
Anomaly Detection in Elderly Behavior Using TinyML and UWB

Radar

Tesi di Laurea Magistrale in

Computer Science Engineering - Ingegneria Informatica

Alessandra Fiore, 991745

Advisor:
Prof. Maneul Roveri

Co-advisors:
Massimo Pavan

Academic year:
2022-2023

Abstract:
In the context of elderly care, there is an emerging need for advanced technologies
that can improve health care delivery. This is due to the fact that the elderly pop-
ulation is increasing and with it the challenges related to the health and well-being
of the elderly. Machine Learning (ML) technologies can provide valuable support
for health carers in identifying significant changes in the conditions of patients un-
der their care. At the same time, the technologies in this field, in order to be used
and accepted by the final user, require to be non-invasive, discrete and respectful
of each one habits and lifestyle. Wearables and smart cameras are examples of
technologies that showed this kind of rejection from the elderly population: wear-
ables require, in fact, to be constantly carried by the users in order to work, while
cameras are often perceived as too invasive of the final user privacy.
In this context, we propose an innovative Ultra-Wide-Band (UWB) radar-based
distributed solution employing two distinct ML algorithms hierarchically working
together, with the objective of enhancing privacy while taking into account the
perception of older users. The two algorithms, namely the in-sensor distance and
presence estimation algorithm and the anomaly detection algorithm, are designed to
be run together on different devices of a distributed ML pipeline. The in-sensor al-
gorithms have been specifically designed to match the severe constraints that char-
acterize the TinyML environments. It is meant to be run on multiple UWB-radar
sensors distributed in all the rooms of a house, and, inputing high-dimensional
radar matrices, it outputs the presence and the distance of a target in a room. The
Anomaly Detection (AD) algorithm is then executed on an edge device, gather-
ing the output of all the smart sensors with the objective of detecting significant
deviations from the standard habits of the patient. The presented distributed solu-
tion encompassing smart, tinyML enabled, UWB-radar sensors present a promising
approach to the enhancement of elderly care, offering a privacy-preserving and non-
invasive solution that can enhance the quality of life for seniors while at the same
time limiting the burden on their carers.

Key-words: Tiny Machine Learning, Ultra-Wideband Radar, Anomaly detection, Indoor positioning,
Deep Neural Networks

1

Contents

1 Introduction 3
1.1 Problem and Formulation . 3
1.2 Thesis Structure . 4

2 Background 5
2.1 Machine Learning . 5

2.1.1 Deep Learning and Convolution Neural Networks . 5
2.1.2 TensorFlow . 6

2.2 Introduction to TinyML . 6
2.2.1 Model Compression Methods: Quantization and Pruning 8
2.2.2 TensorFlow Lite for Microcontrollers . 8

2.3 UWB Radar . 8
2.3.1 Application of UWB radar in Localization problem . 9

2.4 One Class Classification for outliers detection . 9
2.4.1 One Class Support Vector Machine . 9

3 Related Work 11

4 Problem Formulation 12

5 Proposed Solution 13
5.1 In-sensor Presence Detection . 14

5.1.1 Problem Formulation . 14
5.1.2 Preprocessing, Algorithm, Output . 14
5.1.3 Dataset . 16

5.2 In-sensor Distance Estimation . 16
5.2.1 Problem Formulation . 17
5.2.2 Preprocessing, Algorithm, Output . 17
5.2.3 Dataset . 18

5.3 Anomaly Detection for Time Series . 19
5.3.1 Problem Formulation . 19
5.3.2 Preprocessing, Algorithm, Output . 20
5.3.3 Dataset . 21

5.4 Evaluation . 21
5.4.1 Accuracy . 21
5.4.2 Mean Absolute Error . 22

6 Results 23
6.1 Results of Presence Detection . 23
6.2 Results of Distance Estimation . 24
6.3 Results of Anomaly Detection . 25

7 Conclusion 29

2

1. Introduction

1.1. Problem and Formulation

Machine learning has evolved into a fundamental element of contemporary technology. The combination of
edge computing and the Internet of Things (IoT) offers a new avenue for applying machine learning techniques
on resource-constrained embedded devices located at the edge of the network. Traditional machine learning
typically demands significant power resources to perform predictions. However, the emergence of TinyML aims
to transfer this burden from conventional high-end systems to low-end clients [31].
Machine learning technologies are also growing popular in elder care because to their effectiveness in patient
management and monitoring, resulting in a higher standard of care.
UWB is an innovative radar technology mainly used for short-range communication and imaging [30]. UWB
radar systems typically operate at low power levels and work on a wide frequency spectrum, enabling high
resolution and precision in applications like imaging and localization. UWB technology is of particular interest
in the context of home care since images produced by this type of sensor do not allow for recognition of the
identity of a target, but are precise enough to track their activities. UWB-radar devices employing this type of
sensors can be very discrete, considering they can even be embedded inside of walls, and non-invasive, as they
do not need to be carried on the patient.
The primary goal of this thesis is to create an effective solution for monitoring the behavior of older individuals
in home environments in order to detect behavioral anomalies early and deliver relevant notifications.
To achieve this goal, we designed a novel smart sensor solution, encompassing an Ultra-Wide-Band (UWB)
radar sensor, an in-sensor tinyML algorithm, and an anomaly detection algorithm that uses the outputs of
sensors deployed on all rooms of the house.
The TinyML algorithm, exploiting the UWB-radar data, allows us to assess both the presence and distance of
an individual within the various rooms, thus enabling comprehensive and detailed monitoring of movement and
activity within the home environment.
Successively, we propose the usage of an anomaly detection algorithm on an edge device that can identify
deviations from the standard habits of the patient by collecting data in output from the TinyML algorithm.
These two technologies enable the privacy-preserving analysis of data coming from multiple sensors, reducing by
a lot the communication of data outside of each device and of the whole ecosystem. A schematic representation
of the system can be seen in Figure 1.

Figure 1: Architecture of the system.

The TinyML algorithm consists of a combination of two Convolutional Neural Networks, one for classification
and one for regression, trained on data collected directly using the NXP UWB-SR 160 radar, the target hardware

3

that will be used also in the deployment phase.
The anomaly detection (AD) algorithm consists of a one-class SVM (OCSVM) trained directly on the data
collected through the first period of use of the device personalizing it on the habits and schedules of the specific
patient. All the data collected in this phase are considered representative of the standard behavior of the patient
in the house.

After this phase, the algorithm becomes able to notify a carer about possible anomalies occuring in the house
of the elder.

1.2. Thesis Structure

Chapter 2 of this thesis provides an introduction to machine learning, specifically delving into the topic of
deep learning. It also lays out the fundamentals of TinyML and UWB radar technology, on which the research
is based, and provides background on classification using SVM. Chapter 3 presents some articles focused on
indoor positioning, highlighting how UWB radar technology offers significant advantages in this area of study.
Chapter 4 describes the problem formulation, while chapter 5 describes the proposed solution, providing a more
detailed description of the algorithms used and how they work together in a pipeline. Chapter 6 shows the
results obtained from the proposed solution. Chapter 7 outlines the conclusions of the work.

4

2. Background

This section introduces essential topics for understanding the subsequent chapters. In particular, it will be
explained what machine learning is and its advantages with respect to traditional algorithms. Subsequently, a
special case of machine learning, deep learning, will be described, focusing on convolutional neural networks,
essential for carrying out this thesis. Finally, some general information will be provided on the TensorFlow
library, useful for designing neural networks.

2.1. Machine Learning

Within the broad field of artificial intelligence (AI), there is a special field called machine learning (ML). This
subset is dedicated to fields of science and engineering that focus on the development of intelligent machines
that can perform human-like tasks. Specifically, machine learning allows computers to learn on their own,
eliminating the need for explicit programming. This is different from target programming, where functions are
defined using formulated rules that clearly and statically define their behavior.
The advantage of the machine learning algorithm is obvious. A machine learning algorithm gathers knowledge
from established data features and past experience (a learning process called training) to provide accurate
predictions for new cases using knowledge from trained datasets, instead of time-consuming and trial-and-error
methods, developing a unique program for each specific domain problem [13, 39].
In certain situations, the use of this customary method based on rules can create obstacles in extracting meaning
from the data. In such cases, machine learning is used.
The growing demand for machine learning is due to the fact that many data sets are now available, and its
ability to extract information from data is a significant advantage [23].

An artificial neural network (ANN) is a widely used machine learning algorithm inspired by the central nervous
system and operating according to principles controlled by the human brain. ANNs typically consist of complex
connections between neurons that allow messages to be passed between them.
The algorithm consists of three layers: an input layer for receiving input, a hidden layer for processing, and
an output layer responsible for storing the final output. The connections between layers are formed by these
weighted neurons, and during the training phase, the algorithm tries to modify these weights so that the system
learns to create connections between the input and output layers [13].

