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ABSTRACT

In this thesis a shift in preliminary mission analysis paradigm is formulated,
modeled, and assessed. This concept merges in a single step the nominal
trajectory optimization with a complete navigation assessment, able both

to perform a high-fidelity orbit determination and compute the navigation costs.
The aim is to reduce the overall costs removing the natural sub-optimality given
by the traditional two-step process, surfing solutions with a lower dispersion
and increased stochastic performances. The revised preliminary mission analysis
approach is first formulated in a general form and three blocks composing it are
identified. Then it is specialized for three different test cases, representing a
benchmark for future space missions, and each block is modeled with mathemati-
cal means. Eventually, optimal solutions, minimizing the total costs, are sought.
A final assessment shows the superiority of the revised paradigm, since it reduces
the propellant mass in all the different mission scenarios.
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SOMMARIO

In questa tesi, è formulato, modellato e valutato un cambio di paradigma per
l’analisi di missione preliminare. Seguendo questo concetto, l’ottimizzazione
della traiettoria nominale è unito a una valutazione completa della nav-

igazione, capace sia di eseguire un algoritmo ad alta fedeltà per la determi-
nazione orbitale sia di calcolare i costi di navigazione. L’obiettivo è di ridurre i
costi complessivi eliminando la naturale sub-ottimalità data dal processo sequen-
ziale tradizionale, navigando soluzioni con una dispersione minore e maggiore
prestazioni dal punto di vista stocastico. L’approccio rivisto per l’analisi di mis-
sione preliminare è prima formulato in una forma generale e i tre blocchi che lo
compongono sono individuati. Poi, questa è specializzata per tre scenari diversi,
rappresentanti un punto di riferimento per le missioni spaziali del futuro, e ogni
blocco è modellato matematicamente. Infine, sono state cercate soluzioni ottime,
che minimizzano i costi totali. La valutazione finale mostra la superiorità del
nuovo paradigma, dal momento che la massa di propellente necessario è inferiore
in tutti gli scenari di missione.
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1
INTRODUCTION

S ince the beginning of the space era, satellites have always been equipped

with chemical propulsion engines, characterized by a high value of thrust

and a good control authority. However, in recent times, the space explo-

ration is going in the direction of exploiting small platforms in order to get

scientific and technological return at significantly lower costs, employing low-

thrust limited-capability spacecraft, needing reduced propellant mass. In this

kind of probes, the low control authority poses challenges in maneuvering. For

traditional spacecraft, the correction maneuvers are considered to be a minor

problem, since changing the trajectory is relatively easy with a single, short

burn; on the other hand, adjusting the orbit can be problematic for low-thrust

spacecraft, since a long burn is needed, even for paltry deviations. Therefore, orbit

determination and the subsequent correction maneuvers cannot be considered a

minor problem and preliminary trajectory design has to take them into account.

A shift in mission analysis paradigm becomes necessary for future space missions.

Novel trajectory design and optimization techniques, naturally embedding naviga-

tion features and correction maneuvers needs to be developed and implemented.
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CHAPTER 1. INTRODUCTION

1.1 Background

Nowadays, nominal trajectories are designed and optimized in order to satisfy

scientific requirements as well as to comply with system constraints. However,

the nominal path will unlikely be followed by the spacecraft in real-life scenarios

due to uncertainty in dynamic model (e.g., gravitational parameters or radiation

pressure noisy profiles), navigation (i.e. imperfect state knowledge or approxima-

tions in measurement model), and command actuation (i.e., thrust magnitude

and pointing angles error) [30]. Robustness and feasibility assessment of the

nominal trajectory against uncertainty are performed a posteriori through a navi-

gation analysis. The navigation assessment has the aim to perform a covariance

analysis, in order to compute the achievable state knowledge, and to estimate

the correction maneuvers, required to the spacecraft to reach the target. Thus,

the nominal trajectory and the uncertainty assessment are decoupled and their

analysis and optimization are done in two separate phases. This approach can

lead to sub-optimal solutions. For large spacecraft, this procedure is acceptable

since they can produce high thrust levels and they can store relevant propellant

quantities; hence, sub-optimal trajectories are not critical. However, an increasing

number of future space exploration mission is foreseen to exploit miniaturized

spacecraft, such as SmallSat or CubeSat [65, 81], characterized by: 1) limited-con-

trol authority (due to low thrust levels and reduced propellant budget), 2) large

uncertainties in the state knowledge (due to novel techniques in navigation [33] or

limited access to on-ground facilities), 3) and large errors in command actuation

(due to low-maturity components). In this case, the classical approach can lead to

sub-optimal trajectories, requiring an unnecessarily large amount of propellant.

A clear indication of this phenomenon can be found in some studies about mission

having the characteristics summarized above. LISA Pathfinder (LPF) proposed

mission extension is one example. LPF was a technology demonstrator for the

gravitational wave observatory LISA, launched by ESA in 2015. A number of

works [22, 29, 78] studied the possibility of extending LPF beyond its nominal

mission, maneuvering the spacecraft in order to pass through a peculiar point

of the solar system, the Earth–Sun Saddle Point, where the net gravitational

acceleration is almost null, to collect data for a possible confirmation of the Modi-

2



1.1. BACKGROUND

fied Newtonian Dynamics (MoND)1. Although the on-board instruments allowed

detecting anomalous MoND gradients nearby the Saddle Point, ESA chose not to

go for this option due to high risks, and thus the disposal of LPF was executed

in April 2017. At the end of the nominal mission, LPF had a small residual

control capacity, estimated into a ∆v budget of approximately 1m/s, that could

be provided using cold-gas thrusters with a maximum thrust of 100 µN. Thus,

LPF was a very limited control authority spacecraft in a highly unstable environ-

ment, and applying velocity changes could be very challenging. Several nominal

solutions were found that satisfy the propulsion constraints [24]. However, if the

stochastic cost is taken into account, the ∆v required to accomplish the mission

increases in a sensible way and the feasibility of the mission extension is no

longer guaranteed [22]. Figure 1.1(a) shows the solution space of LPF nominal

transfers to the Saddle Point, with the most promising solution indicated: in this

case, the target is reached with a missing distance of 10 km and a ∆v = 0.657m/s.

On the contrary, Figure 1.1(b) shows the navigation ∆v distribution for the given

trajectory: a value of 4.533 m/s is required for a 95% confidence level in order to

counteract errors in model, navigation, and control. This figure is one order of

magnitude higher than the deterministic cost, endangering the mission feasibility.

In this case, a comprehensive approach, trying to optimize the deterministic and

stochastic ∆v at the same time, can be beneficial, since it will allow not only to

reduce the total costs, but also to dampen the mission risks.

A similar behavior can be found also in the LUMIO Phase 0 study [19]. For this

mission, a transfer from a Low Lunar Orbit to a halo orbit about Earth–Moon

L2 is foreseen (see Chapter 5 for details on the mission). A summary of the ∆v

budget can be found in Table 1.1. In this case, the deterministic cost of the only

transfer amounts to 89.97 m/s, while the 3σ stochastic cost sums up to 97.9 m/s.

Hence, the nominal and navigation ∆vs have the same magnitude and, also in

this case, a procedure embedding uncertainty in the preliminary mission design

can be useful in cutting down the overall mission costs.

1MoND is a theory, alternative to the theory of dark matter, proposing a modification of the
classical Newton’s law to account for the observed motion of the galaxies.

3
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FIGURE 1.1. (a) LISA Pathfinder deterministic ∆v with respect Saddle
Point miss distance. (b) LISA Pathfinder navigation ∆v cumulative
distribution function. Both figures are taken from [22].

TABLE 1.1. Phase 0 LUMIO ∆v budget (Adapted from [19]).

Manuver Deterministic cost 3σ Stochastic cost [m/s]
[m/s] [m/s]

SMIM 89.47 -
TCM1 - 73.1
TCM2 - 24.8
HIM 0.5 -

Total 89.97 97.90

1.2 State of the Art

In the last decades, optimal control and optimization theory have been extensively

exploited for the nominal design of space trajectories [52, 66]. However, only in

the last ten years, some stochastic-optimal approaches, embedding uncertainty in

their core, have been developed for diverse problems.

In the early 2000, Park and Scheeres [63] proposed a statistical targeting algo-

rithm, able to incorporate statistical information directly in the trajectory design.

While the usual target method solves a deterministic boundary value problem for

4



1.2. STATE OF THE ART

the nominal trajectory, this algorithm search for a statistically correct trajectory,

i.e., a trajectory able to reach the target state in a stochastic sense. However this

approach fails whenever the stochastic trajectories envelope cannot be described

as a quasi-Gaussian distribution.

The uncertain Lambert’s problem has been investigated alike, in a paper by Di

Lizia et al. [27] by exploiting Taylor differential algebra. An alternative approach,

characterizing the stochastic error by means of the first-order variational equa-

tions, is presented in [67]. This approach has been extended considering first

the explicit partial derivatives of the transfer velocities [91] and later by imple-

menting a derivative free numerical method, exploiting novelties in uncertainty

quantification [3]. Uncertain Lambert’s problem with differential algebra was

also exploited in the gravity assist space pruning algorithm presented in [8].

Similarly, approaches to tackle the rendezvous problem were conceived. A multi-

objective optimization method, considering a robust performance index based on

final uncertainties, was devised for the linear rendezvous problem [50], taking

into account both navigation and control errors. A relation among the perfor-

mance index, the rendezvous time, and the propellant cost was found for short-

duration missions. Nonlinear rendezvous model and the possibility of handling

long-duration phases were later addressed [89]. Also the asteroid rendezvous in

a stochastic sense was investigated, considering the state uncertainty both of

the spacecraft and the target [10] together with the optimization of correction

maneuver under the Lambert’s problem conditions.

The uncertainty effect on maneuver execution was investigated in several works

by Di Lizia, Armellin et al. [26–28], where optimal control laws, considering per-

turbations in the nominal states, are obtained, using differential algebra features.

Recently, general procedures of trajectory optimization under uncertainty were

developed. A method transcribing the stochastic trajectory optimization into a

deterministic problem by means of Polynomial Chaos Expansion and an adaptive

pseudospectral collocation method was introduced by Xiong et al. [86], while

Greco et al. [42] presented a novel approach, based on Belief Markov Decision

Process model and then applied this method to the robust optimization of a flyby

trajectory of Europa Clipper mission in a scenario characterized by knowledge,

execution and observation errors.

5
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The idea of considering both deterministic and stochastic propellant cost has

been employed also in the nominal trajectory design for EQUULEUS [62], a

6U CubeSat developed by the University of Tokyo and JAXA and planned to be

inserted in a cis-lunar environment by the Artemis 1 mission by NASA and then

brought to an halo orbit about the Earth–Moon L2 point. However, in this last

case, only the transfer cost and the annual station keeping cost are optimized

without considering any navigation cost during the transfer phase.

1.3 Motivations

The design of nominal trajectory and the navigation assessment were quite well

investigated in the last years, since they are the bases of the space mission

analysis. However, they were studied in two separate phases, leading to possible

sub-optimal solutions. This approach has been deemed critical if a miniaturized

spacecraft is considered. Although uncertainties in the early stages of the trajec-

tory design are considered in recent works to devise robust optimal trajectories,

an integrated approach, considering the navigation assessment as part of the

trajectory design and optimization, using classical techniques, is still missing.

Nevertheless, the proposed paradigm shift can be beneficial in terms of propellant

mass consumption. Indeed, it can overtake the natural sub-optimality of the tra-

ditional approach by surfing solutions with lower dispersion and better stochastic

properties, thus reducing both the navigation costs and the final state scattering

with respect to the target. Hence, robust low-cost trajectories in the preliminary

mission analysis can increase the scientific return for limited-capability satellite

either by giving access to nowadays-impossible mission profiles or by expanding

the nominal operative life. On the other hand, even large traditional probes can

benefit from an holistic approach, since it can increase the spacecraft perfor-

mances while reducing the design steps.

To account for this, a novel approach, optimizing the total mission costs while

considering trajectory statistical feature, and able to obtain less fuel-expensive

and more robust trajectories, has to be investigated.
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1.4 Research Question

This document has the primary goal to devise and model an integrated brand-new

approach, able to consider orbit determination (OD) and trajectory correction

maneuvers (TCMs) in preliminary trajectory design. Later, an optimal problem,

trying to minimize the overall costs, is set up and solved by means of appropriate

optimization schemes. As last point, a comparison between the new technique

and the traditional approach has to be carried out. All in all, this work’s aim is to

answer to the following research question:

To what extent a holistic approach, embedding stochastic features in the

preliminary trajectory optimization, can bring advantages over the

traditional methods to compute the nominal spacecraft trajectory?

In order to give a proper answer, some intermediate steps should be covered:

1) Devise a generic integrated approach for the preliminary mission analysis.

2) Select and model its different building blocks.

3) Formulate and solve the optimization problem for this approach.

4) Perform a comparison with the traditional mission analysis approach.

1.5 Research outputs

This work introduces some novelties with respect the state of the state, which

are used to reply to the research question. It is convenient to summarize these

advances in order to easily map them throughout the thesis. Namely they are:

• an integrated approach, embedding the navigation assessment in the tra-

jectory optimization (Section 2.1.2) and its applications;

• a target-driven guidance scheme, suitable when aiming to targets along the

trajectory rather than the nominal trajectory itself (Section 4.2);
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• a brand-new uncertainty quantification technique, combining polynomial

chaos expansion with conjugate unscented transformation, in order to

reduce needed samples while improving stability (Section 5.2.1);

Some of these concepts were also exploited for the preliminary mission analysis

in LUMIO Phase A study (Chapter 5) and for Hera’s Milani CubeSat [31].

1.6 Outline of the thesis

In the first part of the thesis, the models and the approach used in the study are

appropriately selected, developed and explained. In Chapter 2, the problem of

a spacecraft flying in a real-life environment is presented and the model used

to describe the guidance and navigation are introduced. Three different scenar-

ios, representative of future deep-space mission, are established. In Chapter 3,

methods to propagate uncertainty are discussed and trade offs for each mission

scenario are presented. Chapter 4 contains the mathematical foundations for two

different guidance schemes, that will be used to estimate the navigation costs

under different assumptions and to bring the spacecraft on its nominal path.

In Chapters 5–7, the statement of the optimization problem, the methodology

and the results for each of the mission scenario are presented. Real missions,

planned in the next future, will be associated to each scenario, in order to ease the

optimization problem definition and to assess the aptness and the performances

of the revised approach. Eventually the results are presented and the comparison

with respect to the traditional approach is performed. Final considerations and

possible further developments are given in Chapter 8.

1.6.1 Conventions

For clarity’s sake, the conventions used in this work will be listed in the remainder.

Scalars will be indicated with lower-case letters (e.g., k), vectors with bold lower-

case letters (e.g., h), and matrices with capital letters (e.g., A). Moreover, (·)∗ will

be used for nominal quantities, (·̂) for estimated quantities, and (·) meant values

related to a real trajectory. Barred letters (e.g., x̄) will be used for the mean value.
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2
PROBLEM STATEMENT

The preliminary mission analysis problem is introduced in this chapter.

A general overview of both the traditional approach and the revised

comprehensive strategy are presented, their basic building blocks are

identified and a brief description is given. Moreover, three test cases are proposed.

2.1 Problem Formulation

2.1.1 Sequential Approach

In this thesis, the approach followed nowadays to compute a nominal trajectory,

evaluate its statistical properties and retrieve the navigation costs is labeled

as sequential or traditional approach. Detailed information about this process

can be found in several sources [18, 19, 22]. In this case, the whole procedure is

subdivided into two sequential and independent steps (Figure 2.1):

1. Trajectory Design and Optimization: nominal trajectory, connecting the

initial point to the target, while minimizing the propellant mass, is sought

(Figure 2.1(a)). Thus, generally speaking, an optimal control problem is set
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CHAPTER 2. PROBLEM STATEMENT

up, having the aim to determine the state x(t), the control u(t) and, possibly,

the initial and final times, t0 and t f , that minimize the total control effort

J =
∫ t f

t0

‖u‖ dt

subject to the ordinary differential equation

ẋ= f(x,u, t)

and to the boundary constraints

x(t0)= x0

x(t f )= x f

The function f represents the acceleration vector field associated to the

spacecraft dynamics. Some additional terminal and path constraints are

normally added, considering the characteristics of the specific orbital prob-

lem. Several techniques can be exploited to solve the optimization problem.

Classical approaches are subdivided in two classes: direct methods and

indirect methods [20], and the choice of the most suitable method is based

mainly on the mission profile, the spacecraft characteristics, and the desired

accuracy. Usually this step is time- and effort-consuming, due to the large

search space. For this reason, a preliminary trade-off and/or pruning can

be required in order to relieve the total burden.

2. Navigation Assessment: the nominal trajectory “flyability” in a real scenario

is evaluated by simulating the orbit determination process and estimating

the trajectory correction maneuvers along the whole mission. Thus, the

Navigation Assessment can be split into two (independent) sub-phases:

i. Knowledge analysis: a covariance analysis is performed to estimate the

achievable level of accuracy in the spacecraft state knowledge, i.e., the

deviation of the estimated spacecraft state with respect to the true one

(Figure 2.1(b)), along the entire trajectory. The initial knowledge, usu-

ally represented as a Gaussian distribution with a given covariance P0

centered in the initial nominal state x0, is propagated forward in time.
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Due to its nature, the knowledge covariance increases in time [63].

Indeed, uncertainties affect the knowledge by enlarging the possible

state space. In order to improve the accuracy of the estimated state

with respect to the real one, an orbit determination process is imple-

mented: the knowledge covariance is reduced by performing multiple

indirect measurements of the state in a prescribed time interval, and

they are provided to a filtering algorithm, able to reconstruct space-

craft’s position and velocity. Thus, the knowledge covariance increases

during propagation and it can be reduced only during the OD phase.

ii. Navigation cost estimation: a stochastic analysis is performed in order

to estimate the navigation cost needed to allow the spacecraft to

reach the target (Figure 2.1(c)). First, a guidance cycle is defined. The

guidance cycle refers to the epochs at which correction maneuvers are

performed. Typically, this can change from one mission to another, or

from one phase to another inside the same mission. Usually, a guidance

cycle with a correction maneuver once a week is assumed as baseline

strategy in order to ease on-ground operations. Indeed, currently,

navigation maneuvers are computed on-ground and then sent to the

spacecraft. For this reason, having a guidance cycle following the

working week pattern reduces operational complexity and costs. Then,

a guidance law is selected in order to compute the correcting impulse

∆v, starting from the deviation from the nominal trajectory δx. At

the end, a statistical analysis is performed to give a measure of the

needed navigation propellant. Moreover, the trajectory dispersion, i.e.,

the deviation of the true spacecraft state with respect to the nominal

one, can be retrieved.

Knowledge analysis and navigation cost estimation are usually performed

independently in the preliminary mission analysis. However, in principle,

they cannot be considered totally separate: both sub-phases should share

a common timeline and a minimum time interval, the cut-off time, should

be considered between the end of the OD phase and the subsequent correc-

tion maneuver. This cut-off time is needed to the flight dynamics team to
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complete the orbit acquisition process, to compute the correction maneuver

and to generate the commands. In the detailed mission analysis, when

higher accuracy is sought, OD can be put in the loop when computing the

navigation costs. In this case, the TCM computation will be based on the

predicted state deviation, i.e. the deviation of the estimated spacecraft state

with respect to the nominal one, and not on the dispersion.

Figure 2.2 shows the general architecture for the traditional approach. This

two-step approach can lead to sub-optimal solutions, requiring a gratuitous

amount of propellant. This behavior is taken to extremes when small satellites

are considered, due to maneuver complexity and definite propellant mass. As a

matter of fact, some trajectory can be wrongly tagged as infeasible using this

approach. A holistic approach is needed to relieve this effect.

2.1.2 Integrated Approach

A procedure able to comprehend the whole navigation assessment inside the

optimization process has to be designed. This method will be tagged as integrated

or revised approach. Its aims are to 1) evaluate and minimize deterministic and

stochastic cost, 2) estimate the knowledge, 3) and compute the dispersion, at the

same time. In order to achieve these objectives, the approach depicted in Figure

2.3 was devised. The initial nominal state is given together with the associated

initial dispersion. For each state belonging to the initial dispersion, an initial

knowledge is considered. These three quantities (nominal state, knowledge and

dispersion) are propagated forward. At some prescribed times, an OD process

is performed in order to estimate the true trajectory and reduce the knowledge

covariance. The estimated trajectory is then used to feed the guidance scheme,

compute the correction maneuver and reduce the dispersion. At the end, the final

nominal state and the final dispersion can be retrieved. For sake of simplicity,

considering a Monte Carlo fashion, the revised approach can be summarized as:

For each step of the optimization algorithm:

1. An initial nominal state x0 (blue dot in Figure 2.3) and initial dispersion

(blue ellipse) are given;
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(a)

Initial State

Target

(b)
Target

Initial State

P0

OD Pf

(c)
Target

Initial State

P0

Dispersion

Δv

δx

FIGURE 2.1. Traditional approach for preliminary mission analysis: (a)
Trajectory design and optimization; (b) Knowledge analysis; (c) Navi-
gation cost evaluation. Nominal trajectory is indicated with a black
line, true trajectory as an orange line, OD with a grey thick line.
Ellipses represent the instantaneous (b) knowledge (c) or dispersion.
Steps (b)-(c) form the navigation assessment.
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FIGURE 2.2. Traditional approach architecture

2. The initial state is propagated up to the final time, in order to generate the

nominal trajectory (black line) and compute the nominal cost;

3. A number of samples in the initial dispersion xi
0 (orange dot) are generated;

4. For each sample:

a) The initial state xi
0 and the associated initial knowledge are propa-

gated forward (orange line) up to the first OD time;

b) In a give time span t ∈
[
tOD
0 , tOD

f

]
, the orbit determination is performed

(gray thick line) to improve the knowledge (black ellipses);

c) An estimated state (magenta dot) is retrieved at the end of the OD and

pushed forward in time, in order to compute the TCM (green arrow)

through a guidance law;

d) The real trajectory is propagated up to the correction maneuver time

tTCM , when the navigation impulse is applied;

e) Steps 4a–4d are repeated for each OD and correction maneuver time

up to the final time t f .

