound of the kernel K− (see Lemma 6.2.5) we get

|Kg(ω, x;ω
′, x′)| ≤ c

(2π)
d
2

∣∣∫
Rn g2(z) dz

∣∣
∫
Rn

|K−(t, ω
′)||K−(ω, t)||g(t− x′)|

|g(t− x)| dt
≤ c

(2π)
d
2

∣∣∫
Rn g2(z) dz

∣∣(1 + |ω|)λ(1 + |ω′|)λ

·
∫
Rn

(1 + |t|)2λ|g(t− x′)||g(t− x)| dt,

where c is a positive constant. If we put t = z + x+ x′ we get

|Kg(ω, x;ω
′, x′)| ≤ c

(2π)
d
2

∣∣∫
Rn g2(z) dz

∣∣(1 + |ω|)λ(1 + |ω′|)λ ·

·
∫
Rn

(1 + |z|+ |x|+ |x′|)2λ|g(z + x)||g(z + x′)| dz

≤ c

(2π)
d
2

∣∣∫
Rn g2(z) dz

∣∣(1 + |ω|)λ(1 + |ω′|)λ(1 + |x|)2λ

·(1 + |x′|)2λ
∫
Rn

(1 + |z|)2λ|g(z + x)||g(z + x′)| dz.

We denote as C :=
c
∫
Rn (1+|z|)2λ|g(z+x)||g(z+x′)| dz

(2π)
d
2 |∫Rn g2(z) dz| . Thus we get

|Kg(ω, x;ω
′, x′)| ≤ C(1 + |ω|)λ(1 + |ω′|)λ(1 + |x|)2λ(1 + |x′|)2λ.

6.8 Lieb’s Uncertainty principle

In this section we want to extend the Lieb’s Uncertainty Principle [110] in
the Clifford algebra setting. Firstly let us recall that in general the uncer-
tainty principles state that a function and its Fourier transform cannot be
simultaneously sharply localized.

Before to prove a weak uncertainty principle for the Clifford short-time
Fourier transform we go through the following important estimate.

140



i
i

“thesis” — 2022/12/4 — 11:25 — page 141 — #159 i
i

i
i

i
i

6.8. Lieb’s Uncertainty principle

Proposition 6.8.1. Let n > 2 and even. If g is a radial function inWpλ(Rn),
with p ≥ 1, then

∥Mωτxg∥p ≤ c(1 + |ω|)λ(1 + |x|)λ∥g∥Wpλ
,

where c is a positive constant.

Proof. Since g is a radial function by Proposition 6.3.3 we get

∥Mωτxg∥pp =
∫
Rn

|K−(ω, t)g(t− x)|p dt.

Now, if we put s = t− x by the upper bound of Lemma 6.2.5 we obtain

∥Mωτxg∥pp ≤ c

∫
Rn

|K−(ω, s+ x)|p|g(s)|p ds

≤ c

∫
Rn

(1 + |ω|)λp(1 + |s+ x|)λp|g(s)|p ds

≤ c(1 + |ω|)λp(1 + |x|)λp
∫
Rn

(1 + |s|)λp|g(s)|p ds

= c(1 + |ω|)λp(1 + |x|)λp∥g∥pWpλ
.

Remark 6.8.2. This result it is very different from the classical result of
the Fourier analysis, in which we have ∥Mωτxf∥p = ∥f∥p.

Proposition 6.8.3 (Weak uncertainty principle). Let n > 2 and even. Sup-
pose that ∥f∥2 = ∥g∥W2λ

= 1, with g a radial function. Let U ⊆ R2n be an
open set and ε ≥ 0 such that∫ ∫

U

(1 + |x|)−2λ(1 + |ω|)−2λ|Vgf(x, ω)|2 dx dω ≥ 1− ε. (6.49)

Then |U | ≥ (1− ε)1
c
, where c is positive constant different from zero.

Proof. Formula (6.30), Hölder inequality and Proposition 6.8.1 imply that

|Vgf(x, ω)| =

∫
Rn

|Mωτxg(t)||f(t)| dt ≤ ∥Mωτxg∥2∥f∥2

≤ c(1 + |x|)λ(1 + |ω|)λ∥g∥W2λ
∥f∥2 = c(1 + |x|)λ(1 + |ω|)λ.
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Chapter 6. On the Clifford short-time Fourier transform and its properties

Therefore, using this calculus we get

1− ε ≤
∫ ∫

U

(1 + |x|)−2λ(1 + |ω|)−2λ|Vgf(x, ω)|2 dx dω

≤ c

∫ ∫
U

(1 + |x|)−2λ(1 + |ω|)−2λ(1 + |x|)2λ(1 + |ω|)2λ dx dω

= c|U |.

hence |U | ≥ (1− ε)1
c
.

Remark 6.8.4. The Lieb’s uncertainty principle in this context is quite dif-
ferent from the classical one, since we have the presence of polynomials in
(6.49), but these are crucial for the convergence of the integrals.

Remark 6.8.5. In order to improve the above proposition, in the classi-
cal Fourier analysis, Lieb [110] estimated the Lp- norm of the short-time
Fourier transform using the Hausdorff-Young’s inequality. However, as re-
marked in [109], it is not possible to extend this inequality in the Clifford
algebra setting since we cannot use the Riesz interpolation theorem.
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Part II: Functional calculi based on the
S-spectrum and the Fueter-Sce theorem

In this second part of the dissertation we present new functional calculi
based on the S-spectrum. For our construction it is essential the Fueter-Sce
theorem.

In chapter 7, we give an overview of the proof of the Fueter-Sce theo-
rem done by M. Sce in a very general and pioneering way. Then we re-
call from [54] that even the Fueter-Sce map can be considered as an inte-
gral transform, that maps slice hyperholomorphic functions into monogenic
functions. This result is achieved by applying the Fueter-Sce map, namely
a suitable integer power of the Laplace operator in n + 1 variables, to the
slice hyperholomorphic Cauchy kernel.

In Chapter 8 we compute the Fourier transform of the slice Cauchy ker-
nel. This is the correct tool to compute the Fueter-Sce-Qian map applied
to the slice hyperholomorphic Cauchy kernel. The Fueter-Sce-Qian map
is the fractional version of the Laplace operator, therefore we have to deal
with Fourier multipliers.

Based on the integral representation of the Fueter-Sce theorem, in Chap-
ter 9 we provide a new functional calculus: the F -functional calculus. This
a monogenic functional calculus in the same spirit of McIntosh and col-
laborators but it is based on the commutative version of the S-spectrum.
Therefore the F -functional calculus can be considered as a bridge between
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Chapter 6. On the Clifford short-time Fourier transform and its properties

the spectral theory on the S-spectrum and the monogenic spectral theory.

In Chapter 10 and Chapter 11 we provide the definitions and the main prop-
erties of the harmonic and polyanalytic functional calculi based on the S-
spectrum. These are based on integral representations of axially harmonic
and polyanalytic functions.
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CHAPTER7
Fueter-Sce theorem

7.1 Motivation

Holomorphic functions of one complex variable f : Ω ⊆ C → C can
be extended to quaternionic-valued functions or, more in general, to Clif-
ford algebra-valued functions using the Fueter-Sce-Qian extension theo-
rem. This theorem is due to R.Fueter [85] for the quaternionic setting, it
was generalized by M.Sce [126], to Clifford algebra Rn for n odd while
the case of even dimension was proved by T.Qian in [122] (see also the
recent monograph [125]). The method of T.Qian requires the use of the
Fourier transform in the space of distributions and is deeply different from
the method of R. Fueter and M. Sce.

This extension theorem is also called the Fueter-Sce-Qian construction
and gives two different notions of hyperholomorphic functions. Consider
functions defined on an open set U in the quaternions H or in Rn+1 for Clif-
ford algebra-valued functions, then the Fueter-Sce-Qian extension consists
of two steps.

Step (A) extends holomorphic functions to the class of slice hyperholo-
morphic functions. These functions are also called slice monogenic for
Clifford algebra-valued functions and slice regular in the quaternionic case.
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Chapter 7. Fueter-Sce theorem

See Chapter 3.
Step (B) extends slice hyperholomorphic functions to monogenic func-

tions or Fueter regular functions in the case of the quaternions. The theory
of monogenic functions is widely studied and the literature is rich, see e.g.
the books [28, 55, 67, 94] and references therein.

Both the classes of hyperholomorphic functions have a Cauchy formula
that can be used to define functions of quaternionic operators or of n-tuples
of operators.

The Cauchy formula of slice hyperholomorphic functions generates the
S-functional calculus for quaternionic linear operators or for n-tuples of
not necessarily commuting operators. This calculus is based on the notion
of S-spectrum, see Chapter 3.

Step (A) has generated the following research directions: the founda-
tion of the quaternionic spectral theory on the S-spectrum, see the books
[44, 45] and, for paravector operators, [59]; quaternionic evolution oper-
ators; Phillips functional calculus; H∞-functional calculus, see [44]; the
characteristic operator functions and applications to linear system theory
[14]; quaternionic perturbation theory and invariant subspaces [33]; Schur
analysis in this setting [13]. For some new classes of fractional diffusion
problems based on fractional powers of quaternionic linear operators, see
the book [44] and the more recent contributions [39, 40, 48].

Step (B) generates the monogenic functional calculus based on the mono-
genic spectrum. Some of the research directions in this area are: monogenic
spectral theory and applications [99]; singular integrals and Fourier trans-
form, see the recent book [125].

The first mathematicians who understood the importance of hypercom-
plex analysis to define functions of noncommuting operators on Banach
spaces have been A. McIntosh and his collaborators. Using the theory
of monogenic functions they developed the monogenic functional calculus
and several of its applications, see [99, 101, 108, 112].

In this chapter we give a detailed proof of the Fueter-Sce theorem in a
very general setting, see [57]. Moreover, we show that it is possible to write
the Fueter-Sce mapping theorem in integral form. To prove this we follow
the arguments of [54].

7.2 Futer-Sce theorem in quadratic algebras

In this section we recall the proof of the Fueter-Sce theorem, see [57, 126].
The proof was made in a very general setting. We consider modules with
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7.2. Futer-Sce theorem in quadratic algebras

units which are quadratic. This means that each element of the quadratic
modules satisfies a quadratic equation with respect to the multiplicative
structure induced in the module by their tensor algebra. This quadratic
modules generalizes the quaternionic and Clifford algebras.

Let M be a module on a field F with characteristic not equal 2 and let
1 = i0, i1, . . . , in be a basis. After identifying the unit of F with the unit of
M, we can write the elements in M in the form

x = x0 + x1i1 + · · ·+ xnin = x0 + x (xi ∈ F).

Let T be the tensor algebra over M and let us assume that for the ele-
ments x2 in T one has

x2 = q(x) =
n∑

j,k=1

ajkxjxk, (7.1)

where q(x) denotes a quadratic form on F; it follows that x2 (which belongs
to T) is in M.

We observe that M is closed with respect to the operation that to the pair

x, y associates
xy + yx

2
. This gives a Jordan algebra M+.

Definition 7.2.1 (Quadratic module). If we consider the module M in T
equipped with the multiplicative structure of M+, we will say that M is a
quadratic module and we denote it by Mq.

Remark 7.2.2. By reducing q(x) to a canonical form, it is possible to note
that M+ is a Jordan algebra, central, simple, of degree 2, then Mq can be
embedded only in algebras A such that A+ contains such a Jordan algebra.
Among these algebras we find those obtainable with the Cayley-Dickson
process; these algebras are themselves quadratic modules.

Remark 7.2.3. If, in addition, A ⊃ Mq is associative, it contains the al-
gebra quotient of T and of the ideal generated by (7.1); thus the smallest
associative algebra containing a quadratic module is a Clifford algebra.

Now, we give the definition of conjugate element of x ∈ Mq.

Definition 7.2.4. We call conjugate of an element x = x0 + x in Mq the
element x̄ = x0 − x.

It is immediate that

x+ x̄ = 2x0 = t(x) (trace of x)
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xx̄ = x20 − q(x) = n(x) (norm of x)

are in F and that the elements x in Mq satisfy the equation in F

x2 − t(x)x+ n(x) = 0. (7.2)

Now, we define the inverse element in Mq.

Definition 7.2.5. If x is an element in Mq with nonzero norm, then the
inverse element of x is defined by

x−1 :=
x̄

n(x)
. (7.3)

Remark 7.2.6. It is obvious that the element in (7.3) is a solution to the
equation x · y = 1 in the variable y.

Now, we set

y2 :=
1

ε
q(x),

and so
n(x) = x20 − εy2,

where y, ε ∈ F or to one of its extensions Fo.
In the sequel, we shall consider Mq on Fo and we will focus on the case

y ̸= 0.

Definition 7.2.7. We say that a function w(x) in Mq is biholomorphic if

w(x) = u(x0, y) +
1

y
v(x0, y)x (7.4)

where u(x0, y) and v(x0, y) are functions of x0 and y, satisfying

∂u

∂x0
=
∂v

∂y

∂u

∂y
= ε

∂v

∂x0
. (7.5)

Remark 7.2.8. The derivations have the usual formal properties.

Remark 7.2.9. If we consider ε = −1 in Definition 7.2.7 we get the Defi-
nition of a slice hyperholomorhic function, see Definition 3.1.3.

The biholomorphic functions enjoy the following fundamental property.

Theorem 7.2.10. The powers of a biholomorphic function are still biholo-
morphic functions.
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Proof. Let us consider w a biholomorphic function of the form (7.4). Then
by the binomial theorem we have

wm =

(
u+

1

y
vx

)m
=

m∑
k=0

(
m

k

)
um−k 1

yk
vkxk.

Splitting the sum and considering that x2k = (q(x))k = εky2k, we have

wm =
m∑
k=0

(
m

k

)
um−k 1

yk
vkxk

=

[m/2]∑
k=0

(
m

2k

)
um−2k 1

y2k
v2kx2k +

[m/2]∑
k=0

(
m

2k + 1

)
um−2k−1 1

y2k+1
v2k+1x2k+1

=

[m/2]∑
k=0

(
m

2k

)
um−2k 1

y2k
v2kεky2k +

[m/2]∑
k=0

(
m

2k + 1

)
um−2k−1 1

y2k+1
v2k+1εky2kx

=

[m/2]∑
k=0

(ε)k
(
m

2k

)
um−2kv2k

+
1

y

[m/2]∑
k=0

(ε)k
(

m

2k + 1

)
um−2k−1v2k+1

x

where [m/2] is the integer part of m/2. We get the thesis since x and x−1

are biholomorphic functions.

We denote by ∂ the operator

i1
∂

∂x1
+ · · ·+ in

∂

∂xn
.

We set the quadratic form inverse of q(x) as

q−1(x) =
n∑

j,k=1

αjkxjxk.

This is helpful to give the definition of the following operator

□w =
∂2w

∂x20
− q−1(∂)w, (7.6)

Remark 7.2.11. The operator defined in (7.6) in the Clifford algebras set-
ting is the Laplace operator.
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Lemma 7.2.12. Let s ∈ N. Then we set

us :=
∂us−1

∂y

1

y
, vs :=

∂vs−1

∂y

1

y
− vs−1

y2
=

∂

∂y

vs−1

y
(7.7)

ws = us +
1

y
vsx.

We assume that the function w0 is holomorphic. Then the functions us, vs
satisfy the relations

∂us
∂x0

=
∂vs
∂y

+ 2s
vs
y
,

∂us
∂y

= ε
∂vs
∂x0

. (7.8)

Proof. We show the result by induction on s. For s = 0, formula (7.8)
reduces to (7.5), which holds because w0 is biholomorphic by hypothesis.
So let us suppose that (7.8) hold for s− 1; then

∂us
∂x0

=
1

y

∂2us−1

∂x0∂y
=

1

y

∂

∂y

[
∂vs−1

∂y
+ 2(s− 1)

vs−1

y

]
=

1

y

∂

∂y

[
yvs +

vs−1

y
+ 2(s− 1)

vs−1

y

]
=

1

y

∂

∂y

[
yvs + (2s− 1)

vs−1

y

]
=

1

y

∂

∂y

[
yvs −

vs−1

y

]
+

2s

y

∂

∂y

vs−1

y

=
1

y

∂

∂y
yvs −

1

y

∂

∂y

vs−1

y
+ 2s

vs
y

=
1

y

∂

∂y
yvs −

vs
y

+ 2s
vs
y

=
∂

∂y
vs +

vs
y

− vs
y

+ 2s
vs
y

=
∂

∂y
vs + 2s

vs
y
.
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This prove the first equality of (7.7).

∂us
∂y

=
∂

∂y

(
1

y

∂us−1

∂y

)
= ε

∂

∂y

(
1

y

∂vs−1

∂x0

)
= ε

(
− 1

y2
∂vs−1

∂x0
+

1

y

∂

∂y

∂

∂x0
vs−1

)
= ε

∂

∂x0

(
1

y

∂vs−1

∂y
− vs−1

y2

)
= ε

∂vs
∂x0

.

Theorem 7.2.13. If w0 = u0 +
1

y
v0x is a biholomorphic function and n is

odd, then:
□(n−1)/2w0 = 0. (7.9)

Before to show the previous theorem we need some preliminary results.

Proof. We use the same notations of Lemma 7.2.12. By applying the equa-
tions in (7.7). We get

∂2us
∂x20

=
∂

∂x0

(
∂vs
∂y

+ 2s
vs
y

)
(7.10)

=
∂

∂y

∂vs
∂x0

+ 2s
∂

∂x0

(
vs
y

)
=

1

ε

∂2us
∂y2

+
2s

ε

∂us
∂y

1

y
=

1

ε

∂(yus+1)

∂y
+

2s

ε
us+1

=
1

ε

(
us+1 + y

∂us+1

∂y
+ 2sus+1

)
=

1

ε

[
(2s+ 1)us+1 + y

∂us+1

∂y

]
.

Similarly we have

∂2vs
∂x20

=
∂

∂x0

(
∂vs
∂x0

)
=

1

ε

∂

∂x0

(
∂us
∂y

)
=

1

ε

∂

∂y

(
∂vs
∂y

+ 2s
vs
y

)
. (7.11)
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Hence (7.11) and (7.11) imply

∂2ws
∂x20

=
∂2us
∂x20

+
1

y

∂2vs
∂x20

x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

yε

∂

∂y

(
∂vs
∂y

+ 2s
vs
y

)
x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

yε

∂

∂y

[
yvs+1 +

1

y
(2s+ 1)vs

]
x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

yε

[
vs+1 + y

∂vs+1

∂y
− 1

y2
(2s+ 1)vs+

+
(2s+ 1)

y

∂vs
∂y

]
x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

yε

[
vs+1 + y

∂vs+1

∂y
+ vs+1(2s+ 1)

]
x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

yε

[
y
∂vs+1

∂y
+ (2s+ 2)vs+1

]
x

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

ε

[
∂vs+1

∂y
+ (2s+ 2)

vs+1

y

]
x.

Therefore

∂2ws
∂x20

=
1

ε

[
y
∂us+1

∂y
+ (2s+ 1)us+1

]
+

1

ε

[
∂vs+1

∂y
+ (2s+ 2)

vs+1

y

]
x.

Since y2 = 1
ε
q(x) we get

∂

∂q
y2 =

1

ε

∂

∂q
q.

This implies

∂y

∂q
=

1

2yε
.

Hence, we have

∂us
∂xj

=
∂us
∂y

∂y

∂q

∂q

∂xj
=
∂us
∂y

1

2εy

∂q

∂xj
=

1

2ε
us+1

∂q

∂xj
. (7.12)
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and

∂

∂xj

(
1

y
vsx

)
=

(
∂

∂xj

1

y

)
vsx+

1

y

(
∂

∂xj
vs

)
x+

1

y
vs
∂x

∂xj

=
∂y−1

∂y

∂y

∂q

∂q

∂xj
vsx+

1

y

∂vs
∂y

∂y

∂q

∂q

∂xj
x+

1

y
vsij

= − 1

y2
1

2εy

∂q

∂xj
vsx+

1

y

1

2εy

∂vs
∂y

∂q

∂xj
x+

1

y
vsij

= − 1

2εy3
vs
∂q

∂xj
x+

1

2εy2
∂vs
∂y

∂q

∂xj
x+

1

y
vsij

=
1

2εy

[
1

y

∂vs
∂y

− 1

y2
vs

]
∂q

∂xj
x+

1

y
vsij

=
1

2εy
vs+1

∂q

∂xj
x+

1

y
vsij. (7.13)

Therefore we have

∂ws
∂xj

=
1

2ε
us+1

∂q

∂xj
+

1

2εy
vs+1

∂q

∂xj
x+

1

y
vsij. (7.14)

From (7.12) and the definition of vs (see (7.7)) we have

∂

∂xk

(
1

2ε
us+1

∂q

∂xj

)
=

1

2ε

(
∂us+1

∂xk

)
∂q

∂xj
+

1

2ε
us+1

∂2q

∂xk∂xj

=
1

4ε2
us+2

∂q

∂xk

∂q

∂xj
+

1

2ε
us+12ajk

=
1

4ε2y

∂us+1

∂y

∂q

∂xk

∂q

∂xj
+

1

ε
us+1ajk.
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Now, from (7.13) we have

∂

∂xk

(
1

2εy
vs+1

∂q

∂xj
x

)
=

1

2ε

∂

∂xk

(
vs+1

y

)
∂q

∂xj
x+

1

2ε

vs+1

y

∂2q

∂xk∂xj
x+

+
1

2ε

vs+1

y

∂q

∂xj

∂x

∂xk

=
1

4ε2y

(
1

y

∂vs+1

∂y
− 1

y2
vs+1

)
∂q

∂xk

∂q

∂xj
x+

+
1

2ε

vs+1

y
2ajkx+

1

2ε

vs+1

y

∂q

∂xj
ik

=
1

4ε2y2
∂vs+1

∂y

∂q

∂xk

∂q

∂xj
x− 1

4ε2y3
vs+1

∂q

∂xk

∂q

∂xj
x

+
1

ε

vs+1

y
ajkx+

1

2ε

vs+1

y

∂q

∂xj
ik.

Therefore from (7.13) we get

∂

∂xk

(
vs
y

)
ij =

1

2εy
vs+1

∂q

∂xk
ij.

Hence, we have

∂2ws
∂xk∂xj

=
1

4ε2y

∂us+1

∂y

∂q

∂xk

∂q

∂xj
+

1

ε
us+1ajk −

1

4ε2y3
vs+1

∂q

∂xk

∂q

∂xj
x

+
1

4ε2y2
∂vs+1

∂y

∂q

∂xk

∂q

∂xj
x+

vs+1

εy

[
ajkx+

1

2

∂q

∂xj
ik +

1

2

∂q

∂xk
ij

]
.

Since

n∑
j,k=1

αjk
∂q

∂xk

∂q

∂xj
= 4q(x) = 4εy2

n∑
j,k=1

αjkajk = n,

and
n∑

j,k=1

αjk
∂q

∂xj
ik =

n∑
j,k=1

αjk
∂q

∂xk
ij = 2x,

we get
n∑

j,k=1

αjk
∂2ws
∂xk∂xj

=
1

ε

[
∂us+1

∂y
y + nus+1 +

∂vs+1

∂y
x− vs+1

y
x+

vs+1

y
nx+ 2

vs+1

y
x

]
=

1

ε

[
∂us+1

∂y
y + nus+1 +

∂vs+1

∂y
x+ (n+ 1)

vs+1

y
x

]
.
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Therefore we have
n∑

j,k=1

αjk
∂2ws
∂xk∂xj

=
1

ε

[
∂us+1

∂y
y + nus+1 +

∂vs+1

∂y
x+ (n+ 1)

vs+1

y
x

]
.

Finally, by taking into account (7.6),we obtain

ε□ws = −(n− 2s− 1)ws+1. (7.15)

Thus, if n is odd, for s = (n− 1)/2 one has

ε□w(n−1)/2 = 0,

namely (7.9).

Definition 7.2.14. A function w with values the quadratic module Mq is
called JB-monogenic (Jordan B-monogenic) if, for a symmetric matrix B
with entries bij and with determinant different from zero (|B| ≠ 0) one has

∂w

∂x0
− 1

2ε

n∑
j,k=1

bjk

[
∂w

∂xj
ik + ik

∂w

∂xj

]
= 0.

Theorem 7.2.15. Let us suppose that w0 is biholomorphic. Then we set

S :=
1

2ε

n∑
j,k=1

bjk
∂q

∂xj
ik.

If
x = S.

in Mq, the (n − 1)/2 power of □ of all biholomorphic functions is JB-
monogenic.

Proof. Firstly, we show the following identity.

2− 1

εy2
(Sx+ xS) =

1

εy2
[x(x− S) + (x− S)x]. (7.16)

We can get (7.16) with some manipulations:
1

εy2
[x(x− S) + (x− S)x] =

1

εy2
[2x2 − xS − Sx]

=
1

εy2
2x2 − 1

εy2
[Sx+ xS]

=
2

εy2
εy2 − 1

εy2
[Sx+ xS]

= 2− 1

εy2
(Sx+ xS).

155



i
i

“thesis” — 2022/12/4 — 11:25 — page 156 — #174 i
i

i
i

i
i

Chapter 7. Fueter-Sce theorem

Now from the relations (7.8) we have

∂ws
∂x0

=
∂us
∂x0

+
1

y

∂vs
∂x0

x (7.17)

=
∂vs
∂y

+ 2s
vs
y

+
1

yε

∂us
∂y

x

=
∂vs
∂y

+ 2s
vs
y

+
us+1

ε
x.

By (7.17) we get

∂ws
∂xj

=
1

2ε
us+1

∂q

∂xj
+

1

2εy
vs+1

∂q

∂xj
x+

1

y
vsij.

Hence we have

1

2ε

n∑
j,k=1

bjk

[
∂ws
∂xj

ik + ik
∂ws
∂xj

]
=

1

2ε

(
n∑

j,k=1

bjk

[
1

2ε
us+1

∂q

∂xj
+

+
1

2εy
vs+1

∂q

∂xj
x+

1

y
vsij

]
ik + bjkik

[
1

2ε
us+1

∂q

∂xj
+

1

2εy
vs+1

∂q

∂xj
x

+
1

y
vsij

])
.

Moreover, by recalling the definition of S we have

1

4ε2

n∑
j,k=1

bjkus+1
∂q

∂xj
ik +

1

4ε2

n∑
j,k=1

bjkus+1
∂q

∂xj
ik =

1

ε

us+1

2ε

n∑
j,k=1

bjkus+1
∂q

∂xj
ik

=
1

ε
us+1S, (7.18)

and

1

4ε2

n∑
j,k=1

bjk
vs+1

y

∂q

∂xj
xik +

1

4ε2

n∑
j,k=1

bjkik
vs+1

y

∂q

∂xj
x

=
1

4ε2
vs+1

y
x

n∑
j,k=1

bjk
∂q

∂xj
ik +

1

4ε2
vs+1

y

n∑
j,k=1

bjk
∂q

∂xj
ikx

+
1

2ε

vs+1

y
xS +

1

2ε

vs+1

y
Sx. (7.19)

Since vs+1 =
1
y
∂vs
∂y

− 1
y2
vs we get
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1

2ε

vs+1

y
xS +

1

2ε

vs+1

y
Sx =

1

2εy2
∂vs
∂y

xS − 1

2εy3
vsxS +

1

2εy2
∂vs
∂y

Sx

− 1

2εy3
vsSx (7.20)

=
1

2εy2
∂vs
∂y

(xS + Sx)− vs
y

[
1

2εy2
(xS + Sx)

]
.

From the polar form of a quadratic form we get

1

2ε

(
n∑

j,k=1

bjk
vs
y
ijik +

n∑
j,k=1

bjk
vs
y
ikij

)
=

1

2ε

vs
y

(
n∑

j,k=1

bjkijik +
n∑

j,k=1

bjkikij

)

=
1

ε

vs
y

n∑
j,k=1

bjkajk. (7.21)

By putting together (7.17), (7.18), (7.19), (7.21) and (7.21) we get

0 =
1

ε
us+1(x− S) +

∂vs
∂y

[
1− 1

2ε2y2
(xS + Sx)

]
+

+
vs
y

[
2s+

1

2ε2y2
(xS + Sx)

]
− vs
y

1

ε

n∑
j,k=1

bjkajk

=
1

ε
us+1(x− S) +

∂vs
∂y

[
1− 1

2ε2y2
(xS + Sx)

]
+

+
vs
y

[
2s+ 1− 1 +

1

2ε2y2
(xS + Sx)

]
− vs
y

1

ε

n∑
j,k=1

bjkajk

Moreover, we know that

ws+1 = us+1 +
1

y
vs+1x = us+1 +

1

y2
∂vs
∂y

x− 1

y3
vsx.

Finally, by (7.16) we obtain

0 =
1

2ε
us+1(x− S) +

1

2ε
us+1(x− S) +

1

2εy2
∂vs
∂y

[x(x− S) + (x− S)x]+

+
vs
y

[
2s+ 1− 1

2εy2
[x(x− S) + (x− S)x]

]
− vs
y

1

ε

n∑
j,k=1

bjkajk

=
1

2ε
[ws+1(x− S) + (x− S)ws+1] +

vs
y
(2s+ 1)− vs

y

1

ε

n∑
j,k=1

bjkajk
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Chapter 7. Fueter-Sce theorem

and this is satisfied if s =
n− 1

2
and if

x = S. (7.22)

If in Definition 7.2.14 we consider that Mq, or B, is a scalar and w
is such that the jacobian matrix ∂w/∂x is symmetric, then we have the
following.

Definition 7.2.16. A functionw is said B-monogenic on the left if it satisfies
the following equation

∂w

∂x0
− 1

ε

n∑
j,k=1

bjkij
∂w

∂xk
= DBw = 0. (7.23)

In a similar way one defines functions B-monogenic on the right.

Remark 7.2.17. With computations similar to the one done in Theorem
7.2.15 one can see that if (7.22) holds, the (n− 1)/2 power of □ of biholo-
morphic functions is B-monogenic on the left and on the right.

Remark 7.2.18. If Mq is alternative, multiplying on the left (7.23) by D̄B,
the conjugate operator of DB, one finds that

D̄BDBw =

[
∂2

∂x20
− 1

ε
g(δ)

]
w = 0, (7.24)

where g(x) is the quadratic form associated with the matrix BABt. Thus if
B satisfies the relation

BABt = ε2A−1, (7.25)

then (7.24) coincides with (7.6) and we can say that: B-monogenic func-
tions are solutions of the equation □w = 0.

7.2.1 Comments

The Fueter mapping theorem was proved by R.Fueter in the Mid Thirties,
see [85] and it can be considered a special case of the previous construc-
tion, in which F = R and M = H. Basically, it provides a way to generate
Fueter regular functions starting from holomorphic functions of one com-
plex variable. The Fueter’s theorem can be stated as follows
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7.2. Futer-Sce theorem in quadratic algebras

Theorem 7.2.19 (Fueter mapping theorem). Let f0(z) = α(u, v)+ iβ(u, v)
be a holomorphic function defined in a domain (open and connected) D in
the upper-half complex plane and let

ΩD = {q = q0 + q | (q0, |q|) ∈ D}

be the open set induced by D in H. Then the operator TF1 defined by

f(q) = TF1(f0) := α(q0, |q|) +
q

|q|
β(q0, |q|)

maps the set of holomorphic functions in the set of intrinsic slice hyper-
holomorphic functions. Moreover, the function

f̆(q) := TF2

(
α(q0, |q|) +

q

|q|
β(q0, |q|)

)
,

where TF2 = ∆ and ∆ is the Laplacian in four real variables qℓ, ℓ =
0, 1, 2, 3, is in the kernel of the Fueter operator i.e.

Df̆ = 0 on ΩD.

Another special case, of the construction presented in the previous sec-
tion, is to take F = R and M = Rn+1, identified with the set of paravectors.
In this case by applying ∆

n−1
2 (∆ is the Laplace operator in n+1 variables)

to a function induced on the set of paravectors by a holomorphic function,
one obtains a monogenic function with values in the real Clifford algebra
Rn over an odd number n of imaginary units. Now, we state a version of
the Fueter-Sce theorem that is commonly known in the recent literature.

Theorem 7.2.20 (Fueter-Sce mapping theorem). Let n ≥ 3 be an odd num-
ber. Let f(z) = α(u, v) + iβ(u, v) be a holomoprhic function defined in a
domain (open and connected) D in the upper-half complex plane and let

ΩD := {x = x0 + x | (x0, |x|) ∈ D},

be the open set induced by D in Rn+1. The operator TFS1 defined by

TFS1(f) = α(x0, |x|) +
x

|x|
β(x0, |x|) (7.26)

maps the holomorphic function f(z) in the set of intrinsic slice hyperholo-
morphic function. Then the function

f̆(x) := TFS2

(
α(x0, |x|) +

x

|x|
β(x0, |x|)

)
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Chapter 7. Fueter-Sce theorem

where TFS2 := ∆
n−1
2 is in the kernel of the Dirac operator, i.e.,

Df̆(x) = 0, on ΩD.

We observe that in the previous theorem the operator TFS1 maps holo-
morphic functions into the set of intrinsic slice hyperholomorphic func-
tions, denoted by N (ΩD). Similarly, when we apply the operator TFS1 to
the set of intrinsic slice hyperholomorphic functions, we obtain a subclass
of the monogenic functions that is called axially monogenic functions.

Definition 7.2.21 (Axially monogenic function). Let D ⊂ C. Let ΩD be
an axially symmetric open set in Rn+1, and let x = x0+x = x0+ωr ∈ ΩD

with r := |x| and ω := x
|x| . A function f : ΩD → Rn is an axially

monogenic function if it is monogenic, i.e, Df = 0, and it has the form

f(x0 + x) = A(x0, |x|) + ωB(x0, |x|), (7.27)

where the functions A and B satisfy the even-odd conditions, see (3.2). We
denote this set of functions as AM(ΩD).

We can visualize the Fueter-Sce construction by the following diagram

O(D)
TFS1−−−→ N (ΩD)

TFS2−−−−→ AM(ΩD), (7.28)

where O(D) is the set of holomorphic function.

Remark 7.2.22. We observe that the map TFS1 can naturally be defined
on R-valued functions of one real variable. This is due to the equivalence
between the space of intrinsic holomorphic functions in C, and the space
A(R) of R-valued real-analytic functions on R that can be holomorphically
extended to the entire complex plane C. In this way, we obtain a map
TFS1 : A(R)⊗Rn → SH(Rn+1) which factorizes the Fueter-Sce extension
as follows

A(R)⊗ Rn SH(Rn+1)

AM(Rn+1)

TFS1

TFS2

Sce’s results are broader than Theorem 7.2.20 from two different points
of view:

• the algebra in which the results are proved
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7.2. Futer-Sce theorem in quadratic algebras

• the type of functions obtained.

The quadratic module Mq can be embedded in algebras of specific form,
like for example in the Cayley-Dickson algebras, in particular the octonions
and case of associative algebras and in all Clifford algebras.

By Theorem 7.2.15 we know that if we consider a function f0(z) =
f0(u+ iv) = α(u, v) + iβ(u, v) holomorphic, then

∆
n−1
2 f(x) = ∆

n−1
2

(
u(x0, |x|) +

x

|x|
v(x0, |x|)

)
is a JB-monogenic function, i.e.,

∂f

∂x0
− 1

2ε

n∑
j,k=1

bj,k

[
∂f

∂xj
ik + ik

∂f

xj

]
,

where the matrix B = [bjk] is symmetric and nondegenerate.
The case in which monogenic functions are obtained occurs when B =

I , with I being the identity matrix, and Mq is the set of paravectors in
a Clifford algebra. Operators of Cauchy-Fueter type in which there are
coefficients bjk such that the matrix B = [bjk] is orthogonal have been
considered in [127].

About 40 years after the results of Sce, T. Qian in [122] showed that the
Futer-Sce theorem holds in the case of a Clifford algebra over an even num-
ber n of imaginary units. He showed that also in this case, Sce’s construc-
tion gives a monogenic function. He makes use of the Fourier multiplier

(−∆)
n−1
2 = F−1 (2π| · |)n−1 F, (7.29)

in order to give meaning to the fractional powers of the Laplacian corre-
sponding to the cases where n is even. Here F and F−1 are the Fourier and
inverse Fourier transform in Rn+1.

Qian’s extension makes use of the following more constructive approach.
Consider a meromorphic intrinsic function f(z) on C, together with its Lau-
rent expansion around z = 0

f(z) =
∑
j∈Z

ajz
j.

It is clearly seen that all the coefficients aj in the above expansion must
be real numbers and therefore, they play no role when applying the slice
extension map TFS1. Thus, to determine the action of the Fueter-Sce-Qian
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mapping τn := sgn(−x0)n−1∆
n−1
2 , with n being even, on the slice exten-

sion f(x0+x) := TFS1[f ](x) of f , it is enough to consider only the actions
τn [x

j] , j ∈ Z.
A direct computation of these actions, using the Fourier multiplier defi-

nition (7.29), is possible for all dimensions n ∈ N only when we consider
negative powers of x, i.e. x−ℓ with ℓ ∈ N. Observe that xℓ (ℓ ∈ N) is not in
the Schwartz class of rapidly decreasing functions and therefore, ∆

n−1
2

[
xℓ
]

is not well-defined as a function if n is even. However, it is possible to de-
fine suitable actions of the Fueter-Sce-Qian mapping on positive powers of
the paravector x by means of the Kelvin inversion

I[f ](x) =
x̄

|x|n+1
f

(
x̄

|x|2

)
, (7.30)

which maps monogenic functions into monogenic functions.
In general, the following relations have been established for the action

of the Fueter-Sce-Qian mapping on integer powers of x for all dimensions
n ∈ N,

τn
[
xℓ
]
=


sgn(−x0)n−1∆

n−1
2

[
xℓ
]
, ℓ < 0,

0, 0 ≤ ℓ ≤ n− 2,

I
[
∆

n−1
2

[
x−ℓ+n−2

]]
, n− 1 ≤ ℓ.

(7.31)

In [122], it was shown that (7.31) indeed provides a suitable extension of
the pointwise differential operator ∆

n−1
2

[
xℓ
]

when n is odd since, in this
case, both approaches coincide.

Remark 7.2.23. It is worth noticing that the above definition of the Fueter-
Sce-Qian mapping is slightly different form the customary definition used
in the literature, see e.g. [103, 122]. Our modification consists in the in-
troduction of the (almost constant) factor sgn(−x0)n−1 after the action
∆

n−1
2

[
xℓ
]

when ℓ < 0. As we will show in the following section, this
small difference allows for a better description of τn in terms of the GCK
operator. Observe also that this change still preserves the property that τn
extends the pointwise differential operator ∆

n−1
2 from n odd to n ∈ N.

Indeed, it is obvious that sgn(−x0)n−1 ≡ 1 if n is odd.

More explicit expressions for the actions (7.31) will be provided in sec-
tion 7.4, see also [78, 103, 122].

Nowadays there are several generalizations of the Futer-Sce-Qian map-
ping theorem, see [49, 119–121, 129] and the survey [124]. Moreover,
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in [123] T. Qian proved that the Fueter-Sce’s theorem is useful to show
boundedness of singular integrals.

7.3 Fueter-Sce-Qian theorem and generalized CK-extension

The aim of this section is to bring together two essential results in Clif-
ford analysis: the Fueter-Sce-Qian theorem and the generalized Cauchy-
Kovalevskaya extension [67, 75, 95] (CK-extension for short). There is a
vast literature on both results, which essentially provide two different ways
of transforming analytic functions of one (real or complex) variable into
monogenic functions

In general, every monogenic function defined at Rn is determined by its
restriction to the hyperplane x0 = 0. On the other hand, any real-analytic
function f(x) defined in a region of Rn, has a unique monogenic extension
f(x0, x) called Cauchy-Kovalevskaya extension (CK-extension). However,
it is possible to deal with restrictions to submanifolds not only of codimen-
sion one but of arbitrary codimension. This kind of expansion is called
generalized CK-extension (GCK-extension). It was obtained in [67] for
monogenic functions, defined in Ω ⊂ Rn+p, by considering their restric-
tions to Rp. The set Ω is a SO(n)-invariant (n+p)-dimensional neighbour-
hood of Ω1 := Ω ∩ Rp. By this a Taylor series for monogenic functions
f(x, y) is obtained, where y ∈ Rp is considered as a parameter. Thus, we
get a power series in the variable x ∈ Rn. The following is a particular case
of such a result for codimension p = 1, see [67].

Theorem 7.3.1 (Generalized CK-extension). Let f0(x0) be a Clifford-valued
analytic function in a real domain Ω1 ⊂ R. Then there exists a unique se-
quence {fj(x0)} of analytic functions such that the series

f(x0, x) =
∞∑
j=0

xjfj(x0)

converges in an axially symmetric slice (n + 1)-diemensional neighbour-
hood Ω ⊂ Rn+1 of Ω1 and its sum is monogenic. Moreover,

f(x0, x) = Γ
(n
2

)( |x|∂x0
2

)−n
2
[
|x|∂x0
2

Jn
2
−1(|x|∂x0)+

+
x∂x0
2

Jn
2
(|x|∂x0)

]
f0(x0), (7.32)

where Jν is the Bessel function of the first kind of order ν.
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Formula (7.32) is known as the generalized CK-extension of f0, and it
is denoted it by GCK[f0](x0, x). This extension operator defines an isomo-
prhism between right modules:

GCK : A(Ω1)⊗ Rn → AM(Ω),

whose inverse is given by the restriction operator to the real line, i.e.
GCK[f0](x0, 0) = f0(x0).

The actions of the Fueter-Sce-Qian, the GCK and the slice monogenic
extension maps can be summarized in the following diagram:

A(Ω1)⊗ Rn SH(Ω)

A(Ω1)⊗ Rn AM(Ω)

TFS1

? τn

GCK

(7.33)

Obviously, the map GCK does not coincide with τn ◦TFS1 since GCK is an
isomorphism between right modules while τn ◦ TFS1 is not. Nevertheless,
the above diagram can be completed (and made commutative) by adding
the missing left vertical arrow. We address this problem in the following
section.

7.3.1 The odd dimensional case

In this case, the action of the pointwise differential operator ∆
n−1
2 on slice

monogenic functions has been explicitly computed, see e.g. [118, Lem.3.2]
and [93, Thm. 11.33]. This result will be extremely useful when deriving
the connection between the Fueter-Sce-Qian’s theorem and the generalized
CK-extension.

Lemma 7.3.2 ( [93,118]). If n ∈ N is odd, then the action of the pointwise
differential operator ∆

n−1
2 on a slice hyperholomorphic function

f(x0 + x) = α(x0, r) + ω β(x0, r),

is given by

∆
n−1
2 [f(x0 + x)] = A(x0, r) + ωB(x0, r),

with

A(x0, r) = (n− 1)!!

(
1

r
∂r

)n−1
2

[α](x0, r), (7.34)
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and

B(x0, r) = (n− 1)!!

(
∂r
1

r

)n−1
2

[β](x0, r). (7.35)

We can now formulate the main result of this section.

Theorem 7.3.3. Let f(u + iv) = α(u, v) + iβ(u, v) be an intrinsic holo-
morphic function defined on an intrinsic complex domain Ω2 ⊂ C. Then
for n odd and r = |x|we have

∆
n−1
2 [f(x0 + x)] = (n− 1)!! GCK

[(
1

r
∂r

)n−1
2

[α](x0, 0)

]

= (−1)
n−1
2
(n− 1)!!

(n− 2)!!
GCK

[
f (n−1)(x0)

]
.

Setting γn = (−1)
n−1
2

(n−1)!!
(n−2)!!

and Ω1 = Ω2 ∩ R, we obtain the following
commutative diagram.

A(Ω1)⊗ Rn SM(Ω)

A(Ω1)⊗ Rn AM(Ω)

TFS1

γm∂
n−1
x0

TFS2

GCK

(7.36)

Proof. The fact that f is an holomorphic intrinsic function means that α(u, v)
is an even analytic function in v while β(u, v) is an odd analytic function
in v. Thus, after setting u = x0 and v = r, we easily see that the functions

A(x0, r) = (n− 1)!!

(
1

r
∂r

)n−1
2

[α](x0, r),

and

B(x0, r) = (n− 1)!!

(
∂r
1

r

)n−1
2

[β](x0, r).

also are even and odd analytic functions in the variable r, respectively. Us-
ing Lemma 7.3.2 we identify these functions as the components of the axial
monogenic function that results from the action of the Fueter-Sce-Qian map
on f , i.e.

∆
n−1
2 f(x0 + x) = A(x0, r) + ωB(x0, r).
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By virtue of the generalized CK-extension Theorem 7.3.1, the above axially
monogenic function is completely determined by its restriction to the real
line

∆
n−1
2 f(x0 + x)

∣∣
x=0

.

Since B(x0, r) is odd in the variable r, we easily obtain that

∆
n−1
2 f(x0 + x)

∣∣∣
x=0

= A(x0, 0) = (n− 1)!!

(
1

r
∂r

)n−1
2

[α](x0, 0).

Therefore,

∆
n−1
2 f(x0 + x) = (n− 1)!! GCK

[(
1

r
∂r

)n−1
2

[α](x0, 0)

]
.

Since the function f is an intrinsic holomorphic function we have

α(x0, r) =
∞∑
j=0

(−1)jr2j

(2j)!
∂2jx0 [α](x0, 0),

which for any ℓ ∈ N yields(
1

r
∂r

)ℓ
[α](x0, r) =

∞∑
j=ℓ

(−1)j
(2j)(2j − 2) · · · (2j − 2ℓ+ 2)

(2j)!
r2j−2ℓ ·

∂2jx0 [α](x0, 0)

=
∞∑
j=0

(−1)j+ℓ2ℓ
(j + ℓ)!

j!(2j + 2ℓ)!
r2j∂2j+2ℓ

x0
[α](x0, 0).

Taking r = 0, we obtain(
1

r
∂r

)ℓ
[α](x0, 0) =

(−1)ℓ

(2ℓ− 1)!!
∂2ℓx0 [α](x0, 0) =

(−1)ℓ

(2ℓ− 1)!!
f (2ℓ)(x0),

which proves the desired result when substituting ℓ = n−1
2

.

7.3.2 The even case

We now extend Theorem 7.3.3 to any dimension n ∈ N regardless of the
parity of n. To that end, we make use of the more constructive approach
developed by Qian and his collaborators, see e.g. [103, 122].
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As we discussed prevously, this approach focusses on the basic actions
τn [x

j] defined in (7.31) for all j ∈ Z. These actions on integer powers of
the paravector x have been explicitly computed for all dimensions n ∈ N
and all powers j ∈ Z, in terms of the so-called monogenic monomials, see
e.g. [78, 103, 122].

Definition 7.3.4 (Monogenic monomials). Let n, k ∈ N, we define the
monogenic monomials P (−k) and P (k−1) respectively by

P (−k) :=
(−1)k−1σn+1λn

(k − 1)!
∂k−1
x0

[E], P (k−1) := I[P (−k)].

Here λn = 2n−1
(
Γ
(
n+1
2

))2, σn+1 = 2π
n+1
2

Γ(n+1
2 )

is the surface area of the

unit sphere Sn−1 in Rn+1, E(x) is the so-called Cauchy kernel, i.e. the
fundamental solution of D = ∂x0 + ∂x given by

E(x) =
1

σn+1

x̄

|x|n+1
,

while I is the Kelvin inversion defined in (7.30), i.e.

I[f ](x) = σn+1E(x) f

(
x̄

|x|2

)
.

Using the Fourier multiplier definition of the fractional Laplacian (7.29),
it has been shown that (see for example [78, 103, 122])

(−∆)
n−1
2 [x−k] := F−1

[
(2π| · |)n−1 F [(·)−k]

]
(x) = P (−k)(x)

Combining this identity with the definition of τm given in (7.31) one easily
obtains the following result.

Theorem 7.3.5 ( [103, 122]). Let n ∈ N, ℓ ∈ Z. The actions of the Fueter-
Sce-Qian mapping τn[xℓ] defined in (7.31) are given by the expressions

τn[x
ℓ] = (−1)

1−n
2


sgn(−x0)n−1P (ℓ)(x), ℓ < 0,

0, 0 ≤ ℓ ≤ n− 2,

P (ℓ+1−n)(x), n− 1 ≤ ℓ.

From the above theorem, it is clear that our goal now reduces to find how
the monogenic monomials can be expressed in terms of the generalized CK-
extension map. To that end, we first note that the Cauchy kernel E(x) is an
axial monogenic function on Rn+1 \ {0} since

E(x0, x) = x0(x
2
0+r

2)−
n+1
2 −ω r(x20+r2)−

n+1
2 , with r = |x| and ω =

x

r
.
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It is thus clear that the monomials with negative indices P (−k), k ∈ N, are
also axial monogenic. The axial monogenicity of the rest of the monomials
P (k), with k ∈ N, can be shown as a consequence of the following result.

Lemma 7.3.6. The following statements hold:

i) The Kelvin inversion I preserves axial monogenicity.

ii) Given a domain Ω1 ⊂ R and f0 ∈ A(Ω1)⊗ Rn, we have

I ◦ GCK[f0] = sgn(x0)
n+1 GCK

[
x−n0 f0(x

−1
0 )
]
.

Proof. In [67, Chpt. II], it was proved that the Kelvin inversion I preserves
monogenicity. Thus, to prove i), it suffices to show that I preserves the
axial form (7.27).
We first observe that |x0+x|γ = (x20+ |x|2) γ

2 (γ ∈ R) is a scalar function of
x0 and |x|. Thus for any axial monogenic function f(x0, x) = A(x0, |x|) +
xB(x0, |x|) we have that

I[f ](x0, x) =
x0 − x

|x0 + x|n+1

[
A

(
x0

|x0 + x|2
,

|x|
|x0 + x|2

)
− x

|x0 + x|2
B

(
x0

|x0 + x|2
,

|x|
|x0 + x|2

)]
= A1(x0, |x|) + xB1(x0, |x|),

for a suitable pair of functions A1 and B1. The second statement ii) easily
follows from the properties of the generalized CK-extension (see Theorem
7.3.1). Indeed,

I ◦ GCK[f0](x0, x) =
x0 − x

|x0 + x|n+1
GCK[f0]

(
x0

|x0 + x|2
,− x

|x0 + x|2

)
.

Hence, the restriction of this axial monogenic function to the real line is
given by

I ◦ GCK[f0](x0, 0) =
x0

|x0|n+1
GCK[f0]

(
x−1
0 , 0

)
= sgn(x0)

n+1x−n0 f0(x
−1
0 ),

which proves the result.

We can now write the monogenic monomials P (k) as generalized CK-
extensions of suitable initial analytic functions of one real variable.

168



i
i

“thesis” — 2022/12/4 — 11:25 — page 169 — #187 i
i

i
i

i
i

7.3. Fueter-Sce-Qian theorem and generalized CK-extension

Proposition 7.3.7. For all n, k ∈ N we have that

P (−k) =
λn(n+ k − 2)!

(k − 1)!(n− 1)!
sgn(x0)

n−1 GCK[x−k−n+1
0 ], (7.37)

P (k−1) =
λn(n+ k − 2)!

(k − 1)!(n− 1)!
GCK[xk−1

0 ], (7.38)

Or equivalently,

P (−k) =
λn

(n− 1)!
sgn(−x0)n−1 GCK ◦ ∂n−1

x0
[x−k0 ], (7.39)

P (k−1) =
λn

(n− 1)!
GCK ◦ ∂n−1

x0
[xn+k−2

0 ]. (7.40)

Proof. From P (−k) = (−1)k−1σn+1λn
(k−1)!

∂k−1
x0

[E] we obtain

P (−k)∣∣
x=0

=
(−1)k−1λn
(k − 1)!

∂k−1
x0

[
x0

|x0|n+1

]
=

(−1)k−1λn
(k − 1)!

sgn(x0)
n+1 ∂k−1

x0

[
x−n0

]
=

λn(n+ k − 2)!

(k − 1)!(n− 1)!
sgn(x0)

n−1 x−k−n+1
0 .

On the other hand, substituting the indentity x−k−n+1
0 = (−1)n−1 (k−1)!

(k+n−2)!
∂n−1
x0

[x−k0 ]

in the above equality yields

P (−k)∣∣
x=0

=
λn

(n− 1)!
sgn(−x0)n−1 ∂n−1

x0
[x−k0 ].

Using the fact that axially monogenic functions are completely determined
by their restrictions to the real line, we obtain from the two last equalities
that (7.37) and (7.39) hold.
For P (k−1) with k ∈ N we have, by virtue of Lemma 7.3.6 and (7.37), that

P (k−1) = I[P (−k)]

=
λn(n+ k − 2)!

(k − 1)!(n− 1)!
sgn(x0)

n−1 I ◦ GCK[x−k−n+1
0 ]

=
λn(n+ k − 2)!

(k − 1)!(n− 1)!
GCK[xk−1

0 ].
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Chapter 7. Fueter-Sce theorem

Substituting the identity xk−1
0 = (k−1)!

(n+k−2)!
∂n−1
x0

[xn+k−2
0 ] in the above equality

we obtain,

P (k−1) =
λn

(n− 1)!
GCK ◦ ∂n−1

x0
[xn+k−2

0 ],

which completes the proof.

We can now extend the above relation between the Fueter-Sce-Qian map
and the generalized CK-extension when acting on the basic monomials xk0,
k ∈ Z, to general analytic functions by considering their Laurent expan-
sions.

Theorem 7.3.8. Let Ω2 ⊂ C be an intrinsic complex domain and let f :
Ω2 → C be a holomorphic intrinsic function. Then for all dimensions
m ∈ N we have

τn [f(x0 + x)] =
(−1)

1−n
2 2n−1

(n− 1)!
Γ

(
n+ 1

2

)2

GCK ◦ ∂n−1
x0

[f(x0)]. (7.41)

Setting γn = (−1)
1−n
2 2n−1

(n−1)!
Γ
(
n+1
2

)2 and Ω1 = Ω2 ∩R, we obtain the follow-
ing extension of the commutative diagram (7.36) to all dimensions n ∈ N

A(Ω1)⊗ Rn SM(Ω)

A(Ω1)⊗ Rn AM(Ω)

TFS1

γn∂
n−1
x0

τn

GCK

Remark 7.3.9. The previously defined constant γn = (−1)
1−n
2 2n−1

(n−1)!
Γ
(
n+1
2

)2
is an extension to all dimensions n ∈ N of the constant γn = (−1)

n−1
2

(n−1)!!
(n−2)!!

introduced in Theorem 7.34 for odd values of n. Indeed, if n is odd, then

Γ

(
n+ 1

2

)2

=

[(
n− 1

2

)(
n− 3

2

)
. . .

(
2

2

)]2
=

(
(n− 1)!!

)2
2n−1

,

and (−1)
1−n
2 = (−1)

n−1
2 since the power n−1

2
is integer. The combination

of these two facts easily yields

(−1)
1−n
2 2n−1

(n− 1)!
Γ

(
n+ 1

2

)2

= (−1)
n−1
2
(n− 1)!!

(n− 2)!!
, for n odd.
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7.3. Fueter-Sce-Qian theorem and generalized CK-extension

Proof. We can assume without loosing generality that f is holomorphic
around the origin. If that is not the case, we can always obtain such a
function by applying a translation argument. Let us consider the Laurent
expansion of f at z = 0, i.e.

f(z) =
∑
j∈Z

aj z
j, aj ∈ R.

The action of the Fueter mapping on this function is thus given by

τnf(x0 + x) =
∑
j∈Z

aj τn
[
xj
]
, aj ∈ R.

We recall that the action of τn does not affect the convergence of the above
series, see [103]. Hence, combining Theorem 7.3.5 and Proposition 7.3.7,
we obtain

τnf(x0 + x) =
∞∑
k=1

a−k τn
[
x−k
]
+

∞∑
k=1

ak τn
[
xk
]

= (−1)
1−n
2

∞∑
k=1

a−k sgn(−x0)n−1 P (−k)

+(−1)
1−n
2

∞∑
k=n−1

ak P
(k+1−n)

= (−1)
1−n
2

∞∑
k=1

a−k sgn(−x0)n−1 P (−k) + (−1)
1−n
2

∞∑
k=0

ak+n−1 P
(k)

= (−1)
1−n
2

∞∑
k=1

a−k
λn

(n− 1)!
GCK ◦ ∂n−1

x0
[x−k0 ]

+(−1)
1−n
2

∞∑
k=0

ak+n−1
λn

(n− 1)!
GCK ◦ ∂n−1

x0
[xn+k−1

0 ]

= (−1)
1−m

2
λn

(n− 1)!
GCK ◦ ∂n−1

x0

[
∞∑
k=1

a−k x
−k
0 +

∞∑
k=0

ak+n−1 x
n+k−1
0

]

= (−1)
1−n
2

λn
(n− 1)!

GCK ◦ ∂n−1
x0

[
∞∑
k=1

a−k x
−k
0 +

∞∑
k=0

ak x
k
0

]

= (−1)
1−n
2

λn
(n− 1)!

GCK ◦ ∂n−1
x0

[f(x0)],

which completes the proof.
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Chapter 7. Fueter-Sce theorem

7.4 Fueter-Sce theorem in integral form

In this section we recall how to show a version of the Fueter-Sce mapping
theorem in integral form, see [41, 54]. This theorem will be fundamental
in the sequel. Precisely given a holomorphic function f we will see how
to generate a monogenic function f̆ by an integral transform whose kernel
has an interesting form.

We begin by computing the powers of the Laplacian applied to the slice
Cauchy kernels. A key point is to use the second form of the slice Cauchy
kernels, see Definition 3.1.16. Even if the first form of the slice Cauchy ker-
nels is more suitable for several applications, for example, for the definition
of the functional calculus, the explicit computations of The Laplacian ap-
plied to the first form of the slice Cauchy kernels does not yield a simple
closed formula.

Theorem 7.4.1. Let x, s ∈ Rn+1 be such that x /∈ [s] and let

∆ =
n∑
i=0

∂2

∂x2i

be the Laplace operator in the variables x.

• If we consider the left slice monogenic Cauchy kernel S−1
L (s, x) writ-

ten in form II, i.e,

S−1
L (s, x) = (s− x̄)(s2 − 2x0s+ |x|2)−1.

Then for h ≥ 1 we have

∆hS−1
L (s, x) = c(h)(s− x̄)(s2 − 2x0(x)s+ |x|2)−(h+1). (7.42)

• If we consider the right slice monogenic Cauchy kernel S−1
L (s, x) writ-

ten in form II, i.e,

S−1
R (s, x) = (s2 − 2x0s+ |x|2)−1(s− x̄).

Then for h ≥ 1 we have

∆hS−1
R (s, x) = c(h)(s2 − 2x0s+ |x|2)−(h+1)(s− x̄). (7.43)

where c(h) := (−1)h
∏h

ℓ=1(2ℓ)
∏h

ℓ=1(n− 2ℓ+ 1).
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7.4. Fueter-Sce theorem in integral form

Proof. We shall only consider the left slice monogenic case. The other one
follows by similar computations. We prove the result by induction on h.
We start with the case h = 1. We have
∂

∂x0
S−1
L (s, x) = −(s−x̄)(−2s+2x0)(s

2−2x0s+|x|2)−2−(s2−2x0s+|x|2)−1,

and
∂2

∂x20
S−1
L (s, x) = 2(−2s+ 2x0)(s

2 − 2x0 + |x|2)−2 − 2(s− x̄) ·

(s2 − 2x0s+ |x|2)−3 + 2(s− x̄)(−2s+ 2x0)
2

·(s2 − 2x0s+ |x|2)−3.

Furthermore, for 1 ≤ i ≤ n we have

∂

∂xi
S−1
L (s, x) = ei(s

2 − 2x0s+ |x|2)−1 − 2(s− x̄)xi(s
2 − 2x0s+ |x|2)−2.

∂2

∂x2i
S−1
L (s, x) = −4xiei(s

2 − 2x0s+ |x|2)−2 − 2(s− x̄) ·

(s2 − 2x0s+ |x|2)−2 + 8(s− x̄)x2i (s
2 − 2x0s+ |x|2)−3.

Therefore, we have

∆S−1
L (s, x) = 2(−2s+ 2x0)(s

2 − 2x0 + |x|2)−2 + 2(s− x̄)(−2s+ 2x0)
2

·(s2 − 2x0s+ |x|2)−3 − 4
n∑
i=1

xiei(s
2 − 2x0s+ |x|2)−2

+8
n∑
i=1

x2i (s− x̄)(s2 − 2x0s+ |x|2)−3 − 2(n+ 1)(s− x̄) ·

(s2 − 2x0 + |x|2)−2

= −4

(
s− x0 +

n∑
i=1

eixi

)
(s2 − 2x0s+ |x|2)−2 + 2(s− x̄) ·[

(−2s+ 2x0)
2 +

n∑
i=1

4x2i

]
(s2 − 2x0s+ |x|2)−3

−2(n+ 1)(s− x̄)(s2 − 2x0s+ |x|2)−2

= −4(s− x̄)(s2 − 2x0s+ |x|2)−2 + 8(s− x̄) ·
(s2 − 2x0s+ |x|2)−2 − 2(n+ 1)(s− x̄)(s2 − 2x0s+ |x|2)−2

= −2(n− 1)(s− x̄)(s2 − 2x0s+ |x|2)−2.
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Chapter 7. Fueter-Sce theorem

This proves formula (7.42) for h = 1.
Now we assume that formula (7.42) holds for h ∈ N and let us show that

it holds for h + 1. In order to avoid the constants during the computations
we consider the function

Gh(s, x) = (s− x̄)(s2 − 2x0s+ |x|2)−(h+1). (7.44)

By similar computations done before we have

∂2

∂x20
Gh(s, x) = 2(h+ 1)(−2s+ 2x0)(s

2 − 2x0s+ |x|2)−h−1 + (h+ 1)(h+ 2) ·

(s− x̄)(−2s+ 2x0)
2(s2 − 2x0s+ |x|2)−h−3 − 2(h+ 1) ·

(s− x̄)(s2 − 2x0s+ |x|2)−h−2,

and

∂2

∂x2i
Gh(s, x) = −4(h+ 1)eixi(s

2 − 2x0s+ |x|2)−h−2 + 4(h+ 1)(h+ 2) ·

x2i (s− x̄)(s2 − 2x0s+ |x|2)−h−3 − 2(h+ 1)(s− x̄) ·
(s2 − 2x0s+ |x|2)−h−2,

we obtain

∆Gh(s, x) = −2(h+ 1)(n− 2h− 1)(s− x̄)(s2 − 2x0s+ |x|2)−h−2.