2.1.1 Deep Learning and Convolution Neural Networks

Deep learning is a part of machine learning [34]. It involves neural network with multiple hidden layers, struc-
tured in deeply nested network architectures. Moreover, these networks generally contain advanced neurons,
which distinguishes them from simple artificial neural networks. These features allow deep neural networks to
receive raw input data and autonomously find the representation needed for the given learning task. Hence,
deep learning proves to be particularly useful in fields dealing with extensive and high-dimensional data. This
explains why deep neural networks outperform machine learning algorithms in various applications [14].

The Convolutional Neural Network (CNN) stands out as one of the most widely used deep neural networks,
demonstrating exceptional performance in various machine learning problems. This is particularly suitable for
applications involving image data. It derives its name from a mathematical linear operation among matrices
known as convolution [1], that consist in taking input images and convolving them with filters or kernels to
extract features [4].

Convolutional neural networks are made up of a series of layers, each of which plays a specific role in processing

5

input data. The five main layers that make up a CNN are:

• Input layer. Responsible for storing raw data,
• Convolution layer. Performs a dot product between the image and various filters to generate the output

volume,
• Activation function layer. Apply an activation function to each element of the output of the convolutional

layer,
• Pool layer. It is designed to improve the storage efficiency of the output of previous layers and reduce

the computational cost,
• Fully connected layer. It takes input from previous layers and produces a one-dimensional array of

computed class results [15].

2.1.2 TensorFlow

Originally created by researchers at Google, TensorFlow stands out among the many alternatives as a deep
learning library.
In the expansive domain of deep learning, neural networks have achieved significant success, enjoying widespread
popularity across various fields. Given its flexibility and scalability, this class of models has enormous potential
for advancing data analysis and modeling in educational and behavioral sciences. However, the implementation
of these complex models and optimization algorithms is a time-consuming and error-prone task.
TensorFlow is an important helper that greatly streamlines and accelerates both the research and application
of neural network models. This tool proves invaluable in mitigating the challenges associated with the complex
processes involved, making it a cornerstone for researchers and practitioners navigating the complex landscape
of deep learning.
In particular, TensorFlow serves as a versatile and scalable software library designed for numerical computations
through dataflow graphs. This collection of tools allows users to adeptly code, train, and deploy a variety of
machine learning models, with a particular focus on neural networks. The functionality extends to production
deployment, and TensorFlow offers APIs in multiple languages, with the Python API standing out as the most
comprehensive and stable option.
Basically, a TensorFlow program involves two main phases: construction and execution.

• During the construction phase, TensorFlow functions are leveraged to create a computational graph that
embodies a machine learning model. This graph, comprising edges and nodes, symbolizes the flow of
data as tensors (e.g., vectors, matrices) through the system, according to the library’s namesake. Nodes,
called operations, describe computations (e.g., addition, multiplication) on tensors, taking inputs and
generating outputs. TensorFlow provides fundamental components like fully connected and convolutional
layers, along with nonlinear activation functions. The library also provides diverse loss functions, including
cross-entropy and mean squared error (MSE).

• Upon entering the execution phase, the computational graph is made to move through a series of updating
steps, aiming to train and enhance the model parameters.

This dual-phase structure highlights TensorFlow’s role in both constructing intricate machine learning models
and executing them for iterative improvement [29].

2.2. Introduction to TinyML

Whitin the domain of efficient machine learning, there exist two primary subdomains: edge machine learning
(EdgeML) and cloud machine learning (CloudML).

6

CloudML is dedicated to improving latency and throughput on cloud servers, while EdgeML is focused on im-
proving energy efficiency, latency, and privacy on edge devices. In particular, significant progress has been made
in extending the scope of EdgeML to include ultra-low-power devices such as IoT devices and microcontrollers
(MCUs), referred to as tiny machine learning (TinyML).
TinyML is a research topic focused on creating machine and deep learning models and algorithms that can run
on resource-constrained devices including IoT or edge devices.
This approach offers several significant advantages. It facilitates machine learning with a minimal memory foot-
print, often utilizing only a few hundred kilobytes, which significantly reducing costs. By employing TinyML
for ultra-low power tasks at the edge, a new approach called ML sensor emerges, providing a design where AI
functionalities are not simply appended via cloud or mobile connections but are integrated within the sensor
device itself. ML sensors provide a new paradigm for sensing by moving processing and analysis to the device
rather than the cloud. This strategy gives priority to the proximity of data resulting in lower latency and in-
creased data privacy as raw data is never transmitted. For this reason, the on-device processing of data proves
advantageous in applications where real-time decision-making is paramount [22, 24, 38].
In TinyML, computational processes occur in close proximity to sensors, introducing new data analysis methods
that were previously unavailable in resource-constrained settings. Key performance indicators that reinforce
the effectiveness and necessity of TinyML can be delineated as follows:

a. Transition from Non-intelligent to Intelligent IoT Devices:
Significant raw data generation from sensor systems limits cloud computing and the ability to process
such data. Consequently, a significant portion of data remains unused at the edge without being delivered
to the cloud. TinyML offers the ability to analyze this data in resource-constrained settings by integrating
intelligence into each IoT device through the incorporation of machine learning algorithms.

b. Network Bandwidth:
Compared to standard IoT services, TinyML offers greater independence, enabling low data transmission
and potentially reducing bandwidth requirements. Analyzing raw data at the edge before transmission,
particularly in dense IoT frameworks, significantly reduces the high bandwidth demand. This indepen-
dence results in more efficient data transmission.

c. Security and Privacy:
By avoiding extensive data transmission and limiting data to the device, TinyML enhances security and
privacy. In TinyML, data either does not move or moves minimally, reducing exposure to potential
attacks. Consequently, security and privacy features are embedded in TinyML by default and design.

d. Latency:
The traditional IoT system involves the transfer of sensor data from IoT devices to cloud servers, culmi-
nating in receiving cloud-computed decisions or predictions. This sequence introduces significant latency,
which requires analysis close to the device. TinyML serves as a foundation for providing significantly
reduced, near-zero latency, as it relies less on external communication.

e. Reliability:
TinyML has been identified as a solution for on-site tasks, especially in areas with limited cellular con-
nectivity or internet access. This change significantly increases the reliability of IoT services.

f. Low Cost:
Reducing data traffic, and consequently bandwidth requirements, leads to a reduction in data transmission
and communication costs [8].

Despite the benefits, there are some challenges to navigate: the efficiency of deep learning models often comes
with significant computational requirements, which prevent their integration into TinyML applications due
to the severe resource limitations of devices like microcontrollers [22]. Creating Machine and Deep Learning

7

(MDL) solutions that can run on these small devices requires a complete overhaul and redesign of MDL models
and algorithms. It is important to consider the significant constraints on memory, computation, and power
consumption inherent in these devices. This is precisely the domain where TinyML becomes instrumental. It
involves the design, development, and deployment of MDL models and algorithms tailored for small devices.
TinyML typically introduces compact MDL architectures and approximate computing solutions (such as quan-
tization, pruning) to accommodate the stringent technical limitations characterizing these small-scale devices
[30].

2.2.1 Model Compression Methods: Quantization and Pruning

The challenges mentioned above can be successfully addressed using optimization methods such as network
compression. Network compression is often achieved with minimal compromise in accuracy, and in some cases,
has the potential for improvement, making it a viable solution. Two commonly used techniques for compressing
networks are pruning and quantization [21]. The goal is to reduce memory and energy required to perform
inferences over large networks and facilitate implementation on small devices [11].

• Network pruning stands as a crucial method for reducing both memory size and bandwidth. By removing
redundant parameters or neurons that do not significantly contribute to accuracy, pruning addresses
situations where weight coefficients are zero, close to zero, or duplicated. This process effectively reduces
the computational complexity [21].

• Quantization is defined as the procedure of approximating a continuous signal with a collection of dis-
crete symbols or integer values. This approach specifically aims to reduce the model’s storage cost. In
particular, weight quantization involves discretizing the range of weight values, allowing each weight to
be expressed using a smaller number of bits [21, 44].

2.2.2 TensorFlow Lite for Microcontrollers

TensorFlow Lite Micro (TFLM) is a customized version of TensorFlow [40]. It is an open-source machine learning
inference framework designed for running deep-learning models on embedded systems. TFLM addresses the
challenges associated with limited resources and platform differences in embedded systems, challenges that
typically prevent cross-platform compatibility. The framework adopts a unique interpreter-based approach,
providing flexibility to overcome these specific challenges. In particular, a trained model, such as a TensorFlow
model, can be transformed into a TensorFlow Lite ’.tflite’ model file using an exporter. Once converted, this
file can be installed on a client device, like a mobile device or embedded system, and executed locally using the
TensorFlow Lite interpreter [7].
TFLite is specifically designed to operate machine learning models on hardware with restricted computational
capabilities. It employs techniques like quantization and pruning to decrease the model’s size and improve its
speed. Moreover, it features a fine-tuned runtime to ensure the efficient execution of models across various
embedded devices [40].