5. From the Monte Carlo-like simulation, statistics for the navigation cost can

be computed and the final dispersion (red ellipse) can be estimated.

6. The total propellant mass, given by deterministic plus stochastic ∆v is

optimized, while imposing a constraint on the final state.
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Target

Initial State

P0

Dispersion
Δv

δx
OD

FIGURE 2.3. Revised approach for the preliminary mission analysis. Nom-
inal trajectory is indicated with a black line, a true possible trajectory
with an orange line, estimated trajectory with a magenta line. The
OD process is the gray thick line. Black ellipses represent the instan-
taneous knowledge; colored ellipses represent the dispersion.

This general approach can be modified by means of some simplifying assumptions

to reduce the computational burden, if needed by the given mission scenario.

Additionally, it is important to stress a significant difference of this concept with

respect to the traditional approach. In fact, the final state is no more determinis-

tic, but it can be more coherently represented in a stochastic way by evaluating

the dispersion at the final time. Hence, it is convenient to implement the final

constraint as a stochastic constraint, i.e., the final points distribution should be

relatively close to the target point. Moreover, this means that the final point of

the nominal trajectory will be unlikely coincident with the target.

Without loss of generality, in this work, the initial state will be always considered

distributed as a Gaussian random variable, i.e. xi
0 ∼N (x0,Pd

0 ). This assumption

is generally valid for a spacecraft trajectory after a first orbit acquisition.

In conclusion, the general fuel-optimal problem of a spacecraft flying in a per-

turbed environment under the revised approach can be formalized as

Problem 0 (Fuel-Optimal General Problem). Find the nominal state x∗(t), the

nominal control history u∗(t) and, possibly, the initial and final times, t0 and t f ,
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such that

J =
∫ t f

t0

∥∥u∗∥∥ dt+Q(∆vs) (2.1)

with Q(∆vs) a measure of the stochastic cost, is minimized, while the state is

subjected to a simplified Itô stochastic differential equation [58]

ẋ= f (x,u, t)+ω (x,u, t) (2.2)

with f being the deterministic part of the dynamics and ω the process noise

associated to uncertainty in dynamics and in maneuver execution.

Moreover, the state is subjected to initial constraints

E [x∗(t0)]= x0

E
[
(x∗(t0)−x0) (x∗(t0)−x0)T

]
= Pd

0

(2.3)

and

E
[
(x(t0)−x0) (x(t0)−x0)T

]
= Pk

0 (2.4)

and a final constraint

E
(
x

(
t f

)
, t f

)⊆ Êδ
(
t f

)
(2.5)

with E indicating a generalized uncertainty ellipsoid and Êδ the desired ellipsoid.

The navigation costs are estimated through a guidance law, fed by the orbit

determination scheme. It means

∆vs =GL
(
x∗, x̂, tTCM

)
(2.6)

and

x̂
(
tOD

f

)
=OD

(
x, x̂, tOD

0 , tOD
f

)
(2.7)

with GL and OD being the Guidance Law and orbit determination procedures

respectively, x̂ is the estimated state, x the real state and x∗ is the nominal state.
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2.2 Test Case Scenarios

A comprehensive method for robust stochastic mission analysis seems to be

unfeasible: deep-space exploration missions have diverse characteristics and

mission profiles vary so widely that a single technique will be never able to

produce a good solution for each situation. For this reason, some sample cases

are defined and used later in this work to specialize Problem 0, in order to test

the revised approach and assess its performances.

Three scenarios are selected as test-bench for the robust preliminary mission

analysis, starting from the increasing trends in nowadays space missions:

(1) A spacecraft subject to a strongly nonlinear dynamics, executing impulsive

maneuvers (Figure 2.4(a));

(2) A satellite controlled by continuous low-thrust, following a spiral trajectory

in a simpler environment (Figure 2.4(b));

(3) A probe performing some fly-bys in a planetary system (Figure 2.4(c)).

(a)

Starting

Point Target

ΔV

(b)

Target

Starting

Point

(c)

FIGURE 2.4. (a) Scenario 1: Impulsive-engine spacecraft subject to a
strongly nonlinear dynamics. (b) Scenario 2: spiral low-thrust trajec-
tory. (c) Scenario 3 (from [17]): Moon tour performing several fly-bys.

Scenario (1) is the prototype of several missions planned in the near future.

A clear example is chemical spacecraft flying towards Lagrange points orbits

(LPOs), for which there is a increasing interest by space agencies all over the

world. Numerous space missions will be launched in the time frame 2021-2025
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exploiting such kind of trajectories, using both traditional spacecraft (e.g., James

Webb Space Telescope by NASA [37] or ESA’s Euclid [49]) and CubeSats (e.g.,

EQUULEUS by JAXA [62] or LUMIO [19]). The Lunar Gateway, a small station

in lunar environment, will orbit a near-rectilinear halo orbit as well and, of course,

all its servicing missions are planned to exploit transfer from the Earth [85].

Scenario (2) recalls space missions equipped with electric propulsion. It can be

used to describe both LEO-to-GEO orbit raising maneuvers or an interplanetary

low-thrust transfer. Examples for this scenario could be the L2-NEO orbit fore-

seen for the mission M-ARGO, the first interplanetary CubeSat, having the aim to

visit a Near-Earth Asteroid in the next 5 years [32] or the mission BepiColombo,

launched by ESA in 2018, planned to reach Mercury in 2025 [12]. This kind of

transfer is also used by some full-electric geostationary commercial satellites,

such as Eutelsat 172B1, in order to bring the probe to its operative orbit.

Scenario (3) is typical of Moon tours in planetary systems, such as the histori-

cal NASA/ESA/ASI Cassini-Huygens mission to Saturn [59] or JUICE by ESA,

planned to be launched on 2022 and to reach Jupiter in 2029 [18].

1See https://directory.eoportal.org/web/eoportal/satellite-missions/e/
eutelsat-172b. (Retrieved on December 1, 2020.)
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3
UNCERTAINTIES PROPAGATION

A necessary step in the holistic approach consists of quantifying the un-

certainties as well as their impact on the spacecraft trajectory. This will

allow to determine the evolution of both the knowledge and the dispersion

and, thus, to estimate the navigation cost. A complete survey on the state-of-the-

art techniques used to propagate the uncertainty is needed, focusing particularly

on the orbital mechanics field, in order to select an appropriate method.

Uncertainty propagation predicts the state and its stochastic properties at a cer-

tain future time, given an initial value and the associated statistical properties,

e.g. mean and covariance matrix. Considering a random state vector x ∈Rn, its

evolution in time can be described by the Itô stochastic differential equation [58]

dx(t)= f(x, t)dt+G(t)dβ(t) (3.1)

where f(x, t) describes the deterministic part of the motion, while the second

term of the right-hand side captures the stochastic dynamics, with β(t) ∈ Rm a

stochastic process with zero mean and covariance Q(t) and G(t) ∈Rn×m the diffu-

sion matrix. Given the initial state x0 = x(t0) and its probability density function

(PDF) p0 = p(x0, t0), the aim of the uncertainty propagation is to determine the
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solution of Eq.(3.1) at a given time t, i.e., x(t)=ϕ(x0, t0; t), with ϕ indicating the

state flow, together with its statistical characteristics.

This process is usually cumbersome since it requires either to solve the so-called

Fokker–Plank equation (FPE), i.e., a partial differential equation describing the

evolution of the PDF, or to carry out a computationally expensive Monte Carlo

campaign. In order to avoid these drawbacks, approximation methods are needed

and alternative techniques were developed in recent times [55].

Uncertainty propagation methods can be grouped in three main categories:

1. Monte Carlo simulation;

2. Linear Methods;

3. Nonlinear Methods.

The latter can be in turn subdivided into three types, according to the approxima-

tion choice (Figure 3.1): a) Dynamics-based, i.e., the dynamics is approximated

conveniently; b) PDF-based, i.e., the probability density function is estimated

through proper techniques; c) Sample-based, i.e., the dynamics is seen as a black-

-box, and the initial stochastic domain is discretized.

FIGURE 3.1. Overview of uncertainty propagation methods
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3.1 Methods overview

3.1.1 Monte Carlo simulation

Monte Carlo (MC) methods esteem stochastic properties related to the problem of

interest through simulations. The stochastic space is properly sampled, taking

into account the probability distributions for the diverse stochastic input vari-

ables; then, a deterministic computation is done using the input data; at the end,

values obtained by simulation are post-processed in order to retrieve stochastic

information on the output, such as mean and covariance.

In the uncertainty propagation case, this means, given an initial distribution

for the state p(x0, t0), MonteCarlo method defines the mean and the covariance

matrix of the propagated state at a given time t as [48]

x̄(t)= 1
N

N∑
k=1

ϕ(t;xk
0 , t0) (3.2)

P(t)= 1
N −1

N∑
k=1

[
ϕ(t;xk

0 , t0)− x̄(t)
][
ϕ(t;xk

0 , t0)− x̄(t)
]T

(3.3)

where N is the number of random sample, ϕ(xk
0 , t0; t) is the propagated k-th

random point chosen within the initial distribution.

If the problem is well posed, MonteCarlo estimations approach the true values as

N →∞. However, in order to obtain the convergent statistics, the number of real-

izations tends to increase quite rapidly, MonteCarlo approach is computationally

expensive. Several techniques were developed throughout the years in order to

reduce the computational burden, such us Latin hypercube sampling (LHS) [45]

or GPU-based parallel implementation [9]. Despite its high computational cost, it

was used extensively in the past in astrodynamics, since it provides high-precision,

nonlinear, non-Gaussian uncertainty propagation with a fast implementation.

Due to its reliability and precision, it is also considered a benchmark algorithm

to validate alternative uncertainty propagators.

3.1.2 Linear Uncertainty Propagation

In order to reduce the computational effort with respect to a MonteCarlo approach

and to have fast, but still reliable, results from the uncertainty propagation, tech-
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niques based on linearization were developed. These methods are employed while

assuming that [55]: 1) the dynamics never drift from the nominal trajectory, so the

linearized dynamics is a good approximation for the real orbit; 2) uncertainties

are completely described by a Gaussian model, i.e. mean and covariance char-

acterize them completely. Linear methods can be labeled as local linearization

methods or statistical linearization methods.

3.1.2.1 Local Linearization

If the real trajectory, x, remains relatively close to the nominal trajectory x∗ for

the time of interest, then it can be expanded in a first-order Taylor’s series about

the reference trajectory. The dynamics of the state error vector, i.e. the deviation

of the real trajectory from the nominal one, can be represented as a system of

linear ordinary differential equation (ODE) with time-variable coefficients. As a

matter of fact, defining the state deviation vector as

X (t)= x(t)−x∗(t) (3.4)

it follows that

Ẋ (t)= ẋ(t)− ẋ∗(t) (3.5)

Since it is possible to represent a general dynamical system as ẋ=F(x, t), expand-

ing it in Taylor’s series about the reference trajectory and truncating it after the

first order terms gives

ẋ=F(x, t)=F(x∗, t)+ ∂F(x, t)
∂x(t)

∣∣∣∣
x∗

(
x(t)−x∗(t)

)+O
(
x(t)−x∗(t)

)
(3.6)

Introducing Eq.(3.1) in Eq.(3.6), considering Eq.(3.5), the outcome will be [68]

Ẋ (t)= A(t)X (t)+G(x, t)β̇(t) (3.7)

where A = ∂F(x,t)
∂x(t)

∣∣∣
x∗ . An analytical solution can be sought, leading to

X (t)=Φ(t0, t)X (t0)+Γ(t)β(t) (3.8)

with Φ(t0, t) the state transition matrix (STM) and Γ(t) the process transition

matrix. From that formulation, exploiting the definition of mean and covariance,
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we can characterize the trajectory statistical properties in time as [68]

X̄(t)=Φ(t0, t)X̄(t0) (3.9)

P(t)=Φ(t0, t)P(t0)ΦT (t0, t)+G(t)Q(t)GT (t) (3.10)

This technique is very common, since it gives a fast and efficient mean to assess

uncertainty propagation under a simple theoretical framework. However, its accu-

racy is strongly reduced in highly nonlinear environments, long time propagation

or large deviation from the nominal solution.

3.1.2.2 Statistical Linearization

The idea beyond the statistical linearization is to approximate the function f(x, t)

in a linear sense using the expression f̂(x, t)+Nx, trying to minimize the mean

square approximation error, defined as e(t)= f(x, t)− f̂(x, t)−Nx in a statistical

sense [38]. This results in

f̂(x, t)= E [f(x, t)] (3.11)

N = E [f(x, t)]P−1 (3.12)

where E[·] denotes the expected value.

From this formulation, recalling Eq.(3.1), exploiting the definition of mean and

covariance, we can characterize the trajectory statistical properties in time as

˙̄x(t)= f̂(x, t) (3.13)

Ṗ(t)= N(t)P(t)+P(t)NT (t)+G(t)Q(t)GT (t) (3.14)

This method is also known as Covariance Analysis Describing Function Tech-

nique (CADET). The CADET goes past the smoothness of the dynamical function

required by the local linearization, since it does not employ Taylor’s theorem.

However, this method can miss a correct description of highly nonlinear system,

because in this case the overall accuracy drops off.
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3.1.3 Nonlinear uncertainty propagation

In highly nonlinear dynamic systems or problems with expected large deviations

with respect the nominal solution, linear propagators fail in representing the

uncertainties as function of the time, because assumptions on linear regime are no

longer respected [48]. For this reason, in the past two decades several nonlinear

methods were developed, giving the possibility to analyze and assess uncertainty

propagation in more complex and realistic models.

3.1.3.1 State Transition Tensors

As a natural extension of the local linearization, the nonlinear motion can be

described by applying an higher order Taylor series of the solution function in

terms of the initial deviation [63]. Mathematically, employing the tensor notation,

an expansion up to the m-th order can be expressed as

δxi(t)=
m∑

p=1

1
p!
Φi,k1,...,kpδx0

k1
. . .δx0

kp
(3.15)

where δx is the deviation of the real trajectory from the nominal one, δx0 is the

initial deviation, {i,kp} ∈ {1, . . . ,n} are dummy variables, with n dimension of the

state, and Φi,k1,...,kp is the state transition tensor (STT), defined as

Φi,k1,...,kp =
∂pxi

∂x0
k1

. . .∂x0
kp

(3.16)

computed by numerical integration along the nominal solution.

Using the STT notation, mean and covariance matrix can be computed through

their definition, leading to

δx̄i(t)=
m∑

p=1

1
p!
Φi,k1,...,kp E

[
δx0

k1
. . .δx0

kp

]
(3.17)

Pi j(t)=
(

m∑
p=1

m∑
q=1

1
p!q!

Φi,k1,...,kpΦ j,l1,...,lq E
[
δx0

k1
. . .δx0

kp
δx0

l1
. . .δx0

lq

])
−δx̄i(t)δx̄ j(t)

(3.18)

where {k j, l j} ∈ {1, . . . ,2n}.

Differently from the MonteCarlo method, STT technique does not need the gener-

ation of random samples, while giving efficient and reliable solutions for mapping

24



3.1. METHODS OVERVIEW

nonlinear uncertainties. However, since high-order differentiation is required,

the governing dynamics has to be continuous and differentiable; furthermore, for

high-fidelity models, the integration of high-order tensors may be computationally

cumbersome, making this method inadequate.

3.1.3.2 Differential Algebra

The STT method requires the computation of increasingly complex partial deriva-

tives. In order to overcome this problem, an accurate nonlinear propagator method

based on differential algebra (DA) was developed in the last years[7, 79]. The

basis of this method lays in substituting the classical algebra with a new algebra

of Taylor polynomials, where any function can be easily expanded in its Taylor

series up to an arbitrary order, along with the function evaluation. The DA allows

to compute the expansion for the solution flow of a general ODE with respect to

the initial conditions. The indipendent uncertain variable x is defined as a DA

variable as [x]= x̄+δx, then the flow can be expressed as a Taylor expansion with

respect the orbit deviation[
ϕ

]= g ([x])=
∑

p1+···+pn≤m
cp1,...,pnδx1

p1
δxn

pn
(3.19)

where cp1,...,pn are the Taylor coefficients.

The mean and the covariance matrix can be computed as

x̄(t)= E
{[
ϕ

]}= ∑
p1+···+pn≤m

cp1,...,pn E
{
δx1

p1
. . .δxn

pn

}
(3.20)

P(t)= E
{([
ϕ

]− x̄
)([
ϕ

]− x̄
)T

}
= ∑

p1+···+pn≤m
q1+···+qn≤m

cp1,...,pncq1,...,qn E
{
δx1

p1+q1
. . .δxn

pn+qn

}
(3.21)

Starting from the DA approximation, propagation of the uncertainties can be

done exploiting MC simulations or high-order Taylor expansions.

The DA allows to expand directly the flow up to an arbitrary order and then

using this expansion to non-linearly propagate the uncertainties; this means, that

there is no need to integrate the variational equations. However, also in this case,

since a Taylor expansion is also performed, the dynamics has to be described by

continuous and differentiable equations.
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3.1.3.3 Unscented transformation

The unscentend transformation (UT) is based on fact that it may be easier to ap-

proximate the probability distribution rather than the nonlinear transformation.

This means that the probability distribution at a given time may be approximated

by nonlinearly integrating some points xk(t0), k ∈ {0, . . . ,P}, chosen conveniently

from the initial distribution [47]. These peculiar points, called sigma-points, are

chosen deterministically such that they can be used to reconstruct correctly the

initial mean x̄(t0) and the initial covariance P(t0). The nonlinear integration is

applied to the initial sigma-points in order to obtain transformed sigma-points,

xk(t), that can be used to retrieve the mean and the covariance at a given time, as

x̄(t)=
M∑

k=1
ωkxk(t) (3.22)

P(t)=
M∑

k=1
ωk [xk(t)− x̄(t)] [xk(t)− x̄(t)]T (3.23)

where ωk are the weights associated to the M sigma-points.

With respect to the Monte Carlo method, usually only 2n+1 samples are required

for the unscentend transformation in order to obtain a second order approximation

of the first two statistical moments. On the other hand, only the first two moments

can be correctly approximated.

3.1.3.4 Polynomial Chaos Expansion

If higher moments or the complete PDF are of interest, Polynomial Chaos Expan-

sion (PCE) methods can be used as uncertainty propagators. The input uncertain-

ties and the solution are approximated using a series expansion based on some

orthogonal polynomials, thus the approximated solution can be written as [87]

x̂(t,ξ)= ∑
α∈Λp,d

cα(t)ψα(ξ) (3.24)

where Λp,d is a set of the multi-index of size d and order p defined on nonnegative

integers, ξ= [ξ1, . . . ,ξd] is the set of input random variables, in which each element

ξi is an independent indentically distributed (IID) variable. The basis functions
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{
ψα(ξ)

}
are multidimensional spectral polynomials, orthonormal with respect to

the joint probability measure ρ (ξ) of the vector ξ∫
Γd
ψα(ξ)ψβ(ξ)ρ (ξ)dξ= δαβ (3.25)

with Γd representing the d-dimensional hypercube where the random variable ξ

are defined and δαβ is the Kronecker delta function. Thus, the basis functions

choice depends only on ρ (ξ). For instance [88], Hermite polynomials are the basis

for normal random variables, while Legendre orthogonal polynomials are bases

for the uniform distribution.

Generation of a PCE means computing the generalized Fourier coefficients cα(t)

by projection of the exact solution x(t,ξ) onto each basis function ψα(ξ), truncated

at the total order p

cα(t)= E
[
x(t, ·)ψα(·)]= ∫

Γd
x(t,ξ)ψα(ξ)ρ(ξ)dξ (3.26)

The estimation of the Polynomial Chaos Expansion coefficients falls into two

categories: intrusive and non-intrusive.

Intrusive methods [87] solve for cα(t) by performing a Galerkin projection of

the governing stochastic equations onto the
{
ψα(ξ)

}
subspace. Hence, laborious

modifications in the dynamic equations are required. In fact, introducing Eq.

(3.24) in Eq. (3.1), neglecting the terms related to the process noise, we get∑
α∈Λp,d dcα(t)ψα(ξ)

dt
= f

( ∑
α∈Λp,d

cα(t)ψα(ξ), t

)
(3.27)

Now, Eq. (3.27) can be Galerkin-like projected on each orthogonal polynomial in

the set
{
ψα(ξ)

}
, obtaining [87]

dci,α(t)
dt

= 1〈
ψα(ξ),ψα(ξ)

〉 〈
f

( ∑
α∈Λp,d

ci,α(t)ψα(ξ), t

)
,ψα(ξ)

〉
(3.28)

with i ∈ {1,2, . . . , n}, where n is the dimension of x(t). The symbol 〈·, ·〉 is used to

denote the inner product in the subspace spanned by
{
ψα(ξ)

}
with the probabil-

ity distribution ρ(ξ), and ci,α(t) are the PCE coefficients associated to the i-th

component of x(t). The n-dimensional system of stochastic ODEs is equivalently
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transformed in a (L×n)-dimensional deterministic ODE system, where

L = ∣∣Λp,d
∣∣= (p+d)!

p!d!
(3.29)

All the parameters in Eq. (3.28) are deterministic and so the ODE system can

be solved by means of standard solver, like Runge-Kutta methods. Thus, once

the distribution for x(t0) is given, it can be easily propagated in time. However,

intrusive PCE requires much effort in modifying existing orbit propagators, as

showed by Eq. (3.28). This work can be cumbersome, or even not possible, for

high-fidelity, complex, dynamic models.