Finally by taking into account the constants we get

∆h+1S−1
L (s, x) = (−1)h+1

h+1∏
ℓ=1

(2ℓ)
h+1∏
ℓ=1

(n−2ℓ+1)(s−x̄)(s2−2x0s+|x|2)−h−2.

This ends the proof.

Now, we study the properties of regularity of the function ∆hS−1
L (s, x)

in both variables.

Proposition 7.4.2. Let x, s ∈ Rn+1 be such that x /∈ [s]. The function
∆hS−1

L (s, x) is right slice hyperholomorphic in the variables s for all h ≥
0. The function ∆hS−1

R (s, x) is left slice hyperholomorphic in the variable
s for all h ≥ 0.

Proof. By Remark 3.1.13 we can prove the slice hyperholomorphicity by
using Definition 3.1.12. We observe that for h = 0 it follows by Lemma
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7.4. Fueter-Sce theorem in integral form

3.1.17. When h ≥ 1 and s = u + Jv, J ∈ Sn−1 and by using the function
introduced in (7.44) we have

∂

∂u
Gh(u+ Jv, x) = (u2 − v2 + 2Juv − 2x0u− 2x0Jv + |x|2)−(h+1)

−(h+ 1)(u+ Jv − x̄)(u2 − v2 + 2Juv − 2x0u

−2x0Jv + |x|2)−(h+2)(2u+ 2Jv − 2x0)

and

∂

∂v
Gh(u+ Jv, x) = J(u2 − v2 + 2Juv − 2x0u− 2x0Jv + |x|2)−(h+1)

−(h+ 1)(u+ Jv − x̄)(u2 − v2 + 2Juv − 2x0u

−2x0Jv + |x|2)−(h+2)(−2v + 2Ju− 2x0J).

Therefore, this implies that

∂

∂u
Gh(u+ Jv, x) +

∂

∂v
Gh(u+ Jv, x)J = 0.

By similar computations it is possible to show that ∆hS−1
R (s, x) is left slice

hyperholomorphic in the variable s.

Remark 7.4.3. The function ∆hS−1
L (s, x) is not slice hyperholomorphic in

the variable x. Indeed for every h ≥ 1 we have

∂

∂u
Gh(s, u+ Jv) + J

∂

∂v
Gh(s, u+ Jv) = 2h(s2 − 2us+ u2 + v2)−(h+1).

We cannot get zero for any values of h ≥ 1.

For h = n−1
2

the function ∆hS−1
L (s, x) is monogenic in the variable x as

proved in the following result.

Proposition 7.4.4. Let n be an odd number and x, s ∈ Rn+1 be such that
x /∈ [s]. The function ∆

n−1
2 S−1

L (s, x) is a left monogenic in the variables x.
The function ∆

n−1
2 S−1

R (s, x) is a right monogenic in the variable x.

Proof. It is enough to show that the function Gn−1
2
(s, x) is monogenic in

the variable x.

∂

∂x0
Gn−1

2
(s, x) = −(s2 − 2x0s+ |x|2)−

n−1
2

−1 + 2

(
n− 1

2
+ 1

)
·

(s− x̄)(s2 − 2x0s+ |x|2)−
n−1
2

−2(s− x0),

175



i
i

“thesis” — 2022/12/4 — 11:25 — page 176 — #194 i
i

i
i

i
i

Chapter 7. Fueter-Sce theorem

and for 1 ≤ i ≤ n we have

∂

∂xi
Gn−1

2
(s, x) = ei(s

2 − 2x0s+ |x|2)−
n−1
2

−1 − 2

(
n− 1

2
+ 1

)
·

xi(s− x̄)(s2 − 2x0s+ |x|2)−
n−1
2

−2.

Hence, we get(
∂

∂x0
+

n∑
j=1

ej
∂

∂xj

)
Gn−1

2
(s, x) = −(n+ 1)(s2 − 2x0s+ |x|2)−

n−1
2

−1

+2

(
n− 1

2
+ 1

)
(s− x̄)(s2 − 2x0s+ |x|2)−

n−1
2

−2(s− x0)

−2
n∑
i=1

(
n− 1

2
+ 1

)
xiei(s− x̄)(s2 − 2x0s+ |x|2)−

n−1
2

−2

= −(n+ 1)(s2 − 2x0s+ |x|2)−
n−1
2

−1 + 2

(
n− 1

2
+ 1

)
(s− x̄)s

·(s2 − 2x0s+ |x|2)−
n−1
2

−2 − 2

(
n− 1

2
+ 1

)
x(s− x̄)(s2 − 2x0s+ |x|2)−

n−1
2

−2

= −(n+ 1)(s2 − 2x0s+ |x|2)−
n−1
2

−1 + (n+ 1)(s2 − x̄s− xs+ |x|2) ·
(s2 − 2x0s+ |x|2)−

n−1
2

−2

= −(n+ 1)(s2 − 2x0s+ |x|2)−
n−1
2

−1 + (n+ 1)(s2 − 2x0s+ |x|2)−
n−1
2

−1

= 0.

We observe that

c(h) = (−1)h
h∏
ℓ=1

(2ℓ)
h∏
ℓ=1

(n− 2ℓ+ 1) = (−1)h4h[h!]2.

Definition 7.4.5 (Fn-kernels). Let n be an odd number. Let x, s ∈ Rn+1.
We define, for s /∈ [x] the FL

n kernel as

FL
n (s, x) = γn(s− x̄)Qc,s(x)

−n+1
2 , (7.45)

and FR
n kernel as

FR
n (s, x) = γnQc,s(x)

−n+1
2 (s− x̄), (7.46)
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7.4. Fueter-Sce theorem in integral form

where
γn := (−1)

n−1
2 2n−1[(

1

2
(n− 1))!]2. (7.47)

Later we will make use of the following formulas. For s /∈ [x], the
Fn-kernels satisfy the following equations

FL
n (s, x)s− xFL

n (s, x) = γnQ
−n−1

2
c,s (x) (7.48)

and
sFR

n (s, x)− FR
n (s, x)x = γnQ

−n−1
2

c,s (x). (7.49)

Theorem 7.4.6 (Fueter-Sce mapping theorem in integral form). Let n be
an odd number. Let U ⊂ Rn+1 be a slice Cauchy domain, let J ∈ S and set
dsJ = ds(−J).

• If f is a (left) slice hyperholomorphic function on a set W , such that
U ⊂ W , then the left monogenic function f̆(x) = ∆

n−1
2 f(x) admits

the integral representation

f̆(x) =
1

2π

∫
∂(U∩CJ )

FL
n (s, x)dsJf(s). (7.50)

• If f is a right slice hyperholomorphic function on a set W , such that
U ⊂ W , then the right monogenic function f̆(x) = ∆

n−1
2 f(x) admits

the integral representation

f̆(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJF
R
n (s, x). (7.51)

The integrals depend neither on U and nor on the imaginary unit J ∈ S.

Proof. By Theorem 3.1.18 and Theorem 7.4.1 we get

f̆(x) = ∆
n−1
2 f(x)

=
1

2π

∫
∂(U∩CJ )

∆
n−1
2 S−1

L (s.x)dsJf(s)

=
1

2π

∫
∂(U∩CJ )

FL
n (s, x)dsJf(s).

By Proposition 7.4.4 it follows thatf̆(x) is a monogenic function.

The main advantage to have a Fueter-Sce theorem as an integral trans-
form is that there is no need to compute the powers of the Laplacian ap-
plied to a slice hyperholomorphic function to obtain a monogenic function.
Moreover, we will see in Chapter 9 that the integral version of the Fueter-
Sce theorem is crucial to define a new monogenic functional calculus.
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CHAPTER8
The Poisson kernel and the Fourier

transform of the slice monogenic Cauchy
kernels

8.1 Motivation

In the previous chapter we have obtained a very simple expression by ap-
plying the operator ∆

n−1
2 (for n odd), in the variable in x, to the function

S−1
L (s, x), written in the second form. The expression is given by

∆
n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+ |x|2)−
n+1
2 . (8.1)

In this section we show that formula (8.1) holds also when we consider that
n is even. However, in this case ∆

n−1
2 is not a differential operator but it

is a fractional operator and we have to deal with the Fourier multipliers.
Basically in this chapter we study the following problems.

Problem 8.1.1. (A) Determine the type of hyperholomorphicity of the map

(s, x) 7→ (s− x̄)(s2 − 2Re(x)s+ |x|2)−h,

for h ∈ R, with respect to s and x for s ̸∈ [x].
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(B) Compute explicitly the Fourier transform of the slice monogenic
Cauchy kernels, written in the second form, and of the Fn-kernels as func-
tions of the Poisson kernel.

(C) Show that the relation ∆
n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+

|x|2)−n+1
2 is true for all dimensions n replacing suitably the constants γn.

8.2 Monogenicity of the Futer-Sce kernel in even dimension

We start by recalling that given a paravector y = u+Jyv ∈ Rn+1\(−∞, 0],
for α ∈ R, we can define the fractional powers as

yα := eα log y = eα(ln |y|+J arg(y)), (8.2)

where arg(y) = arccos u
|y| . The definition is analogue for the quaternions

and the fractional powers so defined are slice monogenic functions, see
[44].

In the following result we give an answer to the first point of Problem
8.1.1.

Theorem 8.2.1. Let λ be a real number and x, s ∈ Rn+1 be such that
x /∈ [s]. Let us define:

kL(s, x) := (s− x̄)(s2 − 2x0s+ |x|2)−λ, λ ∈ R,

and
kR(s, x) := (s2 − 2x0s+ |x|2)−λ(s− x̄), λ ∈ R,

for
s2 − 2x0s+ |x|2 ∈ Rn+1 \ (−∞, 0].

Then, the function kL(s, x) is left monogenic function in the variable x and
kR(s, x) right monogenic in the variable x if and only if λ = n+1

2
.

Proof. We give the details for kL(s, x), similarly we proceed for kR(s, x).
For simplicity, in the proof, we write k(s, x) for kL(s, x). We have to com-
pute (∂x0 + ∂x)k(s, x), where ∂x =

∑n
j=1 ej∂xj . First, we put s = u+ Jv,

thus

s2 − 2x0s+ |x|2 = (u2 − v2 − 2x0u+ |x|2) + J(2uv − 2x0v).

Using the formula of fractional powers, in (8.2), we get

k(s, x) = (s− x̄)eα(u,v), (8.3)
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where

α(u, v) := −λ
2
ln[(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)

2] +

−λJ arccos
u2 − v2 − 2x0u+ |x|2√

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
.

Let us denote

β(u, v) :=
u2 − v2 − 2x0u+ |x|2√

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
.

So we have

k(s, x) = (s− x̄)e−
λ
2
ln[(u2−v2−2x0u+|x|2)2+(2uv−2x0v)2]−λJ arccosβ(u,v).

To compute ∂x0k(s, x) we calculate the derivative of β(u, v) with respect
to x0

∂β(u, v)

∂x0
=

(−2u+ 2x0)(2uv − 2x0v)
2 + (u2 − v2 − 2x0u+ |x|2)(2uv − 2x0v)2v

[(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2]3/2
.

Thus

∂ arccos β(u, v)

∂x0
= − ∂x0β(u, v)√

1− β2(u, v)

= −(−2u+ 2x0)(2uv − 2x0v) + (u2 − v2 − 2x0u+ |x|2)2v
(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2

.

So we have

∂k(s, x)

∂x0
= −eα(u,v) + (u+ Jv − x̄)2λ [(u2 − v2 − 2x0u+ |x|2)(u− x0 + Jv)

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2

− J(2uv − 2x0v)(Jv + u− x0)]]

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
eα(u,v). (8.4)

Now, we compute the derivative of k(s, x) with respect to xj , 1 ≤ j ≤ n.
As before we start from the derivative of β(u, v)

∂β(u, v)

∂xj
=

2xj(2uv − 2x0v)
2

[(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2]3/2
.

Thus

∂ arccos β(u, v)

∂xj
= − 2xj(2uv − 2x0v)

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
.
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Therefore
∂k(s, x)

∂xj
= eje

α(u,v)− (u+ Jv − x̄)2λ

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
·[

(u2 − v2 − 2x0u+ |x|2)− J(2uv − 2x0v)
]
xje

α(u,v).

Now, we are ready to compute ∂xk(s, x)

∂xk(s, x) =
n∑
j=1

ej
∂k(s, x)

∂xj

= −neα(u,v) − (u+ Jv − x̄)2λ

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
·

[
(u2 − v2 − 2x0u+ |x|2)− J(2uv − 2x0v)

]
·

(
n∑
j=1

ejxj

)
eα(u,v)

This implies that

∂xk(s, x)=−neα(u,v)− (u+ Jv − x̄)2λ

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
· (8.5)[

(u2 − v2 − 2x0u+ |x|2)−J(2uv − 2x0v)
]
xeα(u,v).

Hence form (8.4) and (8.5) we get

(∂x0 + ∂x)k(s, x)= −(n+ 1)eα(u,v) +
2λ(u+ Jv − x̄)(u+ Jv − x)

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2

− [(u2 − v2 − 2x0u+ |x|2)J(2uv − 2x0v)]

(u2 − v2 − 2x0u+ |x|2)2 + (2uv − 2x0v)2
eα(u,v).

Now, we observe that

(u+ Jv − x̄)(u+ Jv − x) = (u2 − v2 − 2ux0 + |x|2) + J(2uv − 2x0v).

Setting

γ(u, v) := (u2 − v2 − 2ux0 + |x|2) + J(2uv − 2x0v)

we therefore obtain

(∂x0 + ∂x)k(s, x) =

[
−(n+ 1) + 2λ

γ(u, v) · γ(u, v)
|γ(u, v)|2

]
eα(u,v)

= [−(n+ 1) + 2λ] eα(u,v),

so we finally get
(∂x0 + ∂x)k(s, x) = 0

if and only if λ = n+1
2

.
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8.3 The Fourier transform of the slice monogenic Cauchy ker-
nels

The main result of this section is the explicit computation of the Fourier
transform of the slice monogenic Cauchy kernels S−1

L (s, x) and S−1
R (s, x)

with respect to x when s is a real number. Then by extension we get the
Fourier transform when s is a paravector. Firstly, let us introduce the def-
inition of Fourier transform that we will use. This solves the first of the
second point of Problem 8.1.1.

Definition 8.3.1. Let f ∈ S(Rn+1). The Fourier transform of the function
f is

f̂(ξ) := F[f(x)](ξ) =

∫
Rn+1

f(x)e−i(x,ξ)dx,

where

(x, ξ) =
n∑
j=0

xjξj.

Definition 8.3.2. We define the inverse Fourier transform of the function f
in the following way

F−1[f(ξ)](x) =
1

(2π)n+1

∫
Rn+1

f(ξ)ei(x,ξ)dξ.

In this paper we will use the following important result

Theorem 8.3.3 (Plancherel’s Theorem). If f, g ∈ S(Rn+1) then∫
Rn+1

f(x)g(x)dx =
1

(2π)n+1

∫
Rn+1

F(f)(ξ)F(g(ξ))dξ. (8.6)

Remark 8.3.4. Using the Plancherel’s theorem it is possible to obtain∫
Rn+1

F−1(f)(x)F−1(g(x))dx =
1

(2π)n+1

∫
Rn+1

f(ξ)g(ξ)dξ.. (8.7)

In the sequel we will need this result.

Theorem 8.3.5. [91, Sect. B.5] Let f(|x|) be a radial function in S(Rn)
with n ≥ 2. Then the Fourier transform of f is also radial and has the form

f̂(|ξ|) = (2π)
n
2 |ξ|−

n−2
2

∫ ∞

0

Jn−2
2
(|ξ|r)r

n
2 f(r) dr,

where r = |x| and Jn−2
2

are the Bessel functions.
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Remark 8.3.6. (See [117]) The formula in Theorem 8.3.5 is also valid for
all functions

f ∈ L1(Rn) ∩ L2(Rn).

Now, we start our computations.

Theorem 8.3.7. Let us assume s0 ∈ R and x ∈ Rn+1. If we consider the
slice monogenic Cauchy kernels S−1

L (s0, x) and S−1
R (s0, x) written in form

II (see Definition 3.1.16) then their Fourier transforms with respect to x are
equal and given by

F[S−1
L (s, ·)](ξ) = F[S−1

R (s0, ·)](ξ) = cn
ξ̄

(ξ20 + |ξ|2)n+1
2

e−is0ξ0 , ξ0+ ξ ̸= 0

where

cn := i2nπ
n+1
2 Γ

(
n+ 1

2

)
.

Moreover, if s = s0 + s ∈ Rn+1 is a paravector the term e−is0ξ0 extends to
the intrinsic entire slice monogenic function e−isξ0 and we have the Fourier
transforms of the Cauchy kernels:

F[S−1
L (s, ·)](ξ) = cn

ξ̄

(ξ20 + |ξ|2)n+1
2

e−isξ0 , ξ0 + ξ ̸= 0 (8.8)

and

F[S−1
R (s, ·)](ξ) = cn e

−isξ0 ξ̄

(ξ20 + |ξ|2)n+1
2

, ξ0 + ξ ̸= 0. (8.9)

The extension F[S−1
L (s, ·)](ξ) is right slice monogenic in s, while F[S−1

R (s, ·)](ξ)
is right slice monogenic in s.

Proof. In the following proof we always work with s = s0 ∈ R since we
have

S−1
L (s, x) = (s− x̄)(s2 − 2x0s+ |x|2)−1

= (s2 − 2x0s+ |x|2)−1(s− x̄) = S−1
R (s, x).

The extension from s = s0 to s = s0 + s is immediate. So in our computa-
tions, we set

S−1(s, x) := S−1
L (s, x) = S−1

R (s, x) =
s− x0 + x

(s− x0)2 + |x|2
, s ∈ R.
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We put x = x0 + x and we recall the identification of the paravectors with
(x0, ..., xn). Since the function S−1(s, x) is not in L1(Rn+1) we have to
perform the computations in the distributional sense. Firstly, we consider
the following function

fx(x0) :=
s− x0

(s− x0)2 + |x|2
.

Let φ ∈ S(Rn+1). Then we have∫
Rn+1

fx(x0)F(φ)(x)dx =

∫
Rn+1

fx(x0)F0 (Fnφx) (x0)dx0dx

=

∫
Rn

∫
R
(F0fx) (ξ0)(Fnφx) (ξ0)dξ0dx,

where dx = dx1...dxn, F0 is the Fourier transform with respect to the vari-
able x0 and Fn is the Fourier transform with respect to the other variables.
Now, we compute F0fx(ξ0). First of all we make the following change of
variables s + y = x0, thus by basic properties of the Fourier transform we
have

F0fx(ξ0) = −Fy[y(y
2 + |x|2)−1](ξ0)e

−isξ0

= −i d
dξ0

Fy

(
1

|x|2 + y2

)
(ξ0)e

−isξ0

= −i π
|x|

(
d

dξ0
e−|x||ξ0|

)
e−isξ0

= i
πξ0
|ξ0|

e−|x||ξ0|e−isξ0 . (8.10)

Since φx(x0) = φ(x) and by Fubini’s theorem we have∫
Rn+1

fx(x0)F(φ)(x)dx =

∫
R

∫
Rn

Fn (F0fx) (ξ0)φ(ξ)dξdξ0

=

∫
Rn+1

Fn (F0fx) (ξ0)φ(ξ)dξ.

We finish this first part by computing Fn (F0fx) (ξ0). By Theorem 8.3.5
with r = |x| we have

Fn (F0fx) (ξ0) = (2π)
n
2 |ξ|−

n−2
2 i

πξ0
|ξ0|

e−isξ0
∫ ∞

0

Jn−2
2
(|ξ|r)r

n
2 e−r|ξ0|dr.
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Now, we make another change of variables t = |ξ|r.

Fn (F0fx) (ξ0) = (2π)
n
2 |ξ|−niπξ0

|ξ0|
e−isξ0

∫ ∞

0

Jn−2
2
(t)t

n
2 e

− t|ξ0|
|ξ| dt.

From [90, formula 6.623(2)] we know that∫ ∞

0

e−attν+1Jν(bt)dt =
2a(2b)νΓ

(
ν + 3

2

)
√
π(a2 + b2)ν+

3
2

, ν > −1, a > 0, b > 0.

In our case a := |ξ0|
|ξ| , ν := n

2
− 1, b := 1. Since n ≥ 2 all conditions on the

parameters are satisfied. Thus, we have

Fn (F0fx) (ξ0) =
i

2
(2π)

n
2
+1 ξ0

|ξ0|
|ξ|−ne−isξ02 |ξ0|

|ξ|
2

n
2
−1 Γ

(
n+1
2

)
√
π
(
ξ20
|ξ|2 + 1

)n+1
2

=
i2nπ

n+1
2 ξ0|ξ|−n−1e−isξ0|ξ|n+1Γ

(
n+1
2

)
(ξ20 + |ξ|2)n+1

2

=
i2nπ

n+1
2 Γ

(
n+1
2

)
ξ0e

−isξ0

(ξ20 + |ξ|2)n+1
2

.

Hence∫
Rn+1

fx(x0)F(φ)(x)dx = cn

∫
Rn+1

ξ0

(ξ20 + |ξ|2)n+1
2

e−isξ0φ(ξ)dξ, (8.11)

where cn := i2nπ
n+1
2 Γ

(
n+1
2

)
. Now, we compute the Fourier transform of

hx(x0) :=
x

(s− x0)2 + |x|2
=

n∑
j=1

ejxjux(x0),

where we have set

ux(x0) :=
1

(s− x0)2 + |x|2
.

Let φ ∈ S(Rn+1)∫
Rn+1

hx(x0)F(φ)(x)dx =

∫
Rn+1

n∑
j=1

ejxjux(x0)F0 (Fn(φx))(x0)dx0dx

=

∫
Rn

∫
R

n∑
j=1

ejxjF0(ux)(ξ0)Fnφx(ξ0)dξ0dx.
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Now, we compute F0(ux)(ξ0) using the following change of variable s +
y = x0

F0(ux)(ξ0) = Fy

(
1

y2 + |x|2

)
(ξ0)e

−isξ0 =
π

|x|
e−|x||ξ0|e−isξ0 .

By Fubini’s theorem and the fact that φx(x0) = φ(x) we have

∫
Rn+1

hx(x0)F(φ)(x)dx =

∫
R

∫
Rn

n∑
j=1

ejFn (xjF0(ux)) (ξ0)φ(ξ)dξdξ0.

From the following basic property of the Fourier transform

F[xf(x)](ξ) = i
d

dξ
(Ff(x))(ξ), x, ξ ∈ R

we get

∫
Rn+1

hx(x0)F(φ)(x)dx = i

∫
R

∫
Rn

n∑
j=1

ej
∂

∂ξj
Fn (F0(ux)) (ξ0)φ(ξ)dξdξ0.

We complete the proof of this theorem by computing Fn (F0(ux)) (ξ0). By
Theorem 8.3.5, with r = |x|, we get

Fn (F0(ux)) (ξ0) = (2π)
n
2 πe−isξ0|ξ|−

n−2
2

∫ ∞

0

Jn−2
2
(|ξ|r)r

n
2
−1e−r|ξ0|dr.

Now we put t = r|ξ|

Fn(F0(ux))(ξ0) =
1

2
(2π)

n
2
+1e−isξ0|ξ|1−n

∫ ∞

0

Jn−2
2
(t)t

n
2
−1e

−t |ξ0||ξ| dt.

From [90, formula 6.623 (1)] we know that

∫ ∞

0

e−attνJν(bt)dt =
(2b)νΓ

(
ν + 1

2

)
√
π(a2 + b2)ν+

1
2

, ν > −1

2
, a > 0, b > 0.
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Thus by putting b := 1, ν := n
2
− 1 and a := |ξ0|

|ξ| we obtain

Fn (F0(ux)) (ξ0) =
1

2
(2π)

n
2
+1e−isξ0

 |ξ|1−n2n
2
−1Γ

(
n−1
2

)
√
π
(
ξ20
|ξ|2 + 1

)n−1
2


= 2n−1π

n+1
2 e−isξ0Γ

(
n− 1

2

)( |ξ|1−n|ξ|n−1

(ξ20 + |ξ|2)n−1
2

)

= 2n−1π
n+1
2 e−isξ0Γ

(
n− 1

2

)(
1

(ξ20 + |ξ|2)n−1
2

)
.

We compute the derivative

∂

∂ξj

(
1

(ξ20 + |ξ|2)n−1
2

)
= −

(
n−1
2

)
(ξ2 + |ξ|2)n−3

2 2ξj

(ξ20 + |ξ|2)n−1
(8.12)

= −
2ξj
(
n−1
2

)
(ξ20 + |ξ|2)n+1

2

.

Now, by using the following property of the Gamma function Γ(x + 1) =
xΓ(x), for x > 0, we obtain
n∑
j=1

ej
∂

∂ξj
Fn (F0(ux)) (ξ0) = −

2n−1π
n+1
2 e−isξ0

(
n−1
2

)
Γ
(
n−1
2

)
2
∑n

j=1 ejξj

(ξ20 + |ξ|2)n+1
2

= −
2nπ

n+1
2 Γ

(
n+1
2

)
(ξ20 + |ξ|2)n+1

2

ξe−isξ0 .

Hence we get∫
Rn+1

hx(x0)F(φ)(x)dx = −cn
∫
Rn+1

ξ

(ξ20 + |ξ|2)n+1
2

e−isξ0φ(ξ)dξ,

(8.13)
where cn := i2nπ

n+1
2 Γ

(
n+1
2

)
. Finally from (8.11) and (8.13) we get∫

Rn+1

S−1(s, x)F(φ)(x)dx =

∫
Rn+1

fx(x0)F(φ)(x)dx

−
∫
Rn+1

hx(x0)F(φ)(x)dx

= cn

∫
Rn+1

ξ̄

(ξ20 + |ξ|2)n+1
2

e−isξ0φ(ξ)dξ.
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This proves (8.8) and (8.9), respectively.

We are now in the position to observe that the term e−isξ0 , for s = s0
extends to the entire intrinsic slice monogenic function e−i(s0+s)ξ0 . So the
function

s0 7→ cn
ξ̄

(ξ20 + |ξ|2)n+1
2

e−is0ξ0

has the right slice monogenic extension in s ∈ Rn+1

F[S−1
L (s, ·)](ξ) = cn

ξ̄

(ξ20 + |ξ|2)n+1
2

e−isξ0

while the right slice monogenic extension in s ∈ Rn+1 is

F[S−1
R (s, ·)](ξ) = cn e

−isξ0 ξ̄

(ξ20 + |ξ|2)n+1
2

and this conclude the proof.

8.4 The Fourier transform of the Fn-kernels

Thanks to Theorem 8.2.1 the Fn-kernels are meaningful also with n odd
where we interpret the fractional powers of paravectors are slice monogenic
functions.

As we have shown when n be an odd number and x, s ∈ Rn+1, for
s ̸∈ [x], the relations

∆
n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2Re(x)s+ |x|2)−
n+1
2 ,

and
∆

n−1
2 S−1

R (s, x) = γn(s
2 − 2Re(x)s+ |x|2)−

n+1
2 (s− x̄),

where γn are given by (7.47). We now let n be any natural number and when
n is even we interpret the terms (s2 − 2Re(x)s + |x|2)−n+1

2 as fractional
power for x, s ∈ Rn+1. We recall, for s ̸∈ [x], the definition of the left
FL
n -kernel as

FL
n (s, x) := γn(s− x̄)(s2 − 2x0s+ |x|2)−

n+1
2 ,

and the right FR
n -kernel as

FR
n (s, x) := γn(s

2 − 2x0)s+ |x|2)−
n+1
2 (s− x̄),
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where γn, are given by (7.47), are now interpreted in terms of the Euler’s
Gamma function

γn := (−1)
n−1
2 2n−1

[
Γ

(
n+ 1

2

)]2
.

We will compute the Fourier transforms of FL
n (s, x) and FR

n (s, x) with re-
spect to x. This solves the second part of the second point of Problem 8.1.1.

Remark 8.4.1. Observe that when s = s0 ∈ R, for s ̸∈ [x], then we have

FL
n (s0, x) = γn(s0 − x̄)(s20 − 2x0s0 + |x|2)−

n+1
2

= γn(s
2
0 − 2x0s0 + |x|2)−

n+1
2 (s0 − x̄)

= FR
n (s0, x).

So for simplicity in the following when s = s0 ∈ R we use the notation

Fn(s0, x) := FL
n (s0, x) = FR

n (s0, x).

Theorem 8.4.2. Let us assume x ∈ Rn+1 and s a real number. The Fourier
transform of Fn(s, x) with respect to x is

F̂n(s, ξ) = kn
ξ̄

ξ20 + |ξ|2
e−isξ0 ,

where

kn := i(−1)
n−1
2 2nπ

n+1
2 Γ

(
n+ 1

2

)
.

Moreover, if s = s0 + s ∈ Rn+1 is a paravector the term e−is0ξ0 extends to
the intrinsic entire slice monogenic function e−isξ0 and we have the Fourier
transforms of the kernels FL

n and FR
n :

F[FL
n (s, ·)](ξ) = kn

ξ̄

ξ20 + |ξ|2
e−isξ0 , ξ0 + ξ ̸= 0

and

F[FR
n (s, ·)](ξ) = kn e

−isξ0 ξ̄

ξ20 + |ξ|2
, ξ0 + ξ ̸= 0.

The extension F[FL
n (s, ·)](ξ) is right slice monogenic in s, while F[FR

n (s, ·)](ξ)
is right slice monogenic in s.
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8.4. The Fourier transform of the Fn-kernels

Proof. We observe that the Fourier transform of the kernel Fn(s, ·) is mean-
ingful and from similar computations at the beginning of Theorem 8.3.7 we
obtain

F̂n(s, ξ) = γns

∫
R
e−ix0ξ0(2π)

n
2 |ξ|−

n−2
2

∫ ∞

0

(s2 − 2x0s+ x20 + r2)−
n+1
2

Jn−2
2
(|ξ|r)r

n
2 drdx0

−γn
∫
R
x0e

−ix0ξ0(2π)
n
2 |ξ|−

n−2
2

∫ ∞

0

(s2 − 2x0s+ x20 + r2)−
n+1
2 ·

Jn−2
2
(|ξ|r)r

n
2 drdx0

+γni
n∑
j=1

ej

∫
R
e−ix0ξ0

∂

∂ξj

(
(2π)

n
2 |ξ|−

n−2
2 ·∫ ∞

0

(s2 − 2x0s+ x20 + r2)−
n+1
2 Jn−2

2
(|ξ|r)r

n
2 drdx0

)
:= γn

(
F̂n,1(s, ξ) + F̂n,2(s, ξ) + F̂n,3(s, ξ)

)
.

Now, we focus on the first two members

F̂n,1(s, ξ) + F̂n,2(s, ξ)

= s

∫
R
e−ix0ξ0(2π)

n
2 |ξ|−

n−2
2

∫ ∞

0

(s2 − 2x0s+ x20 + r2)−
n+1
2 ·

Jn−2
2
(|ξ|r)r

n
2 drdx0

−
∫
R
x0e

−ix0ξ0(2π)
n
2 |ξ|−

n−2
2

∫ ∞

0

(s2 − 2x0s+ x20 + r2)−
n+1
2 ·

Jn−2
2
(|ξ|r)r

n
2 drdx0

= (2π)
n
2 |ξ|−

n−2
2

∫
R
(s− x0)e

−ix0ξ0
∫ ∞

0

[(s− x0)
2 + r2]−

n+1
2 ·

Jn−2
2
(|ξ|r)r

n
2 drdx0.

Firstly, we solve the integral in the variable r. From [90, formula 6.565 (3)]
we know that for b > 0, ν > −1 we have∫ ∞

0

xν+1(x2 + a2)−ν−
3
2Jν(bx)dx =

bν
√
π

2ν+1|a|e|a|bΓ
(
ν + 3

2

) . (8.14)
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In our case b := |ξ|, ν = n
2
− 1 and a = s− x0. Then

F̂n,1(s, ξ) + F̂n,2(s, ξ) =
(2π)

n
2 2−

n
2
√
π|ξ|−n

2
+1|ξ|n2−1

Γ
(
n+1
2

) ∫
R
e−ix0ξ0

(s− x0)

|s− x0|
e−|ξ||s−x0|dx0

=
π

n+1
2

Γ
(
n+1
2

) ∫
R
e−ix0ξ0

(s− x0)

|s− x0|
e−|ξ||s−x0|dx0.

Now, we put s+ y = x0. Thus we have

F̂n,1(s, ξ) + F̂n,2(s, ξ) = − π
n+1
2

Γ
(
n+1
2

)e−isξ0 ∫
R
e−iyξ0

y

|y|
e−|ξ||y|dy.

From [116, formula 3.2 pag 11] we know that∫ ∞

0

cos(xu)
e−ax

x
dx = − log(a2 + u2)

2
.

Thus by the Euler’s formula we get

F

(
1

|y|
e−|ξ||y|

)
(ξ0) = 2

∫ ∞

0

cos(yξ0)
1

y
e−|ξ|ydy

= − log(ξ20 + |ξ|2).
Using basic properties of the Fourier transform we obtain∫

R
e−iyξ0

y

|y|
e−|ξ||y|dy = F

(
y

|y|
e−|ξ||y|

)
(ξ0)

= i
d

dξ0
F

(
1

|y|
e−|ξ||y|

)
(ξ0)

= −i d
dξ0

(
log(ξ20 + |ξ|2)

)
= − 2iξ0

ξ20 + |ξ|2
.

Therefore

F̂n,1(s, ξ) + F̂n,2(s, ξ) =
2iπ

n+1
2 e−isξ0ξ0

Γ
(
n+1
2

)
(ξ20 + |ξ|2)

.

Finally, we multiply by γn := (−1)
n−1
2 2n−1

[
Γ
(
n+1
2

)]2
γn(F̂n,1(s, ξ) + F̂n,2(s, ξ)) =

i(−1)
n−1
2 2nπ

n+1
2 Γ

(
n+1
2

)
ξ20 + |ξ|2

ξ0e
−isξ0 . (8.15)
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Now we compute F̂n,3(s, ξ).

F̂n,3(s, ξ) = i(2π)
n
2

n∑
j=1

ej
∂

∂ξj

(
|ξ|−

n−2
2

∫
R
e−ix0ξ0

∫ ∞

0

[(s− x0)
2 + r2]−

n+1
2

Jn−2
2
(|ξ|r)r

n
2 drdx0

)
.

As before we compute the integral in the variable r using (8.14) with b :=
|ξ|, ν = n

2
− 1 and a = s− x0. Thus we have

F̂n,3(s, ξ) =
i(2π)

n
2 2−

n
2
√
π

Γ
(
n+1
2

) n∑
j=1

ej
∂

∂ξj

(
|ξ|−

n
2
+1|ξ|

n
2
−1

∫
R
e−ix0ξ0|s− x0|−1·

e−|ξ||s−x0|dx0
)

=
iπ

n+1
2

Γ
(
n+1
2

) n∑
j=1

ej
∂

∂ξj

(∫
R
e−ix0ξ0|s− x0|−1e−|ξ||s−x0|dx0

)
.

We put s+ y = x0.

F̂n,3(s, ξ) =
iπ

n+1
2 e−isξ0

Γ
(
n+1
2

) n∑
j=1

ej
∂

∂ξj

(∫
R
e−iyξ0|y|−1e−|ξ||y|dy

)
.

From (8.15) we know that∫
R
e−iyξ0|y|−1e−|ξ||y|dy = − log(ξ20 + |ξ|2).

Therefore

F̂n,3(s, ξ) = −iπ
n+1
2 e−isξ0

Γ
(
n+1
2

) n∑
j=1

ej
∂

∂ξj

(
log(|ξ|2 + ξ20)

)
= − 2iπ

n+1
2 e−isξ0

Γ
(
n+1
2

)
(ξ20 + |ξ|2)

n∑
j=1

ejξj

= − 2iπ
n+1
2

Γ
(
n+1
2

)
(ξ20 + |ξ|2)

ξe−isξ0 .

Finally, multiplying by γn := (−1)
n−1
2 2n−1

[
Γ
(
n+1
2

)]2 we have

γnF̂n,3(s, ξ) = −
i(−1)

n−1
2 2nπ

n+1
2 Γ

(
n+1
2

)
ξ20 + |ξ|2

ξe−isξ0 . (8.16)
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Putting together (8.15) and (8.16) we get

F̂n(s, ξ) = kn
ξ̄

ξ2 + |ξ|2
e−isξ0 ,

where kn := i(−1)
n−1
2 2nπ

n+1
2 Γ

(
n+1
2

)
. Finally, the slice monogenic exten-

sions are obtained reasoning as in the case of the Cauchy kernel.

8.5 The relation of the kernels S−1 and Fn via the Fourier trans-
form

In this section we show the last point of Problem 8.1.1. Before to prove
a fundamental result we recall that when n is even the operator ∆

n−1
2 is

defined by the Fourier multipliers

∆
n−1
2 f(x) = F−1[(i|ξ|)n−1F(f(x))(ξ)](x), (8.17)

where F and F−1, are respectively, the Fourier and the inverse Fourier trans-
formations, given, respectively in Definition 8.3.1 and Definition 8.3.2.

Theorem 8.5.1. For x ∈ Rn+1 and s ∈ R we have that

∆
n−1
2 S−1(s, x) = γn(s− x̄)(s2 − 2x0s+ |x|2)−

n+1
2 (8.18)

Proof. If n is odd, this can be proved through pointwise differential com-
putation, see Theorem 7.4.1. While for the case n even the result will be
showed for any φ ∈ S(Rn+1). Firstly we prove the equality for s ∈ R.
The formula (8.7) and Theorem 8.3.3 imply that we can pass the factional
Laplacian to the test function, so we have∫

Rn+1

∆
n−1
2 S−1(s, x)φ(x)dx =

∫
Rn+1

S−1(s, x)∆
n−1
2 φ(x)dx.

Using another time Theorem 8.3.3 we get∫
Rn+1

∆
n−1
2 S−1(s, x)φ(x)dx =

1

(2π)n+1

∫
Rn+1

F
(
S−1(s, .)

)
(ξ) ·

F
(
∆

n−1
2 φ(x)

)
(ξ)dξ.
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From Theorem 8.3.7 and Theorem 8.4.2 we obtain∫
Rn+1

∆
n−1
2 S−1(s, x)φ(x)dx

=
1

(2π)n+1
i(−1)

n−1
2 2nπ

n+1
2 Γ

(
n+ 1

2

)∫
Rn+1

ξ̄e−isξ0

(ξ20 + |ξ|2)n+1
2

·

|ξ|n−1φ̂(ξ)dξ

=
1

(2π)n+1
i(−1)

n−1
2 2nπ

n+1
2 Γ

(
n+ 1

2

)∫
Rn+1

ξ̄e−isξ0

ξ20 + |ξ|2
φ̂(ξ)dξ

=
1

(2π)n+1

∫
Rn+1

F̂n(s, ξ)φ̂(ξ)dξ.

Finally by applying another time the Theorem 8.3.3 we get∫
Rn+1

∆
n−1
2 S−1(s, x)φ(x)dx =

∫
Rn+1

Fn(s, x)φ(x)dx.

Corollary 8.5.2. The relation (8.18) extends to s ∈ Rn+1, considering the
left and the right slice monogenic extensions.

Proof. The extension of the equation (8.18) to s ∈ Rn+1 follows from
the Identity principle, because the function e−isξ0 is trivially intrinsic slice
monogenic.
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CHAPTER9

The F -functional calculus for bounded
operators

9.1 Motivation

The Fueter-Sce mapping theorem in integral form, introduced in Theo-
rem 7.4.6, provides an integral transform that turns slice hyperholomorphic
functions into monogenic ones. If we formally replace the variable x of
this integral transform by an operator T , we get a functional calculus for
monogenic functions based on the theory of slice hyperholomorphic func-
tions: the F -functional calculus. This functional calculus is defined on the
S-spectrum and generates a monogenic functional calculus in the spirit of
McIntosh and collaborators, see [99, 101, 108, 112]. We can summarize
the construction that leads to the F -functional calculus by the following
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Chapter 9. The F -functional calculus for bounded operators

diagram

SH(U) AM(U)y
Slice Cauchy Formula

TFS2−−−→ Fueter− Sce theorem in integral formy y
S−Functional calculus F − functional calculus

(9.1)

Remark 9.1.1. Observe that in the above diagram the arrow from the space
of axially monogenic function AM(U) is missing because theF -functional
calculus is deduced from the slice hyperholomorphic Cauchy formula.

9.2 The F -resolvent operators and the F -functional calculus

In this subsection we will show that the action of the Fueter-Sce map to the
paravector monomial xk leads to the Clifford-Appell polynomials, given by
[31, 32]. The family of {Pk}k∈N of Clifford-Appell polynomials is defined
as

P n
k (x) :=

k∑
s=0

T ks (n)x
k−sxs, x ∈ Rn+1, (9.2)

where T ks (n) is defined as

T ks (n) :=

(
k

s

)(n+1
2

)
k−s

(
n−1
2

)
s

(n)k
, n ≥ 1, (9.3)

where (.)k stands for the Pochhammer symbol defined by (a)s =
Γ(a+s)
Γ(a)

or
(a)s = a(a + 1)(a + 2)...(a + s− 1), for s > 0 and (a)0 = 1 for s = 0. It
is proved in [32] that

k∑
s=0

T ks (n) = 1. (9.4)

The polynomials P n
k (x) satisfy the Appell property

1

2
DP n

k (x0 + x) = kP n
k−1(x0 + x), (9.5)

where D = ∂x0 −
∑n

ℓ=1 eℓ∂xℓ . Moreover the Clifford-Appell polynomials
are monogenic i.e.

DP n
k (x) = 0.
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Since the Clifford-Appell polynomials are axially monogenic, see [32], and
by the fact that

P n
k (x0 + 0) = xk0

k∑
s=0

T sk (n) = xk0,

it is clear that
P n
k (x) = GCK[xk0]. (9.6)

Combining this result with Theorem 7.3.3 we obtain the following result.

Theorem 9.2.1. Let n ≥ 1 be a fixed odd number and k ≥ 0. Then, for any
x = x0 + x ∈ Rn+1 it holds that

∆
n−1
2 (xn+k−1) = γn

(n+ k − 1)!

(n− 1)!k!
P n
k (x), (9.7)

where γn are defined in (7.47).

Proof. By the identity ∂n−1
x0

[xn−1+k
0 ] = (n+k−1)!

k!
xk0 and the fact that P n

k (x)

is the generalized CK-extension of the monomial xk0 we get

P n
k (x) = GCK[xk0]

=
k!

(n+ k − 1)!
GCK ◦ ∂n−1

x0
[xn−1+k

0 ].

Finally, using Theorem 7.3.3 we obtain

∆
n−1
2 (xn+k−1) = γn

(n+ k − 1)!

(n− 1)!k!
P n
k (x).

Remark 9.2.2. The above result extends to arbitrary dimension those ob-
tained for the quaternionic setting in [77]. Indeed, if we consider n = 3 in
(9.7) we get

∆(xk+2) = −2(k + 2)!

k!
P 3
k (x)

= −2(k + 2)(k + 1)P 3
k (x),

which is exactly the identity obtained in [77, Rem. 3.9].
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Chapter 9. The F -functional calculus for bounded operators

Corollary 9.2.3. Let x ∈ Rn+1 and n ≥ 3 be a fixed odd number. Then

∆
n−1
2 (xm) =



γn
m!

(n−1)!(m−n+1)!
P n
m+1−n(x) if m > n− 1,

γn if m = n− 1,

0 if m < n− 1.

where γn are defined in (7.47).

Proof. For the case m > n − 1, it is enough to set m := n + k − 1 in
formula (9.7).
For the second case we substitute m = n− 1 in the first case and we obtain

∆
n−1
2 (xn−1) = 4

n−1
2 (−1)

n−1
2

(
n− 1

2

)(
n− 1

2

)
!

(
n− 3

2

)
! = γn.

Finally, the case m < n − 1 is trivial because the number of derivatives to
perform is more than the degree of the monomial.

We can now give the following

Definition 9.2.4 (F -kernel series). Let s, x ∈ Rn+1. We define the left
F -kernel series as

+∞∑
m=n−1

∆
n−1
2 xms−1−m,

and the right F -kernel series as
+∞∑

m=n−1

s−1−m∆
n−1
2 xm.

Proposition 9.2.5. For s, x ∈ Rn+1 with |x| < |s|, the F -kernel series
converge.

Proof. By Corollary 9.2.3 for m ≥ n− 1 and by formula (9.2) we get

|∆
n−1
2 xm| = |γn|

∣∣∣∣ m!

(n− 1)!(m− n+ 1)!
P n
m+1−n(x)

∣∣∣∣ (9.8)

≤ |γn|
m!

(n− 1)!(m− n+ 1)!

m+1−n∑
ℓ=0

Tm+1−n
ℓ (n)|x|m+1−n
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From formula 9.4 we know that

m+1−n∑
ℓ=0

Tm+1−n
ℓ (n) = 1.

This implies that

+∞∑
m=n−1

|∆
n−1
2 xms−1−m| ≤ |γn|

(n− 1)!

+∞∑
m=n−1

m!

(m− n+ 1)!
|x|m−n+1|s|−1−m.

The last series converge, by the ratio test since |x| < |s|. Indeed

lim
m→+∞

(m+ 1)!

(m− n+ 2)!

(m− n+ 1)!

m!

|x|m−n+2|s|−2−m

|x|m−n+1|s|−1−m = lim
m→+∞

(m+ 1)

(m− n+ 2)
|x||s|−1

= |x||s|−1 < 1.

The convergence of the right F -kernel series can be proved with similar
computations.

Lemma 9.2.6. Let x, s ∈ Rn+1. For |x| < |s|, we have

FL
n (s, x) =

+∞∑
m=0

∆
n−1
2 xms−1−m,

and

FR
n (s, x) =

+∞∑
m=0

s−1−m∆
n−1
2 xm.

Proof. We rewrite the left Cauchy kernel using the Taylor expansion

S−1
L (s, x) =

+∞∑
m=0

xms−1−m,

and by applying the Fueter-Sce map we get

FL
n (s, x) = ∆

n−1
2 S−1

L (s, x) =
+∞∑
m=0

(
∆

n−1
2 xm

)
s−1−m,

where we can exchange the sum and the Laplacian by Proposition 9.2.5.
A similar reasoning holds for the right F -kernel series.
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Chapter 9. The F -functional calculus for bounded operators

Proposition 9.2.7. Let x, s ∈ Rn+1. Then, for |x| < |s|, we have

+∞∑
m=n−1

∆
n−1
2 xms−1−m = γn(s− x̄)(s2 − 2x0s+ |x|2)−

n+1
2 , (9.9)

and
+∞∑

m=n−1

s−1−m∆
n−1
2 xm = γn(s

2 − 2x0s+ |x|2)−
n+1
2 (s− x̄). (9.10)

Proof. By Proposition 9.2.5 and Theorem 9.2 we have that
+∞∑

m=n−1

∆
n−1
2 xms−1−m = ∆

n−1
2

+∞∑
m=0

xms−1−m (9.11)

= ∆
n−1
2 S−1

L (s, x) = γn(s− x̄)(s2 − 2x0s+ |x|2)−
n+1
2 ,

and similarly we can prove (9.10).

In order to state the following results we need to introduce the following
notation

Kℓ(m,n) := γn

(
n+1
2

)
m+1−n−ℓ

(
n−1
2

)
ℓ

ℓ!(m− n+ 1− ℓ)!
. (9.12)

Definition 9.2.8 (Series expansions of the F -kernels). Let x, s ∈ Rn+1. For
|x| < |s|, we have

FL
n (s, x) =

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) x
m+1−n−ℓ x̄ℓ s−1−m,

and

FR
n (s, x) =

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)s
−1−m xm+1−n−ℓ x̄ℓ,

where Kℓ(m,n) is defined in (9.12).

Now, we define the F -kernel operators by formally replacing the vari-
able x with the operator T with commuting components.

Definition 9.2.9 (F -kernel operators). Let s ∈ Rn+1. For ∥T∥ < |s|, we
define the left F -kernel operators as

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) T
m+1−n−ℓ T̄ ℓ s−1−m,
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and and the right F -kernel operators as

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)s
−1−m Tm+1−n−ℓ T̄ ℓ

where Kℓ(m,n) is as in (9.12).

Theorem 9.2.10. Let n be a fixed odd number. Then for s ∈ Rn+1 and
∥T∥ < |s|, we have

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) T
m+1−n−ℓ T̄ ℓ s−1−m = γn(sI−T )(s2I−(T+T )s+TT )−

n+1
2 ,

and
+∞∑

m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)s
−1−m Tm+1−n−ℓ T̄ ℓ = γn(s

2I−(T+T )s+TT )−
n+1
2 (sI−T ),

where Kℓ(m,n) is defined in (9.12) and the constants γn are defined as in
(7.47).

Proof. It follows by the previous results by replacing x by the paravector
operator T .

Remark 9.2.11. In the second form of the slice Cauchy kernels is involved
the term |x|2 = xx̄ = x̄x. For this identity it is necessary that the compo-
nents of x commute. This has implications when we formally replace the
paravector x with the operator T . These are the reasons why we require
that in the F -functional calculus the components of T have to commute.

Definition 9.2.12 (F -resolvent operators). Let T ∈ BC(X). For s ∈
ρS(T ), we define the left F -resolvent operator as

FL
n (s, T ) = γn(sI − T )(s2I − (T + T )s+ TT )−

n+1
2 ,

and the right F -resolvent operator as

FR
n (s, T ) = γn(s

2I − (T + T )s+ TT )−
n+1
2 (sI − T ).

By Proposition 7.4.2 we get the following result.

Lemma 9.2.13. Let T ∈ BC(Vn) we have

• The left F -resolvent operator is a B(Vn)-valued right slice hyperholo-
morphic of the variable s on ρS(T ).
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Chapter 9. The F -functional calculus for bounded operators

• The right F -resolvent operator is a B(Vn)-valued left slice hyperholo-
morphic of the variable s on ρS(T ).

Now, we have all the tools to give the definition for the F -functional
calculus.

Definition 9.2.14 (The F -functional calculus for bounded operators). Let
n be an odd number, let T ∈ BC(Vn), assume that the operators Tℓ, ℓ =
1, .., n have real spectrum and set dsJ = ds/J . For any function f ∈
SRL(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩CJ )

FL
n (s, T ) dsJ f(s). (9.13)

For any f ∈ SRR(σS(T )), we define

f̆(T ) :=
1

2π

∫
∂(U∩CJ )

f(s) dsJ F
R
n (s, T ), (9.14)

where J ∈ Sn−1 and U is a slice Cauchy domain U .

Theorem 9.2.15. The F -functional calculus is well defined, that is, the
integrals in (9.13) and (9.14) depend neither on the imaginary unit J ∈
Sn−1 nor on the slice Cauchy domain U .

Proof. We will show only the case f̆ = ∆
n−1
2 f , with f ∈ SHL(σS(T )).

The other case follows by similar computations.
The independence from the set U follows by the Cauchy integral the-

orem (see Theorem 3.1.19) and from the facts that the function f is left
slice hyperholomorphic and FL

n (s, T ) is right slice hyperholomorphic in
the variable s.

To show the independence from the imaginary unit, we consider two
imaginary units J , I ∈ Sn−1 with J ̸= I and two bounded slice Caichy
domains Up, Us with σS(U) ⊂ Up, Up ⊂ Us and U s ⊂ dom(f). Then every
s ∈ ∂(U ∩ CJ) belongs to the unbounded slice Cauchy domain Rn+1 \ Up.
Since limp→∞ FL

n (s, p) = 0, by the slice hyperholomorphic Cauchy kernel
we have

FL
n (s, T ) =

1

2π

∫
∂((Rn+1\Up)∩CI)

FL
n (s, T )dpIS

−1
R (p, s)

=
1

2π

∫
∂(Up∩CI)

FL
n (s, T )dpIS

−1
L (s, p),
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where the last identity holds because ∂((Rn+1 \Up)∩CI) = −∂(Up ∩CI)
and S−1

R (p, s) = −S−1
L (s, p). Thus

f̆(T ) =
1

2π

∫
∂(Us∩CJ )

FL
n (s, T )dsJf(s)

=
1

2π

∫
∂(Us∩CJ )

(
1

2π

∫
∂(Up∩CI)

FL
n (s, T )dpIS

−1
L (s, p)

)
dsJf(s).

Since the integrand is continuous and the path of integration is bounded,
we can exchange the order of integration by Fubini’s theorem. Thus we get

f̆(T ) =
1

2π

∫
∂(Up∩CI)

FL
n (p, T )

(
1

2π

∫
∂(Us∩CJ )

S−1
L (s, p)dsJf(s)

)
=

1

2π

∫
∂(Us∩CI)

FL
n (p, T )dpIf(p).

Now, we define the kernel of the Fueter-Sce map as

ker(∆
n−1
2 ) :=

{
f ∈ SHL(Ω), ∆

n−1
2 f(x) = 0

}
,

where the set Ω is an axially symmetric slice domain in Rn+1. A similar
definition for right slice hyperholomorphic functions is possible.

Lemma 9.2.16. Let n be a fixed odd number. Let Ω be an axially symmetric
slice domain on Rn+1. Then, a slice hyperholomorphic function f belongs
to ker(∆

n−1
2 ) if and only if f it is a polynomial Rn-valued of degree n − 2

in the variable x.

f(x) =
n−2∑
k=0

xkαk, ∀x ∈ Ω. (9.15)

Proof. Let us assume that the function f is left slice hyperholomorphic. By
Theorem 7.3.3 we have that ∆

n−1
2 f = 0 if and only if

GCK[f (n−1)(x0)] = 0.

This holds if and only if
f (n−1)(x0) = 0.

Finally, since f is defined in a piecewise connected open set R, it can be
uniquely extended to a holomorphic function to a connected set in R2. Thus
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Chapter 9. The F -functional calculus for bounded operators

f is a polynomial of degree at most n− 2, i.e.

f(x) =
n−2∑
k=0

xkαk, {αk}0≤k≤n−2 ⊂ Rn.

Theorem 9.2.17. Let U be an arbitrary bounded connected slice Cauchy
domain. Let us suppose that f , g ∈ SHL(U) and f̆ = ∆

n−1
2 f = ∆

n−1
2 g =

ğ with f ̸= g. Then f̆(T ) = ğ(T ).

Proof. The function f−g is left slice hyperholomorphic and belongs to the
kernel of the Fueter-Sce map. Thus by Lemma 9.2.16 we have

f(s)− g(s) =
n−2∑
k=0

skαk, αk ∈ Rn.

From the definition of the F -functional calculus we have that

f̆(T )− ğ(T ) =
1

2π

∫
∂(U∩CJ )

FL
n (s, T )dsJ(f(s)− g(s))

=
1

2π

n−2∑
k=0

∫
∂(Br(0)∩CJ )

FL
n (s, T )dsJs

kαk,

we change the domain of integration to the ball Br(0) with ∥T∥ < r by the
Cauchy’s integral theorem and the slice hyperholomorphicity of FL

n (s, T )
in s. By Theorem 9.2.10 and by the Cauchy’s integral theorem we get

f̆(T )− ğ(T ) =
1

2π

n−2∑
k=0

∫
∂(Br(0)∩CJ )

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)T
m+1−n−ℓT̄ ℓ

dsJs
k−1−mαk

=
1

2π

n−2∑
k=0

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)T
m+1−n−ℓT̄ ℓ∫

∂(Br(0)∩CJ )

sk−1−mdsJαk

= 0.
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Now we want to show Theorem 9.2.17 for the case in which the set U
is disconnected. In order to show this result we need the following result,
which is based on the monogenic functional calculus of McIntosh and col-
laborators, see [99, 101, 108, 112].

Lemma 9.2.18. Let T ∈ BC(Vn). Suppose thatG contains just some points
of the S-spectrum of T and assume that the closed smooth curve ∂(G∩CJ)
belongs to the F -resolvent set of T , for every I ∈ Sn−1. Then∫

∂(G∩CJ )

smdsJF
R
n (s, T ) = 0,

∫
∂(G∩CJ )

FL
n (p, T )dpIp

m = 0,

for all m ≤ n− 2.

Proof. Since ∆
n−1
2 xm = 0, if m ≤ n− 2, we have that∫

∂(G∩CJ )

smdsJF
R
n (s, x) = 0,

∫
∂(G∩CJ )

FL
n (p, x)dpIp

m = 0,

form ≤ n−2 and for all x such that x /∈ [s] if s ∈ ∂(G∩CJ) (respectively,
for all x such that x /∈ [p] if p ∈ ∂(G∩CJ)). We recall that FL

n (p, x) is left
monogenic in x for every p, such that x /∈ [p]. Therefore we can use the
definition of the monogenic functional calculus

FL
n (p, T ) =

∫
∂Ω

Gω(T )n(ω)FL
n (p, ω)dµ(ω),

where the open set Ω contains the monogenic spectrum of T , Gω(T ) is the
monogenic resolvent operator, n(ω) is the unit normal vector to ∂Ω and
dµ(ω) is the surface element. From the Fubini’s theorem it follows that∫
∂(G∩CJ )

FL
n (p, T )dpIp

n =

∫
∂(G∩CJ )

∫
∂Ω

(
Gω(T )n(ω)FL

n (p, ω)dµ(ω)
)
pndpJ

=

∫
∂Ω

Gω(T )n(ω)
(∫

∂(G∩CJ )

FL
n (s, x)p

ndpJ

)
dµ(ω)

= 0,

which concludes the proof.
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Chapter 9. The F -functional calculus for bounded operators

Theorem 9.2.19. Let U be an arbitrary bounded slice Cauchy domain.Let
T = T1e1 + T2e2 + T3e3 Let us suppose that f , g ∈ SHL(U) and f̆ =

∆
n−1
2 f = ∆

n−1
2 g = ğ with f ̸= g. Then f̆(T ) = ğ(T ).

Proof. If the set U is connected the result follows by Theorem 9.2.17. If U
is not connected we can write

f(s)− g(s) =
n−2∑
k=0

n∑
r=1

χUr(s)s
kαk,

where Ur, r = 1, ..., n are the connected components of U and χUr is the
characteristic function of Ur. Hence we have

f̆(T )− ğ(T ) =
1

2π

n−2∑
k=0

n∑
r=1

∫
∂(Ur∩CJ )

FL
n (s, T )dsJs

kαk.

By Lemma 9.2.18 we obtain that

f̆(T )− ğ(T ) = 0.

Remark 9.2.20. In the above proof we cannot perform computations as in
Theorem 9.2.17 because the set Rn+1 \ Ur contains part of the S-spectrum
of T and thus F n

L (s, T ) is not slice hyperholomorphic in that set.

Now, we show some algebraic properties of the F -functional calculus.

Proposition 9.2.21. Let n be a fixed odd number. Let T ∈ BC0,1(Vn) be
such that T =

∑n
i=1 Tiei, and assume that the operators Ti, 1 ≤ i ≤ n

have real spectrum.

• If f̆ = ∆
n−1
2 f and ğ = ∆

n−1
2 g with f , g ∈ SHL(σS(T )) and a ∈ Rn,

then
(f̆a+ ğ)(T ) = f̆(T )a+ ğ(T ).

• If f̆ = ∆
n−1
2 f and ğ = ∆

n−1
2 g with f , g ∈ SHR(σS(T )) and a ∈ Rn,

then
(af̆ + ğ)(T ) = f̆(T )a+ ğ(T ).

Proof. It follows by the linearity of the integrals in Definition 9.2.14.

Proposition 9.2.22. Let n be a fixed odd number. Let T ∈ BC0,1(Vn) be
such that T =

∑n
i=1 Tiei, and assume that the operators Ti, 1 ≤ i ≤ n

have real spectrum.
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1) Let f̆ = ∆
n−1
2 f with f ∈ SHL(σS(T )) and assume thatf(x) =∑∞

ℓ=0 x
ℓaℓ with aℓ ∈ Rn, where the series converges on a ball Br(0)

with σS(T ) ⊂ Br(0). Then

f̆(T ) =

(
m−n+1∑
r=0

Kr(m,n)(−1)r

)
∞∑

ℓ=n−1

T ℓ+1−naℓ,

where Kr(m,n) is defined in (9.12).

2) Let f̆ = ∆
n−1
2 f with f ∈ SHR(σS(T )) and assume that f(x) =∑∞

ℓ=0 x
ℓaℓ with aℓ ∈ Rn, where the series converges on a ball Br(0)

with σS(T ) ⊂ Br(0). Then

f̆(T ) =

(
m−n+1∑
r=0

Kr(m,n)(−1)r

)
∞∑

ℓ=n−1

aℓT
ℓ+1−n.

Proof. We will show only the first point because the second point can be
proved by similar arguments. We consider an imaginary unit J ∈ Sn−1 and
a radius 0 < R < r such that σS(T ) ⊂ BR(0). Since the expansion in
series of f converges uniformly on ∂(BR(0) ∩ CJ) we have

f̆(T ) =
1

2π

∫
∂(BR(0)∩CJ )

FL
n (s, T )dsJ

∞∑
ℓ=0

sℓaℓ

=
1

2π

∫
∂(BR(0)∩CJ )

FL
n (s, T )dsJs

ℓaℓ.