2.3. UWB Radar

Ultra-Wideband (UWB) radar belongs to a class of radio systems characterized by very wide bandwidths,
ranging from 3.1 to 10.6 GHz [5]. This means that it enables the frequency spectrum to be shared among
different users.This means that it enables the frequency spectrum to be shared among different users, helping
to manage interference and signal path complexity in radio communications [36].
An ultra-wideband radar functions as a sensor that measures range using time-of-flight-based techniques. It
emits short pulses and captures reflected waves from objects in the surrounding environment. The resulting

8

echo waveform is the sum of these reflected waves, and the time delay for each wave depends on the distance
between the sensor and the target. The received waveform is therefore a combination of individual echoes that
vary based on the distance, material, shape and radar reflectivity of obstacles in the environment [41].

2.3.1 Application of UWB radar in Localization problem

The necessity for accurate location tracking has become more pressing, especially in environments with a lot of
obstacles where the Global Positioning System (GPS) might not always be reliable or enough precise.
Ultra-wide bandwidth technology is an effective solution for achieving precise positioning in these challenging
environments. Its unique ability to pass through obstacles makes UWB as a promising technology for ensuring
accurate localization, particularly in cluttered and challenging scenarios [6].
UWB stands out for its exceptional accuracy, which allows it to precisely locate individuals and objects within
a range of just a few centimeters. This level of precision far exceeds Bluetooth Low Energy (BLE) and Wi-Fi
current implementations by a significant margin, making UWB technology 100 times more accurate than these
existing alternatives [43].

2.4. One Class Classification for outliers detection

The traditional approach to multi-class classification is designed to classify an unknown data object into one of
several predefined classes, typically two in the case of binary classification. However, challenges arise when the
data object doesn’t fit into any of these predefined categories. In some cases, the goal of classification is not
simply to assign a test object to predetermined classes, but rather to determine whether it belongs to a specific
class or not. In the context of One-Class Classification (OCC), one class, arbitrarily labeled as the positive
or target class, is well-defined by instances in the training data, while the other class, labeled as negative or
outlier, either lacks instances or has very few of them.
Therefore, in a typical multi-class classification scenario, the definition of a decision boundary is done using
data from two or more classes, supported by the presence of data objects for each class. Traditional classifiers
generally assume relatively balanced data classes and struggle when faced with severe under-sampling or the
complete absence of any class. In One-Class Classification scenarios, either the negative data objects are scarce
or entirely absent, allowing only one side of the classification boundary to be determined based on positive
data (or some negatives). The objective in OCC is to delineate a classification boundary around the positive
class, trying to include as many objects as possible from the positive class while minimizing the probability of
receiving an outlier.

Of particular interest to this thesis are one-class classification algorithms based on One Class Support Vector
Machine (OCSVM) [16].

2.4.1 One Class Support Vector Machine

SVM, a recently developed data mining and machine learning approach, has gained wide recognition and
popularity in various domains due to its overall superior capabilities compared to traditional intelligent methods
such as neural networks. The fundamental concept of SVM involves creating a hyperplane to effectively separate
two classes of data, maximizing the margin between them. This margin is defined as the minimum distance
from the data points to the hyperplane. By transforming the datasets into a higher dimensional feature space,
linear separability is achieved, and the hyperplane is constructed within this space.
One-class SVM represents a specialized version of SVM that utilizes only a regular feature dataset during the
training phase. Its primary aim is to define a decision boundary with as much margin as possible between
regular data points and the origin. Samples falling within this boundary are classified as normal points, while

9

those outside the boundary are identified as anomalies [45].

For all the above reasons, the OCC problem is used across various research themes, including anomaly and
novelty detection [16].

10

3. Related Work

In the scientific literature, the problem of indoor location has received considerable attention, highlighting the
importance of developing reliable indoor positioning systems.
Different methods consider the use of wearable sensors by the subject or the use of cameras to monitor the sur-
roundings. However, one possible drawback to using this type of method in domestic context is that residents
have conveyed dissatisfaction with cameras due to concerns related to privacy as well as they are reluctant to
put on any sensor or label in the case of wearable sensors [27]. For example, the study conducted in [17] intro-
duce a localization method based on radio-frequency identification (RFID) technology to accurately monitor the
elderly. The RFID system consists of readers and tags. Precisely an RFID tag affixed to living beings comprises
an antenna designed to both receive and transmit RF signals, while an RFID reader establishes communication
with one or multiple tags within its range, transmitting the acquired data to the backend server for additional
processing.
Differently, the use of UWB radar for indoor tracking, as in this study, represents a totally non-intrusive system,
eliminating the need for wearable tags or sensors. This feature gives the system a significant advantage in terms
of convenience and comfort for users, as it does not require any additional device to be worn.
A significant contribution in this area is the study conducted by Samuel G. Leitch et al., who delved into the
evaluation of four different technologies within Indoor Positioning Systems (IPS): Wi-Fi, Bluetooth Low Energy
(BLE), Inertial Measurement Unit (IMU) and Ultra-Wideband (UWB) on mobile phones.
The goal of the study is to achieve an average estimation error of less than 10 cm for indoor localization. The
study has shown that among these technologies, only WiFi and UWB demonstrate the ability to achieve this
level of accuracy independently [19].
Another study led by Stefania Monica and Federico Bergenti focuses exclusively on comparing UWB and WiFi
technologies, specifically emphasizing the advantages and disadvantages associated with adopting each of these
solutions. These technologies present varying degrees of localization accuracy and are distinguished by their
diverse applications. UWB delivers highly precise localization information; however, its implementation neces-
sitates a specialized infrastructure and is not yet prevalent in mobile devices. On the other hand, WiFi provides
less accurate localization information, but it is seamlessly integrated into all contemporary mobile devices and
does not demand a dedicated infrastructure [28].
These works, utilizing UWB ranging solutions, still rely on devices (mobile phones) used as tags to be carried by
the monitored patients. On the other hand, the UWB-radar solution proposed in this thesis offers an alternative
without the need for an additional phone or tag. This method allows monitoring without requiring patients to
carry a specific device. Moreover, while these studies have investigated the use of UWB technology for indoor
localization, none have designed and developed a solution specifically for tiny devices. Such a solution is able
to perform operations or calculations quickly and efficiently using a limited amount of computational resources.
Although there are several solutions that take advantage of UWB technologies integrated into resource-constrained
devices, as demonstrated in the study on indoor presence detection in [30], the presented distributed solution
encompassing smart, tinyML enabled, UWB-radar sensors present a promising and unique approach to the en-
hancement of elderly care, offering a privacy-preserving and non-invasive solution that can enhance the quality
of life for seniors while at the same time limiting the burden on their carers.

11

4. Problem Formulation

The main objective of this research is to develop an advanced system for monitoring the behavior of elderly
people within their homes so that any anomalies or deviations from normal behavior can be quickly identified.
The problem concerns the analysis of data acquired from a UWB radar, particularly, the most recent k radar
acquisitions, being k, a parameter specific to the application, that is chosen by the designer.
The problem can be reformulated as the design of a system fυ(xt, xt−1, xt−2...xt−(k−1)) able to map the frames
of the radar (xt, xt−1, xt−2...xt−(k−1)) into the label At, being k defined as the length of the observation window,
xt the radar acquisition at time t with dimensions N×M , where N denotes the number of pulses produced and,
therefore, returned to the radar, and M denotes the number of bins, or discrete intervals of space, and At the
label where At ∈ {abnormal, normal}. Abnormal in this context refers to a pattern of behavior that deviates
significantly from the data collected in the first period of device use, which is aimed at collecting the subject’s
habits. An example of abnormal behavior might be prolonged standing in a specific position suggesting the
possibility of an undesirable event such as a fall.

12

5. Proposed Solution

In the specific context of the research, the problem has been subdivided in two interconnetted sub-problems.
One addressed the task of designing a sensor technology based on UWB and TinyML. This sensor, exploiting
data from UWB radar, was designed to identify the presence of a subject within a room and determine its
distance from the radar. In parallel, an algorithm capable of performing anomalous pattern detection in the
time series composed of the outputs of these sensors in the various rooms was developed.
The developed algorithm was designed to recognize nonconforming or unusual patterns within the time series,
thus signaling any risky situations or emergencies.
The proposed solution for the sensor problem involves the use of two TinyML algorithms, that are deployed on
the embedded devices placed in each room and analyze the radar acquisitions:

• The in-sensor presence detection algorithm, that aims to evaluate the presence or absence of the subject.
• The in-sensor distance estimation algorithm, which provides detailed information on its position in the

room in the case of detected presence.
The identification of the presence of the subject, alongside the detailed distance measurement, are important to
understand where the elderly person is located in the room, thus providing a complete picture of their behavior
and mobility within the home environment.
Subsequently, an edge device aggregates the results generated from the TinyML algorithms to compute infor-
mation related to the collected data, such as the mean and standard deviation of distances recorded for each
room in a given time window. These parameters provide a detailed overview of movement dynamics or statics
over time in elderly subjects. Utilizing the mean of distances provides an approximation of the subject’s average
positioning within each time interval, while the standard deviation offers an indication of the variability of these
positions and the amount of movement performed by the target. These metrics are crucial for understanding
behavioral patterns and detecting any anomalies or significant alterations.
These new insights are then utilized to construct a time series, which will be fed into the multi-device anomaly
detection algorithm. This algorithm will evaluate the time series to determine whether it deviates from the
subject’s typical behavior, consequently classifying it as anomaly or normal.