If process noise is considered, it can be approximated by means of the Karhunen-

Loeve (KL) Expansion [54]. This technique reduces the dimensions in represent-

ing a random process and allows to frame it in PCE model.

For what concerns non-intrusive methods [46], they rely on already existing

models and solvers, employing them as a black-box to compute cα(t). These

estimations can be done by 1) Least-Squares Regression or 2) Pseudospectral

Collocation on tensor/sparse grid. Both approaches can be summarized as

1. Generate M realizations, denoted as ξi, of the random input ξ. According

to the approach, ξi can be drawn randomly from the given distribution ρ(ξ)

(regression) or determinstically chosen according to some grid points in Γd

(pseudospectral collocation);

2. For each of the M samples, compute the initial sample states x(t0,ξi);

3. Integrate numerically the initial states up to a desired time t, given the

dynamics as a black-box, to get x(t,ξi);

4. Solve for the PCE coefficients cα(t), taking into account x(t,ξi) and the

method of choice.

In the following paragraphs, two non-intrusive methods will be analyzed.

Least-Square Regression The least-square regression is based on a random

sampling of the uncertainties, that are propagated independently to obtain the

corresponding propagated samples, used to find cα(t). The PCE coefficients are
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computed such that the sum of squares of differences between x̂(t,ξ) and the

propagated samples x(t,ξ), at the sample points ξi, is minimized [46]

cα(t)' arg min
{c̃α(t)}

1
M

M∑
i=1

(
x(t,ξi)−

∑
α∈Λp,d

c̃α(t)ψα(ξi)

)2

(3.30)

The solution of this problem can be conveniently written as(
ΨTΨ

)
c(t)=ΨTX(t) (3.31)

where c(t) ∈RP×n is the least-squares approximation of the PC coefficients, X(t) ∈
RM×n is the matrix containing the realizations of the vector x(t,ξ) and Ψ ∈RM×P

is the measurement matrix, defined as

Ψ[i, j]=ψα j (ξi) with i = 1, . . . , M, j = 1, . . . ,L (3.32)

The number of samples M needed is not straightforward and it depends basically

on the uncertainties, the polynomial basis, and the required accuracy.

Pseudospectral Collocation The pseudospectral collocation approach is based

on the numerical integration of Eq.(3.26) by collocating x(t,ξ) on certain quadra-

ture nodes defined on Γd in order to find cα(t) [46]. This means

cα(t)³Q
[
x(t, ·)ψα(·)]= M∑

q=1
x(t,ξq)ψα(ξq)ωq (3.33)

where Q is the quadrature integration, {ξq} is the set of quadrature nodes and

{ωq} are the quadrature weights. Hence only the evaluation of the solution at

prescribed quadrature nodes is required, without the necessity of modifying the

already existing orbit propagators.

Several quadrature rules are available. The Guassian quadrature rule is one

of the most common methods. In this case, the nodes ξq and the corresponding

weights ωq are selected depending on the orthogonal polynomials associated to the

probability density function ρ̃(ξi) related to each random input ξi. For instance, if

the input ξi is described as a Gaussian random variable, the nodes {ξqi
i } and the

weights {ωqi } with qi = 1, . . . ,mi are the zeros of the Hermite polynomial of order
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mi and its quadrature weights. Under this assumption, the quadrature

Qmi [f]=
mi∑

qi=1
f(ξqi

i )ωqi (3.34)

is exact, i.e. Qmi [f]=
∫
Γ f(ξi)ρ̃(ξi)dξi, if f(ξi) :Γ→R is a 2mi −1-order polynomial.

This approach can be easily extended to the (d-dimensional) multivariate case,

performing a tensor product of the single univariate cases, leading to

Q[f]= (
Qm1 ⊗·· ·⊗Qmd

)
[f]=

m1∑
q1=1

· · ·
md∑

qd=1
f(ξq1

1 , . . . ,ξqd
d )ωq1 . . .ωqd (3.35)

In this way a quadrature on a full tensor product grid is performed. A total of

M =∏d
i=1 mi points for the function evaluation are needed. If the same number

m of points along all the dimensions of ξi are taken, i.e. m1 = ·· · = md = m, the

approximation error for the quadrature formula in Eq. (3.35) is in the order of

O (M−(2s−1)/d) for a C s function f(ξ). Keeping the error constant, the number of

function evaluations M grows exponentially fast with respect the dimensionality

d of the random inputs. This issue is the so-called curse of dimensionality. The

full tensor product method is unmanageable beyond certain value of d.

In order to reduce the dimensionality of the problem, quadrature on sparse grid

can be used to approximate the integral in Eq. (3.26). The basic idea of sparse

grids is to preserve one-dimensional integration properties in a multidimensional

setting, reducing the number of grid points, by neglecting higher-order interac-

tions among dimensions. A classical sparse grid quadrature is the Smolyak’s

formula, given by

Q = ∑
m−d+1≤‖m‖1≤m

(−1)m−‖m‖1

(
d−1

m−‖m‖1

)
× (

Qm1 ⊗·· ·⊗Qmd

)
[ f ] (3.36)

where m is the level of the sparse grid, m= (m1, . . . ,md) ∈Nd
0 and ‖m‖1 =

∑d
i=1 mi.

The quadrature rule described in Eq. (3.36) exactly integrates polynomials of

total order
∑d

i=1 mi ≤ 2m−1, while the full tensor grid quadrature (Eq.(3.35)),

considering an grid of order m along all the directions ξi, exactly integrates

polynomials of maximum order maxi mi ≤ 2m−1. The higher degree in accuracy

of the full tensor grid is achieved by employing an overly higher number of points

with respect to sparse grid quadrature.
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Given the estimates of the PCE coefficients cα(t), the statistics of x(t,ξ) can be

approximated by those of x̂(t,ξ) by a Monte Carlo fashion sampling or directly

from the coefficients cα(t). In this last case, the mean is given by [46]

x̄(t)= E[x(t, ·)]' E[x̂(t, ·)]=
∫
Γd

( ∑
α∈Λp,d

cα(t)ψα(ξ)

)
ρ(ξ)dξ= c0(t) (3.37)

because ψ0 = 1 and E[ψα]= 0 for α 6= 0. The covariance can be computed as

P(t)= E
[
(x(t, ·)− x̄(t, ·)) (x(t, ·)− x̄(t, ·))T

]

=

∫
Γd

 ∑
α∈Λp,d
α 6=0

cα(t)ψα(ξ)


 ∑
β∈Λp,d
β 6=0

cβ(t)ψβ(ξ)


T

ρ(ξ)dξ

= ∑
α∈Λp,d
α 6=0

cα(t)cT
α(t)E[ψ2

α] = ∑
α∈Λp,d
α 6=0

cα(t)cT
α(t)

(3.38)

where the orthonormality of the polynomial basis is exploited. A similar procedure

can be used to compute higher-order moments.

The PCE technique gives an efficient method for uncertainty propagation, even

for non-Gaussian highly nonlinear models. It enjoys an exponential rate of conver-

gence [87], if certain hypotheses are satisfied and provides accurate estimations

on higher order moments and the entire PDF. The main drawback is that the

number of PCE terms increases exponentially with the dimensionality of the

input uncertainties, which leads to the curse of dimensionality.

3.1.3.5 Gaussian Mixture Model

The idea beyond the Gaussian mixture model (GMM) is to approximate a non-

Gaussian PDF by a weighted sum of several Gaussian density functions [75],

meaning that

p̂(t,x)=
N∑

i=1
ωi pg(x; x̄i,Pi) (3.39)

where N is the number of Gaussian kernels, with the i-th one having a probability

density function pg with mean x̄i and covariance Pi, and ωi being its weight,
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subject to the constraints

N∑
i=1

ωi = 1, ωi ≥ 0, i = 1, . . . , N (3.40)

These parameters are not easy to compute and to propagate them in time, hence

this can be a serious issue for GMM. A simple GMM algorithm splits the initial

distribution in a weighted Gaussian mixture and then propagates it in time, ob-

taining the final mixture, keeping the weights constant. To locate the parameters

related to the GMM, an optimization problem minimizing the distance between

p(t,x) and p̂(t,x) is solved. Since each component in p̂(t,x) is Gaussian, this

means that it is completely described by only the first two moments and, thus,

only the mean and the covariance matrix have to be pushed forward in time. This

job can be easily done by all the uncertainty propagators considered so far, such

as unscentend transformation or state transition tensor.

After the weights and kernels are determined, the mean and covariance matrix

can be computed starting from the Gaussian mixtures as [25]

x̄m =
N∑

i=1
ωix̄i (3.41)

Pm =
N∑

i=1
ωi(Pi + x̄ix̄T

i )− x̄mx̄T
m (3.42)

Thus, Gaussian mixture model decouples a large and cumbersome uncertainty

propagation in a series of easier problems. However, GMM may require a large

number of Gaussian distributions in order to achieve the desired accuracy, leading

so to the curse of dimensionality. Furthermore, in order to compute and propagate

the weights of the GMM, an optimization problem has to be solved; thus, the

computational time strongly increases.

3.1.3.6 Solving Fokker–Plank Equation

Another way to completely propagate uncertainty is to solve the Fokker–Plank

equation. In fact, for a given dynamic system satisfying the Itô stochastic differ-

ential equation (Eq. (3.1)), the time evolution of a PDF p(t,x) is described by the
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Fokker–Plank Equation [34]

∂p(t,x)
∂t

=−
n∑

i=1

∂

∂xi

[
p(t,x)fi(x, t)

]
+ 1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

{
p(t,x)

[
G(t)Q(t)GT (t)

]i j
}

(3.43)

The FPE is a partial differential equation (PDE) that satisfies the propagation of

a probability density function in time.

However, solving the Fokker–Plank equation is cumbersome for high dimensional

dynamics system and it may be computational intensive [74]. For instance, using

traditional discretization methods of the domain, if m nodes are used for each

dimension, the total number of unknowns for an n-dimensional problem is nm.

So, the number of variables increases exponentially and making this approach

unbearable for high-dimensional problems.

Techniques to reduce the dimensionality have been studied in the last years.

Tensor decomposition was extensively analyzed and assessed [73, 74]. Spatial

dimensions and time are separated, in order to obtain a simpler series of one di-

mensional operations, reducing the computational burden. However, this method

is unsuitable if there are non-separable terms in the coordinates [74].

3.2 Method selection

An overview of the methods with their pros and cons can be found in Table 3.1.

For each scenario described in Section 2.2, the most appropriate method should

be selected in order to be used in the revise approach. For this reason, for all the

three test cases, all the methods are ranked taking into account the following

four qualitative criteria:

• Accuracy: it considers how accurate is the method in estimating the propa-

gated uncertainty;

• Feasibility: it assesses if the hypotheses are compatible with our problem;

• Computational time: it gives a qualitative measure of computational burden

requested by the method;

• Suitability: it measures the suitability inside an optimization algorithm.
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Results from this analysis can be found in Tables 3.2–3.4, with a single table

dedicated to each Scenario. A four-color code is used to rank the different method-

ologies, with red marking a criterion with unacceptable performances, while green

indicates a completely satisfied criterion.

3.2.1 Results

Scenario (1) is characterized by a limited number of thrust impulses, corre-

sponding to few uncertainties, but the spacecraft is flying in a highly perturbed

environment. Indeed, a high nonlinear solution is expected; however, the number

of random variables is low. For this reason, a nonlinear uncertainty quantifi-

cation method is needed and, since the uncertainty vector is small, the curse

of dimensionality does have a limited impact. Starting from this assumption,

the trade-off shows that the Polynomial Chaos Expansion, specifically in a non-

intrusive method fashion, seems to feature the best balance of criteria. Local

linearization and UT show a good ranking and, for this reason, they are tagged

as backup, lower fidelity solutions.

Scenario (2) is characterized by a continuous low-thrust engine and its thrust

should be considered a stochastic process both in magnitude and direction. Thus,

a method able to handle long transfers with stochastic processes is required.

Moreover, spacecraft dynamics will not depart significantly from a controlled

two-body problem dynamics. In this case, a local linearization method is able

to describe accurately the stochastic dynamics, while handling easily the broad

random-variable space. Stochastic linearization is taken as backup approach.

In Scenario (3), several leveraging fly-bys are foreseen and thus stochastic dimen-

sions increase exponentially and make the revised approach unbearable. For this

reason, only a small leg of the Moon tour, including only few close approaches, is

considered. In this case, the random dimensions is still limited. However, several

close passages can significantly spread the trajectory. Thus, linear methods are

considered inappropriate for this test case. In conclusion, Polynomial Chaos Ex-

pansion is deemed to be the best feasible option, while unscentend transformation

is identified as the backup solution.
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4
GUIDANCE METHODS

An algorithm, able to compute tailored impulses in order to let the space-

craft fly the nominal path, is needed. Control maneuvers reduce the

dispersion with little propellant effort. In order to estimate the TCMs, a

dedicated strategy is implemented. In literature, these techniques are usually

subdivided into two main groups: a) Closed-loop control, if control impulses are

given to track the reference guidance, or b) Closed-loop guidance, if control im-

pulses are given to update the whole spacecraft trajectory in order to satisfy the

mission objectives. Several different guidance and control laws exist, based both

on the maneuver execution time and on the maneuver computation itself. Indeed,

the control thrust can be provided either when a certain quantity (e.g. the state

knowledge) exceeds a threshold or at prescribed time intervals, provided by the

on-ground flight dynamics team. Moreover, the impulse vector can be computed to

control the full state, or just some components, or the unstable directions [44], by

an application of generalized Zero-Effort-Miss/Zero-Effort-Velocity feedback guid-

ance algorithm [43], using sliding control [35] or even exploiting state-of-the-art

machine learning [36]. The choice of the most suitable method is based essentially

on the mission profile, spacecraft characteristics and the general scenario.
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CHAPTER 4. GUIDANCE METHODS

In this work, only closed-loop control, i.e. the nominal trajectory tracking is used

as control strategy. However, the algorithm computing navigation maneuvers

will be always tagged as guidance algorithm. Maneuvers are computed at a

prescribed time, in order to comply with on-ground segment requirements. Two

diverse methods are exploited: the well-known differential guidance and a novel

approach, called target guidance. Details about these two algorithms are given in

the remainder of this chapter.

4.1 Differential Guidance

differential guidance (DG) is a commonly used guidance method for deep-space

missions [22, 57]. DG aims at canceling the final state deviation using two ma-

neuvers, one at beginning and the other at the end of the considered leg. Since

the time interval between navigation maneuvers is relatively short and, thus,

the real trajectory does not significantly drift from the nominal one, first-order

(linear) approximation can be used to relate the initial and final deviations. Hence

[
δr j+1

δv j+1

]
=

[
Φrr Φrv

Φvr Φvv

]([
δr j

δv j

]
+

[
0
∆vs

j

])
+

[
0

∆vs
j+1

]
(4.1)

where Φrr, Φrv, Φvr, and Φvv are the 3-by-3 blocks of Φ(t j, t j+1), i.e., the STM

associated to the nominal trajectory from t j and t j+1, and ∆vs
j and ∆vs

j+1 are the

TCMs at the same time instants. Epochs t j and t j+1 are used to indicate two

consecutive TCM times, while δr and δv are the deviations with respect to the

nominal trajectory. If the OD is considered in the loop, deviations are taken from

the estimated trajectory δr= r̂−r∗

δv= v̂−v∗
(4.2)

Otherwise, the real trajectory is considered, thusδr= r−r∗

δv= v−v∗
(4.3)

Usually, the second control maneuver ∆v j+1 is not applied, since at the final

leg time a new maneuver can be computed and the whole algorithm can be
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4.2. TARGET GUIDANCE

repeated in a receding horizon approach. Then, the navigation maneuver ∆v j can

be determined such that the final deviation is minimized, i.e.

J = ∥∥δr j+1
∥∥2 + q

∥∥δv j+1
∥∥2 (4.4)

where q is a parameter used either to adjust dimensions or the change the

guidance algorithm behavior, favoring position deviation at the expense of velocity

deviation and vice versa. Applying the variations analysis to Eq. (4.4), considering

Eq. (4.1) as a linear constraint, the TCM can be computed as

∆vs
j =−

(
ΦT

rvΦrv + qΦT
vvΦvv

)−1 (
ΦT

rvΦrr + qΦT
vvΦvr

)
δr j −δv j (4.5)

The control impulse in Eq. (4.5) is applied at each TCM time.

4.2 Target Guidance

In some mission scenarios, it can be of paramount importance to meet targets

along the trajectory, rather than catching up the nominal state at each correction

maneuver epoch. In these cases, algorithms pointing at canceling out deviations

at maneuver points can unreasonably increase the navigation costs. This phe-

nomenon can happen in a profile with several back-to-back fly-bys, where a

precise close approach altitude is strongly required, or in case of close proximity

operations about minor bodies, where scientific objectives can be more stringent

than the exact way-point passage. Thus, a guidance law able to fulfill prescribed

requirements by giving control impulse at some given times is needed. For this

reason, a novel concept, labeled target guidance (TG) has been devised.

Considering Figure 4.1, exploiting a linearized approach, the state at the first

TCM time t1, can be computed as

x1 = x∗
1 +Φ (t0, t1)δx0 (4.6)

where indexes correlate to TCM epochs, Φ (t0, t1) is the STM from t0 to t1, and

δx0 is the state deviation at the initial time t0, defined conveniently as either Eq.

(4.2) or Eq. (4.3). After the correction maneuver, the state reads

x+
1 = x∗

1 +Φ (t0, t1)δx0 +
[

0
∆v1

]
︸ ︷︷ ︸

δx1

(4.7)
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FIGURE 4.1. Target Guidance concept. Black line is the nominal path,
while orange line is the real trajectory.

with δx1 is the deviation with respect to the nominal state at the first correction

maneuver. If the deviation is pushed forward to the second correction epoch,

exploiting the linearization theory, the state is

x2 = x∗
2 +Φ (t1, t2)δx1 = x∗

2 +Φ (t1, t2)

(
Φ (t0, t1)δx0 +

[
0
∆v1

])

= x∗
2 +Φ (t0, t2)δx0 +Φ (t1, t2)

[
0
∆v1

] (4.8)

where the composition property for the STM has been exploited. This procedure

can be applied up to the time tk, that is the last TCM time before the target (see

Figure 4.1), leading to

xk = x∗
k +

1∏
i=k
Φi

i−1δx0 +
k∑

i=1

i∏
j=k
Φ

j
j−1Iv∆v j−1︸ ︷︷ ︸

δxk

(4.9)

where Φ j
j−1 =Φ(t j−1, t j) and Iv is a block matrix, able to extract the 3-by-3 bottom-

right part of the STM. Thus, the target state (at time tT ) can be written as

xT = x∗
T +Φ(tk, tT )δxk︸ ︷︷ ︸

δxT

(4.10)
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4.2. TARGET GUIDANCE

Now, the target function f is defined, i.e. the function that must be zero to fulfill

the mission objective. For example, considering as target a desired latitude λδ at

the close approach, the target function will be f =λ−λδ = 0. Now, expanding f at

the first order, it gets

f (xT )'��
��*

0
f
(
x∗

T
) + d f

dx

∣∣∣∣
x∗

T

δxT = 0 (4.11)

Substituting Eq. (4.9) in Eq. (4.10), and in turn in Eq. (4.11), we obtain

f (xT )' d f
dx

∣∣∣∣
x∗

T

ΦT
k

(
1∏

i=k
Φi

i−1δx0 +
k∑

i=1

i∏
j=k
Φ

j
j−1Iv∆v j−1

)

= d f
dx

∣∣∣∣
x∗

T

1∏
i=T

Φi
i−1δx0 + d f

dx

∣∣∣∣
x∗

T

k∑
i=1

i∏
j=T

Φ
j
j−1Iv∆v j−1 = 0

(4.12)

Considering that f is known and it is at least a C 1 function, Eq. (4.12) can be

written in a compact form

Ã0δx0 + A∆v= 0 (4.13)

where Ã0 = ∂ f
∂x

∣∣∣
x∗

T

∏1
i=TΦ

i
i−1 and A = ∂ f

∂x

∣∣∣
x∗

T

∑k
i=1

∏i
j=TΦ

j
j−1Iv, and

∆v=


∆v1

∆v2
...

∆vM

 ∈R(3M)

The algorithm can be modified to account more than a single target function. In

this case, matrices Ã0 and A should be modified accordingly. For example,

A = d f i

d∆v j
=


d f1

d∆v1
0 . . . 0

d f2
d∆v1

d f2
d∆v2

. . . 0
...

...
. . .

...
d fN
d∆v1

d fN
d∆v2

. . . d fN
d∆vM

 ∈RN×(3M) (4.14)

where N is the number of target functions, while M the number of control

maneuvers. Zeros in Eq. (4.14) are related to the fact that impulses future in time

withe respect to the target are not able to influence the target function itself, i.e.
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if the i-th target function occurs later of the j-th TCM, then d f i
d∆v j

= 0.