By Theorem 9.2.10 and from the fact that T0 = 0 we have

FL
n (s, T ) =

(
m−n+1∑
ℓ=0

Kr(m,n)(−1)r

)
+∞∑

m=n−1

Tm+1−ns−1−m.
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Chapter 9. The F -functional calculus for bounded operators

Therefore we get

f̆(T ) =

(∑m−n+1
ℓ=0 Kr(m,n)(−1)r

)
2π

∞∑
ℓ=0

∫
∂(BR(0)∩CJ )

∞∑
m=n−1

Tm+1−ns−1−m

dsJs
ℓaℓ

=

(∑m−n+1
ℓ=0 Kr(m,n)(−1)r

)
2π

∞∑
ℓ=0

∞∑
m=n−1

Tm+1−n
∫
∂(BR(0)∩CJ )

s−1−m

dsJs
ℓaℓ

=

(
m−n+1∑
r=0

Kr(m,n)(−1)r

)
∞∑

ℓ=n−1

T ℓ+1−naℓ.

To state the next result we need the following notations

ML
m(T, T̄ ) :=

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) T
m+1−n−ℓ T̄ ℓ

and

MR
m(T, T̄ ) :=

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n)T
m+1−n−ℓ T̄ ℓ,

where Kℓ(m,n) is defined in (9.12).

Theorem 9.2.23. Let n be a fixed odd number. Let T ∈ BC0,1(Vn) and k ≥
n− 1. Let U ⊂ Rn+1 be a bounded slice Cauchy domain with σS(T ) ⊂ U .
For every imaginary unit J ∈ Sn−1, we have

ML
k (T, T̄ ) =

1

2π

∫
∂(U∩CJ )

FL
n (s, T )dsJs

k, (9.16)

and

MR
k (T, T̄ ) =

1

2π

∫
∂(U∩CJ )

skdsJF
R
n (s, T ). (9.17)

Proof. We will prove only formula (9.16), since the equality (9.17) can be
proved with similar arguments. By Theorem 9.2.10 and by the Cauchy
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integral theorem we get

1

2π

∫
∂(U∩CJ )

FL
n (s, T )dsJs

m

=
1

2π

∫
∂(U∩CJ )

+∞∑
m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) T
m+1−n−ℓ T̄ ℓs−1−mdsJs

k

=
+∞∑

m=n−1

m−n+1∑
ℓ=0

Kℓ(m,n) T
m+1−n−ℓ T̄ ℓ

(
1

2π

∫
∂(Br(0)∩CJ )

s−1−m+kdsJ

)
= ML

k (T, T̄ ).

9.3 The F -resolvent equation for n = 5 and for n = 7

The F -resolvent equation has further differences with respect to the com-
plex resolvent equation and with respect to the S-resolvent equation. This
is a consequence of the fact that the F -functional calculus is based on an
integral transform and not on a Cauchy formula.

The F -resolvent equation for n = 3 is known since some years and it
coincides with the quaternionic F -resolvent equation. Precisely it is (see
[41])

FR
3 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

3 (p, T )

− 1

4

(
sFR

3 (s, T )FL
3 (p, T )p− sFR

3 (s, T )TFL
3 (p, T )− FR

3 (s, T )TFL
3 (p, T )p

+FR
3 (s, T )T 2FL

3 (p, T )
)
=
[(
FR
3 (s, T )− FL

3 (p, T )
)
p− s̄

(
FR
3 (s, T )− FL

3 (p, T )
)]

·
(p2 − 2s0p+ |s|2)−1.

for T ∈ BC(V3) and for any p, s ∈ ρS(T ), with s ̸∈ [p]. The equation is
written just in terms of S-resolvent operators and of F -resolvent operators.
The case of general n (odd number) is not so simple, and its existence has
been an open problem for some years.

In order to explain how to obtain it in the general case we treat separately
the cases n = 5 and n = 7. In the case n = 5 it is clear that the equation can
be written in a quite reasonable way in terms of the F -resolvent operators.
But starting from n = 7 this choice cannot be made anymore because it
leads to an equation that is ways too complicated. This is the reason for
which we cannot replace the pseudo S-resolvent operators. In the sequel
will be fundamental the following result.

211



i
i

“thesis” — 2022/12/4 — 11:25 — page 212 — #230 i
i

i
i

i
i

Chapter 9. The F -functional calculus for bounded operators

Theorem 9.3.1 (The left and right F -resolvent equations). Let n be an
odd number and let T ∈ B0,1(Vn). Let s ∈ ρS(T ). Then the F -resolvent
operators satisfy the equations

FL
n (s, T )s− TFL

n (s, T ) = γnQc,s(T )
−n−1

2 (9.18)

and
sFR

n (s, T )− FR
n (s, T )T = γnQc,s(T )

−n−1
2 , (9.19)

where the constants γn are given by (7.47).

Proof. We prove the relation (9.18), since (9.19) follows by similar argu-
ments. Thus we have

FL
n (s, T )s = γn(sI − T̄ )sQ−n+1

2
c,s (T ),

and
TFL

n (s, T ) = γn(Ts− T T̄ )Q−n+1
2

c,s (T ).

By making the difference, we obtain

FL
n (s, T )s− TFL

n (s, T ) = γn(s
2I − s(T + T̄ ) + T T̄ )Q−n+1

2
c,s (T )

= γnQc,s(T )
−n−1

2 .

9.3.1 The F -resolvent equation for n = 5

In this case we show the F - resolvent equation establishes a link between
the difference FR

5 (s, T ) − FL
5 (p, T ), the slice Cauchy kernel and suitable

bounded operators.
To prove the F resolvent equation we need the following technical result

involving the pseudo S-resolvent operators.

Lemma 9.3.2 (The F - resolvent equation for n = 5, with the pseudo
S-resolvent operators). Let T ∈ BC0,1(V5). Then for p, s ∈ ρS(T ) the
following equation holds

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T ) (9.20)
+γ5Q−1

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−1
c,p(T )

+γ5[Q−2
c,s (T )Q−1

c,p(T ) +Q−1
s (T )Q−2

c,p(T )]

=
{
[FR

5 (s, T )− FL
5 (p, T )]p− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
(p2 − 2s0p+ |s|2)−1.

where γ5 is given by (7.47) for n = 5.

212



i
i

“thesis” — 2022/12/4 — 11:25 — page 213 — #231 i
i

i
i

i
i

9.3. The F -resolvent equation for n = 5 and for n = 7

Proof. Let us start by left multiplying the S-resolvent equation (3.9) by
γ5Q−2

c,s (T ) so that we get

FR
5 (s, T )S−1

L (p, T ) =
{
[FR

5 (s, T )− γ5Q−2
c,s (T )S

−1
L (p, T )]p−

s̄[FR
5 (s, T )− γ5Q−2

c,s (T )S
−1
L (p, T )]

}
·

(p2 − 2s0p+ |s|2)−1. (9.21)

Now, we multiply the S-resolvent equation on the right by γ5Q−2
c,p(T ) and

we obtain

S−1
R (s, T )FL

5 (p, T ) =
{
[γ5S

−1
R (s, T )Q−2

c,p(T )− FL
5 (p, T )]p

−s̄[γ5S−1
R (s, T )Q−2

c,p(T )− FL
5 (p, T )]

}
·(p2 − 2s0p+ |s|2)−1. (9.22)

We multiply the S-resolvent equation on the left by Q−1
c,s (T ) and on the

right by Q−1
c,p(T ), we get

Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) =

{
[Q−1

c,s (T )S
−1
R (s, T )Q−1

c,p(T )

−Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )]p− s̄[Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T ) (9.23)

−Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )]
}
(p2 − 2s0p+ |s|2)−1.

Now, we sum (9.21), (9.22) and (9.23) multiplied by γ5 to get

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T ) +

γ5Q−1
c,s (T )S

−1
R (s, T )S−1

L (s, T )Q−1
c,p(T ) =

{
[FR

5 (s, T )− FL
5 (p, T )]p

−s̄[FR
5 (s, T )− FL

5 (p, T )]
}
(p2 − 2s0p+ |s|2)−1 +

{
[γ5S

−1
R (s, T )Q−2

c,p(T )

−γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )− γ5Q−2
c,s (T )S

−1
L (p, T ) + γ5Q−1

c,s (T )S
−1
R (s, T )Q−1

c,p(T )]p

−s̄[γ5S−1
R (s, T )Q−2

c,p(T )− γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )− γ5Q−2
c,s (T )S

−1
L (p, T )

+γ5Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T )]
}
(p2 − 2s0p+ |s|2)−1.

Finally, we verify that{
[γ5S

−1
R (s, T )Q−2

c,p(T )− γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )− γ5Q−2
c,s (T )S

−1
L (p, T )

+γ5Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T )]p− s̄[γ5S
−1
R (s, T )Q−2

c,p(T )

−γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )− γ5Q−2
c,s (T )S

−1
L (p, T )

+γ5Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T )]
}
· (p2 − 2s0p+ |s|2)−1
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Chapter 9. The F -functional calculus for bounded operators

= −γ5[Q−2
c,s (T )Q−1

c,p(T ) +Q−1
c,s (T )Q−2

c,p(T )].

Now observe that by the definitions of the S-resolvent operators we have

γ5
(
S−1
R (s, T )Q−2

c,p(T )−Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )−Q−2
c,s (T )S

−1
L (p, T )

+Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T )
)
= γ5

(
Q−1
c,s (T )(sI − T )Q−2

c,p(T )

−Q−1
c,s (T )(pI − T )Q−2

c,p(T )−Q−2
c,s (T )(pI − T )Q−1

c,p(T )+

+Q−2
c,s (T )(sI − T )Q−1

c,p(T )
)
= γ5[Q−1

c,s (T )(s− p)Q−2
c,p(T )

+Q−2
c,s (T )(s− p)Q−1

c,p(T )],

and this implies that{
[γ5S

−1
R (s, T )Q−2

c,p(T )− γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p − γ5Q−2
c,s (T )S

−1
L (p, T )

+γ5Q−2
c,s (T )S

−1
L (p, T ) + γ5Q−1

c,s (T )S
−1
R (s, T )Q−1

c,p(T )]p

−s̄[γ5S−1
R (s, T )Q−2

c,p(T )− γ5Q−1
c,s (T )S

−1
L (p, T )Q−1

c,p(T )

+γ5Q−1
c,s (T )S

−1
R (s, T )Q−1

c,p(T )]
}
(p2 − 2s0p+ |s|2)−1

= γ5
{
[Q−1

c,s (T )(s− p)Q−2
c,p(T ) +Q−2

c,s (T )(s− p)Q−1
c,p(T )]p

−s̄[Q−1
c,s (T )(s− p)Q−2

c,p(T ) +Q−2
c,s (T )(s− p)Q−1

c,p(T )]
}
(p2 − 2s0p+ |s|2)−1

= γ5
{
[Q−1

c,s (T )(sp− p2)Q−2
c,p(T ) +Q−2

c,s (T )(sp− p2)Q−1
c,p(T )]

−[Q−1
c,s (T )(s̄s− s̄p)Q−2

c,p(T ) +Q−2
c,s (T )(s̄s− s̄p)Q−1

c,p(T )]
}
(p2 − 2s0p+ |s|2)−1

= γ5[Q−2
c,s (T )(sp− p2 − s̄s+ s̄p)Q−1

c,p(T ) +Q−1
c,s (T ) ·

(sp− p2 − ss̄+ s̄p)Q−2
c,p(T )](p

2 − 2s0p+ |s|2)−1

= −γ5[Q−2
c,s (T )(p

2 − 2s0p+ |s|2)Q−1
c,p(T ) +Q−1

c,s (T ) ·
(p2 − 2s0p+ |s|2)Q−2

c,p(T )](p
2 − 2s0p+ |s|2)−1

= −γ5[Q−2
c,s (T )Q−1

c,p(T ) +Q−1
c,s (T )Q−2

c,p(T )].

Using the above preliminary lemma and the relations between the pseudo
S-resolvent operators and the F -resolvent operators, we obtain for n = 5
the F -resolvent equation. This equation has strong similarities with the
case n = 3.

Theorem 9.3.3 (The F - resolvent equation for n = 5). Let T ∈ BC0,1(V5).
Then, for p, s ∈ ρS(T ), the following equation holds

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T ) + γ−1
5

(
s2FR

5 (s, T )FL
5 (p, T )p

2
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9.3. The F -resolvent equation for n = 5 and for n = 7

−3s2FR
5 (s, T )TFL

5 (p, T )p− 3sFR
5 (s, T )TFL

5 (p, T )p
2

+3sFR
5 (s, T )T 2FL

5 (p, T )p− 2sFR
5 (s, T )|T |2TFL

5 (p, T )

+2sFR
5 (s, T )|T |2FL

5 (p, T )p− 2FR
5 (s, T )|T |2TFL

5 (p, T )p +

sFR
5 (s, T )T

2
FL
5 (p, T )p− sFR

5 (s, T )|T |2TFL
5 (p, T )

−FR
5 (s, T )|T |2TFL

5 (p, T )p+ FR
5 (s, T )|T |4FL

5 (p, T )

+sFR
5 (s, T )FL

5 (p, T )p
3 − FR

5 (s, T )TFL
5 (p, T )p

3

+2FR
5 (s, T )T 2FL

5 (p, T )p
2 − FR

5 (s, T )T 3FL
5 (p, T )p

+2FR
5 (s, T )T 2|T |2FL

5 (p, T ) + s3FR
5 (s, T )FL

5 (p, T )p

−s3FR
5 (s, T )TFL

5 (p, T ) + 2s2FR
5 (s, T )T 2FL

5 (p, T )− sFR
5 (s, T )T 3FL

5 (p, T )
)

=
{
[FR

5 (s, T )− FL
5 (p, T )]p− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
(p2 − 2s0p+ |s|2)−1,

where we have set for the sake of simplicity

|T |2 = TT.

Proof. Firstly we remark that

γ5Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T )

= γ5Q−2
c,s (T )(sI − T )(pI − T )Q−2

c,p(T )

= γ5Q−2
c,s (T )

(
spI − sT − Tp+ T

2
)
Q−2
c,p(T )

= γ5
[
sQ−2

c,s (T )Q−2
c,p(T )p− sQ−2

c,s (T )TQ−2
c,p(T )−Q−2

c,s (T )TQ−2
c,p(T )p

+Q−2
c,s (T )T

2Q−2
c,p(T )

]
.

Putting this in (9.20) we deduce that

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T ) + γ5
[
sQ−2

c,s (T )Q−2
c,p(T )p+

−sQ−2
c,s (T )TQ−2

c,p(T )−Q−2
c,s (T )TQ−2

c,p(T )p+Q−2
c,s (T )T

2Q−2
c,p(T )

]
+γ5[Q−2

c,s (T )Q−1
c,p(T ) +Q−1

c,s (T )Q−2
c,p(T )] =

{
[FR

5 (s, T )− FL
5 (p, T )]p

−s̄[FR
5 (s, T )− FL

5 (p, T )]
}
(p2 − 2s0p+ |s|2)−1.

Now, we use the right and left F -resolvent equation for n = 5 (see Theorem
9.3.1) namely

FL
5 (p, T )p− TFL

5 (p, T ) = γ5Q−2
c,p(T ), (9.24)
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Chapter 9. The F -functional calculus for bounded operators

and
sFR

5 (s, T )− FR
5 (s, T )T = γ5Q−2

c,s (T ). (9.25)

We go through the computations terms by terms

sQ−2
c,s (T )TQ−2

c,p(T ) = γ−2
5 s

(
sFR

5 (s, T )− FR
5 (s, T )T

)
T(

FL
5 (p, T )p− TFL

5 (p, T )
)

= γ−2
5

(
s2FR

5 (s, T )TFL
5 (p, T )p

−s2FR
5 (s, T )|T |2FL

5 (p, T )− sFR
5 (s, T )|T |2FL

5 (p, T )p

+sFR
5 (s, T )|T |2TFL

5 (p, T )
)
, (9.26)

Q−2
c,s (T )TQ−2

c,p(T )p = γ−2
5

(
sFR

5 (s, T )TFL
5 (p, T )p

2 (9.27)

−sFR
5 (s, T )|T |2FL

5 (p, T )p− FR
5 (s, T )|T |2FL

5 (p, T )p
2

+FR
5 (s, T )|T |2TFL

5 (p, T )p
)
,

Q−2
c,s (T )TQ−2

c,p(T )p = γ−2
5

(
sFR

5 (s, T )TFL
5 (p, T )p

2 (9.28)

−sFR
5 (s, T )|T |2FL

5 (p, T )p− FR
5 (s, T )|T |2FL

5 (p, T )p
2

+FR
5 (s, T )|T |2TFL

5 (p, T )p
)
,

Q−2
c,s (T )T

2Q−2
c,p(T ) = γ−2

5

(
sFR

5 (s, T )T
2
FL
5 (p, T )p

−sFR
5 (s, T )|T |2TFL

5 (p, T )− FR
5 (s, T )|T |2TFL

5 (p, T )p

+FR
5 (s, T )|T |4FL

5 (p, T )
)
. (9.29)

Moreover by (9.24) and (9.25) we have

Q−1
c,p(T ) = Q−2

c,p(T )Qc,p(T ) (9.30)

= γ−1
5

(
FL
5 (p, T )p− TFL

5 (p, T )
) (
p2 − (T + T )p+ |T |2

)
= γ−1

5

(
FL
5 (p, T )p

3 − 2TFL
5 (p, T )p

2 − TFL
5 (p, T )p

2 + T 2FL
5 (p, T )p

+2|T |2FL
5 (p, T )p− T |T |2FL

5 (p, T )
)
,

Qc,s(T )
−1 = Qc,s(T )Qc,s(T )

−2 (9.31)
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9.3. The F -resolvent equation for n = 5 and for n = 7

= γ−1
5

(
s2 − s(T + T ) + |T |2

) (
sFR

5 (s, T )− FR
5 (s, T )T

)
= γ−1

5

(
s3FR

5 (s, T )− 2s2FR
5 (s, T )T − s2FR

5 (s, T )T

+sFR
5 (s, T )T 2 + 2sFR

5 (s, T )|T |2 − FR
5 (s, T )T |T |2

)
.

This implies that

Q−2
c,s (T )Q−1

c,p(T ) = γ−2
5

(
sFR

5 (s, T )− FR
5 (s, T )T

) (
FL
5 (p, T )p

3 (9.32)

−2TFL
5 (p, T )p

2 − TFL
5 (p, T )p

2

+T 2FL
5 (p, T )p+ 2|T |2FL

5 (p, T )p− T |T |2FL
5 (p, T )

)
= γ−2

5

(
sFR

5 (s, T )FL
5 (p, T )p

3 − 2sFR
5 (s, T )TFL

5 (p, T )p
2

−sFR
5 (s, T )TFL

5 (p, T )p
2 + sFR

5 (s, T )T 2FL
5 (p, T )p+

2sFR
5 (s, T )|T |2FL

5 (p, T )p− sFR
5 (s, T )T |T |2FL

5 (p, T )

−FR
5 (s, T )TFL

5 (p, T )p
3 + 2FR

5 (s, T )T 2FL
5 (p, T )p

2

+FR
5 (s, T )|T |2FL

5 (p, T )p
2 − FR

5 (s, T )T 3FL
5 (p, T )p

−2FR
5 (s, T )|T |2TFL

5 (p, T )p+ FR
5 (s, T )T 2|T |2FL

5 (p, T )
)
.

and

Q−1
c,s (T )Q−2

c,p(T ) = γ−2
5

(
s3FR

5 (s, T )− 2s2FR
5 (s, T )T (9.33)

−s2FR
5 (s, T )T + FR

5 (s, T )T 2 + 2sFR
5 (s, T )|T |2

−FR
5 (s, T )T |T |2

) (
FL
5 (p, T )p− TFL

5 (p, T )
)

= γ−2
5

(
s3FR

5 (s, T )FL
5 (p, T )p− 2s2FR

5 (s, T )TFL
5 (p, T )p

−s2FR
5 (s, T )TFL

5 (p, T )p+ sFR
5 (s, T )T 2FL

5 (p, T )p

+2sFR
5 (s, T )|T |2FL

5 (p, T )p− FR
5 (s, T )T |T |2FL

5 (p, T )p

−s3FR
5 (s, T )TFL

5 (p, T ) + 2s2FR
5 (s, T )T 2FL

5 (p, T )

+s2FR
5 (s, T )|T |2FL

5 (p, T )− sFR
5 (s, T )T 3FL

5 (p, T )

−2sFR
5 (s, T )|T |2TFL

5 (p, T ) + FR
5 (s, T )T 2|T |2FL

5 (p, T )
)
.

The statement is obtained by taking the sum of (9.26), (9.27), (9.28), (9.29),
(9.30), (9.32), (9.33).

9.3.2 The F -resolvent equation for n = 7

As it is clearly visible from the case n = 5, that there are intrinsic compli-
cations in the structure of the F -resolvent equation. The case n = 7 shows
that it is not possible to have a reasonable closed form for the F -resolvent
equation just in terms of the S-resolvent operators and of the F -resolvent
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Chapter 9. The F -functional calculus for bounded operators

operators. Instead, the use of the pseudo S-resolvent operators allows a
reasonable structure of the resolvent equation. The point of the matter is
that in this case it is not possible to obtain a F -resolvent equation as a re-
lation between FR

7 (s, T )FL
7 (p, T ), and FR

7 (s, T ) − FL
7 (p, T ). However, it

is possible to prove a form of the F - resolvent equation which will be fun-
damental in the section on the Riesz projects. As before, we begin with a
technical result.

Lemma 9.3.4 (TheF - resolvent equation for n = 7 with the pseudo S-resolvent
operators). Let T ∈ BC0,1(V7). Then for p, s ∈ ρS(T ) the following equa-
tion holds

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T ) (9.34)
+γ7[Q−1

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−2
c,p(T ) +Q−2

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−1
c,p(T )

+Q−1
c,s (T )Q−3

c,p(T )Q−3
c,s (T )Q−1

c,p(T ) +Q−2
c,s (T )Q−2

c,p(T )]

=
{[
FR
7 (s, T )− FL

7 (p, T )
]
p− s̄

[
FR
7 (s, T )− FL

7 (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

Proof. First of all, we left multiply the S-resolvent equation (3.9) by γ7Q−3
c,s (T ),

so that we get

FR
7 (s, T )S−1

L (p, T ) =
{
[FR

7 (s, T )− γ7Q−3
c,s (T )S

−1
L (p, T )]p

−s̄[FR
7 (s, T )− γ7Q−3

c,s (T )S
−1
L (p, T )]

}
·

·(p2 − 2s0p+ |s|2)−1. (9.35)

Now, we right multiply the S-resolvent equation (3.9) by γ7Q−3
c,p(T )

S−1
R (s, T )FL

7 (p, T ) =
{
[γ7S

−1
R (s, T )Q−3

c,p(T )− FL
7 (p, T )]p

−s̄[γ7S−1
R (s, T )Q−3

c,p(T )− FL
7 (p, T )]

}
·(p2 − 2s0p+ |s|2)−1. (9.36)

Then we multiply the S-resolvent equation on the left by Q−1
c,s (T ) and on

the right by Q−2
c,p(T )

Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−2
c,p(T ) (9.37)

=
{
[Q−1

c,s (T )S
−1
R (s, T )Q−2

c,p(T )−Q−1
c,s (T )S

−1
L (p, T )Q−2

c,p(T )]p

−s̄[Q−1
c,s (T )S

−1
R (s, T )Q−2

c,p(T )−Q−1
c,s (T )S

−1
L (p, T )Q−2

c,p(T )]
}

·(p2 − 2s0p+ |s|2)−1.

We now multiply the S-resolvent equation on the left by Q−2
c,s (T ) and on

the right by Q−1
c,p(T )
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9.3. The F -resolvent equation for n = 5 and for n = 7

Q−2
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) (9.38)

=
{
[Q−2

c,s (T )S
−1
R (s, T )Q−1

c,p(T )−Q−2
c,s (T )S

−1
L (p, T )Q−1

c,p(T )]p

−s̄[Q−2
c,s (T )S

−1
R (s, T )Q−1

c,p(T )−Q−2
c,s (T )S

−1
L (p, T )Q−1

c,p(T )]
}

(p2 − 2s0p+ |s|2)−1. (9.39)

We sum (9.35), (9.36) and (9.37), (9.38) multiplied by γ7, and we obtain

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T ) + γ7Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−2
c,p(T )

+γ7Q−2
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) = {

[
FR
7 (s, T )− FL

7 (p, T )

+γ7S
−1
R (s, T )Q−3

c,p(T )− γ7Q−3
c,s (T )S

−1
L (p, T ) + γ7Q−1

c,s (T )S
−1
R (s, T )Q−2

c,p(T )

−γ7Q−1
c,s (T )S

−1
L (p, T )Q−2

c,p(T ) + γ7Q−2
c,s (T )S

−1
R (s, T )Q−1

c,p(T )

−γ7Q−2
c,s (T )S

−1
L (p, T )Q−1

c,p(T )
]
p− s̄

[
FR
7 (s, T )− FL

7 (p, T )

+γ7S
−1
R (s, T )Q−3

c,p(T )− γ7Q−3
c,s (T )S

−1
L (p, T ) + γ7Q−1

c,s (T )S
−1
R (s, T )Q−2

c,p(T )

−γ7Q−1
c,s (T )S

−1
L (p, T )Q−2

c,p(T ) + γ7Q−2
c,s (T )S

−1
R (s, T )Q−1

c,p(T )

−γ7Q−2
c,s (T )S

−1
L (p, T )Q−1

c,p(T )
]
(p2 − 2s0p+ |s|2)−1.

By the definition of S- resolvent operators we have

S−1
R (s, T )Q−3

c,p(T )−Q−3
c,s (T )S

−1
L (p, T ) +Q−1

c,s (T )S
−1
R (s, T )Q−2

c,p(T )

−Q−1
c,s (T )S

−1
L (p, T )Q−2

c,p(T ) +Q−2
c,s (T )S

−1
R (s, T )Q−1

c,p(T )−Q−2
c,s (T )S

−1
L (p, T )Q−1

c,p(T )

= Q−1
c,s (T )(sI − T )Q−3

c,p(T )−Q−3
c,s (T )(pI − T )Q−1

c,p(T ) +Q−2
c,s (T )(sI − T )Q−2

c,p(T )

−Q−1
c,s (T )(pI − T )Q−3

c,p(T ) +Q−3
c,s (T )(sI − T )Q−1

c,p(T )−Q−2
c,s (T )(pI − T )Q−2

c,p(T )

= Q−1
c,s (T )sQ−3

c,p(T )−Q−3
c,s (T )pQ−1

c,p(T ) +Q−2
c,s (T )sQ−2

c,p(T )−Q−1
c,s (T )pQ−3

c,p(T ) +

Q−3
c,s (T )sQ−1

c,p(T )−Q−2
c,s (T )pQ−2

c,p(T )

= Q−1
c,s (T )(s− p)Q−3

c,p(T ) +Q−3
c,s (T )(s− p)Q−1

c,p(T ) +Q−2
c,s (T )(s− p)Q−2

c,p(T ).

Hence

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T ) + γ7Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−2
c,p(T )

+γ7Q−2
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) =

{[
FR
7 (s, T )− FL

7 (p, T )
]
p

−s̄
[
FR
7 (s, T )− FL

7 (p, T )
]}

(p2 − 2s0p+ |s|2)−1 + γ7
{[

Q−1
c,s (T )(s− p)Q−3

c,p(T )

+Q−3
c,s (T )(s− p)Q−1

c,p(T ) +Q−2
c,s (T )(s− p)Q−2

c,p(T )
]
p
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−s̄
[
Q−1
c,s (T )(s− p)Q−3

c,p(T ) +Q−3
c,s (T )(s− p)Q−1

c,p(T ) +Q−2
c,s (T )(s− p)Q−2

c,p(T )
]}

·
(p2 − 2s0p+ |s|2)−1.

Finally we have to verify that

γ7
{[

Q−1
c,s (T )(s− p)Q−3

c,p(T ) +Q−3
c,s (T )(s− p)Q−1

c,p(T )

+Q−2
c,s (T )(s− p)Q−2

c,p(T )
]
p− s̄

[
Q−1
c,s (T )(s− p)Q−3

c,p(T )

+Q3
c,s(T )(s− p)Qc,p(T ) +Q−2

c,s (T )(s− p)Q−2
c,p(T )

]}
(p2 − 2s0p+ |s|2)−1

= −γ7[Q−1
c,s (T )Q−3

c,p(T ) +Q−3
c,s (T )Q−1

c,p(T ) +Q−2
c,s (T )Q−2

c,p(T )].

This follows from

γ7
{[

Q−1
c,s (T )(s− p)Q−3

c,p(T ) +Q−3
c,s (T )(s− p)Q−1

c,p(T ) +Q−2
c,s (T )(s− p)Q−2

c,p(T )
]
p

−s̄
[
Q−1
c,s (T )(s− p)Q−3

c,p(T ) +Q−3
c,s (T )(s− p)Q−1

c,p(T ) +Q−2
c,s (T )(s− p)Q−2

c,p(T )
]}

·
(p2 − 2s0p+ |s|2)−1

= γ7
[
Q−1
c,s (T )(sp− p2)Q−3

c,p(T ) +Q−3
c,s (T )(sp− p2)Q−1

c,p(T )

+Q−2
c,s (T )(sp− p2)Q−2

c,p(T )−Q−1
c,s (T )(s̄s− s̄p)Q−3

c,p(T )

−Q−3
c,s (T )(s̄s− s̄p)Q−1

c,p(T )−Q−2
c,s (T )(s̄s− s̄p)Q−2

c,p(T )
]
(p2 − 2s0p+ |s|2)−1

= γ7
[
Q−1
c,s (T )(sp− p2 − s̄s+ s̄p)Q−3

c,p(T ) +Q−3
c,s (T )(sp− p2 − s̄s+ s̄p)Q−1

c,p(T )

+Q−2
c,s (T )(sp− p2 − s̄s+ s̄p)Q−2

c,p(T )
]
(p2 − 2s0p+ |s|2)−1

= −γ7[Q−1
c,s (T )Q−3

c,p(T ) +Q−3
c,s (T )Q−1

c,p(T ) +Q−2
c,s (T )Q−2

c,p(T )].

The results of the previous lemma allows us to obtain the so-called
pseudo F -resolvent equation for n = 7.

Theorem 9.3.5 (The pseudo F -resolvent equation for n = 7). Let T ∈
BC0,1(V7). Then for p, s ∈ ρS(T ) the following equation holds

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T ) (9.40)
+γ−1

7

[
Q−1
c,s (T )S

−1
R (s, T )FL

7 (p, T )p
2 −Q−1

c,s (T )S
−1
R (s, T )TFL

7 (p, T )p

−Q−1
c,s (T )S

−1
R (s, T )TFL

7 (p, T )p+Q−1
c,s (T )S

−1
R (s, T )|T |2FL

7 (p, T )

+s2FR
7 (s, T )S−1

L (p, T )Q−2
c,p(T )− sFR

7 (s, T )TS−1
L (p, T )Q−2

c,p(T )

−sFR
7 (s, T )TS−1

L (p, T )Q−2
c,p(T ) + FR

7 (s, T )|T |2S−1
L (p, T )Q−2

c,p(T )

+Q−1
c,s (T )F

L
7 (p, T )p−Q−1

c,s (T )TF
L
7 (p, T )
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9.3. The F -resolvent equation for n = 5 and for n = 7

+sFR
7 (s, T )Q−1

c,p(T )− FR
7 (s, T )TQ−1

c,p(T )
]
+ γ−2

7 [s3FR
7 (s, T )FL

7 (p, T )p
3

−s3FR
7 (s, T )TFL

7 (p, T )p
2 − s2FR

7 (s, T )TFL
7 (p, T )p

3

+s2FR
7 (s, T )T 2FL

7 (p, T )p
2 + s3FR

7 (s, T )FL
7 (p, T )p[|T |2 − p(T + T )]

−s3FR
7 (s, T )TFL

7 (p, T )[|T |2 − p(T + T )]− s2FR
7 (s, T )TFL

7 (p, T )p ·
[|T |2 − p(T + T )] + s2FR

7 (s, T )T 2FL
7 (p, T )[|T |2 − p(T + T )]

+
[
|T |2 − s(T + T )

]
sFR

7 (s, T )FL
7 (p, T )p

3 −
[
|T |2 − s(T + T )

]
sFR

7 (s, T )T ·
FL
7 (p, T )p

2 −
[
|T |2 − s(T + T )

]
FR
7 (s, T )TFL

7 (p, T )p
3 +

[
|T |2 − s(T + T )

]
·

FR
7 (s, T )T 2FL

7 (p, T )p
2 +

[
|T |2 − s(T + T )

] (
sFR

7 (s, T )FL
7 (p, T )p

−sFR
7 (s, T )TFL

7 (p, T )− FR
7 (s, T )TFL

7 (p, T )p+ FR
7 (s, T )T 2FL

7 (p, T )
)
·[

|T |2 − p(T + T )
]

=
{[
FR
7 (s, T )− FL

7 (p, T )
]
p− s̄

[
FR
7 (s, T )− FL

7 (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

Proof. We use the F -resolvent equations (9.18) and (9.19) with n = 7

FL
7 (p, T )p− TFL

7 (p, T ) = γ7Q−3
c,p(T ), (9.41)

sFR
7 (s, T )− FR

7 (s, T )T = γ7Q−3
c,s (T ). (9.42)

Now we substitute (9.41) and (9.42) in the equation of Lemma 9.3.4.
We go term by term

Qc,s(T )
−1S−1

R (s, T )S−1
L (p, T )Q−2

c,p(T ) (9.43)

= Q−1
c,s (T )S

−1
R (s, T )(pI − T )Q−3

c,p(T )

= Q−1
c,s (T )S

−1
R (s, T )Q−3

c,p(T )p−Q−1
c,s (T )S

−1
R (s, T )TQ−3

c,p(T )

= γ−1
7

{
Q−1
c,s (T )S

−1
R (s, T )

[
FL
7 (p, T )p− TFL

7 (p, T )
]
p

−Q−1
c,s (T )S

−1
R (s, T )T

[
FL
7 (p, T )p− TFL

7 (p, T )
]}

= γ−1
7

[
Q−1
c,s (T )S

−1
R (s, T )FL

7 (p, T )p
2 −Q−1

c,s (T )S
−1
R (s, T )TFL

7 (p, T )p

−Q−1
c,s (T )S

−1
R (s, T )TFL

7 (p, T )p+Q−1
c,s (T )S

−1
R (s, T )|T |2FL

7 (p, T )
]
,

Q−2
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) (9.44)

= Q−3
c,s (T )(sI − T )S−1

L (p, T )Q−2
c,p(T )

= sQ−3
c,s (T )S

−1
L (p, T )Q−2

c,p(T )−Q−3
c,s (T )TS

−1
L (p, T )Q−2

c,p(T )
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Chapter 9. The F -functional calculus for bounded operators

= γ−1
7

{
s
[
sFR

7 (s, T )− FR
7 (s, T )T

]
S−1
L (p, T )Q−2

c,p(T )

−
[
sFR

7 (s, T )− FR
7 (s, T )T

]
TS−1

L (p, T )Q−2
c,p(T )

}
= γ−1

7

[
s2FR

7 (s, T )S−1
L (p, T )Q−2

c,p(T )− sFR
7 (s, T )TS−1

L (p, T )Q−2
c,p(T )

−sFR
7 (s, T )TS−1

L (p, T )Q−2
c,p(T ) + FR

7 (s, T )|T |2S−1
L (p, T )Q−2

c,p(T )
]
,

Q−1
c,s (T )Q−3

c,p(T ) = γ−1
7

(
Q−1
c,s (T )F

L
7 (p, T )p −Q−1

c,s (T )TF
L
7 (p, T )

)
(9.45)

Q−3
c,s (T )Q−1

c,p(T ) = γ−1
7

(
sFR

7 (s, T )Qc,p(T )− FR
7 (s, T )TQc,p(T )

)
.(9.46)

Now, since

Q−3
c,s (T )Q−3

c,p(T ) = γ−2
7

[
sFR

7 (s, T )FL
7 (p, T )p− sFR

7 (s, T )TFL
7 (p, T )

−FR
7 (s, T )TFL

7 (p, T )p+ FR
7 (s, T )T 2FL

7 (p, T )
]
,

we get

Q−2
c,s (T )Q−2

c,p(T ) = Qc,s(T )Q−3
c,s (T )Q−3

c,p(T )Qc,p(T ) (9.47)

= (s2 − s(T + T ) + |T |2)Q−3
c,s (T )Q−3

c,p(T )(p
2 − p(T + T ) + |T |2)

= s2Q−3
c,s (T )Q−3

c,p(T )p
2 + s2Q−3

c,s (T )Q−3
c,p(T )

(
|T |2 − p(T + T )

)
+
(
|T |2 − s(T + T )

)
Q−3
c,s (T )Q−3

c,p(T )p
2 +

(
|T |2 − s(T + T )

)
Q−3
c,s (T )Q−3

c,p(T )
(
|T |2 − p(T + T )

)
= γ−2

7

{
s3FR

7 (s, T )FL
7 (p, T )p

3 − s3FR
7 (s, T )TFL

7 (p, T )p
2

−s2FR
7 (s, T )TFL

7 (p, T )p
3 + s2FR

7 (s, T )T 2FL
7 (p, T )p

2

+s3FR
7 (s, T )FL

7 (p, T )p[|T |2 − p(T + T )]− s3FR
7 (s, T )TFL

7 (p, T )

[|T |2 − p(T + T )]− s2FR
7 (s, T )TFL

7 (p, T )p[|T |2 − p(T + T )]

+s2FR
7 (s, T )T 2FL

7 (p, T )[|T |2 − p(T + T )] +
[
|T |2 − s(T + T )

]
sFR

7 (s, T )FL
7 (p, T )p

3 −
[
|T |2 − s(T + T )

]
sFR

7 (s, T )TFL
7 (p, T )p

2

−
[
|T |2 − s(T + T )

]
FR
7 (s, T )TFL

7 (p, T )p
3
[
|T |2 − s(T + T )

]
.

+FR
7 (s, T )T 2FL

7 (p, T )p
2 +

[
|T |2 − s(T + T )

] (
sFR

7 (s, T )FL
7 (p, T )p

−sFR
7 (s, T )TFL

7 (p, T )− FR
7 (s, T )TFL

7 (p, T )p+ FR
7 (s, T )T 2FL

7 (p, T )
)
·

·
[
|T |2 − p(T + T )

]}
.

Taking the sum of (9.43), (9.44), (9.45), (9.46) and (9.47) we get the
statement.
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9.4. The Riesz projectors for the F -functional calculus
for n = 5

9.4 The Riesz projectors for the F -functional calculus
for n = 5

In this section we study the Riesz projectors for the F -functional calculus
for n = 5. This case is contained in the general result, see next section,
but the explicit computation that can be done in this particular case shows
the path for the general case and why we have introduced the pseudo F -
resolvent equation.

We recall two preliminary lemmas that will be useful in the sequel and
in the next section.

Lemma 9.4.1. Let B ∈ B(Vn). Let G be a bounded slice Cauchy domain
and let f be an intrinsic slice hyperholomorphic function whose domain
contains G. Then for p ∈ G, and for any J ∈ Sn−1 we have

1

2π

∫
∂(G∩CJ )

f(s)dsJ(s̄B −Bp)(p2 − 2s0p+ |s|2)−1 = Bf(p).

In this section we give an answer to [41, Rem. 5.5]. Indeed, we prove
that due to the equations proved in the previous section we can generate the
Riesz projectors for the F -functional calculus. We begin by recalling the
definition of projectors.

Definition 9.4.2. Let Vn be a Banach module and let P : Vn → Vn be a
linear operator. If P 2 = P we say that P is a projector.

Theorem 9.4.3. Let T ∈ BC0.1(V5) be such that T =
∑5

ℓ=1 eℓTℓ. Let
σS(T ) = σS,1(T ) ∪ σS,2(T ) with

dist (σS,1(T ), σS,2(T )) > 0

and with
σ(Tℓ) ⊂ R for all ℓ = 1, ..., 5.

Let G1, G2 be two admissible sets for T such that σS,1(T ) ⊂ G1 and Ḡ1 ⊂
G2 and such that dist (G2, σS,2(T )) > 0. Then the operator

P̌ =
1

γ5(2π)

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

4 =
1

γ5(2π)

∫
∂(G2∩CJ )

s4dsJF
R
5 (s, T )

is a projector.

Proof. If we multiply the F - resolvent equation in Theorem 9.3.3 by s2 on
the left and p2 on the right we get
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s2FR
5 (s, T )S−1

L (p, T )p2 + s2S−1
R (s, T )FL

5 (p, T )p
2

+γ−1
5

(
s4FR

5 (s, T )FL
5 (p, T )p

4 − 3s4FR
5 (s, T )TFL

5 (p, T )p
3

−3s3FR
5 (s, T )TFL

5 (p, T )p
4 + 3s3FR

5 (s, T )T 2FL
5 (p, T )p

3

−2s3FR
5 (s, T )|T |2TFL

5 (p, T )p
2 + 2s3FR

5 (s, T )|T |2FL
5 (p, T )p

3

−2s2FR
5 (s, T )|T |2TFL

5 (p, T )p
3 + s3FR

5 (s, T )T 2FL
5 (p, T )p

3

+ +s3FR
5 (s, T )|T |2TFL

5 (p, T )p
2 + s2FR

5 (s, T )|T |2TFL
5 (p, T )p

3

+s2FR
5 (s, T )|T |4FL

5 (p, T )p
2 + s3FR

5 (s, T )FL
5 (p, T )p

5

−s2FR
5 (s, T )TFL

5 (p, T )p
5 + 2s2FR

5 (s, T )T 2FL
5 (p, T )p

4

−s2FR
5 (s, T )T 3FL

5 (p, T )p
3 + 2s2FR

5 (s, T )T 2|T |2FL
5 (p, T )p

2

+s5FR
5 (s, T )FL

5 (p, T )p
3 − s5FR

5 (s, T )TFL
5 (p, T )p

2

+2s4FR
5 (s, T )T 2FL

5 (p, T )p
2 − s3FR

5 (s, T )T 3FL
5 (p, T )p

2
)

= s2
{
[FR

5 (s, T )− FL
5 (p, T )]p.− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
·

(p2 − 2s0p+ |s|2)−1p2.

Now, we multiply the equation by dsJ on the left, integrate it over ∂(G2 ∩
CJ) with respect to dsJ and then we multiply it by dpJ on the right and
integrate over ∂(G1 ∩ CJ) with respect to dpJ , we obtain∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp

2 +

∫
∂(G2∩CJ )

s2dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2

+γ−1
5

(∫
∂(G2∩CJ )

s4dsJF
R
5 (s, T )

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

4 − 3

∫
∂(G2∩CJ )

s4dsJF
R
5 (s, T )T

∫
∂(G2∩CJ)

FL
5 (p, T )p3

−3

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

4 + 3

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )T 2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3

−2

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )|T |2T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2 + 2

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )|T |2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3

−2

∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )|T |2T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3 +

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )T 2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3

+

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )|T |2T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2 +

∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )|T |2T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3

+

∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )|T |4

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2 +

∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

5

−
∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

5 + 2

∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )T 2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

4

−
∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )T 3

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3 + 2

∫
∂(G2∩CJ )

s2dsJF
R
5 (s, T )T 2|T |2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2

+

∫
∂(G2∩CJ )

s5dsJF
R
5 (s, T )

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

3 −
∫
∂(G2∩CJ )

s5dsJF
R
5 (s, T )T

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2

+2

∫
∂(G2∩CJ )

s4dsJF
R
5 (s, T )T 2

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2 −
∫
∂(G2∩CJ )

s3dsJF
R
5 (s, T )T 3

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

2

)
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9.4. The Riesz projectors for the F -functional calculus
for n = 5

=

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

s2
{
[FR

5 (s, T )− FL
5 (p, T )]p− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
(p2 − 2s0p+ |s|2)−1dpJp

2.

From Lemma 9.2.18 the expression simplifies to

γ5(2π)
2 1

γ5

(
1

2π

∫
G2∩CJ

s4dsJF
R
5 (s, T )

)
1

γ5

(
1

2π

∫
G1∩CJ

FR
5 (p, T )dpJp

4

)
=

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

s2
{
[FR

5 (s, T )− FL
5 (p, T )]p− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
·

(p2 − 2s0p+ |s|2)−1p2dpJ .

By definition of projectors we have

(2π)2

γ−1
5

P̌ 2 =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

s2
{
[FR

5 (s, T )− FL
5 (p, T )]p

−s̄[FR
5 (s, T )− FL

5 (p, T )]
}
(p2 − 2s0p+ |s|2)−1p2dpJ .

Now, we work on the integral on the right hand side. As Ḡ1 ⊂ G2, for any
s ∈ ∂(G2 ∩ CJ) the functions

p 7→ p(p2 − 2s0p+ |s|2)−1p2,

p 7→ (p2 − 2s0p+ |s|2)−1p2

are slice hyperholomorphic on Ḡ1. By Lemma 3.1.19 we have∫
∂(G1∩CJ )

p(p2 − 2s0p+ |s|2)−1dpJp
2 = 0,∫

∂(G1∩CJ )

(p2 − 2s0p+ |s|2)−1p2dpJ = 0.

This implies that∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

s2FR
5 (s, T )p(p2 − 2s0p+ |s|2)−1dpJp

2 = 0

and∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

s2s̄FR
5 (s, T )(p2 − 2s0p+ |s|2)−1dpJp

2 = 0,

from which we deduce

(2π)2

γ−1
5

P̌ 2 =

∫
∂(G2∩CJ )

s2dsJ

∫
∂(G1∩CJ )

[s̄FL
5 (p, T )− FL

5 (p, T )p]

(p2 − 2s0p+ |s|2)−1dpJp
2.
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From Lemma 9.4.1 with B =: FL
5 (p, T ) and f(s) := s2 we get

P̌ 2 =
1

(2π)γ5

∫
∂(G1∩CJ )

FL
5 (p, T )dpJp

4 = P̌ .

The above computations can be generalized to study the general case
where, however, we have to consider separately the case in which the Sce
exponent is even or odd.

9.5 The F -resolvent equation for n odd

Following the strategy used in the cases n = 5, 7 we can now write the F -
resolvent equations in the general case, involving the pseudo S-resolvent
operators when it is not necessary (or possible) to replace the F -resolvent
operators. Using the pseudo S-resolvent operators there are interesting
symmetries that allows to use the F -resolvent equation for further appli-
cations, among which to compute the Riesz projectors. We start by stating
a technical result which generalizes Lemma 9.3.2 and Lemma 9.3.4.

Lemma 9.5.1 (The general structure of the F -resolvent equation with the
pseudo S-resolvent operators). Let n > 3 be an odd number, and let h =
n−1
2

be the Sce exponent. Let us consider T ∈ BC0,1(Vn). Then for p, s ∈
ρS(T ) the following equation holds

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T ) (9.48)

+γn

[
h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )

]
=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

Proof. We left multiply the S-resolvent equation (3.9) by γnQ−h
c,s (T )

FR
n (s, T )S

−1
L (p, T ) =

{
[FR
n (s, T )− γnQ−h

c,s (T )S
−1
L (p, T )]p (9.49)

−s̄[FR
n (s, T )− γnQ−h

c,s (T )S
−1
L (p, T )]

}
·

·(p2 − 2s0p+ |s|2)−1

and we right multiply it by γnQ−h
c,p (T ), so we get

S−1
R (s, T )FL

n (p, T ) =
{
[γnS

−1
R (s, T )Q−h

c,p (T )− FL
n (p, T )]p (9.50)
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(9.51)
−s̄[γnS−1

R (s, T )Q−h
c,p (T )− FL

n (p, T )]
}
·

·(p2 − 2s0p+ |s|2)−1.

We now multiply S-resolvent equation on the left and on the right by
Q−h+1+i
c,s (T ) and Q−i−1

c,p (T ), respectively. Then, we sum on the index 0 ≤
i ≤ h− 2 and we obtain

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) = (9.52){[
h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )−Q−h+1+i

c,s (T )S−1
L (p, T )Q−i−1

c,p (T )

]
p

−s̄

[
h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )−Q−h+1+i

c,s (T )S−1
L (p, T )Q−i−1

c,p (T )

]}
(p2 − 2s0p+ |s|2)−1.

Now we sum (9.49), (9.50) and (9.52) multiplied by γn, and we get

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T ) (9.53)

= +γn

h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T )

=
{[
FR
n (s, T )− γnQ−h

c,s (T )S
−1
L (p, T )

+γnS
−1
R (s, T )Q−h

c,p (T )− FL
n (p, T ) + γn

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )

−Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

]
p

−s̄
[
FR
n (s, T )− γnQ−h

c,s (T )S
−1
L (p, T ) + γnS

−1
R (s, T )Q−h

c,p (T )− FL
n (p, T )

+γn

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,s (T )

−Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

]}
(p2 − 2s0p+ |s|2)−1.

Putting in order the terms in the right hand side of the previous equation
we get
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Chapter 9. The F -functional calculus for bounded operators

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T ) (9.54)

+γn

h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T )

=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1

+γn

{[
S−1
R (s, T )Q−h

c,p (T )−Q−h
c,s (T )S

−1
L (p, T ) +

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )·

Q−i−1
c,p (T )−Q−h+1+i

c,s (T )S−1
L (p, T )Q−i−1

c,p (T )
]
p− s̄

[
S−1
R (s, T )Q−h

c,p (T )

−Q−h
c,s (T )S

−1
L (p, T ) +

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )

−Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

]}
(p2 − 2s0p+ |s|2)−1.

Now, using the definition of left and right S-resolvent operators we get

S−1
R (s, T )Q−h

c,p (T )−Q−h
c,s (T )S

−1
L (p, T ) (9.55)

+
h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )−

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

= Q−1
c,s (T )(sI − T )Q−h

c,p (T )−Q−h
c,s (T )(pI − T )Q−1

c,p(T )

+
h−2∑
i=0

Q−h+i
c,s (T )(sI − T )Q−i−1

c,p (T )−
h−2∑
i=0

Q−h+1+i
c,s (T )(pI − T )Q−i−2

c,p (T )

= Q−1
c,s (T )(sI − T )Q−h

c,p (T )−Q−h
c,s (T )(pI − T )Q−1

c,p(T ) +Q−h
c,s (T )(sI − T )Q−1

c,p(T )

+
h−2∑
i=1

Q−h+i
c,s (T )(sI − T )Q−i−1

c,p (T )−Q−1
c,s (T )(pI − T )Q−h

c,p (T )

−
h−3∑
i=0

Q−h+1+i
c,s (T )(pI − T )Q−i−2

c,p (T )

= Q−1
c,s (T )(s− p)Q−h

c,p (T ) +Q−h
c,s (T )(s− p)Q−1

c,p(T )

+
h−2∑
i=1

Q−h+i
c,s (T )(sI − T )Q−i−1

c,p (T )−
h−3∑
i=0

Q−h+1+i
c,s (T )(pI − T )Q−i−2

c,p (T )

= Q−1
c,s (T )(s− p)Q−h

c,p (T ) +Q−h
c,s (T )(s− p)Q−1

c,p(T )
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+
h−2∑
i=1

Q−h+i
c,s (T )(sI − T )Q−i−1

c,p (T )−
h−2∑
i=1

Q−h+i
c,s (T )(pI − T )Q−i−1

c,p (T )

= Q−1
c,s (T )(s− p)Q−h

c,p (T ) +Q−h
c,s (T )(s− p)Q−1

c,p(T )

+
h−2∑
i=1

Q−h+i
c,s (T )(s− p)Q−i−1

c,p (T )

=
h−1∑
i=0

Q−h+i
c,s (T )(s− p)Q−i−1

c,p (T ).

Then we compute

γn
{[
S−1
R (s, T )Q−h

c,p (T )−Q−h
c,s (T )S

−1
L (p, T )

+
h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )−Q−h+1+i

c,s (T )S−1
L (p, T )Q−i−1

c,p (T )

]
p

−s̄

[
S−1
R (s, T )Q−h

c,p (T )−Q−h
c,s (T )S

−1
L (p, T ) +

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )·

Q−i−1
c,p (T )−Q−h+1+i

c,s (T )S−1
L (p, T )Q−i−1

c,p (T )
]}

(p2 − 2s0p+ |s|2)−1

= γn

{[
h−1∑
i=0

Q−h+i
c,s (T )(s− p)Q−i−1

c,p (T )

]
p

−s̄

[
h−1∑
i=0

Q−h+i
c,s (T )(s− p)Q−i−1

c,p (T )

]}
(p2 − 2s0p+ |s|2)−1

= γn

[
h−1∑
i=0

Q−h+i
c,s (T )(sp− p2)Q−i−1

c,p (T )

−
h−1∑
i=0

Q−h+i
c,s (T )(|s|2 − s̄p)Q−i−1

c,p (T )

]
(p2 − 2s0p+ |s|2)−1

= γn

[
h−1∑
i=0

Q−h+i
c,s (T )(sp− p2 − |s|2 + s̄p)Q−i−1

c,p (T )

]
(p2 − 2s0p+ |s|2)−1

= −γn
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )(p2 − 2s0p+ |s|2)(p2 − 2s0p+ |s|2)−1
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= −γn
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T ).

Hence

γn
{[
S−1
R (s, T )Q−h

c,p (T )−Q−h
c,s (T )S

−1
L (p, T ) (9.56)

+
h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )

−Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

]
p− s̄

[
S−1
R (s, T )Q−h

c,p (T )

−Q−h
c,s (T )S

−1
L (p, T ) +

h−2∑
i=0

Q−h+1+i
c,s (T )S−1

R (s, T )Q−i−1
c,p (T )

−Q−h+1+i
c,s (T )S−1

L (p, T )Q−i−1
c,p (T )

]}
(p2 − 2s0p+ |s|2)−1

= −γn
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T ).

Finally, by substituting (9.56) in (9.54) we get (9.48).

Remark 9.5.2. Equation (9.48) generalizes (9.20) and (9.34). Indeed if we
put n = 5, then h = 2 and we get

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T ) +

γ5

[
0∑
i=0

Q−1+i
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +
1∑
i=0

Q−2+i
c,s (T )Q−i−1

c,p (T )

]
=
{[
FR
5 (s, T )− FL

5 (p, T )
]
p− s̄

[
FR
5 (s, T )− FL

5 (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

By developing the computations we obtain

FR
5 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

5 (p, T )

+γ5
[
Q−1
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) +Q−2

c,s (T )Q−1
c,p(T ) +Q−1

c,s (T )Q−2
c,p(T )

]
=
{
[FR

5 (s, T )− FL
5 (p, T )]p− s̄[FR

5 (s, T )− FL
5 (p, T )]

}
(p2 − 2s0p+ |s|2)−1,

which is exactly (9.20).
Now if we put n = 7 in (9.48), then h = 3 and we obtain

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T )

+γ7

[
1∑
i=0

Q−2+i
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +
2∑
i=0

Q−3+i
c,s (T )Q−i−1

c,s (T )

]
230



i
i

“thesis” — 2022/12/4 — 11:25 — page 231 — #249 i
i

i
i

i
i

9.5. The F -resolvent equation for n odd

=
{[
FR
7 (s, T )− FL

7 (p, T )
]
p− s̄

[
FR
7 (s, T )− FL

7 (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

By developing the computations we get

FR
7 (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

7 (p, T )

+γ7[Q−2
c,s (T )S

−1
R (s, T )S−1

L (p, T )Q−1
c,p(T ) +Q−1

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−2
c,p(T )

+Q−3
c,s (T )Q−1

c,p(T ) +Q−2
c,s (T )Q−2

c,p(T ) +Q−1
c,s (T )Q−3

c,p(T )]

=
{[
FR
7 (s, T )− FL

7 (p, T )
]
p− s̄

[
FR
7 (s, T )− FL

7 (p, T )
]}

(p2 − 2s0p+ |s|2)−1,

which is exactly (9.34).

Remark 9.5.3. The proof of the previous lemma shows that the structure
of the resolvent equations of the hyperholomorphic functional calculi is
crucial. In fact the term{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2−2s0p+|s|2)−1

involves the difference of the F -resolvent operators entangled with the
Cauchy kernel of slice hyperholomorphic functions. This term is equal
to a function involving the products of the F -resolvent operators and of the
S-resolvent operators that appear in the term

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T )

and of a more complicated part that involves the S-resolvent operators and
the pseudo S-resolvent operators, namely

γn

[
h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )

]
.

In order to find a pseudo F -resolvent equation we divide into two cases

according to the parity of the Sce exponent h =
n− 1

2
. To state the follow-

ing result we introduce this notations

A0(s, p, T ) : = −shFR
n (s, T )TFL

n (p, T )ph−1 − sh−1FR
n (s, T )TFL

n (p, T )ph

+ sh−1FR
n (s, T )T 2FL

n (p, T )ph−1

+ shFR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k

− shFR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k
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Chapter 9. The F -functional calculus for bounded operators

− sh−1FR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
T (|T |2 − 2T0p)

kFL
n (p, T )ph−2k

+ sh−1FR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
T (|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k,

B0(s, p, T ) : =

h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


−

h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


−

h−1
2∑

k=1

(
h−1
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


+

h−1
2∑

k=1

(
h−1
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k

 ,

and

C0(s, p, T ) : =

h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k

FL
n (p, T )ph

−

h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
kT

FL
n (p, T )ph−1

−

h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
k

FL
n (p, T )ph

+

h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
kT

FL
n (p, T )ph−1.

9.5.1 The general structure of the pseudo F -resolvent equation for h
odd

The main result of this subsection is the following theorem.

Theorem 9.5.4 (The general structure of the pseudo F -resolvent equation
for h odd number). Let n > 3 be an odd number as well as h. Let T ∈
BC0,1(Vn). Then for p, s ∈ ρS(T ) the following equation holds
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FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T ) (9.57)

+γn

[
s
h−2∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T )p− s

h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )

−
h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )p+
h−2∑
i=0

Q−h+i
c,s (T )T

2Q−i−2
c,p (T )

+
h−1∑

i=0,i ̸=h−1
2

Q−h+i
c,s (T )Q−i−1

c,p (T )


+γ−1

n

[
shFR

n (s, T )F
L
n (p, T )p

h +A0(s, p, T ) + B0(s, p, T ) + C0(s, p, T )
]

=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1,

where the three terms A0(s, p, T ), B0(s, p, T ) and C0(s, p, T ) are defined
above.

Proof. We start by rewriting formula (9.48) as

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T )

+γn

[
h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +Q−h+1
2

c,s (T )Q−h+1
2

c,p (T )

+
h−1∑

i=0,i ̸=h−1
2

Q−h+i
c,s (T )Q−i−1

c,p (T )


=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

Now, we focus on the term Q−h+1
2

c,s (T )Q−h+1
2

c,p (T ) and with some manip-
ulations we obtain

Q−h+1
2

c,s (T )Q−h+1
2

c,p (T ) = Q−h+1
2

c,s (T )Qc,ss
−h−1

2 (T )Q− 1−h
2

c,s (T ) ·

Q− 1−h
2

c,p (T )Q−h−1
2

c,p (T )Q−h+1
2

c,p (T )

= Q−h
c,s (T )Q

− 1−h
2

c,s (T )Q− 1−h
2

c,p (T )Q−h
c,p (T ).

By the binomial formula we get
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Q−h+1
2

c,s (T )Q−h+1
2

c,p (T ) = Q−h
c,s (T )(s

2I − 2sT0 + TT )
h−1
2 ·

(p2I − 2pT0 + TT )
h−1
2 Q−h

c,p (T )

= Q−h
c,s (T )

 h−1
2∑

k=0

(
h−1
2

k

)
sh−1−2k(|T |2 − 2T0s)

k


 h−1

2∑
k=0

(
h−1
2

k

)
(|T |2 − 2T0p)

kph−1−2k

Q−h
c,p (T )

= Q−h
c,s (T )

sh−1 +

h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2k(|T |2 − 2T0s)

k


 h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kph−1−2k + ph−1

Q−h
c,p (T )

= sh−1Q−h
c,s (T )Q−h

c,p (T )p
h−1 + sh−1Q−h

c,s (T )

 h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kph−1−2k

 ·

Q−h
c,p (T ) +Q−h

c,s (T )

 h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2k(|T |2 − 2T0s)

k


 h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kph−1−2k

 ·

Q−h
c,p (T ) +Q−h

c,s (T )

 h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2k(|T |2 − 2T0s)

k

Q−h
c,p (T )p

h−1.

Now, we use the left and right F -resolvent equations, (see Theorem 9.3.1)

FL
n (p, T )p− TFL

n (p, T ) = γnQ−h
c,p (T )

and
sFR

n (s, T )− FR
n (s, T )T = γnQ−h

c,s (T ).

We go through the computations term by term
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sh−1Q−h
c,s (T )Q−h

c,p (T )p
h−1 (9.58)

= γ−2
n

[
shFR

n (s, T )F
L
n (p, T )p

h − shFR
n (s, T )TF

L
n (p, T )p

h−1

−sh−1FR
n (s, T )TF

L
n (p, T )p

h + sh−1FR
n (s, T )T

2FL
n (p, T )p

h−1
]
.

Then we consider

sh−1Q−h
c,s (T )

 h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kQ−h
c,p (T )p

h−1−2k


= γ−2

n

shFR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )p

h−2k

−shFR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )p

h−1−2k

−sh−1FR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
T (|T |2 − 2T0p)

kFL
n (p, T )p

h−2k

+sh−1FR
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
T (|T |2 − 2T0p)

kTFL
n (p, T )p

h−1−2k

 .
Then we compute the termh−1

2∑
k=1

(
h−1
2

k

)
sh−1−2kQ−h

c,s (T )(|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kQ−h
c,p (T )p

h−1−2k


= γ−2

n


h−1

2∑
k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


−

h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


−

h−1
2∑

k=1

(
h−1
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


+

h−1
2∑

k=1

(
h−1
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


 .
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We have also

 h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2kQ−h

c,s (T )(|T |2 − 2T0s)
k

Q−h
c,p (T )p

h−1

= γ−2
n

 h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k

FL
n (p, T )p

h

−

 h−1
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
kT

FL
n (p, T )p

h−1

−

 h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
k

FL
n (p, T )p

h

+

 h−1
2∑

k=1

(
h−1
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
kT

FL
n (p, T )p

h−1

 .
Finally by using the definition of left and right S-resolvent operators we get

h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T )

=
h−2∑
i=0

Q−h+i
c,s (T )(sI − T )(pI − T )Q−i−2

c,p (T )

= s

h−2∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T )p− s

h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )

−
h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )p+
h−2∑
i=0

Q−h+i
c,s (T )T

2Q−i−2
c,p (T ),

and this concludes the proof.