Figure 2: Proposed solution. In orange the TinyML algorithm. In blue the Anomaly Detection
algorithm.

13

5.1. In-sensor Presence Detection

This section concentrates on the initial aspect of the problem, which is classifying the presence or absence of a
subject. Here, we will introduce the problem, discuss the dataset utilized for the method, delve into the data
preprocessing phase, and outline the algorithm itself.

5.1.1 Problem Formulation

Let st ∈ RN×M denote the acquisition obtained by the UWB radar at time t, with st ∈ S, where S refers to
the complete collection of radar acquisitions. Here, N,M ∈ N represent the dimensions, where N denotes the
number of pulses produced and, therefore, returned to the radar, and M denotes the number of bins, or discrete
intervals of space.
The problem is assigning to data st the label yt, where yt ∈ {absent, present}.

yt = P (st) =

0 absent

1 present

5.1.2 Preprocessing, Algorithm, Output

This algorithm is based on the use of data acquired by UWB radar. It is essential to perform a preprocessing
step on the data before feeding it to the in-sensor presence detection algorithm in order to make it informative
and clean, removing any noise or superfluous information.
Each data point acquired by the radar UWB, which is rich in useful information, has a size of 11x248, where
N = 11 represents the time dimension dedicated to capturing the data point. This time interval reflects the
temporal accuracy of the radar, providing a detailed capture window. M = 248 denotes the space dimension
(spatial bins) and correspond to the information received from the return signal at each time step, evaluated
at different spatial locations. The spatial dimension contains a representation of signal amplitude and phase
alternated, expressed through complex numbers that include a real and an imaginary part, thus can be seen as
124 complex values.
Then absolute value was performed on the entire matrix. This operation, that is represented by the absolute
value between the real and imaginary part, aims to refine the representation by preserving only the amplitude
information of the signal, since the phase of the signal did not provide crucial information in this experimental
context. Consequently, the matrix was reduced to a size of 11x124 real values. This transformation greatly
simplified the data structure, retaining only the information essential for the analysis of the subject’s motion
and presence in the experiment conducted. The updated matrix configuration represents a significant step in
centralizing relevant information and reducing data complexity, making it more suitable for specific research
and interpretation needs.
Another crucial phase in processing the data involved employing the decluttering process, an essential technique
designed to eliminate extraneous noise from the dataset, preserving only pertinent information. The employed
declutter method is the moving average filter technique, that works by calculating the average over a given
range of data and subtracting this average from the original data.
Following the decluttering process, an additional data processing step was performed. Specifically, each data
matrix was subjected to targeted trimming to exclude the least informative parts of the record, that didn’t
provide information regarding the subject’s behaviors, such as those contained in the near and far spatial bins.
At the end of this phase, there was a total of 56 spatial bins, so a matrix of size 11x56 was generated.
In the last data preprocessing step, each sample undergoes normalization before being used as input for the
algorithm.

14

Normalization of data is a pre-processing technique that involves either scaling or transforming the data to
ensure each feature makes an equitable contribution.
In particular, min-max normalization was used. The approach involves linearly scaling the non-normalized data
to predetermined lower and upper bounds. Typically, the data is rescaled to fall within the range of 0 to 1:

xnorm =
x−min

max−min

This crucial pre-processing step aims to bring features within a common range, preventing larger numeric val-
ues from overshadowing smaller ones. When the relative importance of features is uncertain, normalizing the
features in the dataset ensures that they are equally significant when predicting the output class of an unknown
instance [35].

At the conclusion of this preprocessing step, the data It is ready to be used by the in-sensor presence detection
algorithm to determine the presence or absence of the subject.
To handle the task of distinguishing between presence and absence, an approach involving the use of a Convo-
lutional Neural Network functioning as a binary classifier was implemented. This choice was driven by CNN‘s
ability to independently and efficiently acquire essential image features [20].
The model was formulated as Sequential Models utilizing TensorFlow’s Keras API and consists of several layers
that play a specific role in the feature extraction and classification process. Its input layer is a Conv2D layer
specifically engineered to process input images formatted as two-dimensional matrices sized 11x56. It used 16
3x3 filters and relu activation function. Then, a second Conv2D, now with 32 filters, is employed for detecting
more complex and abstract patterns of the input.
After each Conv2D layer, a MaxPooling2D layer was added to reduce the spatial dimensions of the input.
Next, through the Flatten layer, the data is transformed into a one-dimensional vector before moving to the
Fully connected layer and the network output layer.
Before the output layer, the CNN includes a Dropout layer. The Dropout layer randomly removes some units
and their connections from the neural network during the training phase. This reduces overfitting, a situation
where the model fails to generalize successfully from observed to unseen data.[37, 46].
This dropout layer is included at a rate of 10%. This means that during training, 10% of the units are randomly
deactivated at each iteration.
The class head of the neural network consists of a single dense layer with one node and sigmoid activation
function. This layer produces a number between 0 and 1, with 1 denoting a high probability of presence and 0
a low probability. The L2 regularization, set to 0.0001, is incorporated in this layer. This regularization param-
eter adds a penalty as the complexity of the model increases, so the model generalizes the data and prevents
overfitting [26].

Layer Hyperparameters
Conv2D (16, (3,3), activation=’relu’, input_shape=(11, 56, 1))

MaxPooling2D (2, 2)
Conv2D (32, (3,3), activation=’relu’)

MaxPooling2D (2, 2)
Flatten ()
Dense (50, activation=’relu’)

Dropout (0.1)
Dense (1, activation=’sigmoid’, kernel_regularizer=l2(0.0001))

Table 1: CNN Architecture for Presence Detection.

15

It is important to note that careful parameter selection was made in the design of the neural network model,
as it directly affects the performance and robustness of the system. In this context, a thoughtful approach
was taken in selecting key parameters, such as the number of filters for convolution layers, dropout rate and
regularization term, carefully balancing performance requirements and efficiency in memory utilization.
After experimenting with numerous combinations of these parameters, the final setting was chosen based on
the combination that provided the best balance of accuracy and occupied memory.

5.1.3 Dataset

For the training of the CNN, a dataset acquired through ultra-wideband radar was used. This approach aims
to ensure that the CNN is finely tuned to process real-world data.
Specifically, a total of 805 data with N = 11 and M = 56 were acquired, each lasting 1.1 seconds thus with a
frequency of 10Hz. These data were categorized into two distinct classes: the first includes situations in which
a subject was positioned within the range of the radar, generating data in which the presence of an object was
detected. The second class, on the other hand, includes data corresponding to situations in which there were
no objects detected within the radar range, thus representing the absence condition. In particular, there are
322 cases corresponding to "non-presence" situations; the remaining number of data, 483, represents "presence"
situations, so as to ensure a balanced representation, thus contributing to accurate classifier training. The
division of data into the three sets - training, validation, and test sets - is described later in Chapter 6.1.

(a) ’Absent’ data acquired.

(b) ’Present’ data acquired.

Figure 3: Date acquired by radar in the presence and absence of a subject.

5.2. In-sensor Distance Estimation

This section delves into the challenge of estimating the distance between the subject and the radar. We will
introduce the issue and illustrate the model utilized to tackle it. Furthermore, we will explore the rationale
behind selecting this model and justify its suitability for resolving this specific problem.

16

5.2.1 Problem Formulation

This problem uses the same UWB radar acquisition st ∈ RN×M previously described for the presence detection
problem in Section 5.1.1.
This time, the goal is to assign to the data st a value d representing the distance between the subject and the
radar. In particular, distance d is used to determine the position of the subject inside the room with a range
between values around 0.50 to approximately 2.50 meters.

d = D(st)

5.2.2 Preprocessing, Algorithm, Output

For data input to the distance estimation algorithm, the preprocessing step is identical to that used for data
input to the presence detection algorithm.
A second Convolutional Neural Network was employed to solve the distance estimation problem. The parameters
used were chosen following the same careful selection of parameters made for the presence detection algorithm.
In particular, it has the same two Conv2D layers, but in contrast to the network utilized for presence/absence
classification, this particular network was set up for regression. The network uses a dropout rate of 0 and
as output layer it uses a single neuron with L2 regularization set to 0.0001 and liner activation function that
produces a continuous value as output. This implies that its objective is to forecast a continuous variable
(distance) rather than a discrete one.
In the output layer, the activation function is set to ‘linear’ instead of ’sigmoid’. Its definition is as follow
F (x) = ax. In other words, a linear activation function is directly proportional to the input [33]. This
choice reflects the nature of regression, where the goal is to predict continuous quantities rather than binary
probabilities. "Linear" activation allows the network to produce outputs that can vary over a continuous range
without any probability constraints.
In particular, this network was trained using data containing information about the actual distance from the
radar. Configured to understand and forecast continuous distances, the network enables precise estimation of
the subject’s position relative to the radar.