Moreover, a target trigger function g is introduced, being null whenever the target

condition is reached. Thus, it checks then the target specified by function f is

happening at the right moment. For example, considering as target a desired

latitude λδ at the close approach, the target trigger function will be the close

approach condition, so g = (r ·v)= 0. Again, considering a first order expansion,

g (xT )'��
��*

0
g

(
x∗

T
) + dg

dx

∣∣∣∣
x∗

T

δxT = 0 (4.15)

Repeating mathematical steps of Eqs. (4.12)–(4.13), considering that g is a known

C 1-class function, Eq. (4.15) reads

G̃0δx0 +G∆v= 0 (4.16)

Then, an optimization problem is set in order to minimize the sum of the navi-

gation costs, while satisfying the targeting constraints given by Eqs. (4.13) and

(4.16), i.e., find ∆v j, j = {1, . . . , M} such that

J =
M∑
j=1

1
2

∥∥∆v j
∥∥2 = 1

2
∆vT∆v (4.17)

is minimized, subjected to [
A

G

]
︸︷︷︸

Â

∆v=−
[

Ã0

G̃0

]
︸ ︷︷ ︸

Â0

δx0 (4.18)

Applying the Lagrange theory, a Lagrange function associated to the optimization

problem can be written as

L = 1
2
∆vT∆v+λT (

Â∆v+ Â0δx0
)

(4.19)

where λ is the Lagrange multipliers vector. In this case, the necessary condition

for the optimization problem can be summarized as
∂L
∂∆v =∆v+ ÂTλ= 0
∂L
∂λ

= Â∆v+ Â0δx0 = 0
(4.20)
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The two conditions in Eq. (4.20) can be written in a more elegant compact form[
I3M ÂT

Â 02N

][
∆v
λ

]
=−

[
03M

Â0δx0

]
(4.21)

where I3M is the 3M-dimensional identity matrix and 02N the (2N×2N) null

matrix. Applying the explicit inverse formula for a 2×2 Hermitian block triangular

matrix [53], it is possible to write[
∆v
λ

]
=−

[
I3M ÂT

Â 02N

]−1 [
03M

Â0δx0

]

=−
[

I3M − ÂT (
Â ÂT)−1 Â ÂT (

Â ÂT)−1(
Â ÂT)−1 Â −(

Â ÂT)−1

][
03M

Â0δx0

] (4.22)

Taking the first row of Eq. (4.22), the minimizing impulses can be retrieved as

∆v=−ÂT
(
Â ÂT

)−1
Â0δx0 =−Â† Â0δx0 (4.23)

where Â† is the Moore–Penrose pseudo-inverse matrix of Â [64].

Note that this system is well-posed only if 3M ≥ 2N; hence, we should have at

least 2 trajectory correction maneuvers every 3 targets.

This method can be applied in a receding horizon approach, meaning that, at each

OD time, values of δx0, Â, and Â0 are updated, a new value for ∆v is computed,

but only the first ∆v j is applied in practice, while the others are recomputed again

in the subsequent legs. Moreover, it is important to notice that the algorithm

computes TCMs able to control all target states downstream. This characteristic

is of paramount importance whenever several targets close in time are chosen.
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5
SCENARIO 1

Scenario (1) describes a spacecraft flying in a strongly perturbed environ-

ment, controlling its trajectory using impulsive maneuvers. Since Scenario

(1) can be used to represent spacecraft flying on Lagrange points orbit

manifolds, it can well describe the trajectory of the CubeSat LUMIO [71].

5.1 Introduction

LUMIO
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FIGURE 5.1. LUMIO logo.

The Lunar Meteoroid Impact Observer (LU-

MIO) was one of the proposals submitted to the

ESA’s SysNova Competition LUnar CubeSats

for Exploration (LUCE). LUMIO was selected

as one of the four concurrent studies run under

ESA contract, and it won ex aequo the challenge.

An independent assessment conducted at ESA’s

Concurrent Design Facility (CDF) has proved

the mission feasibility. In 2020, ESA considered

the mission for further implementation, funding the Phase A study. LUMIO
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CHAPTER 5. SCENARIO 1

successfully passed the Mission Definition Review (MDR) in July 2020 and the

Preliminary Requirements Review (PRR) in February 2021.

LUMIO space segment is composed by a 12U form-factor CubeSat, flying a halo

orbit at Earth–Moon L2. The spacecraft is equipped with the LUMIO-Cam, a

novel miniaturized optical instrument capable of detecting light flashes in the

visible spectrum produced by meteoroid impacts. Indeed, LUMIO shall observe,

quantify, and characterize meteoroid impacts on the lunar farside by detecting

their flashes, complementing Earth-based observations on the Lunar nearside, to

provide global information on the lunar meteoroid environment and contribute

to lunar situational awareness. The mission implements a novel orbit design

and latest CubeSat technologies to serve as a pioneer in demonstrating how

CubeSats can become a viable tool for deep space science and exploration. The

whole mission profile is summarized in Figure 5.2. The mission can be subdivided

into five sequential phases:

1. Launch and trajectory from Earth to Moon is under the responsibility of a

mothership, that brings LUMIO on a given Low Lunar Orbit (LLO);

2. In the Parking phase, LUMIO is released on the LLO by the mothership,

where the system commissioning is started;

3. The Transfer phase begins with the Stable Manifold Injection Maneuver

(SMIM), bringing LUMIO to the stable manifold, connecting the LLO with

the operative orbit, and ends with the Halo Injection Maneuver (HIM);

4. During Operative phase LUMIO is placed on its operative orbit, where the

science observations are performed in order to fulfill the scientific objectives;

5. The disposal is performed in the end-of-life phase in order to avoid risks for

future missions.

In this work, the focus will be placed on the transfer phase, that embed clearly

the ontological characteristics of Scenario (1).

48



5.1. INTRODUCTION

1
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2

- Launch	
- LEOP	
- Trans-lunar	injection

Parking	Phase	
Lunar	Orbiter	injects	LUMIO	
into	selenocentric	orbit.

Transfer	Phase	
After	PCM	and	SMIM,	LUMIO	
is	in	outbound	flight	along	the	
stable	manifold	of	target	halo.

Operative	Phase	
HIM	injects	LUMIO	into	Earth-
Moon	L2	halo	orbit,	where	it	
starts	performing	nominal	
operations	for	1	year.

L2

384,400	km

64,500	km

End	of	Life 4

FIGURE 5.2. LUMIO mission profile (from [19]).

5.1.1 Parking phase

During the parking phase, LUMIO is released on a Low Lunar Orbit by the

carrier. However, the actual release orbit is unknown since it will be driven by

the primary payload of the mission, being LUMIO only a secondary payload.

During Phase A study, an holistic search has been performed to assess mission

robustness against the injection option possibilities by considering variations

in the dimensions and in the angular parameters of the release orbit about the

Moon. At the end of the analysis, several LLOs are deemed feasible, needing

less than 150 m/s for the SMIM impulse. Feasible solutions are characterized

by high apocenter and low pericenter altitudes (see Figure 5.3) and the feasible

Keplerian parameters set gets wider by lowering the pericenter and increasing

the apocenter distance (as shown in Figure 5.4). In order to reduce the search

space and relieve the burden given by a large feasible orbits set, a LLO is selected

arbitrarily to be used in this work. The 600 km×20000 km parking orbit, chosen

in the CDF study [82], is picked out. Angular parameters are considered free.
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SMIM as function of initial orbit
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FIGURE 5.3. ∆vSMIM as function of parking orbit pericenter and apoc-
enter altitude. Red line marks 150 m/s line. Peregrine is a NASA’s
CLPS mission, being one of the possible motherships.

5.1.2 Operative Orbit

LUMIO operative orbit was selected during Phase 0, thoroughly trading off the

scientific requirements and the orbit maintenance costs. The operative orbit was

selected from a set of fourteen quasi-halos orbits about Earth–Moon L2 computed

in the high-fidelity Roto-Pulsating Resticted n-Body Problem (RPRnBP). Details

for this process can be found in [19]. The selected halo orbit has been kept fixed

in Phase A. This will reduce the space of the feasible parking orbits, allowing the
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(a) (b)

(c) (d)

FIGURE 5.4. Holistic search results for four sample LLOs. Color code
shows the total ∆v needed to reach the operative orbit. Deep blue
areas are the one with ∆v < 150m/s. Angular parameters are in the
MCME2000 reference frame.

stable manifold transfer with the allotted propellant mass, and will constrain

the possible injection times. However, this choice eased the payload and system

design, reducing the environment indefiniteness.

The designated LUMIO operative orbit is quasi-periodic halo orbit about Earth–

Moon L2 characterized by a Jacobi constant C j = 3.09. Table 5.1 shows nondimen-

sional Jacobi energy and the out-of-plane amplitude Az. According to the timeline

of the mission, defined during Phase A, the operative phase is expected to start on
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21 March, 2024, and to end on 22 March, 2025. The trajectory of the quasi-halo

orbit in that time frame is shown in Figure 5.5. In this work, the operative orbit

serves as a moving target on a prescribed trajectory.

TABLE 5.1. Parameters of LUMIO operational orbit.

Name C j [-] Az [km]

Halo_Cj3p09 3.09 28418.41
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FIGURE 5.5. Projection of the selected operative Earth–Moon L2 quasi-
halo in the Roto-Pulsating Frame for LUMIO.

5.1.3 Transfer phase

In the transfer phase, LUMIO is brought from a Low Lunar Orbit, where it was

released by a mothership, to the operative orbit. Free transport mechanisms are

leveraged to reach the target halo. Specifically, intersection in the configuration

space has to be sought between the halo stable manifolds and a selenocentric

transition orbit. Since the sought intersection occurs only in physical space, a

maneuver is necessary for orbital continuity. This maneuver places the spacecraft

on the stable manifold of the target halo and is thus called Stable Manifold

Injection Maneuver and it will be indicated with ∆vSMIM. After the transfer, the

Halo Injection Maneuver, ∆vHIM, eventually injects the CubeSat into the final

operative orbit. A detailed study of the TCM problem for several Lagrange points

orbits, exploiting simple dynamical systems concepts, has shown that two TCMs
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provide sufficient degrees of freedom [41]. Thus, two TCMs are scheduled to occur

during the transfer along the stable manifold in order to compensate trajectory

deviations related to control and dynamics uncertainties. In order to correctly

estimate their magnitude an orbit determination phase is foreseen before each

TCM, with the first allocated just after the SMIM and the second one scheduled

to start after 6 days. Nominally, the first maneuver has to occur at least two days

after the SMIM, while the second 8 days after ∆vSMIM. The maneuver time is

selected in order to give enough time at the ground segment to perform orbit

determination, compute correction maneuvers and send commands to the space-

craft. Indeed, at least one day for OD and one day cut-off time between the end of

the OD phase and the application of the TCM should be considered in order to

be compliant with ESOC guidelines. A timeline for the transfer phase is given

in Figure 5.6. Usually, the nominal trajectory does not have impulses when the

correction maneuvers are applied. However, a non-null maneuver can be foreseen

at each TCM time in order to broaden the feasible transfer trajectories set.

In conclusion, LUMIO transfer phase, as presented in Figure 5.6, can be subdi-

vided into three sub-phases:

1. OD phase (between days 0 and 1, or between days 6 and 7 after t0): during

this phase, a visibility window is identified (see Section 5.2.3), and the OD

algorithm is exploited within it;

2. Cut-off phase (between days 1 and tTCM1 , or between days 7 and tTCM2

after t0): in this phase the Differential Guidance (Section 4.1) is exploited to

compute the correction maneuver, which is applied at the end of the phase;

3. Ballistic phase (between days tTCM1 and 6, or between days tTCM2 and t f

after t0): in this phase, the spacecraft undergoes a ballistic flight.

In this work, the transfer trajectory is the main topic and it is analyzed carefully

in the section remainder.

5.1.3.1 Dynamics

The motion of the CubeSat in the transfer phase can be described by using the

RPRnBP [24], in order to have a high-fidelity dynamics, able to correctly represent
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FIGURE 5.6. LUMIO transfer trajectory timeline. The grey bars repre-
sents the OD phases, while the green arrows mark the TCMs points.
Time in days after the SMIM.

the highly non-linear trajectory of LUMIO. The use of an adimensional Roto-

Pulsating Frame (RPF) ease the motion description both for the transfer trajectory

and for the operative orbit, since they are the generalization of trajectory existing

in the Restricted 3-Body Problem (R3BP).

Thus, a non-uniformly rotating, barycentric, adimensional reference frame (ξ̂,

η̂, ĥ), called synodic frame, is defined in order to write the equation of motion.

The center of this system is placed at the primaries barycenter (i.e. Earth–Moon

barycenter); the ξ̂ axis is aligned with the two primaries, with ĥ orthogonal to

the plane of motion. Distances are normalized accordingly to the instantaneous

distance between the primaries. The unit distance can be defined as

k(t)= ‖rP (t)−rS(t)‖ (5.1)

where rP are rS the primaries position in J2000. Therefore, k varies in time

according to the mutual position of the two primaries, so creating a pulsating

reference system. Moreover, time is adimensionalized such that mean motion

about their common barycenter ω=
√

G
(
m♁+m%

)
ã3 is set to unity, with (m♁ and

m%, the Earth and Moon mass respective and ã the mean semi-major axis value.

By choosing a constant mean motion, the average primaries revolution period is

2π. In this framework, Earth and the Moon are have fixed position, [−µ,0,0]T

and [1−µ,0,0]T respectively, with µ= m%/
(
m♁+m%

)
being the mass parameter

of the system (Figure 5.7).

The equations of motion for the RPRnBP reads [23]

ρ′′+ 1
ω

(
2k̇
k

I +2CT Ċ
)
ρ′+ 1

ω2

(
k̈
k

I +2
k̇
k

CT Ċ+CT C̈
)
ρ+ CT b̈

kω2 =∇Ω+aSRP (5.2)
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FIGURE 5.7. Rotating, pulsating, non-inertial reference frame (RPF). The
inertial reference frame and quantities making reference to it are
drawn in grey. Spacecraft is the red dot.

where ρ is the spacecraft position in the RPF, the primes representing the deriva-

tives with respect to the adimensional time τ, dots indicate the time derivatives

and ∇Ω= ∂Ω/∂ρ is the gradient of the pseudopotential

Ω= ∑
j∈S

µ̂ j

δ j

[
1+

J2 j R
2
B j

2k2δ2
j

(
1−

3δT
j Mδ j

δ2
j

)]
(5.3)

where S is the set containing the primaries and characterized by the adimen-

sional gravitational parameter µ̂ j = m j/(m♁+m%), second harmonics coefficient

J2 j related to the non-spherical gravitational distribution and equatorial radius

RB j , M = CT IzC, while δ j =ρ−ρ j, and δ j is its magnitude. The adimensionalized

Solar radiation pressure (SRP) acceleration in Eq. (5.2) can be expressed, using

the cannon ball model, as

aSRP = γ0

ω2k3
δS

δ3
S

(5.4)

where δS is the Sun position and γ0 is the SRP parameter, defined as

γ0 = (1+ cr)
A
m
Ψ0d2

0

c
(5.5)
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with cr the spacecraft reflectivity coefficient, A/m its area-to-mass ratio and c the

speed of light in the vacuum.

Mixed derivative notation in Eq. (5.2) acknowledges that ephemeris data are

numeric, discrete, and provided for regular dimensional time. Indeed, planets

position r j in J2000 are retrieved by using SPICE [1, 2] as well as the physi-

cal constants. The transformations from the solar barycentric inertial frame of

reference (i.e. J2000) and the Roto-Pulsating Frame are

r(t)=b(t)+k(t)C(t)ρ(t) (5.6)

v(t)= ḃ+ k̇Cρ+kCωρ′ (5.7)

τ=ω(t− t0) (5.8)

with b the Earth–Moon barycenter position

b(t)= m♁r♁+m%r%
m♁+m%

(5.9)

and C the cosine angle matrix between J2000 and the RPF

C(t)= [ξ,η,h] (5.10)

with

ξ= r%−r♁
k

, h =
(
v%−v♁

)
×

(
r%−r♁

)
∥∥∥(

v%−v♁
)
×

(
r%−r♁

)∥∥∥ , η= h×ξ (5.11)

In Table 5.2, values for the most useful parameters in the dynamics are presented.

5.1.3.2 Variational equations

In order to compute the trajectory correction maneuvers and the derivatives of

the spacecraft state, useful in the optimization process, the variational equations

needed for the STM computation are required. Being χ the spacecraft state in

the RPF, the state-space representation of Eq. (5.2) is

χ′ = f
(
χ,τ

)= [
ρ′

ν′

]

=
 ν

∇Ω+ γ0
ω2k3

δS
δ3

S
− 1

ω

(
2k̇
k I +2CT Ċ

)
ν− 1

ω2

(
k̈
k I +2 k̇

k CT Ċ+CT C̈
)
ρ− CT b̈

kω2

 (5.12)
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TABLE 5.2. Parameters of Restricted n-Body Problem and the spacecraft.

Parameter Symbol Value

Earth–Moon mass ratio µ 0.01215058426994
Earth gravitational parameter µ♁ 398600.4354360959 km3/s2

Moon gravitational parameter µ% 4902.800066163796 km3/s2

Earth mean radius RB3 6371.008366666666 km
Moon mean radius RB10 1737.4 km
Earth oblateness coefficient J23 0.001082616
Moon oblateness coefficient J210 0
SRP parameter γ0 2.2106568108×106 km3/s2

Reflectivity coefficient cr 0.08
Area-to-mass ratio A/m 0.02 m2/kg

with ν the spacecraft velocity.

The state transition matrix can be computed by integrating the variational

equation

Φ̇ (τ0,τ)= A(τ)Φ (τ0,τ) , Φ (τ0,τ0)= I6 (5.13)

with

A(τ)= ∂f
∂χ

=
[

03 I3
∂fν
∂ρ

∂fν
∂ν

]
(5.14)

being the Jacobian of the dynamics right-hand side, where [24]

∂fν
∂ρ

=− 1
ω2

(
k̈
k

I3 +2
k̇
k

CT Ċ+CT C̈
)
− ∑

j∈S

µ̂ j

[
I3

δ3
j
−

3δ jδ
T
j

δ5
j

+
3J2 j R

2
B j

2k2

(
I3 +2M
δ5

j
−

5δ jδ
T
j +10Mδ jδ

T
j +5δT

j Mδ j +10δ jδ
T
j M

δ7
j

+35δT
j Mδ j

δ jδ
T
j

δ9
j

)]

+ γ0

ω2k3

(
I3

δ3
S

−3
δSδ

T
S

δ5
S

)
(5.15)

while
∂fν
∂ν

=− 2
ω

(
k̇
k

I3 +CT Ċ
)

(5.16)
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5.1.3.3 Initial point

The initial LLO is provided using Keplerian elements, i.e. a constant semi-major

axis a = 12037.1km and a constant eccentricity e = 0.65848 plus a set of free

angular parameters α0 = [i0,Ω0,ω0,θ0], containing the inclination i0, the right

ascension of the ascending node Ω0, the argument of the pericenter ω0 and

the true anomaly θ0. Keplerian parameters are given in Moon-centered Moon-

equatorial at date (MCME2000) reference frame. In this frame, the z-axis is

aligned with the Moon’s spin axis on January 01, 2000, the x-axis is aligned

with the Earth mean equinox (First point of Aries) and y-axis completes the

right-handed reference frame. Thus an additional transformation is needed to

go from the MCME2000 Keplerian elements to the cartesian coordinates in the

J2000 reference frame, before being converted in RPF. Indeed, the Keplerian

elements are converted into cartesian coordinates xMCME [21]

rMCME = T1


pcosθ0

1+ecosθ0
psinθ0

1+ecosθ0

0

 , vMCME = T1


−

√
µ%

p sinθ0√
µ%

p (e+cosθ0)

0

 (5.17)

with p = a
(
1+ e2)

the semi-latus rectum, where the matrix T1 = Rz (ω0)Rx (i0)Rz (Ω0)
is defined through 3-dimensional rotation matrices. Then, the state is rotated in

the Moon-Centered J2000

xJ2000 =
[

rJ2000

vJ2000

]
= T2

[
rMCME

vMCME

]
(5.18)

with

T2 =


1 0 0

0 cos(iM) −sin(iM)

0 sin(iM) cos(iM)


where iM = 24deg is the lunar axial tilt with respect the Earth’s equator [56].

Eventually, the position on the LLO is written in the solar barycentric J2000 by

translation of the center from the Moon to the Solar System Baricenter, i.e.

x0 = xJ2000 +x% (5.19)
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Then, the J2000 initial state x0 is converted in the Roto-Pulsating Frame one χ0

by applying Eqs. (5.6)–(5.7). The SMIM is applied on top of this initial state.

5.1.3.4 Uncertainty

In this test case, uncertainties are considered to be related only to the navigation

and command errors. Errors generated by uncertainties in the dynamic model (e.g.

solar radiation pressure or residual accelerations) affect the transfer trajectory to

a limit extent, due to the short-time propagation, and are dominated by the other

errors. Thus, they are not considered in the model.

Navigation errors are taken into account as measurement model deviations in

the OD phase and through an imperfect state knowledge at the initial time. The

latter leads the initial state to be modeled as a Gaussian random variable with

mean as the nominal initial state, i.e.

χ(t0)∼N
(
χ0,Pχ

)
(5.20)

where Pχ = diag
([
σ2
ρ I3, σ2

νI3

])
is the 6-dimensional diagonal covariance matrix,

with σ2
ρ and σ2

ν, the initial position and velocity covariances respectively.

Moreover, in order to compensate for differences between physical model and

real world, command actuation errors in the nominal impulses are considered,

while trajectory correction maneuvers are assumed free from uncertainties. Since

uncertainty in the Halo Injection Maneuver does not affect the transfer phase and

can be compensated with the station keeping algorithm foreseen in the operative

orbit, the only significant uncertain maneuver is the SMIM. Thrust magnitude

and direction are both modeled as Gaussian variables with a 1σ error σ∆v in

modulus and σδ in pointing angle. The modulus error is defined as a fraction

of the nominal modulus, i.e. σ∆v = u∆vSMIM, with u ¿ 1. The covariance matrix

computation for the uncertainty on the SMIM requires retrieving SMIM vector

in spherical coordinates, thus

∆v =
√
∆v2

x +∆v2
y +∆v2

z (5.21a)

α= atan2
(
∆vy,∆vx

)
(5.21b)

ε= atan2
(
∆vz,

√
∆v2

x +∆v2
y

)
(5.21c)

59



CHAPTER 5. SCENARIO 1

where ∆v is the magnitude, and α and ε are the Azimuth and Elevation respec-

tively. Then, the associated spherical covariance, i.e. Ps
∆v = diag

(
σ2
∆v,σ2

δ
,σ2

δ

)
, is

transformed in Cartesian coordinates

P∆v = JPs
∆vJT (5.22)

with J the Jacobian matrix of the cartesian-to-spherical conversion

J =


cosεcosα −∆vcosεsinα −∆vsinεcosα

cosεsinα ∆vcosεcosα −∆vsinεsinα

sinε 0 ∆vcosε

 (5.23)

The total initial covariance can be computed as a combination of the initial state

error, plus the maneuver error

P0 = Pχ+
[

03 03

03 P∆v

]
(5.24)

In doing so, the number of random variables can be reduced from 9, i.e. the 6-

dimensional initial state plus the 3 SMIM components, to only 6 stochastic states,

reducing so also the number of samples required in the PCE. Characteristics of

the random variables are reported in Table 5.3.