9.5.2 The general structure of the pseudo F -resolvent equation for h
even number

In this last subsection we consider the case in which h = (n − 1)/2 is an
even number. To state the following result we need these notations
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A1(s, p, T ) : = −shFR
n (s, T )TFL

n (p, T )ph−1 − sh−1FR
n (s, T )TFL

n (p, T )ph

+ sh−1FR
n (s, T )T 2FL

n (p, T )ph−1

and

B1(s, p, T ) : = shFR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k

− shFR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k

− sh−1FR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T (|T |2 − 2T0p)

kFL
n (p, T )ph−2k

+ sh−1FR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T (|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k

and

C1(s, p, T ) :=

h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


−

h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


−

h−2
2∑

k=1

(
h−2
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−1

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


+

h−2
2∑

k=1

(
h−2
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


+

h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k

FL
n (p, T )ph

−

h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
kT

FL
n (p, T )ph−1

−

h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
k

FL
n (p, T )ph

+

h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
kT

FL
n (p, T )ph−1.
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Theorem 9.5.5 (The general structure of the pseudo F -resolvent equation
for h even number). Let n > 3 be an odd number and h be even. Let
T ∈ BC0,1(Vn). Then for p, s ∈ ρS(T ) the following equation holds

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T ) (9.59)

+γn

[
−sQ−h+2

2
c,s (T )TQ−h+2

2
c,p (T )−Q−h+2

2
c,s (T )TQ−h+2

2
c,p (T )p

+Q−h+2
2

c,s (T )T
2Q−h+2

2
c,p (T ) +

h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )

+s
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )Q−i−2

c,p (T )p− s
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )TQ−i−2

c,p (T )

−
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )TQ−i−2

c,p (T )p+
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )T

2Q−i−2
c,p (T )


+γ−1

n

[
A1(s, p, T ) + B1(s, p, T ) + C1(s, p, T ) + shFR

n (s, T )F
L
n (p, T )p

h
]

=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1,

where the three terms A1(s, p, T ), B1(s, p, T ) and C1(s, p, T ) are defined
above.

Proof. Let us begin by writing formula (9.48) as

FR
n (s, T )S

−1
L (p, T ) + S−1

R (s, T )FL
n (p, T )

+γn

Q−h
2

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−h
2

c,p (T ) +
h−2∑

i=0,i ̸=h−2
2

Q−h+i+1
c,s (T )S−1

R (s, T )·

S−1
L (p, T )Q−i−1

c,p (T ) +
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )

]
=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1.

Now, we focus on the Q−h
2

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−h
2

c,p (T ). By definition
of left and right S-resolvent operators we get

Q−h
2

c,s (T )S
−1
R (s, T )S−1

L (p, T )Q−h
2

c,p (T )
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= Q−h+2
2

c,s (T )(sI − T )(pI − T )Q−h+2
2

c,p (T )

= sQ−h+2
2

c,s (T )Q−h+2
2

c,p (T )p− sQ−h+2
2

c,s (T )TQ−h+2
2

c,p (T )−Q−h+2
2

c,s (T )TQ−h+2
2

c,p (T )p

+Q−h+2
2

c,s (T )T
2Q−h+2

2
c,p (T ).

We continue the calculations only on the term sQ−h+2
2

c,s (T )Q−h+2
2

c,p (T )p.
By the binomial formula we get

sQ−h+2
2

c,s (T )Q−h+2
2

c,p (T )p = sQ−h
c,s (T )(s

2I − 2sT0 + TT )
h−2
2 ·

(p2I − 2pT0 + TT )
h−2
2 Q−h

c,p (T )p

= sQ−h
c,s (T )

 h−2
2∑

k=0

(
h−2
2

k

)
sh−2−2k(|T |2 − 2T0s)

k

 ·

 h−2
2∑

k=0

(
h−2
2

k

)
(|T |2 − 2T0p)

kph−2−2k

Q−h
c,p (T )p

= sQ−h
c,s (T )

sh−2 +

h−2
2∑

k=1

(
h−2
2

k

)
sh−2−2k(|T |2 − 2T0s)

k

 ·

 h−1
2∑

k=1

(
h−1
2

k

)
(|T |2 − 2T0p)

kph−2−2k + ph−2

Q−h
c,p (T )p

= sh−1Q−h
c,s (T )Qh

c,p(T )p
h−1 + sh−1Q−h

c,s (T )

 h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kph−1−2k

 ·

Q−h
c,p (T ) +Q−h

c,s (T )

 h−2
2∑

k=1

(
h−1
2

k

)
sh−1−2k(|T |2 − 2T0s)

k

 ·

 h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kph−1−2k

Q−h
c,p (T )

+Q−h
c,s (T )

 h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2k(|T |2 − 2T0s)

k

Q−h
c,p (T )p

h−1.

Now, we use the left and right F -resolvent equations in Theorem 9.3.1
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and we go through the computations term by term

sh−1Q−h
c,s (T )Q−h

c,p (T )p
h−1 = γ−2

n

[
shFR

n (s, T )F
L
n (p, T )p

h

−shFR
n (s, T )TF

L
n (p, T )p

h−1 − sh−1FR
n (s, T )TF

L
n (p, T )p

h

+sh−1FR
n (s, T )T

2FL
n (p, T )p

h−1
]
,

and

sh−1Q−h
c,s (T )

 h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kQ−h
c,p (T )p

h−1−2k


= γ−2

n

shFR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )p

h−2k

−shFR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )p

h−1−2k

−sh−1FR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T (|T |2 − 2T0p)

kFL
n (p, T )p

h−2k

+sh−1FR
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T (|T |2 − 2T0p)

kTFL
n (p, T )p

h−1−2k

 ,
then we consider the termh−2

2∑
k=1

(
h−2
2

k

)
sh−1−2kQ−h

c,s (T )(|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kQ−h
c,p (T )p

h−1−2k


= γ−2

n


h−2

2∑
k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


−

h−2
2∑

k=1

(
h−1
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


−

h−2
2∑

k=1

(
h−2
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kFL
n (p, T )ph−2k


+

h−2
2∑

k=1

(
h−2
2

k

)
sh−2k−1FR

n (s, T )T (|T |2 − 2T0s)
k


h−2

2∑
k=1

(
h−2
2

k

)
(|T |2 − 2T0p)

kTFL
n (p, T )ph−1−2k


 ,
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and the other term h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2kQ−h

c,s (T )(|T |2 − 2T0s)
k

Q−h
c,p (T )p

h−1

= γ−2
n

 h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
k

FL
n (p, T )p

h

−

 h−2
2∑

k=1

(
h−2
2

k

)
sh−2kFR

n (s, T )(|T |2 − 2T0s)
kT

FL
n (p, T )p

h−1

−

 h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
k

FL
n (p, T )p

h

+

 h−2
2∑

k=1

(
h−2
2

k

)
sh−1−2kFR

n (s, T )T (|T |2 − 2T0s)
kT

FL
n (p, T )p

h−1

 .
Finally by using the definition of left and right S-resolvent operators we
obtain

h−2∑
i=0,i ̸=h−2

2

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T )

=
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )(sI − T )(pI − T )Q−i−2

c,p (T )

= s
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )Qi+2

c,p (T )p− s
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )TQ−i−2

c,p (T )

−
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )TQ−i−2

c,p (T )p+
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )T

2Q−i−2
c,p (T )

and this concludes the proof.

9.5.3 Comments

The general structure of the F -resolvent equation involving the pseudo S-
resolvent operators is obtained in Lemma 9.5.1: for n > 3, n odd, and Sce
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exponent h = n−1
2

the equation is

FR
n (s, T )S−1

L (p, T ) + S−1
R (s, T )FL

n (p, T ) (9.60)

+ γn

[
h−2∑
i=0

Q−h+i+1
c,s (T )S−1

R (s, T )S−1
L (p, T )Q−i−1

c,p (T ) +

h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )

]
=
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1

for paravector operators T ∈ BC(Vn) and for p, s ∈ ρS(T ).
This general structure is useful to study the Riesz projectors of the F -

functional calculus (see next section). This equation has two different ex-
pressions according to the fact that the Sce exponent h := (n − 1)/2 is
an even or odd number. Precisely, for h odd is obtained in Theorem 9.5.4
while the case in which h is even is obtained in Theorem 9.5.5.

Let us summarize, for the F -resolvent equation, the major similarities
and the main differences with respect to S-resolvent equation and the re-
solvent equation (see (3.9)) of the Riesz-Dunford functional calculus (see
(2.3)).

(I-Fa) There are two differentF -resolvent operatorsFL
n (s, T ) andFR

n (p, T )
which are right slice hyperholomorphic in s and left slice hyperholo-
morphic in p, respectively.

(I-Fb) There are additional terms containing:

(i) the operator FR
n (s, T )BF

L
n (s, T ) which, for any bounded opera-

tor B, preserves the right slice hyperholomorphicity in s and the
left slice hyperholomorphicity in p .

(ii) the commutative version of the S-resolvent operators which ap-
pears in the terms:

FR
n (s, T )S

−1
L (p, T ) and S−1

R (s, T )FL
n (p, T ).

(iii) the commutative pseudo S-resolvent operators Qc,(T ) and Qc,p(T ).

(II-F) The difference FL
n (s, T )−FR

n (s, T ) is entangled with of the Cauchy
kernel of slice hyperholomorphic functions, in the same way as the
S-resolvent equation, i.e.,

(s, p) 7→
[
[FL

n (s, T )− FR
n (s, T )]p− s[FL

n (s, T )− FR
n (s, T )]

]
(p2 − 2s0p+ |s|2)−1

and it preserves the slice hyperholomorphicity on the right in s and
on the left in p.
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(III-F) The term[
[FL

n (s, T )− FR
n (s, T )]p− s[FL

n (s, T )− FR
n (s, T )]

]
(p2 − 2s0p+ |s|2)−1

equals not only terms that involve suitable product of the F -resolvent
operators, but also the terms described in the above items (i), (ii) and
(iii).

Remark 9.5.6. Similarly to the case of the S-resolvent equation, the prod-
ucts of the form

FL
n (s, T )BF

R
n (s, T ),

where B is a linear operator, cannot be used in the F -resolvent equation
because they destroy slice hyperholomorphicity.

9.6 The Riesz Projectors for the F -functional calculus: the
general case of n odd

In the monogenic functional calculus developed by McIntosh and collabo-
rators, [99, 101, 108, 112], the resolvent equation is missing. They are able
to study the Riesz projectors by using another functional calculus: the Weyl
calculus, see [100]. For the F -functional calculus, which is a monogenic
functional calculus, the interesting symmetries that appear in the equations
of Theorem 9.5.4 and Theorem 9.5.5 allow to study the Riesz projectors.

Theorem 9.6.1. Let n > 3 be an odd number and let T =
∑n

i=1 eℓTℓ ∈
BC0,1(Vn). Let σS(T ) = σS,1(T ) ∪ σS,2(T ) with

dist (σS,1(T ), σS,2(T )) > 0,

and
σ(Tℓ) ⊂ R for all ℓ = 1, ..., n.

Let G1, G2 be two admissible sets for T such that σS,1(T ) ⊂ G1 and Ḡ1 ⊂
G2 and such that dist (G2, σS,2(T )) > 0. Then the operator

P̌ =
1

γn(2π)

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

n−1 (9.61)

=
1

γn(2π)

∫
∂(G2∩CJ )

sn−1dsJF
R
n (s, T ).

is a projector.
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Proof. We divide the proof in two cases, according to the parity of h = n−1
2

.
CASE I: The Sce exponent h is odd.
We start by multiplying the equation of Theorem 9.5.4 by sh on the left

and ph on the right, and since T0 = 0 we get

shFR
n (s, T )S

−1
L (p, T )ph + shS−1

R (s, T )FL
n (p, T )p

h (9.62)

+γn

[
sh+1

h−2∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T )ph+1 + sh+1

h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )ph

+sh
h−2∑
i=0

Q−h+i
c,s (T )TQ−i−2

c,p (T )ph+1 + sh
h−2∑
i=0

Q−h+i
c,s (T )T 2Q−i−2

c,p (T )ph+

+ sh
h−1∑

i=0,i ̸=h−1
2

Q−h+i
c,s (T )Qi+1

c,p (T )p
h

+ γ−1
n

[
s2hFR

n (s, T )F
L
n (p, T )p

2h

+shA0(s, p, T )p
h + shB0(s, p, T )p

h + shC0(s, p, T )ph
]

= sh
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

·
(p2 − 2s0p+ |s|2)−1ph.

Now, we multiply equation (9.62) by dsJ on the left, integrate it over ∂(G2∩
CJ) with respect to dsJ and then we multiply it by dpJ on the right and
integrate over ∂(G1 ∩ CJ) with respect to dpJ . We obtain∫

∂(G2∩CJ )

shdsJF
R
n (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp

h (9.63)

+

∫
∂(G2∩CJ )

shdsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

h

+γn

[∫
∂(G2∩CJ )

sh+1

h−2∑
i=0

Q−h+i
c,s (T )dsJ

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1

+

∫
∂(G2∩CJ )

sh+1

h−2∑
i=0

Q−h+i
c,s (T )dsJT

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h

+

∫
∂(G2∩CJ )

sh
h−2∑
i=0

Q−h+i
c,s (T )dsJT

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1

+

∫
∂(G2∩CJ )

sh
h−2∑
i=0

Q−h+i
c,s (T )dsJT

2

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h
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+

∫
∂(G2∩CJ )

sh
h−1∑

i=0,i ̸=h−1
2

Q−h+i
c,s (T )dsJ

∫
∂(G1∩CJ )

Q−i−1
c,p (T )dpJp

h


+γ−1

n

[∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h+

+

∫
∂(G2∩CJ )

∫
∂(G1∩CJ

shdsJA0(s, p, T )dpJp
h + shdsJB0(s, p, T )dpJp

h

+shdsJC0(s, p, T )dpJph
]

=

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

sh
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1dpJp
h.

Recalling the definition of A0, B0, C0 and the fact that T0 = 0 we have

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

shdsJA0(s, p, T )dpJp
h + shdsJB0(s, p, T )dpJp

h + shdsJC0(s, p, T )dpJp
h

= −
∫
∂(G2∩CJ )

s2hFR
n (s, T )dsJT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1

−
∫
∂(G2∩CJ )

s2h−1FR
n (s, T )dsJT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

+

∫
∂(G2∩CJ )

s2h−1dsJF
R
n (s, T )T 2

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1

+

∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k

−
∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
|T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )p2h−1−2k

−
∫
∂(G2∩CJ )

s2h−1dsJF
R
n (s, T )

h−1
2∑

k=1

(
h−1
2

k

)
T |T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k

+

∫
∂(G2∩CJ )

s2h−1FR
n (s, T )dsJ

h−1
2∑

k=1

(
h−1
2

k

)
T |T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k

+

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k


h−1

2∑
k=1

(
h−1
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k


−

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k


h−1

2∑
k=1

(
h−1
2

k

)
|T |kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k
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−

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2k−1dsJF
R
n (s, T )T |T |2k


h−1

2∑
k=1

(
h−1
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k


+

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2k−1dsJF
R
n (s, T )T |T |2k


h−1

2∑
k=1

(
h−1
2

k

)
|T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k


+

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

−

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1

−

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−1−2kdsJF
R
n (s, T )T |T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

+

h−1
2∑

k=1

(
h−1
2

k

)∫
∂(G2∩CJ )

s2h−1−2kdsJF
R
n (s, T )T 2|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1.

Now, since h ≤ 2h− 1 by Lemma 9.2.18 we get∫
∂(G2∩CJ )

shdsJF
R
n (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp

h

=

∫
∂(G2∩CJ )

shdsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

h

= 0.

Moreover, since 2h− 2k ≤ 2h− 1 and 2h− 1− 2k ≤ 2h− 1 we obtain

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

shdsJA0(s, p, T )dpJp
h + shdsJB0(s, p, T )dpJp

h

+shdsJC0(s, p, T )dpJph = 0.

Now, we focus on the term

∫
∂(G2∩CJ )

sh+1

h−2∑
i=0

Q−h+i
c,s (T )dsJ

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1.

First of all we split the sum in two parts and write
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h−2∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T ) =

⌊h−2
2

⌋∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T )+
h−2∑

i=⌊h−2
2

⌋+1

Q−h+i
c,s (T )Q−i−2

c,p (T ),

where ⌊.⌋ is the floor of a number. In the first sum the powers of Q−1
c,s (T )

are more than the powers of Q−1
c,p(T ), and conversely in the second sum.

Since T0 = 0, by the binomial formula we get

⌊h−2
2

⌋∑
i=0

Q−h+i
c,s (T )Q−i−2

c,p (T ) = Q−h
c,s (T )

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)
s2k|T |2(i−k)Q−i−2

c,p (T )+

+
h−2∑

i=⌊h−2
2

⌋+1

Q−h+i
c,s (T )

h−2−i∑
k=0

(
h− 2− i

k

)
p2k|T |2(h−2−i−k)Q−h

c,p (T ).

Consider the first sum. By the F - resolvent equation, see (9.19) we get

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)
s2kQ−h

c,s (T )|T |2(i−k)Q−i−2
c,p (T )

= γ−1
n

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)
s2k
(
sFR

n (s, T )− FR
n (s, T )T

)
|T |2(i−k)Q−i−2

c,p (T ).

Hence we have to compute the following integrals

γ−1
n

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)∫
∂(G2∩CJ )

sh+2+2kdsJF
R
n (s, T )|T |2(i−k)

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1,

γ−1
n

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)∫
∂(G2∩CJ )

sh+1+2kdsJF
R
n (s, T )T |T |2(i−k)

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1.

Now, since h is odd then we can write h = 2N + 1, with N ∈ N. This
implies that

h+ 2 + 2k ≤ 2i+ 2 + 2N + 1 ≤ 2⌊h− 2

2
⌋+ 2 + 2N + 1

= 2(N − 1) + 2 + 2N + 1 = 4N + 1 = 2h− 1.
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Similarly we get
h+ 1 + 2k ≤ 2h− 1.

Therefore by Lemma 9.2.18 we get

γ−1
n

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)∫
∂(G2∩CJ )

sh+2+2kdsJF
R
n (s, T )

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1 = 0

γ−1
n

⌊h−2
2

⌋∑
i=0

i∑
k=0

(
i

k

)∫
∂(G2∩CJ )

sh+1+2kdsJF
R
n (s, T )

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1 = 0.

Now, we focus on the second sum. By the F - resolvent equation, see
(9.18), we get

h−2∑
i=⌊h−2

2
⌋+1

Q−h+i
c,s (T )

h−2−i∑
k=0

(
h− 2− i

k

)
|T |2(h−2−i−k)Q−h

c,p (T )p
2k

= γ−1
n

h−2∑
i=⌊h−2

2
⌋+1

Q−h+i
c,s (T )

h−2−i∑
k=0

(
h− 2− i

k

)
|T |2(h−2−i−k) (FR

n (p, T )p

−TFR
n (p, T )

)
p2k.

Hence we have to compute the following integrals

γ−1
n

h−2∑
i=⌊h−2

2
⌋+1

2+i−h∑
k=0

(
h− 2− i

k

)∫
∂(G2∩CJ )

sh+1dsJQ−h+i
c,s (T )|T |2(h−2−i−k)

∫
∂(G1∩CJ )

FR
n (p, T )dpJp

h+2k+2,

γ−1
n

h−2∑
i=⌊h−2

2
⌋+1

h−2−i∑
k=0

(
h− 2− i

k

)∫
∂(G2∩CJ )

sh+1dsJQ−h+i
c,s (T )|T |2(h−2−i−k)T

∫
∂(G1∩CJ )

FR
n (p, T )dpJp

h+2k+1.
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Since h = 2N + 1, with N ∈ N we get

2k + 2 + h ≤ 2(h− 2− i) + 2 + h = 2h− 4− 2i+ 2 + h+ 2 + 2N + 1

≤ 4N + 2− 4− 2

(
⌊h− 2

2
⌋+ 1

)
= 4N + 1 = 2h− 1,

and similarly
2k + 1 + h ≤ 2h− 1,

together with Lemma 9.2.18 we get

γ−1
n

h−2∑
i=⌊h−2

2
⌋+1

h−2−i∑
k=0

(
h− 2− i

k

)∫
∂(G2∩CJ )

sh+1dsJQ−h+i
c,s (T )|T |2(h−2−i−k)

∫
∂(G1∩CJ )

FR
n (p, T )dpJp

h+2k+2 = 0

γ−1
n

h−2∑
i=⌊h−2

2
⌋+1

h−2−i∑
k=0

(
h− 2− i

k

)∫
∂(G2∩CJ )

sh+1dsJQ−h+i
c,s (T )|T |2(h−2−i−k)T

∫
∂(G1∩CJ )

FR
n (p, T )dpJp

h+2k+1 = 0.

Similar arguments applied to the other members of (9.63) lead to

γ−1
n

∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

=

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

sh
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1dpJp
h.

Since h = n−1
2

, by formula (9.61) we get

(2π)2

γ−1
n

P̌ 2 =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

sh
{[
FR
n (s, T )− FL

n (p, T )
]
p

−s̄
[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1phdpJ .

Now, we work on the integral on the right hand side. As Ḡ1 ⊂ G2, for any
s ∈ ∂(G2 ∩ CJ) the functions

p 7→ p(p2 − 2s0p+ |s|2)−1ph,

p 7→ (p2 − 2s0p+ |s|2)−1ph
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are slice hyperholomorphic on Ḡ1. By Lemma 3.1.19 we have∫
∂(G1∩CJ )

p(p2 − 2s0p+ |s|2)−1dpJp
h = 0,∫

∂(G1∩CJ )

(p2 − 2s0p+ |s|2)−1phdpJ = 0.

This implies that∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

shFR
n (s, T )p(p

2 − 2s0p+ |s|2)−1dpJp
h = 0

and∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

shs̄FR
n (s, T )(p

2 − 2s0p+ |s|2)−1dpJp
h = 0.

Then we have

(2π)2

γ−1
n

P̌ 2 =

∫
∂(G2∩CJ )

shdsJ

∫
∂(G1∩CJ )

[s̄FL
n (p, T )−FL

7 (p, T )p](p
2−2s0p+|s|2)−1dpJp

h.

From Lemma 9.4.1 with B =: FL
n (p, T ) and f(s) := sh we get

P̌ 2 =
1

(2π)γn

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h = P̌ .

CASE II: The Sce exponent h is even.
We multiply the equation of Theorem 9.5.5 by sh left and ph on the right,

and since T0 = 0 we get

shFR
n (s, T )S

−1
L (p, T )ph + shS−1

R (s, T )FL
n (p, T )p

h (9.64)

+ γn

[
sh+1Q−h+2

2
c,s (T )TQ−h+2

2
c,p (T )ph + shQ−h+2

2
c,s (T )TQ−h+2

2
c,p (T )ph+1

+shQ−h+2
2

c,s (T )T 2Q
h+2
2

c,p (T )ph + sh
h−1∑
i=0

Q−h+i
c,s (T )Q−i−1

c,p (T )ph

+sh+1

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )Q−i−2

c,p (T )ph+1 + sh+1

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )TQ−i−2

c,p (T )ph

sh
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )Q−i−2

c,p (T )ph+1 + sh
h−2∑

i=0,i ̸=h−2
2

Q−h+i
c,s (T )T 2Q−i−2

c,p (T )ph
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+ γ−1
n

[
shA1(s, p, T )p

h + shB1(s, p, T )p
h + shC1(s, p, T )ph + s2hFR

n (s, T )F
L
n (p, T )p

2h
]

= sh
{[
FR
n (s, T )− FL

n (p, T )
]
p− s̄

[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1ph.

Now, we multiply by dsJ on the left, integrate it over ∂(G2 ∩ CJ) with
respect to dsJ and then we multiply it by dpJ on the right and integrate over
∂(G1 ∩ CJ) with respect to dpJ , and we obtain

∫
∂(G2∩CJ )

shFR
n (s, T )dsJ

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp

h (9.65)

+

∫
∂(G2∩CJ )

shdsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )p

h+

+ γn

[∫
∂(G2∩CJ )

sh+1dsJQ
−h+2

2
c,s (T )T

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h

+

∫
∂(G2∩CJ )

shdsJQ
−h+2

2
c,s (T )T

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h+1

+

∫
∂(G2∩CJ )

shdsJQ
−h+2

2
c,s (T )T 2

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h

+

∫
∂(G2∩CJ )

shdsJ

h−1∑
i=0

Q−h+i
c,s (T )

∫
∂(G1∩CJ )

Q−i−1
c,p (T )dpJp

h

+

∫
∂(G2∩CJ )

sh+1dsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )

∫
∂(G2∩CJ )

Q−i−2
c,p (T )dpJp

h+1

+

∫
∂(G2∩CJ )

sh+1

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )T

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h

+

∫
∂(G2∩CJ )

shdsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1

+

∫
∂(G2∩CJ )

shdsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )T 2

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h


+ γ−1

n

[∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

shdsJA1(s, p, T )dpJp
h + shdsJB1(s, p, T )dpJp

h

+

∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

]
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+ shdsJC1(s, p, T )dpJph =
∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

sh
{[
FR
n (s, T )− FL

n (p, T )
]
p

−s̄
[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1dpJp
h.

From the definition of A1, B1, C1 and recalling that T0 = 0 we have∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

shdsJA1(s, p, T )dpJp
h + shdsJB1(s, p, T )dpJp

h + shdsJC1(s, p, T )dpJp
h

= −
∫
∂(G2∩CJ )

s2hFR
n (s, T )dsJT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1

−
∫
∂(G2∩CJ )

s2h−1FR
n (s, T )dsJT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

+

∫
∂(G2∩CJ )

s2h−1dsJF
R
n (s, T )T 2

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1

+

∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k

−
∫
∂(G2∩CJ )

s2hdsJF
R
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T |T |2k

∫
∂(G1∩CJ )

FL
n (p, T )p2h−1−2k

−
∫
∂(G2∩CJ )

s2h−1dsJF
R
n (s, T )

h−2
2∑

k=1

(
h−2
2

k

)
T |T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k

+

∫
∂(G2∩CJ )

s2h−1FR
n (s, T )dsJ

h−2
2∑

k=1

(
h−2
2

k

)
T 2|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k

+

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k


h−2

2∑
k=1

(
h−2
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k


−

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k


h−2

2∑
k=1

(
h−2
2

k

)
|T |kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k


−

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2k−1dsJF
R
n (s, T )T |T |2k


h−2

2∑
k=1

(
h−2
2

k

)
|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−2k


+

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2k−1dsJF
R
n (s, T )T |T |2k


h−2

2∑
k=1

(
h−2
2

k

)
|T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1−2k


+

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

−

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−2kdsJF
R
n (s, T )|T |2kT

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1
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−

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−1−2kdsJF
R
n (s, T )T |T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h

+

h−2
2∑

k=1

(
h−2
2

k

)∫
∂(G2∩CJ )

s2h−1−2kdsJF
R
n (s, T )T 2|T |2k

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2h−1.

Now we observe that since h ≤ 2h− 1 by Lemma 9.2.18 we have∫
∂(G2∩CJ )

shdsJF
R
n (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp

h

=

∫
∂(G2∩CJ )

shdsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
n (p, T )dpJp

h

= 0.

Moreover, since 2h− 2k ≤ 2h− 1 and 2h− 1− 2k ≤ 2h− 1 we get∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

shdsJA1(s, p, T )dpJp
h + shdsJB1(s, p, T )dpJp

h

+shdsJC1(s, p, T )dpJph = 0.

Now, we focus on computing the integral∫
∂(G2∩CJ )

sh+1dsJQ
−h+2

2
c,s (T )T

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h.

By the binomial formula and recalling that T0 = 0 we get

Q−h+2
2

c,p (T ) = Q− 2−h
2

c,p (T )Q−h−2
2

c,p (T )Q−h+2
2

c,p (T ) = (p2 + |T |2)
h−2
2 Q−h

c,p (T )

=

h−2
2∑

k=0

(
h−2
2

k

)
|T |2(

h−2
2

−k)Q−h
c,p (T )p

2k.

By the F -resolvent, see (9.18), we deduce that∫
∂(G2∩CJ )

sh+1dsJQ
h+2
2

c,s (T )T

∫
∂(G1∩CJ )

Q
h+2
2

c,p (T )dpJp
h (9.66)

=

∫
∂(G2∩CJ )

sh+1dsJQ
h+2
2

c,s (T )T

h−2
2∑

k=0

(
h−2
2

k

)
|T |2(

h−2
2

−k)
∫
∂(G1∩CJ )

Qh
c,p(T )dpJp

2k+h

=

∫
∂(G2∩CJ )

sh+1dsJQ
h+2
2

c,s (T )T

h−2
2∑

k=0

(
h−2
2

k

)
|T |2(

h−2
2

−k)
∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2k+h+1
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Chapter 9. The F -functional calculus for bounded operators

−
∫
∂(G2∩CJ )

sh+1dsJQ
h+2
2

c,s (T )T 2

h−2
2∑

k=0

(
h−2
2

k

)
|T |2(

h−2
2

−k)
∫
∂(G1∩CJ )

FL
n (p, T )dpJp

2k+h.

We observe that

h+ 1 + 2k ≤ h+ 1 + h− 2 = 2h− 1,

similarly we have h+2k ≤ 2h−1, so formula (9.66) together with Lemma
9.2.18 imply that∫

∂(G2∩CJ )

sh+1dsJQ
−h+2

2
c,s (T )T

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h = 0.

Using similar arguments, we obtain∫
∂(G2∩CJ )

shdsJQ
−h+2

2
c,s (T )T

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h+1 = 0∫

∂(G2∩CJ )

shdsJQ
−h+2

2
c,s (T )T 2

∫
∂(G1∩CJ )

Q−h+2
2

c,p (T )dpJp
h = 0.

By similar computations made when h is odd we get∫
∂(G2∩CJ )

shdsJ

h−1∑
i=0

Q−h+i
c,s (T )

∫
∂(G1∩CJ )

Q−i−1
c,p (T )dpJp

h = 0,

∫
∂(G2∩CJ )

sh+1dsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )

∫
∂(G2∩CJ )

Q−i−2
c,p (T )dpJp

h+1 = 0,

∫
∂(G2∩CJ )

sh+1

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )T

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h = 0,

∫
∂(G2∩CJ )

shdsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h+1 = 0,

∫
∂(G2∩CJ )

shdsJ

h−2∑
i=0,i ̸=h−2

2

Q−h+i
c,s (T )T 2

∫
∂(G1∩CJ )

Q−i−2
c,p (T )dpJp

h = 0.

By formula (9.61) we get
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9.6. The Riesz Projectors for the F -functional calculus: the general case of
n odd

(2π)2

γ−1
n

P̌ 2 =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

sh
{[
FR
n (s, T )− FL

n (p, T )
]
p

−s̄
[
FR
n (s, T )− FL

n (p, T )
]}

(p2 − 2s0p+ |s|2)−1phdpJ .

Finally, by following exactly the same steps done when h is odd we get

P̌ 2 = P̌ .
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CHAPTER10
Axially harmonic functions and the

harmonic functional calculus on the
S-spectrum

10.1 The fine structure of hyperholomorphic spectral theory

The main purpose of this chapter is to show that by using the Fueter map-
ping theorem and the spectral theory on the S-spectrum we can define a
functional calculus for harmonic functions in four variables. This new cal-
culus can be seen as the harmonic version of the Riesz-Dunford functional
calculus.

In this chapter we further refine the diagram (9.1), observing that, in the
case of the quaternions, the map TF2 can be factorized as TF2 = ∆ = DD,
so there is an intermediate step between slice hyperholomorphic functions
and Fueter regular functions, and the intermediate class of functions that
appears is the one of axially harmonic functions AH(ΩD), see Definition
10.2.2. Thus the diagram (7.28) can be written as:

O(D)
TF1−−−→ SH(ΩD)

D−−−→ AH(ΩD)
D−−−→ AM(ΩD).

It is important to define precisely what we mean by intermediate functional
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Chapter 10. Axially harmonic functions and the harmonic functional
calculus on the S-spectrum

calculus between the S-functional calculus and the F -functional calculus,
both from the points of view of the function theory and of the operator the-
ory. The notions of fine structures of the spectral theory on the S-spectrum
arise naturally from the Fueter extension theorem.

Definition 10.1.1 (Fine structure of the spectral theory on the S-spectrum).
We will call fine structure of the spectral theory on the S-spectrum the
set of functions spaces and the associated functional calculi induced by a
factorization of the operator TF2, in the Fueter extension theorem.

Remark 10.1.2. In the Clifford algebra setting the map TF2 becomes the

Fueter-Sce operator given by TFS2 = ∆
n−1
2

n+1 and its splitting is more in-
volved. We are investigating it in general, when n is odd, and in the case
n = 5 we have a complete description of all the possible fine structures, see
Chapter 12.

The fine structure of the quaternionic spectral theory on the S-spectrum
is illustrated in the following diagram

SH(ΩD) AH(ΩD) AM(ΩD)y
Slice Cauchy Formula

D−−−−−→ AH in integral form
D−−−−−→ Fueter theorem in integral formy y y

S − Functional calculus Harmonic functional calculus F − functional calculus

where the description of the central part of the diagram, i.e., the fine struc-
ture, is the main topic of this paper.

Remark 10.1.3. As for the space of axially monogenic functions, the arrow
from the space of axially harmonic functions is missing. In fact, like the F -
functional calculus, also the harmonic functional calculus is deduced from
the slice hyperholomorphic Cauchy formula.

To sum up, the main problems addressed in this chapter are:

Problem 10.1.4. In the Fueter extension theorem consider the factorization

SH(U)
D−−−→ X(ΩD)

D−−−→ AM(ΩD),

and give an integral representation of the functions in the space X(ΩD) :=
D(SH(ΩD)) and, using this integral transform, define its functional calcu-
lus.
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10.2. Axially harmonic functions

Problem 10.1.5. Determine a product rule formula for the F - functional
calculus.

As we will see in the sequel, the above problems are related. In fact, the
product rule of the F -functional calculus is based on the functional calculus
in Problem 10.1.4.

10.2 Axially harmonic functions

In this chapter we solve the first part of Problem 10.1.4. We begin by rewrit-
ing the Fueter mapping theorem (see Theorem 7.2.19) in a more refined
way, considering the factorization of the Laplace operator ∆ in terms of the
Fueter operator D and its conjugate D.

Theorem 10.2.1 (Fueter mapping theorem (refined)). Let f0(z) = α(u, v)+
iβ(u, v) be a holomorphic function defined in a domain (open and con-
nected) D in the upper-half complex plane and let

ΩD = {q = q0 + q | (q0, |q|) ∈ D} (10.1)

be the open set induced by D in H. The operator TF1 defined by

f(q) = TF1(f0) := α(q0, |q|) +
q

|q|
β(q0, |q|)

maps the set of holomorphic functions in the set of intrinsic slice hyper-
holomorphic functions. Then the function

f̃(q) := T ′
F2

(
α(q0, |q|) +

q

|q|
β(q0, |q|)

)
,

where T ′
F2 := D is the Fueter operator, is in the kernel of the Laplace

operator, i.e.,
∆f̃ = 0 on ΩD.

Moreover,
f̆(q) := T ′′

F2f̃ ,

where T ′′
F2 = D and D = ∂q0 −

∑3
i=1 ei∂qi , is the kernel of the Fueter

operator, i.e.,
Df̆ = 0 on ΩD.

In Theorem 10.2.1 we have applied to the slice hyperholomorphic func-
tion f firstly the Fueter operator and then the operator D, while in Theorem
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7.2.19 we apply directly the Laplacian. Therefore, there is a class of func-
tions that lies between the class of slice hyperholomorphic functions and
the class of axially monogenic functions: it is the so-called class of axially
harmonic functions that we introduce below.

Definition 10.2.2 (Axially harmonic function). Let U ⊆ H be an axially
symmetric open set not intersecting the real line, and let

U = {(u, v) ∈ R× R+ | u+ Sv ∈ U}.

Let f : U → H be a function, of class C3, of the form

f(q) = α(u, v) + Jβ(u, v), q = u+ Jv, J ∈ S,

where α and β are H-valued functions. More in general, let f as above and
let U ⊆ H be an axially symmetric open set and let

U = {(u, v) ∈ R2 | u+ Sv ∈ U},

and assume that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U . (10.2)

Let us set
f̃(q) := Df(q), for q ∈ U.

If
∆f̃(q) = 0, for q ∈ U

we say that f̃ is axially harmonic on U .

The axially monogenic functions satisfy a system of differential equa-
tions called Vekua system, see [60]. In the case of axially harmonic func-
tions, the functions A(q0, r) and B(q0, r) satisfy a second order system of
differential equations.

Theorem 10.2.3. Let U be an axially symmetric open set in H, not inter-
secting the real line, and let f̃(q) = A(q0, r) + ωB(q0, r) be an axially
harmonic function on U , r > 0 and ω ∈ S. Then the functions A(q0, r) and
B(q0, r) satisfy the following system

∂2q0A(q0, r) + ∂2rA(q0, r) +
2

r
∂rA(q0, r) = 0

∂2q0B(q0, r) + ∂2rB(q0, r) +
2r∂rB(q0, r)− 2B(q0, r)

r2
= 0.
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10.2. Axially harmonic functions

Proof. An axially harmonic function is written as

f̃(q) = A(q0, r) + ωB(q0, r), q = q0 + rω ∈ U

and it is in the kernel of the operator ∆ = DD. We denote the Fueter
operator as D = ∂q0+∂q and D = ∂q0−∂q, where ∂q = e1∂q1+e2∂q2+e3∂q3 .
We know that (see [118])

∂q(A(q0, r)+ωB(q0, r)) = ω∂rA(q0, r)−∂rB(q0, r)−
2

r
B(q0, r). (10.3)

This implies that

Df(q) = (∂q0 − ∂q)(A(q0, r) + ωB(q0, r))

=

(
∂q0A(q0, r) + ∂rB(q0, r) +

2

r
B(q0, r)

)
+ ω (∂q0B(q0, r)− ∂rA(q0, r)) .

By setting

A′(q0, r) := ∂q0A(q0, r) + ∂rB(q0, r) +
2

r
B(q0, r)

and
B′(q0, r) := ∂q0B(q0, r)− ∂rA(q0, r),

we get
Df(q0, r) = A′(q0, r) + ωB′(q0, r).

Now, by applying another time formula (10.3) we obtain

∂qDf(q) = ω∂rA
′(q0, r)− ∂rB

′(q0, r)−
2

r
B′(q0, r).

Therefore we have

∆f(q) = DDf(q)
= (∂q0 + ∂q)Df(q0, r)

=

(
∂q0A

′(q0, r)− ∂rB
′(q0, r)−

2

r
B′(q0, r)

)
ω (∂q0B

′(q0, r) + ∂rA
′(q0, r)) .

Since the function f is axially harmonic we have ∆f(q) = 0, thus we get{
∂q0A

′(q0, r)− ∂rB
′(q0, r)− 2

r
B′(q0, r) = 0

∂q0B
′(q0, r) + ∂rA

′(q0, r) = 0.
(10.4)
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Now, we write the system (10.4) in terms of A and B by substituting A′

and B′

∂q0A
′(q0, r)− ∂rB

′(q0, r)−
2

r
B′(q0, r) = ∂2q0A(q0, r) + ∂q0∂rB(q0, r) +

2

r
∂q0B(q0, r)

−∂r∂q0B(q0, r) + ∂2rA(q0, r)−
2

r
∂q0B(q0, r)

+
2

r
∂rA(q0, r) (10.5)

= ∂2q0A(q0, r) + ∂2rA(q0, r) +
2

r
∂rA(q0, r).

∂q0B
′(q0, r) + ∂rA

′(q0, r) = ∂2q0B(q0, r)− ∂q0∂rA(q0, r) + ∂r∂q0A(q0, r)

+∂2rB(q0, r) +
2

r
∂rB(q0, r)−

2

r2
B(q0, r) (10.6)

= ∂2q0B(q0, r) + ∂2rB(q0, r) +
2r∂rB(q0, r)− 2B(q0, r)

r2
.

By putting (10.5) and (10.6) in (10.4) we get the statement.

Remark 10.2.4. If we suppose that a function f is harmonic over the ball
Br(p) of radius r and center p, and continuous in the closure of the ball we
can write

f(q) =
r2 − |q − p|2

|∂Br(p)|r

∫
∂Br(p)

f(y)

|y − q|4
dy,

where |∂Br(p)| is the measure of the sphere and dy is the surface element.

10.3 Integral representation of axially harmonic functions

In this section we show how to write an axially harmonic function in in-
tegral form. The main advantage of this approach is that it is enough to
compute an integral of slice hyperholomorphic functions in order to get an
axially harmonic function. The crucial point to get the integral representa-
tion is to apply the Fueter operator D to the slice hyperholomorphic Cauchy
kernels written in second form, see Definition 3.1.16.

Theorem 10.3.1. Let s, q ∈ H be such that q /∈ [s] then

DS−1
L (s, q) = −2Qc,s(q)

−1

and
S−1
R (s, q)D = −2Qc,s(q)

−1.

262



i
i

“thesis” — 2022/12/4 — 11:25 — page 263 — #281 i
i

i
i

i
i
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Proof. We prove only the first equality since the second one follows with
similar computations. First we apply ∂q0 and ∂qi for i = 1, 2, 3 to the left
slice hyperholomorphic Cauchy kernel

S−1
L (s, q) = (s− q̄)Qc,s(q)

−1.

Thus, we have

∂q0S
−1
L (s, q) = −Qc,s(q)

−1 − (s− q)Qc,s(q)
−2(−2s+ 2q0)

= −Qc,s(q)
−1 − 2q0(s− q)Qc,s(q)

−2 + 2(s− q)Qc,s(q)
−2s

= −Qc,s(q)
−1 +

q0
2
FL(s, q)−

1

2
FL(s, q)s.

Then for i = 1, 2, 3 we get

∂qiS
−1
L (s, q) = eiQc,s(q)

−1 − 2qi(s− q)Qc,s(q)
−2

= eiQc,s(q)
−1 +

1

2
qiFL(s, q).

Thus, by Theorem 9.3.1 with n = 3, we obtain

DS−1
L (s, q) = ∂q0S

−1
L (s, q) +

3∑
i=1

ei∂qiS
−1
L (s, q)

= −Qc,s(q)
−1 +

q0
2
FL(s, q)−

1

2
FL(s, q)s− 3Qc,s(q)

−1 +
q

2
FL(s, q)

= −4Qc,s(q)
−1 − 1

2
(FL(s, q)s− qFL(s, q))

= −2Qc,s(q)
−1.

Remark 10.3.2. Although the slice hyperholomorphic Cauchy kernel writ-
ten in form I is more suitable in various cases, like for the definition of
S-functional calculus, it does not allow easy computations of DS−1

L (s, q).

We observe that when we apply the Laplace operator to a monomial
qn we get a polynomial in terms of q and q̄, see [85, page 316 formula
(12)], [77, Thm. 3.2]. The same feature happens when the Fueter operator
is applied to the monomial qn, see [23, Lemma 1].

Lemma 10.3.3. For all n ≥ 1 we have

Dqn = qnD = −2
n∑
k=1

qn−kqk−1.

263



i
i

“thesis” — 2022/12/4 — 11:25 — page 264 — #282 i
i

i
i

i
i

Chapter 10. Axially harmonic functions and the harmonic functional
calculus on the S-spectrum

Remark 10.3.4. Since

n∑
k=1

qn−kqk−1 =
n∑
k=1

qn−kqk−1

we deduce that Dqn is real.

Definition 10.3.5. Let s, q ∈ H, we define the commutative Q-series as

−2
+∞∑
m=1

m∑
k=1

qm−kqk−1s−1−m and − 2
+∞∑
m=1

m∑
k=1

s−1−mqm−kqk−1.

Remark 10.3.6. The two series in Definition 10.3.5 coincide, where they
converge, since

∑m
k=1 q

m−kqk−1 is real.

Proposition 10.3.7. For s, q ∈ H with |q| < |s|, the commutative Q-series
converges.

Proof. To prove the convergence, it is sufficient to prove the convergence
of the modulus of the series, i.e., we consider

+∞∑
m=1

2m|q|m−1|s|−1−m.

The last series converges by the ratio test. Indeed, since |q| < |s|, we have

lim
m→∞

(m+ 1)|q|m|s|−2−m

m|q|m−1|s|−1−m = lim
m→∞

m+ 1

m
|q||s|−1 < 1.

Lemma 10.3.8. For q, s ∈ H such that |q| < |s|, we have

Qc,s(q)
−1 =

+∞∑
m=1

m∑
k=1

qm−kqk−1s−1−m =
+∞∑
m=1

m∑
k=1

s−1−mqm−kqk−1.

Proof. We prove the first equality since the second one can be proved in a
similar way. By Theorem 3.1.14, we can expand the left Cauchy kernel as

S−1
L (s, q) =

∞∑
m=0

qms−1−m.
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10.3. Integral representation of axially harmonic functions

By Theorem 10.3.1 and Proposition 10.3.7, which allows to exchange the
series with the Fueter operator, we have

−2Qc,s(q)
−1 = DS−1

L (s, q) =
∞∑
m=0

(Dqm) s−1−m.

We get the statement by applying Lemma 10.3.3.

Remark 10.3.9. Using the well-known equality

(an − bn) = (a− b)
n∑
k=1

an−kbk−1

for a = q and b = q, and by Lemma 10.3.3 we have

Dqn =

{
−2nqn−1 if Im(q) = 0,

−(q)−1(qn − qn) if Im(q) ̸= 0.

With this result, we can prove Theorem 10.3.1 by using the series expansion
of the kernel in the following way: if |q| < |s| and q ̸= 0 then

DS−1
L (s, q) =

∞∑
m=0

(Dqm) s−1−m

= −(q)−1

(
∞∑
m=1

qms−1−m −
∞∑
m=1

qms−1−m

)
= −(q)−1(S−1

L (s, q)− S−1
L (s, q))

= −(q)−1(2qQc,s(q)
−1)

= −2Qc,s(q)
−1,
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if |q| < |s| and q = 0, we have

Qc,s(q)DS−1
L (s, q) = (s2 − 2qs+ q2)

(
−2

∞∑
m=1

mqm−1s−1−m

)

= −2
∞∑
m=1

mqm−1s1−m + 4
∞∑
m=1

mqms−m − 2
∞∑
m=1

mqm+1s−m−1

= −2
∞∑
m=0

qms−m + 2
∞∑
m=1

mqms−m − 2
∞∑
m=2

mqms−m

+ 2
∞∑
m=2

qms−m

= −2.

Now, we study the regularity of the function DS−1
L (s, q) in both vari-

ables.

Proposition 10.3.10. Let s, q ∈ H be such that q /∈ [s]. The function
DS−1

L (s, q) is an intrinsic slice hyperholomorphic function in s.

Proof. This follows by Theorem 10.3.1 and the shape of the commutative
pseudo Cauchy kernel.

Remark 10.3.11. The function D(S−1
L (s, q)) is not left slice hyperholo-

morphic in the variable q. Indeed, let q = u + Jv for an arbitrary J ∈ S
then Qc,s(q)

−1 = (s2 − 2us + u2 + v2)−1 and we have the following two
relations

∂

∂u
Qc,s(u+ Jv)−1 = −(−2s+ 2u)Qc,s(u+ Jv)−2

and
∂

∂v
Qc,s(u+ Jv)−1 = −2vQc,s(u+ Jv)−2,

which yield(
∂

∂u
+ J

∂

∂v

)
Qc,s(u+ Jv)−1 = −(−2s+ 2u+ 2Jv)Qc,s(u+ Jv)−2

= 2(s− q)Qc,s(u+ Jv)−2 = −1

2
FL(s, q).

The function DS−1
L (s, q) turns out to be harmonic in q, as proved in the

following result.
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Proposition 10.3.12. Let s, q ∈ H be such that q /∈ [s]. Then the function
DS−1

L (s, q) is harmonic in the real components of q.

Proof. Since the left slice hyperholomorphic Cauchy kernel is a C∞ func-
tion for any q /∈ [s], we can apply to it a differential operator of any order.
The result follows by the facts that the Laplacian is a real operator, thus it
commutes with D, and by Proposition 7.4.4 with n = 3. Indeed

∆DS−1
L (s, q) = D∆S−1

L (s, q) = DFL(s, q) = 0.

Finally as a consequence of the definition of the F -kernel we have this
result.

Lemma 10.3.13. Let s, q ∈ H be such that q /∈ [s], then

D2S−1
L (s, q) = FL(s, q̄).

Proof. By Theorem 10.3.1 we have

D2S−1
L (s, q) = −2DQc,s(q)

−1. (10.7)

Firstly, we apply the derivatives with respect to q0 and qi, with i = 1, 2, 3
to the commutative pseudo Cauchy kernel

∂

∂q0
Qc,s(q)

−1 = −2(−s+ q0)(s
2 − 2q0s+ |q|2)−2,

and for i = 1, 2, 3 we get

∂

∂qi
Qc,s(q)

−1 = −2qi(s
2 − 2q0s+ |q|2)−2.

Thus we obtain

DQc,s(q)
−1 =

∂

∂q0
Qc,s(q)

−1 +
3∑
i=1

ei
∂

∂qi
Qc,s(q)

−1

= −2(−s+ q0 + q)(s2 − 2q0s+ |q|2)−2

= 2(s− q)(s2 − 2q0s+ |q|2)−2.

Therefore by (10.7) we get

D2S−1
L (s, q) = −4(s− q)(s2 − 2q0s+ |q|2)−2 = FL(s, q̄).
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Remark 10.3.14. By Proposition 7.4.4 it is clear that the function FL(s, q̄)
is axially anti-monogenic. This observation together with Lemma 6.35 im-
plies the construction of the following diagram

O(D)
TF1−−−→ SH(ΩD)

D−−−→ AH(ΩD)
D−−−→ AM(ΩD), (10.8)

where ΩD is defined as in (10.1) and AM(ΩD) is the set of axially anti-
monogenic functions. In order to avoid this set of functions in the construc-
tions like the one in (10.8) we impose that the composition of the operators
appearing in (10.8) must be the Fueter map (in the case of this chapter ∆).
This is very important when we increase the dimension of the algebra, see
Chapter 12.

We observe that if we set q = u + Jv and we apply the 2-dimensional
Laplacian

∆2 := ∂J∂J =

(
∂

∂u
− J

∂

∂v

)(
∂

∂u
+ J

∂

∂v

)
,

to the commutative pseudo Cauchy kernel we get its square.

Lemma 10.3.15. Let s, q = u+ Jv ∈ H be such that q /∈ [s], then

∆2Qc,s(q)
−1 = 4Qc,s(q)

−2.

Proof. We set q = u+ Jv, I ∈ S. By Remark 10.3.11 we know that

∂JQc,s(u+ Jv)−1 = 2(s− u− Jv)Qc,s(q)
−2.

Now, we have

∂

∂u
∂JQc,s(u+Jv)

−1 = −2Qc,s(u+Jv)
−2−4(s−u−Jv)Qc,s(u+Jv)

−3(−2s+2u),

and

∂

∂v
∂JQc,s(u+Jv)

−1 = −2IQc,s(u+Jv)
−2−8(s−u−Jv)Qc,s(u+Jv)

−3v.

By definition of the 2-dimensional Laplacian and since the variable s com-
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mute with Qc,s(u+ Jv), we get

∆2Qc,s(q)
−1 =

(
∂

∂u
− J

∂

∂v

)
∂IQc,s(u+ Jv)−1

= −4(s− u− Jv)Qc,s(u+ Jv)−3(−2s+ 2u)

+8J(s− u− Jv)Qc,s(u+ Jv)−3v − 4Qc,s(u+ Jv)−2

= 8(s− u− Jv)(s− u)Qc,s(u+ Jv)−3

+8J(s− u− Jv)vQc,s(u+ Jv)−2 − 4Qc,s(u+ Jv)−2

= 8(s2 − su− us+ u2 − Jsv + Juv + Jsv − Juv + v2)Qc,s(u+ Jv)−3

−4Qc,s(u+ Jv)−2

= 8Qc,s(u+ Jv)Qc,s(u+ Jv)−3 − 4Qc,s(u+ Jv)−2

= 8Qc,s(u+ Jv)−2 − 4Qc,s(u+ Jv)−2 = 4Qc,s(u+ Jv)−2.

We conclude this section with an integral representation of axially har-
monic functions that will allow us to define the harmonic functional calcu-
lus based on the S-spectrum.

Theorem 10.3.16 (Integral representation of axially harmonic functions).
Let W ⊂ H be an open set. Let U be a slice Cauchy domain such that
U ⊂ W . Then for J ∈ S and dsJ = ds(−J) we have:

1) If f ∈ SHL(W ), then the function f̃(q) = Df(q) is harmonic and it
admits the following integral representation

f̃(q) = − 1

π

∫
∂(U∩CJ )

Qc,s(q)
−1dsJf(s), q ∈ U. (10.9)

2) If f ∈ SHR(W ), then the function f̃(q) = f(q)D is harmonic and it
admits the following integral representation

f̃(q) = − 1

π

∫
∂(U∩CJ )

f(s)dsJQc,s(q)
−1, q ∈ U. (10.10)

The integrals depend neither on U nor on the imaginary unit J ∈ S.

Proof. We prove only the first statement because the other proof is sim-
ilar. We can write the function f by using the Cauchy formula for slice
hyperholomorphic functions, see Theorem 3.1.18. Now, by applying the
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left Fueter operator to f(q) and by Theorem 10.3.1 we get

f̃(q) = Df(q) = 1

2π

∫
∂(U∩CJ )

DS−1
L (s, q)dsJf(s)

= − 1

π

∫
∂(U∩CJ )

Qc,s(q)
−1dsJf(s).

Since f̃(q) = Df(q) and by Proposition 10.3.12, it is immediately verified
that f̃(q) is a harmonic function. The independence of integral in (10.9)
from the setU and the imaginary unit J ∈ S follows by the Cauchy formula.

In this section we have described the central part of the following dia-
gram

O(D)
TF1−−−→ SH(ΩD)

D−−−→ AH(ΩD)
D−−−→ AM(ΩD). (10.11)

Remark 10.3.17. In the quaternionic setting it is possible to obtain another
digram besides in (10.11). This comes from the factorization ∆ = DD and
is called second fine structure in the quaternionic setting, see Definition
10.1.1. The set of functions that lies between the set of slice hyperholo-
morphic functions and the set of axially monogenic functions is the set of
axially polyanalytic functions of order 2, for more details see Chapter 11 .

10.4 The harmonic functional calculus on he S spectrum

In this section we introduce the harmonic functional calculus on the S-
spectrum, which is based on the integral representation of axially harmonic
functions. Recall that X denotes a two-sided quaternionic Banach space.

We give meaning to the substitution of the variable q with the operator
T in the power series introduced in Definition 10.3.5.

Definition 10.4.1. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H, we formally
define the commutative pseudo S-resolvent series as

−2
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m and − 2
∞∑
m=1

m∑
k=1

s−1−mTm−kT
k−1

.

Remark 10.4.2. The two series in Definition 10.4.1 coincide, where they
converge.
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Proposition 10.4.3. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H and ∥T∥ <
|s|, the series in the Definition 10.4.1 converges. Moreover, we have

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m =
∞∑
m=1

m∑
k=1

s−1−mTm−kT
k−1

= Qc,s(T )
−1.

(10.12)

Proof. For the convergence of the series it is sufficient to prove the conver-
gence of the series of the operator norm:

∞∑
m=1

m∥T∥m−1|s|−1−m. (10.13)

Since

lim
m→∞

(m+ 1)∥T∥m|s|−2−m

m∥T∥m−1|s|−1−m = lim
m→∞

m+ 1

m
∥T∥|s|−1 < 1,

by the ratio test the series (10.13) is convergent. To prove the equality
(10.12), we show that

Qc,s(T )

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
=

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T )

= I. (10.14)

The first equality in (10.14) is a consequence of the following facts: for
any positive integer m the operator

∑m
k=1 T

m−kT
k−1

does not contain any
imaginary units, so it is real and then it commutes with any power of s. Sec-
ondly, the components of T are commuting among them and the operator
Qc,s(T ), see formula (3.14), can be written as: s2I − 2sT0 +

∑3
i=0 T

2
i .

Now we prove the second equality in (10.14). First we observe that(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T ) =

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
·

(s2 − s(T + T ) + TT )

=
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑
m=1

m∑
k=1

Tm+1−kT
k−1

s−m −
∞∑
m=1

m∑
k=1

Tm−kT
k
s−m

+
∞∑
m=1

m∑
k=1

Tm−k+1T
k
s−1−m.
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Making the change of index m′ = 1 + m in the second and fourth series,
we have(

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T ) =

=
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k−1
s1−m

′ −
∞∑
m=1

m∑
k=1

Tm−kT
k
s−m

+
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k
s−m

′

= I +
∞∑
m=2

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k−1
s1−m

′
+

− Ts−1 −
∞∑
m=2

m∑
k=1

Tm−kT
k
s−m +

∞∑
m′=2

m′−1∑
k=1

Tm
′−kT

k
s−m

′
.

Simplifying the opposite terms in the first and second series and in the third
and fourth series, we finally get(

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T ) = I +

∞∑
m=2

T
m−1

s1−m −
∞∑
m=2

T
m−1

s1−m

= I.

Lemma 10.4.4. Let T ∈ BC(X). The commutative pseudo S-resolvent
operator Qc,s(T )

−1 is a B(X)-valued right and left slice hyperholomorphic
function of the variable s in ρS(T ).

Proof. It follows by Proposition 10.3.10.

Remark 10.4.5. We point out an important difference between the commu-
tative and the noncommutative pseudo S-resolvent operator. For T ∈ B(X)
with noncommuting components the operator Qc,s(T ) is not well defined
because TT ̸= TT . But in the case T ∈ BC(X) then it turns out to be well
defined and the inverse is B(X)-valued slice hyperholomorphic function
for s ∈ ρS(T ).

The noncommutative pseudo S-resolvent operator Qs(T )
−1 turns out to

be well defined for operators T ∈ B(X) with noncommuting components,
but it is not a B(X)-valued slice hyperholomorphic function.
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Remark 10.4.6. The functional calculus based on axially harmonic func-
tions in integral form will be called harmonic functional calculus (on the
S-spectrum) or, since it is based on the commutative pseudo S-resolvent
operator Qc,s(T )

−1, Q-functional calculus.

Definition 10.4.7 (Harmonic functional calculus on the S-spectrum). Let
T ∈ BC(X) and set dsJ = ds(−J) for J ∈ S. For every function f̃ = Df
with f ∈ SHL(σS(T )), we set

f̃(T ) := − 1

π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJf(s), (10.15)

where U is an arbitrary bounded slice Cauchy domain with σS(T ) ⊂ U and
U ⊂ dom(f) and J ∈ S is an arbitrary imaginary unit.
For every function f̃ = fD with f ∈ SHR(σS(T )), we set

f̃(T ) := − 1

π

∫
∂(U∩CJ )

f(s)dsJQc,s(T )
−1, (10.16)

where U and J are as above.

We note the the presence of − 1
π

in front of (10.15) and (10.16) is justified
by Theorem 10.3.16.

Theorem 10.4.8. The harmonic functional calculus on the S-spectrum is
well-defined, i.e., the integrals in (10.15) and (10.16) depend neither on the
imaginary unit J ∈ S nor on the slice Cauchy domain U .

Proof. Here we show only the case f̃ = Df with f ∈ SHL(σS(T )), since
the other one follows by analogous arguments.
Since Qc,s(T )

−1 is a right slice hyperholomorphic function in s and f is
left slice hyperholomorphic, the independence from the set U follows by
the Cauchy integral formula, see Theorem 3.1.18 and Theorem 3.1.19.
Now, we want to show the independence from the imaginary unit. Let us
consider two imaginary units J , I ∈ S with J ̸= I and two bounded slice
Cauchy domains Uq, Us with σs(T ) ⊂ Uq, U q ⊂ Us and U s ⊂ dom(f).
Then every s ∈ ∂(Us∩CJ) belongs to the unbounded slice Cauchy domain
H \ Uq. Recall that Qc,q(T )

−1 is right slice hyperholomorphic on ρS(T ),
also at infinity, since limq→+∞ Qc,q(T )

−1 = 0. Thus the Cauchy formula
implies

Qc,s(T )
−1 =

1

2π

∫
∂((H\Uq)∩CI)

Qc,q(T )
−1dqIS

−1
R (q, s)

=
1

2π

∫
∂(Uq∩CI)

Qc,q(T )
−1dqIS

−1
L (s, q). (10.17)
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The last equality is due to the fact that ∂ ((H \ Uq) ∩ CI) = −∂(Uq ∩ CI)
and S−1

R (q, s) = −S−1
L (s, q). Combining (10.15) and (10.17) we get

f̃(T ) = − 1

π

∫
∂(Us∩CJ )

Qc,s(T )
−1dsJf(s)

= − 1

π

∫
∂(Us∩CJ )

(
1

2π

∫
∂(Uq∩CI)

Qc,q(T )
−1dqIS

−1
L (s, q)

)
dsJf(s).