Layer Hyperparameters
Conv2D (16, (3,3), activation=’relu’, input_shape=(11, 56, 1))

MaxPooling2D (2, 2)
Conv2D (32, (3,3), activation=’relu’)

MaxPooling2D (2, 2)
Flatten ()
Dense (20, activation=’relu’)
Dense (1, activation=’linear’, kernel_regularizer=l2(0.0001))

Table 2: CNN Architecture for Distance Estimation.

17

5.2.3 Dataset

The dataset used in this phase of the problem were collected in a specifically designated space (the same for
the presence detection problem) covering a maximum distance of 2.50 meters from the radar. This choice was
guided by careful observation of the data: the results revealed that beyond this distance, the radar’s ability to
accurately detect the presence of an object decreases significantly. This limitation guided the selection of the
data acquisition radius, ensuring that the information collected was reliable.

Figure 4: Target positioning in the test environment.

The image shows the test environment used for data collection. The distinctive marks on the floor in Figure 4
were purposely placed to identify the three target distances considered during the experimental tests: 0.50
meters, 1.25 meters and 2.50 meters.
The test environment, as shown in the photo, is limited in size, making it impractical to cover the complete
radius during data gathering. As a result, only small angle ranges were considered: -30 to 30 degrees from the
radar axis at 1.25 meters and -15 to 15 degrees at 2.5 meters. This selection of angles aims to make the best
use of the constrained surroundings.
The data collection phase used to address regression problem focused on the three pre-specified target distances
and corresponding angular ranges.
A total of 1725 data points have been recorded during data collection exploited for the CNN. These data were
distributed among the three distances, with 437 collected at 0.50 meters, 644 at 1.25 meters, and a further 644
at 2.50 meters. The division of data into the three sets is described later in Chapter 6.2.
This method tries to enable the convolutional neural network to effectively estimate continuous distances within
the certain range.
Examples of data can be seen in Figure 5.

18

(a) Data acquired at 0.50 meters.

(b) Data acquired at 1.25 meters.

(c) Data acquired at 2.50 meters.

Figure 5: Data acquired by radar over the 3 distances.

5.3. Anomaly Detection for Time Series

This chapter focuses on the last stage of the problem, which concerns the detection of anomalies in the behavior
pattern of the elderly subject.

5.3.1 Problem Formulation

The problem aims to apply anomaly detection techniques in a multivariate time series Ti, which describes the
behavior of the subject in an example apartment and in a specific time window. The time series Ti spans 30
time points and encompasses the time instant represented using hour and minute information and 3α variables,
where α is the number of the rooms and 3 are the key information presence, mean distance, and standard
deviation calculated from the collection of the outputs of the tinyML algorithms for each room and for each
time step.
The multi-device anomaly detection algorithm assigning the value At to Ti, where At is the output of the

19

algorithm and At ∈ {abnormal, normal}.

At = AD(Ti) =

0 abnormal

1 normal

5.3.2 Preprocessing, Algorithm, Output

Using the outputs obtained with the two tiny NNs, if presence is detected, we compute the mean and standard
deviation of the distances within each interval of granularity of 1 minute.
Particular attention was paid on selecting the correct level of temporal granularity. The granularity of the
repetition interval δt must be determined in advance for a particular model and this parameter can be set
according to the needs of the application [12]. For this reason, the granularity of 1 minute was chosen according
to [3] that describes a problem very similar to this part of experiment.
Once the temporal granularity is established, emphasis is placed on calculating key information, mean and
standard deviation of the distances, within each interval of this granularity.
Following this, we proceeded to structure this information into temporal windows, composed of the data collected
during each granularity interval. These time windows function as multivariate time series, enabling for a more
detailed analysis of behaviors over time. By examinating these time series, specific patterns can be identified
and the presence of anomalous behaviors can be assessed. In particular, the time series are analyzed in windows
of 30 minutes. The choice of the time window, again, depends on the needs of the application. If the window
size is too large, the time window becomes more difficult to analyze. On the positive side, a larger window is
effective in detecting longer anomalies such as an extended stay in a room. [2].

Figure 6: First 6 minutes of a 30-minute time series. The first three rows indicate presence/absence,
average distance, and standard deviation for the bedroom; the next three rows represent the same
attributes for the kitchen, and the last three rows represent the same attributes for the bathroom.

Before the time series is given as input to the anomaly detection algorithm, for each granularity interval δt in
the series, the corresponding time is calculated in trigonometric format, that is, expressed in hours and minutes
in the form of sine and cosine. This continuous representation of time highlights the cyclic nature of time,
preserving temporal information and allowing the algorithm a more effective interpretation of time.

The anomaly detection algorithm consists of a One Class SVM used to identify unexpected behaviors. The
OCSVM is trained only on normal data, allowing anything that deviates from the hyperplane of normal data
to be identified as anomalous.
The model is structured using the RBF kernel and particular attention was employed in the choice of gamma
and nu parameters. These parameter selections are adjusted to maximize the model’s efficiency in accordance
with the dataset’s features. The parameter selection for the model was based on the combination that achieved
the best accuracy on the validation set, a dataset used for evaluating model performance on unseen data during

20

training and adjust model parameters to improve model performance.
The kernel is a mathematical function that determines the characteristics of the hyperplane in the feature
space [9]. In this case, the RBF (Radial Basis Function) kernel is employed, a popular choice in SVMs due to
its adaptability in identifying nonlinear decision boundaries, while gamma is a specific parameter of the RBF
kernel. After testing different gamma values for the model, a value of 0.05 was chosen. A key feature of OCSVM
is nu that sets an upper and lower bound on the fraction of outliers and support vectors, and which was set to
0.1 for the model. The value selection of this parameter has a significant impact on the accuracy of a model
built by the OCSVM algorithms [10].
Finally, after training the One-Class SVM model with these parameters, a threshold is set using the decision
scores of the training data. If a data point’s decision score is higher than this threshold, it’s considered non-
anomalous; otherwise, it’s classified as an anomaly. The threshold is calculated as the 0.05th percentile of the
decision scores, meaning around 5% of the training points will be labeled as anomalies.

5.3.3 Dataset

The dataset used for training the OCSVM model was generated by exploting the outputs of the in-sensor
presence and distance estimation algorithms, simulating their usage on a real-world apartment composed of 3
rooms. This dataset consists of 30-minute time series, each represented by a 13x30 matrix. Of the 13 rows of
the matrix, the first 9 rows represent the presence, mean, and standard deviation information for the 3 rooms;
the last 4 rows are used for the trigonometric representation of time. Each column of the matrix corresponds
to a single minute summarizing values of the sensors (presence, average distance, standard deviation).
To create these data, typical behavior of a subject during the day was assumed so the informations listed above
were entered based on this pattern. Moreover, these informations were entered by first studying their values on
the actual data. For example, the standard deviation values used are all in the range of 0.09-0.3 to simulate static
behavior during the minute, and in the range of 0.65-0.75 to simulate movement between different positions.
To choose these values, the standard deviation was first calculated on the data representing the static presence
of a subject in front of the radar at a given distance, and then on data where the position changed between the
3 different distances.
Finally, the dataset used for the OCSVM has 2160 data in total, including 2150 normal data and 10 anomalies
used to test the model’s ability to identify outliers. The data are then divided into the three sets as described
in Chapter 6.3.

5.4. Evaluation

In the process of evaluating neural networks and the OCSVM, it is crucial to adopt appropriate metrics that
effectively reflect the performance of the model with respect to the specific objectives of the task. Two distinctive
metrics were used, Accuracy (Acc) for evaluating the OCSVM together with the convolutional neural network
intended for classification and Mean Absolute Error (MAE) for evaluating the convolutional neural network
intended for regression.

5.4.1 Accuracy

Accuracy is a measure of classification models’ accuracy. Informally, this metric is the fraction of predictions
that our model made correctly, but in binary classification accuracy can also be calculated as positives and
negatives. In this case, it is calculated as the ratio of the number of correct predictions (TP +TN) to the total
number of occurrences (N) in the test dataset:

Acc =
TP + TN

N

21

Where TP represents the True Positives, TN the True Negatives, and N is the sum of all instances in the test
dataset [18]. This metric provides an assessment of the model’s ability to correctly classify different categories
of inputs. A high Accuracy indicates an excellent ability of the model to discriminate between classes, while a
lower value suggests possible areas for improvement.

5.4.2 Mean Absolute Error

The Mean Absolute Error (MAE) is a metric used to evaluate the accuracy of predictions in regression problems.
This metric is calculated as the average of the absolute differences between model predictions (y) and actual
values (x) in the test data set (N):

MAE =

∑N
i=1 |yi − xi|

N

[25].
A lower MAE indicates greater accuracy in predictions of numerical values because discrepancies between pre-
dictions and actual values are minimized.