TABLE 5.3. Stochastic characteristics of system uncertainty.

σρ [km] σν [m/s] σ∆v [%] σδ [deg]

1 0.01 1 1

5.2 Methodology

In order to deal with the revised approach for the LUMIO transfer phase case,

a proper methodology should be devised, taking into account its peculiarities.

It is of paramount importance to clarify: i) which is the method used for the

uncertainty propagation, ii) how the stochastic variables are estimated, iii) and

how the orbit determination is performed. Moreover, the simplifying assumptions

are presented as a preliminary for the optimization problem statement.
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5.2.1 Uncertainty propagation

Considering the analysis in Section 3.2, the uncertainty quantification (UQ)

method for Scenario (1) is based on an Non-Intrusive Polynomial Chaos Expansion

algorithm. This technique is exploited both to estimate the trajectory knowledge

and dispersion. In order to evaluate the Polynomial Chaos Expansion coefficients

in a fast and reliable way, a pseudospectral collocation on a sparse grid is exploited

(see Section 3.1.3.4). Instead of a Smolyak’s grid, the number of points can be

further reduced using the so-called conjugate unscented transformation (CUT)

[4]. CUT is the natural extension of unscentend transformation, but, instead

of employing only sigma-points on the principal axes of the initial distribution

function, it propagates sigma-points chosen on some peculiar non-principal axes,

giving the possibility to correctly estimate higher order moments of stochastic

integrals [5]. Thus, it can be used to efficiently compute the generalized Fourier

PCE coefficients exploiting Eq. (3.26). So, conjugate unscented transformation can

be seen as just another way to compute the stochastic integral given in Eq. (3.33).

This hybrid technique, using CUT to estimate PCE coefficient, is unimaginatively

labeled polynomial chaos expansion–conjugated unscented transformation (PCE-

CUT). Even though this approach exhibits several advantages over the standard

sparse grid interpolation techniques, such as positive quadrature weights and

fewer quadrature points, its implementation in the space sector is a novelty.

Conjugate unscented transformation achieve to provide high-order quadrature

rules by satisfy the so-called moment contraints equations (MCEs). They are a

set of equations that can be found by comparing the definition of a stochastic

integral (Eq. (3.26)) with its quadrature approximation (Eq. (3.33)). By doing so,

the MCEs can be built as

M∑
q=1

[(
ξ

q1
1

)n1
(
ξ

q2
2

)n2 . . .
(
ξ

qd
d

)nd
]
ωq = E

[
(ξ1)n1 (ξ2)n2 . . . (ξd)nd

]
(5.25)

where
∑d

i=1 ni = m is the order of the stochastic moment.

In order to solve the MCEs represented in Eq. (5.25), the quadrature points ξq are

constrained to lie symmetrically on some conjugate axes. The use of symmetric

set of points allows to intrinsically satisfy odd MCEs, since the Gaussian PDF

is symmetric. The conjugate axes are peculiar directions in the d-dimensional
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random variables space, with a common center in the mean, and their definition

can be retrieved from Table 5.4. Since they enjoy symmetry, points on the same

set are equidistant from the mean and they are scaled with the same variable r

and have the same Gauss-Hermite weight ω. These scaled points and weight are

substituited in the MCEs (Eq. (5.25)), giving a system of polynomial equations in

r i and ωi with i = {1, . . . , l}, where l being the number of axes chosen. Scenario (1)

quantities of interest are considered to be correctly represented using quadrature

points that can completely satisfy the MCE up to the forth order. Since the set of

symmetric axes automatically satisfies the odd MCEs, only the equations for the

even order moments can be considered [5]

E
[
ξ2

i
]= 1, E

[
ξ4

i
]= 3, E

[
ξ2

i ξ
2
j

]
= 1 (5.26)

Moreover, the quadrature weights should be normalized, thus an additional equa-

tion has to be added, i.e.
∑m

q=1ωq = 1. These polynomial system can be solved by

chosing two axes, with four associated variables r1, r2, ω1 and ω2. In addition,

the central point at the origin can have its weight ω0. In this case, the problem

is undetermined since there are five unknown, but only four equations. In order

to both have the minimum number of quadrature points and to avoid negative

weights to improve numerical stability, the principal axes in combination with

the cd conjugate axes are selected to satisfy the MCEs [5]. Table 5.5 summarizes

the axes selection for a fourth order CUT.

TABLE 5.4. Symmetric conjugated axes.

Name Symbol Sample point Number of points

Principal axes σ [1,0, . . . ,0] 2d
m-th conjugated axes cl [1,1. . . ,1,︸ ︷︷ ︸

l

0,0. . . ,0︸ ︷︷ ︸
d−l

] 2l(d
l
)

Scaled conjugate axes sn(h) [h,1,1, . . . ,1] d2d
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TABLE 5.5. Quadrature points for CUT4.

Number of points Position Weights

1≤ i ≤ 2d ξi = r1σi ωi =ω1
1≤ i ≤ 2d ξi+2d = r2cl

i ωi+2d =ω2
1 ξ0 = 0d ω0 =ω0

M = 2d+2d +1

Starting from Eq. (5.26), the moment contraints equations system read

2r2
1ω1 +2dr2

2ω2 = 1

2r4
1ω1 +2dr4

2ω2 = 3

2dr4
2ω2 = 1

1−2dω1 −2dω2 =ω0

(5.27)

In order to have a well-posed system, a fifth equation, namely one of the sixth

order MCE, is added (
2r6

1ω1 +2dr6
2ω2 −15

)2 = 0 (5.28)

Solution of the system given by Eqs. (5.27)–(5.28) for the 6-dimensional space of

Scenario (1) is given in Table 5.6. In this case, the use of PCE-CUT4 requires the

propagation of 77 samples in order to compute the quantity of interest. The equiv-

alent full grid tensor product would require 36 = 729 samples, while Smolyak’s

grid needs 85 points. Thus a 10% saving is expected in the computational times.

Moreover, the positive quadrature weights improve the numerical stability, giving

more accurate and fast results [72].

CUT4 results are computed by considering normalized Gaussian variables. If the

random variables are represented by a generic multivariate Gaussian distribution

with mean χ̄ and covariance matrix P, the generic quadrature point ζq can be

retrieved by exploiting the affine transformation

χq = Sξq + χ̄ (5.29)

with S being the Cholesky decomposition of P, i.e. P = ST S.
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TABLE 5.6. CUT4 parameters solution.

Parameter Value

r1 2.606009947366509
r2 1.190556303640186
ω1 0.021681819437030
ω2 0.007777146339805
ω0 0.242080802685967

In order to assess the converge accuracy of PCE-CUT4 in the LUMIO transfer

phase case, the ratio between the i-th and the first PCE coefficient c0 is evaluated.

Indeed, the fastest is its reduction, the most accurate is the expansion result.

Moreover, there is a direct connection between this value and the digit precision

[46]. Figures 5.8 illustrates the convergence accuracy for two representative

components of position and velocity, showing that the PCE expansion converges

quickly, with 5-precision digit in (adimensionalized) position and 4-precision

digit in (adimensionalized) velocity. An alternative assessment can be given by

comparing the standard deviation for a Monte Carlo simulation and the proposed

technique. Figure 5.9 shows that final values are similar both for MC and PCE.

However, the PCE-CUT4 converge rate overcomes the MC one, i.e., more Monte

Carlo samples are needed for the same Polynomial Chaos Expansion accuracy.

5.2.2 Stochastic variables estimation

Once the PCE coefficients cα at a given time τ are retrieved by means of the

4th-order conjugate unscented transformation, as explained in Section 5.2.1, the

stochastic state at a given time can be estimated as (Eq. (3.24))

χ(τ,ξ)= ∑
α∈Λp,d

cα(τ)ψα(ξ) (5.30)

This solution is expected to be strongly non-Gaussian. For this reason, the final

stochastic state and the functions depending on it cannot be described employing

only mean and covariance, but the full probability density function has to be

estimated and then used to evaluate probabilities. In order to do that, kernel

density estimation (KDE) [15] is used. In this technique, the surrogate model
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FIGURE 5.8. Normalized PCE coefficients for the PCE-CUT4 for the
LUMIO transfer phase final state: (a) ξ component of the position,
(b) h component of the velocity.

is exploited to inexpensively produce a number n of samples of the Quantity of

Interest q j = q
(
χ(τ,ξ j)

)
, depending on n random variables ξ j, with j = {1, . . . ,n}.

Then they are used to estimate the PDF as

ρ̂ (q)= 1
nh

n∑
j=1

K
( q− q j

h

)
(5.31)

where h is the bandwidth, and K is the kernel function. The kernel function is se-

lected as the Gaussian PDF, i.e K(z)= 1p
2π

exp
[
− z2

2

]
. The cumulative distribution

function (CDF) can be computed as

F̂ (q)=
∫ q

−∞
ρ̂ (q) dq = 1

n

n∑
j=1

G
( q− q j

h

)
(5.32)

where G(q)= ∫ q
−∞G (q) dq. In the case of Gaussian kernel, G(q)= 1

2

[
1+erf

(
qp
2

)]
.

The selection of the bandwidth is tricky and different algorithms exist. In this

work, the Silverman’s rule of thumb [70] is considered: the value of h is selected

as the bandwidth minimizing the mean integrated squared error for a Gaussian

distribution. In this case,

h =
(

4σ̂5

3n

) 1
5

(5.33)
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FIGURE 5.9. Standard deviation for the LUMIO transfer phase final state
as function of the random sample size of a Monte Carlo simulation: (a)
ξ component of the position, (b) h component of the velocity. Dashed
line is the PCE-CUT4 solution.

where σ̂ is the standard deviation of the n samples. Using KDE is preferred with

respect to a simple counting method, since a smooth C ∞-class CDF is obtained

and this is helpful in the optimization procedure.

In order to estimate the population quantiles, a similar technique called ker-

nel quantile estimation (KQE) is employed. The quantile function is the left-

continuous inverse of the cumulative distribution function

Q(p)= inf{q : F(q)≤ p} with 0≤ p ≤ 1 (5.34)

i.e., the function returning the threshold value of q, such that the probability

variable being less than or equal to that value equals the given probability p.

Using the KQE, the quantile function can be computed as [69]

Q(p, q)=
n∑

j=1

1
nh

K
[

1
h

(
j
n
− p

)]
q̃ j (5.35)

where q̃ j, j = {1, . . .n} is the sorted set of q j and K is the kernel function. The use

of this linear KQE formula give the possibility to obtain reliable estimation for

the desired quantile value, while having a C ∞-class function.
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5.2.3 Orbit Determination process

In order to determine the spacecraft state knowledge along the transfer phase, a

covariance analysis is performed and the knowledge is estimated by means of an

orbit determination algorithm.

In this Scenario, radiometric tracking is selected as navigation technique. Thus,

the spacecraft state is estimated by means of radiometric data processed by

a ground station. Radiometric data for range and range-rate are simulated,

generating pseudo-measurements as

γ=
√
γTγ , γ̇= γTη

γ
(5.36)

where γ is the range, γ̇ is the range rate, γ = r− rGS is the relative distance

between LUMIO and the ground station, while η= v−vGS is the relative velocity.

Pseudo-measurements can be performed only if a link between the spacecraft and

the selected ground station can be established. Thus, for each OD phase, a visibil-

ity window is identified. Visibility windows are portion of the trajectory inside

the OD phases, where some geometric conditions are verified. With reference to

Figure 5.10, the requirements are:

• the Sun exclusion angle φ should be greater than 0.5 deg in order to avoid

degradation in the radiometric observable and, in turn, in the trajectory

knowledge [90];

• the Spacecraft elevation above the ground El in ground station location

should be higher than a minimum value Elmin in order to avoid low-quality

data related to the atmospheric extinction of the radiometric signal and to

cope with the mounting constraints of the ground station sensor.

For the LUMIO case, the Sardinia Deep Space Antenna (SDSA) scientific unit (64

meters) located in San Basilio, Cagliari, is assumed as reception baseline option

for the ground communications. Currently, SDSA has X-band reception capability.

In the future, reception in the Ka-band and transmission in the X- and Ka-bands
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FIGURE 5.10. Tracking problem geometry.

will be made available1.

SDSA performances are summarized in Table 5.7.

TABLE 5.7. Assumed characteristics for SDSA ground station.

Parameter Value

Coordinates 39.493028° N
9.245111° E

Altitude 0.2064 km
Range measurements frequency once every hour
Doppler measurements frequency once every 20 min
Range measurements random error (1σ) 130 m
Range measurements systematic error 130 m
Doppler measurements random error (1σ) 0.2 mm/s
Doppler measurements systematic error 0 mm/s
Minimum ground station elevation Elmin 15°

In order to estimate the state, a navigation filter exploiting the pseudo-measurements

is needed. The filter embedded in the orbit determination process is an ensemble

square-root filter (EnSRF) [51, 84]. This method exploits the capability of PCE

to generate inexpensively huge ensembles of samples [87]. Moreover, EnSRF

does not require perturbed observations; thus, no sampling error is introduced in

Kalman gain matrix, improving the accuracy of the filter.

Inside the visibility window of each OD phase, the time is discretize in evenly
1https://www.asi.it/en/the-agency/the-space-centers/sardina-deep-space-antenna-sdsa/

(Last accessed on July 10, 2020)

68

https://www.asi.it/en/the-agency/the-space-centers/sardina-deep-space-antenna-sdsa/


5.2. METHODOLOGY

spaced intervals following the measurements frequency imposed by the ground

station. In these points, the pseudo-measurements are generated based on the

current state and then used to feed the EnSRF. Between two consecutive measure-

ments time, the estimated and the real state are propagated forward, together

with the associated CUT samples, useful to compute the needed PCE coefficients.

Hence,
χk+1 =ϕ

(
χk,τk;τk+1

)
χ̂k+1 =ϕ

(
χ̂k,τk;τk+1

)
χ

q
k+1 =ϕ

(
χ

q
k,τk;τk+1

)
, q ∈ {0,1, . . . , M}

(5.37)

where subscript k and k+1 are referred to the measurement times τk and τk+1

respectively, χ is the real trajectory, χ̂ is the estimated trajectory, while χq are the

CUT samples. A generic perturbed nonlinear measurement model is considered

z=h
(
χ

)+ε (5.38)

with z the measurement and ε is the measurement error. A linear measurement

operator is therefore defined as H = ∂h(χ)
∂χ

∣∣∣
χ=χ̂

.

At each τk the ensemble square-root filter embedded in the orbit determination,

the PCE coefficients for the real and estimated state are retrieved

ck,−
α =

M∑
q=1

χ
q
k,−ψ

q
αωq (5.39)

ĉk,−
α =

M∑
q=1

χ̂
q
k,−ψ

q
αωq (5.40)

with − indicating the variables before the filter correction. The mean and covari-

ance are estimated exploiting the PCE properties (Eqs.(3.37)–(3.38))
¯̂χk,− = ĉk,−

0

P̂−
k =∑

α∈Λp,d
α 6=0

(
ĉk,−
α

)(
ĉk,−
α

)T (5.41)

together with the real state mean

χ̄k,− = ck,−
0 (5.42)

69



CHAPTER 5. SCENARIO 1

Measurements are obtained for both the forecast (estimated) mean and propa-

gated (real) mean as

zk =h
(
χ̄k,−

)
, ẑk =h

( ¯̂χk,−
)

(5.43)

Then, n realizations of ξi are generated and associated basis functions are evalu-

ated leading to ψi
α =ψα(ξi). An ensemble of n forecast state is then computed

χ̂i
k,− = ∑

α∈Λp,d

ĉk,−
α ψi

α (5.44)

The EnSRF Kalman gains are computed

Sk = HkP̂−
k HT

k +R (5.45)

Kk = P̂−
k HT

k S−1
k (5.46)

K̃k = P̂−
k HT

k

√
Sk

−T
(√

Sk +
p

R
)−1

(5.47)

with R = E
[
εεT]

the measurement error covariance matrix.

In the EnSRF, mean and deviations are updated separately. Thus, firstly the

deviation of forecast states with respect to the mean is computed

δχi
k,− = χ̂i

k,−− χ̄k,− (5.48)

and secondly, mean and deviations are updated as

¯̂χk,+ = ¯̂χk,−+Kk (zk − ẑk) (5.49)

δχi
k,+ = δχi

k,−− K̃kHδχi
k,− (5.50)

Eventually, a n-dimensional ensemble of corrected states is computed from the

mean and the deviations

χ̂i
k,+ = ¯̂χk,++δχi

k,+ (5.51)

and then they are used to update the PCE coefficients by using an inexpensive

least-square regression (Eq.(3.31))

ĉk,+
α =

(
ΨTΨ

)−1
ΨX+

k (5.52)

with X+
k is the corrected state matrix, containing χ̂i

k,+, andΨ is the measurement

matrix as in Eq. (3.32).
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As last point, the new cubature points for the conjugate unscented transformation

are retrieved, by computing the corrected state statistics
¯̂χk,+ = ĉk,+

0

P̂+
k =∑

α∈Λp,d
α 6=0

(
ĉk,+
α

)(
ĉk,+
α

)T (5.53)

and then projecting it on the generalized conjugated axes space (Eq. (5.29))

χ̂
q
k,+ = Sξq + ¯̂χk,+ (5.54)

with S being the Cholesky decomposition of P̂+
k , i.e. P̂+

k = ST S.

5.2.4 Simplifying assumptions

Once the foundational blocks are modeled, combining the timeline (Figure 5.6)

with the methodology illustrated in this Section, a comprehensive method able to

retrace the revised approach and to provide knowledge analysis, final dispersion

and an estimation of the navigation costs in a single shot can be devised. However,

an algorithm using PCE-CUT on each real orbit to estimate both knowledge and

dispersion, and using the OD results to perturb randomly the real state at the

TCM location, requires an excessively large amount of computational effort. The

number of stochastic variables (being 18, 6 from the uncertain states and 12 from

the estimated state errors) leads to a huge number of samples to be propagated

to obtain the sought results, and thus to the curse of dimensionality. In order to

reduce the computational burden, some simplifying assumptions can be made.

First of all, the knowledge analysis is performed only on the nominal trajectory

and its results are used also on the real orbits stemming from the initial dis-

persion. This assumption is valid whenever the real trajectory does not deviate

too much from the nominal one, relatively to the Spacecraft-to-Ground Station

distance. In this case, the pseudo-measurements on the nominal trajectory are

similar to the real trajectory ones and the outputs from the ensemble square-root

filter are comparable. Thus, the knowledge evolution, and its quenching in the

OD phase, has the same trend on both options. This assumption has been checked

by performing a knowledge analysis on a nominal transfer trajectory and a bunch

of perturbed ones. Results are presented in Figure 5.11, where only a sample
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perturbed trajectory is illustrated for brevity’s sake. It shows that there is no

significant deviation between them.

Secondly, the estimated state error at the end of the OD phase is not picked

randomly from the knowledge distribution at the time, but only the average

error is considered to assess the estimated state for all the real trajectories. This

strong assumption is able to reduce the number of random variables and, thus,

lessen the problem dimensionality. Figure 5.12 shows stochastic costs for LUMIO

trajectory both (a) if the navigation error at the orbit determination time is a

Gaussian random variable with mean and covariance given by the filter output

and (b) if the navigation error is taken as a deterministic value equal only to the

mean. The navigation costs and final dispersion have similar distribution in both

cases. Hence, for this Scenario, this last assumption is valid.

5.3 Statement of the problem

Once the building blocks are established, Problem 0 has to be adapted to cope with

Scenario (1) test case, represented by LUMIO transfer phase and the general

optimal control problem is converted into a Non-Linear Programming (NLP).

Following the trajectory description given in Section 5.1.3, the methodology from

Section 5.2 and its timeline, the optimization problem for Scenario (1) under the

revised approach can be stated as

Problem 1 (Scenario (1) Fuel-Optimal Problem). Find the initial and final time,

τ0 and τ f , the two TCM times, τTCM1 and τTCM2 , the angular parameter vector

α0, the SMIM vector ∆vSMIM, and the nominal trajectory impulse at TCM times,

∆vTCM1 and ∆vTCM2 , such that

J =∑
i
‖∆vi‖ = ‖∆vSMIM‖+∥∥∆vTCM1

∥∥+∥∥∆vTCM2

∥∥+‖∆vHIM‖+
2∑

j=1
Q(.99,∆vs

j)

(5.55)

with Q(0.99,∆vs
j) representing the 99-percentile of the stochastic cost computed

through Eq. (5.35), is minimized, while the state is subjected to the dynamics
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FIGURE 5.11. Comparison for Knowledge Analysis results between (a)
nominal and (b) real perturbed trajectory in LUMIO transfer phase.
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(a)

(b)

FIGURE 5.12. Comparison of stochastic costs if navigation error is (a)
picked randomly, or (b) equal to the error mean in LUMIO case.
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illustrated in Eq. (5.12)

χ′ = f
(
χ,τ

)=
 ν

∇Ω+ γ0
ω2k3

δS
δ3

S
− 1

ω

(
2k̇
k I +2CT Ċ

)
ν− 1

ω2

(
k̈
k I +2 k̇

k CT Ċ+CT C̈
)
ρ− CT b̈

kω2


(5.56)

The HIM is computed as

∆vHIM =ν∗ (
τ f

)−νδ (
τ f

)
(5.57)

with ν∗ the nominal velocity and ρδ is the target halo velocity.