Due to Fubini’s theorem we can exchange the order of integration and by
the Cauchy formula we obtain

f̃(T ) = − 1

π

∫
∂(Uq∩CI)

Qc.q(T )
−1dqI

(
1

2π

∫
∂(Us∩CJ )

S−1
L (s, q)dsJf(s)

)
= − 1

π

∫
∂(Uq∩CI)

Qc,q(T )
−1dqIf(q).

This proves the statement.

Problem 10.4.9. Let Ω be a slice Cauchy domain. It might happen that
f, g ∈ SHL(U) (resp. f, g ∈ SHR(U)) and Df = Dg (resp. fD = gD).
Is it possible to show that for any T ∈ BC(X), with σS(T ) ⊂ U , we have
f̃(T ) = g̃(T )?

We start to address this problem by observing that D(f − g) = 0 (resp.
(f − g)D = 0). Therefore it is necessary to study the sets

(kerD)SHL(U) := {f ∈ SHL(U) : D(f) = 0}

and
(kerD)SHR(U) := {f ∈ SHR(U) : (f)D = 0}.

Theorem 10.4.10. Let U be a connected slice Cauchy domain of H, then

(kerD)SHL(U) = {f ∈ SHL(U) : f ≡ α for some α ∈ H}
= {f ∈ SHR(U) : f ≡ α for some α ∈ H} = (kerD)SHR(U).

Proof. We prove the result in the case f ∈ SHL(U) since the case f ∈
SHR(U) follows with similar arguments. We proceed by double inclusion.
The fact that

(kerD)SHL(U) ⊇ {f ∈ SHL(U) : f ≡ α for some α ∈ H}
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is obvious. The other inclusion can be proved observing that if f ∈ (kerD)SHL(U),
after a change of variable if needed, there exists r > 0 such that the function
f can be expanded in a convergent series at the origin

f(q) =
∞∑
k=0

qkαk for {αk}k∈N0 ⊂ H and for any q ∈ Br(0)

where Br(0) is the ball centered at 0 and of radius r. By Lemma 10.3.3, we
have

0 = Df(q) ≡
∞∑
k=1

D(qk)αk = −2
∞∑
k=1

k∑
s=1

qk−sqs−1αk, ∀q ∈ Br(0).

If we restrict the previous series in a neighbourhood Ω of 0 of the real line
we get

∞∑
k=1

qk−1
0 αk, ∀q0 ∈ Ω.

and this implies that
αk = 0, ∀k ≥ 1,

which yields f(q) ≡ α0 in Ω and since U is connected f(q) ≡ α0 for any
q ∈ U .

We solve the problem 10.4.9 in the case U connected.

Proposition 10.4.11. Let T ∈ BC(X) and let U be a connected slice
Cauchy domain with σS(T ) ⊂ U . If f, g ∈ SHL(U) (resp. f, g ∈
SHR(U)) satisfy the property Df = Dg (resp. fD = gD) then f̃(T ) =
g̃(T ).

Proof. We prove the theorem in the case f, g ∈ SHL(U) since the case
f, g ∈ SHR(U) follows by similar arguments. By definition of the har-
monic functional calculus on the S-spectrum, see Definition 10.4.7, we
have

f̃(T )− g̃(T ) = − 1

π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJ(f(s)− g(s)).

Since Qc,s(T )
−1 is slice hyperholomorphic in the variable s by Theorem

3.1.18, we can change the domain of integration to Br(0) ∩ CJ for some
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r > 0 with ∥T∥ < r. Moreover, by hypothesis we have that f(s)− g(s) ∈
(kerD)SHL(U), thus by Theorem 10.4.10 and Proposition 10.4.3 we get

f̃(T )− g̃(T ) = − 1

π

∫
∂(Br(0)∩CJ )

Qc,s(T )
−1dsJ(f(s)− g(s))

=

∫
∂(Br(0)∩CJ )

Qc,s(T )
−1dsJα

=
∞∑
m=1

m∑
k=1

Tm−kT
k−1
∫
∂(Br(0)∩CJ )

s−1−mdsJα = 0.

In order to solve Problem 10.4.9, in the case U not connected, we need
the following lemma, which is based on the monogenic functional calculus
developed by McIntosh and collaborators, see [99, 101, 108, 112].

Lemma 10.4.12. Let T ∈ BC(X) be such that T = T0 + T1e1 + T2e2, and
assume that the operators Tℓ, ℓ = 1, 2, 3, have real spectrum. Let G be
a bounded slice Cauchy domain such that (∂G) ∩ σS(T ) = ∅. For every
J ∈ S we have ∫

∂(G∩CJ )

Qc,s(T )
−1dsJ = 0. (10.18)

Proof. Since ∆(1) = 0 and ∆(q) = 0, by Theorem 7.4.6 we also have∫
∂(G∩CJ )

FL(s, q)dsJ = ∆(1) = 0, (10.19)

and ∫
∂(G∩CJ )

FL(s, q)dsJs = ∆(q) = 0, (10.20)

for all q /∈ ∂G and J ∈ S. By the monogenic functional calculus [99, 101]
we have

FL(s, T ) =

∫
∂Ω

G(ω, T )DωFL(s, ω),

where Dω is a suitable differential form, the open set Ω contains the left
spectrum of T and G(ω, T ) is the Fueter resolvent operator. By Theorem
9.3.1 we can write

Qc,s(T )
−1 = −1

4
(FL(s, T )s− TFL(s, T )),
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thus we have∫
∂(G∩CJ )

Qc,s(T )
−1dsJ = −1

4

∫
∂(G∩CJ )

FL(s, T )s− TFL(s, T )dsJ

= −1

4

(∫
∂(G∩CJ )

∫
∂Ω

G(ω, T )DωFL(s, ω)s dsJ

−T
∫
∂(G∩CJ )

∫
∂Ω

G(ω, T )DωFL(s, ω)dsJ

)
= −1

4

(∫
∂Ω

G(ω, T )Dω

(∫
∂(G∩CJ )

FL(s, ω)dsJs

)
−T

∫
∂Ω

G(ω, T )Dω

(∫
∂(G∩CJ )

FL(s, ω)dsJ

))
= 0,

where the second equality is a consequence of the Fubini’s Theorem and
the last equality is a consequence of formulas (10.19) and (10.20).

Remark 10.4.13. To define a monogenic functional McIntosh and collab-
orators, see [99, 101, 108, 112], had as hypothesis that the component T0 of
the operator T = T0 + T1e1 + T2e2 + T3e3 is zero. However, it is possible
to set zero a different component of the operator T .

Finally in the following result we give an answer to Problem 10.4.9.

Proposition 10.4.14. Let T ∈ BC(X) be such that T = T0 + T1e1 + T2e2,
and assume that the operators Tℓ, ℓ = 1, 2, 3, have real spectrum. Let
U be a slice Cauchy domain with σS(T ) ⊂ U . If f, g ∈ SHL(U) (resp.
f, g ∈ SHR(U)) satisfy the property Df = Dg (resp fD = gD) then
f̃(T ) = g̃(T ).

Proof. If U is connected we can use Proposition 10.4.11. If U is not con-
nected then U = ∪nl=1Ul where the Ul are the connected components of U .
Hence, we have f(s)− g(s) =

∑n
l=1 χUl

(s)αl and we can write

f̃(T )− g̃(T ) = −
n∑
l=1

1

π

∫
∂(Ul∩CJ )

Qc,s(T )
−1dsJαl.

The last summation is zero by Lemma 10.4.12.

We conclude this section with some algebraic properties of the harmonic
functional calculus.
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Proposition 10.4.15. Let T ∈ BC(X) be such that T = T0 + T1e1 + T2e2,
and assume that the operators Tℓ, ℓ = 1, 2, 3, have real spectrum.

• If f̃ = Df and g̃ = Dg with f, g ∈ SHL(σS(T )) and a ∈ H, then

(f̃a+ g̃)(T ) = f̃(T )a+ g̃(T ).

• If f̃ = fD and g̃ = gD with f, g ∈ SHR(σS(T )) and a ∈ H, then

(af̃ + g̃)(T ) = af̃(T ) + g̃(T ).

Proof. The obove identities follow immediately from the linearity of the
integrals in (10.15), resp. (10.16).

Proposition 10.4.16. Let T ∈ BC(X) be such that T = T0 + T1e1 + T2e2,
and assume that the operators Tℓ, ℓ = 1, 2, 3, have real spectrum.

• If f̃ = Df with f ∈ SHL(σS(T )) and assume that f(q) =
∑∞

m=0 q
mam

with am ∈ H, where this series converges on a ballBr(0) with σS(T ) ⊂
Br(0). Then

f̃(T ) = −2
∞∑
m=1

m∑
k=1

Tm−kT
k−1

am.

• If f̃ = fD with f ∈ SHR(σS(T )) and assume that f(q) =
∑∞

m=0 amq
m

with am ∈ H, where this series converges on a ballBr(0) with σS(T ) ⊂
Br(0). Then

f̃(T ) = −2
∞∑
m=1

m∑
k=1

amT
m−kT

k−1
.

Proof. We prove the first assertion since the second one can be proven sim-
ilarly. We choose an imaginary unit J ∈ S and a radius 0 < R < r such
that σS(T ) ⊂ BR(0). Then the series expansion of f converges uniformly
on ∂(BR(0) ∩ CJ), and so

f̃(T ) = − 1

π

∫
∂(BR(0)∩CJ )

Qc,s(T )
−1 dsJ

∞∑
l=0

slal

= − 1

π

∞∑
l=0

∫
∂(BR(0)∩CJ )

Qc,s(T )
−1 dsJs

lal.
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By replacing Qc,s(T )
−1 with its series expansion, see Proposition 10.4.3,

we further obtain

f̃(T ) = − 1

π

∫
∂(BR(0)∩CJ )

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m dsJ

∞∑
l=0

slal

= − 1

π

∞∑
m=1

m∑
k=1

∞∑
l=0

Tm−kT
k−1
∫
∂(BR(0)∩CJ )

s−1−m dsJ s
lal

= −2
∞∑
m=1

m∑
k=1

Tm−kT
k−1

am.

The last equality is due to the fact that
∫
∂(BR(0)∩CJ )

s−1−m dsJ s
l is equal to

2π if l = m, and 0 otherwise.

Now, we prove other important properties of the harmonic functional
calculus.

Theorem 10.4.17. Let T ∈ BC(X). Let m ∈ N0, and let U ⊂ H be a
bounded slice Cauchy domain with σS(T ) ⊂ U . For every J ∈ S we have

Hm(T ) =
1

2π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJs

m+1, (10.21)

where

Hm(T ) :=
m∑
k=0

Tm−kT
k
.

Proof. We start by considering U to be the ball Br(0) with ∥T∥ < r. We
know that

Qc,s(T )
−1 =

+∞∑
n=1

n∑
k=1

T n−kT
k−1

s−1−n

for every s ∈ ∂Br(0). By Proposition 10.4.3 we know that the series con-
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verges on ∂Br(0). Thus we have

1

2π

∫
∂(Br(0)∩CJ )

Qc,s(T )
−1dsJs

m+1 =
1

2π

+∞∑
n=1

n∑
k=1

T n−kT
k−1
∫
∂(Br(0)∩CJ )

s−n+mdsJ

=
m+1∑
k=1

Tm+1−kT
k−1

=
m∑
k=0

Tm−kT
k

= Hm(T )

since ∫
∂(Br(0)∩CJ )

s−n+mdsJ =

{
0 if n ̸= m+ 1

2π if n = m+ 1.

This proves the result for the case U = Br(0). Now we get the result for
an arbitrary bounded Cauchy domain U that contains σS(T ). Then there
exists a radius r such that U ⊂ Br(0). The operator Qc,s(T )

−1 is right slice
hyperholomorphic and the monomial sm+1 is left slice hyperholomorphic
on the bounded slice Cauchy domain Br(0) \ U . By the Cauchy’s integral
formula we get

1

2π

∫
∂(Br(0)∩CJ )

Qc,s(T )
−1dsJs

m+1 − 1

2π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJs

m+1

=
1

2π

∫
∂((Br(0)\U)∩CJ )

Qc,s(T )
−1dsJs

m+1 = 0.

Finally we have

1

2π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJs

m+1 =
1

2π

∫
∂(Br(0)∩CJ )

Qc,s(T )
−1dsJs

m+1

= Hm(T ),

and this concludes the proof.

Remark 10.4.18. Unlike what happens in the S-functional calculus (see
[45, Thm. 3.2.2]) we do not have a left slice hyperholomorphic polynomial
on the left hand side of equality (10.21), but we have harmonic polynomials.
Another difference with respect to [45, Thm. 3.2.2] is that in Theorem
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10.4.17 we do not have a difference between right and left part, because by
Proposition 10.4.3

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m =
∞∑
m=1

m∑
k=1

s−1−mTm−kT
k−1

= Qc,s(T )
−1.

For the intrinsic functions we have the following result.

Lemma 10.4.19. Let T ∈ BC(X). If f ∈ N (σS(T )) and U is a bounded
slice Cauchy domain such that σS(T ) ⊂ U and U ⊂ dom(f), then we have

f̃(T ) = − 1

π

∫
∂(U∩CJ )

Qc,s(T )
−1dsJf(s) = − 1

π

∫
∂(U∩CJ )

f(s)dsJQc,s(T )
−1.

Proof. It follows by the definitions of intrinsic functions, of theQ-functional
calculus and Runge’s theorem.

10.5 The resolvent equation for the harmonic functional cal-
culus

In this section we prove various resolvent equations for the pseudo S-
resolvent operator Qc,s(T )

−1. The first version of this equation is written
in terms of Qc,s(T )

−1 and of the S-resolvent operators.

Theorem 10.5.1 (The Q-resolvent equation with S-resolvent operators).
Let T ∈ BC(X). Then, for p, s ∈ ρS(T ) with s ̸∈ [p], the following
equalities hold

Qc,s(T )
−1Qc,p(T )

−1 =
{[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]
p

−s̄
[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]}

·
(p2 − 2s0p+ |s|2)−1, (10.22)

and

Qc,s(T )
−1Qc,p(T )

−1 = (p2 − 2s0p+ |s|2)−1
{
s
[
Qc,s(T )

−1S−1
L (p, T )

−S−1
R (s, T )Qc,p(T )

−1
]
−
[
Qc,s(T )

−1S−1
L (p, T )

−S−1
R (s, T )Qc,p(T )

−1
]
p̄
}
. (10.23)

Proof. By the definition of left S-resolvent operator we have

Qc,p(T )
−1p = TQc,p(T )

−1 + S−1
L (p, T ). (10.24)
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By iterating (10.24) we get

Qc,s(T )
−1Qc,p(T )

−1(p2 − 2s0p+ |s|2) =
= Qc,s(T )

−1[Qc,p(T )
−1p]p− 2s0Qc,s(T )

−1Qc,p(T )
−1p

+|s|2Qc,s(T )
−1Qc,p(T )

−1

= Qc,s(T )
−1[TQc,p(T )

−1 + S−1
L (p, T )]p− 2s0Qc,s(T )

−1

[TQc,p(T )
−1 + S−1

L (p, T )]

+|s|2Qc,s(T )
−1Qc,p(T )

−1

= Qc,s(T )
−1T [Qc,p(T )

−1p] +Qc,s(T )
−1S−1

L (p, T )p

−2s0Qc,s(T )
−1[TQc,p(T )

−1 + S−1
L (p, T )] + |s|2Qc,s(T )

−1Qc,p(T )
−1

= Qc,s(T )
−1T [TQc,p(T )

−1 + S−1
L (p, T )] +Qc,s(T )

−1S−1
L (p, T )p

−2s0Qc,s(T )
−1[TQc,p(T )

−1 + S−1
L (p, T )] + |s|2Qc,s(T )

−1Qc,p(T )
−1.

Now, by the definition of the right S-resolvent operator we have

Qc,s(T )
−1T = sQc,s(T )

−1 − S−1
R (s, T ). (10.25)

This equality implies

Qc,s(T )
−1Qc,p(T )

−1(p2 − 2s0p+ |s|2)
= [Qc,s(T )

−1T ]TQc,p(T )
−1 + [Qc,s(T )

−1T ]S−1
L (p, T ) +Qc,s(T )

−1S−1
L (p, T )p

−2s0[Qc,s(T )
−1T ]Qc,p(T )

−1 − 2s0Qc,s(T )
−1S−1

L (p, T ) + |s|2Qc,s(T )
−1Qc,p(T )

−1

= [sQc,s(T )
−1 − S−1

R (s, T )]TQc,p(T )
−1 + [sQc,s(T )

−1 − S−1
R (s, T )]S−1

L (p, T )

+Qc,s(T )
−1S−1

L (p, T )p− 2s0[sQc,s(T )
−1 − S−1

R (s, T )]Qc,p(T )
−1

−2s0Qc,s(T )
−1S−1

L (p, T ) + |s|2Qc,s(T )
−1Qc,p(T )

−1

= s[Qc,s(T )
−1T ]Qc,p(T )

−1 − S−1
R (s, T )TQc,p(T )

−1 + sQc,s(T )
−1S−1

L (p, T )

−S−1
R (s, T )S−1

L (p, T ) +Qc,s(T )
−1S−1

L (p, T )p− 2s0sQc,s(T )
−1Qc,p(T )

−1

+2s0S
−1
R (s, T )Qc,p(T )

−1 − 2s0Qc,s(T )
−1S−1

L (p, T ) + |s|2Qc,s(T )
−1Qc,p(T )

−1

= s[sQc,s(T )
−1 − S−1

R (s, T )]Qc,p(T )
−1 − S−1

R (s, T )TQc,p(T )
−1

+sQc,s(T )
−1S−1

L (p, T )− S−1
R (s, T )S−1

L (p, T ) +Qc,s(T )
−1S−1

L (p, T )p

−2s0sQc,s(T )
−1Qc,p(T )

−1 + 2s0S
−1
R (s, T )Qc,p(T )

−1

−2s0Qc,s(T )
−1S−1

L (p, T ) + |s|2Qc,s(T )
−1Qc,p(T )

−1.

Now, since s2 − 2s0s+ |s|2 = 0 we get

Qc,s(T )
−1Qc,p(T )

−1(p2 − 2s0p+ |s|2)
= (s2 − 2s0s+ |s|2)Qc,s(T )

−1Qc,p(T )
−1 − sS−1

R (s, T )Qc,p(T )
−1

−S−1
R (s, T )TQc,p(T )

−1 + sQc,s(T )
−1S−1

L (p, T )− S−1
R (s, T )S−1

L (p, T )
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+Qc,s(T )
−1S−1

L (p, T )p+ 2s0S
−1
R (s, T )Qc,p(T )

−1 − 2s0Qc,s(T )
−1S−1

L (p, T )

= −sS−1
R (s, T )Qc,p(T )

−1 − S−1
R (s, T )TQc,p(T )

−1 + sQc,s(T )
−1S−1

L (p, T )

−S−1
R (s, T )S−1

L (p, T ) +Qc,s(T )
−1S−1

L (p, T )p+ 2s0S
−1
R (s, T )Qc,p(T )

−1

−2s0Qc,s(T )
−1S−1

L (p, T )

= −sS−1
R (s, T )Qc,p(T )

−1 + sQc,s(T )
−1S−1

L (p, T )− S−1
R (s, T )[TQc,p(T )

−1

+S−1
L (p, T )] +Qc,s(T )

−1S−1
L (p, T )p+ 2s0S

−1
R (s, T )Qc,p(T )

−1

−2s0Qc,s(T )
−1S−1

L (p, T ).

Finally, by using another time formula (10.24) and the fact that 2s0− s = s̄
we obtain

Qc,s(T )
−1Qc,p(T )

−1(p2 − 2s0p+ |s|2)
= −sS−1

R (s, T )Qc,p(T )
−1 + sQc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1p

+Qc,s(T )
−1S−1

L (p, T )p+ 2s0S
−1
R (s, T )Qc,p(T )

−1 − 2s0Qc,s(T )
−1S−1

L (p, T )

=
[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]
p

−s̄
[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]
.

It is possible to obtain formula (10.23) with similar computations.

Remark 10.5.2. We can rewrite the equations obtained in Theorem 10.5.1
by using the left or right slice hyperholomorphic products, see Definition
3.1.6, in the variables s, p ∈ ρS(T ) with s ̸∈ [p],

Qc,s(T )
−1Qc,p(T )

−1 =
[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]

∗s,L(p− s̄)(p2 − 2s0p+ |s|2)−1I,

or

Qc,s(T )
−1Qc,p(T )

−1 = (p− s̄)(p2 − 2s0p+ |s|2)−1I ∗p,R[
Qc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1
]
.

Theorem 10.5.3 (Left and right generalized Q-resolvent equations). Let
T ∈ BC(X) with s ∈ ρS(T ) and set

ML
m(s, T ) :=

m−1∑
i=0

T
i
S−1
L (s, T )sm−i−1

and

MR
m(s, T ) :=

m−1∑
i=0

sm−i−1S−1
R (s, T )T

i
.
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Then for m ≥ 1 and s ∈ ρS(T ), the following equations hold

Qc,s(T )
−1sm − T

mQc,s(T )
−1 = ML

m(s, T ) (10.26)

and
smQc,s(T )

−1 −Qc,s(T )
−1T

m
= MR

m(s, T ).

Proof. We prove the result by induction on m. We will prove only (10.26)
since the other equality is proven with similar techniques. The case m = 1
is trivial because

ML
1 (s, t) = S−1

L (s, t) = Q−1
c,s (T )s− TQ−1

c,s (T ).

We assume that the equation holds for m − 1 and we will prove it for m.
By inductive hypothesis, we have

T
mQc,s(T )

−1 = TT
m−1Qc,s(T )

−1 = T (Qc,s(T )
−1sm−1 −ML

m−1(s, T ))

= TQc,s(T )
−1sm−1 − TML

m−1(s, T ).

Since

TML
m−1(s, T ) =

m−2∑
i=0

T
i+1
S−1
L (s, T )sm−i−2 =

m−1∑
i=1

T
i
S−1(s, T )sm−i−1

and
TQc,s(T )

−1 = Qc,s(T )
−1s− S−1

L (s, t),

we have

T
mQc,s(T )

−1 = Qc,s(T )
−1sm − S−1

L (s, T )sm−1 −
m−1∑
i=1

T
i
S−1(s, T )sm−i−1

= Qc,s(T )
−1sm −

m−1∑
i=0

T
i
S−1(s, T )sm−i−1

= Qc,s(T )
−1sm −ML

m(s, T ).

Now, our goal is to obtain a resolvent equation for the Q-functional
calculus in which a term of the following form

[Qc,s(T )
−1 −Qc,p(T )

−1] ∗s,left S−1
L (s, q)

is transformed into the product of Qc,s(T )
−1 and Qc,p(T )

−1 and other terms
involving the S-resolvent operators. Moreover, we want to maintain the

284



i
i

“thesis” — 2022/12/4 — 11:25 — page 285 — #303 i
i

i
i

i
i

10.5. The resolvent equation for the harmonic functional calculus

slice hyperholomorphicity.
In order to achieve this aim we need to recall a suitable modification of the
classic S-resolvent equation, see [6, Thm. 6.7].

Theorem 10.5.4. Let T ∈ BC(X) and B ∈ B(X) such that it commutes
with T , then we have

S−1
R (s, T )BS−1

L (p, T ) = [
(
S−1
R (s, T )B −BS−1

L (p, T )
)
p+ (10.27)

−s̄
(
S−1
R (s, T )B −BS−1

L (p, T )
)
]Qs(p)

−1,

where Qs(p) := p2 − 2s0p+ |s|2.

Remark 10.5.5. If we consider B = I in (10.27) we get (3.9).

Now, we have all the tools to obtain a new resolvent equation for the
Q-functional calculus.

Theorem 10.5.6. Let T ∈ BC(X). For s, p ∈ ρS(T ) with s /∈ [p] we have
the following equation

Qc,s(T )
−1S−1

L (p, T ) + S−1
R (s, T )Qc,p(T )

−1 − 2Qc,s(T )
−1TQc,p(T )

−1 =

= [(Qc,s(T )
−1 −Qc,p(T )

−1)p− s̄(Qc,s(T )
−1 −Qc,p(T )

−1)]

Qs(p)
−1, (10.28)

where T = T1e1 + T2e2 + T3e3.

Proof. We will show this result in seven steps.

Step I. We consider B = T in (10.27) and we multiply it on the right
by 4Qc,p(T )

−1, then we get

−S−1
R (s, T )TFL(p, T ) = [

(
4S−1

R (s, T )TQc,p(T )
−1 + TFL(p, T )

)
p (10.29)

−s̄
(
4S−1

R (s, T )TQc,p(T )
−1 + TFL(p, T )

)
]Qs(p)

−1.

Step II. We consider B = I in (10.27) and we multiply it on the right by
−4Qc,p(T )

−1p, then we obtain

S−1
R (s, T )FL(s, T )p = [

(
−4S−1

R (s, T )Qc,p(T )
−1p− FL(p, T )p

)
p (10.30)

−s̄
(
−4S−1

R (s, T )Qc,p(T )
−1p− FL(p, T )p

)
]Qs(p)

−1.

Step III. We substitute B = T in (10.27) and we multiply it on the left by
4Qc,s(T )

−1, then we get

−FR(s, T )TS−1
L (s, T ) = [

(
−FR(s, T )T − 4Qc,s(T )

−1TS−1
L (p, T )

)
p (10.31)

−s̄
(
−FR(s, T )T − 4Qc,s(T )

−1TS−1
L (p, T )

)
]Qs(p)

−1.
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Step IV. We substitute B = I in (10.27) and we multiply it on the left by
−4sQc,s(T )

−1, then we obtain

sFR(s, T )S
−1
L (s, T ) = [

(
sFR(s, T ) + 4sQc,s(T )

−1S−1
L (p, T )

)
p (10.32)

−s̄
(
sFR(s, T ) + 4sQc,s(T )

−1S−1
L (p, T )

)
]Qs(p)

−1.

Step V. We make the sum of formulas (10.29), (10.30), (10.31), (10.32) and
by Theorem 9.3.1 we get

−4S−1
R (s, T )Qc,p(T )

−1 − 4Qc,s(T )
−1S−1

L (s, T ) (10.33)
= [
(
4Qc,p(T )

−1 − 4Qc,s(T )
−1
)
p− s̄

(
4Qc,p(T )

−1 − 4Qc,s(T )
−1
)
]Qs(p)

−1

+4
[(
S−1
R (s, T )TQc,p(T )

−1 − S−1
R (s, T )Qc,p(T )

−1p−Qc,s(T )
−1TS−1

L (p, T )

+sQc,s(T )
−1S−1

L (p, T )
)
p− s̄

(
S−1
R (s, T )TQc,p(T )

−1 − S−1
R (s, T )Qc,p(T )

−1p

−Qc,s(T )
−1TS−1

L (p, T ) + sQc,s(T )
−1S−1

L (p, T )
)]

Qs(p)
−1.

Step VI. We show that

[(
S−1
R (s, T )TQc,p(T )

−1 −Qc,s(T )
−1TS−1

L (p, T )
)
p+ (10.34)

−s̄
(
S−1
R (s, T )TQc,p(T )

−1 −Qc,s(T )
−1TS−1

L (p, T )
)]

Qs(p)
−1

= −Qc,s(T )
−1TQc,p(T )

−1.

We focus on proving formula (10.34). First of all, we observe that by
the definition of the S-resolvent operators we have

S−1
R (s, T )TQc,p(T )

−1 −Qc,s(T )
−1TS−1

L (p, T )

= Qc,s(T )
−1(sI − T̄ )TQc,p(T )

−1 −Qc,s(T )
−1T (pI − T̄ )Qc,p(T )

−1

= Qc,s(T )
−1sTQc,p(T )

−1 −Qc,s(T )
−1TpQc,p(T )

−1.

Thus we get[(
S−1
R (s, T )TQc,p(T )

−1 −Qc,s(T )
−1TS−1

L (p, T )
)
p

−s̄
(
S−1
R (s, T )TQc,p(T )

−1 −Qc,s(T )
−1TS−1

L (p, T )
)]

Qs(p)
−1

=
(
Qc,s(T )

−1sTpQc,p(T )
−1 −Qc,s(T )

−1Tp2Qc,p(T )
−1+

−Qc,s(T )
−1|s|2TQc,p(T )

−1 +Qc,s(T )
−1s̄T pQc,p(T )

−1
)
Qs(p)

−1

=
(
Qc,s(T )

−1(s+ s̄)TpQc,p(T )
−1 −Qc,s(T )

−1Tp2Qc,p(T )
−1

−Qc,s(T )
−1|s|2TQc,p(T )

−1
)
Qs(p)

−1

= −Qc,s(T )
−1TQs(p)Qc,p(T )

−1Qs(p)
−1

= −Qc,s(T )
−1TQc,p(T )

−1.
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10.5. The resolvent equation for the harmonic functional calculus

Step VII. By similar computations we have the following equality[(
sQc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1p
)
p+ (10.35)

−s̄
(
sQc,s(T )

−1S−1
L (p, T )− S−1

R (s, T )Qc,p(T )
−1p
)]

Qs(p)
−1

= Qc,s(T )
−1T̄Qc,p(T )

−1.

Step VIII. We put together (10.34) and (10.35) to obtain[(
S−1
R (s, T )TQc,p(T )

−1 − S−1
R (s, T )Qc,p(T )

−1p−Qc,s(T )
−1TS−1

L (p, T ) (10.36)

+sQc,s(T )
−1S−1

L (p, T )
)
p− s̄

(
S−1
R (s, T )TQc,p(T )

−1 − S−1
R (s, T )Qc,p(T )

−1p

−Qc,s(T )
−1TS−1

L (p, T ) + sQc,s(T )
−1S−1

L (p, T )
)]

Qs(p)
−1

= −Qc,s(T )
−1TQc,p(T )

−1 +Qc,s(T )T̄Qc,p(T )
−1

= −2Qc,s(T )
−1TQc,p(T )

−1.

Finally by putting formula (10.36) in (10.33) we get

S−1
R (s, T )Qc,p(T )

−1 +Qc,s(T )
−1S−1

L (p, T ) =

[
(
Qc,s(T )

−1 −Qc,p(T )
−1
)
p− s̄

(
Qc,s(T )

−1 −Qc,p(T )
−1
)
]Qs(p)

−1

+2Qc,s(T )
−1TQc,p(T )

−1.

This proves the statement.

By using formula (10.28), it is possible to obtain an interesting and nice
formula for the product rule of the Q-functional calculus.

Theorem 10.5.7. Let T ∈ BC(X). We assume that f ∈ N (σS(T )) and
g ∈ SHL(σS(T )) then we have

D(fg)(T ) = f(T )(Dg)(T ) + (Df)(T )g(T ) + (Df)(T )T (Dg)(T ).

If g ∈ SHR(σS(T )) then we have

D(gf)(T ) = f(T )(Dg)(T ) + (Df)(T )g(T ) + (Df)(T )T (Dg)(T ).
(10.37)

Proof. LetG1 andG2 be two bounded slice Cauchy domains as in the proof
of Theorem 5.22. Let us consider p ∈ ∂(G1∩CJ) and s ∈ ∂(G1∩CJ). By
the definitions of the S-functional calculus and the Q-functional calculus
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we get

f(T )(Dg)(T ) + (Df)(T )g(T ) + (Df)(T )T (Dg)(T )

= − 1

2π2

∫
∂(G2∩CJ )

S−1
L (s, T )dsJf(s)

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJg(p)

− 1

2π2

∫
∂(G2∩CJ )

Qc,s(T )
−1dsJf(s)

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

+
1

π2

∫
∂(G2∩CJ )

Qc,s(T )
−1dsJf(s)T

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJg(p).

By the fact that the function f is intrinsic and by Theorem 10.5.6 we get

f(T )(Dg)(T ) + (Df)(T )g(T ) + (Df)(T )T (Dg)(T )

=
1

2π2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [−S−1
R (s, T )Qc,p(T )

−1

−Qc,s(T )
−1S−1

L (p, T ) + 2Qc,s(T )
−1TQc,p(T )

−1]dpJg(p)

= − 1

2π2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [(Qc,s(T )
−1 −Qc,p(T )

−1)p

−s̄(Qc,s(T )
−1 −Qc,p(T )

−1)]Qs(p)
−1dpJg(p)

= − 1

2π2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

Qc,s(T )
−1pQs(p)

−1dpJg(p)

+
1

2π2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

Qc,p(T )
−1pQs(p)

−1dpJg(p)

+
1

2π2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄Qc,s(T )
−1Qs(p)

−1dpJg(p)

− 1

2π2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄Qc,p(T )
−1Qs(p)

−1dpJg(p).

Since the maps p 7→ pQs(p)
−1 and p 7→ Qs(p) are intrinsic slice hyper-

holomorphic on Ḡ1, by the Cauchy integral formula we get that the first
and the third integrals in the above formula are zero. By Lemma 9.5 and
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10.6. The Riesz projectors for harmonic functional calculus

the definition of Q-functional calculus we get

f(T )(Dg)(T ) + (Df)(T )g(T ) + (Df)(T )T (Dg)(T ) =

= − 1

2π2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

[s̄Qc,p(T )
−1 −Qc,p(T )

−1p]

Qs(p) dpJ g(p)

= − 1

π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJf(p)g(p)

= − 1

π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJ(fg)(p)

= D(fg)(T ).

Formula (10.37) follows by similar computations.

10.6 The Riesz projectors for harmonic functional calculus

We now take advantage of the Q-resolvent equation in Theorem 10.5.6 to
study the Riesz projectors for the harmonic functional calculus.

Theorem 10.6.1 (The Riesz projectors). Let T = T0 + T1e1 + T2e2 and
assume that the operators Tl, l = 0, 1, 2, have real spectrum. Let σS(T ) =
σ1 ∪ σ2 with dist(σ1, σ2) > 0.

Let G1, G2 ⊂ H be two bounded slice Cauchy domains such that σ1 ⊂
G1, G1 ⊂ G2 and dist(G2, σ2) > 0. Then the operator

P̃ (T ) :=
1

2π

∫
∂(G2∩CJ )

s dsJQc,s(T )
−1 =

1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1 dpJp

is a projection, i.e.,
P̃ 2 = P̃ .

Moreover, the operator P̃ commutes with T , i.e. we have

T P̃ = P̃ T. (10.38)

Proof. From the definition of right S-resolvent operator we have

S−1
R (s, T ) = sQc,s(T )

−1 −Qc,s(T )
−1T̄ . (10.39)

By inserting formula (10.39) in the equation (10.28) and by multiplying on
the right by p we get

Qc,s(T )
−1S−1

L (p, T )p+ sQc,s(T )
−1Qc,p(T )

−1p−Qc,s(T )
−1T̄Qc,p(T )

−1p

−2Qc,s(T )
−1TQc,p(T )

−1p = [(Qc,s(T )
−1 −Qc,p(T )

−1)p

−s̄(Qc,s(T )
−1 −Qc,p(T )

−1)]Qs(p)
−1p. (10.40)
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Now, we multiply formula (10.40) by dsJ and we integrate it on ∂(G2∩CJ)
with respect to dsJ and if we multiply on the right by dpJ and we integrate
on ∂(G1 ∩ CJ) with respect to dpJ . Therefore, we get∫
∂(G2∩CJ )

dsJQc,s(T )
−1

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp+

∫
∂(G2∩CJ )

sdsJQc,s(T )
−1 ·∫

∂(G1∩CJ )

Qc,p(T )
−1dpJp− 2

∫
∂(G2∩CJ )

dsJQc,s(T )
−1T

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJp =∫

∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

[(Qc,s(T )
−1 −Qc,p(T )

−1)p− s̄(Qc,s(T )
−1 −Qc,p(T )

−1)] ·

Qs(p)
−1dpJp.

By Lemma 10.3.12 we obtain

(2π)2P̃ 2 =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

[(Qc,s(T )
−1 −Qc,p(T )

−1)p−

s̄(Qc,s(T )
−1 −Qc,p(T )

−1)]Qs(p)
−1dpJp.

Now, since the functions p 7→ Qs(p)
−1 and p 7→ Qs(p)

−1 are slice hyper-
holomorphic and do not have singularities inside ∂(G1∩CJ) by the Cauchy
theorem we get∫

∂(G1∩CJ )

pQs(p)
−1dpJp

2 =

∫
∂(G1∩CJ )

Qs(p)dpJp = 0. (10.41)

Therefore, we have

P̃ 2 =
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

dsJ [s̄Qc,p(T )
−1−Qc,p(T )

−1p]Qs(p)
−1dpJp.

By exchanging the role of the integrals and Lemma 9.5 withB := Qc,p(T )
−1

we get

P̃ 2 =
1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJp = P̃ .

Now, we prove (10.38). By the following formula

TQc,p(T )
−1 = Qc,p(T )

−1p− S−1
L (p, T ),
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we get

T P̃ = − 1

2π

∫
∂(G1∩CJ )

TQc,p(T )
−1dpJp

= − 1

2π

∫
∂(G1∩CJ )

(Qp(T )
−1p− S−1

L (p, T ))dpJp

= − 1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpjp

2 +
1

2π

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp.

Thus we obtain

T P̃ = − 1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJp

2 +
1

2π

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp.

(10.42)
On the other side, since

Qc,p(T )
−1T = Qc,p(T )

−1p− S−1
R (p, T ),

we get

P̃ T = − 1

2π

∫
∂(G1∩CJ )

pdpJQc,p(T )
−1T

= − 1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJp

2 +
1

2π

∫
∂(G1∩CJ )

pdpJS
−1
R (p, T ).

From the fact that pχG1(p) is intrinsic slice hyperholomorphic in G1, it
follows by [45, Thm. 3.2.11] that

P̃ T = − 1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJp

2 +
1

2π

∫
∂(G1∩CJ )

S−1
L (p, T )pdpJ .

(10.43)
Since (10.42) and (10.43) are equal we get the statement.

Remark 10.6.2. The Q-resolvent equation stated in Theorem 10.5.1 pre-
serves the slice hyperholomorphicity, however it is not useful to prove The-
orem 10.6.1.

Remark 10.6.3. Theorem 10.6.1 can be proved using directly theF -functional
Calculus. Indeed, in the same hypothesis of the theorem, it is proved in [45,
Thm. 7.4.2] that

P̌ 2
1 = P̌1 and T P̌1 = P̌1T

for
P̌1 := − 1

8π

∫
∂(G1∩CJ )

FL(p, T ) dpJp
2.
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Now, using Theorem 9.3.1 and [45, Lemma 7.4.1], we have

P̃ =
1

2π

∫
∂(G1∩CJ )

Qc,p(T )
−1 dpJp

= − 1

8π

∫
∂(G1∩CJ )

FL(p, T )p− TFL(p, T ) dpJp

= − 1

8π

∫
∂(G1∩CJ )

FL(p, T ) dpJp
2 = P̌ .

10.7 The product rule for the F -functional calculus

By means of the harmonic functional calculus we can show a product rule
for the F -functional calculus.

Theorem 10.7.1. Let T ∈ BC(X) and assume f ∈ N (σS(T )) and g ∈
SHL(σS(T )) then we have

∆(fg)(T ) = ∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ). (10.44)

Proof. Let G1 and G2 be two bounded slice Cauchy domains such that
contain σS(T ) and G1 ⊂ G2, with G2 ⊂ dom(f) ∩ dom(g). We choose
p ∈ ∂(G1∩CJ) and s ∈ ∂(G2∩CJ). For every J ∈ S, from the definitions
of F -functional calculus, S-functional calculus and Q- functional calculus,
we get

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ) =

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJFR(s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL(p, T )dpJg(p)

− 1

(π)2

∫
∂(G2∩CJ )

Qc,s(T )
−1dsJf(s)

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJg(p).

Since the function f is intrinsic by Lemma 10.4.19 we have

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ) =

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJFR(s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL(p, T )dpJg(p)

− 1

(π)2

∫
∂(G2∩CJ )

f(s)dsJQc,s(T )
−1

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJg(p).
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Hence, we have

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ
[
FR(s, T )S

−1
L (p, T )+

+S−1
R (s, T )FL(p, T )− 4Qc,s(T )

−1Qc,p(T )
−1
]
dpJg(p).

By the following equation (see [45, Lemma 7.3.2])

FR(s, T )S
−1
L (p, T ) + S−1

R (s, T )FL(p, T )− 4Qc,s(T )
−1Qc,p(T )

−1

= [(FR(s, T )− FL(p, T ))p− s(FR(s, T )− FL(p, T ))]Qs(p)
−1,

where Qs(p) = p2 − 2s0p+ |s|2, we obtain

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s) [(FR(s, T )− FL(p, T )) p

−s̄ (FR(s, T )− FL(p, T ))]Qs(p)
−1dpJg(p).

By the linearity of the integrals follows that

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ) =

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

FR(s, T )pQs(p)
−1dpJg(p)

− 1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

FL(p, T )pQs(p)
−1dpJg(p)

− 1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄FR(s, T )Qs(p)
−1dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄FL(p, T )Qs(p)
−1dpJg(p).

Since the functions p 7→ pQs(p)
−1, p 7→ Qs(p)

−1 are intrinsic slice hyper-
holomorphic on Ḡ1, by the Cauchy integral formula, see Theorem 3.1.19
we have

1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

FR(s, T )pQs(p)
−1dpJg(p) = 0,

1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄FR(s, T )Qs(p)
−1dpJg(p) = 0.

293



i
i

“thesis” — 2022/12/4 — 11:25 — page 294 — #312 i
i

i
i

i
i

Chapter 10. Axially harmonic functions and the harmonic functional
calculus on the S-spectrum

Thus, we get

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ) =

− 1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

FL(p, T )pQs(p)
−1dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄FL(p, T )Qs(p)
−1dpJg(p)

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

[s̄FL(p, T )− FL(p, T )p]Qs(p)
−1dpJg(p).

By applying Lemma 9.4.1 with B := FL(p, T ) and by the definition of the
F -functional calculus we obtain

∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T )

=
1

2π

∫
∂(G1∩CJ )

FL(p, T )dpJf(p)g(p)

=
1

2π

∫
∂(G1∩CJ )

FL(p, T )dpJ(fg)(p)

= ∆(fg)(T ).

Corollary 10.7.2. Let T ∈ BC(X) and assume g ∈ N (σS(T )) and f ∈
SHR(σS(T )) then we have

∆(fg)(T ) = ∆f(T )g(T ) + f(T )∆g(T )−Df(T )Dg(T ). (10.45)

Remark 10.7.3. The product fg in Theorem 10.7.1 and Corollary 10.7.2 is
respectively slice hyperholomorphic left or right slice hyperholomorphic.

Remark 10.7.4. The classical formula

∆(fg) = ∆(f) · g + f ·∆(g) + 2⟨∇f,∇g⟩, (10.46)

is true for any C2 quaternionic valued functions and it inspires formula
(10.44). However, formula (10.44) is true only for slice hyperholomorphic
functions. Indeed its proof relies heavily on the slice hyperholomorphic
Cauchy integral representation formula. Thus (10.44) is not applicable in
the case when f and g are real valued functions and, in this sense, it is not
a generalization of the formula (10.46).

Remark 10.7.5. Formula (10.44) is a general case of the well-known for-
mula ∆(qg(q)) = q∆(g(q))+2D(g(q)). Indeed, it is enough to replace the
operator T by q and to take f(q) := q in formula (10.44).
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CHAPTER11
A polyanalytic functional calculus and its

properties on the S-spectrum

11.1 Motivation

In the previous chapter we studied a possible splitting of the diagram (9.1)
and have showed that between the set of slice hyperholomorphic functions
and the set of axially monogenic functions lies the set of of axially harmonic
functions. Moreover, by means of this splitting, we developed an harmonic
functional calculus.
The main goal of this chapter is to understand another, different splitting of
(9.1).

By rearranging the maps in the Fueter theorem it is possible to get the
set of axially polyanalytic functions of order 2, i.e. functions in the kernel
of D2. In this paper we study the splitting

O(D)
TF−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD), (11.1)

where AP2(ΩD) is the set of axially polyanalytic functions of order 2. The
goal of this chapter is to describe the central part of this diagram
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SH(ΩD) AP2(ΩD) AM(ΩD)y
Slice Cauchy Formula

D−−−−−→ AP2 integral form
D−−−−−→ Fueter thm. in integral formy y y

S−Functional calculus P2 − functionalcalculus F − functional calculus

Axially polyanalytic functions play an important role in the study of
elasticity problems, see [113, 114]. The theory of polyanalytic functions is
also used to investigate problems in time-frequency analysis, see for exam-
ple [3] and to study well-known Hilbert spaces, see for instance [2,21,133].
For more information about polyanalytic functions see [4, 27].

11.2 Functions spaces of axial type in the quaternionic set-
ting

We start by recalling the definition of fine structure.

Definition 11.2.1 (Fine structure of slice hyperholomorphic spectral the-
ory). A fine structure of a slice hyperholomorphic spectral theory is the
set of functions spaces and the associated functional calculi induced by a
factorization of the operator ∆.

In the quaternionic case only two fine structures are possible. One of
them is studied in the previous chapter, and the other one is the main topic
of this chapter.
The first fine structure studied corresponds to the factorization ∆ = DD.
In that case, we have the following diagram

O(D)
TF−→ SH(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD), (11.2)

where the AH(ΩD) is the set of axially harmonic functions and ΩD is de-
fined as in Theorem 11.2.2.
The aim of this chapter is to study the fine structure which corresponds to
the other possible factorization of the Laplacian, ∆ = DD. To this end, we
need the following splitting of the Fueter theorem (see [85]).

Theorem 11.2.2. Let f0(z) = α(u, v)+iβ(u, v) be a holomorphic function
defined in a domain (open and connected) D in the upper-half complex
plane and let

ΩD = {q = q0 + q1e1 + q2e2 + q3e3 | (q0, |q|) ∈ D} (11.3)
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be the open set induced by D in H. The map

f(q) = TF (f0) := α(q0, |q|) +
q

|q|
β(q0, |q|)

takes the holomorphic function f0(z) and gives the intrinsic slice hyper-
holomorphic function f induced by f0. Then the function

f̆ 0(q) := D
(
α(q0, |q|) +

q

|q|
β(q0, |q|)

)
,

is in the kernel of D2, i.e.

D2f̆ 0 = 0 on ΩD.

Moreover,
f̆(q) = Df̆ 0(q),

is axially monogenic.

From the previous theorem we have the following diagram

O(D)
TF1−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD), (11.4)

where AP2(ΩD) is the set of axially polyanalytic functions of order 2.
Now, we give a rigorous definition of this set. First of all we assume that
an axial function is of the form

f(q) = α(q0, |q|) +
q

|q|
β(q0, |q|), (11.5)

where α and β satisfy the conditions (6.38), with u := q0 and v := |q|.
Definition 11.2.3 (Axially polyanalytic function of order 2). Let f : ΩD ⊆
H → H be of axial type and of class C3(ΩD), where the set ΩD is defined
in (11.3). Then the function

f̆ 0(q) = Df(q) on ΩD

is called an axially polyanalytic function of order 2 if

D2f̆ 0(q) = 0 on ΩD.

It is possible to write a polyanalytic function as a sum of axially mono-
genic functions, see [27]. Specifically, we can write the so called polyana-
lytic decomposition as

f̆ 0(q) = f̆0(q) + q0f̆1(q), (11.6)
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where the f̆0(q) and f̆1(q) are axially monogenic functions. As well as
the monogenic functions satisfy a system of differential equations, called
Vekua systems also the axially polyanalytic functions of order 2 satisfy a
system of differential equations, but of order two.

Theorem 11.2.4. Let U be an axially symmetric open set in H, not inter-
secting the real line, and let f̆ 0(q) = A(q0, r) + ωB(q0, r) be an axially
polyanalytic function of order 2 on U , r > 0 and ω ∈ S. Then the functions
A(q0, r) and B(q0, r) satisfy the following system{
∂2x0A(q0, r)− 2∂x0∂rB(q0, r)− 4

r
∂x0B(q0, r)− ∂2rA(q0, r)− 2

r
∂rA(q0, r) = 0

∂2x0B(q0, r) + 2∂x0∂rA(q0, r)− ∂2rB(q0, r)− 2 r∂rB(q0,r)−B(q0,r)
r2

= 0.

Proof. If we consider a function of axial type (11.5), by [118] we know that

D(f) :=

(
∂q0A(q0, r)− ∂rB(q0, r)−

2

r
B(q0, r)

)
+ω (∂q0B(q0, r) + ∂rA(q0, r)) .

(11.7)
Now, we set

A′(q0, r) := ∂q0A(q0, r)− ∂rB(q0, r)−
2

r
B(q0, r),

B′(q0, r) := ∂q0B(q0, r) + ∂rA(q0, r).

By applying another time (11.7) we get

D2f(q) =

(
∂q0A

′(q0, r)− ∂rB
′(q0, r)−

2

r
B′(q0, r)

)
+ω (∂q0B

′(q0, r) + ∂rA
′(q0, r)) .

Now, we develop further the computations

D2f(q) =

(
∂2q0A(q0, r)− ∂q0∂rB(q0, r)−

2

r
∂q0B(q0, r)− ∂q0∂rB(q0, r)− ∂2rA(q0, r).

−2

r
(∂q0B(q0, r) + ∂rA(q0, r))

)
+ ω

(
∂2q0B(q0, r) + ∂q0∂rA(q0, r)

+∂r∂q0A(q0, r)− ∂2rB(q0, r)− 2∂r

(
B(q0, r)

r

))
(11.8)

=

(
∂2q0A(q0, r)− 2∂q0∂rB(q0, r)−

4

r
∂x0B(q0, r)− ∂2rA(q0, r)−

2

r
∂rA(q0, r)

)
+ω

(
∂2q0B(q0, r) + 2∂q0∂rA(q0, r)− ∂2rB(q0, r)− 2

r∂rB(q0, r)−B(q0, r)

r2

)
.

If we consider the function f polyanalytic of order 2, i.e. D2(f) = 0, by
(11.8) we get the statement.
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In conclusion, even if ∆ = DD = DD the application of D or the
operator D to the set of slice hyperholomorphic functions gives arise to
two completely different fine structures.

11.3 Integral representation of polyanalytic
functions of order 2

In this section we show how to write a polyanalytic function of order 2 in
integral form. Basically, we provide an integral transform that turns slice
hyperholomorphic functions into axially polyanalytic functions of order 2.
The crucial point to show the integral representation is to apply the operator
D to the second form of the slice hyperholomorphic Cauchy kernels.

Theorem 11.3.1. Let s, q ∈ H, be such that s /∈ [q] then

DS−1
L (s, q) = −FL(s, q)s+ q0FL(s, q) =

1∑
k=0

qk0FL(s, q)(−1)k+1s1−k,

(11.9)
and

S−1
R (s, q)D = −sFR(s, q) + q0FR(s, q) =

1∑
k=0

qk0s
1−kFR(s, q)(−1)k+1.

(11.10)

Proof. We start by applying the derivative with respect to ∂q0 to the left
slice hyperholomorphic Cauchy kernel

∂q0S
−1
L (s, q) = −Qc,s(q)

−1 +
q0
2
FL(s, q)−

1

2
FL(s, q)s. (11.11)

Now, we make the derivative with respect to ∂qi ,

∂qiS
−1
L (s, q) = eiQc,s(q)

−1 +
qi
2
FL(s, q), i = 1, 2, 3. (11.12)

Formula (11.11) and (11.12) imply that

DS−1
L (s, q) =

(
∂q0 −

3∑
i=1

ei∂qi

)
S−1
L (s, q) = 2Qc,s(q)

−1 +
q0
2
FL(s, q)

−1

2
FL(s, q)s−

q

2
FL(s, q)

= 2Qc,s(q)
−1 +

q̄

2
FL(s, q)−

1

2
FL(s, q)s.
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From the equality FL(s, q)s− qFL(s, q) = −4Qc,s(q)
−1 it follows the the-

sis. By similar computations we obtain formula (11.10).

Now, we study the regularities of DS−1
L (s, q) and S−1

R (s, q)D both in s
and in q.

Proposition 11.3.2. Let s, q ∈ H, be such that s /∈ [q]. The function
DS−1

L (s, q) is a right slice hyperholomorphic function in the variable s,
while S−1

R (s, q)D is left slice hyperholomorphic in the variable s.

Proof. By Theorem 11.3.1 we know that DS−1
L (s, q) is a sum of right slice

hyperholomorphic functions in the variable s. Indeed Qc,s(q)
−1 is a right

slice hyperholomorphic function as well as q̄FL(s, q) and FL(s, q)s. The
left slice hyperholomorphicity of the function S−1

R (s, T )D follows by sim-
ilar arguments.

Proposition 11.3.3. Let s, q ∈ H, be such that s /∈ [q]. The function
DS−1

L (s, q) is left polyanalytic of order 2 and S−1
R (s, q)D is right polyana-

lytic of order 2 with respect to the variable q.

Proof. It follows from the fact that the function FL(s, q) is axially mono-
genic in the variable q and the Laplace operator is a real operator, thus it
can commute with other operators. Therefore, we get

D2
(
DS−1

L (s, q)
)
= D∆S−1

L (s, q) = DFL(s, q) = 0.

The right polyanalyticity of S−1
R (s, T )D follows similarly.

The expressions obtained in Theorem 11.3.1 can be considered a poly-
analytic decomposition of DS−1

L (s, q) and S−1
R (s, q)D, respectively, see

formula (11.6). Indeed the functions −FL(s, q)s and FL(s, q) are left axi-
ally monogenic in the variable q. Similarly, the functions −sFR(s, q) and
FR(s, q) are right axially monogenic in the variable q.

Now, we have all what we need to write an axially polyanalytic function
of order 2 as an integral formula. This will be fundamental to define the
polyanalytic functional calculus of order 2 based on the S-spectrum.

Theorem 11.3.4 (Integral representation of axially polyanalytic functions
of order 2). Let W ⊂ H be an open set. Let U be a slice Cauchy domain
such that U ⊂ W . Then for J ∈ S and dsJ = ds(−J) we have
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1. if f ∈ SHL(W ), then the function f̆ 0(q) = Df(q) is polyanalytic of
order 2 and it admits the following integral representation

f̆ 0(q) = − 1

2π

1∑
k=0

(−q0)k
∫
∂(U∩CJ )

FL(s, q)s
1−k dsJ f(s) ∀q ∈ U ;

(11.13)

2. if f ∈ SHR(W ), then the function f̆ 0(q) = f(q)D is polyanalytic of
order 2 and it admits the following integral representation

f̆ 0(q) = − 1

2π

1∑
k=0

(−q0)k
∫
∂(U∩CJ )

f(s) dsJ s
1−kFR(s, q) ∀q ∈ U.

(11.14)

The integrals depend neither on U nor on the imaginary unit J ∈ U .

Proof. We get the thesis by applying the conjugate Fueter operator D to
the Cauchy formulas, see Theorem 3.1.18. By Theorem 11.3.1 it follows
(11.13) and (11.14). Finally, the function f̆ 0(q) is polyanalytic of order 2
by Proposition 11.3.3.

In this section we have described the second central row of the diagram
(11.1). It is clear the reason of the lack of the arrow that connects the set of
axially polyanalytic functions and their integral representation. Indeed, we
obtain it by means of the slice Cauchy formula.

11.4 Series expansion of the kernel of the fine structure spaces

Now, we address the following.

Problem Is it possible to write a series expansion of DS−1
L (s, q) and

S−1
R (s, q)D in terms of q and q̄?

In order to answer this question we recall the following series expansion
of the slice hyperholomorphic Cauchy kernels. For q, s ∈ H with |q| < |s|
we have

S−1
L (s, q) =

∞∑
n=0

qns−1−n, S−1
R (s, q) =

∞∑
n=0

s−1−nqn. (11.15)

Therefore it is clear that in order to find the series expansions of DS−1
L (s, q)

and S−1
R (s, q)D it is fundamental to understand the action of the conjugate

Fueter operator D over the monomial qn.
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Lemma 11.4.1. For n ≥ 1 we have

Dqn = 2

(
nqn−1 +

n∑
k=1

qn−kq̄k−1

)
. (11.16)

Moreover,
qnD = Dqn. (11.17)

Proof. By Lemma 10.3.3 we know that

Dqn = (∂q0 + ∂q)q
n = −2

n∑
k=1

qn−kq̄k−1,

where ∂q :=
∑3

i=1 ei∂qi . Then we have

∂qq
n = −2

n∑
k=1

qn−kq̄k−1 − nqn−1. (11.18)

Therefore

Dqn =
(
∂q0 − ∂q

)
qn = 2

(
nqn−1 +

n∑
k=1

qn−kq̄k−1

)
. (11.19)

Finally formula (11.17) follows with similar computations.

It is possible to write polynomials Dqn in terms of the Clifford-Appell
polynomials in the quaternionic setting, see [32] and formula (9.2) with
n = 3. This family of axially monogenic homogeneous polynomials is
defined, for any ℓ ≥ 0, as

Qℓ(q, q̄) =
2

(ℓ+ 1)(ℓ+ 2)

ℓ∑
j=0

(ℓ− j + 1)qℓ−j q̄j. (11.20)

Proposition 11.4.2. Let n ≥ 2, then for q ∈ H, we have

Dqn = 2n
1∑

k=0

qk0(−1)k(n+ 1− 2k)Qn−1−k(q, q̄). (11.21)

Proof. We write

Dqn =
(
Dqn − q0∆q

n
)
+ q0∆q

n = g0(q) + g1(q), (11.22)
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and we consider g0(q). From the fact that

∆qn = −4
n−1∑
k=1

(n− k)qn−k−1q̄k−1, (11.23)

see Corollary 9.2.3, with n = 3, and by Lemma 11.3.1 we can write

g0(q) = Dqn−q0∆qn = 2nqn−1+2
n∑
k=1

qn−kq̄k−1+4q0

n−1∑
k=1

(n−k)qn−k−1q̄k−1.

Since 2q0 = q + q̄ we obtain

g0(q) = 2

(
nqn−1 +

n∑
k=1

qn−kq̄k−1 +
n−1∑
k=1

(n− k)qn−kq̄k−1 +
n−1∑
k=1

(n− k)qn−k−1q̄k

)

= 2

(
n∑
k=1

qn−kq̄k−1 +
n−1∑
k=1

(n− k)qn−kq̄k−1 +
n−1∑
k=0

(n− k)qn−k−1q̄k

)

= 2

(
n∑
k=1

qn−kq̄k−1 +
n∑
k=1

(n− k)qn−kq̄k−1 +
n∑
k=1

(n− k + 1)qn−kq̄k−1

)

= 4
n∑
k=1

(n− k + 1)qn−kq̄k−1.

By formula (11.23) we get

g0(q) = −∆(qn+1).

This implies that
Dqn = −∆(qn+1) + q0∆q

n. (11.24)

By [77, Rem. 3.9] we know that for n ≥ 2 we have

∆(qn) = −2n(n− 1)Qn−2(q, q̄) (11.25)

where the homogenous polynomialsQn(q, q̄) are defined in (11.20). Finally
by combining formula (11.24) and formula (11.25) we get

Dqn = 2n [(n+ 1)Qn−1(q, q̄)− 2q0(n− 1)Qn−2(q.q̄)]

= 2n
1∑

k=0

qk0(−1)k(n+ 1− 2k)Qn−1−k(q, q̄).
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Formula (11.21) can be considered as the polyanalytic decomposition
of the polynomials Dqn since the functions (n + 1)Qn−1(q, q̄) and (n −
1)Qn−2(q.q̄) are left and right axially monogenic.

Remark 11.4.3. The polynomials Dqn were also obtained in [69], by means
of other tools, see [18].

Now, we have all the instruments to introduce the following.

Definition 11.4.4. Let s, q ∈ H, we define the left D-kernel series as

2
∞∑
n=1

(
nqn−1 +

n∑
k=1

qn−kq̄k−1

)
s−1−n, (11.26)

and the right D-kernel series as

2
∞∑
n=1

s−1−n

(
nqn−1 +

n∑
k=1

qn−kq̄k−1

)
. (11.27)

Proposition 11.4.5. Let s, q ∈ H with |q| < |s|, the left and right D-kernel
series are convergent.

Proof. We show only the convergence of the left D-kernel series. The con-
vergence of the right one follows by similar computations.
In order to show the convergence it is enough to prove that the series of
moduli is convergent, i.e.

4
+∞∑
n=1

n|q|n−1s−1−n < +∞.

The series converges by the ratio test, indeed

lim
n→+∞

(n+ 1)|q|n|s|−2−n

n|q|n−1|s|−1−n = |q||s|−1 < 1. (11.28)

The following result contains the solution to the problem stated at the
beginning of this section.

Lemma 11.4.6. For q, s ∈ H such that |q| < |s|, we have
1∑

k=0

qk0FL(s, q)(−1)k+1s1−k = 2
∞∑
n=1

(
nqn−1 +

n∑
j=1

qn−j q̄j−1

)
s−1−n

= 2
∞∑
n=2

1∑
j=0

nqj0(−1)j(n+ 1− 2j)Qn−1−j(q, q̄)s
−1−n,
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and
1∑

k=0

s1−k(−1)k+1FR(s, q)q
k
0 = 2

∞∑
n=1

s−1−n

(
nqn−1 +

n∑
k=1

qn−kq̄k−1

)
(11.29)

= 2
∞∑
n=2

1∑
j=0

ns−1−nqj0(−1)j(n+ 1− 2j)Qn−1−j(q, q̄).

Proof. By formulas (11.15) we know that we can expand the left Cauchy
kernel as

S−1
L (s, q) =

∞∑
n=0

qns−1−n.

Thus by Proposition 11.4.5 (which allows to exchange the operator D with
the sum) and by Theorem 11.3.1 we get

1∑
k=0

qk0FL(s, q)(−1)k+1s1−k = DS−1
L (s, q)

=
∞∑
n=0

(Dqn)s−1−n

= 2

(
∞∑
n=1

nqn−1 +
n∑
j=1

qn−j q̄j−1

)
s−1−n.

The second equality of the statement follows by applying Proposition 11.4.2
in the last equality of the previous computations.
By similar arguments it is possible to prove the equalities (11.29).