The joint use of Accuracy and MAE metrics provides a comprehensive assessment of the performance of the
models. Accuracy reflects the model’s ability to correctly classify different categories of input, while MAE
measures accuracy in predicting numerical values. Combining both metrics contributes to an in-depth under-
standing of the model’s capabilities and limitations in diverse scenarios, ensuring an overall assessment of its
performance.

22

6. Results

This section discusses the results obtained with the models described in the previous chapters.

6.1. Results of Presence Detection

Of the 805 data points in the dataset utilized for the presence detection algorithm, 552 were designated for the
training set. This subset is used during the model’s training phase to enhance comprehension of relationships
and features within the data. Of the total, 115 were allocated to the validation set. This dataset is crucial
for adjusting model parameters and preventing overfitting, helping to ensure that the model generalizes well
even on new data not seen during training. The test set consisted of the remaining 138. This dataset remained
untouched during both the training and validation phases of the model. It stands as the ultimate benchmark,
assessing the actual performance of the model on previously unseen data.

Table 3 demonstrates the accuracy obtained by the CNN employed in the presence detection problem across
the three different sets (training, validation, test).

train accuracy val accuracy test accuracy
0.9475 0.9304 0.8768

Table 3: CNN classifier results: accuracy values.

The optimizer ’adam’ and the loss function ’binary_crossentropy’, typically used in binary classification prob-
lems, are employed in the neural network. An optimizer aims to minimize the loss function, which represents
the difference between predicted and expected values. Minimization is the process of determining the set of
architecture parameters that produce the greatest results in the desired tasks [42].
In this setup, the neural network is trained for 400 epochs with early stopping, which stops the training process
if no improvements are seen for 30 consecutive epochs. Early stopping is an approach used to avoid overfitting
and assure the model’s optimal performance throughout training.
The next table reports the loss values obtained for the training, validation and test sets.

train loss val loss test loss
0.1373 0.2264 0.2894

Table 4: CNN classifier results: loss values.

The confusion matrix below, on the other hand, shows the algorithm’s predictions made about each datum in
the test set versus their actual result. To convert the probability into a binary decision (presence or absence),
a classification threshold was established. In this implementation, a threshold of 0.35 was selected. Essentially,
all predictions made above this threshold will be classified as presence; conversely, they will be calssified as
absence. This threshold choice was optimized based on results obtained through data acquired with the radar.

23

Figure 7: Confusion matrix for test set. The squares at the top indicate the number of data represented
absence that were predicted as absence (labelled with 0), the true negatives, and those that were
predicted as presence (labelled with 1), the false positives. The squares at the bottom indicate the
number of data represented presence that were predicted as absence, the false negatives, and those
that were predicted as presence, the true positives.

After training, the model was converted using the TFLite library. Specifically, quantization is applied to the
model’s weights, converting the values from floating point to integers, thus reducing model memory consumption.

converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_model = converter.convert()

The DEFAULT option refers to a set of predefined optimizations, including the quantization of weights from
float to int8. This results in a reduction in the size of the model: from a memory occupancy of 136360 B
for the original model to only 28936 B without any loss of accuracy in the model. This claim was verified by
running inference on the same test set after conversion, showing that the quantized model successfully retains
its predictive ability.

A simple method was tried for the purpose of classification before using the machine learning model. This
method calculated the peak value for each data in the dataset and compared this maximum with a threshold
(maximum peak value among all data representing the "non-presence" in the dataset). If the calculated peak
exceeded the threshold, the data was classified as "presence," otherwise "non-presence". However, this method
achieved a lower accuracy than the adopted ML model, with an accuracy value obtained on the test set of
0.7609, highlighting how such a simple approach is unable to understand the complexity of the data.

6.2. Results of Distance Estimation

The dataset used for distance estimation algorithm, which includes 1725 data points, is divided into the three
sets as follows: 1219 for training, 253 for validation, and 253 for test.

Table 5 shows the mae obtained by the original model and the mae obtained by the quantized model after the

24

convertion in a tflite model.

train mae val mae test mae quantized
mae

0.1243 0.1199 0.1451 0.8769

Table 5: CNN regression results: mae values.

This model underwent identical quantization as the CNN model employed for presence detection. Subsequent
to quantization, the memory footprint was substantially reduced from 89800 B to 16992 B. Nevertheless, this
led to a degradation in the model’s accuracy, as seen in Table 5 showing the increase in mae on the test set.
Given the still reasonable amount of memory required by the non-quantized model, and the large difference in
the MAE metric, we oped for deploying the non-quantized model.

The loss function for this neural network was ’mean_squared_error’ instead of ’binary_crossentropy’ because
it was utilized for a regression problem rather than a binary classification. It as well was run for 400 epochs,
with an early stop after 15 epochs. The values of the loss function computed are presented in the table below:

train loss val loss test loss
0.0370 0.0326 0.0549

Table 6: CNN regression results: loss values.

A simple approach was also tried for the distance estimation problem before using the ML algorithm. This
method aimed to detect the bin where the data had the peak value and, based on the peak bin, to estimate
the discrete position of the subject (near, middle, far). Although the level of accuracy obtained is good (0.9368
on the test set), this approach was not able to provide a continuous distance value, but rather only provides a
discrete label.

6.3. Results of Anomaly Detection

The dataset used for the OCSVM model is divided into the three sets as follow: 1920 are used for the training
set, 137 for validation set and 103 for test set, which included all the anomalous data.

The model has demonstrated strong competence in identifying outlier data, confirming the effectiveness of the
methodology used, with an accuracy on the test set of 98.06%. The test set includes normal and anomalous
data to test the model’s ability to identify as anomalous the data that deviate from those used for training.

25

Figure 8: Confusion matrix for test set of the OCSVM model. The squares at the top indicate the
number of anomalous data that were predicted as anomalous (labelled with 0), the true negatives, and
those that were predicted as normal (labelled with 1), the false positives. The squares at the bottom
indicate the number of normal data that were predicted as anomalous, the false negatives, and those
that were predicted as normal, the true positives.

Another method tested for the purpose of anomaly detection was the use of different SVM models each aimed
at identifying a specific type of anomaly that the designer knows to be common in this context. The SVM
models are trained to distinguish between normal data and specific anomalous data, using anomalous data in
training to create a hyperplane separating normal data from anomalous data. In particular, three SVMs were
employed for this purpose:

• SVMdouble for double appearances in two different rooms anomaly. The anomaly occurs when presence
is detected simultaneously in two different rooms. This type of anomaly could indicate the presence of
unauthorized people in the house in addition to the presence of the patient.

• SVMabs for absence at unscheduled times anomaly. The anomaly arises when individuals are not detected
within the home environment during periods that are not planned or scheduled such as at night. Such
an anomaly could imply that an individual left the house at a time that was unexpected.

• SVMdiff for presence in a room other than the scheduled room anomaly. The anomaly occurs when a
presence is detected in a room other than the one in which the individual is expected to be based on
his typical behavior. An example would be the detection of presence in a room other than the bedroom
during the night for a long period of time.

Each of the three SVMs is structured using the RBF kernel, but with different selections of gamma and C
parameters. After testing different gamma values for the models, a value of 0.05 was chosen for the SVMabs

and SVMdouble and 0.1 for the SVMdiff .
C parameter in SVMs is a regularization parameter, a sufficiently large value of C creates a separating hyperplane
that minimizes the number of training errors while maximizing the margin for successfully categorized pattern
vectors [32]. Finally, a C value of 1.0 was chosen for the SVMdouble and SVMdiff and 1.5 for SVMabs

Specific datasets were also created for the three SVM models. In particular, each dataset used for the SVMs

26

contains normal data and anomalous data representing the specific anomaly for which we are training the SVM.
The dataset used for the SVMdiff consists of 1170 data points in total, with 508 anomalies and the remaining
662 data representing normal data, the dataset for the SVMabs includes 1472 data points, of which 556 are
anomalies, while the dataset for the SVMdouble includes 1148 data, with 422 anomalies. The datasets used for
SVMs are divided into the three sets as follows:

• Of the totals 1170 data in the SVMdiff , 700 are used for training set, 320 for validation set and 150 for
test set.

• Of the totals 1472 data in the SVMabs, 972 are used for training set, 350 for validation set and 150 for
test set.

• Of the totals 1148 data in the SVMdouble, 685 are used for training set, 311 for validation set and 152 for
test set.

After training the SVMs to recognize specific anomalies through the training sets, and after choosing the model
parameters by evaluating the performance on the validation sets, the three models were tested through the
test sets for their ability to identify specific anomalies. On the same test sets, we evaluated also the OCSVM
previously trained on the other dataset.

Specific SVMs OCSVM
Double Presence 0.9539 1.0

Unexpected Absence 1.0 0.9333
Different Room 0.9933 1.0

Average 98.24 97.78

Table 7: SVMs and OCSVM results on the three test sets.