The state is subjected to initial constraintsE
[
χ∗(τ0)

]= ˆ[χ∗(τ0)=χ0 (τ0,α0)+∆vSMIM

E
[(
χ∗(τ0)−χ0

)(
χ∗(τ0)−χ0

)T
]
= P0

(5.58)

and

E
[(
χ(τ0)−χ0

)(
χ(τ0)−χ0

)T
]
= P0 (5.59)

and a final constraint

c = F̂d(30km)> 0.99 (5.60)

with d = ∥∥ρ (
τ f

)−ρδ (
τ f

)∥∥, being a measure of the distance of the real trajectories

from the halo at τ f , where ρδ is the target halo.

In order to be compliant with on-ground operation requirements, some linear

constraints are added

2d≤ (
τTCM1 −τ0

) ≤ 8d (5.61)

5.5d≤ (
τTCM2 −τ0

) ≤ τ f −3d (5.62)

The navigation costs and the final dispersion are estimated through the compre-

hensive navigation assessment. It means

∆vs =GL
(
χ∗, χ̂,τTCM

)
(5.63)

and

χ̂
(
τOD

f

)
=OD

(
χ∗, χ̂,τOD

0 ,τOD
f

)
(5.64)
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with GL and OD being the Differential Guidance Law (Eq. (4.5)) and orbit deter-

mination processes (Section 5.2.3) on the nominal trajectory respectively, χ̂ is the

estimated state, χ the real state and χ∗ is the nominal state.

In this scenario, the quantile value for the j-th TCM exploiting the KQE (Eq.

(5.35)) is

Q
(
0.99,∆vs

i
)= n∑

q=1

1
nh

1p
2π

exp
[
−1

2

(
1
h

(
i
n
−0.99

))2]
∆̃vs,i

j (5.65)

where ∆̃vs,i
j are the sorted value of

∥∥∥∆vs,i
j

∥∥∥. The 100,000 samples ∆vs,i
j are ob-

tained through an inexpensive Monte Carlo exploiting PCE-CUT technique. The

CUT samples ∆vs,q
j for each TCM are obtained by exploiting the DG algorithm

(Eq. (4.5))

∆vs,q
j =−

(
ΦT

rvΦrv + qΦT
vvΦvv

)−1 (
ΦT

rvΦrr + qΦT
vvΦvr

)
δ̃ρ j − δ̃ν j (5.66)

with

δ̃χ j = χ̃ j −χ∗ (5.67)

being the estimated error at k-th TCM time, and where

χ̃ j =ϕ
(
χ̂

(
τOD

f

)
,τOD

f ;τ j

)
(5.68)

is the flow of the estimated state, for each CUT sample, propagated from the end

of the OD phase up to the next TCM time. As per Section 5.2.4,

χ̂
(
τOD

f

)
=χ

(
τOD

f

)
+

(
¯̂χOD

f −χ
(
τ
∗,OD
f

))
(5.69)

with the mean final error obtain through Eq. (5.53).

The PCE coefficients can be retrieved as

cα =
M∑

q=1
∆vs,q

j ψ
q
αωq (5.70)

and then used to obtain the samples

∆v j
s,i =

∑
α∈Λp,d

cαψi
α (5.71)
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where ψi
α are the basis functions evaluated at a random picked value ξi. In order

to simplify the problem, the bandwidth is considered constant with h = 0.001.

The value in Eq. (5.60) is obtained in the same way, exploiting the kernel density

estimation as in Eq. (5.32) with a constant bandwidth h = 0.0622.

In summary, the decision variable vector is defined as y= [
τ0,τ f ,τTCM1 ,τTCM2 ,

α0,∆vSMIM,∆vTCM1 ,∆vTCM2

]T and its bounds are summarized in Table 5.8. No

bounds are placed on LLO angular parameters.

The procedure used to estimate the cost function in Eq. (5.55) and the nonlinear

constraint in Eq. (5.60) is summarized in Algorithm 1.

TABLE 5.8. Decision vector bounds. τ0 is the first guess departure date.

Dep. date τ f [d] τTCM1 [d] τTCM2 [d] ∆vTCMj [m/s]

Upper Bound τ0 +7d 28 8 τ f −3d 10
Lower Bound τ0 −7d 15 2 5.5 -10

5.3.1 Optimization

Problem 1 is solved by exploiting a simple shooting technique [13]. This method is

selected as the most suitable to solve the Scenario (1) optimization problem, since

i) the trajectory lasts only few days and nominally no middle correction is enforced,

so low numerical noise is expected in the derivatives, ii) number of variables is

strongly reduced, iii) and Algorithm 1 can be implemented straightforwardly.

In order to speed up the NLP solution, the Jacobian, both for the objective function

and the nonlinear constraint, has to be provided. Moreover, in order to simplify

some constraints, times are taken as relative times with respect to τ0.

5.3.1.1 Derivatives

The decision variable vector is defined as y = [
τ0,τ f ,τTCM1 ,τTCM2 ,α0,∆vSMIM,

∆vTCM1 ,∆vTCM2

]T . The chain rule is intensely exploited to simplify both the

notation and the computational times. For this reason, some building blocks for

the derivatives are firstly introduced.
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Algorithm 1: Integrated approach algorithm for Scenario (1)
Procedure INTEGRATED APPROACH

Define spacecraft and navigation settings; .Tables 5.2 and 5.7
Define the uncertainty properties; .Table 5.3
Function INITIALIZATION

Evaluate the initial CUT samples χq
k+1 ; .See Eq. (5.20)

Compute the random basis function for KDE-KQE;
Function KNOWLEDGE ANALYSIS

Consider the nominal trajectory;
for i = 1 to nP .Loop through nP sub-phases

switch sub-phase
case OD phase

Function ORBIT DETERMINATION

Find the visibility windows;
Retrieve the nM measurement times tk;
for k = 1 to nM .Loop through nM meas. times

Generate the pseudo-measurement; .See Eq. (5.36)
Apply the EnSRF; .See Sec. 5.2.3
Get estimated states from the filter;
Propagate the estimated state samples to tk+1;

end
Propagate the estimated samples up to the final time tOD

f ;
Result: Average error at each OD final time

otherwise
Propagate the states up to the final sub-phase time;

end
end

Result: Kwowledge time evolution
Function NAVIGATION COSTS & DISPERSION

for i = 1 to nP .Loop through nP sub-phases
switch sub-phase

case Cut-off phase
Propagate the CUT samples up to the TCM time;
Estimate the correction maneuvers ∆vs,q

j ; .See Eq. (5.66)
Apply the maneuvers to each sample;

case OD phase
Propagate the CUT samples up to the final OD time;
Estimate the average error; .See ORBIT DETERMINATION

Evaluate the estimated samples; .See Eq. (5.69)
otherwise

Propagate the CUT samples up to the final sub-phase time;
end

end
Result: Navigation cost estimate; Final dispersion

Result: Cost function (Eq. (5.55)); Dispersion statistic (Eq. (5.60))
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Initial state derivatives. The initial state χ0 depends only on the initial

time τ0, and α0. However, the numerical computation of these derivatives is

cumbersome, since transformation through the SPICE routines is required. For

this reason, finite difference is used. Thus

dχ0

dτ0
= χ0 (τ0 +ε,α0)−χ0 (τ0 −ε,α0)

2ε
(5.72)

dχ0

dα0
= χ0 (τ0,α0 +ε)−χ0 (τ0,α0 −ε)

2ε
(5.73)

with ε= 10−6 max{1, x}, with x a generic variable. Starting from Eq. (5.29), the

initial CUT samples derivative can be evaluated as

dχq (τ0)

dy
= dS

dy
ξq +

dχ̄0

dy
(5.74)

with S the Cholesky decomposition of P0. This derivative has the following non-

null components
dχq (τ0)

dτ0
= dχ0

dτ0
(5.75)

dχq (α0)

dτ0
= dχ0

dα0
(5.76)

dχq (τ0)

d∆vSMIM
= dSξq + Iv (5.77)

with Iv =
[

03 03

03 I3

]
. Recalling that the initial covariance is function only of∆vSMIM

(Eq. (5.24)), in the continuation the symbol d will indicate the derivative with

respect to ∆vSMIM. So

dS =T
(
S−TdP0S−1

)
S (5.78)

with T being a function that takes the triangular upper part of a matrix and

halves the diagonal, i.e.

Ti j(A)=


A i j j > i
1
2 A i j i = j

0 j < i

(5.79)
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A proof of the Cholesky decomposition derivative can be found in Appendix A.

Then,

dP0 = dP0

d∆vSMIM
=

[
03 03

03
dP∆v

d∆vSMIM

]
(5.80)

Starting from Eq. (5.22), it is possible to get

dP∆v

d∆vSMIM
= dJPs

∆vJT + JdPs
∆vJT + JPs

∆vdJT (5.81)

where

dJ =


−sinεcosαdE−cosεsinαdA

−sinεsinαdE+cosεcosαdA

cosεdE

−d∆vcosεsinα+∆vsinεsinαdE−∆vcosεcosαdA

d∆vcosεsinα−∆vsinεcosαdE−∆vcosεsinαdA

0

−d∆vsinεcosα−∆vcosεcosαdE+∆vsinεsinαdA

−d∆vsinεsinα−∆vcosεcosαdE−∆vsinεcosαdA

d∆vcosε−∆vsinεdE



(5.82)

and

dPs
∆v =


2u∆v 0 0

0 0 0

0 0 0

 (5.83)

In the matrix in Eq. (5.82), the missing derivatives can be computed starting

from Eqs. (5.21)

d∆v =
[
∆vx,∆vy,∆vz

]T

∆v
(5.84a)

dE =

−∆vz

∆v2
∆vx√

∆v2
x +∆v2

y

, −∆vz

∆v2

∆vy√
∆v2

x +∆v2
y

,

√
∆v2

x +∆v2
y

∆v2


T

(5.84b)

dA =

− ∆vy√
∆v2

x +∆v2
y

,
∆vx√

∆v2
x +∆v2

y

, 0


T

(5.84c)
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OD phase derivatives. Then, the derivatives inside the OD process should be

constructed. The derivatives with respect to τ0, τTCM1 and ∆vTCM1 are null, while

the one in τTCM2 and ∆vTCM2 are different from zero only for the second OD phase.

The derivative procedure is invariant to the considered variable, thus a simplified

notation with the symbol d, indicating the differentiation with respect to one of

the y elements, is used. Given the state derivative at a given measurement time

dχk, the derivative at the following time can be computed as

dχk+1 =Φ (τk,τk+1)dχk (5.85)

where the subscript k and k+1 refers to τk and τk+1 are two consecutive mea-

surement times and Φ is the STM. The only exception is done by the derivative

with respect to τ0. In fact, in this case, τOD
0 and τOD

f will vary linearly with τ0

and thus [24] 
∂χ1
∂τ0

=Φ(
τOD

0 ,τ1
)(−f

(
χOD

0 ,τOD
0

)+dχ0
)

∂χk+1
∂τ0

=Φ (τk,τk+1)dχk
∂χOD

f
∂τ0

=Φ
(
τM ,τOD

f

)
dχM + f

(
χOD

k ,τOD
f

) (5.86)

with τM the last measurement time.

The estimated state PCE coefficients derivatives are

dĉk,−
α =

M∑
q=1

dχ̂q
k,−ψ

q
αωq (5.87)

and its statistics derivatives
d ¯̂χk,− = dĉk,−

0

dP̂−
k =∑

α∈Λp,d
α 6=0

(
dĉk,−

α

)(
ĉk,−
α

)T +
(
ĉk,−
α

)(
dĉk,−

α

)T (5.88)

Thay are used to compute the derivatives through the ensemble square-root filter.

Kalman gain can be differentiated as

dSk = dHkP̂−
k HT

k +HkdP̂−
k HT

k +HkP̂−
k dHT

k (5.89)

where

dHk =
 dρk

γ
− γ

γ2 dγ 03
dνk
γ

− η

γ2 dγ−
(
dρk

γ̇

γ2 +γdγ̇
γ2 −2γ γ̇dγ

γ3

)
dρk
γ

− γ

γ2 dγ

 (5.90)
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with

dz :=
dγ= γTdρk

γ

dγ̇=
(
η
γ
−γ γ̇

γ2

)T
dρk + γTdνk

γ

(5.91)

Moreover,

dKk = dP̂−
k HT

k S−1
k + P̂−

k dHT
k S−1

k + P̂−
k HT

k d
(
S−1

k
)

(5.92)

where [64]

d
(
S−1

k
)=−S−1

k dSkS−1
k (5.93)

The Kalman gain for the deviations can be retrieved by using

dK̃k = dP̂−
k HT

k

√
Sk

−T
(√

Sk +
p

R
)−1 + P̂−

k dHT
k

√
Sk

−T
(√

Sk +
p

R
)−1

+P̂−
k HT

k d
(√

Sk
−1

)T (√
Sk +

p
R

)−1 + P̂−
k HT

k

√
Sk

−Td
((√

Sk +
p

R
)−1

) (5.94)

where

d
(√

Sk
−1

)
=−

√
Sk

−1d
√

Sk
√

Sk
−1 (5.95)

and

d
((√

Sk +
p

R
)−1

)
=−

(√
Sk +

p
R

)−1
d
√

Sk

(√
Sk +

p
R

)−1
(5.96)

The matrix square-root derivative can be computed by following the proof con-

tained in Appendix A

d
√

Sk =mat
((√

Sk
T ⊕

√
Sk

)−1
vec(dSk)

)
(5.97)

where mat is the matricization function (similar to the MATLAB® reshape) and

vec the vectorization. The symbol ⊕ indicates the Kronecker sum.

The mean and deviation correction derivatives can be computed as

d ¯̂χk,+ = d ¯̂χk,−+dKk (zk − ẑk)+Kk (dzk −dẑk) (5.98)

dδχi
k,+ = dδχi

k,−−dK̃kHδχi
k,−+ K̃kdHδχi

k,−+ K̃kHδdχi
k,− (5.99)

where

dδχi
k,− = dχ̂i

k,−−dχ̄k,− (5.100)
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and

dχ̂i
k,− = ∑

α∈Λp,d

dĉk,−
α ψi

α (5.101)

The n realizations of ξi, in practice, are generated at the beginning of the opti-

mization algorithm and keep fixed for all the optimization method steps. Thus

ψi
α is a constant. Finally, the derivative of the corrected realizations is

dχ̂i
k,+ = d ¯̂χk,++dδχi

k,+ (5.102)

While the updated PCE coefficients have derivative

dĉk,+
α =

(
ΨTΨ

)−1
ΨdX+

k (5.103)

where dX+
k is the collection matrix of dχ̂i

k,+.

As last point, the new cubature points derivative is computed
d ¯̂χk,+ = dĉk,+

0

dP̂+
k =∑

α∈Λp,d
α 6=0

(
dĉk,+

α

)(
ĉk,+
α

)T +
(
ĉk,+
α

)(
dĉk,+

α

)T (5.104)

and eventually

dχ̂q
k,+ = dSξq +d ¯̂χk,+ (5.105)

with the derivative of Cholesky decomposition of P̂+
k computed as in Eq. (5.78)

dS =T
(
S−TdP̂+

k S−1
)
S (5.106)

The last step is to compute the derivative of the CUT samples for stochastic cost

estimation, i.e.

dχ̃q
(
τOD

f

)
= dχq

(
τOD

f

)
+

(
d ¯̂χOD

f −dχ∗,OD
f

)
(5.107)

where χ∗,OD
f is the nominal trajectory derivative at the end of the OD phase.

Cut-off phase derivatives. The next step is to evaluate derivatives for the

cut-off phase. In order to simplify the notation, a guidance matrix is defined

starting from Eq. (4.5)

D =−
(
ΦT

rvΦrv + qΦT
vvΦvv

)−1 (
ΦT

rvΦrr + qΦT
vvΦvr

)
(5.108)

83



CHAPTER 5. SCENARIO 1

Then, for both the phases, the derivative of each sample at the final cut-off time

(i.e. the TCM time) with respect to ∆vSMIM and α0, can be computed as

dχq
TCM =Φ

(
τOD

f ,τTCM

)
dχq

(
τOD

f

)
+

[
03

d∆vs,q

]
(5.109)

where d represents the generic partial derivative, and

d∆vs,q = dDδρTCM +DdδρTCM −dδνTCM (5.110)

The derivative of the state deviation at the maneuver time can be retrieved by[
dδρTCM

dδνTCM

]
=

[
dρ̃TCM −dρ∗

TCM
dν̃TCM −dν∗TCM

]
= Φ̃

(
τOD

f ,τTCM

)
dχ̃q

(
τOD

f

)
−Φ∗

(
τOD

f ,τTCM

)
dχ∗

(
τOD

f

) (5.111)

where Φ∗ and Φ̃ are the TCM of the nominal and the estimated trajectory respec-

tively, while dχ̃
(
τOD

f

)
is computed in Eq. (5.107).

The derivative of the Guidance Matrix is

dD = d
(
Q−1)(

ΦT
rvΦrr + qΦT

vvΦvr

)
+Q−1

(
dΦT

rvΦrr +ΦT
rvdΦrr + q

(
dΦT

vvΦvr +ΦT
vvdΦvr

))
(5.112)

where Q =−(
ΦT

rvΦrv + qΦT
vvΦvv

)
. Its derivative can be evaluated as

dQ =−
(
dΦT

rvΦrv +ΦT
rvdΦrv + q

(
dΦT

vvΦvv +dΦT
vvΦvv

))
(5.113)

which is used to compute

d
(
Q−1)=−Q−1dQQ−1 (5.114)

The derivative of the state transition matrix needs the evaluation of the second-

order state transition tensor Φ). Its computation is cumbersome, since it requires

to integrate 258 (i.e. 6+62+63) ODEs. For this reason, a finite difference approach

is preferred. Thus

Φ= 1
ε

[
1
12
Φ

(
χ−2ε

)− 2
3
Φ

(
χ−ε)+ 2

3
Φ

(
χ+ε)− 1

12
Φ

(
χ+2ε

)]
(5.115)

where ε=max{εm,10−6χ0}, with εm is the machine epsilon, and χ=χ∗
(
τOD

f

)
. A

fourth-order accuracy central finite difference scheme is exploited, because it
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showed the best balance between precision and computational time.

Finally, the STM derivative expression can be retrieved as

dΦ=Φdχ∗
(
τOD

f

)
(5.116)

The derivative with respect to τ0 can be computed by following the same steps in

Eqs. (5.110)–(5.116). However, since all the times times are linearly dependent

from τ0, the derivative of the estimated and nominal state (in Eq. (5.111)) are

∂χ̃
q
TCM

∂τ0
=−Φ̃

(
τOD

f ,τTCM

)f
(
χ̃q,τOD

f

)
−
∂χ̃q

(
τOD

f

)
∂τ0

+ f
(
χ̃q,τTCM

)
(5.117)

and

∂χ∗
TCM

∂τ0
=−Φ∗

(
τOD

f ,τTCM

)f
(
χ∗,τOD

f

)
−
∂χ∗

(
τOD

f

)
∂τ0

+ f
(
χ∗,τTCM

)
(5.118)

The state transition matrix derivative inside the DG formula is in turn

∂Φ

∂τ0
=−ΦA

(
τTCM j

)+ A
(
τTCM j+1

)
Φ−Φ

f
(
χ∗,τTCM j

)− ∂χ∗
(
τOD

f

)
∂τ0

 (5.119)

where A is the dynamics Jacobian as in Eq. (5.14). The subscript j and j +1

indicates two consecutive maneuver times.

The derivatives with respect to the maneuver time can be computed by following

Eqs. (5.110)–(5.116) again. However,

∂χ̃
q
TCM

∂τTCM
= f

(
χ̃q,τTCM

)
(5.120)

and
∂χ∗

TCM

∂τTCM
= f

(
χ∗,τTCM

)
(5.121)

while the STM derivative is

∂Φ

∂τTCM
=−ΦA (τTCM) (5.122)
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The derivative of the state at the end of the cut-off phase with respect to the next

TCM time (i.e. τTCM2 and τ f for the first and second phase respectively) can be

retrieved from Eqs. (5.110)–(5.116), considering that

∂χ̃
q
TCM

∂τTCM j+1

= 06 (5.123)

∂χ∗
TCM

∂τTCM j+1

= 06 (5.124)

and
∂Φ

∂τTCM j+1

= A
(
τTCM j+1

)
Φ (5.125)

with the subscript j+1 indicating the next maneuver instant.

Ballistic phase derivatives. Eventually, the derivatives of the ballistic phase

final state with respect to y have to be retrieved. The derivative respect to one of

the elements in y can be computed as

dχq
(
τBP

f

)
=Φ

(
τTCM ,τBP

f

)
dχq (τTCM) (5.126)

with τBP
f being the final time of the ballistic state. Eq. (5.126) is valid for every y

element, but τ0

∂χq
(
τBP

f

)
∂τ0

=−Φ
(
τTCM ,τBP

f

)(
∂χq (τTCM)

∂τ0
− f

(
χ̃q,τTCM

))
(5.127)

and τBP
f (i.e. τOD

0 for the first ballistic phase and τ f for the second one)

∂χq
(
τBP

f

)
∂τBP

f

=Φ
(
τTCM ,τBP

f

) ∂χq (τTCM)
∂τBP

f

+ f
(
χ̃q,τBP

f

)
(5.128)

Cost function gradient. The cost function gradient is defined as

g (y)=∇J = ∂

∂y

(
‖∆vSMIM‖+∥∥∆vTCM1

∥∥+∥∥∆vTCM2

∥∥+‖∆vHIM‖+
2∑

j=1
Q

(
0.99,∆vs

j

))
(5.129)
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Ana analysis of this definition component by component eases the computations.