Basically, we have given two possible answers to the initial problem.
Indeed, we get two possible expansions of DS−1

L (s, q) and S−1
R (s, q)D, re-

spectively. These will be fundamental in the next section.

11.5 The polyanalytic functional calculus of order 2 on the S-
spectrum and its properties

In this section we will analyse the central third row of the diagram (11.1).
From the shape of the slice hyperholomorphic Cauchy kernel, that we use
to prove the integral representation (see Theorem 11.3.4), we have to re-
stricted to the case of commuting operators.
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Definition 11.5.1. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H, we formally
define the right D-kernel operator as

2
∞∑
n=1

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
s−1−n

and the left D-kernel operator as

2
∞∑
n=1

s−1−n

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
.

Now, we recall the expansion in series of F -resolvent operators in terms
of T and T̄ , see Theorem 9.2.10 with n = 3. Let T = T0 +

∑3
i=1 eiTi ∈

BC(X). For s ∈ H with ∥T∥ < |s| we have

FL(s, T ) = −4
∞∑
n=2

n−1∑
ℓ=1

(n− k)T n−k−1T̄ k−1s−1−n (11.30)

FR(s, T ) = −4
∞∑
n=2

n−1∑
ℓ=1

(n− k)s−1−nT n−k−1T̄ k−1.

This is fundamental for the following result.

Proposition 11.5.2. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H and ∥T∥ <
|s|, the series in Definition 11.5.1 converges. Moreover, we have

1∑
j=0

T j0 (−1)j+1FL(s, T )s
1−j = 2

∞∑
n=1

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
s−1−n

(11.31)
and

1∑
j=0

s1−j(−1)j+1FR(s, T )T
j
0 = 2

∞∑
n=1

s−1−n

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
.

(11.32)

Proof. First of all, we show the convergence of the series. It is sufficient to
prove that the series of the operator norm:

4
∞∑
n=1

n∥T∥n−1s−1−n.

306



i
i

“thesis” — 2022/12/4 — 11:25 — page 307 — #325 i
i

i
i

i
i

11.5. The polyanalytic functional calculus of order 2 on the S-spectrum and
its properties

is convergent. This follows from computations similar to those in the proof
of Proposition 11.4.5.
Now we prove equality (11.31). By formulas (11.30) we know how to
expand in series FL(s, T ), thus we have

1∑
j=0

T j0 (−1)j+1FL(s, T )s
1−j = 4

∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1s−n

−4T0

∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1s−1−n.

Now, to show equality (11.31) it is enough to prove the following equality

4T0

∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1s−1−n

= 4
∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1s−n

−2
∞∑
n=1

nT n−1s−1−n − 2
∞∑
n=1

n∑
k=1

T n−kT̄ k−1s−1−n.

At this point, we are going to manipulate the series in the left hand side
of the previous equality in order to obtain the terms in the right hand side.
By using the relation: 2T0 = T + T̄ , we obtain

4T0
∑∞

n=2

∑n−1
k=1(n− k)T n−k−1T̄ k−1s−1−n

= 2
∑∞

n=2

∑n
k=1(n− k)T n−kT̄ k−1s−1−n + 2

∑∞
n=2

∑n−1
k=1(n− k)T n−k−1T̄ ks−1−n

= 2
∑∞

ℓ=3

∑ℓ−1
k=1(ℓ− k − 1)T ℓ−1−kT̄ k−1s−ℓ + 2

∑∞
ℓ=3

∑ℓ−1
α=2(ℓ− α)T ℓ−α−1T̄α−1s−ℓ

= 2
∑∞

ℓ=3

∑ℓ−1
k=1(ℓ− k)T ℓ−1−kT̄ k−1s−ℓ − 2

∑∞
ℓ=3

∑ℓ−1
k=1 T

ℓ−1−kT̄ k−1s−ℓ

+2
∑∞

ℓ=3

∑ℓ−1
α=1(ℓ− α)T ℓ−α−1T̄α−1s−ℓ − 2

∑∞
ℓ=3(ℓ− 1)T ℓ−2s−ℓ,

where in the second equality we change indexes in the first sum with ℓ =
n + 1, as well as, in the second sum with ℓ = n + 1 and k = α − 1. Now,
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starting the first and the third series from ℓ = 2 we get

4T0

∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1s−1−n

= 2
∞∑
ℓ=2

ℓ−1∑
k=1

(ℓ− k)T ℓ−1−kT̄ k−1s−ℓ − 2s−2 − 2
∞∑
ℓ=3

ℓ−1∑
k=1

T ℓ−1−kT̄ k−1s−ℓ

+ 2
∞∑
ℓ=2

ℓ−1∑
α=1

(ℓ− α)T ℓ−α−1T̄α−1s−ℓ − 2s−2 − 2
∞∑
ℓ=3

(ℓ− 1)T ℓ−2s−ℓ

= 4
∞∑
n=2

n−1∑
k=1

(n− k)T nl−k−1T̄ k−1s−n − 2
∞∑
ℓ=2

(ℓ− 1)T ℓ−2s−ℓ

− 2
∞∑
ℓ=2

ℓ−1∑
k=1

T ℓ−1−kT̄ k−1s−ℓ

= 4
∞∑
n=2

n−1∑
k=1

(n− k)T n−k−1T̄ k−1sn − 2
∞∑
ℓ=1

nT n−1s−n−1

− 2
∞∑
n=1

n∑
k=1

T n−kT̄ k−1s−n−1,

where the last equality is obtained by the change of indexes in the second
and in the third series with n = ℓ − 1. By similar arguments it is possible
to prove (11.32).

Corollary 11.5.3. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H and ∥T∥ <
|s|, then

1∑
j=0

T j0 (−1)j+1FL(s, T )s
1−j = 2n

∞∑
n=1

(
1∑

k=0

T k0 (−1)k(n+ 1− 2k)Qn−1−k(T, T̄ )

)
s−1−n

and
1∑
j=0

s1−j(−1)j+1FR(s, T )T
j
0 =

∞∑
n=1

s−1−n

(
1∑

k=0

T k0 (−1)k(n+ 1− 2k)Qn−1−k(T, T̄ )

)
.

Proof. This result follows by Proposition 11.5.2 and from the fact that we
can write the right D-kernel operator in terms ofQℓ(q, q̄) =

2
(ℓ+1)(ℓ+2)

∑ℓ
j=0(ℓ−

j + 1)T ℓ−jT̄ j , see Proposition 11.21.
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Now, we can give the following

Definition 11.5.4 (P2-resolvent operators). Let T = T0 +
∑3

i=1 eiTi ∈
BC(X). For s ∈ ρS(T ), we define the left P2-resolvent operator as

PL
2 (s, T ) =

1∑
j=0

T j0 (−1)j+1FL(s, T )s
1−j,

and the right P2-resolvent operator as

PR
2 (s, T ) =

1∑
j=0

s1−j(−1)j+1FR(s, T )T
j
0 .

Lemma 11.5.5. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X). Then

• the left P2-resolvent operator is a B(X)-valued right slice hyperholo-
morphic function of the variable s in ρS(T );

• the right P2-resolvent operator is a B(X)-valued left slice hyperholo-
morphic function of the variable s in ρS(T ).

Proof. It follows by similar arguments of Proposition 11.3.2.

Definition 11.5.6 (Polyanalytic functional calculus of order 2 on the S-spectrum).
Let T = T0 +

∑3
i=1 eiTi ∈ BC(X) and set dsJ = ds(−J) for J ∈ S. For

every function f̆ 0 = Df with f ∈ SHL(σS(T )), we set

f̆ 0(T ) =
1

2π

∫
∂(U∩CJ )

PL
2 (s, T ) dsJ f(s), (11.33)

where U ⊂ dom(f) and J ∈ S is an arbitrary imaginary unit.
For every f̆ 0 = fD with f ∈ SHR(σS(T )), we set

f̆ 0(T ) =
1

2π

∫
∂(U∩CJ )

f(s) dsJ PR
2 (s, T ), (11.34)

where U and J are as above.

Theorem 11.5.7. The polyanalytic functional calculus of order 2 on the
S-spectrum is well defined, i.e., the integrals (11.33) and (11.34) depend
neither on the imaginary unit J ∈ S nor on the slice Cauchy domain U .
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Proof. Here we show only the case f̆ ◦ = Df with f ∈ SHL(σS(T )), since
the other one follows by analogous arguments.
Since PL

2 (s, T ) is a B(X)-valued right slice hyperholomorphic function in
s and f is left slice hyperholomorphic, the independence from the set U
follows by the Cauchy integral formula, see Theorem 3.1.18 and Theorem
3.1.19.
Now, we want to show the independence from the imaginary unit. Let us
consider two imaginary units J , I ∈ S with J ̸= I and two bounded slice
Cauchy domains Uq, Us with σS(T ) ⊂ Uq, U q ⊂ Us and U s ⊂ dom(f).
Then every s ∈ ∂(Us∩CJ) belongs to the unbounded slice Cauchy domain
H\Uq. Recall that PL

2 (q, T ) is right slice hyperholomorphic on ρS(T ), also
at infinity, since limq→+∞ PL

2 (q, T ) = 0. Thus the Cauchy formula implies

PL
2 (s, T ) =

1

2π

∫
∂((H\Uq)∩CI)

PL
2 (q, T )dqIS

−1
R (q, s)

=
1

2π

∫
∂(Uq∩CI)

PL
2 (q, T )dqIS

−1
L (s, q).

The last equality is due to the fact that ∂ ((H \ Uq) ∩ CI) = −∂(Uq ∩ CI)
and S−1

R (q, s) = −S−1
L (s, q). By Definition 10.4.7 and (10.17) we get

f̆ ◦(T ) =
1

2π

∫
∂(Us∩CJ )

PL
2 (s, T )dsJf(s)

=
1

2π

∫
∂(Us∩CJ )

(
1

2π

∫
∂(Uq∩CI)

PL
2 (q, T )dqIS

−1
L (s, q)

)
dsJf(s).

Due to Fubini’s theorem we can exchange the order of integration and by
the Cauchy formula we obtain

f̆ ◦(T ) =
1

2π

∫
∂(Uq∩CI)

PL
2 (q, T )dqI

(
1

2π

∫
∂(Us∩CJ )

S−1
L (s, q)dsJf(s)

)
=

1

2π

∫
∂(Uq∩CI)

PL
2 (q, T )dqIf(q).

This proves the statement.

The following result is also important to have a well posed functional
calculus.

Theorem 11.5.8. Let U be a slice Cauchy domain. If f, g ∈ SHL(U) (resp.
f, g ∈ SHR(U)) and Df = Dg (resp. fD = gD) then for any T ∈ BC(X)
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such that T = T0e0 + T1e1 + T2e2, and assuming that the operators Tℓ,
ℓ = 0, 1, 2, have real spectrum, we have

f̆ 0(T ) = ğ0(T ).

In order to prove the previous theorem we need some auxiliary results.
First of all, we have to study the following sets

(kerD)SHL(U) := {f ∈ SHL(U) : D(f) = 0}

and
(kerD)SHR(U) := {f ∈ SHR(U) : (f)D = 0}.

It is necessary to study these sets because in the hypothesis of Theorem
11.5.8 we have D(f − g) = 0 (resp. (f − g)D = 0).

Theorem 11.5.9. Let U be a connected slice Cauchy domain of H, then

(kerD)SHL(U) = {f ∈ SHL(U) : f ≡ α for some α ∈ H}
= {f ∈ SHR(U) : f ≡ α for some α ∈ H} = (kerD)SHR(U).

Proof. We prove the result in the case f ∈ SHL(U) since the case f ∈
SHR(U) follows by similar arguments. We proceed by double inclusion.
The fact that

(kerD)SHL(U) ⊇ {f ∈ SHL(U) : f ≡ α for some α ∈ H}

is obvious. The other inclusion can be proved observing that if f ∈ (kerD)SHL(U),
after a change of variable if needed, there exists r > 0 such that the function
f can be expanded in a convergent series at the origin

f(q) =
∞∑
k=0

qkαk for {αk}k∈N0 ⊂ H and for any q ∈ Br(0)

where Br(0) is the ball centred at 0 and of radius r. By Lemma 11.4.1, we
have

0 = Df(q) ≡
∞∑
k=1

D(qk)αk (11.35)

= 2
∞∑
k=1

(
kqk−1 +

k∑
s=1

qk−sq̄s−1

)
αk, ∀q ∈ Br(0).
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If we restrict the previous series in (11.36) in a neighbourhood Ω of 0 of
the real line we get

0 =
∞∑
k=1

qk−1
0 αk ∀ q0 ∈ Ω

and this implies
αk = 0, ∀k ≥ 1.

Thus f(q) ≡ α0 in Br(0) and since U is connected f(q) ≡ α0 for any
q ∈ U .

To define a monogenic functional McIntosh and collaborators, see [99,
101, 108, 112], had as hypothesis that the component T0 of the operator
T = T0 + T1e1 + T2e2 + T3e3 is zero. However, it is possible to set zero a
different component of the operator T . In a polyanalytic functional calculus
is not convenient to have T0 = 0, due to the left and right structure of the
D-kernel (see Definition 11.5.1). For this reason, in the present work we
impose the last component of the operator T to be zero, i.e., T3 = 0.

Lemma 11.5.10. Let T ∈ BC(X) be such that T = T0e0 + T1e1 + T2e2,
and assume that the operators Tℓ, ℓ = 0, 1, 2, have real spectrum. Let G be
a bounded slice Cauchy domain such that (∂G) ∩ σS(T ) = ∅. For every
J ∈ S we have∫

∂(G∩CJ )

PL
2 (s, T )dsJ = 0 and

∫
∂(G∩CJ )

dsJPR
2 (s, T ) = 0. (11.36)

Proof. We prove only the first equality of (11.36), since the other one fol-
lows by similar computations. Since ∆(1) = 0 and ∆(q) = 0, by Theorem
7.4.6 we have ∫

∂(G∩CJ )

FL(s, q)dsJ = ∆(1) = 0, (11.37)

and ∫
∂(G∩CJ )

FL(s, q)dsJs = ∆(q) = 0, (11.38)

for all q /∈ ∂G and J ∈ S. By the monogenic functional calculus of McIn-
tosh and collaborators we have

FL(s, T ) =

∫
∂Ω

G(ω, T )DωFL(s, ω),
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where Dω is a suitable differential form, the open set Ω contains the left
spectrum of T and G(ω, T ) is the Fueter resolvent operator. By Definition
11.5.1 we have∫

∂(G∩CJ )

PL
2 (s, T )dsJ =

∫
∂(G∩CJ )

(−FL(s, T )s+ T0FL(s, T )) dsJ

= −
(∫

∂(G∩CJ )

∫
∂Ω

G(ω, T )DωFL(s, ω)s dsJ

−T0
∫
∂(G∩CJ )

∫
∂Ω

G(ω, T )DωFL(s, ω)dsJ

)
= −1

4

(∫
∂Ω

G(ω, T )Dω

(∫
∂(G∩CJ )

FL(s, ω)dsJs

)
−T0

∫
∂Ω

G(ω, T )Dω

(∫
∂(G∩CJ )

FL(s, ω)dsJ

))
= 0,

where the second equality is a consequence of the Fubini’s Theorem and
the last equality is a consequence of formulas (11.37) and (11.38).

Proof of Theorem 11.5.8. We prove the theorem when f, g ∈ SHL(U).
The case of f, g ∈ SHR(U) follows by similar arguments. We divide the
proof in two cases.

U is connected

By definition of the P2-functional calculus on the S-spectrum, see Defi-
nition 10.4.7, we have

f̆ 0(T )− ğ0(T ) =
1

2π

∫
∂(U∩CJ )

PL
2 (s, T )dsJ(f(s)− g(s)).

Since PL
2 (s, T ) is slice hyperholomorphic in the variable s by Theorem

3.1.18, we can change the domain of integration to Br(0) ∩ CJ for some
r > 0 with ∥T∥ < r. Moreover, by hypothesis we have that f(s)− g(s) ∈
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(kerD)SHL(Ω), thus by Theorem 11.5.9 and Proposition 10.4.3 we get

f̆ 0(T )− ğ0(T ) =
1

2π

∫
∂(Br(0)∩CJ )

PL
2 (s, T )dsJ(f(s)− g(s))

=
1

2π

∫
∂(Br(0)∩CJ )

PL
2 (s, T )dsJα

=
1

π

∞∑
m=1

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)

·
∫
∂(Br(0)∩CJ )

s−1−mdsJα = 0.

U is not connected

In this case we write the set U in the following way U = ∪nℓ=1Uℓ where
the Uℓ are the connected components of U . Hence, there exist constants
αℓ ∈ H for ℓ = 1, . . . , n, such that f(s)− g(s) =

∑n
ℓ=1 χUℓ

(s)αℓ. Thus we
can write

f̆ ◦(T )− ğ◦(T ) =
n∑
ℓ=1

1

2π

∫
∂(Uℓ∩CJ )

PL
2 (s, T )dsJαℓ.

Finally, by Lemma 11.5.10, we get f̆ ◦(T )− ğ◦(T ) = 0.

Remark 11.5.11. If the set U in Theorem 11.5.8 is connected we can show
the result for operators of the following form T = T0e0 + T1e1 + T2e2 +
T3e3. However, in order to have a well defined functional calculus also for
not connected sets, as it happens for the monogenic functional calculus of
McIntosh, we need to annihilate a component of the operator T .

We conclude this section by proving some algebraic properties of the
P2-functional calculus.

Proposition 11.5.12. Let T ∈ BC(X) be such that T = T0e0+T1e1+T2e2,
and assume that the operators Tℓ, ℓ = 0, 1, 2, have real spectrum.

• If f̆ ◦ = Df and f̆ ◦ = Dg with f, g ∈ SHL(σS(T )) and a ∈ H, then

(f̆ ◦a+ ğ◦)(T ) = f̆ ◦(T )a+ ğ◦(T ).

• If f̆ ◦ = fD and ğ◦ = gD with f, g ∈ SHR(σS(T )) and a ∈ H, then

(af̆ ◦ + ğ◦)(T ) = af̆ ◦(T ) + ğ◦(T ).
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Proof. The above identities follow immediately from the linearity of the
integrals in (10.15), resp. (8.15).

Proposition 11.5.13. Let T ∈ BC(X) be such that T = T0e0+T1e1+T2e2,
and assume that the operators Tℓ, ℓ = 0, 1, 2, have real spectrum.

• If f̆ ◦ = Df with f ∈ SHL(σS(T )) and assume that f(q) =
∑∞

m=0 q
mam

with am ∈ H, where this series converges on a ballBr(0) with σS(T ) ⊂
Br(0). Then

f̆ ◦(T ) =
∞∑
m=1

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)
am.

• If f̆ ◦ = fD with f ∈ SHR(σS(T )) and assume that f(q) =
∑∞

m=0 amq
m

with am ∈ H, where this series converges on a ballBr(0) with σS(T ) ⊂
Br(0). Then

f̆ ◦(T ) =
∞∑
m=1

am

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)
.

Proof. We prove the first assertion since the second one can be proven by
following similar arguments. We choose an imaginary unit J ∈ S and a
radius 0 < R < r such that σS(T ) ⊂ BR(0). Then the series expansion of
f converges uniformly on ∂(BR(0) ∩ CJ), and so

f̆ 0(T ) =
1

2π

∫
∂(BR(0)∩CJ )

PL
2 (s, T ) dsJ

∞∑
ℓ=0

sℓaℓ

=
1

2π

∞∑
ℓ=0

∫
∂(BR(0)∩CJ )

PL
2 (s, T ) dsJs

ℓaℓ.

By Proposition 10.4.3, we further obtain

f̆ 0(T ) =
1

2π

∫
∂(BR(0)∩CJ )

∞∑
m=1

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)
s−1−m dsJ

∞∑
ℓ=0

sℓaℓ

=
1

2π

∞∑
m=1

∞∑
ℓ=0

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)∫
∂(BR(0)∩CJ )

s−1−m+ℓ dsJ aℓ

=
∞∑
m=1

(
mTm−1 +

m∑
k=1

Tm−kT̄ k−1

)
am.
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The last equality is due to the fact that
∫
∂(BR(0)∩CJ )

s−1−m+ℓ dsJ is equal to
2π if ℓ = m, and 0 otherwise.

Theorem 11.5.14. Let T ∈ BC(X). Let m ∈ N0, and let U ⊂ H be a
bounded slice Cauchy domain with σS(T ) ⊂ U . For every J ∈ S we have

P 2
m(T ) =

1

2π

∫
∂(U∩CJ )

PL
2 (s, T )dsJs

m+1, (11.39)

where

P 2
m(T ) := (m+ 1)Tm +

m∑
k=0

Tm−kT̄ k.

Proof. We start by considering U to be the ball Br(0) with ∥T∥ < r. By
Proposition 10.4.3 We know that we can expand the left D-kernel operator
as

PL
2 (s, T ) =

+∞∑
n=1

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
s−1−n

for every s ∈ ∂Br(0). Since the series converges on ∂Br(0), we have

1

2π

∫
∂(Br(0)∩CJ )

PL
2 (s, T )dsJs

m+1 =
1

2π

+∞∑
n=1

(
nT n−1 +

n∑
k=1

T n−kT̄ k−1

)
·

·
∫
∂(Br(0)∩CJ )

s−n+mdsJ

= (m+ 1)Tm +
m+1∑
k=1

Tm+1−kT̄ k−1

= (m+ 1)Tm +
m∑
k=0

Tm−kT
k
= P 2

m(T ),

where we have used∫
∂(Br(0)∩CJ )

s−n+mdsJ =

{
0 if n ̸= m+ 1

2π if n = m+ 1.

This proves the result for the case U = Br(0). Now we get the result for
an arbitrary bounded Cauchy domain U that contains σS(T ). The operator
PL

2 (s, T ) is right slice hyperholomorphic and the monomial sm+1 is left
slice hyperholomorphic on the bounded slice Cauchy domain Br(0) \ U .
By the Cauchy’s integral theorem (see Theorem 3.1.19) we get
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1

2π

∫
∂(Br(0)∩CJ )

PL
2 (s, T )dsJs

m+1 − 1

2π

∫
∂(U∩CJ )

PL
2 (s, T )dsJs

m+1

=
1

2π

∫
∂((Br(0)\U)∩CJ )

PL
2 (s, T )dsJs

m+1 = 0.

Finally we have

1

2π

∫
∂(U∩CJ )

PL
2 (s, T )dsJs

m+1 =
1

2π

∫
∂(Br(0)∩CJ )

PL
2 (s, T )dsJs

m+1

= P 2
m(T ).

and this concludes the proof.

Finally, by using the same methodology developed in [45, Thm. 3.2.11]
we have the following result

Lemma 11.5.15. Let T ∈ BC(X). If f ∈ N(σS(T )) and U is a bounded
slice Cauchy domain such that σS(T ) ⊂ U and U ⊂ dom(f), then we have

1

2π

∫
∂(U∩CJ )

PL
2 (s, T )dsJf(s) =

1

2π

∫
∂(U∩CJ )

f(s)dsJPR
2 (s, T ).

11.6 Resolvent equation and product rule for the polyanalytic
functional calculus

In this section we want to address the following problem.

Problem 11.6.1. Is it possible to show a resolvent equation for the P2-
functional calculus on the S-spectrum that enjoys similar properties of the
holomorphic resolvent equation?

In order to answer to this question it is essential the following result.

Theorem 11.6.2. Let T ∈ BC(X). For q, s ∈ ρS(T ), with s /∈ [q] the
following equation holds

S−1
R (s, T )PL

2 (q, T ) + PR
2 (s, T )S

−1
L (q, T )− 4Qc,s(T )

−1TQc,q(T )
−1

= [(PR
2 (s, T )− PL

2 (q, T ))q

− s̄(PR
2 (s, T )− PL

2 (q, T ))]Qs(q)
−1,

where Qs(q) := q2 − 2s0q + |q|2 and T = T1e1 + T2e2 + T3e3.
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Proof. We divide the proof in nine steps.
Step I. We multiply the S-resolvent equation (see (3.9)) on the right by

4Q−1
c,q (T )q and we get

−S−1
R (s, T )FL(q, T )q = [(4S−1

R (s, T )Qc,q(T )
−1q + FL(q, T )q)q (11.40)

−s̄(4S−1
R (s, T )Qc,q(T )

−1q + FL(q, T )q)]Qs(q)
−1.

Step II. We multiply the S-resolvent equation on the right by −4T0Q−1
c,q (T )

and we obtain

S−1
R (s, T )T0FL(q, T ) = [(−4S−1

R (s, T )T0Qc,q(T )
−1 − T0FL(q, T ))q (11.41)

−s̄(−4S−1
R (s, T )T0Qc,q(T )

−1 − T0FL(q, T ))]Qs(q)
−1.

Step III. We sum the equations (11.41) and (11.42), we get

S−1
R (s, T )PL

2 (q, T ) = [−PL
2 (q, T )q + s̄PL

2 (q, T )]Qs(q)
−1 (11.42)

+4[−S−1
R (s, T )(T0 − qI)Qc,q(T )

−1q

+s̄S−1
R (s, T )(T0 − qI)Qc,q(T )

−1]Qs(q)
−1.

Step IV. We multiply the S-resolvent equation on the left by 4Qc,s(T )
−1s

and we get

−sFR(s, T )S−1
L (q, T ) = [(−sFR(s, T )− 4sQc,s(T )

−1S−1
L (q, T ))q (11.43)

−s̄(−sFR(s, T )− 4sQc,s(T )
−1S−1

L (q, T ))]Qs(q)
−1.

Step V. We multiply the S-resolvent equation on the left by −4T0Qc,s(T )
−1

and we get

T0FR(s, T )S
−1
L (q, T ) = [(T0FR(s, T ) + 4T0Qc,s(T )

−1S−1
L (q, T ))q (11.44)

−s̄(T0FR(s, T ) + 4T0Qc,s(T )
−1S−1

L (q, T ))]Qs(q)
−1.

Step VI. We sum the equations (11.44) and (11.45), we obtain

PR
2 (s, T )S

−1
L (q, T ) = [PR

2 (s, T )q − s̄PR
2 (s, T )]Qs(q)

−1 (11.45)
+4[Qc,s(T )

−1(T0 − sI)S−1
L (q, T )q

−s̄Qc,s(T )
−1(T0 − sI)S−1

L (q, T )]Qs(q)
−1.

Step VII. We sum the equations (11.42) and (11.38), we get

S−1
R (s, T )PL

2 (q, T ) + PR
2 (s, T )S

−1
L (q, T ) (11.46)

= [(PR
2 (s, T )− PL

2 (q, T ))q − s̄(PR
2 (s, T )− PL

2 (q, T ))]Qs(q)
−1

+4[(Qc,s(T )
−1(T0 − sI)S−1

L (q, T )− S−1
R (s, T )(T0 − qI)Qc,q(T )

−1)q

−s̄(Qc,s(T )
−1(T0 − sI)S−1

L (q, T )− S−1
R (s, T )(T0 − qI)Qc,q(T )

−1)]Qs(q)
−1.
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Step VIII. We manipulate the term

4[(Qc,s(T )
−1(T0 − sI)S−1

L (q, T )− S−1
R (s, T )(T0 − qI)Qc,q(T )

−1)q (11.47)
−s̄(Qc,s(T )

−1(T0 − sI)S−1
L (q, T )− S−1

R (s, T )(T0 − qI)Qc,q(T )
−1)]Qs(q)

−1,

which is in the right hand side of the equation (11.46). This term is the sum
of the following two terms

4T0[(Qc,s(T )
−1S−1

L (q, T )− S−1
R (s, T )Qc,q(T )

−1)q

− s̄(Qc,s(T )
−1S−1

L (q, T )− S−1
R (s, T )Qc,q(T )

−1)]Qs(q)
−1,

(11.48)

and

4[(S−1
R (s, T )qQc,q(T )

−1 −Qc,s(T )
−1sS−1

L (q, T ))q

− s̄(S−1
R (s, T )qQc,q(T )

−1 −Qc,s(T )
−1sS−1

L (q, T ))]Qs(q)
−1.

(11.49)

Firstly, we focus on the term (11.48). By the definitions of the left and the
right S-resolvent operators, we have

Qc,s(T )
−1S−1

L (q, T )− S−1
R (s, T )Qc,q(T )

−1

= Qc,s(T )
−1(qI − T̄ )Qc,q(T )

−1 −Qc,s(T )
−1(sI − T̄ )Qc,q(T )

−1

= Qc,s(T )
−1(q − s)Qc,q(T )

−1.

Thus the term (11.48) can be rewritten in the following way

4T0[(Qc,s(T )
−1S−1

L (q, T )− S−1
R (s, T )Qc,q(T )

−1)q

−s̄(Qc,s(T )
−1S−1

L (q, T )− S−1
R (s, T )Qc,q(T )

−1)]Qs(q)
−1

= 4T0[(Qc,s(T )
−1(q − s)Qc,q(T )

−1)q − s̄(Qc,s(T )
−1(q − s)Qc,q(T )

−1)]Qs(q)
−1

= 4T0[Qc,s(T )
−1(−sq + q2 + |s|2 − s̄q)Qc,q(T )

−1]Qs(q)
−1

= 4T0[Qc,s(T )
−1Qs(q)Qc,q(T )

−1]Qs(q)
−1

= 4T0Qc,s(T )
−1Qc,q(T )

−1. (11.50)

Now we focus on the term (11.49). By the definitions of the left and the
right S-resolvent operators, we have

S−1
R (s, T )qQc,q(T )

−1 −Qc,s(T )
−1sS−1

L (q, T )

= Qc,s(T )
−1(sI − T̄ )qQc,q(T )

−1 −Qc,s(T )
−1s(qI − T̄ )Qc,q(T )

−1

= −Qc,s(T )
−1(T̄ q − sT̄ )Qc,q(T )

−1.

319



i
i

“thesis” — 2022/12/4 — 11:25 — page 320 — #338 i
i

i
i

i
i

Chapter 11. A polyanalytic functional calculus and its properties on the
S-spectrum

Thus the term (11.49) can be rewritten in the following way

4[(S−1
R (s, T )qQc,q(T )

−1 −Qc,s(T )
−1sS−1

L (q, T ))q

−s̄(S−1
R (s, T )qQc,q(T )

−1 −Qc,s(T )
−1sS−1

L (q, T ))]Qs(q)
−1

= −4[(Qc,s(T )
−1(T̄ q − sT̄ )Qc,q(T )

−1)q

−s̄(Qc,s(T )
−1(T̄ q − sT̄ )Qc,q(T )

−1)]Qs(q)
−1

= −4Qc,s(T )
−1(T̄ q2 − sT̄ q − s̄T̄ q + |s|2T̄ )Qc,q(T )

−1Qs(q)
−1

= −4Qc,s(T )
−1T̄Qs(q)Qc,q(T )

−1Qs(q)
−1

= −4Qc,s(T )
−1T̄Qc,q(T )

−1. (11.51)

In conclusion by (11.50) and (11.51) we can write

4[(Qc,s(T )
−1(T0 − sI)S−1

L (q, T )− S−1
R (s, T )(T0 − qI)Qc,q(T )

−1)q

−s̄(Qc,s(T )
−1(T0 − sI)S−1

L (q, T )

−S−1
R (s, T )(T0 − qI)Qc,q(T )

−1)]Qs(q)
−1

= 4T0Qc,s(T )
−1Qc,q(T )

−1 − 4Qc,s(T )
−1T̄Qc,q(T )

−1

= 4Qc,s(T )
−1TQc,q(T )

−1. (11.52)

Step IX. Finally, by (11.52) and (11.46) we get

S−1
R (s, T )PL

2 (q, T ) + PR
2 (s, T )S

−1
L (q, T )− 4Qc,s(T )

−1TQc,q(T )
−1

= [(PR
2 (s, T )− PL

2 (q, T ))q − s̄(PR
2 (s, T )− PL

2 (q, T ))]Qs(q)
−1.

Lemma 11.6.3. Let T ∈ BC(X) and let s ∈ ρS(T ). The commutative
pseudo S-resolvent operator satisfies the equations

Qc,s(T )
−1 =

1

4
(PL

2 (s, T ) + TFL(s, T )) (11.53)

and
Qc,s(T )

−1 =
1

4
(PR

2 (s, T ) + FR(s, T )T ). (11.54)

Proof. By Theorem 9.3.1, with n = 3, we have

4Qc,s(T )
−1 = −FL(s, T )s+ TFL(s, T )

= −FL(s, T )s+ T0FL(s, T ) + TFL(s, T )

= PL
2 (s, T ) + TFL(s, T ).

To prove the other equality in the statement we can proceed in a similar
way.
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By means of the previous result we can write a resolvent equation for
the P2-functional calculus.

Theorem 11.6.4. Let T ∈ BC(X). For q, s ∈ ρS(T ), with s /∈ [q] the
following equation holds

S−1
R (s, T )PL

2 (q, T ) + PR
2 (s, T )S

−1
L (q, T )

−1

4

(
PR

2 (s, T )TPL
2 (q, T ) + PR

2 (s, T )T
2FL(q, T ) + FR(s, T )T

2PL
2 (q, T )

+FR(s, T )T
3FL(q, T )

)
= [(PR

2 (s, T )− PL
2 (q, T ))q

−s̄(PR
2 (s, T )− PL

2 (q, T ))]Qs(q)
−1. (11.55)

Proof. From the identities (11.53) and (11.54) we obtain

42Qc,s(T )
−1TQc,q(T )

−1 =
(
PR

2 (s, T ) + FR(s, T )T
)
T
(
PL

2 (q, T ) + TFL(q, T )
)

= PR
2 (s, T )TPL

2 (q, T ) + PR
2 (s, T )T

2FL(q, T ) +

+FR(s, T )T
2PL

2 (q, T ) + FR(s, T )T
3FL(q, T ).

Replacing this identity in (11.40) we obtain the thesis

We can write the equation (11.55) in the following way

S−1
R (s, T )PL

2 (q, T ) + PR
2 (s, T )S

−1
L (q, T )

−1

4

(
PR

2 (s, T )TPL
2 (q, T ) + PR

2 (s, T )T
2FL(q, T ) + FR(s, T )T

2PL
2 (q, T )

+FR(s, T )T
3FL(q, T )

)
= [PR

2 (s, T )− PL
2 (q, T )] ∗s,left S−1

L (q, s).

This equation can be considered a resolvent equation for the P2-functional
calculus. The main differences and the major similarities with the holomor-
phic resolvent equation are listed below.

• Due to the noncommutative setting there are two different D-kernel
operators PL

2 (q, T ) and PR
2 (s, T ), which are right slice hyperholo-

morphic in q and left slice hyperholomorphic in s, respectively.

• The difference PR
2 (s, T )−PL

2 (q, T ) is suitably multiplied by the Cauchy
kernel of the slice hyperholomorphic functions

• The term
[PR

2 (s, T )− PL
2 (q, T )] ∗s,left S−1

L (q, s)

is equal not only to the product of the P-resolvent operators but also
to other terms:
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– the S-resolvent operators,
– the F -resolvent operators.

• The resolvent equation preserves the slice hyperholomorphicity on the
right in s and on the left in q.

As it happens for the holomorphic functional calculus the resolvent equa-
tion is crucial to obtain a product formula.

Theorem 11.6.5. Let T ∈ BC(X) and assume f ∈ N (σS(T )). If g ∈
SHL(σS(T )), then we have

D(fg)(T ) = f(T )(Dg)(T ) + (Df)(T )g(T )−D(f)(T )TD(g)(T ).
(11.56)

If g ∈ SHR(σS(T )), then we have

D(gf)(T ) = g(T )(Df)(T ) + (Dg)(T )f(T )−D(g)(T )TD(f)(T ).
(11.57)

Proof. Let G1 and G2 be two bounded slice Cauchy domains such that they
contain the S-spectrum and G1 ⊂ G2 and G2 ⊂ dom(f) ∩ dom(g). We
choose p ∈ ∂(G1 ∩ CJ) and s ∈ ∂(G2 ∩ CJ). For every J ∈ S, from the
definitions of the P2-functional calculus, the S-functional calculus and the
Q-functional calculus we get

f(T )(Dg)(T ) + (Df)(T )g(T )−D(f)(T )TD(g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

PL
2 (p, T )dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJPR
2 (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

− 1

π2

(∫
∂(G2∩CJ )

f(s)dsJQc,s(T )
−1

)
T

(∫
∂(G1∩CJ )

Qc,p(T )
−1dpJg(p)

)
=

1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [S
−1
R (s, T )PL

2 (p, T ) + PR
2 (s, T )S

−1
L (p, T )

− 4Qc,s(T )
−1TQc,p(T )

−1]dpJg(p).

Now from equation (11.40) we obtain

f(T )(Dg)(T ) + (Df)(T )g(T )−D(f)(T )TD(g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [(PR
2 (s, T )− PL

2 (p, T ))p

− s̄(PR
2 (s, T )− PL

2 (p, T ))]Qs(p)
−1dpJg(p).
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Since pQs(p)
−1 and Qs(p)

−1 are intrinsic slice hyperholomorphic on G1,
by the Cauchy integral formula we get

1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJPR
2 (s, T )

∫
∂(G1∩CJ )

pQs(p)
−1dpJg(p) = 0

and

1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ s̄PR
2 (s, T )

∫
∂(G1∩CJ )

Qs(p)
−1dpJg(p) = 0.

Therefore, we obtain

D(fg)(T ) = f(T )(Dg)(T ) + (Df)(T )g(T )−D(f)(T )TD(g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

[s̄PL
2 (p, T )− PL

2 (p, T )p]Qs(p)
−1dpJg(p).

By Fubini’s theorem, Lemma 9.4.1 with B := PL
2 (p, T ), and the definition

of the P2-functional calculus we get

f(T )(Dg)(T ) + (Df)(T )g(T )−D(f)(T )TD(g)(T )

=
1

2π

∫
∂(G1∩CJ )

PL
2 (p, T )dpJf(p)g(p)

= D(fg)(T ).

In the previous chapter a product rule for the F - functional calculus
is proved, see Theorem 10.7.1. The formula is obtained in terms of the
Q-functional calculus, i.e. the operator D is involved. In the following
result we show a product rule for the F -functional calculus in which the
P2-functional calculus is involved, namely the operator D plays a role.

Theorem 11.6.6. Let T ∈ BC(X) and assume f ∈ N (σS(T )) and g ∈
SHL(σS(T )). Then we have

∆(fg)(T ) = (∆f)(T )g(T ) + f(T )(∆g)(T )− 1

4
(Df)(T )(Dg)(T )

−1

4
(Df)(T )T (∆g)(T )− 1

4
(∆f)(T )T (Dg)(T )

−1

4
(∆f)(T )T 2(∆g)(T ). (11.58)
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Proof. Let G1 and G2 be two bounded slice Cauchy domains like in the
proof of Theorem 11.6.5. Let us consider p ∈ ∂(G1 ∩CJ) and s ∈ ∂(G2 ∩
CJ). Then by the definitions of the F -functional calculus, the S-functional
calculus, the P2-functional calculus and from the fact that f is intrinsic, we
get

(∆f)(T )g(T ) + f(T )(∆g)(T )− 1

4
(Df)(T )(Dg)(T )

− 1

4
(Df)(T )T (∆g)(T )− 1

4
(∆f)(T )T (Dg)(T )− 1

4
(∆f)(T )T 2(∆g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJFR(s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL(p, T )dpJg(p)

− 1

4(2π)2

[∫
∂(G2∩CJ )

f(s)dsJPR
2 (s, T )

∫
∂(G1∩CJ )

PL
2 (p, T )dpJg(p)

+

∫
∂(G2∩CJ )

f(s)dsJPR
2 (s, T )T

∫
∂(G1∩CJ )

FL(p, T )dpJg(p)

+

∫
∂(G2∩CJ )

f(s)dsJFR(s, T )T

∫
∂(G1∩CJ )

PL
2 (p, T )dpJg(p)

+

∫
∂(G2∩CJ )

f(s)dsJFR(s, T )T
2

∫
∂(G1∩CJ )

FL(p, T )dpJg(p)

]
=

1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [FR(s, T )S
−1
L (p, T ) + S−1

R (s, T )FL(p, T )

− 1

4
PR

2 (s, T )PL
2 (p, T )−

1

4
PR

2 (s, T )TFL(p, T )−
1

4
FR(s, T )TPL

2 (p, T )

− 1

4
FR(s, T )T

2FL(p, T )]dpJg(p).

From Lemma 11.6.3 we get

1

4

(
PR
2 (s, T )PL

2 (p, T ) + PR
2 (s, T )TFL(p, T ) + FR(s, T )TPL

2 (p, T )

+FR(s, T )T
2FL(p, T )

)
= 4Qc,s(T )

−1Qc,p(T )
−1.
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Therefore, we get

(∆f)(T )g(T ) + f(T )(∆g)(T )− 1

4
(Df)(T )(Dg)(T )

− 1

4
(Df)(T )T (∆g)(T )− 1

4
(∆f)(T )T (Dg)(T )− 1

4
(∆f)(T )T 2(∆g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [FR(s, T )S
−1
L (p, T ) + S−1

R (s, T )FL(p, T )

− 4Qc,s(T )
−1Qc,p(T )

−1]dpJg(p).

Now, by [45, Lemma 7.3.2], we know that

FR(s, T )S
−1
L (p, T ) + S−1

R (s, T )FL(p, T )− 4Qc,s(T )
−1Qc,p(T )

−1

= [(FR(s, T )− FL(s, T ))p− s̄(FR(s, T )− FL(p, T ))]Qs(p)
−1.

Therefore, we obtain

(∆f)(T )g(T ) + f(T )(∆g)(T )− 1

4
(Df)(T )(Dg)(T )

− 1

4
(Df)(T )T (∆g)(T )− 1

4
(∆f)(T )T (Dg)(T )− 1

4
(∆f)(T )T 2(∆g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ [(FR(s, T )− FL(s, T ))p

− s̄(FR(s, T )− FL(p, T ))]dpJg(p).

By using similar arguments of the proof of Theorem 11.6.5 i.e., the linearity
of the integrals, the Cauchy integral formula and Lemma 9.5, we obtain

(∆f)(T )g(T ) + f(T )(∆g)(T )− 1

4
(Df)(T )(Dg)(T )

− 1

4
(Df)(T )T (∆g)(T )− 1

4
(∆f)(T )T (Dg)(T )− 1

4
(∆f)(T )T 2(∆g)(T )

=
1

2π

∫
∂(G1∩CJ )

FL(p, T )dpJf(p)g(p)

= ∆(fg)(T ).

Remark 11.6.7. If in formula (11.58) we replace the operator T with a
generic quaternion q ∈ H and by considering f(q) = qn and g(q) = q, we
get ∆(qg(q)) = q∆(g(q)) + 2D(g(q)).
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11.7 Riesz projectors for the polyanalytic functional calculus

The aim of this section is to investigate the Riesz projectors for the P2-
functional calculus. Before, we need some auxiliary results.

Theorem 11.7.1. Let T ∈ BC(X) with s ∈ ρS(T ) then we have

PL
2 (s, T )s− TPL

2 (s, T ) = 4(S−1
L (s, T )− TQc,s(T )

−1) (11.59)

and

sPR
2 (s, T )− PR

2 (s, T )T = 4(S−1
R (s, T )−Qc,s(T )

−1T ). (11.60)

Proof. From the definition of the left D-kernel operator and formula (9.18)
we get

PL
2 (s, T )s− TPL

2 (s, T ) = (−FL(s, T )s+ T0FL(s, T ))s

− T (−FL(s, T )s+ T0FL(s, T ))

= (−FL(s, T )s+ TFL(s, T ))s

+ T0(FL(s, T )s− TFL(s, T ))

= 4Qc,s(T )
−1s− 4T0Qc,s(T )

−1

= 4(s− T0 + T )Qc,s(T )
−1 − 4TQc,s(T )

−1

= 4S−1
L (s, T )− 4TQc,s(T )

−1.

The equation (11.60) follows by similar arguments.

In the following result we provide a suitable generalization of the previ-
ous result.

Theorem 11.7.2. Let T ∈ BC(X) with s ∈ ρS(T ) and set

AL
m(s, T ) := 4

m−1∑
i=0

T iS−1
L (s, T )sm−i−1, AR

m(s, T ) := 4
m−1∑
i=0

sm−i−1S−1
R (s, T )T i

and

BLm(s, T ) := 4
m−1∑
i=0

T iTQc,s(T )
−1sm−i−1, BRm(s, T ) := 4

m−1∑
i=0

sm−i−1Qc,s(T )
−1TT i.

Then for m ∈ N, we have the following equation

PL
2 (s, T )s

m − TmPL
2 (s, T ) = AL

m(s, T )− BLm(s, T ). (11.61)

Similarly

smPR
2 (s, T )− PR

2 (s, T )T
m = AR

m(s, T )− BRm(s, T ). (11.62)
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11.7. Riesz projectors for the polyanalytic functional calculus

Proof. We will show only formula (11.61) because formula (11.62) follows
by similar computations. We prove the result by induction on m. If m = 1
we have by formula (11.59)

PL
2 (s, T )s− TPL

2 (s, T ) = 4(S−1
L (s, T )− TQc,s(T )

−1)

= AL
1 (s, T )− BL1 (s, T ).

Now, we assume that the equation holds for m− 1 and we will prove it for
m. By inductive hypothesis we have

TmPL
2 (s, T ) = TTm−1PL

2 (s, T ) (11.63)
= T (PL

2 (s, T )s
m−1 −AL

m−1(s, T ) + BLm−1(s, T ))

= TPL
2 (s, T )s

m−1 − TAL
m−1(s, T ) + TBLm−1(s, T ).

By using formula (11.59), we obtain

TPL
2 (s, T )s

m−1 = PL
2 (s, T )s

m − 4S−1
L (s, T )sm−1 + 4TQc,s(T )

−1sm−1.
(11.64)

Moreover, we have

TAL
m−1(s, T ) = 4

m−2∑
i=0

T i+1S−1
L (s, T )sm−i−2

= 4
m−1∑
ℓ=1

T ℓs−1
L (s, T )Sm−ℓ−1

(11.65)

and

TBLm−1(s, T ) = 4
m−2∑
i=0

T i+1TQc,s(T )
−1sm−i−2

= 4
m−1∑
ℓ=1

T ℓTQc,s(T )
−1sm−ℓ−1.

(11.66)

Eventually, by inserting formulas (11.64), (11.65) and (11.66) in (11.63),
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we get

TmPL
2 (s, T ) = PL

2 (s, T )s
m − 4S−1

L (s, T )sm−1 + 4TQc,s(T )
−1sm−1

− 4
m−1∑
ℓ=1

T ℓS−1
L (s, T )sm−ℓ−1 + 4

m−1∑
ℓ=1

T ℓTQc,s(T )
−1sm−ℓ−1

= PL
2 (s, T )s

m − 4
m−1∑
ℓ=0

T ℓS−1
L (s, T )sm−ℓ−1

+ 4
m−1∑
ℓ=0

T ℓTQc,s(T )
−1sm−ℓ−1

= PL
2 (s, T )s

m −AL
m(s, T ) + BLm(s, T ).

Remark 11.7.3. Using the relation 2T = T− T̄ , we can also write the term
BLm(s, T ) of Theorem 11.7.2 in the following way

BLm(s, T ) = 2
m−1∑
i=0

T i+1Qc,s(T )
−1sm−i−1 − 2T̄

m−1∑
i=0

T iQc,s(T )
−1sm−i−1.

The interesting symmetries that appear in the equation (11.40) allow to
study the Riesz projectors.

Theorem 11.7.4 (Riesz projectors). Let T = T0 +T1e1 +T2e2 and assume
that the operators Tℓ, with ℓ = 0, 1, 2 have real spectrum. Let σS(T ) =
σ1 ∪ σ2 with dist(σ1, σ2) > 0. Let G1, G2 ⊂ H be two bounded slice
Cauchy domains such that σ1 ⊂ G1, Ḡ1 ⊂ G2 and dist(G2, σ2) > 0. Then
the operator

P̆0 :=
1

8π

∫
∂(G1∩CJ )

PL
2 (s, T )dsJs =

1

8π

∫
∂(G2∩CJ )

pdpJPR
2 (p, T )

is a projection i.e.
P̆ 2
0 = P̆0.

Moreover, we have the following commutative relation with respect the op-
erator T

T P̆0 = P̆0T. (11.67)

Proof. By Theorem 11.7.1 we know that

S−1
R (s, T ) =

1

4

(
sPR

2 (s, T )− PR
2 (s, T )T

)
+Qc,s(T )

−1. (11.68)
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Now, by substituting (11.68) in (11.40) we get

1

4
sPR

2 (s, T )PL
2 (p, T )−

1

4
PR

2 (s, T )TPL
2 (p, T ) +Qc,s(T )

−1PL
2 (p, T )

+PR
2 (s, T )S

−1
L (p, T )− 4Qc,s(T )

−1TQc,p(T ) (11.69)
= [
(
PR

2 (s, T )− PL
2 (p, T )

)
p− s̄

(
PR

2 (s, T )− PL
2 (p, T )

)
]Qs(p)

−1.

Now, we multiply the equation (11.69) on the right by p, we get

1

4
sPR

2 (s, T )PL
2 (p, T )p−

1

4
PR

2 (s, T )TPL
2 (p, T )p+Qc,s(T )

−1PL
2 (p, T )p

+PR
2 (s, T )S

−1
L (p, T )p− 4Qc,s(T )

−1TQc,p(T )p (11.70)
= [
(
PR

2 (s, T )− PL
2 (p, T )

)
p− s̄

(
PR

2 (s, T )− PL
2 (p, T )

)
]Qs(p)

−1p.

Now, we multiply formula (11.71) by dsJ on the left and we integrate it on
∂(G2 ∩ CJ) with respect to dsJ . Similarly, if we multiply formula (11.71)
on the right by dpJ and we integrate it on ∂(G1 ∩ CJ) with respect to dpJ .
Thus we obtain

1

4

∫
∂(G2∩CJ )

sdsJPR
2 (s, T )

∫
∂(G1∩CJ )

PL
2 (p, T )dpJp−

1

4

∫
∂(G2∩CJ )

dsJPR
2 (s, T )T

∫
∂(G1∩CJ )

PL
2 (p, T )dpJp

−
∫
∂(G2∩CJ )

dsJQc,s(T )
−1

∫
∂(G1∩CJ )

PL
2 (p, T )dpJp+

∫
∂(G2∩CJ )

dsJPR
2 (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJp+

−4

∫
∂(G2∩CJ )

dsJQc,s(T )
−1T

∫
∂(G1∩CJ )

Qc,p(T )
−1dpJ =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

[
(
PR

2 (s, T )− PL
2 (p, T )

)
p

−s̄
(
PR

2 (s, T )− PL
2 (p, T )

)
]Qs(p)

−1dpJp.

By Lemma 11.5.10 and Lemma 10.3.12 we have

4(2π)2P̆ 2
0 =

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

[
(
PR

2 (s, T )− PL
2 (p, T )

)
p

−s̄
(
PR

2 (s, T )− PL
2 (p, T )

)
]Qs(p)

−1dpJp. (11.71)

Now, since the functions p 7→ Qs(p)
−1 and p 7→ Qs(p)

−1 are slice hyper-
holomorphic and do not have singularities inside ∂(G1∩CJ) by the Cauchy
theorem we get∫

∂(G1∩CJ )

pQs(p)
−1dpJp

2 =

∫
∂(G1∩CJ )

Qs(p)dpJp = 0. (11.72)
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This implies that formula (11.71) can be written as

(P̆0)
2 = − 1

4(2π)2

∫
∂(G2∩CJ )

dsJ

∫
∂(G1∩CJ )

PL
2 (p, T )Qs(p)

−1pdpJp

+
1

4(2π)2

∫
∂(G1∩CJ )

dsJ

∫
∂(G1∩CJ )

s̄PL
2 (p, T )Qs(p)

−1pdpJ

=
1

4(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

dsJ [s̄PL
2 (p, T )− PL

2 (p, T )p]Qs(p)
−1dpJp.

By Fubini’s theorem and Lemma 9.5 with B := PL
2 (p, T ) we get

P̆ 2
0 =

1

8π

∫
∂(G1∩CJ )

PL
2 (p, T )dpJp = P̆0.

Now, we want to show the commutativity relation (11.67). By (11.59) we
know that

TPL
2 (p, T ) = PL

2 (s, T )s− 4
(
S−1
L (s, T )− TQc,s(T )

−1
)
.

From the definition of Riesz projector we get

T P̆0 =
1

8π

∫
∂(G1∩CJ )

PL
2 (s, T )dsJs

2 − 1

2π

∫
∂(G1∩CJ )

S−1
L (s, T )dsJs

+
T

2π

∫
∂(G1∩CJ )

Qc,s(T )
−1dsJs.

On the other side, by (11.60) we obtain

PR
2 (s, T )T = sPR

2 (s, T )− 4
(
S−1
R (s, T )− TQc,s(T )

−1
)
.

This togetehr with the definition of Riesz projectors we get

P̆0T =
1

8π

∫
∂(G1∩CJ )

s2dsJPR
2 (s, T )−

1

2π

∫
∂(G1∩CJ )

sdsJS
−1
R (s, T )

+
T

2π

∫
G1∩CJ

sdsJQc,s(T )
−1.

Thus, we have the statement.
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Part III: Further functional calculi on the
S-spectrum based on the Fueter-Sce

theorem and conclusions

In this last part of the dissertation we start to study the functional calculi
based on the S-spectrum and rising from the factorization of the Fueter-
Sce map. Due to the various factorizations the arguments to get new func-
tional calculi are more involved than the quaternionic case. We focus on
the dimension five, because there are all the functional calculi and function
spaces that can be considered in greater dimensions.

Finally, we conclude the thesis by describing some new research directions.
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CHAPTER12
The fine sructure of the spectral theory on

the S-spectrum in dimension five

12.1 Motivation

This chapter belongs to a new research direction that is related to the Fueter-
Sce-Qian mapping theorem.

We recall the fine structure of the spectral theories on the S-spectrum
taking advantage of the following observation. Let h := n−1

2
be the so-

called Sce exponent, and ∆ be the Laplace operator in dimension n + 1:
the operator TFS2 := ∆h maps the slice hyperholomorphic function f(x) to
the set of axially monogenic functions. The powers of the Laplace operator
∆h can be factorized in terms of the Dirac operator D and its conjugate D
because

DD = DD = ∆.

So it is possible to repeatedly apply to a slice hyperholomorphic function
f(x) the Dirac operator and its conjugate, until we reach the maximum
power of the Laplacian, i.e., the Sce exponent. This implies the possibil-
ity to build different sets of functions which lie between the set of slice
hyperholomorphic functions and the set of axially monogenic functions.
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Chapter 12. The fine sructure of the spectral theory on the S-spectrum in
dimension five

We will call fine structure of the spectral theory on the S-spectrum the
set of the functions spaces and the associated functional calculi induced by
a factorization of the operator TFS2 in the Fueter-Sce extension theorem.

One of the most important factorizations leads to the so-called Dirac fine
structure that corresponds to an alternating sequence of D and D, h times,
for example

TFS2 = ∆h = DD . . .DD.

In Chapter 10 and Chapter 11 we studied the Dirac fine structure when
n = 3, i.e., the quaternionic case. Let D ⊂ C and let ΩD ⊆ Rn+1 be the set
induced by D, see Theorem 7.2.20. In particular we have studied the fine
structure associated with the factorization:

O(D)
TFS1−→ SH(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD), (12.1)

where AH(ΩD) is the set of axially harmonic functions and their inte-
gral representation give rise to the harmonic functional calculus on the S-
spectrum. This structure also allows to obtain a product formula for the
F -functional calculus, see Theorem 10.7.1.

However, since ∆ = DD = DD, we can interchange the order of the
operators D and D in (12.1). This gives rise to the factorization:

O(D)
TFS1−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD). (12.2)

where AP2(ΩD) is a space of polyanalytic functions.

Clearly, as the dimension of the Clifford algebra increases there are more
possibilities and we denote by FS(ΩD), the set of function spaces associ-
ated with the fine structures. These functions spaces lie between the set
of slice hyperholomorphic functions and axially monogenic functions, in
dimension five there are seven such spaces, precisely: ABH(ΩD) the ax-
ially bi-harmonic functions, ACH1(ΩD) the axially Cliffordian holomor-
phic functions of order 1, (which is a short cut for order (1, 1)), AH(ΩD)
the axially harmonic functions, AP2(ΩD) the axially polyanalytic of or-
der 2, ACH1(ΩD) the axially anti Cliffordian of order 1, ACP(1,2)(ΩD) the
axially polyanalytic Cliffordian of order (1, 2), AP3(ΩD) the axially poly-
analytic of order 3. Now, we give the precise definitions of the previous
functions spaces.

Definition 12.1.1 (holomorphic Cliffordian of order k). Let U be an open
set. A function f : U ⊂ Rn+1 → Rn of class C2k+1(U) is said to be (left)
holomorphic Cliffordian of order k if

∆kDf(x) = 0 ∀x ∈ U,
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12.2. Function spaces generated by the Fueter-Sce mapping theorem

where 0 ≤ k ≤ n−1
2

.

Remark 12.1.2. For k := n−1
2

in Definition 12.1.1 we get the class of
functions studied in [104–106].

Remark 12.1.3. Every holomorphic Cliffordian function of order k is holo-
morphic Cliffordian of order k+1. If k = 0 in Definition 12.1.1 we get the
set of (left) monogenic functions.

Definition 12.1.4 (anti-holomorphic Cliffordian of order k). Let U be an
open set. A function f : U ⊂ Rn+1 → Rn of class C2k+1(U) is said to be
(left) anti-holomorphic Cliffordian of order k if

∆kDf(x) = 0 ∀x ∈ U,

where 0 ≤ k ≤ n−1
2

.

Definition 12.1.5 (polyharmonic of degree k). Let k ≥ 1. A function f :
U ⊂ Rn+1 → Rn of class C2k(U) is called polyharmonic of degree k in the
open set U ⊂ Rn+1 if

∆kf(x) = 0, ∀x ∈ U.

For p = 1 the function is called harmonic and for p = 2 the function is
called bi-harmonic. The polyharmonic functions are studied in [20].

Definition 12.1.6 (polyanalytic of order m). Let m ≥ 1. Let U ⊂ Rn+1 be
an open set and let f : U → Rn be a function of class Cm(U). We say that
f is (left) polyanalytic of order m on U if

Dmf(x) = 0, ∀x ∈ U.

It is very important to point out that these function spaces appear in dif-
ferent contexts in the literature and they seem to be unrelated. In this paper
we show that they all appear as fine structures in the Fueter-Sce construc-
tion. In dimension greater than five there will be one more function space,
that is not indicated in the list above, and with this addition, all the fines
structures can be described using those function spaces of different orders.

12.2 Function spaces generated by the Fueter-Sce mapping
theorem

Working in the Clifford algebra with five imaginary units, i.e., n = 5 the
second Fueter-Sce map is ∆2 where the Laplace operator ∆ is in dimension
6.
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We recall that there exist different possible factorizations of ∆2 in terms
of the Dirac operator D and its conjugate D choosing different configura-
tions of products of D and D.

The case of dimension five is different from what happens in the quater-
nionic case, in which the Fueter map can be factorized only as DD and
DD: here we obtain a reacher structure, see Chapter 10 and Chapter 11.

In the setting of slice hyperholomorphic functions, functions of the form
(3.1) together with the even-odd conditions are called slice functions. In
the monogenic setting such functions, often considered only in the upper
half space, are called function of axial type. We will use both terminology
according to the setting. Now, we assume that the axial functions (or slice
functions) of the form

f(x) = α(x0, |x|) +
x

|x|
β(x0, |x|)

are of class C5(ΩD), where ΩD is as in the Fueter-Sce mapping theorem.
We will consider functions f : ΩD ⊆ Rn+1 → Rn with values in the
Clifford algebra Rn where we consider the case n = 5.

Definition 12.2.1 (ABH(ΩD) axially bi-harmonic function). Let f : ΩD ⊆
R6 → R5 be of axial type and of class C5(ΩD). Then, the function

f̃1(x) := Df(x) on ΩD

is called an axially bi-harmonic function, since by the Fueter-Sce mapping
theorem, it satisfies

∆2f̃1(x) = 0 on ΩD.

We denote this set of functions by ABH(ΩD).

Definition 12.2.2 (ACH1(ΩD) axially Cliffordian functions of order one).
Consider the function f̃1(x) := Df(x) ∈ ABH(ΩD) and apply the conju-
gate Dirac operator D to f̃1(x). Then we get

f ◦(x) := Df̃1(x) = ∆f(x) on ΩD, (12.3)

which is an axially Cliffordian functions of order one (which is the short
cut for order (1, 1)) by the Fueter-Sce mapping theorem, i.e.,

∆Df ◦(x) = 0 on ΩD.

We denote this set of functions by ACH1(ΩD).
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12.2. Function spaces generated by the Fueter-Sce mapping theorem

Definition 12.2.3 (ACH1(ΩD) axially anti-Cliffordian functions of order
one). Consider the function f̃1(x) := Df(x) ∈ ABH(ΩD) and apply the
Dirac operator D to f̃1(x) we obtain

f◦(x) = Df̃1(x) = D2f(x), on ΩD,

which is axially anti-Cliffordian functions of order one by the Fueter-Sce
mapping theorem, i.e.,

∆D (f◦(x)) = 0 on ΩD.

We denote this set of functions by ACH1(ΩD).

Definition 12.2.4 (AH(ΩD) axially harmonic functions). Consider the func-
tion f ◦(x) := Df̃1(x) = ∆f(x) ∈ ACH1(ΩD) and apply the Dirac opera-
tor D to f ◦(x). We get,

f̃0(x) = Df ◦(x) = ∆Df(x),
which is an axially harmonic functions, by the Fueter-Sce mapping theo-
rem, i.e.,

∆f̃0(x) = 0 on ΩD.

We denote this set of functions as AH(ΩD).