The SVMs used for detecting specific anomalies have also shown high rates of accuracy. Such high accuracy
are the result of manual data generation and the presence of multiple SVMs. By working with real world,
more noisy data, we can expect the results to be slightly worse. Furthermore, each of these SVMs is tasked
with addressing specific anomalies, resulting in simpler, more specialized models that contribute to higher
performance in anomaly detection.
But, the choice to use the OCSVM model for the purpose of anomaly detection was driven by several reasons.
First, the use of different SVMs requires a priori knowledge of anomalous behavior, thus failing to generalize
should a new, nonspecific anomaly arise. Second, these models would require more attention during the training
phase, which requires the presence of specific abnormal data in the dataset that should be collected on labeled
by the final user. In the case of OCSVM, which requires the use of only normal data, this phase is done simply
by recording the subject’s behaviors in the first period of device use.
In favor of the OCSVM model, a new type of anomalous data representing presence at unscheduled times was
tested on the other three SVMs, which were designed to detect other types of anomalies, before being submitted
to the OCSVM. The anomaly indicates an unexpected or unscheduled presence in a certain area of the home,
which could be caused by an unauthorized intrusion or by the patient’s own presence at a time when the
absence was scheduled that could indicate an abnormal patient situation such as a fall. This procedure showed
the inability of the SVM to generalize on other type of data, due to their specific design to detect specific
types of anomalies. In contrast, the OCSVM showed superior capabilities in detecting the presence of unusual
anomalies, with significantly better results than the other three SVMs. Table 8 shows the percentages of outlier
data denoting unexpected presence recognized by the SVM models.

27

Double
Presence

Unexpected
Absence

Different
Room

OCSVM

0.6471 0.0 0.9216 1.0

Table 8: Comparison of SVMs on detecting a new type of anomaly.

28

7. Conclusion

In conclusion, we have seen how Tinyml combined with UWB technology leads to an excellent aftermath in the
field such as presence detection and indoor localization, enabling accurate and noninvasive monitoring, and how
this combination is therefore suitable in the world of healthcare and indoor monitoring.
Of particular importance to this thesis is the use of OCSVM for anomaly detection. It plays a key role in
detecting abnormal behavior patterns. Its ability to distinguish normal behavior from potential risks greatly
increases the effectiveness of our system in keeping the elderly safe.
Despite some limitations, such as the test environment for data collection being limited in size or the manual
generation of data for the anomaly detection algorithm, the effectiveness of this technology has been demon-
strated.

The research lays a solid foundation for future developments. First, the use of a more suitable data collection
environment for conducting the experiment, or the possibility of acquiring data from real behavioral models
learned from actual subjects, could provide a more authentic and accurate assessment of the performance of
UWB and TinyML technologies.
In addition, although the study conducted focuses on the detection of anomalies, currently an alert system that
notifies such anomalies has not yet been developed. Therefore, another future step could be dedicated to the
development of an effective alert system that is capable of timely notification of detected anomalies.

Finally, we developed a distributed solution that can combine the use of UWB and TinyML for patient moni-
toring and an anomaly detection algorithm to detect deviations in patient behavior. In the future, we expect
that as these technologies advance, these solutions will be increasingly used in the elderly care context to meet
the growing demand of an aging population.
The success of TinyML and UWB technology bode well for future technological advancements especially within
the healthcare and indoor monitoring sectors. Future research needs to tackle the limitations that have been
identified. Continued advancements can be achieved through dedicated research and development initiatives.

29

References

[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural network.
In 2017 International Conference on Engineering and Technology (ICET), pages 1–6, 2017.

[2] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. Usad: Un-
supervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’20, page 3395–3404, New York,
NY, USA, 2020. Association for Computing Machinery.

[3] Aritz Bilbao-Jayo, Xabier Cantero, Aitor Almeida, Luca Fasano, Teodoro Montanaro, Ilaria Sergi, and
Luigi Patrono. Location based indoor and outdoor lightweight activity recognition system. Electronics,
11(3), 2022.

[4] Rahul Chauhan, Kamal Kumar Ghanshala, and R.C Joshi. Convolutional neural network (cnn) for im-
age detection and recognition. In 2018 First International Conference on Secure Cyber Computing and
Communication (ICSCCC), pages 278–282, 2018.

[5] Chia-chin Chong, Fujio Watanabe, and Hiroshi Inamura. Potential of uwb technology for the next gener-
ation wireless communications. In 2006 IEEE Ninth International Symposium on Spread Spectrum Tech-
niques and Applications, pages 422–429, 2006.

[6] Davide Dardari, Chia-Chin Chong, and Moe Win. Threshold-based time-of-arrival estimators in uwb dense
multipath channels. IEEE Transactions on Communications, 56(8):1366–1378, 2008.

[7] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian
Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen Wang, and Pete Warden. Tensorflow lite
micro: Embedded machine learning on tinyml systems. CoRR, abs/2010.08678, 2020.

[8] Dr. Lachit Dutta and Swapna Bharali. Tinyml meets iot: A comprehensive survey. Internet of Things,
16:100461, 2021.

[9] Theodoros Evgeniou and Massimiliano Pontil. Support vector machines: Theory and applications. volume
2049, pages 249–257, 09 2001.

[10] Zahra Ghafoori, Sutharshan Rajasegarar, Sarah M. Erfani, Shanika Karunasekera, and Christopher A.
Leckie. Unsupervised parameter estimation for one-class support vector machines. In James Bailey, Lat-
ifur Khan, Takashi Washio, Gill Dobbie, Joshua Zhexue Huang, and Ruili Wang, editors, Advances in
Knowledge Discovery and Data Mining, pages 183–195, Cham, 2016. Springer International Publishing.

[11] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding, 2016.

[12] Ramaswamy Hariharan and Kentaro Toyama. Project lachesis: Parsing and modeling location histories. In
Max J. Egenhofer, Christian Freksa, and Harvey J. Miller, editors, Geographic Information Science, pages
106–124, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[13] Salma Jamal, Sukriti Goyal, Abhinav Grover, and Asheesh Shanker. Machine Learning: What, Why, and
How?, pages 359–374. Springer Singapore, Singapore, 2018.

[14] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning and deep learning. Electronic
Markets, 31(3):685–695, Sep 2021.

30

[15] Manjunath Jogin, Mohana, M S Madhulika, G D Divya, R K Meghana, and S Apoorva. Feature extraction
using convolution neural networks (cnn) and deep learning. In 2018 3rd IEEE International Conference
on Recent Trends in Electronics, Information Communication Technology (RTEICT), pages 2319–2323,
2018.

[16] Shehroz S. Khan and Michael G. Madden. One-class classification: taxonomy of study and review of
techniques. The Knowledge Engineering Review, 29(3):345–374, 2014.

[17] Soo-Cheol Kim, Young-Sik Jeong, and Sang-Oh Park. Rfid-based indoor location tracking to ensure the
safety of the elderly in smart home environments. Personal and Ubiquitous Computing, 17(8):1699–1707,
Dec 2013.

[18] Google. Machine Learning. Classification: Accuracy. https://developers.google.com/

machine-learning/crash-course/classification/accuracy.

[19] Samuel G. Leitch, Qasim Zeeshan Ahmed, Waqas Bin Abbas, Maryam Hafeez, Pavlos I. Laziridis, Pradorn
Sureephong, and Temitope Alade. On indoor localization using wifi, ble, uwb, and imu technologies.
Sensors, 23(20), 2023.

[20] Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and Mei Chen. Medical image clas-
sification with convolutional neural network. In 2014 13th International Conference on Control Automation
Robotics Vision (ICARCV), pages 844–848, 2014.

[21] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization for
deep neural network acceleration: A survey. Neurocomputing, 461:370–403, 2021.

[22] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. Tiny machine learning: Progress
and futures [feature]. IEEE Circuits and Systems Magazine, 23(3):8–34, 2023.

[23] Batta Mahesh. Machine learning algorithms -a review, 01 2019.

[24] Armando Caltabiano Massimo Pavan and Manuel Roveri. On-device subject recognition in uwb-radar data
with tiny machine learning. In CPSW’2022: Fourth Cyber-Physical Systems Summer School Workshop,
2022.

[25] Medium. Mean absolute error. https://medium.com/@20__80__/

mean-absolute-error-mae-machine-learning-ml-b9b4afc63077.

[26] Medium. Regularization — understanding l1 and l2 regulariza-
tion for deep learning. https://medium.com/analytics-vidhya/

regularization-understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf.

[27] Ghassem Mokhtari, Qing Zhang, Chad Hargrave, and Jonathon C. Ralston. Non-wearable uwb sensor for
human identification in smart home. IEEE Sensors Journal, 17(11):3332–3340, 2017.

[28] Stefania Monica and Federico Bergenti. A comparison of accurate indoor localization of static targets via
wifi and uwb ranging. In Fernando de la Prieta, María J. Escalona, Rafael Corchuelo, Philippe Mathieu, Zita
Vale, Andrew T. Campbell, Silvia Rossi, Emmanuel Adam, María D. Jiménez-López, Elena M. Navarro, and
María N. Moreno, editors, Trends in Practical Applications of Scalable Multi-Agent Systems, the PAAMS
Collection, pages 111–123, Cham, 2016. Springer International Publishing.