The only non-null derivative of the SMIM norm with respect to vector y is [64]

∂‖∆vSMIM‖
∂∆vSMIM

= ∆vSMIM

‖∆vSMIM‖ (5.130)

In the same way, the derivative of the TCM impulses can be retrieved generically

as
∂
∥∥∆vTCM j

∥∥
∂∆vTCM j

= ∆vTCM j∥∥∆vTCM j

∥∥ (5.131)

Moreover, starting from Eq. (5.57), it can be found that

∂‖∆vHIM‖
∂τ f

= ∆vHIM

‖∆vHIM‖
(
ν′

(
χ∗,τ f

)− dνδ
dτ f

)
(5.132)

with the halo velocity derivative computed numerically, while for the other vari-

ables, the derivative is

d‖∆vHIM‖ = ∆vHIM

‖∆vHIM‖dν
(
τ f

)
(5.133)

where the value of dν
(
τ f

)
can be retrieved from Eq. (5.128).

Finally, the generic derivative for the stochastic cost should be estimated. Starting

from Eq. (5.65), the generic derivative can be computed as

dQ =
n∑

q=1

1
nh

1p
2π

exp
[
−1

2

(
1
h

(
i
n
−0.99

))2]
d∆̃vs,i

j (5.134)

Assuming that the sorting algorithm is invariant with respect to the derivative,

we have that

d∆̃vs,i
j = Sd

∥∥∥∆vs,i
j

∥∥∥ (5.135)

where S is the sorting matrix and

d
∥∥∥∆vs,i

j

∥∥∥=
∆vs,i

j∥∥∥∆vs,i
j

∥∥∥ (5.136)

Recalling the definition of the Monte Carlo samples produced through PCE-CUT,

the derivative can be estimated

d∆vs,i
j = ∑

α∈Λp,d

dcαψi
α (5.137)
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with

dcα =
M∑

q=1
d∆vs,q

j ψ
q
αωq (5.138)

The derivative of the trajectory correction maneuvers CUT samples is evaluated

through Eq. (5.110).

Inequality constraint Jacobian. The inequality constraint in Eq. (5.60)

should be reformulated as

c = 0.99− F̂(d−30km)< 0 (5.139)

in order to have the definition usually used in optimization problems. Its Jacobian

can be defined as

Gc(y)= ∂c
∂y

=−∂F̂d(30km)
∂y

(5.140)

Starting from the definition of cumulative distribution function given by the KDE

F̂d(30km)= 1
n

n∑
i=1

[
1
2

(
1+erf

(
dδ−di

h

))]
(5.141)

where dδ = 30km. Its derivative can be evaluated as

dF̂d(dδ)= 1
nh

n∑
i=1

1p
2π

exp
(
−1

2

(
dδ−di

h

)2)
d(di) (5.142)

The derivative of the distance at the final point is

d(di)=
ρ i

(
τ f

)−ρδ (
τ f

)∥∥ρ i
(
τ f

)−ρδ (
τ f

)∥∥ (
dρ i

(
τ f

)−dρδ
(
τ f

))
(5.143)

The derivative of the halo distance is always null, except

∂ρδ
(
τ f

)
∂τ f

=νδ
(
τ f

)
(5.144)

while

dρ i
(
τ f

)= ∑
α∈Λp,d

dcαψi
α (5.145)

with

dcα =
M∑

q=1
dρ

(
τ f

)
ψ

q
αωq (5.146)

where dρ
(
τ f

)
is evaluated through Eq. (5.126).
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5.4 Results

In this Section, the results for the Scenario (1) are presented. After an introduction

on the first guesses generation, the solutions are presented and comparison

between them and traditional approach solutions is shown.

5.4.1 First guess

An educated guess is required to solve the optimization problem for the Scenario

(1), in order to reduce the wide search space represented by all the possible park-

ing Low Lunar Orbits, the stable manifold insertion time, and the arrival state

on the halo as well as to cope with the use of a local optimization scheme. In order

to compute these first guesses, a generation mechanism exploiting a patching

process is devised: 1) the state is propagated backward from the operative orbit

to the first lunar pericenter; 2) a grid generation is used to create all the possi-

ble LLO pericenters at a given time; 3) a patching process selects the solutions

fulfilling some tolerances in time and space at their pericenter; 4) eventually,

solutions of the patching process are then used to feed an optimization algorithm,

able to close the gap between the LLO and the stable manifold, while minimizing

the needed propellant. Least expensive trajectory coming from the optimization

algorithm are then used as first guess for the optimization problem stated in

Problem 1. The algorithm is summarized in Figure 5.13.

FIGURE 5.13. First guesses generation algorithm.
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5.4.1.1 Backward propagation

In the backward leg, the spacecraft trajectory is propagated backward in time

from the halo target orbit for 30 days in the high-fidelity Roto-Pulsating Resticted

n-Body Problem. The epoch and the states of the first lunar pericenter pass are

saved to be used for patching purposes. Initial points on the halo are drawn

from an equally spaced grid of 6 hours, starting form the February 1, 2024 and

ending on March 1, 2024. This choice reflects the requirement to start the science

operation at latest on March 21, 2024 and to have at least 1 week of commissioning

and calibration in the operative orbit. In order to escape the fastest way, a 1 m/s

∆v is applied along the minimum stretching direction. Because in the high-

fidelity model the operative orbit is no longer periodic, the minimum stretching

direction δ is defined as the direction along which for a given perturbation δχ0

the Euclidian norm of the final perturbation is minimized, i.e.,

δ= argmin
δχ0

∥∥∥δχ f

∥∥∥= argmin
δχ0

√
δχT

0 Cδχ0 (5.147)

where C = ΦT
τ0,τ f

Φτ0,τ f is the Cauchy–Green tensor, defined by exploiting the

STM from τ0 to τ f . Starting from Eq. (5.147), the minimum stretching direction

corresponds to the (unit) eigenvector associated to minimum eigenvalues of the

Cauchy–Green tensor. The trajectories computed in this way can be seen as an

extension of the Circular Restricted 3-Body Problem (CR3BP) stable manifolds.

Figure 5.14 shows some trajectories propagated backward from the halo orbit.

5.4.1.2 Grid generation

At each of the pericenter epochs computed in the backward propagation, a grid of

LLO pericenter points is computed, converted to the RPF and then saved. The

Keplerian parameters used to build the grid are presented in Table 5.9.

5.4.1.3 Patching process

The patching process patches backward orbits and the LLO grid points at the

periselenium. Since by design the pericenter epoch is exactly the same, only the

distance between the LLO points and the stable manifold pericenter is used as
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FIGURE 5.14. Sample trajectories propagated backward in time from the
target quasi-halo orbit in Earth–Moon synodic frame. Black dot is
the Moon. Distances are in Earth–Moon mean distance.

TABLE 5.9. Keplerian elements bounds in MCME2000 for grid search.

i [deg] Ω [deg] ω [deg]

Lower bound 0 0 0
Upper bound 180 360 360
Step 20 45 45

patching criterion. Figure 5.15 shows results of the patching process. Starting

from the 321 initial guesses, only 9 have a pericenter distance lower than 250 km.

5.4.1.4 Optimization

Most promising solutions coming from the patching process (i.e. with pericenter

distance d < 250km) are used to feed an optimization algorithm, whose aim is to

find the intersection between the LLO and the operative orbit stable manifold,

while minimizing the propellant mass. Thus the objective is to determine the
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initial and final times, τ0 and τ f , the LLO Keplerian parameters α0 and the

∆vHIM such that

J = 1
2
‖∆vSMIM‖2 + 1

2
‖∆vHIM‖2 (5.148)

is minimized. Moreover, the state is subjected to the constraint

ρSM (τ0)−ρ0 (τ0,α0)= 0 (5.149)

where ρSM is position of the stable manifold at τ0, i.e. the first three compo-

nents of backward-integrated flow ϕ
(
χ f ,τ f ;τ0

)
, having as initial state χ f =(

χH
(
τ f

)− [03∆vHIM]T)
, that is the halo position at τ f perturbed by the HIM. The

Stable Manifold Injection Maneuver is computed as

∆vSMIM =νSM (τ0)−ν0 (τ0,α0) (5.150)

with the state on the LLO computed through Eq. (5.19).

Figure 5.15 shows the results after the optimization. From the 9 solutions that

survived the patching filter, only 4 solutions have a ∆v < 120m/s, which is com-

patible with LUMIO requirements. The characteristic of these trajectories are

listed in Table 5.10. Althogh the time of flight is similar for the four optimal solu-

tions, the required propellant amount varied widely, going from only 67.33 m/s to

83.11 m/s, being one third higher than the minimum.

TABLE 5.10. First guess optimal solutions whit ∆v ≤ 120m/s.

# Departure date ToF [d] ∆vTOT [m/s]

53 28 JAN 2024 16.62 74.00
64 30 JAN 2024 15.56 67.33
164 11 FEB 2024 16.71 83.11
289 27 FEB 2024 15.92 68.65

5.4.2 Solutions

The trajectories listed in Table 5.10 are used as first guesses for Problem 1. The

NLP is solved for each of them. The average computational time for the optimiza-

tion algorithm on a quad-core Intel i7 2.80 GHz processor is about 20 minutes.
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FIGURE 5.15. Pericenter patching process and optimization results. Red
asterisks show solutions with d < 250km. Black diamonds are opti-
mized solutions with ∆vSMIM < 120m/s.

Since CUT samples can be propagated forward independently, the runtime can be

easily reduced by exploiting parallelization on a multi-core workstation. However,

the RAM can be a showstopper, since up to 4 GB can be required.

Results are summarized in Table 5.11. Surprisingly, the solution having the best

deterministic value (i.e., #64) is not the one having the best performances when

stochastic costs are considered, neither in the non-optimized or in the optimized

case, and this can lead to an unnecessary waste of propellant mass. However,

this choice will be sub-optimal when the stochastic costs are considered. Indeed,

Solution #53 needs less propellant in the first guess comprehensive approach,

allowing to save about 6% of fuel. This figure increases to 8% in the optimized

solution under the integrated approach.

This feature is mainly related to have to possibility to fly a lower dispersion

trajectory. Indeed, although the position dispersion (Figure 5.16) shows a similar

trend for both Solution #53 and #64, the velocity dispersion (Figure 5.17) is lower

when Solution #53 is considered and this helps the trajectory to have smaller
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navigation costs. Moreover, a final lower dispersion is beneficial since it allows to

satisfy the final constraint with less effort.

The solution #53 has the minimum overall ∆v both considering the first guess

and the optimized trajectory. Thus, solution #53 would have been selected as the

best-performing solution even in the sequential approach. However, solution #289

results show that a great improvement (about the 25%) can be obtained under

the stochastic optimization. This feature indicates that, considering a different

time-frame or a different operational orbit, it could be possible that the sequential

and the integrated approach give different results, leading to a wrong choice of

the nominal orbit if the stochastic optimization is not performed.

TABLE 5.11. Integrated approach optimal solutions. Subscript D stay
for deterministic, while S is stochastic. The asterisk is used for the
value after the optimization.

# ∆vD [m/s] ∆v0
D+S [m/s] ∆v∗D+S [m/s]

53 74.00 102.60 100.14
64 67.33 108.8 108.75
164 83.11 111.88 111.75
289 68.65 125.47 101.91
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FIGURE 5.16. Position 1σ dispersion evolution for the optimized cases:
(a) Trajectory #53, (b) Trajectory #64.
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FIGURE 5.17. Velocity 1σ dispersion evolution for the optimized cases:
(a) Trajectory #53, (b) Trajectory #64.

The decision variables of Problem 1 for Solution #53 are listed in Table 5.12,

while the maneuvers magnitude is provided in Table 5.16. Variables for the other

three solutions are showed in Tables 5.13–5.15. It is important to notice that the

change in the decision variables between the first guesses and the optimization

solutions is limited. This is the result of a good first guess choice. Only solution

#289 has a greater variables variation and this is reflected in a greater reduction

in the total optimized ∆v (see Table 5.11). Figure 5.18 shows its trajectory from

the LLO to the halo target orbit, with a close-up on the final dispersion. The

final dispersion is fully enclosed in the desired 30 km sphere. An analysis of the

cumulative distribution function for the two TCMs is given in Figure 5.19.

TABLE 5.12. Solution #53 decision vector.

Departure date τ f [d] τTCM1 [d] τTCM2 [d]

First guess 28 JAN 2024 21:25 16.62 2.00 8.00
Optimized 28 JAN 2024 21:40 16.63 2.05 8.10

i0 [deg] Ω0 [deg] ω0 [d] θ0 [d]

First guess 98.15 34.67 63.96 319.75
Optimized 99.79 38.29 64.20 321.75
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TABLE 5.13. Solution #64 decision vector.

Departure date τ f [d] τTCM1 [d] τTCM2 [d]

First guess 30 JAN 2024 19:25 15.56 2.00 8.00
Optimized 30 JAN 2024 19:28 15.47 2.03 8.05

i0 [deg] Ω0 [deg] ω0 [d] θ0 [d]

First guess 130.06 225.08 60.15 22.58
Optimized 130.05 225.17 60.14 22.72

TABLE 5.14. Solution #164 decision vector.

Departure date τ f [d] τTCM1 [d] τTCM2 [d]

First guess 11 FEB 2024 16:47 16.71 2.00 8.00
Optimized 11 FEB 2024 16:47 16.71 2.00 8.03

i0 [deg] Ω0 [deg] ω0 [d] θ0 [d]

First guess 97.68 221.30 70.56 33.47
Optimized 98.70 228.87 63.63 31.02

TABLE 5.15. Solution #289 decision vector.

Departure date τ f [d] τTCM1 [d] τTCM2 [d]

First guess 27 FEB 2024 03:04 15.92 2.00 8.00
Optimized 27 FEB 2024 02:22 20.55 2.00 8.00

i0 [deg] Ω0 [deg] ω0 [d] θ0 [d]

First guess 261.41 348.8 316.11 19.15
Optimized 263.08 348.27 313.97 18.59

TABLE 5.16. Solution #53 maneuvers magnitude.

∆vSMIM [m/s] ∆vHIM [m/s] Q(.99,∆vs
1) Q(.99,∆vs

2) Total [m/s]

68.73 3.50 25.24 2.66 100.14
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FIGURE 5.18. Transfer phase trajectory for Solution #53. In the close-up,
the final dispersion is showed. The red circle represents the final
constraint 30 km sphere.
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FIGURE 5.19. TCMs cumulative distribution function in Solution #53.
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FIGURE 5.20. Position Knowledge Analysis for Solution #53.
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FIGURE 5.21. Position Knowledge Analysis for Solution #53 of LUMIO.
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SCENARIO 2

S cenario (2) depicts a spacecraft, performing low-thrust transfer, in a quasi-

Keplerian motion. Scenario (2) can be used to describe a low-thrust deep

space trajectory. An example for this kind of dynamics can be the transfer

phase of the CubeSat M-ARGO [81].

6.1 Introduction

Vittorio Franzese | 22/06/2020 | Slide  48ESA UNCLASSIFIED - For Internal Use

FIGURE 6.1. M-ARGO logo.

The Miniaturised Asteroid Remote Geophysi-

cal Observer (M-ARGO) is planned to be the

first standalone ESA deep-space CubeSat to

rendezvous a near-Earth asteroid (NEA) [83].

The M-ARGO concept was developed by ESA’s

Concurrent Design Facility. In 2019, ESA

funded the Phase A study, that was conducted

by GomSpace Luxemburg in collaboration with

Politecnico di Milano. M-ARGO successfully

passed the (MDR) in November 2019 and the PRR in July 2020.
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The M-ARGO project foresaw a 12U CubeSat, planned to piggyback on the launch

of another large spacecraft going towards the Sun–Earth Lagrange point L2. After

insertion into a parking orbit at L2, M-ARGO will depart from there performing

a deep-space cruise towards a NEA target using low-thrust electric propulsion,

demonstrating the capability of CubeSats to independently explore deep-space

objects. Behind the scientific objectives, M-ARGO will demonstrate in-orbit a

number of miniaturized key technologies such as [81]: i) a miniaturized X-band

transponder and reflectarray high gain antenna for communication with Earth

at distances of up to 1.5 AU; ii) a miniaturized solar drive array mechanism

for maximizing solar power generation from two deployable steerable wings;

iii) miniaturized electric propulsion for orbital maneuvers. In conclusion, M-

ARGO mission objectives can be summarized in 1) demonstrate the capability

of CubeSats to independently explore deep-space objects; 2) rendezvous with a

near-Earth asteroid and characterize its physical properties; 3) push forward

miniaturized European key technologies; 4) test autonomous guidance, naviga-

tion, and control techniques during transfer to target object. M-ARGO is departing

window from the Sun–Earth L2 point is set to be between January 01, 2023 and

December 31, 2024. The maximum transfer time to the selected target shall be

less than 3 years. The spacecraft will have an initial wet mass m0 = 22.6kg with

the available propellant amounting to mp,max = 2.8kg. The ballistic coefficient,

useful for the computation of the SRP, is A/m = 0.01327m2/kg with a reflectivity

coefficient equal to cr = 0.3. These values are given in Table 6.1.

TABLE 6.1. M-ARGO mission time-frame and spacecraft data.

Departure window Transfer m0 mp,max A/m cr

2023 – 2024 ≤ 3 years 22.6 kg 2.8 kg 0.01327 m2/kg 1.3

6.1.1 NEO target screening

The number of M-ARGO possible targets among near-Earth objects (NEOs) is

huge and it keeps increasing. For this reason, it is required to identify a subset of

asteroids that are reachable by M-ARGO CubeSat and can serve as appropriate
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targets. The solution of this pruning will be used as first guess for the revised

approach and to make a final comparison. Figure 6.2 shows the approach followed

to produce the reachable asteroids shortlist, which is the input for the final target

selection. This procedure is made of the different steps listed below.

Page  1

NEO TARGETS SELECTION (WP 103)

1. Minor Planet Center
(MPC) Database

2. Full list of known minor 
planets ( > 700,000)

3. Pre-filtering
(Bounds on 𝑟𝑎, 𝑟𝑝, 𝑖, 𝑁𝑂𝑏𝑠)

4. List of potential targets
(< 500)

5. Low-thrust transfers from 
SEL2 to asteroids with 

▪ Two-body dynamics
▪ Real thruster model

• Time-optimal problem

10. Fuel-optimal ranking

• Minimum theoretical 
propellant mass

9. Fuel-Optimal Filtering

• Bound on minimum 
propellant mass

(Output: < 120 asteroids)

7. Time-optimal ranking

▪ Minimum theoretical 
time of flight

12. Specific Mission 
Analysis

(5 different targets)

11. Lists of ranked 
optimal solutions

Input from ESA, small-body community

6. Time-Optimal FIltering

• Bound on minimum TOF
• Bound on propellant 

mass at minimum TOF
(Output: < 150 asteroids)

8. Low-thrust transfers from 
SEL2 to asteroids with 

▪ Two-body dynamics
▪ Real thruster model

• Fuel-optimal problem

FIGURE 6.2. Methodology of the NEO target screening.

1-2 Database retrieval. The Minor Planet Center (MPC) Database1 is con-

sidered as the source of information for the minor planets in the solar

system. It comprehends the designation and the orbit computation of all

the discovered minor planets and it is updated daily. More than 1,000,000

objects are accounted for as of January 2021. However, the target selection

was performed during M-ARGO Phase A and thus in this work only the

700,000 objects are accounted.

3-4 Pre-Filtering. The full list of asteroids is pre-filtered using ranges of or-

bital parameters. Educated guesses on these parameters have been inferred

from [60]. These involve capping the aphelion, bottoming the perihelion,

and bounding the inclination as well as the number of observations. This

filtering reduces the full list of asteroids (∼ 700,000) to a preliminary list of

approximally 500 potential targets.
1See https://minorplanetcenter.net/ (Last access on December 21, 2020)
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5-6 Time-optimal transfers. A massive search is conducted to compute time-

optimal transfers to each of the asteroids in the preliminary list. The

optimization considers the two-body problem with the realistic thruster

model, departure from Sun–Earth L2, and departure window as specified

in Table 6.1. The aim of this step is to determine the minimum theoretical

transfer time to each asteroid and for each departure epoch. The objects

whose minimum transfer time is greater than the upper bound in Table 6.1

are filtered-out.

7 Time-optimal ranking. The filtered time-optimal solutions are ordered to

produce a time-optimal ranking. The number of targets is then reduced to

∼ 170 objects.

8-9 Fuel-optimal transfers. The objects resulting feasible after the time-

optimal analysis are processed under the perspective of a fuel-optimal

optimization. This analysis finds the minimum propellant mass for each

combination of departure epoch and transfer time. The objects whose mini-

mum required propellant mass is greater then the bound in Table 6.1 are

filtered-out.

10 Fuel-optimal ranking. The fuel-optimal solutions as output of step 9

are ordered to produce a fuel-optimal ranking made of approximately 150

reachable objects.

11 Lists of ranked optimal solutions. The ranked lists of fuel-optimal

solutions has been examined in collaboration with GomSpace and ESA in

order to obtain 5 shortlisted targets.

A detailed analysis of this procedure is given in [77].

6.1.1.1 Minor planets database filtering

Consistently with the preliminary work in [60], the Minor Planet Center database

is filtered by applying some bounds to the NEO orbital parameters. Upper and

lower bounds are set to the aphelium and perihelium respectively, in order to

prune out targets either unlikely reachable by M-ARGO or posing communication
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and propusion challenges due to their distance from the Earth and the Sun.

Moreover, an upper bound on the inclination has been inserted in order to cope

with the CubeSat limited propulsive capabilities. Finally, a lower bound of 10

observations (Nobs) is enforced to assure accuracy in the orbital elements of

the asteroids. Table 6.2 summarizes the filtering parameters. At the end, 456

asteroids passes the filter scheme.

TABLE 6.2. NEO database filtering parameters.