Definition 12.2.5 (AP2(ΩD) axially polyanalytic functions of order two).
If we apply the operator D to f ◦(x) := Df̃1(x) = ∆f(x) ∈ ACH1(ΩD)
we obtain

f̆ ◦
1 (x) = Df ◦(x) = ∆Df(x),

which is an axially polyanalytic functions of order two, by the Fueter-Sce
mapping theorem, i.e.,

D2f̆ ◦
1 (x) = 0 on ΩD.

We denote this set of functions by AP2(ΩD).

Definition 12.2.6 (APC(1,2)(ΩD) axially Cliffordian polyanalytic functions
of order (1, 2)). Let f : ΩD ⊆ R6 → R5 be of axial type and of class
C5(ΩD). Apply to (7.26) the conjugate of the Dirac operator. In this case
we obtain

f̆ ◦(x) = Df(x) on ΩD, (12.4)
which is an axially Cliffordian polyanalytic functions of order (1, 2), by the
Fueter-Sce mapping theorem, i.e.,

∆D2f̆ ◦(x) = 0 on ΩD.

We denote this class of functions as APC(1,2)(ΩD).
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Definition 12.2.7 (AP3(ΩD) axially polyanalytic function of order three).
Let f̆ ◦(x) = Df(x) ∈ APC(1,2)(ΩD). Applying the operator conjugate
Dirac operator D to f̆ ◦(x), we get

f̆ ◦
0 (x) = D2

f(x) on ΩD,

which is an axially polyanalytic function of order three, i.e.,

D3f̆ ◦
0 (x) = 0 on ΩD.

We denote this class of functions as AP3(ΩD).

Remark 12.2.8. Keeping in mind the above notations we have

f̆(x) = ∆Df̃0(x) = Df̆ ◦
1 (x) = D2

f◦(x) = ∆f ◦(x) = Df̃1(x),

where f̆ is axially monogenic and also

f̆(x) = D2f̆ ◦
0 (x) = ∆Df̆ ◦(x) on ΩD.

Remark 12.2.9. In the general case appears the same classes of functions
but with different orders.

Taking advantage of the function spaces of axial functions defined in
this section we can now define the fine structure associated with this spaces
that appear in the Clifford algebra R5.

12.3 Function space of axial type in dimension five

By applying the Fueter-Sce map TFS2 := ∆h, where h := n−1
2

and is the
Sce exponent, to a slice hyperholomorphic function f(x) we get the mono-
genic function f̆(x) = ∆hf(x).
Due to the factorization of the Laplace operator in terms of D and D it is
possible to apply these two operators to a slice hyperholomorphic function
f(x) a number of times, until we reach the maximum power of the Lapla-
cian, i.e., the Sce exponent.
This implies the possibility to build different sets of functions between the
set of slice hyperholomorphic functions and the set of axially monogenic
functions, (see the previous section). This fact leads to the definition of fine
structure of slice hyperholomorphic spectral theory.

Definition 12.3.1 (Fine structure of slice hyperholomorphic spectral the-
ory). A fine structure of slice hyperholomorphic spectral theory is the set
of functions spaces and the associated functional calculi induced by a fac-
torization of the operator TFS2, in the Fueter-Sce extension theorem.
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12.3. Function space of axial type in dimension five

The factorization TFS2 = ∆h = DD...DD is of particular interest.

Definition 12.3.2 (Dirac fine structure). The Dirac fine structure corre-
sponds to an alternating sequence of products of the Dirac operator D and
of its conjugate D until we obtain ∆

n−1
2 .

In Chapter 10 we studied the Dirac fine structure when n = 3 this is also
the quaternionic case. In particular we studied the sequence represented by
the following diagram:

O(D)
TFS1−→ SH(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD). (12.5)

The fine structure in (12.5) allows to obtain a product rule for theF -functional
calculus.
However, since ∆ = DD = DD, we can exchange the roles of the opera-
tors D and D in (12.5). This gives rise to the sequence represented by the
following diagram:

O(D)
TFS1−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD), (12.6)

which is investigated in Chapter 11 . Even if the diagrams (12.5) and (12.6)
come from the Fueter mapping theorem and the factorization of the Fueter
operator TF2 = ∆, we get two different fine structures.

In each fine structure above and in all the fine structures we consider
in the sequel the final set of function spaces is always the set of axially
monogenic functions.

In the Clifford algebra setting the splitting of the second Fueter-Sce
mapping is more complicated, due to the fact that we are dealing with
integer powers of the Laplacian. Moreover, when n is even the Laplace
operator has a fractional power and so we have to work in the space of
distributions using the Fourier multipliers, see [122].

Due to the fact that for n = 5 we deal with the operator ∆2, we get more
Dirac fine structures, which are all different and important at the same time.
In order to label all the fine structures, we will denote every fine structures,
with an ordered sequence of the applied operators. For example, in the
quaternionic case, we call (12.5) the Dirac fine structure of the kind (D,D)
and (12.6) the Dirac fine structure of the kind (D,D). Also in the case
n = 5 we have a structure in which we apply alternately the operators D
and D until we reach the second Fueter-Sce mapping.

O(D)
TFS1−→ SH(ΩD)

D−→ ABH(ΩD)
D−→ AHC1(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD).

(12.7)
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We call (12.7) the Dirac fine structure of the kind (D,D,D,D).

Remark 12.3.3. Even when n = 5 the Dirac fine structure (12.7) is of
fundamental importance to obtain a product formula for the F -functional
calculus (see Theorem 12.8.1).

Remark 12.3.4. In order to avoid, at the end of the sequence of spaces the
set of axially-anti monogenic function, we impose the condition that the
composition of all the operators between spaces Clifford valued functions,
must be equal to the operator TFS2 = ∆(n−1)/2 in the Fueter-Sce mapping
theorem.

However, by rearranging the sequence of D and D it is possible to obtain
other fine structures, in which other sets of functions are involved. Thus,
we have the Dirac fine structures (D,D,D,D)

O(D)
TFS1−→ SH(ΩD)

D−→ ABH(ΩD)
D−→ AHC1(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD),

and the Dirac fine structure (D,D,D,D)

O(D)
TFS1−→ SH(ΩD)

D−→ ABH(ΩD)
D−→ AHC1(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD).

All the previous Dirac fine structures are obtained by applying first the
Dirac operator. Nevertheless, it is possible to apply the operator D as first
operator. In this case other three Dirac fine structures arise. We have the
Dirac fine structure of the kind (D,D,D,D)

O(D)
TFS1−→ SH(ΩD)

D−→ APC(1,2)(ΩD)
D−→ AHC1(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD),

the Dirac fine structure (D,D,D,D)

O(D)
TFS1−→ SH(ΩD)

D−→ APC(1,2)(ΩD)
D−→ AHC1(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD),

and the Dirac fine structure (D,D,D,D)

O(D)
TFS1−→ SH(ΩD)

D−→ APC(1,2)(ΩD)
D−→ AP3(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD).

The following diagram summarizes all the Dirac fine structures with their
function spaces:
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12.4. System of differential equations for fine structure spaces of axial type

O(D)
TFS1

SH(ΩD)

D

D

ABH(ΩD)

APC(1,2) (ΩD)

D

D

ACH1(ΩD)

ACH1 (ΩD)

D

D

AH(ΩD)

AP2(ΩD)

AP3(ΩD)

D

AM(ΩD)

D

D

D

D

D

Remark 12.3.5. In all the previous Dirac fine structures it is possible to
combine the Dirac operator and its conjugate. In this way we get a fine
structure which is "weaker" then the previous ones; in the sense that we are
skipping some classes of functions. We call these kind of fine structures
coarser. Up to now we have mentioned just some of them and in the Ap-
pendix we show the complete landscape of the fine structures in dimension
five.

The Laplace fine structure is of the kind (∆,∆), which is a coarser fine
structure with respect to the Dirac one, is given by

O(D)
TFS1−→ SH(ΩD)

∆−→ ACH1(ΩD)
∆−→ AM(ΩD).

Other interesting coarser fine structures are the harmonic ones, in which
appear only the harmonic and bi-harmonic sets of functions

O(D)
TFS1−→ SH(ΩD)

D−→ ABH(ΩD)
∆−→ AH(ΩD)

D−→ AM(ΩD),

and the polyanalytic one, in which there appear only the polyanalytic func-
tions of orders three and two

O(D)
TFS1−→ SH(ΩD)

D2

−→ AP3(ΩD)
D−→ AP2(ΩD)

D−→ AM(ΩD).

We observe that it is not possible to have coarser fine structure in the quater-
nionic case. This is due to the fact that we are dealing with the Laplacian
at power 1.

12.4 System of differential equations for fine structure spaces
of axial type

In analogy with the Vekua-type system of differential equations for axially
monogenic functions in this section we give all the systems of differential
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equations for the fine structure spaces in dimension five. LetD be a domain
in the upper-half complex plane. Let ΩD be an axially symmetric open set
in R6 and let x = x0 + x = x0 + rω ∈ ΩD. A function f : ΩD → R5 is
of axial type if there exist two functions A = A(x0, r) and B = B(x0, r),
independent of ω ∈ S4 and with values in R5, such that

f(x) = A(x0, r) + ωB(x0, r), where r > 0.

So we characterize the class of functions that lies between the set of slice
hyperholomorphic and the set of axially monogenic functions, that we have
denoted as axially functions. We recall by [118], that if f(x) = A(x0, r) +
ωB(x0, r) then

Df =

(
∂x0A(x0, r)− ∂rB(x0, r)−

4

r
B(x0, r)

)
(12.8)

+ω (∂x0B(x0, r) + ∂rA(x0, r)) ,

Df =

(
∂x0A(x0, r) + ∂rB(x0, r) +

4

r
B(x0, r)

)
(12.9)

+ω (∂x0B(x0, r)− ∂rA(x0, r)) .

Theorem 12.4.1. Let D ⊆ C. Let ΩD be an axially symmetric open set
in R6 and let f◦(x) = A(x0, r) + ωB(x0, r) be an axially anti cliffordian
holomorphic function of order 1. Then A = A(x0, r) and B = B(x0, r)
satisfy the following system
∂3x0A+ ∂x0∂

2
rA+ 4

r
∂x0∂rA+ ∂r∂

2
x0
B + ∂3rB + 8∂

2
rB
r

+ 8∂rB
r2

− 8B
r3

+ 4
r
∂2x0B = 0

∂3x0B + ∂x0∂
2
rB − 4∂r

(
∂x0B

r

)
− ∂r∂

2
x0
A− ∂3rA− 4∂r

(
∂rA1

r

)
= 0.

Proof. Let us consider f◦(x) = A+ ωB. By similar computations done in
Theorem 10.2.3 we have

∆(f◦(x)) =

(
∂2x0A+ ∂2rA+

4

r
∂rA

)
(12.10)

+ω

(
∂2x0B + ∂2rB + 4∂r

(
B

r

))
.

Now, we set

A′ := ∂2x0A+ ∂2rA+
4

r
∂rA and B′ := ∂2x0B + ∂2rB + 4

∂r
r
B − 4

r2
B.
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Then by formula (12.9) we have

∆D(f◦(x)) = D(A′ + ωB′) = (∂x0A
′ + ∂rB

′ +
4

r
B′) + ω(∂x0A

′ − ∂rB
′)

= ∂3x0A+ ∂x0∂
2
rA+

4

r
∂x0∂rA+ ∂3rB +

4

r
∂2rB − 4

r2
∂rB

+
8

r3
B − 4

r2
∂rB + ∂r∂

2
x0
B +

4

r
∂2rB +

16

r2
∂rB − 16

r3
B +

4

r
∂2x0B

+ ω(∂x0∂
2
rB +

4

r
∂x0∂rB − 4

r2
∂x0B + ∂3x0B − ∂r∂

2
x0
A− ∂3rA

+
4

r2
∂rA− 4

r
∂2rA), (12.11)

so we finally have

∆D(f◦(x)) = ∂3x0A+ ∂x0∂
2
rA+

4

r
∂x0∂rA+ ∂3rB +

8

r
∂2rB +

8

r2
∂rB − 8

r3
B

+ ∂r∂
2
x0
B +

4

r
∂2x0B + ω(∂x0∂

2
rB +

4

r
∂x0∂rB − 4

r2
∂x0B

+ ∂3x0B − ∂r∂
2
x0
A− ∂3rA+

4

r2
∂rA− 4

r
∂2rA). (12.12)

Since (◦f(x)) is anti Cliffordian holomorphic of order one we have that
∆D(f◦(x)) = 0.

Theorem 12.4.2. Let D ⊆ C. Let ΩD be an axially symmetric open set
in R6 and let f̃1(x) = A(x0, r) + ωB(x0, r) be an axially bi-harmonic
function. Then A := A(x0, r) and B := B(x0, r) satisfy the following
system
∂4x0A+ 2∂2x0∂

2
rA+ ∂4rA− 8

r3
∂rA+ 8

r2
∂2rA+ 8

r
∂3rA+ 4

r
∂r∂

2
x0
A = 0

∂4rB + 8
r
∂3rB − 2

4
r3∂rB + 12

r4
B + 2∂2r∂

2
x0
B − 8

r2
∂2x0B + 8

r
∂2x0∂rB + ∂4x0B = 0.

Proof. By formula (12.12) we have

C := ∂3x0A+∂x0∂
2
rA+

4

r
∂x0∂rA+∂

3
rB+

8

r
∂2rB+

8

r2
∂rB− 8

r3
B+∂r∂

2
x0
B+

4

r
∂2x0B

and

D := ∂x0∂
2
rB+

4

r
∂x0∂rB− 4

r2
∂x0B+∂3x0B−∂r∂2x0A−∂

3
rA+

4

r2
∂rA−

4

r
∂2rA,

Therefore, by formula (12.8) we have
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∆2(f(x)) = D(D∆f(x)) = (∂x0C − ∂rD − 4

r
D) + ω(∂x0D + ∂rC)

= ∂4x0A+ ∂2x0∂
2
rA+

4

r
∂2x0∂rA+ ∂x0∂

3
rB +

8

r
∂x0∂

2
rB +

8

r2
∂x0∂rB − 8

r3
∂x0B + ∂r∂

3
x0
B

+
4

r
∂3x0B − ∂x0∂

3
rB − 4

r
∂x0∂

2
rB +

8

r2
∂x0∂rB − 8

r3
∂x0B − ∂r∂

3
x0
B + ∂2r∂

2
x0
A+ ∂4rA

+
8

r3
∂rA− 4

r2
∂2rA+

4

r
∂3rA− 4

r2
∂2rA− 4

r
∂x0∂

2
rB − 16

r2
∂x0∂rB +

16

r3
∂x0B − 4

r
∂3x0B

+
4

r
∂r∂

2
x0
A+

4

r
∂3rA− 16

r3
∂rA+

16

r2
∂2rA+ ω(∂r∂

3
x0
A+ ∂x0∂

3
rA+

4

r
∂x0∂

2
rA+ ∂4rB

− 8

r2
∂2rB +

8

r
∂3rB − 16

r3
∂rB +

8

r2
∂2rB +

24

r4
B − 4

r2
∂x0∂rA− 8

r3
∂rB

+∂2r∂
2
x0
B − 4

r2
∂2x0B +

4

r
∂r∂

2
x0
B + ∂2x0∂

2
rB +

4

r
∂2x0∂rB − 4

r2
∂2x0B + ∂4x0B

−∂r∂3x0A− ∂3r∂x0A+
4

r2
∂x0∂rA− 4

r
∂2r∂x0A)

= ∂4x0A+ 2∂2x0∂
2
rA+ ∂4rA− 8

r3
∂rA+

8

r2
∂2rA+

8

r
∂3rA+

4

r
∂r∂

2
x0
A+ ω(∂4rB

+
8

r
∂3rB − 1

2
r3∂rB +

12

r4
B + 2∂2r∂

2
x0
B − 8

r2
∂2x0B +

8

r
∂2x0∂rB + ∂4x0B).

Since the function f̃1(x) is bi-harmonic, i.e. ∆2f̃1(x) = 0, we have the
thesis.

Theorem 12.4.3. Let D ⊆ C. Let ΩD be an axially symmetric open set
in R6 and let f̆ ◦

0 (x) = A(x0, r) + ωB(x0, r) be an axially polyanalytic
function of order three. Then A := A(x0, r) and B := B(x0, r) satisfy the
following system
∂3x0A+ ∂3rB − 3∂2x0∂rB − 3∂x0∂

2
rA− 12

r
∂2x0B − 12

r
∂x0∂rA

+8∂
2
rB
r

+ 8∂rB
r2

− 8B
r3

= 0

∂3x0B − ∂3rA+ 3∂2x0∂rA− 3∂x0∂
2
rB − 12

∂x0∂rB

r
+ 12

∂x0B

r2
− 4∂

2
rA
r

+ 4
r2
∂rA = 0.

Proof. First of all we start by computing D2f̆ ◦
0 (x).

D2f̆ ◦
0 (x) = D(Df̆ ◦

0 (x)) = D(A′ + ωB′),

where

A′ := ∂x0A− ∂rB − 4

r
B and B′ := ∂x0B + ∂rA.
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By formula (12.8) we get

D2f̆ ◦
0 (x) =

(
∂x0A

′(x0, r)− ∂rB
′(x0, r)−

4

r
B′(x0, r)

)
(12.13)

+ω (∂x0B
′(x0, r) + ∂rA

′(x0, r))

=

(
∂2x0A− 2∂x0∂rB − 8

r
∂x0B − ∂2rA− 4

r
∂rA

)
+ω

(
∂2x0B + 2∂x0∂A− ∂2rB +−4∂r

∂rB

r
+ 4

B

r2

)
= A′′ + ωB′′.

where

A′′ := ∂2x0A− 2∂x0∂rB − 8

r
∂x0B − ∂2rA− 4

r
∂rA

and

B′′ := ∂2x0B + 2∂x0∂A− ∂2rB − 4∂r
∂rB

r
+ 4

B

r2
.

Finally by applying another time formula (12.8) we get

D3f̆ ◦
0 (x) = D(D2f̆ ◦

0 (x)) = D(A′′ + ωB′′)

=

(
∂x0A

′′ − ∂rB
′′ − 4

r
B′′
)
+ ω(∂x0B

′′ + ∂rA
′′)

=

(
∂3x0A+ ∂3rB − 3∂2x0∂rB − 3∂x0∂

2
rA− 12

r
∂2x0B − 12

r
∂x0∂rA

+8
∂2rB

r
+ 8

∂rB

r2
− 8

B

r3

)
+ ω

(
∂3x0B − ∂3rA+ 3∂2x0∂rA− 3∂x0∂

2
rB

−12
∂x0∂rB

r
+ 12

∂x0B

r2
− 4

∂2rA

r
+

4

r2
∂rA

)
.

We get the statement from the fact that the function f̆ ◦
0 (x) is polyanalytic

of order three, i.e. D3f̆ ◦
0 (x) = 0.

Theorem 12.4.4. Let D ⊆ C. Let ΩD be an axially symmetric open set in
R6. Then

• f ◦(x) = A(x0, r) + ωB(x0, r) is axially Cliffordian of order one if
and only if A := A(x0, r) and B := B(x0, r) satisfy the following
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system
∂x0A+ ∂x0∂

2
rA+ 4

r
∂x0∂rA− ∂r∂

2
x0
B − ∂3rB − 8∂rB

r2
+ 8B

r3
− 4

∂2x0B

r
= 0

∂3x0B + ∂x0∂
2
rB + 4∂r

(
∂x0B

r

)
+ ∂r∂

2
x0
A+ ∂3rA+ 4∂2r

(
A
r

)
= 0.

• f̃0(x) = A(x0, r) + ωB(x0, r) is axially harmonic if and only if A :=
A(x0, r) and B := B(x0, r) satisfy the following system

∂2x0A+ ∂2rA+ 4
r
∂rA = 0

∂2x0B + ∂2rB + 4∂r
(
B
r

)
= 0.

• f̆ ◦
1 (x) = A(x0, r) + ωB(x0, r) is axially polyanalytic of order two if

and only if A := A(x0, r) and B := B(x0, r) satisfy the following
system 

∂2x0A− 2∂x0∂rB − 8
r
∂x0B − ∂2rA− 4

r
∂rA = 0

∂2x0B + 2∂x0∂rA− ∂2rB − 4∂r
(
B
r

)
= 0.

• f̆ ◦(x) = A(x0, r) + ωB(x0, r) is axially Cliffordian polyanalytic of
order (1, 2) if and only if A := A(x0, r) and B := B(x0, r) satisfy the
following system

∂4x0A− 2∂r∂
3
x0
B − 2∂x0∂

3
rB − 8

∂3x0B

r
− 8

∂x0∂
2
rB

r
− ∂4rA− 8∂

3
rA
r

− 8∂rA
r3

−4∂
2
rA
r2

− 8 A
r4

− 16
∂x0∂rB

r2
= 0

∂4x0B + 2∂r∂
3
x0
A+ 2∂x0∂

3
rA+ 8

∂2r∂x0A

r
− 12

∂r∂x0A

r2
− 4

∂r∂x0B

r2
− ∂4rB

+8
∂x0A

r3
− 8∂

2
rB
r2

+ 24∂rB
r3

− 24B
r4

+ 4
∂2x0B

r2
= 0.

Proof. We do not give all the details of the proof because they are tedious
computations we just mentions that: the first system follows by applying
the Dirac operator D to (12.10). The computations are similar to that ones
done in Theorem 12.4.1. The second system follows by formula (12.10).
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The third system follows by formula (12.13). The fourth system follows by
applying the operator D to ∆Df̆ ◦(x), which formula is possible to get by
the first point of this theorem.

In the next section we will give the integral representation of the func-
tions belonging to the function spaces associated with the fine structure.
These spaces are called, for short, fine structure spaces.

12.5 Integral representation of the functions of the fine struc-
ture spaces

In this section we construct the kernels associated with the spaces of the fine
structures. The strategy follows the construction of the Fueter-Sce mapping
theorem in integral form. Precisely, we proceed by applying to the left (and
to the right) slice hyperholomorphic Cauchy kernels some suitable opera-
tors that define the required kernels. These new kernels will be used to give
these functions the appropriate integral representations. In the proofs of
the following theorems we consider just the left hyperholomorphic Cauchy
kernel since for the right hyperholomorphic Cauchy kernel computations
are similar.

Theorem 12.5.1 (Structure of the slice D-kernels S−1
D,L and S−1

D,R). Let
s, x ∈ R6 be such that x /∈ [s], then

S−1
D,L(s, x) := D

(
S−1
L (s, x)

)
= −4Qc,s(x)

−1, (12.14)

and

S−1
D,R(s, x) :=

(
S−1
R (s, x)

)
D = −4Qc,s(x)

−1. (12.15)

We denote by S−1
D,L and S−1

D,R the left and the right slice D-kernels.

Proof. We compute the following derivatives

∂

∂x0
S−1
L (s, x) = −Qc,s(x)

−1 + 2(s− x̄)Qc,s(x)
−2(s− x0), (12.16)

and, for 1 ≤ i ≤ 5, we get

∂

∂xi
S−1
L (s, x) = eiQc,s(x)

−1 − 2xi(s− x̄)Qc,s(x)
−2. (12.17)
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Finally, we have

D
(
S−1
L (s, x)

)
=

∂

∂x0
S−1
L (s, x) +

5∑
i=1

ei
∂

∂xi
S−1
L (s, x)

= −Qc,s(x)
−1 − 2x0(s− x̄)Qc,s(x)

−2 + 2(s− x̄)sQc,s(x)
−2

−5Qc,s(x)
−1 − 2x(s− x̄)Qc,s(x)

−2

= −6Qc,s(x)
−1 − 2x(s− x̄)Qc,s(x)

−2 + 2(s− x̄)sQc,s(x)
−2

= −6Qc,s(x)
−1 + 2(s2 − x̄s− xs+ |x|2)Qc,s(x)

−2

= −4Qc,s(x)
−1.

Now, we apply the Laplacian of R6, i.e.,

∆ :=
5∑
i=0

∂2

∂x2i
,

to the slice hyperholomorphic Cauchy kernel

Theorem 12.5.2 (Structure of the slice ∆-kernels S−1
∆,L and S−1

∆,R). Let
s, x ∈ R6 be such that x /∈ [s], then

S−1
∆,L(s, x) := ∆S−1

L (s, x) = −8S−1
L (s, x)Qc,s(x)

−1, (12.18)

and

S−1
∆,R(s, x) := ∆S−1

R (s, x) = −8Qc,s(x)
−1S−1

R (s, x). (12.19)

We denote by S−1
∆,L and S−1

∆,R the left and the right slice ∆-kernels.

Proof. By formula (12.16) we get

∂2

∂x20
S−1
L (s, x) = (−2s+ 2x0)Qc,s(x)

−2 + (2x0 − 2s)Qc,s(x)
−2

−2(s− x̄)Qc,s(x)
−2 + 8(s− x̄)(x0 − s)2Qc,s(x)

−3.

By formula (12.17), for 1 ≤ i ≤ 5, we obtain

∂

∂x2i
S−1
L (s, x) = −2xieiQc,s(x)

−2 − 2xieiQc,s(x)
−2

−2(s− x̄)Qc,s(x)
−2 + 8(s− x̄)x2iQc,s(x)

−3.
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Finally, we get

∆S−1
L (s, x) =

∂2

∂x20
S−1
L (s, x) +

5∑
i=1

∂2

∂x2i
S−1
L (s, x)

= 4(x0 − s)Qc,s(x)
−2 − 2(s− x̄)Qc,s(x)

−2 + 8(s− x̄)(x0 − s)2Qc,s(x)
−3

−4xQc,s(x)
−2 − 10(s− x̄)Qc,s(x)

−2 + 8|x|2(s− x̄)Qc,s(x)
−3

= −4(s− x0 + x)Qc,s(x)
−2 − 12(s− x̄)Qc,s(x)

−2 +

+8(s− x̄)[(x0 − s)2 + |x|2]Qc,s(x)
−3

= −16(s− x̄)Qc,s(x)
−2 + 8(s− x̄)(x20 + s2 − 2x0s+ |x|2)Qc,s(x)

−3

= −8(s− x̄)Qc,s(x)
−2

= −8S−1
L (s, x)Qc,s(x)

−1.

Theorem 12.5.3 (Structure of the slice ∆D-kernels S−1
∆D,L and S−1

∆D,R ). Let
x, s ∈ R6 be such that x /∈ [s], then

S−1
∆D,L(s, x) := ∆D

(
S−1
L (s, x)

)
= 16Qc,s(x)

−2, (12.20)

and

S−1
∆D,R(s, x) :=

(
S−1
R (s, x)

)
D∆ = 16Qc,s(x)

−2. (12.21)

We denote by S−1
∆D,L and S−1

∆D,R the left and the right slice ∆D-kernels.

Proof. In order to show formula (12.20) it is enough to apply the Dirac
operator to (12.18). Thus, we have

∂

∂x0

(
∆S−1

L (s, x)
)
= −8[−Qc,s(x)

−2 − 2(s− x̄)Qc,s(x)
−3(2x0 − 2s)].

For 1 ≤ i ≤ 5, we have

∂

∂xi

(
∆S−1

L (s, x)
)
= −8[eiQc,s(x)

−2 − 4(s− x̄)Qc,s(x)
−3xi].
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Finally by formula (7.48), with n = 5, we have

D∆S−1
L (s, x) =

∂

∂x0

(
∆S−1

L (s, x)
)
+

5∑
i=1

ei
∂

∂xi

(
∆S−1

L (s, x)
)

= −8[−6Qc,s(x)
−2 +

4

γ5
F 5
L(s, x)(s− x0)−

4

γ5
xF 5

L(s, x)]

= −8

[
−6Qc,s(x)

−2 +
4

γ5

(
F 5
L(s, x)s− xF 5

L(s, x)
)]

= −8
(
−6Qc,s(x)

−2 + 4Qc,s(x)
−2
)

= 16Qc,s(x)
−2.

Formula (12.21) follows with similar reasoning.

Theorem 12.5.4 (Structure of the slice D-kernels S−1

D,L and S−1

D,R). Let x,
s ∈ R6 be such that x /∈ [s], then

S−1

D,L(s, x) := D(S−1
L (s, x)) (12.22)

= 4(s− x̄)Qc,s(x)
−2(s− x0) + 2Qc,s(x)

−1

and

S−1

D,R(s, x) := (S−1
R (s, x))D (12.23)

= 4(s− x0)Qc,s(x)
−2(s− x̄) + 2Qc,s(x)

−1.

We denote by S−1

D,L and S−1

D,R the left and the right slice D-kernels.

Proof. By the relations (12.16) and (12.17) and using the fact that 2x0 =
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x+ x̄, we have that

D(S−1
L (s, x)) =

∂

∂x0
(S−1

L (s, x))−
5∑
i=1

ei
∂

∂xi
(S−1

L (s, x))

= −Qc,s(x)(x)
−1 + 5Qc,s(x)(x)

−1 + 2(s− x̄)Qc,s(x)
−2(s− x0)

+ 2x(s− x̄)Qc,s(x)
−2

= 4Qc,s(x)
−1 + 2((s− x̄)s− x̄(s− x̄))Qc,s(x)

−2

= 4Qc,s(x)Qc,s(x)
−2 + 2((s− x̄)s− x̄(s− x̄))Qc,s(x)

−2

= (6s2 − 8sx0 + 4|x|2 − 4x̄s+ 2x̄2)Qc,s(x)
−2

= (6s2 − 4x̄s− 4xs+ 4|x|2 − 4x̄s+ 2x̄2)Qc,s(x)
−2

= [4(s2 − x̄s)− 2(x̄s+ xs− |x|2 − x̄2)

+ 2(s2 − x̄s+ |x|2 − xs)]Qc,s(x)
−2

= 4(s− x̄)sQc,s(x)
−2 − 4x0(s− x̄)Qc,s(x)

−2

+ 2((s− x̄)s+ x(x̄− s))Qc,s(x)
−2

= 4(s− x̄)Qc,s(x)
−2(s− x0) + 2Qc,s(x)

−1.

Theorem 12.5.5 (Structure of the slice D2
-kernels S−1

D2
,L

and S−1

D2
,R

). Let

x, s ∈ R6 be such that x /∈ [s], then

S−1

D2
,L
(s, x) := D2

(S−1
L (s, x)) = 32(s− x̄)Qc,s(x)

−3(s− x0)
2 (12.24)

and

S−1

D2
,R
(s, x) := (S−1

R (s, x))D2
= 32(s− x0)

2Qc,s(x)
−3(s− x̄). (12.25)

We denote by S−1

D2
,L

and S−1

D2
,R

the left and the right slice D2
-kernels.

Proof. It is useful to compute D((s− x̄)Qc,s(x)
−2). By the relations:

∂

∂x0
((s− x̄)Qc,s(x)

−2) = −Qc,s(x)
−2 − 2(s− x̄)Qc,s(x)

−3(−2s+ 2x0)

and

∂

∂xi
((s− x̄)Qc,s(x)

−2) = eiQc,s(x)
−2 − 4(s− x̄)Qc,s(x)

−3(xi),
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we have

D((s− x̄)Qc,s(x)
−2) =

∂

∂x0
((s− x̄)Qc,s(x)

−2)−
5∑
i=1

ei
∂

∂xi
((s− x̄)Qc,s(x)

−2)

= 4Qc,s(x)
−2 + 4((s− x̄)s− x̄(s− x̄))Qc,s(x)

−3

= 4Qc,s(x)Qc,s(x)
−3 + 4((s− x̄)s− x̄(s− x̄))Qc,s(x)

−3

= (8s2 − 8sx0 + 4|x|2 − 8x̄s+ 4x̄2)Qc,s(x)
−3

= (8s2 − 8x̄s)Qc,s(x)
−3 − (8x0s− 8x0x̄)Qc,s(x)

−3

= 8(s− x̄)Qc,s(x)
−3(s− x0),

(12.26)

where in the fourth equality we used |x|2+ x̄2 = 2x0x̄. Now, using formula
(12.22) and Leibnitz formula for D, we can compute D2

(S−1
L (s, x)):

D2
(S−1

L (s, x)) = D[4(s− x̄)Qc,s(x)
−2(s− x0) + 2Qc,s(x)

−1]

= 4D[(s− x̄)Qc,s(x)
−2](s− x0)− 4(s− x̄)Qc,s(x)

−2 + 2D[Qc,s(x)
−1]

= 4(8(s− x̄)Qc,s(x)
−3s− 8(s− x̄)Qc,s(x)

−3x0)(s− x0)

− 4(s− x̄)Qc,s(x)
−2 + 4(s− x̄)Qc,s(x)

−2

= 32(s− x̄)Qc,s(x)
−3(s− x0)

2.

Theorem 12.5.6 (Structure of the slice D2-kernels S−1
D2,L and S−1

D2,R). Let
x, s ∈ R6 be such that x /∈ [s], then

S−1
D2,L(s, x) := D2(S−1

L (s, x)) = 8S−1
L (s, x̄)Qc,s(x)

−1 (12.27)

and

S−1
D2,R(s, x) := (S−1

R (s, x))D2 = 8Qc,s(x)
−1S−1

R (s, x̄). (12.28)

We denote by S−1
D2,L and S−1

D2,R the left and the right slice D2-kernels.

Proof. By (12.14) and relations (12.16) and (12.17), we have that

D2(S−1
L (s, x)) = −4D(Qc,s(x)

−1)

= −4(2s− 2x0 − 2
5∑
i=1

eixi)Qc,s(x)
−2

= 8(x− s)Qc,s(x)
−2.
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Theorem 12.5.7 (Structure of the slice ∆D-kernels S−1

∆D,L and S−1

∆D,R). Let
x, s ∈ R6 be such that x /∈ [s], then

S−1

∆D,L(s, x) := ∆D(S−1
L (s, x)) = −64(s− x̄)Qc,s(x)

−3(s− x0) (12.29)

and

S−1

∆D,R(s, x) := (S−1
R (s, x))∆D = −64(s−x0)Qc,s(x)

−3(s− x̄). (12.30)

We denote by S−1

∆D,L and S−1

∆D,R the left and the right slice ∆D-kernels.

Proof. We show only formula (12.29) because it is possible to prove for-
mula (12.30) with similar arguments. By formulas (12.18) and (12.26), we
have that

∆D(S−1
L (s, x)) = −8D((s− x̄)Qc,s(x)

−2) = −64(s− x̄)Qc,s(x)
−3(s− x0).

Now, we study the regularity of the previous kernels.

Proposition 12.5.8. Let x, s ∈ R6 be such that x /∈ [s]. We have that

1. S−1
∆1−ℓD,L(s, x) (resp. S−1

∆1−ℓD,R(s, x)) is slice right (resp. left) hyper-
holomorphic in s and it is ℓ+ 1-harmonic in x for 0 ≤ ℓ ≤ 1;

2. S−1
∆,L(s, x) (resp. S−1

∆,R(s, x)) is slice right (resp. left) hyperholomor-
phic in s and it is left (resp. right) holomorphic Cliffordian of order 1
in x;

3. S−1

D,L(s, x) (resp. S−1

D,R(s, x)) is slice right (resp. left) hyperholomor-
phic in s and it is left (resp. right) polyanalytic Cliffordian of order
(1, 2) in x;

4. S−1

∆ℓD2−l
,L
(s, x) (resp. S−1

∆ℓD2−l
,R
(s, x)) is slice right (resp. left) hyper-

holomorphic in s and it is left (resp. right) polyanalytic of order 3− ℓ
in x for 0 ≤ ℓ ≤ 1;

5. S−1
D2,L(s, x) (resp. S−1

D2,R(s, x)) is slice right (resp. left) hyperholomor-
phic in s and it is left (resp. right) anti-holomorphic Cliffordian of
order 1 in x.
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Proof. We prove the regularity for the left kernels since for the right ker-
nels the arguments are similar. The right slice hyperholomorphicity in s
of the left kernels is due to the fact that each kernel can be written as a left
combination of intrinsic slice hyperholomorphic functions in s: Qc,s(x)

−m,
sQc,s(x)

−m, s2Qc,s(x)
−m and s3Qc,s(x)

−m for 1 ≤ m ≤ 3 (see Theorems
from 12.5.1 to 12.5.7).

As the operators D, D and ∆ can be commuted, we have:

1. ∆ℓ+1(S−1
∆1−ℓD(s, x)) = ∆ℓ+1(∆1−ℓD(S−1

L (s, x))) = D∆2(S−1
L (s, x)) =

DF 5
L(s, x) = 0, wich implies S−1

∆1−ℓD,L(s, x) is ℓ + 1-harmonic in x
for 0 ≤ ℓ ≤ 1;

2. ∆D(S−1
∆,L(s, x)) = ∆D(∆(S−1

L (s, x))) = D∆2(S−1
L (s, x)) = DF 5

L(s, x) =

0, wich implies S−1
∆,L(s, x) is holomorphic Cliffordian of order 1 in x;

3. ∆D2(S−1

D,L(s, x)) = ∆D2(D(S−1
L (s, x))) = D∆2(S−1

L (s, x)) = DF 5
L(s, x) =

0, wich implies S−1

D,L(s, x) is polyanalytic Cliffordian of order (1, 2)
in x;

4. D3−ℓ(S−1

∆ℓD2−l
,L
(s, x)) = D3−ℓ(∆ℓD2−l

(S−1
L (s, x))) = D∆2(S−1

L (s, x)) =

DF 5
L(s, x) = 0, wich implies S−1

∆ℓD2−l
,L
(s, x) is polyanalytic of order

3− ℓ in x for 0 ≤ ℓ ≤ 1;

5. ∆D(S−1
D2,L(s, x)) = ∆D(D2(S−1

L (s, x))) = D∆2(S−1
L (s, x)) = DF 5

L(s, x) =

0, wich implies S−1
D2,L(s, x) is anti-holomorphic Cliffordian of order 1

in x.

Remark 12.5.9. We can write the formulas of left and right slice kernels in
Theorem 12.5.1 up to Theorem 12.5.7 in terms of the F -kernels. By using
formula (7.45) and (7.46) we have

S−1
D,L(s, x) = − 1

16

[
FL
5 (s, x)s

3 − (x+ 2x0)F
L
5 (s, x)s

2 + (2x0x+ |x|2)FL
5 (s, x)s

−x|x|2FL
5 (s, x)

]
,

S−1
D,R(s, x) = − 1

16

[
s3FR

5 (s, x)− s2FR
5 (s, x)(x+ 2x0) + sFR

5 (s, x)(2x0x+ |x|2)

−FR
5 (s, x)x|x|2

]
,
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S−1
∆,L(s, x) = −1

8

[
FL
5 (s, x)s

2 − 2x0F
L
5 (s, x)s+ |x|2FL

5 (s, x)
]
,

S−1
∆,R(s, x) = −1

8

[
s2FR

5 (s, x)− 2sFR
5 (s, x)x0 + FR

5 (s, x)|x|2
]
,

S−1
∆D,L(s, x) =

1

4

[
FL
5 (s, x)s− xFL

5 (s, x)
]
,

S−1
∆D,R(s, x) =

1

4

[
sFR

5 (s, x)− FR
5 (s, x)x

]
,

S−1

D,L(s, x) =
1

32

[
3FL

5 (s, x)s
3 − (8x0 + x)FL

5 (s, x)s
2 + (4x20 + 2x0x+ 3|x|2)FL

5 (s, x)s

−(x|x|2 + 2x0|x|2)FL
5 (s, x)

]
,

S−1

D,R(s, x) =
1

32

[
3s3FR

5 (s, x)− s2FR
5 (s, x)(8x0 + x) + sFR

5 (s, x)(4x20 + 2x0x+ 3|x|2)

−FR
5 (s, x)(x|x|2 + 2x0|x|2)

]
,

S−1
D2,L(s, x) = −1

8

[
FL
5 (s, x)s

2 − 2xFL
5 (s, x)s+ x2FL

5 (s, x)
]
,

S−1
D2,R(s, x) = −1

8

[
s2FR

5 (s, x)− 2sFR
5 (s, x)x+ FR

5 (s, x)x2
]
,

S−1

D2
,L
(s, x) =

1

2
[FL

5 (s, x)s
2 − 2x0F

L
5 (s, x)s+ x20F

L
5 (s, x)],

S−1

D2
,R
(s, x) =

1

2
[s2FR

5 (s, x)− 2sFR
5 (s, x)x0 + FR

5 (s, x)x20],

S−1

∆D,L(s, x) = −FL
5 (s, x)s+ x0F

L
5 (s, x),

S−1

∆D,R(s, x) = −sFR
5 (s, x) + FR

5 (s, x)x0.

The kernels S−1

∆ℓD2
,L
(s, x) and S−1

∆D,L(s, x), and the right counterparts, are
written in terms of their polyanalytic decomposition.
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12.5.1 The integral representation for the fine structure functions spaces

Now, we can give the integral representation for the functions of the fine
structure spaces.

Theorem 12.5.10. Let W ⊂ R6 be an open set. Let U be a slice Cauchy
domain such that Ū ⊂ W . Then for J ∈ S4 and dsJ = ds(−J) we have
the following integral representation.

• (Integral representation of ℓ-harmonic functions, 0 ≤ ℓ ≤ 1) If
f ∈ SHL(W ), the function f̃ℓ(x) := ∆1−ℓDf(x) is ℓ + 1-harmonic
for 0 ≤ ℓ ≤ 1 and it admits the following integral representation

f̃ℓ(x) =
1

2π

∫
∂(U∩CJ )

S−1
∆1−ℓD,L(s, x)dsJf(s).

If f ∈ SHR(W ), the function f̃ℓ(x) := f(x)∆1−ℓD is ℓ+1-harmonic
for 0 ≤ ℓ ≤ 1 and it admits the following integral representation

f̃ℓ(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
∆1−ℓD,R(s, x).

• (Integral representation of holomorphic Cliffordian functions of
order 1) If f ∈ SHL(W ), the function f ◦(x) := ∆f(x) is left holo-
morphic Cliffordian of order 1 and it admits the following integral
representation

f ◦(x) =
1

2π

∫
∂(U∩CJ )

S−1
∆,L(s, x)dsJf(s).

If f ∈ SHR(W ), the function f ◦(x) := ∆f(x) is right holomorphic
Cliffordian of order 1 and it admits the following integral representa-
tion

f ◦(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
∆,R(s, x).

• (Integral representation of polyanalytic Cliffordian functions of
order (1, 2)) If f ∈ SHL(W ), the function f̆ ◦(x) := Df(x) is left
polyanalytic Cliffordian of order (1, 2) and it admits the following
integral representation

f̆ ◦(x) =
1

2π

∫
∂(U∩CJ )

S−1

D,L(s, x)dsJf(s).
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If f ∈ SHR(W ), the function f̆ ◦(x) := ∆f(x) is right polyanalytic
Cliffordian of order (1, 2) and it admits the following integral repre-
sentation

f̆ ◦(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1

D,R(s, x).

• (Integral representation of polyanalytic functions of order 3 − ℓ,
0 ≤ ℓ ≤ 1 ) If f ∈ SHL(W ), the function f̆ℓ(x) := ∆ℓD2−ℓ

f(x)
is left polyanalytic of order 3 − ℓ for 0 ≤ ℓ ≤ 1 and it admits the
following integral representation

f̆ℓ(x) =
1

2π

∫
∂(U∩CJ )

S−1

∆ℓD2−ℓ
,L
(s, x)dsJf(s).

If f ∈ SHR(W ), the function f̆ℓ(x) := f(x)∆ℓD2−l
is right polyana-

lytic of order 3− ℓ for 0 ≤ ℓ ≤ 1 and it admits the following integral
representation

f̆ℓ(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1

∆ℓD2−l
,R
(s, x).

• (Integral representation of anti-holomorphic Cliffordian functions
of order 1) If f ∈ SHL(W ), the function f0(x) := D2f(x) is left anti-
holomorphic Cliffordian of order 1 and it admits the following integral
representation

f◦(x) =
1

2π

∫
∂(U∩CJ )

S−1
D2,L(s, x)dsJf(s).

If f ∈ SHR(W ), the function f0(x) := f(x)D2 is right anti-holomorphic
Cliffordian of order 1 and it admits the following integral representa-
tion

f◦(x) =
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
D2,R(s, x).

Moreover, the integrals do not depend on U nor on the imaginary unit J ∈
S4.

Proof. We prove the integral representation for the ℓ + 1-harmonic func-
tions starting from a left slice hyperholomorphic functions since the other
cases can be proved with similar arguments. We start by using the Cauchy
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formula. By Theorem 12.5.1 and Theorem 12.5.3, we have for 0 ≤ ℓ ≤ 1

f̃ℓ(x) = ∆1−ℓDf(x)

=
1

2π

∫
∂(U∩CJ )

∆1−ℓDS−1
L (s, x)dsIf(s)

=
1

2π

∫
∂(U∩CJ )

S−1
∆1−ℓD,L(s, x)dsIf(s).

By Proposition 7.4.4 the function f̃ℓ(x) is ℓ+ 1-harmonic.

12.6 Series expansion of the kernels of the fine structures
spaces

In this section our aim is to write the kernel of the previous integral theorem
in terms of convergent series of x and x̄. In order to do this we need to
investigate the application of the operators D, ∆, ∆D, D, D2

, D2 and ∆D
to the monomial xm, with m ∈ N. We already know that:

Lemma 12.6.1. [23, Lemma 1] For m ≥ 1 we have

D(xm) = (xm)D = −4
m−1∑
k=0

xm−k−1xk = −4
m∑
k=1

xm−kxk−1. (12.31)

We will use the following well-known equality

∆(xf(x)) = x∆f(x) + 2Df(x), (12.32)

for any x ∈ R6 and for any C2 function f .

Proposition 12.6.2. Let x ∈ R6 and m ≥ 2. Then we have

∆xm = −8
m−1∑
k=1

(m− k)xm−k−1xk−1 = −8
m−1∑
k=1

kxk−1x̄m−k−1. (12.33)

Proof. The proof is by induction onm. Form = 2 and x = x0+
∑5

i=1 eixi =
x0 + x we have

∆x2 = ∆(x20 + 2x0x− |x|2) = −8.

Let us suppose that the statement is true for m, we want to prove it for
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m+ 1. Then, we have

∆xm+1 = ∆(xmx) = 2D(xm) + x∆xm

= −8
m∑
k=1

xm−kxk−1 − 8
m−1∑
k=1

(m− k)xm−kxk−1

= −8
m∑
k=1

xm−kxk−1 − 8
m∑
k=1

(m− k)xm−kxk−1

= −8
m∑
k=1

(m− k + 1)xm−kxk−1,

where the first equality is an application of formula (12.32) and the second
equality is consequence of the inductive hypothesis and formula (12.31).
The second equality follows by rearranging the indexes.

Proposition 12.6.3. Let x ∈ R6, for m ≥ 2 we have

D2(xm) = (xm)D2 = −8
m−1∑
k=1

kxm−k−1xk−1.

Proof. We show the result by induction on m. For m = 2, we have by
formula (12.31) that

D2(x2) = D2(x20 + 2x0x− |x|2) = −8D(x0) = −8.

We suppose the statement is true for m and we prove it for m+ 1. First we
observe that

xm+1 = xm(x+ x)− xm−1|x|2.

Thus, by the Leibniz formula for the Dirac operator and the fact that D|x|2 =
2x we get

D(xm+1) = D(xm(x+ x))−D(xm−1|x|2)
= D(xm)(x+ x) + 2xm −D(xm−1)|x|2 − 2xm

= D(xm)(x+ x)−D(xm−1)|x|2.

By using another time the Leibniz formula and the inductive hypothesis we
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get

D2(xm+1) = D
(
D(xm)(x+ x)−D(xm−1)|x|2

)
= (D2xm)(x+ x) + 2Dxm −D2(xm−1)|x|2 − 2xD(xm−1)

= −8
m−1∑
k=1

kxm−kxk−1 − 8
m−1∑
k=1

kxm−k−1xk − 8
m∑
k=1

xm−kxk−1

+ 8
m−2∑
k=1

kxm−k−1xk + 8
m−1∑
k=1

xm−kxk−1

= −8
m−1∑
k=1

kxm−kxk−1 − 8(m− 1)x̄n−1 − 8x̄m−1

= −8
m∑
k=1

kxm−kxk−1.

Finally since D(xm) = (xm)D we get

(xm)D2 = ((xm)D)D = D(xm)D = D2(xm).

Now, we need some preliminaries results to get a formula for ∆Dxm.

Lemma 12.6.4. Let f : Rn+1 → Rn then

∆f(x) = ∆f(x).

Proof. We know that we can write f(x) =
∑

A⊂{1,...,n} eAfA, thus we have

∆f(x) =
∑

A⊂{1,...,n}

eA∆fA(xA)

=
∑

A⊂{1,...,n}

eA∆fA(xA)

= ∆

 ∑
A⊂{1,...,n}

eAfA(xA)


= ∆f(x).
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Corollary 12.6.5. Let m ≥ 2. Then for x ∈ R6 we have

∆xm = ∆xm. (12.34)

Proof. If we consider n = 5 and f(x) = xm in Lemma 12.6.4, we get the
statement.

Corollary 12.6.6. Let m ≥ 2. Then for any x ∈ R6 we have

∆x̄m = −8
m−1∑
k=1

kxm−k−1x̄k−1.

Proof. It follows by Corollary 12.6.5 and Proposition 12.32.

Lemma 12.6.7. Let m ≥ 3, for any x ∈ R6 we have

m∑
k=1

∆(xm−kxk−1) = −4
m−2∑
k=1

(m− k − 1)kxm−k−2xk−1.

Proof. We shall prove this formula by induction on m. For m = 3 we have

∆(x2 + xx+ x2) = ∆(3x20 − |x|2) = −4.

Let us suppose the statement is true for m, we want to prove it for m + 1.
Now, formula (12.32) and Corollary 12.6.6 imply that

m+1∑
k=1

∆(xm+1−kxk−1) =
m∑
k=1

∆(xm+1−kxk−1) + ∆xm

= 2
m∑
k=1

D(xm−kxk−1) + x
m∑
k=1

∆(xm−kxk−1)− 8
m−1∑
k=1

kxm−k−1xk−1.

Finally, by formula (12.31), the inductive hypothesis and Lemma 12.6.3 we
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get
m+1∑
k=1

∆(xm+1−kxk−1) = −1

2
D2xm + x

m∑
k=1

∆(xm−kxk−1)− 8
m−1∑
k=1

kxm−k−1xk−1

= −1

2
D2xm − 4

m−2∑
k=1

(m− k − 1)kxm−k−1xk−1

−8
m−1∑
k=1

kxm−k−1xk−1

= 4
m−1∑
k=1

kxm−k−1xk−1 − 4
m−2∑
k=1

(m− k − 1)kxm−k−1xk−1

−8
m−1∑
k=1

kxm−k−1xk−1

= −4
m−1∑
k=1

(m− k)kxm−k−1xk−1.

Proposition 12.6.8. Let m ≥ 3, for any x ∈ R6 we have

∆Dxm = 16
m−2∑
k=1

(m− k − 1)kxm−k−2xk−1.

Proof. It follows by formula (12.31) and Lemma 12.6.7.

Let us recall the following fact

∂x(x
m) =

{
−mxm−1 m even,

−(m+ 4)xm−1 m odd,
(12.35)

where ∂x =
∑5

j=1 ej
∂
∂xj

.

Proposition 12.6.9. Let m ≥ 1. For any x ∈ R6, if x ̸= 0 we have

Dxm = 2

[
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

]
. (12.36)

On the other hand if x = 0 we have

Dxm = 6mxm−1.
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Moreover,
D(xm) = (xm)D.

Proof. We will perform a direct computations. By the Binomial theorem
and formula (12.35) we get

D(xm) =

(
∂

∂x0
− ∂x

)
(x0 + x)m =

(
∂

∂x0
− ∂x

)( m∑
k=0

(
m

k

)
xm−k
0 xk

)

=
m−1∑
k=0

(
m

k

)
(m− k)xm−k−1

0 xk −
m∑
k=0

(
m

k

)
xm−k
0 ∂x(x

k)

= m

m−1∑
k=0

(m− 1)!

k!(m− k − 1)!
xm−k−1
0 xk +m

m∑
k=1

(m− 1)!

(k − 1)!(m− k)!
xm−k
0 xk−1 +

+4
m∑

k=1,k odd

(
m

k

)
xm−k
0 xk−1.

By rearranging the indices of the sum and by using another time the bino-
mial theorem we get

D(xm) = 2mxm−1 + 4
m∑

k=1,k odd

(
m

k

)
xm−k
0 xk−1. (12.37)

If x = 0 we get
Dxm = 6mxm−1.

On the other side, if x ̸= 0 by the Binomial theorem we have

2
m∑

k=1,k odd

(
m

k

)
xm−k
0 xk−1 =

m∑
k=1

(
m

k

)
xm−k
0 xk−1 +

m∑
k=1

(
m

k

)
xm−k
0 (−x)k−1

= (x)−1

[
m∑
k=1

(
m

k

)
xm−k
0 xk −

m∑
k=1

(
m

k

)
xm−k
0 (−x)k

]
= (x)−1(xm − x̄m).

Now, since xm − x̄m = 2x
∑m

k=1 x
m−kx̄k−1 we get

2
m∑
k=1

(
m

k

)
xm−k
0 xk−1 = 2

m∑
k=1

xm−kx̄k−1. (12.38)
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By putting formula (12.38) in (12.37) we obtain formula (12.36).
Finally, since ∂x(xm) = (xm)∂x, we can repeat the previous computations,
thus we get

D(xm) = (xm)D.

To compute D2
xm we need the following result.

Lemma 12.6.10. Let m ≥ 2. For any x ∈ R6 we have

∂x

(
m∑
k=1

xm−kx̄k−1

)
=

m−1∑
k=1

(2k −m)xm−k−1x̄k−1.

Proof. By Proposition 12.6.3 and formula (12.31) we have

−8
m−1∑
k=1

kxm−k−1x̄k−1 = D(Dxm) = −4D

(
m∑
k=1

xm−kx̄k−1

)
(12.39)

= −4

[
∂

∂x0

(
m∑
k=1

xm−kx̄k−1

)
+ ∂x

(
m∑
k=1

xm−kx̄k−1

)]
.

Now, since
∑m

k=1 x
m−kx̄k−1 = (2x)−1(xm − x̄n) we get

∂

∂x0

(
m∑
k=1

xm−kx̄k−1

)
=

∂

∂x0

[
(2x)−1(xm − x̄m)

]
= (2x)−1m(xm−1 − xm−1)

= m
m−1∑
k=1

xm−1−kx̄k−1. (12.40)

Therefore by formula (12.39) and formula (12.40) we get

∂x

(
m∑
k=1

xm−kx̄k−1

)
= 2

m−1∑
k=1

kxm−k−1x̄k−1 − ∂

∂x0

(
m∑
k=1

xm−kx̄k−1

)

= 2
m−1∑
k=1

kxm−k−1x̄k−1 −m

m−1∑
k=1

xm−1−kx̄k−1

=
m−1∑
k=1

(2k −m)xm−k−1x̄k−1.
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Proposition 12.6.11. Let m ≥ 2. Then for any x ∈ R6 we have

D2
(xm) = (xm)D2

(12.41)

= 4

[
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

]
.

Proof. By applying two times Proposition 12.6.9 and the fact that D =
∂
∂x0

− ∂x we have

D2
(xm) = D(Dxm)

= 2mD(xm−1) + 4D

(
m∑
k=1

xm−kx̄k−1

)

= 2m

(
2(m− 1)xm−2 + 4

m−1∑
k=1

xm−1−kx̄k−1

)
+

+4

[
∂

∂x0

(
m∑
k=1

xm−kx̄k−1

)
− ∂x

(
m∑
k=1

xm−kx̄k−1

)]
.

By formula (12.40) and Lemma 12.6.10 we get

D2
xm = 4

[
m(m− 1)xm−2 + 2m

m−1∑
k=1

xm−1−kx̄k−1

+m
m−1∑
k=1

xm−1−kx̄k−1 −
m−1∑
k=1

(2k −m)xm−k−1x̄k−1

]

= 4

[
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

]
.

Finally, since D(xm) = (xm)D we get

D2
(xm) = (xm)D2

.

Proposition 12.6.12. Let m ≥ 3. For any x ∈ R6 we have

∆D(xm) = (xm)∆D = −16
m−2∑
k=1

(m−k−1)(m+k)xm−k−2x̄k−1. (12.42)
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Proof. By applying the operator ∆ to formula (12.6.10) we get

∆Dxm = 2m∆(xm−1) + 4
m∑
k=1

∆(xm−kx̄k−1).

Therefore, by Proposition 12.6.2 and Lemma 12.6.7 we obtain

∆D(xm) = −16m
m−2∑
k=1

(m− 1− k)xm−2−kx̄k−1 +

−16
m−2∑
k=1

(m− k − 1)kxm−k−2x̄k−1

= −16
m−2∑
k=1

(m− k − 1)(m+ k)xm−2−kx̄k−1.

Finally, since the laplacian is a real operator and D(xm) = (xm)D we get

∆D(xm) = (xm)∆D.

Definition 12.6.13 (left and right kernel series). Let s, x ∈ R6, then we
define

• the left D-kernel series as

−4
∞∑
m=1

m∑
k=1

xm−kxk−1s−1−m, (12.43)

and the right D-kernel series as

−4
∞∑
m=1

m∑
k=1

s−1−mxm−kxk−1,

• the left ∆-kernel series as

−8
∞∑
m=2

m−1∑
k=1

(m− k)xm−k−1xk−1s−1−m, (12.44)

the right ∆-kernel series as

−8
∞∑
m=2

m−1∑
k=2

(m− k)s−1−mxm−k−1xk−1,
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• the left ∆D-kernel series as

16
∞∑
m=3

m−2∑
k=1

(m− k − 1)kxm−k−2xk−1s−1−m, (12.45)

the right ∆D-kernel series as

16
∞∑
m=3

m−2∑
k=3

(m− k − 1)ks−1−mxm−k−2xk−1,

• the left D2-kernel series as

−8
∞∑
m=2

m−1∑
k=1

kxm−k−1x̄k−1s−1−m, (12.46)

the right D2-kernel series as

−8
∞∑
m=2

m−1∑
k=1

ks−1−mxm−k−1x̄k−1,

• the left D-kernel series as

2

[
∞∑
m=1

(
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

)]
s−1−m, (12.47)

the right D-kernel series as

2

[
∞∑
m=1

s−1−m

(
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

)]
,

• the left D2
-kernel series as

4

[
∞∑
m=2

(
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

)
s−1−m

]
, (12.48)

the right D2
-kernel series as

4

[
∞∑
m=2

s−1−m

(
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

)]
,
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• the left ∆D-kernel series as

−16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)xm−k−2x̄k−1s−1−m. (12.49)

the right ∆D-kernel series as

−16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)s−1−mxm−k−2x̄k−1.

Remark 12.6.14. The left and the right D-kernel series are equal, where
they converge, as well as the left and the right ∆D-kernel series.

We collect some technical lemmas that we have used in the proofs of
some of the following results.

Lemma 12.6.15. For m ≥ 3 we have

m−2∑
k=1

(m− k − 1)k =
m(m− 1)(m− 2)

6
.

Proof. We know that
∑m−2

k=1 k = (m−1)(m−2)
2

and
∑m−2

k=1 k
2 = (m−2)(m−1)(2m−3)

6
.

Thus we have

m−2∑
k=1

(m− k − 1)k = (m− 1)
m−2∑
k=1

k −
m−2∑
k=1

k2

=
(m− 1)2(m− 2)

2
− (m− 2)(m− 1)(2m− 3)

6

=
(m− 1)(m− 2)

2

(
(m− 1)− (2m− 3)

3

)
=

m(m− 1)(m− 2)

6
.

Lemma 12.6.16. For m ≥ 3 we have

m−2∑
k=1

(m− k − 1)(m+ k) =
2m(m− 1)(m− 2)

3
.
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Proof. Since
∑m−2

k=1 k = (m−1)(m−2)
2

we get

m

m−2∑
k=1

(m− 1− k) = m2(m− 2)−m(m− 2)− m(m− 1)(m− 2)

2

=
m(m− 1)(m− 2)

2
. (12.50)

Finally, by formula (12.50) and Lemma 12.6.15 we get

m−2∑
k=1

(m− k − 1)(m+ k) =
m−2∑
k=1

(m− k − 1)k +m
m−2∑
k=1

(m− k − 1)

=
m(m− 1)(m− 2)

6
+
m(m− 1)(m− 2)

2

=
2m(m− 1)(m− 2)

3
.

Proposition 12.6.17. For s,x ∈ R6 with |x| < |s|, all the left kernel series
are convergent.

Proof. In order to show the convergence of the series it is enough to show
the convergence of the series of the moduli.

• In order to prove that the left D-kernel series is convergent it is suffi-
cient to show that the following series is convergent.

∞∑
m=1

m|x|m−1|s|−1−m. (12.51)

This series converges by the ratio test. Indeed, since |x| < |s|, we
have

lim
m→∞

(m+ 1)|x|m|s|−2−m

m|x|m−1|s|−1−m = lim
m→∞

m+ 1

m
|x||s|−1 < 1.

• To prove the convergence of the ∆-kernel series, we have to show that
the following series convergences

∞∑
m=2

(
m−1∑
k=1

(m− k)

)
|x|m−2|s|−1−m. (12.52)
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Since
∑m−1

k=1 (m− k) = m(m−1)
2

, we have

lim
m→∞

(m+ 1)m|x|m−1|s|−2−m

m(m− 1)|x|m−2|s|−1−m = |x||s|−1 < 1. (12.53)

Therefore, by the ratio test the series is convergent.

• In order to prove the convergence of the ∆D-kernel series, we have to
show the convergence of the following series

∞∑
m=1

(
m−2∑
k=1

(m− k − 1)k

)
|x|m−3|s|−1−m. (12.54)

Now, since
∑m−2

k=1 (m−k−1)k = m(m−1)(m−2)
6

(see Lemma 12.6.15),
by applying the ratio test we get

lim
m→∞

m(m+ 1)(m− 1)|x|m−2|s|−2−m

m(m− 1)(m− 2)|x|m−3|s|−1−m = |x||s|−1 < 1.