[29] Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review. Journal of Educa-
tional and Behavioral Statistics, 45(2):227–248, 2020.

31

https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://medium.com/@20__80__/mean-absolute-error-mae-machine-learning-ml-b9b4afc63077
https://medium.com/@20__80__/mean-absolute-error-mae-machine-learning-ml-b9b4afc63077
https://medium.com/analytics-vidhya/regularization-understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf
https://medium.com/analytics-vidhya/regularization-understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf

[30] Massimo Pavan, Armando Caltabiano, and Manuel Roveri. Tinyml for uwb-radar based presence detection.
In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2022.

[31] Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King Saud University
- Computer and Information Sciences, 34(4):1595–1623, 2022.

[32] DM Reeves and GM Jacyna. Support vector machine regularization. Wiley Interdisciplinary Reviews:
Computational Statistics, 3(3):204–215, 2011.

[33] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. Inter-
national Journal of Engineering Applied Sciences and Technology (IJEAST), 4(12):310–316, 2020.

[34] Pramila P. Shinde and Seema Shah. A review of machine learning and deep learning applications. In 2018
Fourth International Conference on Computing Communication Control and Automation (ICCUBEA),
pages 1–6, 2018.

[35] Dalwinder Singh and Birmohan Singh. Investigating the impact of data normalization on classification
performance. Applied Soft Computing, 97:105524, 2020.

[36] K. Siwiak. Ultra-wide band radio: introducing a new technology. In IEEE VTS 53rd Vehicular Technology
Conference, Spring 2001. Proceedings (Cat. No.01CH37202), volume 2, pages 1088–1093, 2001.

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan 2014.

[38] Matthew Stewart, Pete Warden, Yasmine Omri, Shvetank Prakash, Joao Santos, Shawn Hymel, Benjamin
Brown, Jim MacArthur, Nat Jeffries, Sachin Katti, Brian Plancher, and Vijay Janapa Reddi. Datasheets
for machine learning sensors: Towards transparency, auditability, and responsibility for intelligent sensing,
2024.

[39] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural networks:
A tutorial and survey. CoRR, abs/1703.09039, 2017.

[40] Paulo Sá, Rafael Bessa Loureiro, Fernanda Lisboa, Rodrigo Peixoto, Lian Nascimento, Yasmin Bonfim,
Gustavo Cruz, Thauan Ramos, Carlos Montes, Tiago Pagano, Oberdan Pinheiro, and Rafael Borges.
Efficient deployment of machine learning models on microcontrollers: A comparative study of quantization
and pruning strategies. pages 181–188, 10 2023.

[41] Eijiro Takeuchi, Alberto Elfes, and Jonathan Roberts. Localization and Place Recognition Using an Ultra-
Wide Band (UWB) Radar, pages 275–288. Springer International Publishing, Cham, 2015.

[42] Ange Tato and Roger Nkambou. Improving adam optimizer. 2018.

[43] Truesense. Ultra wide band. https://ultrawideband.truesense.it/.

[44] Frederick Tung and Greg Mori. Deep neural network compression by in-parallel pruning-quantization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3):568–579, 2020.

[45] Shen Yin, Xiangping Zhu, and Chen Jing. Fault detection based on a robust one class support vector
machine. Neurocomputing, 145:263–268, 2014.

[46] Xue Ying. An overview of overfitting and its solutions. Journal of Physics: Conference Series,
1168(2):022022, feb 2019.

32

https://ultrawideband.truesense.it/

Abstract in lingua italiana

Nel contesto dell’assistenza agli anziani, sta emergendo la necessità di tecnologie avanzate che possano migliorare
l’erogazione dell’assistenza sanitaria. Ciò è dovuto al fatto che la popolazione anziana sta aumentando e con
essa le sfide legate alla salute e al benessere degli anziani. Le tecnologie di Machine Learning (ML) possono
fornire un valido supporto agli operatori sanitari nell’identificare cambiamenti significativi nelle condizioni dei
pazienti da loro assistiti. Allo stesso tempo, le tecnologie in questo campo, per essere utilizzate e accettate
dall’utente finale, richiedono di essere non invasive, discrete e rispettose delle abitudini e dello stile di vita di
ciascuno. I dispositivi indossabili e le telecamere intelligenti sono esempi di tecnologie che hanno mostrato
questo tipo di rifiuto da parte della popolazione anziana: i dispositivi indossabili richiedono, infatti, di essere
portati costantemente con sé dagli utenti per funzionare, mentre le telecamere sono spesso percepite come troppo
invasive della privacy dell’utente finale.
In questo contesto, proponiamo un’innovativa soluzione distribuita basata su radar in banda ultralarga (UWB)
che impiega due distinti algoritmi di ML che operano gerarchicamente insieme, con l’obiettivo di migliorare la
privacy tenendo conto della percezione degli utenti più anziani. I due algoritmi, ovvero algoritmo di stima della
distanza e della presenza in-sensor e algoritmo di rilevamento delle anomalie, sono progettati per essere eseguiti
insieme su diversi dispositivi di una pipeline ML distribuita. Gli algoritmi in-sensor sono stati specificamente
progettati per soddisfare i severi vincoli che caratterizzano gli ambienti TinyML. È pensato per essere eseguito
su più sensori radar UWB distribuiti in tutte le stanze di una casa e, inserendo matrici radar ad alta dimensione,
restituisce la presenza e la distanza di un bersaglio in una stanza. L’algoritmo di rilevamento delle anomalie
(AD) viene eseguito su un dispositivo edge, raccogliendo l’output di tutti i sensori intelligenti con l’obiettivo di
rilevare deviazioni significative dalle abitudini standard del paziente. La soluzione distribuita presentata, che
comprende sensori UWB-radar intelligenti e abilitati a tinyML, rappresenta un approccio promettente per il
miglioramento dell’assistenza agli anziani, offrendo una soluzione non invasiva e rispettosa della privacy che può
migliorare la qualità della vita degli anziani, limitando al tempo stesso il carico di lavoro di chi li assiste.

Parole chiave: TinyML, Radar Ultrawideband, Rilevamento delle anomalie, Localizzazione indoor

33

Acknowledgements

Desidero esprimere la mia sincera gratitudine al Prof. Manuel Roveri per il suo prezioso sostegno e la sua guida
durante lo sviluppo di questa tesi. Desidero inoltre ringraziare Massimo Pavan il cui contributo e suggerimenti
hanno arricchito notevolmente il contenuto di questa tesi.

Vorrei ringraziare la mia famiglia, per il loro sostegno incondizionato lungo tutto il percorso. Grazie di cuore
per avermi sempre incoraggiato a perseguire i miei interessi e per avermi lasciato la libertà di seguire le mie
passioni. La vostra fiducia in me è stata una fonte costante di ispirazione e mi ha dato la forza necessaria per
raggiungere questo traguardo.

Grazie a mia sorella Valentina, per essere la donna che ammiro. Grazie per la tua saggezza e la tua determi-
nazione. Il tuo sostegno ha reso il mio percorso più significativo. Grazie per quello che fai.

Grazie alle mie amiche per essere ancora una volta qui al mio fianco. Crescere insieme a voi è stata la mia più
grande fortuna e condividere questo traguardo con voi è la cosa che più desidero. La vostra presenza rende
questo momento ancora più speciale.

Grazie alle mie coinquiline, siete diventate amiche con cui condividere gioie, preoccupazioni e momenti indimen-
ticabili. Siete state le persone che più intensamente hanno vissuto questo periodo con me, e in ogni situazione
avete saputo tirarmi su il morale con la vostra presenza. Non potrei essere più grata per tutto ciò che abbiamo
condiviso, le serate insieme, le risate, la complicità.

Grazie a tutte le persone che con il loro supporto hanno contribuito al raggiungimento di questo traguardo. Vi
voglio bene.

Alessandra

34

	Introduction
	Problem and Formulation
	Thesis Structure

	Background
	Machine Learning
	Deep Learning and Convolution Neural Networks
	TensorFlow

	Introduction to TinyML
	Model Compression Methods: Quantization and Pruning
	TensorFlow Lite for Microcontrollers

	UWB Radar
	Application of UWB radar in Localization problem

	One Class Classification for outliers detection
	One Class Support Vector Machine

	Related Work
	Problem Formulation
	Proposed Solution
	In-sensor Presence Detection
	Problem Formulation
	Preprocessing, Algorithm, Output
	Dataset

	In-sensor Distance Estimation
	Problem Formulation
	Preprocessing, Algorithm, Output
	Dataset

	Anomaly Detection for Time Series
	Problem Formulation
	Preprocessing, Algorithm, Output
	Dataset

	Evaluation
	Accuracy
	Mean Absolute Error

	Results
	Results of Presence Detection
	Results of Distance Estimation
	Results of Anomaly Detection

	Conclusion