Therefore the series is convergent.

• To show the convergence of the D2- kernel series we need to show the
convergence of the following series

∞∑
m=2

(
m−1∑
k=1

k

)
|x|m−2|s|−1−m.

Since
∑m−1

k=1 k = (m−1)m
2

, by applying the ratio test we reobtain the
same limit of (12.53), and so the series is convergent.

• In order to prove the convergence of the D-kernel series we put the
modulus to the series in (12.47) and after some manipulations we get
that∣∣∣∣∣

∞∑
m=1

(
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

)∣∣∣∣∣ |s|−1−m ≤
∞∑
m=1

3m|x|m−1|s|−1−m.

The convergence of the series
∑∞

m=1 3m|x|m−1|s|−1−m follows by
similar arguments for the convregence of the series in (12.51).

• As done in the previous point, we insert the modulus in the series
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(12.48) and after some computations we get∣∣∣∣∣
∞∑
m=2

(
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

)∣∣∣∣∣ |s|−1−m

≤
∞∑
m=2

(
m(m− 1) +

m−1∑
k=1

(2m− k)

)
|x|m−2|s|−1−m

=
∞∑
m=2

5m(m− 1)

2
|x|m−2|s|−1−m.

The convergence of the series
∑∞

m=2
5m(m−1)

2
|x|m−2|s|−1−m follows

similarly as the series in (12.52).

• Finally, in order to show the convergence of the left ∆D it is enough
to show the convergence of the following series

∞∑
m=3

(
m−2∑
k=1

(m− k − 1)(m+ k)

)
|x|m−3|s|−1−m.

Since
∑m−2

k=1 (m−k−1)(m+k) = 2m(m−1)(m−2)
3

(see Lemma 12.6.16),
the convergence follows similarly as done for the series in (12.54).

Remark 12.6.18. Similarly, all the right kernel series are convergent.

Now, we can expand in series the left and the right kernels, computed in
the previous section.

Lemma 12.6.19. For s, x ∈ R6 such that |x| < |s| we can expand

• the left slice D-kernel as

S−1
D,L(s, x) = −4

∞∑
m=1

m∑
k=1

xm−kxk−1s−1−m,

and the right slice D-kernel as

S−1
D,R(s, x) = −4

∞∑
m=1

m∑
k=1

s−1−mxm−kxk−1,
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• the left slice ∆-kernel as

S−1
∆,L(s, x) = −8

∞∑
m=2

m−1∑
k=1

(m− k)xm−k−1xk−1s−1−m,

and the right slice ∆-kernel as

S−1
∆,R(s, x) = −8

∞∑
m=2

m−1∑
k=1

(m− k)s−1−mxm−k−1xk−1,

• the left slice ∆D-kernel as

S−1
∆D,L(s, x) = 16

∞∑
m=3

m−2∑
k=1

(m− k − 1)kxm−k−2xk−1s−1−m,

and the right slice ∆D-kernel as

S−1
∆D,R(s, x) = 16

∞∑
m=3

m−2∑
k=1

(m− k − 1)ks−1−mxm−k−2xk−1,

• we can expand the left slice D2-kernel as

S−1
D2,L(s, x) = −8

∞∑
m=2

m−1∑
k=1

kxm−k−1x̄k−1s−1−m,

and the right slice D2-kernel as

S−1
D2,R(s, x) = −8

∞∑
m=2

m−1∑
k=1

ks−1−mxm−k−1x̄k−1,

• the left slice D-kernel as

S−1

D,L(s, x) = 2

[
∞∑
m=1

(
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

)]
s−1−m,

and the right slice D-kernel as

S−1

D,R(s, x) = 2

[
∞∑
m=1

s−1−m

(
mxm−1 + 2

m∑
k=1

xm−kx̄k−1

)]
,
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• the left slice D2-kernel as

S−1

D2
,L
(s, x) = 4

[
∞∑
m=2

(
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

)
s−1−m

]
,

and the right slice D2
-kernel as

S−1

D2
,R
(s, x) = 4

[
∞∑
m=2

s−1−m

(
m(m− 1)xm−2 + 2

m−1∑
k=1

(2m− k)xm−k−1x̄k−1

)]
,

• the left slice ∆D-kernel as

S−1

∆D,L(s, x) = −16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)xm−k−2x̄k−1s−1−m,

and the right slice ∆D-kernel as

S−1

∆D,R(s, x) = −16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)s−1−mxm−k−2x̄k−1.

Proof. We know that we can expand the left Cauchy kernel in the following
way

S−1
L (s, x) =

∞∑
m=0

xms−1−m. (12.55)

In order to obtain all the expansions it is enough to apply to formula (12.55)
the operators D, ∆, ∆D, D2, D, D

2
and ∆D. Due to Proposition 12.6.17

we can exchange the roles of the operators with the sum. Finally, in or-
der to get the expansions written in terms of x and x̄ we apply formula
(12.31), Proposition 12.6.2, Proposition 12.6.8, Proposition 12.6.3, Propo-
sition 12.6.9, Proposition 12.6.11 and Proposition 12.6.12. By similar ar-
guments we have the result for the right kernels.

Remark 12.6.20. By Lemma 12.6.19 together with Theorem 12.5.1, Theo-
rem 12.5.2, Theorem 12.5.3 and Theorem 12.5.6, we deduce the following
equalities

Qc,s(x)
−2 =

∞∑
m=3

m−2∑
k=1

(m− k − 1)kxm−k−2xk−1s−1−m

=
∞∑
m=3

m−2∑
k=1

(m− k − 1)ks−1−mxm−k−2xk−1,
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S−1
L (s, x)Qc,s(x)

−1 =
∞∑
m=2

m−1∑
k=1

(m− k)xm−k−1xk−1s−1−m,

Qc,s(x)
−1 =

∞∑
m=1

m∑
k=1

xm−kxk−1s−1−m =
∞∑
m=1

m∑
k=1

s−1−mxm−kxk−1,

S−1
L (s, x̄)Qc,s(x)

−1 =
∞∑
m=2

m−1∑
k=1

kxm−k−1x̄k−1s−1−m.

It is possible to obtain similar equalities with the right kernels.

12.7 The functional calculi of the fine structures

Using the expressions of the kernels written in terms of x and x̄ and the fine
Fueter-Sce integral theorems, we can define the fine Fueter-Sce functional
calculi.

Definition 12.7.1. Let T = T0 +
∑5

i=1 eiTi ∈ BC0,1(V5), s ∈ R6. We
formally define

• the left and the right D-kernel operator series as

−4
∞∑
m=1

m∑
k=1

Tm−kT̄ k−1s−1−m,

and

−4
∞∑
m=1

m∑
k=1

s−1−mTm−kT̄ k−1;

• the left and the right ∆-kernel operator series as

−8
∞∑
m=2

m−1∑
k=1

(m− k)Tm−k−1T̄ k−1s−1−m,

and

−8
∞∑
m=2

m−1∑
k=1

(m− k)s−1−mTm−k−1T̄ k−1;

• the left and the right ∆D-kernel operator series as

16
∞∑
m=3

m−2∑
k=1

(m− k − 1)kTm−k−2T̄ k−1s−1−m,

374



i
i

“thesis” — 2022/12/4 — 11:25 — page 375 — #393 i
i

i
i

i
i

12.7. The functional calculi of the fine structures

and

16
∞∑
m=3

m−2∑
k=1

(m− k − 1)ks−1−mTm−k−2T̄ k−1.

• the left and the right D2-kernel operator series as

−8
∞∑
m=2

m−1∑
k=1

kTm−k−1T̄ k−1s−1−m,

and

−8
∞∑
m=2

m−1∑
k=1

ks−1−mTm−k−1T̄ k−1;

• the left and the right D-kernel operator series as

2

[
∞∑
m=1

(
mTm−1 + 2

m∑
k=1

Tm−kT̄ k−1

)
s−1−m

]
,

and

2

[
∞∑
m=1

s−1−m

(
mTm−1 + 2

m∑
k=1

Tm−kT̄ k−1

)]
;

• the left and the right D2
-kernel operator series as

4

[
∞∑
m=2

(
m(m− 1)Tm−2 + 2

m−1∑
k=1

(2m− k)Tm−k−1T̄ k−1

)
s−1−m

]
,

and

4

[
∞∑
m=2

s−1−m

(
m(m− 1)Tm−2 + 2

m−1∑
k=1

(2m− k)Tm−k−1T̄ k−1

)]
;

• the left and the right ∆D-kernel operator series as

−16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)Tm−k−2T̄ k−1s−1−m,

and

−16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)s−1−mTm−k−2T̄ k−1.
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Proposition 12.7.2. Let us consider T ∈ BC0,1(V5), s ∈ R6 and ∥T∥ < |s|
then the series previously defined are convergent and, in particular, we can
expand

• the left and right D-resolvent operator as

S−1
D,L(s, T ) = S−1

D,R(s, T ) = −4
∞∑
m=1

m∑
k=1

Tm−kT̄ k−1s−1−m

= −4
∞∑
m=1

m∑
k=1

s−1−mTm−kT̄ k−1;

• the left and right ∆-resolvent operator as

S−1
∆,L(s, T ) = −8

∞∑
m=2

m−1∑
k=1

(m− k)Tm−k−1T̄ k−1s−1−m,

and

S−1
∆,R(s, T ) = −8

∞∑
m=2

m−1∑
k=1

(m− k)s−1−mTm−k−1T̄ k−1;

• the left and right ∆D-resolvent operator as

S−1
∆D,L(s, T ) = S−1

∆D,R(s, T )

= 16
∞∑
m=3

m−2∑
k=1

(m− k − 1)kTm−k−2T̄ k−1s−1−m

= 16
∞∑
m=3

m−2∑
k=1

(m− k − 1)ks−1−mTm−k−2T̄ k−1;

• the left and right D2-resolvent operator as

S−1
D2,L(s, T ) = −8

∞∑
m=2

m−1∑
k=1

kTm−k−1T̄ k−1s−1−m,

and

S−1
D2,R(s, T ) = −8

∞∑
m=2

m−1∑
k=1

ks−1−mTm−k−1T̄ k−1;
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• the left and right D-resolvent operator as

S−1

D,L(s, T ) = 2

[
∞∑
m=1

(
mTm−1 + 2

m∑
k=1

Tm−kT̄ k−1

)
s−1−m

]
,

and

S−1

D,R(s, T ) = 2

[
∞∑
m=1

s−1−m

(
mTm−1 + 2

m∑
k=1

Tm−kT̄ k−1

)]
;

• the left and right D2
-resolvent operator as

S−1

D2
,L
(s, T ) = 4

[
∞∑
m=2

(
m(m− 1)Tm−2 + 2

m−1∑
k=1

(2m− k)Tm−k−1T̄ k−1

)
s−1−m

]
,

and

S−1

D2
,R
(s, T ) = 4

[
∞∑
m=2

s−1−m

(
m(m− 1)Tm−2 + 2

m−1∑
k=1

(2m− k)Tm−k−1T̄ k−1

)]
;

• the left and right ∆D-resolvent operator as

S−1

∆D,L(s, T ) = −16
∞∑
m=3

m−2∑
k=1

(m− k − 1)(m+ k)Tm−k−1T̄ k−1s−1−m,

and

S−1

∆D,R(s, T ) = −16
∞∑
m=3

m−2∑
k=1

(m− k− 1)(m+ k)s−1−mTm−k−1T̄ k−1.

Proof. The convergences of the series for ∥T∥ < |s| can be proved con-
sidering the series of the operator norms and reasoning as in Proposition
12.6.17. We prove only the first equality between the kernels and the series
because the other equalities follow by similar arguments. Since

S−1
D,L(s, T ) = S−1

D,R(s, T ) = −4Qc,s(T )
−1,

it is sufficient to prove

Qc,s(T )

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
=

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T )

= I. (12.56)
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The first equality in (12.56) is a consequence of the following facts: for any
positive integer m the sum

∑m
k=1 T

m−kT
k−1

is an operator of the compo-
nents of T with real coefficients which then commute with any power of
s, the components of T are commuting among each other and the operator
Qc,s(T ) can be written in the following form: s2I − 2sT0+

∑5
i=0 T

2
i . Now

we want to prove the second equality in (12.56). First we observe that

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T )

=

(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
(s2 − s(T + T ) + TT )

=
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑
m=1

m∑
k=1

Tm+1−kT
k−1

s−m −
∞∑
m=1

m∑
k=1

Tm−kT
k
s−m

+
∞∑
m=1

m∑
k=1

Tm−k+1T̄ ks−1−m.

Making the change of index m′ = 1 + m in the second and fourth series,
we have(

∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T ) =

=
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k−1
s1−m

′ −
∞∑
m=1

m∑
k=1

Tm−kT
k
s−m

+
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k
s−m

′

= I +
∞∑
m=2

m∑
k=1

Tm−kT
k−1

s1−m −
∞∑

m′=2

m′−1∑
k=1

Tm
′−kT

k−1
s1−m

′
+

− T̄ s−1 −
∞∑
m=2

m∑
k=1

Tm−kT
k
s−m +

∞∑
m′=2

m′−1∑
k=1

Tm
′−kT

k
s−m

′
.

Simplifying the opposite terms in the first and second series and in the third
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and fourth series, in the end we get(
∞∑
m=1

m∑
k=1

Tm−kT
k−1

s−1−m

)
Qc,s(T ) = I +

∞∑
m=2

T
m−1

s1−m −
∞∑
m=2

T
m−1

s1−m

= I.

We can now define the resolvent operators of the fine structure and study
their regularity. Based on the previous series expansions and the structure
of the kernels of the function spaces we can now define the resolvent opera-
tors associated to the fine structure spaces. Using these resolvent operators
associated with the S-spectrum we will define the functional calculi asso-
ciated with the respective functions spaces.

Definition 12.7.3 (The resolvent operators associated with the fine struc-
ture). Let T ∈ BC0,1(V5) and s ∈ ρS(T ), we recall that

Qc,s(T )
−1 := (s2I − s(T + T ) + TT )−1.

• The left and the right D-resolvent operators S−1
D,L(s, T ) and S−1

D,R(s, T )
are defined as

S−1
D,L(s, T ) := −4Qc,s(T )

−1, (12.57)

and
S−1
D,R(s, T ) := −4Qc,s(T )

−1. (12.58)

• The left and the right ∆-resolvent operators S−1
∆,L(s, T ) and S−1

∆,R(s, T )
are defined as

S−1
∆,L(s, T ) := −8S−1

L (s, T )Qc,s(T )
−1, (12.59)

and
S−1
∆,R(s, T ) := −8Qc,s(T )

−1S−1
R (s, T ). (12.60)

• The left and the right ∆D-resolvent operators S−1
∆D,L(s, T ) and S−1

∆D,R(s, T )
are defined as

S−1
∆D,L(s, T ) := 16Qc,s(T )

−2, (12.61)

and
S−1
∆D,R(s, T ) := 16Qc,s(T )

−2. (12.62)
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• The left and the right D-resolvent operators S−1

D,L(s, T ) and S−1

D,R(s, T )

are defined as

S−1

D,L(s, T ) := 4(sI − T̄ )Qc,s(T )
−2(sI − T0) + 2Qc,s(T )

−1 (12.63)

and

S−1

D,R(s, T ) := 4(sI −T0)Qc,s(T )
−2(sI − T̄ )+2Qc,s(T )

−1. (12.64)

• The left and the right D2-resolvent operators S−1

D2
,L
(s, T ) and S−1

D2
,R
(s, T )

are defined as

S−1

D2
,L
(s, T ) := 32(sI − T̄ )Qc,s(T )

−3(sI − T0)
2 (12.65)

and

S−1

D2
,R
(s, T ) := 32(sI − T0)

2Qc,s(T )
−3(sI − T̄ ). (12.66)

• The left and the right D2-resolvent operators S−1
D2,L(s, T ) and S−1

D2,R(s, T )
are defined as

S−1
D2,L(s, T ) := 8S−1

L (s, T̄ )Qc,s(T )
−1 (12.67)

and
S−1
D2,R(s, T ) := 8Qc,s(T )

−1S−1
R (s, T̄ ). (12.68)

• The left and the right ∆D-resolvent operators S−1

∆D,L(s, T ) and S−1

∆D,R(s, T )

are defined as

S−1

∆D,L(s, T ) := −64(sI − T̄ )Qc,s(T )
−3(sI − T0) (12.69)

and

S−1

∆D,R(s, x) := −64(sI − T0)Qc,s(T )
−3(sI − T̄ ). (12.70)

Now, we study the regularity of the previous kernels.

Proposition 12.7.4. Let T ∈ BC0,1(V5). Then the resolvent operators as-
sociated with the fine structure in Definition 12.7.3 are slice hyperholomor-
phic operators valued functions for s ∈ ρS(T ).

Proof. It follows by a direct computations and in the case of the S-resolvent
operators or the F -resolvent operators.
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Now, we can to define the functional calculi associated with the fine
structure.

Definition 12.7.5 (The functional calculi of the fine structure in dimension
five). Let T ∈ BC0,1(V5) and set dsJ = ds(−J) for J ∈ S4. Let f be a
function that belongs to SHL(σS(T )) or belongs to SHR(σS(T )). Let U
be a bounded slice Cauchy domain with σS(T ) ⊂ U and U ⊂ dom(f).

Keeping in mind the resolvent operators associated with the fine struc-
ture in Definition 12.7.3 we define functional calculi associated of the fine
structure as:

• (The ℓ + 1-harmonic functional calculus for 0 ≤ ℓ ≤ 1) For every
function f̃ℓ = ∆1−ℓDf with f ∈ SHL(σS(T )) and 0 ≤ ℓ ≤ 1, we set

f̃ℓ(T ) :=
1

2π

∫
∂(U∩CJ )

S−1
∆1−ℓD,L(s, T )dsJf(s), (12.71)

and, for every function f̃ℓ = f∆1−ℓD with f ∈ SHR(σS(T )), we set

f̃ℓ(T ) :=
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
∆1−ℓD,R(s, T ). (12.72)

• (The holomorphic Cliffordian functional calculus of order 1) For
every function f ◦ = ∆f with f ∈ SHL(σS(T )), we set

f ◦(T ) :=
1

2π

∫
∂(U∩CJ )

S−1
∆,L(s, T )dsJf(s), (12.73)

and, for every function f ◦ = ∆f with f ∈ SHR(σS(T )), we set

f ◦(T ) :=
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
∆,R(s, T ). (12.74)

• (The polyanalytic Cliffordian functional calculus of order (1, 2))
For every function f̆ ◦ = Df with f ∈ SHL(σS(T )), we set

f̆ ◦(T ) :=
1

2π

∫
∂(U∩CJ )

S−1

D,L(s, T )dsJf(s), (12.75)

and, for every function f̆ ◦ = fD with f ∈ SHR(σS(T )), we set

f̆ ◦(T ) :=
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1

D,R(s, T ). (12.76)
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• (The polyanalytic functional calculus of order 3− ℓ for 0 ≤ ℓ ≤ 1)
For every function f̆ℓ = ∆ℓD2−ℓ

f with f ∈ SHL(σS(T )), we set

f̆ℓ(T ) :=
1

2π

∫
∂(U∩CJ )

S−1

∆ℓD2−ℓ
,L
(s, T )dsJf(s), (12.77)

and, for every function f̆ℓ = fD with f ∈ SHR(σS(T )), we set

f̆ ◦(T ) :=
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1

∆ℓD2−ℓ
,R
(s, T ). (12.78)

• (The anti-holomorphic Cliffordian functional calculus of order 1)
For every function f0 = D2f with f ∈ SHL(σS(T )), we set

f0(T ) :=
1

2π

∫
∂(U∩CJ )

S−1
D2,L(s, T )dsJf(s), (12.79)

and, for every function f0 = fD2 with f ∈ SHR(σS(T )), we set

f0(T ) :=
1

2π

∫
∂(U∩CJ )

f(s)dsJS
−1
D2,R(s, T ). (12.80)

Theorem 12.7.6. The previous functional calculi are well defined, in the
sense that the integrals in Definition 12.7.5 depend neither on the imaginary
unit J ∈ S4 and nor on the slice Cauchy domain U .

Proof. We prove the result for the functional calculi defined using the left
slice hyperholomorphic functions since the right counterpart can be proved
with similar computations. The only property of the kernels that we shall
use to prove the theorem is that they are all right slice hyperholomoprhic in
the variable s (see Proposition 12.5.8). For this reason, in what follows, we
can refer to an arbitrary left kernel described in Proposition 12.7.2 with the
symbol KL(s, T ).
Since KL(s, T ) is a right-slice hyperholomorphic function in s and f is left
slice hyperholomorphic, the independence from the set U follows by the
Cauchy integral formula (see Theorem 3.1.18).
Now, we want to show the independence from the imaginary unit, let us
consider two imaginary units J , I ∈ S4 with J ̸= I and two bounded slice
Cauchy domains Ux, Us with σS(T ) ⊂ Ux, Ux ⊂ Us and U s ⊂ dom(f).
Then every s ∈ ∂(Us∩CJ) belongs to the unbounded slice Cauchy domain
R6 \ Ux.
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Since limx→+∞KL(x, T ) = 0, the slice hyperholomorphic Cauchy formula
implies

KL(s, T ) =
1

2π

∫
∂(R6\(Ux∩CI))

KL(x, T )dxIS
−1
R (x, s)

=
1

2π

∫
∂(Ux∩CI)

KL(x, T )dxIS
−1
L (s, x). (12.81)

The last equality is due to the facts that ∂(R6 \ (Ux ∩CI)) = −∂(Ux ∩CI)
and S−1

R (x, s) = −S−1
L (s, x). Thus, by formula (12.81) we get

f̃(T ) =

∫
∂(Us∩CJ )

KL(s, T )dsJf(s)

=

∫
∂(Us∩CJ )

(
1

2π

∫
∂(Ux∩CI)

KL(x, T )dxIS
−1
L (s, x)

)
dsJf(s).

Due to Fubini’s theorem we can exchange the order of integration and by
the Cauchy formula we obtain

f̃(T ) =

∫
∂(Ux∩CI)

KL(x, T )dxI

(
1

2π

∫
∂(Us∩CJ )

S−1
L (s, x)dsJf(s)

)
=

∫
∂(Ux∩CI)

KL(x, T )dxIf(x).

This proves the statement.

In what follows we denote by P one of the operators: ∆1−ℓD, ∆, D,
∆ℓD2−ℓ

and D2 for ℓ = 0, 1.

Problem 12.7.7. Let Ω be a slice Cauchy domain. It might happen that
f, g ∈ SHL(Ω) (resp. f, g ∈ SHR(Ω)) and Pf = Pg (resp. fP = gP). Is
it possible to show that for any T ∈ BC0,1(V5), with σS(T ) ⊂ Ω, we have
(Pf)(T ) = (Pg)(T ) (resp. (fP)(T ) = (gP)(T ))?

In order to address the problem we need an auxiliary result. We start by
observing that by hypothesis we have P(f − g) = 0 (resp. (f − g)P = 0).
Therefore it is necessary to study the set

(kerP)SHL(Ω) := {f ∈ SHL(Ω) : P(f) = 0}

and
(kerP)SHR(Ω) := {f ∈ SHR(Ω) : (f)P = 0}.
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Theorem 12.7.8. Let Ω be a connected slice Cauchy domain of R6, then

(kerP)SHL(Ω) = {f ∈ SHL(Ω) : f ≡ α0 + · · ·+ xtαt for some α0, . . . , αt ∈ R5}
= {f ∈ SHR(Ω) : f ≡ α0 + · · ·+ αtx

t for some α0, . . . , αt ∈ R5}
= (kerP)SHR(Ω),

where t is equal to the degree of P minus 1.

Proof. We prove the result in the case f ∈ SHL(Ω) since the case f ∈
SHR(Ω) follows by similar arguments. We proceed by double inclusion.
The fact that

(kerP)SHL(Ω) ⊇ {f ∈ SHL(Ω) : f ≡ α0+· · ·+xtαt for some α0, . . . , αt ∈ R5}

is obvious. The other inclusion can be proved observing that if f ∈ (kerP)SHL(Ω),
after a change of variable if needed, there exists r > 0 such that the function
f can be expanded in a convergent series at the origin

f(x) =
∞∑
k=0

xkαk for {αk}k∈N0 ⊂ R5 and for any x ∈ Br(0)

where Br(0) is the ball centred at 0 and of radius r. We have

0 = Pf(x) ≡
∞∑

k=deg(P)

P(xk)αk, ∀x ∈ Br(0).

By Lemma 12.6.1, Proposition 12.6.2, Proposition 12.6.3, Proposition 12.6.8,
Proposition 12.6.9, Proposition 12.6.11 and Proposition 12.6.12 we can
compute explicitly the expressions P(xk) and, when they are restricted to
a neighborhood of zero of the real axis, they coincide up to a constant to
xk−deg(P). Since the power series is identically zero, its coefficients αk’s
must be zero for any k ≥ deg(P). This yields f(x) ≡ α0 + · · · + xtαt in
Br(0) and, since Ω is connected, we also have f(x) ≡ α0 + · · · + xtαt for
any x ∈ Ω.

We solve the problem 12.7.7 in the case in which Ω is connected.

Proposition 12.7.9. Let T ∈ BC0,1(V5) and let U be a connected slice
Cauchy domain with σS(T ) ⊂ U . If f, g ∈ SHL(U) (resp. f, g ∈
SHR(U)) satisfy the property Pf = Pg (resp. fP = gP) then (Pf)(T ) =
(Pg)(T ) (resp. (fP)(T ) = (gP)(T )).
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Proof. We prove the theorem in the case f, g ∈ SHL(Ω) since the case
f, g ∈ SHR(Ω) follows by similar arguments. By Definition 12.7.5, we
have

(Pf)(T )− (Pg)(T ) =
1

2π

∫
∂(U∩CJ )

S−1
P,L(s, T )dsJ(f(s)− g(s)).

Since S−1
P,L(s, T ) is slice hyperholomorphic in the variable s by Proposition

12.7.4, we can change the domain of integration to Br(0) ∩ CJ for some
r > 0 with ∥T∥ < r. Moreover, by hypothesis we have that f(s)− g(s) ∈
(kerP)SHL(Ω), thus by Theorem 12.7.8 and Proposition 12.7.2 we get

(Pf)(T )− (Pg)(T ) =
1

2π

∫
∂(Br(0)∩CJ )

S−1
P,L(s, T )dsJ(f(s)− g(s))

=
1

2π

∫
∂(Br(0)∩CJ )

S−1
P,L(s, T )dsJ(α0 + · · ·+ stαt)

=
1

2π

∞∑
m=deg(P)

(
gP,m(T, T̄ )

) ∫
∂(Br(0)∩CJ )

s−1−mdsJ(α0 + · · ·+ stαt) = 0.

where gP,m(T, T̄ ) is a polynomial in T and T̄ (see Proposition 12.7.2) and
t := deg(P)− 1.

Now, we write the resolvent operators associated with the fine structures
in terms of the F - resolvent operators.

Proposition 12.7.10. Let T ∈ BC0,1(V5) and s ∈ ρS(T ). Then, we have

S−1
D,L(s, T ) = − 1

16

[
FL
5 (s, T )s

3 − (T + 2T0)F
L
5 (s, T )s

2

+(2T0x+ |x|2)FL
5 (s, T )s− T |T |2FL

5 (s, T )
]
,

S−1
D,R(s, T ) = − 1

16

[
s3FR

5 (s, T )− s2FR
5 (s, T )(T + 2T0)

+sFR
5 (s, T )(2T0T + |T |2)− FR

5 (s, T )T |T |2
]
,

S−1
∆,L(s, T ) = −1

8

[
FL
5 (s, T )s

2 − 2T0F
L
5 (s, T )s+ |T |2FL

5 (s, x)
]
,

S−1
∆,R(s, T ) = −1

8

[
FR
5 (s, T )T 2 − 2sFR

5 (s, T )T0 + FR
5 (s, x)|T |2

]
,
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S−1
∆D,L(s, T ) =

1

4

[
FL
5 (s, T )s− TFL

5 (s, T )
]
,

S−1
∆D,R(s, T ) =

1

4

[
sFR

5 (s, T )− FR
5 (s, T )T

]
,

S−1

D,L(s, T ) =
1

32

[
3FL

5 (s, T )s
3 − (8T0 + T )FL

5 (s, T )s
2

+(4T 2
0 + 2T0T + 3|T |2)FL

5 (s, T )s− (T |T |2 + 2T0|T |2)FL
5 (s, T )

]
,

S−1

D,R(s, T ) =
1

32

[
3s3FR

5 (s, T )− s2FR
5 (s, T )(8T0 + T )

+sFR
5 (s, T )(4T 2

0 + 2T0T + 3|T |2)− FR
5 (s, x)(T |T |2 + 2T0|T |2)

]
,

S−1
D2,L(s, T ) = −1

8

[
FL
5 (s, T )s

2 − 2TFL
5 (s, T )s+ T 2FL

5 (s, T )
]
,

S−1
D2,R(s, T ) = −1

8

[
s2FR

5 (s, T )− 2sFR
5 (s, T )T + FR

5 (s, T )T 2
]
,

S−1

D2
,L
(s, T ) =

1

2
[FL

5 (s, T )s
2 − 2T0F

L
5 (s, T )s+ x20F

L
5 (s, T )],

S−1

D2
,R
(s, T ) =

1

2
[s2FR

5 (s, T )− 2sFR
5 (s, T )T0 + FR

5 (s, T )T 2
0 ],

S−1

∆D,L(s, T ) = −FL
5 (s, x)s+ T0F

L
5 (s, T ),

S−1

∆D,R(s, T ) = −sFR
5 (s, T ) + FR

5 (s, T )T0.

Proof. it follows by formally replacing the variable x of Remark 12.5.9 by
the paravector operator T .

In order to solve Problem 12.7.7, in the case Ω not connected, we need
the following lemma, which is based on the monogenic functional calculus
developed in [99,101,108,112]. We chose to annihilate the last component
of the operator T , namely T4 = 0. In the monogenic functional calcu-
lus McIntosh and collaborators consider zero the first component T0 = 0.
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12.7. The functional calculi of the fine structures

However, in our case this is a drawback due to the structure of the polyan-
alytic resolvent operators, see Proposition 12.7.10.

Lemma 12.7.11. Let T ∈ BC0,1(V5) be such that T = T0e0+T1e1+T2e2+
T3e3, and assume that the operators Tℓ, ℓ = 0, 1, 2, 3, have real spectrum.
Let G be a bounded slice Cauchy domain such that (∂G)∩σS(T ) = ∅. For
every J ∈ S4 we have∫

∂(G∩CJ )

S−1
P,L(s, T )dsJ(α0 + · · ·+ stαt) = 0, (12.82)

and ∫
∂(G∩CJ )

(α0 + · · ·+ stαt)dsJS
−1
P,R(s, T ) = 0, (12.83)

where t = deg(P)− 1 and αj ∈ R5 for any 0 ≤ j ≤ t.

Proof. Since ∆2(1) = 0, ∆2(x) = 0, ∆2(x2) = 0 and ∆2(x3) = 0 by
Theorem 7.4.6 we also have∫

∂(G∩CJ )

FL
5 (s, x)dsJ = ∆2(1) = 0, (12.84)

and ∫
∂(G∩CJ )

FL
5 (s, x)dsJs = ∆2(x) = 0,

and ∫
∂(G∩CJ )

FL
5 (s, x)dsJs

2 = ∆2(x2) = 0,

and ∫
∂(G∩CJ )

FL
5 (s, x)dsJs

3 = ∆2(x3) = 0 (12.85)

for all x /∈ ∂G and J ∈ S4. By the monogenic functional we have

FL
5 (s, T ) =

∫
∂Ω

G(ω, T )DωFL
5 (s, ω),

where Dω is a suitable differential form, the open set Ω contains the left
spectrum of T andG(ω, T ) is the Fueter resolvent operator. By Proposition
12.7.10 we can write

S−1
P,L(s, T ) =

4−deg(P)∑
ℓ=0

gP,ℓ(T, T̄ )F
L
5 (s, T )s

ℓ,
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dimension five

and thus we have

S−1
P,L(s, T )(α0 + · · ·+ stαt) =

3∑
ℓ=0

g′P,ℓ(T, T̄ )F
L
5 (s, T )s

ℓβℓ

for appropriate polynomial in T, T̄ : g′P,ℓ(T, T̄ ), and βℓ ∈ R5. We can
conclude the proof of the theorem observing that for any ℓ = 0, 1, 2, 3 we
have

gP,ℓ(T, T̄ )

∫
∂(G∩CJ )

FL
5 (s, T )dsJs

ℓβℓ

= −
(
gP,ℓ(T, T̄ )

∫
∂(G∩CJ )

∫
∂Ω

G(ω, T )DωFL(s, ω)s
ℓ dsJ

)
βℓ

=

(
gP,ℓ(T, T̄ )

∫
∂Ω

G(ω, T )Dω

(∫
∂(G∩CJ )

FL(s, ω)dsJs
ℓ

))
βℓ = 0

where the second equality is a consequence of the Fubini’s Theorem and
the last equality is a consequence of formulas (12.84)-(12.85). Therefore,
we get ∫

∂(G∩CJ )

S−1
P,L(s, T )dsJ(α0 + · · ·+ stαt) = 0.

By similar computations it is possible to show (12.83).

Finally in the following result we give an answer to the question in Prob-
lem 12.7.7.

Proposition 12.7.12. Let T ∈ BC0,1(V5) be such that T = T0e0 + T1e1 +
T2e2 + T3e3, and assume that the operators Tℓ, ℓ = 0, 1, 2, 3, have real
spectrum. Let U be a slice Cauchy domain with σS(T ) ⊂ U . If f, g ∈
SHL(U) (resp. f, g ∈ SHR(U)) satisfy the property Pf = Pg (resp fP =
gP) then (Pf)(T ) = (Pg)(T ) (resp. (fP)(T ) = (gP)(T )).

Proof. If U is connected we can use Proposition 12.7.9. If U is not con-
nected then U = ∪mℓ=1Uℓ where the Uℓ are the connected components of U .
Hence, there exist constants αℓ,i ∈ R5 for ℓ = 1, . . . ,m and i = 0, 1, 2, 3

such that f(s) − g(s) =
∑m

ℓ=1

∑t
i=0 χUℓ

(s)siαℓ,i where t = deg(P) − 1.
Thus we can write

(Pf)(T )− (Pg)(T ) =
m∑
ℓ=1

1

2π

∫
∂(Uℓ∩CJ )

S−1
P,L(s, T )dsJ(αℓ,0 + · · ·+ stαℓ,t).

the last summation is zero by Lemma 12.7.11.

388



i
i

“thesis” — 2022/12/4 — 11:25 — page 389 — #407 i
i

i
i

i
i

12.8. The product rule for the F -functional calculus in dimension five

Remark 12.7.13. It is possible to prove some other important properties
for these functional calculi, this will be investigated in a forthcoming work.

12.8 The product rule for the F -functional calculus in dimen-
sion five

In order to obtain a product rule for the F -functional calculus in dimen-
sion five, it is crucial the Dirac fine structure of the kind (D,D,D,D), see
(12.7).

Theorem 12.8.1 (Product rule for the F -functional calculus for n = 5). Let
T ∈ BC(V5). We assume f ∈ N (σS(T )) and g ∈ SHL(σS(T )), then we
have

∆2(fg)(T ) = ∆2(f)(T )g(T ) + f(T )∆2(g)(T ) + ∆(f)(T )∆(g)(T )

−D∆(f)(T )D(g)(T )−D(f)(T )∆D(g)(T ).

Proof. Let G1 and G2 be two bounded slice Cauchy domain such that con-
tain σS(T ) and Ḡ1 ⊂ G2, with Ḡ2 ⊂ dom(f) ∩ dom(g). We choose
p ∈ ∂(G1 ∩ CJ) and s ∈ ∂(G2 ∩ CJ).
For every I ∈ S4, from the definitions of F -functional calculus, SC-
functional calculus, holomorphic Cliffordian functional calculus of order
1 and ℓ+ 1-harmonic functional calculus (0 ≤ ℓ ≤ 1) we get

∆2(f)(T )g(T ) + f(T )∆2(g)(T ) + ∆(f)(T )∆(g)(T )

−D∆(f)(T )D(g)(T )−D(f)(T )∆D(g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJF
R
5 (s, T )

∫
∂(G1∩CJ )

S−1
L (p, T )dpJg(p)

+
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJS
−1
R (s, T )

∫
∂(G1∩CJ )

FL
5 (p, T )dpJg(p)

+
16

π2

∫
∂(G2∩CJ )

f(s)dsJQc,s(T )
−1S−1

R (s, T )

∫
∂(G2∩CJ )

S−1
L (p, T )Qc,p(T )

−1dpJg(p)

+
16

π2

∫
∂(G2∩CJ )

f(s)dsJQc,s(T )
−2

∫
∂(G2∩CJ )

Qc,p(T )
−1dpJg(p)

+
16

π2

∫
∂(G2∩CJ )

f(s)dsJQc,s(T )
−1

∫
∂(G2∩CJ )

Qc,p(T )
−2dpJg(p)

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s)dsJ{FR
5 (s, T )S−1

L (s, T ) + S−1
R (s, T )FL

5 (p, T )

+ 26[Qc,s(T )
−1S−1

R (s, T )S−1
L (p, T )Qc,p(T )

−1 +Qc,s(T )
−2Qc,p(T )

−1

+Qc,s(T )
−1Qc,p(T )

−2]}dpJg(p)
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By Lemma 9.3.2 we get

∆2(f)(T )g(T ) + f(T )∆2(g)(T ) + ∆(f)(T )∆(g)(T )

−D∆(f)(T )D(g)(T )−D(g)(T )∆Dg(T )

=
1

(2π)2

∫
∂(G2∩CJ )

∫
∂(G1∩CJ )

f(s))dsJ{[FR
5 (s, T )− FL

5 (p, T )]p

− s̄[FR
5 (s, T )− FL

5 (p, T )]}Qs(p)
−1}dpJg(p).

Now, since the functions p 7→ pQs(p)
−1, p 7→ Qs(p)

−1 are intrinsic slice
hyperholomoprhic on Ḡ1 by the Cauchy integral formula we have∫

∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

FR
5 (s, T )pQs(p)

−1dpJg(p) = 0,

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

s̄FR
5 (s, T )Qs(p)

−1dpJg(p) = 0.

Therefore we obtain

∆2(f)(T )g(T ) + f(T )∆2(g)(T ) + ∆(f)(T )∆(g)(T )

−D∆(f)(T )D(g)(T )−D(f)(T )∆D(g)(T )

=
1

(2π)2

∫
∂(G2∩CJ )

f(s)dsJ

∫
∂(G1∩CJ )

[s̄F5(p, T )
L − FL

5 (p, T )p]Qs(p)
−1dpJg(p).

From Lemma 9.4.1 with B := FL
5 (p, T ) we get

∆2(f)(T )g(T ) + f(T )∆2(g)(T ) + ∆(f)(T )∆(g)(T )

−D∆(f)(T )D(g)(T )−D(f)(T )∆D(g)(T )

=
1

(2π)

∫
∂(G1∩CJ )

FL
5 (p, T )dpJf(p)g(p)

=
1

(2π)

∫
∂(G1∩CJ )

FL
5 (p, T )dpJ(fg)(p)

= ∆2(fg)(T ).

390



i
i

“thesis” — 2022/12/4 — 11:25 — page 391 — #409 i
i

i
i

i
i

CHAPTER13
Conclusion and further research in

progress

In this dissertation we get results on integral transforms in the hypercom-
plex setting and functional calculi on the S-spectrum. We studied more in
details the Segal-Bargmann transform and the short-time Fourier transform
in the quaternionic and Cliffod algebra settings. The methods from the
Fock space and Segal-Bargman theories can be used to show several results
on the Gaussian RBF kernel in complex and hypercomplex analysis. The
latter is one of the most used kernels in modern machine learning kernel
methods, and in support vector machines (SVMs) classification algorithms,
see [130]. These methods have been recently investigated in the paper [8].

Furthermore, we study in detail a monogenic functional calculus, a har-
monic functional calculus and polyanalytic functional calculus on the S-
spectrum. Nowadays, the S-functional calculus has generated the follow-
ing research directions: the Phillips functional calculus; H∞-functional
calculus, see [44]; Schur analysis [13] and new classes of fractional diffu-
sion problems based on fractional powers of quaternionic linear operators,
see [39, 40, 44].

For perspectives and further researches, we aim to figure out if it is pos-
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Chapter 13. Conclusion and further research in progress

sible to have results, like the ones listed before, for the F -functional calcu-
lus, the Q-functional calculus and the P2-functional calculus. We observe
that the H∞-functional calculus in the monogenic setting was obtained by
McIntosh and collaborators, see [99]. However, even if the F -functional
calculus is in the same spirit McIntosh, the approach is different since it is
based on the S-spectrum and the Fueter-Sce theorem.

We started working on some different problems that are still under progress.
Such problems are related to the following topics

1) The F -resolvent equation for all dimensions. In this case we have to
deal with fractional powers.

2) Figure out if it is possible to get a sort of commutation rule between
the generalized modulation and translation operator.

3) Establish a generalized Cauchy-Kovalevskaya extension for axially
harmonic functions.

4) Generalize to all odd dimensions the fine structures.

5) Study the function spaces that arise from the splitting of the Fueter-Sce
mapping theorem, both in the complex and hypercomplex settings.

In the next page we explain some research problems that we are consid-
ering now.

13.0.1 The F -resolvent equation for all dimensions

The monogenic functional calculus developed by McIntosh and collabo-
rators holds for all dimensions. In this dissertation we studied the F -
functional calculus only when the dimension is odd.

In order to have a F -resolvent equation also for dimensions even we
need to develop a F -functional calculus when n is even. To achieve this we
need to show a Fueter-Sce-Qian mapping theorem in integral form for any
n.

As for the case n odd, the first step is to compute the action of the Fueter-
Sce-Qian map on the second form of the slice hyperholomorphic Cauchy
kernel. This was done in Chapter 8, where we show that for all n we have

∆
n−1
2 S−1

L (s, x) = FL
n (s, x),

where
FL
n (s, x) := γn(s− x̄)(s2 − 2x0s+ |x|2)−

n+1
2 .

392



i
i

“thesis” — 2022/12/4 — 11:25 — page 393 — #411 i
i

i
i

i
i

In this case the main issue to face is that the function FL
n (s, x) is monogenic

in x if (s2 − 2x0s+ |x|2) ∈ Rn+1 \ (−∞, 0]. Therefore in the statement of
the Fueter-Sce-Qian mapping theorem in integral form we have to take into
account this feature.

Theorem 13.0.1 (Fueter-Sce-Qian theorem in integral version for even di-
mensions). Let n be an even number. Let f be a slice hyperholomorphic
function defined in an open set that contains Ū , where U is a bounded ax-
ially symmetric slice open set. We suppose that ∂(U ∩ CJ) is union of a
finite number of rectifiable Jordan curves for any J ∈ Sn−1. Then if x ∈ U
and U ∩ Rn+1 \ (−∞, 0] = ∅ the function f̆(x), given by

f̆(x) = ∆
n−1
2 f(x),

is monogenic and it admits the following integral representation

f̆(x) =
1

2π

∫
∂(U∩CJ )

FL
n (s, x)dsJf(s), dsJ = ds/J,

and
f̆(x) =

1

2π

∫
∂(U∩CJ )

f(s)dsJF
R
n (s, x), dsJ = ds/J,

where the integrals depends neither on U nor on the imaginary unit J ∈
Sn−1.

The idea to show Theorem 13.0.1 is similar to the one in Theorem 7.4.6,
but in this case we have to pay attention to correctly exchange the integral
and the Fueter-Sce-Qian mapping theorem.

Once proved a Fueter-Sce-Qian theorem in integral version, it is possible
to define the F -functional calculus. Now we aim to solve the following
problems

Problem 13.0.2. Is it possible to have a resolvent equation for the F -
functional calculus in even dimensions?

If it is possible

Problem 13.0.3. Does the F -resolvent equation allow to study the Riesz
projectors?

Moreover,

Problem 13.0.4. Is it possible to develop the theory of fine structures in
even dimensions?
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Chapter 13. Conclusion and further research in progress

13.0.2 A new monogenic product between axially monogenic func-
tions

In the monogenic theory of functions the pointwise product of monogenic
functions is not anymore monogenic. For this reason it was introduced
the so called CK-product. For a pair of monogenic functions A(x0, x) and
B(x0, x) the CK-product is defined as

A(x0, x)⊙CK B(x0, x) = CK[A(0, x) ·B(0, x)].

The building blocks for the expansion in series of a generic monogenic
function are the so-called Fueter variables, defined by

ξℓ = xℓ − eℓx0, ℓ = 1, ...n.

Now, let us consider the Clifford-Appel polynomials, defined Chapter 9 as

P n
k (x) :=

k∑
s=0

T ks (n)x
k−sxs, x ∈ Rn+1,

where T ks (n) is defined as

T ks (n) :=

(
k

s

)(n+1
2

)
k−s

(
n−1
2

)
s

(n)k
, n ≥ 1,

Now, one can wonder if the CK-product works well also for this kind of
polynomials. In [19, Prop. 3.7] (one can easily extend in Rn+1) the CK-
product between Clifford-Appel polynomials is computed and it is given
by

(P n
k ⊙CK P

n
s )(x) =

ckcs
ck+s

P n
k+s. (13.1)

The drawback of this formula is the presence of unsuitable constants ck,
depending on the dimension, and the degree k, which turn out to be unsuit-
able for certain computations.
Therefore, we aim to define a new kind of product between the axially
monogenic functions. This will make use of the generalized CK-extension
and of the following fact

P n
k (x) = GCK[xk0].

Definition 13.0.5. Let A(x0, x) and B(x0, x) be axially monogenic func-
tions then

A(x0, x)⊙GCK B(x0, x) = GCK[A(x0, 0) ·B(x0, 0)]. (13.2)
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In these cases we restrict the functions to a submanifold of dimension
one. We will see that this gives arise to a natural properties of the product
between Clifford-Appel polynomials.

Lemma 13.0.6. Let n ∈ N and ℓ, k ≥ 0. Then for any x = x0 + x ∈ Rn+1

we have
P n
ℓ (x)⊙GCK P

n
k (x) = P n

k+ℓ(x). (13.3)

By means of the Clifford-Appel polynomials and the generalized CK
product we can consider an axially monogenic rational function defined by

r̆(q) = D + C ⊙GCK (I − P n
1 (q)A)

−⊙GCK ⊙GCK (P n
1 (q)B)

=
∞∑
n=0

P n
1 (q)CA

nB, (13.4)

where A, B , C and D are matrices of suitable sizes. Formula (13.4) can be
also useful to introduce the counterpart of Shur analysis for axially mono-
genic functions.

13.0.3 A generalized Cauchy-Kovalevskaya extension for axially har-
monic functions

In general, every monogenic function defined at Rn is determined by its
restriction to the hyperplane x0 = 0. On the other hand, any real-analytic
function f(x) defined in a region of Rn, has a unique monogenic extension
f(x0, x) called Cauchy-Kovalevskaya extension (CK-extension). However,
it is possible to deal with restrictions to submanifolds not only of codimen-
sion one but of arbitrary codimension. This kind of expansion is called
generalized CK-extension (GCK-extension).

Our aim is to construct a similar tool for the axially harmonic functions
in the Clifford algebra setting. This will be helpful to find a splitting of
diagram (7.36). Now we state the generalized CK-extension for axially
harmonic functions that we are investigating at the moment.

Theorem 13.0.7. Let A0 and A1 be two Clifford-valued functions of one
real variable x0, defined in an open subset Ω1 of the real line. Then there
exist a unique sequence of functions {Aj}j∈N0 such that the series

f(x0, x) =
∞∑
j=0

xjAj(x0) (13.5)

395



i
i

“thesis” — 2022/12/4 — 11:25 — page 396 — #414 i
i

i
i

i
i

Chapter 13. Conclusion and further research in progress

converges in an axially symmetric (n+ 1)-dimensional neighborhood Ω of
Ω1 and such that f(x0, x) is harmonic (i.e. ∆Rn+1f(x0, x) = 0).
Moreover,

f(x0, x) = Γ
(n
2

)( |x|∂x0
2

)[(
|x|∂x0
2

)−n
2

Jn
2
−1(|x|∂x0)[A0(x0)]

+
nx

2
Jn

2
(|x|∂x0) [A1(x0)]

]
, (13.6)

where Jν is the Bessel function of the first kind of order ν. Formula 13.6 is
known as the generalized CK-extension of A0 and A1, and it is denoted by
HGCK[(A0, A1)](x0, x). The initial functionsA0 andA1 can be recovered
by

f(x0, x)|x=0 = A0(x0),

− 1

n
∂x[f(x0, x)]|x=0 = A1(x0).

One of the main difference with respect the monogenic generalized CK
extension is the presence of two initial functions, namely A0 and A1.

Now, we have all the tools to split diagram (7.36).

Theorem 13.0.8. Let f(z) = α(u, v)+iβ(u, v) be an intrinsic holomorphic
function defined on an intrinsic complex domain Ω2 ⊂ C. Then for n ≥ 3
and odd we have

∆
n−3
2

Rn+1D[f(x0 + x)] = γnHGCK[(f (n−2)(x0), 0)]. (13.7)

Setting Ω1 = Ω2 ∩ R, we obtain the following diagram

A(Ω1)⊗ Rn SH(Ω)

(A(Ω1)⊗ Rn)
2 AH(Ω)

A(Ω1)⊗ Rn AM(Ω)

S

γn(∂
n−2
x0

,0) ∆
n−3
2

Rn+1D

HGCK

∂x0P1 D

GCK

(13.8)

where S is the slice operator and P1 is the projection of the first component.
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The previous theorem sheds light on the nature of Fueter operator.

Corollary 13.0.9. Let f(z) = α(u, v) + iβ(u, v) an intrinsic holomorphic
function. Then

D[f(x0 + x)] = −2HGCK[(f (1)(x0), 0)].

Our next aim is to solve the following problem

Problem 13.0.10. Develop generalized CK extensions for polyharmonic,
polyanalytic, holomorphic Cliffordian and polyanalytic Cliffordian func-
tions. Moreover we would like to figure out if these possible extensions are
related to the Fueter-Sce map.
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CHAPTER14
Appendices

We add the appendices A and B due to the lack of references. In the ap-
pendix C it is possible to visualize all the possible fine structures explained
in Chapter 12.

14.0.1 Appendix A: Complex Hermite polynomials

We prove an orthogonality relation for the complex Hermite polynomials,
with a general parameter α > 0. Then, we show some basic properties of
the Hermite polynomials, for a general parameter ν > 0. We consider the
complex Hermite polynomials defined by

Hα
m,p(z, z) = (−1)m+peα|z|

2 ∂m+p

∂zm∂zp

(
e−α|z|

2
)
, α > 0.

First, using some direct calculations we observe that we have

Hα
0,p(z, z) = αpzp

and
Hα

1,p(z, z) = αp+1zzp − αppzp−1.
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Chapter 14. Appendices

In order to revise the calculations of the complex Hermite polynomials
norm inL2,α(C) := L2(C, e−α|z|2dλi(z)), where dλi(z) denotes the Lebesgue
measure of the complex plane C. We follow the ideas of [98]. Let us con-
sider the operator given by

A := − ∂

∂z
+ αz.

Then, we can prove the following result.

Lemma 14.0.1. For all m ∈ N, we have

Am ((αz)p) = Hα
m,p(z, z).

Proof. We use an induction process to prove this result. Firstly, for m = 1
we have

A ((αz)p) = −αppzp−1 + αp+1zzp

= Hα
1,p(z, z).

Now, let us suppose that this relation holds for m and prove it for m + 1.
Indeed, we use the induction hypothesis combined with the Leibniz rule to
get

Am+1 ((αz)p) = A
(
Hα
m,p(z, z)

)
= −(−1)m+p

(
αzeα|z|

2 ∂m+p

∂zm∂zp
e−α|z|

2

+ eα|z|
2 ∂m+p+1

∂zm+1∂zp
e−α|z|

2

)
+ (−1)m+pαzeα|z|

2 ∂m+p

∂zm∂zp
e−α|z|

2

= Hα
m+1,p(z, z).

Thus, the result holds by induction, this ends the proof.

Theorem 14.0.2. Let α > 0 and m, p ∈ N. Then, we have

||Hα
m,p(z, z)||L2,α(C) = αp+m−1πm!p! .

Proof. We set φp(z) = (αz)p, then using direct computations we obtain

Hα
m,p(z, z) = Am (φp(z))

=

(
− ∂

∂z
+ αz

)m
(φp(z))

= αp
m∑
j=0

(−1)j
(
m

j

)(
∂j

∂zj
Mm−j

z (zp)

)
αm−j,
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where the conjugate multiplication operator is given by Mzf = zf . Then,
using the fact that(

∂

∂z

)j
zp =

Γ(p+ 1)

Γ(p− j + 1)
zp−j, j = 0, 1, 2, ...

we obtain

Hα
m,p(z, z) = αpm!

m∑
j=0

(−1)j
p!

j!(m− j)!(p− j)!
αm−jzp−jzm−j.

Then, we pass to the polar coordinates z = reiθ with r ≥ 0 and θ ∈ [0, 2π]
and get

Hα
m,p(re

iθ, re−iθ) = αpm!eiθ(p−m)

m∑
j=0

p!(−1)j

j!(m− j)!(p− j)!
αm−jrp+m−2j.

We change the summation index to k = m− j, so we get

Hα
m,p(re

iθ, re−iθ) = αpm!eiθ(p−m) (14.1)

·
m∑
k=0

p!(−1)m−k

(m− k)!k!(p−m+ k)!
αkrp−m+2k.

After that we use the classical formula for the generalized Laguerre
polynomials given by

Lβm(x) :=
m∑
k=0

(−1)k
(
m+ β

m− k

)
xk

k!
.

Thus, if β := p−m, with p > m we have

Lp−mm (x) :=
m∑
k=0

(−1)k
p!

(m− k)!(p−m+ k)!

xk

k!
.

In particular, from the formula (14.1) we get

Hα
m,p(re

iθ, re−iθ) = αpm!(−1)meiθ(p−m)rp−mLp−mm (αr2).

Now, we compute the orthogonality relation using the Fubini’s theorem.
Let m′, p′ ∈ N and dλi(z) be the Lebesgue measure in the complex plane,
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then we have

⟨Hα
m,p(z, z̄), H

α
m′,p′(z, z̄)⟩L2,α(C) =

∫
C
Hm,p(z, z)Hm′,p′(z, z)e

−α|z|2dλi(z)

= α2p(m!)(m′!)(−1)m(−1)m
′
(∫ 2π

0

eiθ(p−m)e−iθ(p
′−m′)dθ

)
·
(∫ ∞

0

rp−mrp
′−m′

rLp−mm (αr2)Lp
′−m′

m′ (αr2)e−αr
2

dr

)
.

We set ℓ := p−m and ℓ′ = p′ −m′. Thus we get

⟨Hα
m,p(z, z̄), H

α
m′,p′(z, z̄)⟩L2,α(C) = 2πα2p(m!)(m′!) ·

·(−1)m(−1)m
′
δℓ,ℓ′

(∫ ∞

0

rp−m+1rp
′−m′

Lp−mm (αr2)Lp
′−m′

m′ (αr2)e−αr
2

dr

)
.

Since ℓ = p−m = p′−m′ = ℓ′ we derive that p = m+ ℓ and p′ = m′+ ℓ.
Therefore

⟨Hα
m,p(z, z̄), H

α
m′,p′(z, z̄)⟩L2,α(C) = ⟨Hα

m,m+ℓ(z, z̄), H
α
m′,m′+ℓ(z, z̄)⟩L2,α(C)

= 2πα2p(m!)(m′!)(−1)m(−1)m
′
(∫ ∞

0

rℓ+1rℓLℓm(αr
2)Lℓm′(αr2)e−αr

2

dr

)
= 2πα2p(m!)(m′!)(−1)m(−1)m

′
(∫ ∞

0

r2ℓ+1Lℓm(αr
2)Lℓm′(αr2)e−αr

2

dr

)
.

We know that (see [90] pag. 809 paragraph 7.414 formula 3)∫ ∞

0

Lγk(t)L
γ
j (t)t

γe−tdt =
Γ(γ + k + 1)

k!
δk,j.

Then, we use the following change of variables s = αr2 and get

⟨Hα
m,p(z, z̄), H

α
m′,p′(z, z̄)⟩L2,α(C) =πα

2p−1(m!)(m′!)(−1)m(−1)m
′ ·

·
∫ ∞

0

( s
α

)ℓ
Lℓm(s)L

ℓ
m′(s)e−sds

=πα2p−1−ℓ(m!)2
Γ(m+ ℓ+ 1)

m!
δm,m′ .

Since ℓ = p−m and p−m = p′ −m′ we get

⟨Hα
m,p(z, z̄), H

α
m′,p′(z, z̄)⟩L2,α(C) = παp+m−1m!Γ(p+ 1)δp,p′δm,m′

= παp+m−1m!p!δm,m′δp,p′ .
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Therefore

∥Hα
m,p(z, z̄)∥2L2,α(C) = παp+m−1m!p! .

Remark 14.0.3. In particular, for α = 2π we obtain

⟨H2π
m,p(z, z̄), H

2π
m′,p′(z, z̄)⟩L2,α(C) =

m!p!(2π)p+m

2
δm,m′δp,p′ .

14.0.2 Appendix B

Let us consider the following function for ν > 0

W (x, t) = e−
ν
2
t2+ν

√
2xt =

∞∑
n=0

Hν
n(x)

n!

tn

2
n
2

,

where Hν
n are the weighted Hermite polynomials defined by

Hν
n(x) = (−1)neνx

2

(
d

dx

)n
e−νx

2

= n!

[n2 ]∑
m=0

(−1)n(2xν)n−2m

m!(n− 2m)!
.

Putting t =
√
2λ we get

W (x, λ) = e−νλ
2+2νxλ =

∞∑
n=0

Hν
n(x)

n!
λn. (14.2)

Relabelling λ with t we call the function W (x, t) in (14.2) as the gen-
erating function of the weighted Hermite polynomials. In order to obtain a
recurrence relation, which relates the weighted Hermite polynomials with
their consecutive indices, we derive the equation (14.2) with respect to t:

∂W (x, t)

∂t
= (−2νt+ 2νx)e−νt

2+2νxt =
∞∑
n=1

nHν
n(x)

tn−1

n!
.

Using another time the generating function (14.2) we obtain

−2ν
∞∑
n=0

Hν
n(x)

tn+1

n!
+ 2νx

∞∑
n=0

Hν
n(x)

tn

n!
=

∞∑
n=1

Hν
n(x)

tn−1

(n− 1)!
. (14.3)
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By a change of indices in the first sum we get

−2ν
∞∑
n=1

Hν
n−1(x)

tn

(n− 1)!
= −2ν

∞∑
n=1

nHν
n−1(x)

tn

n!
.

Thus, by another change of indices in (14.3) we obtain

−2ν
∞∑
n=1

nHν
n−1(x)

tn

n!
+ 2νx

∞∑
n=0

Hν
n(x)

tn

n!
=

∞∑
n=0

Hν
n+1(x)

tn

n!
.

By identifying, the coefficients of tn we get

Hν
n+1(x) = 2νxHν

n(x)− 2nνHν
n−1(x). (14.4)

It is possible to derive another recurrence relation satisfied by the weighted
Hermite polynomials. We set t =

√
2λ as in (14.2) and after we differenti-

ate W (x, t) with respect to x

∂

∂x
W (x, t) = 2νte−νt

2+2νxt =
∞∑
n=0

(
d

dx
Hν
n(x)

)
tn

n!
.

Using the generating function we obtain

2ν
∞∑
n=0

Hν
n(x)

tn+1

n!
=

∞∑
n=1

(
d

dx
Hν
n(x)

)
tn

n!
.

By a change of variables we can identify the coefficients of tn to get

d

dx
Hν
n(x) = 2νnHν

n−1(x). (14.5)

Remark 14.0.4. If we put ν = 1 in the formulas (14.4) and (14.5) we
recover the classical formulas that can be found in [107].

14.1 Appendix C: visualization of all possible fine structures
in dimension five

In this appendix we show all the possible fine structures in dimension five.
Firstly, we recall the symbols of the classes of functions involved

ABH(ΩD): axially bi-harmonic functions,
ACH1(ΩD): axially Cliffordian holomorphic functions of order 1
AH(ΩD): axially harmonic functions,
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14.1. Appendix C: visualization of all possible fine structures in dimension
five

AP2(ΩD): axially polyanalytic of order 2,
ACH1(ΩD): axially anti Cliffordian of order 1,
ACP(1,2): axially polyanalytic Cliffordian of order (1, 2),
AP3(ΩD): axially polyanalytic of order 3.

If we apply first the Dirac operator we have the following diagram

O(D)

ACH1(ΩD)

ABH(ΩD)
D

D

AH(ΩD)
D

AM(ΩD)
∆D

AH(ΩD)∆ D

ACH1(ΩD)

∆

AH(ΩD)

AP2(ΩD)

D

D

D

D

D

D

SH(ΩD)
TFS1

D2

If we apply fist the conjugate of the Dirac operator we get

O(D)

TFS1

SH(ΩD)
D

APC(1,2) (ΩD) AM(ΩD)
∆D

D

D

∆

AP2(ΩD)

D

AP3(ΩD)

ACH1(ΩD)

∆

D

D

AP2(ΩD)

AH(ΩD)

D

D

AP2(ΩD)
D

D
D2

Finally, all the other possible fine structures are given by the diagram:
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O(D)

TFS1

SH(ΩD)

D

D

AM(ΩD)

AH(ΩD)

∆
ACH1(ΩD)

∆

AP2 (ΩD)

D

D∆D

∆D
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