Parameter LB UB Rationale

ra – 1.25 AU NEA targets
rp 0.75 AU – NEA targets
i 0 deg 10 deg CubeSat capability

Nobs 10 – Orbital Elements accuracy

6.1.1.2 Fuel- and Time-Optimal transfers

The NEOs surviving the filtering process underwent a further analysis in order

to determine the transfer feasibility within the bound given in Table 6.1.

First, a time-optimal analysis is performed, in order to compute the minimum

time needed to reach each target. Performing a time-optimal search in a two-year

departure window for different objects requires solving approximately 3.3×105

optimization problems with a one-day time discretization. An even higher number

of fuel-optimal problem should be solved for the time-compliant asteroids, since a

two-dimensional grid in departure date and time of flight is required. Therefore,

an agile solver is needed to scan the solution space in the allotted time. The

indirect solver LT2.0 (Low-Thrust Trajectory Optimiser 2.0) internally developed

at Politecnico di Milano [76] has been adapted for this purpose. Details on the

methodology can be found in [77]. Results of this analysis can be found in Figures

6.3–6.4. Solutions either exceeding a time of flight of 900 d or employing more

than 4 kg of propellant are filtered out. These criteria are used to prune out

solutions that unlikely will be able to cope with requirements in Table 6.1. In

conclusion, 172 asteroids are able to pass the cut-off threshold and will be used

as input for the subsequent fuel-optimal analysis.
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FIGURE 6.3. Cumulative number of asteroids for (a) increasing τmin and
(b) associated mp(τmin). The filtering bounds are the dashed lines,
while the number indicates the asteroids below the threshold.
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FIGURE 6.4. Time of Flight for the time-optimal solutions against the
associated propellant mass. The filtering bounds are the dashed lines,
while the number indicates the asteroids below both thresholds.
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A fuel-optimal problem is implemented and used to compute the minimum pro-

pellant mass needed to reach the target asteroids. It is important to notice that

the fuel-optimal process widens the search space since both the departure epoch

τ0 and the time of flight to f are let to vary. Results from this two-dimensional

grid are used to construct a porkchop plot for each target. For the 172 asteroid

processed mpmin is retrieved, as well as the corresponding value of t0 and to f .

Eventually, a barrier is set up in order to remove solutions with a mpmin not com-

pliant with the maximum allocated propellant mass (as per Table 6.1). Results

for this analysis are illustrated in Figure 6.5. It is shown that only 148 asteroids

can be considered feasible targets, having a time of flight lower than 3 years and

required propellant mass lower than 2.8 kg.
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3
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Cumulative Number

Prop Mass bound

FIGURE 6.5. Cumulative number of asteroids for increasing global mini-
mum propellant mass. The available propellant mass (mp = 2.8 kg)
is indicated by the dashed line, while the number shows the amount
of asteroids below the threshold.
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6.1.1.3 Target shortlisting

The aim of the Phase A target screening performed during the mission analysis

was to extract a shortlist of 5 baseline asteroids out of the more of 700,000 objects

in the Minor Planet Center database. Once the reachable targets are obtained

after the fuel-optimal problem, a pruning is done to reduce the list of potential

mission targets. This has been done by analyzing from a statistical point of view

the the reachable targets and their transfers and by analyzing the pork chop

plots obtained as result of the fuel-optimal problem, in order to remove asteroids

requiring a long time of flight, propellant mass close to the maximum value

possible or having a limited departure window in the full mission time frame.

After this analysis, 41 asteroids are deemed as realistic candidates for the mission

future implementation. Results of the NEO target screening, in terms of number

of possible targets, is presented in Table 6.3.

Table 6.3: NEO target screening process and results.

Step Target screening step No. of objects

#1 Asteroids in the Minor Planet Center database 700,000+
#2 Potential targets after pre-filtering 456
#3 Possible targets after minimum-time optimisation 172
#4 Reachable targets after minimum-fuel optimisation 148

#5 Downselected targets after statistical analysis 41
#6 Shortlisted targets after close-up analysis 5

Finally, once the list of the 41 desirable, downselected targets has been defined, a

deliberate choice was made. The final selection was made by considering

• Light-Curve Database: the presence of the asteroid in the Light-Curve

Database is associated to better knowledge of the physical and orbital

parameter of the target and thus it is a nice-to-have information;

• Asteroid spin-rate: it is a relevant data from the scientific point of view;

• Future observability: the possibility to observe the target in the future is

connected to the reduction of orbital uncertainty and thus a better knowl-

edge of the target state;

106



6.1. INTRODUCTION

• Promising targets: the targets needing low propellant mass for a large time

span are preferred.

Following these criteria, five targets are eventually selected [32]:

1. 2014 YD: Known high spin rate; favorable mission opportunity;

2. 2010 UE51: #1 on time-optimal and fuel-optimal solution list;

3. 2011 MD: Present in light curve database, favorable mission opportunity;

4. 2000 SG344: Observable in the near future, inclined, low uncertainty;

5. 2012 UV136: Known spin rate, largest target size

Keplerian parameters for the shortlisted asteroids are given in Table 6.4).

Table 6.4: Orbital elements for the selected 5 asteroids (ecliptic J2000).

Name a [AU] e [-] i [deg] ω [deg] Ω [deg]

2000 SG344 0.9775 0.0669 0.1121 275.3026 191.9599
2010 UE51 1.0552 0.0597 0.6239 47.2479 32.2993
2011 MD 1.0562 0.0371 2.4455 5.9818 271.5986
2012 UV136 1.0073 0.1392 2.2134 288.6071 209.9001
2014 YD 1.0721 0.0866 1.7357 34.1161 117.6401

6.1.2 High-fidelity transfers

The NEO target screening was conducted by exploiting a two-body dynamics.

This assumption reduces the computational workload, but it can give trajectories

representing inaccurately the spacecraft motion. For this reason, a step toward a

more complex dynamical model is required in order to better assess trajectories

for the five short-listed targets. Thus, solutions in more complex dynamics are

sought with the purpose of designing high-fidelity asteroid targeting problems.

The detailed mission analysis has the aim to 1) produce refined porkchop plots,

2) select nominal trajectories, and for each of them: i. compute control profiles,

ii. evaluate distances from the Earth and Sun, iii. check phase angle plots. In
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order to do that, transfers in a full-ephemeris model are designed and optimized.

Porkchop-like plots are produced by solving several fuel-optimal problems.

6.1.2.1 Methodology

The L2-Asteroid transfers are made by only few spirals about the Sun. Thus,

tackling this problem should not require an excessive amount of parameters to

represent the time-variation of state and controls, if a direct problem is exploited.

Moreover, the equations of motion right-hand side becomes computational in-

tensive by introducing the gravitational pulling from other Solar System bodies

and the Solar radiation pressure perturbation. Therefore, a direct method using

collocation is judged to have the best balance between computational time and

accuracy. The tool DIREct collocation Tool for Trajectory Optimization (DIRETTO)

internally developed at Politecnico di Milano [76] is exploited for this task.

Dynamics. The M-ARGO transfer problem can be modeled as a Two-Point

Boundary Value Problem (TPBVP), with the initial point placed at Sun-Earth L2

at Departure Date, while the arrival point is the Asteroid state at final time. A

full-ephemeris model, considering also the SRP, is used, and spherical coordinates

are employed. This choice improves convergences of the solution for this kind of

trajectories. Thus, the states are defined as x= [
r,θ,φ,vr,vθ,vφ,m

]
, with φ and

θ the Azimuth and Elevation angles in J2000 respectively. The control vector

is u = [
T,α,β

]
, with α taken from θ̂-vector in the orbit plane, while β is the

out-of-plane thrust angle. The dynamics can be written as

ẋ= f(x,u, t)=



vr
vθ

r cosφ
vφ
r

P (fG + fSRP )+S


vr

vθ
vφ

+ fT

− T
Isp g0


(6.1)
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The gravitational force is

fG =− µ

r3 r− ∑
i∈P

µi

(
ri

r3
i
− ri −r
‖ri −r‖3

)
(6.2)

where r is the position vector of the spacecraft in J2000 and r is its magnitude, ri

is the i-th planet position vector and r i its magnitude, and µi is the planetary

gravitational constant. The symbol P indicates a set containing all the planet of

the Solar System. Planet states are retrieved by means of SPICE kernels [1, 2].

The Solar radiation pressure is defined as

fSRP = QA
m

r
r3 (6.3)

where Q is the solar pressure constant.

The thrust vector is written as

fT = T
m


sinαcosβ

cosαcosβ

sinβ

 (6.4)

while the matrices P and S are

P =


cosφcosθ cosφsinθ sinφ

−sinθ cosθ 0

−sinφcosθ −sinφsinθ cosφ

 , S =


0 θ̇ cosφ φ̇

−θ̇ cosφ 0 θ̇sinφ

−φ̇ −θ̇sinφ 0


Thruster model. A realistic thruster model is implemented in the equation of

motion in order to simulate accurately the available thrust and instantaneous

specific impulse. This feature is important in case of limited-capability low-thrust

spacecraft since it helps in precisely define the CubeSat maneuver capability.

This model differs from the one in [60], where more simplified assumptions were

made on thrust and specific impulse.

The thruster model assumes that both the maximum thrust, Tmax, and the specific

impulse, Isp, depend on the instantaneous input power, Pin, which in turn is a

function of the Sun distance, r. It means that

Tmax = Tmax(Pin), Isp = Isp(Pin), Pin = Pin(r) (6.5)
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In order to correctly represent functions in Eq. (6.5), fourth-order polynomials

are employed. They are able to correctly represent the behavior of the M-ARGO

electric power system and miniaturized ion thruster, while having smooth, non-

singular derivatives. Thus

Tmax(Pin) = a0 +a1Pin +a2P2
in +a3P3

in +a4P4
in (6.6)

Isp(Pin) = b0 +b1Pin +b2P2
in +b3P3

in +b4P4
in (6.7)

Pin(r) = c0 + c1r+ c2r2 + c3r3 + c4r4 (6.8)

Moreover, the thruster input power is characterized by upper and lower bound-

aries, Pin,min and Pin,max, respectively, due to technological constraints, related

to the managing of thermal and power subsystems. For this reason, a saturation

logic for the input power should be considered and it is

if Pin(r)> Pin,max then Pin = Pin,max, Tmax = Tmax(Pin), Isp = Isp(Pin)

if Pin ∈ [Pin,min,Pin,max] then Pin = Pin(r), Tmax = Tmax(Pin), Isp = Isp(Pin)

if Pin(r)< Pin,min then Pin = Pin(r), Tmax = 0, Isp not defined

Preliminary design values for Eqs. (6.6)–(6.8) have been provided by GomSpace to

the consortium in a private communication within the Phase A. The coefficients

and the input power limits used in the mission analysis are given in Table

6.5. A graphical representation of the thruster model is reported in Figure 6.6.

Parameters at 1 au can be retrieved from those data:

• Input power of 105.4 W;

• Maximum thrust of 1.89 mN and thrust-to-mass ratio of 8.36×10−5 m/s2;

• Specific impulse of 3022.59 s.

Collocation method. In the collocation scheme employed by DIRETTO, the

time is discretized evenly in N nodes td = t0 < t1 < ·· · < tN = t f and states are
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TABLE 6.5. Thruster model parameters (r in Eq. (6.8) is in AU).

Version Tmax coeff. (mN) Isp coeff. (s) Pin coeff. (W)

v 1.0 (07/07/2019)

Pin,min = 20 W
Pin,max = 120 W

a0 =−0.7253 b0 = 2652 c0 = 840.11
a1 = 0.02481 b1 =−18.123 c1 =−1754.3
a1 = 0.02481 b1 =−18.123 c1 =−1754.3
a1 = 0.02481 b1 =−18.123 c1 =−1754.3

a2 = 0 b2 = 0.3887 c2 = 1625.01
a3 = 0 b3 =−0.00174 c3 =−739.87
a4 = 0 b4 = 0 c4 = 134.45
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FIGURE 6.6. Graphical representation of the M-ARGO thruster model.

enforced over this grid, with the control approximated linearly. So, for each time

tk, the following quantities can be defined

x(tk)= xk, u(tk)=uk, ∀ k = 0, . . . , N (6.9)

while in each segment

tk ≤ t ≤ tk+1, u(t)=uk +
t− tk

tk+1 − tk
(uk+1 −uk) (6.10)

For each segment a TPBVP is solved by enforcing continuity of the solutions at

both ends. The defect constraints ζk are constructed by using an Hermite-Simpson

111



CHAPTER 6. SCENARIO 2

quadrature scheme

ζk = xk+1 −
h
6

(fk +4fc + fk+1) (6.11)

with

fk = f(xk,uk, tk), fk+1 = f(xk+1,uk+1, tk+1), fc = f(xc,uc, tc) (6.12)

and the central points are defined as

tc = tk +
h
2

, xc = 1
2

(xk +xk+1)+ h
8

(fk − fk+1) , uc = 1
2

(uk +uk+1) (6.13)

with the time step being h = tk+1 − tk, constant by construction.

The Departure Date is kept fixed, while the final time can vary.

Thus, the fuel-optimal control problem is translated in a NLP Problem, i.e. finding

the variable vector

y= [
x1, . . . , xN , u1, . . . , uN , t f

]
(6.14)

minimizing the cost function

J(y)=−m(t f ) (6.15)

i.e. maximizing the mass at the final time, subjected to the equality constraints:

• Defect vectors must be null to ensure continuity between adjoint segments:

ζk = 0, ∀ k ∈ {1, N} (6.16)

• Boundary conditions at the initial and final time are enforced:

r(t0)−rL2(t0)= 0, v(t0)−vL2(t0)= 0, m(t0)= m0 (6.17)

r(t f )−rAst(t f )= 0, v(t f )−vAst(t f )= 0 (6.18)

States for both L2 and Asteroid are retrieved using SPICE kernels.

and to the inequality constraints:

• Thrust cannot overcome its maximum value at the instant distance for the

Sun:

T −Tmax(Pmax)≤ 0 (6.19)
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• Transfer time is less than 2.5 years, being consistent with the Table 6.1:

t f − t0 ≤ 900days (6.20)

• Final mass must be positive:

−m(t f )≤ 0 (6.21)

A cap on the propellant mass is not imposed, since the aim is to obtain all the

possible transfers, even the infeasible one, in order to create a complete porkchop.

Eqs. (6.16)–(6.18) and Eqs. (6.19)–(6.21) can be grouped respectively in an equal-

ity constraints vector ceq and an inequality constraints vector c.

The problem of rendezvous with an Asteroid, departing from Sun-Earth L2 ex-

ploiting a variable-low-thrust spacecraft can be formally stated as a constrained

minimization, i.e.

min
y

J(y) s.t.

ceq = 0

c≤ 0
(6.22)

The minimization is solved in a NLP sense. The software IpOpt [80], in the

implementation by OPTI Toolbox2, is exploited to solve the optimization problem,

by means of an internal point method.

6.1.2.2 Results

For the 5 selected targets, the optimization problem in the last paragraph has

been solved a number of times and results are used to design porkchop plots.

Departure Date is discretized in 15 evenly-spaced points from the interval in

Table 6.1, while the guessed Time of Flight goes from 500 d to 900 d with a step

of 100 days. Actually, since the final time can vary, so it does the Time of Flight.

Results from this analysis are shown in Figure 6.7. They are used as starting

point for the revised approach analysis.

2See https://inverseproblem.co.nz/OPTI/index.php/Main/HomePage (Last retrieved on
December 28, 2020.)
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FIGURE 6.7. Porkchop-like plots for shortlisted target in the full-
ephemeris model: (a) 2000 SG344, (b) 2010 UE51, (c) 2011 MD, (d)
2012 UV135, (e) 2014 YD. The available propellant mass (mp = 2.8
kg) is indicated with a black dashed line. The color code is the pro-
pellant mass used.
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6.2 Methodology

Some building blocks are stated to apply the revised approach to the Scenario (2).

A navigation phase should be foreseen during the M-ARGO transfer trajectory

in order to perform orbit determination processes, compute trajectory correction

maneuvers to compensate for the state deviations and send proper commands

to the spacecraft. Thus, a full day is devoted to flight dynamics tasks for each

week during interplanetary cruise. This assumption allows to have regular and

repetitive operations. Hence, M-ARGO trajectory from L2 to the target asteroid

can be subdivided into two legs, repeating cyclically, as shown in Figure 6.8:

1. Thrusting phase (from day 0 to day 6 of each week): the spacecraft surfs its

trajectory with no or minimal interaction with the ground;

2. OD phase (from day 6 to day 7 of each week): the orbit determination

algorithm is performed in order to track the spacecraft and to compute the

subsequent correction maneuver.

In a real life scenario, the spacecraft will shut down the thruster during the OD

phase, since a large amount of power is required to communicate with the Earth

and angles are locked in order to point the antenna toward the ground. However,

in this test case, operation compliance is not considered in order to simplify the

dynamics and the optimization.

FIGURE 6.8. M-ARGO transfer trajectory timeline. The grey bars repre-
sents the OD phases, while the green arrows mark the TCMs points.
Time in days after the departure time from L2.

Uncertainty quantification follows results from the analysis in Chapter 3. Knowl-

edge and dispersion analyses are performed exploiting two different techniques
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in order to cope with the characteristics of the M-ARGO case, having a continuous

thrust, that should be modeled as a stochastic process. For this reason:

• Knowledge analysis is performed employing local linearization (Section

3.1.2) in a fashion similar to [68];

• Navigation cost estimation is achieved by using a Monte Carlo simulation

(Section 3.1.1).

6.2.1 Uncertainty

To compensate for differences between physical model and real world, a number

of uncertainty are taken into account in the revised approach methodology.

The error in the state knowledge at the initial time make the initial state to be

modeled as a Gaussian random variable, i.e.

x(t0)=N (x0,P0) (6.23)

where P0 = diag
([
σ2

r I3, σ2
vI3

])
is the initial covariance matrix for the state. No

uncertainty is considered for the spacecraft mass. A standard deviation σ of

1000 km in position and 1 m/s in velocity are used for the uncertain initial state.

Moreover, dynamics and control error are taken into account in the revised

approach in order to accurate model a realistic environment, leading to a higher

fidelity evaluation of the designed trajectories and a more conservative state

estimation process. Dynamics and control error are modeled as Gauss–Markov

process, also know as exponentially correlated random variables (ECRVs). A

Gauss–Markov process obeys Langevin differential equation [68], i.e.

ξ̇(t)=−βξ(t)+ω(t) (6.24)

where ξ is the Gauss–Markov process, ω is a white noise with a given variance,

and β= 1/τ is the inverse of the correlation time. The Gauss–Markov processes

and their characteristics, accounted in Scenario (2), are listed in Table 6.6. Gauss–

Markov processes are injected in the covariance dynamics as in [68]. It means

Pk = Φ̃ (tk−1, tk)Pk−1Φ̃
T (tk−1, tk)+

∫ tk

tk−1

Φ̃ (tk−1,τ)B(τ)Q(τ)BT (τ)Φ̃T (tk−1,τ) dτ

(6.25)
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with Q(τ)=σ2 and the other quantities conveniently defined in Section 6.2.3. The

integral is computed using the trapezoidal rule.

TABLE 6.6. M-ARGO Gauss–Markov processes.

Uncertain process σ τ

Solar radiation pressure 10% in magnitude 1 d

Thrust
1% in magnitude 1 d

1° in pointing angles 1 d
Residual acceleration 1×10−11 km/s2 1 d

6.2.2 Orbit Determination

The spacecraft state knowledge during the interplanetary transfer is improved

by an orbit determination algorithm, exploiting radiometric measures coming

from on-ground facilities. Radiometric tracking is modeled as per Section 5.2.3.

Pseudo-measurements for range and range-rate are simulated using Eq. (5.36)

whenever a visibility window exists within the timespan dedicated to OD. Pseudo-

measurements are then used to feed an extended Kalman filter (EKF) [68] in

order to estimate the spacecraft state.

The ground station available for M-ARGO is the 35-meter DSA-1 antenna by

ESTRACK, located in New Norcia, Australia. Its performances are in Table 6.7.

6.2.3 Dispersion and navigation costs

The stochastic ∆v is estimated by exploiting a linearized trajectory and the

nominal STM. The deviation of the real state from the nominal one is

δx(t)= x(t)−x∗(t) (6.26)

while the process noise vector, i.e. the vector of the Gauss–Markov processes

indicated in Table 6.6, is defined as ω(t) ∈R3d, where d is the number of stochastic

processes. The extended state, including both the state and the process noise is

χ(t)=
[
δx(t)

ω(t)

]
(6.27)
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TABLE 6.7. Assumed characteristics for New Norcia ground station.

Parameter Value

Coordinates 31.048225° S
116.1915° E

Altitude 0.2523 km
Range measurements frequency twice per pass
Doppler measurements frequency once every 10 min
Range measurements random error (1σ) 200 m
Range measurements systematic error 200 m
Doppler measurements random error (1σ) 0.3 mm/s
Doppler measurements systematic error 0 mm/s
Station coordinates in equator plane (1σ) 30 cm
Station coordinates out of equator plane (1σ) 1 m
Minimum ground station elevation Elmin 15°

An associated state transition matrix can be stated as

Φ̃(t, t0)= ∂χ(t)
∂χ(t0)

=
[

Φ M

03d×n W

]
(6.28)

where n is the number of the states. Matrices M and W represent the derivative

of the process noise with respect to the state deviation and itself, respectively.

Recalling that process noises satisfy Eq. (6.24), for a given process [68]

Mi = ∂x(t)
∂ωi(t0)

=


[

1
β
δt+ 1

β2

(
e−βδt −1

)]
I3

1
β

(
1− e−βδt) I3

03

 (6.29)

where Mi represents the block of matrix M associated to the i-th 3-dimensional

process noise ωi and δt = t− t0, while

Wi = ∂ωi(t)
∂ωi(t0)

=
[
e−βδtI3

]
(6.30)

The extended state can be propagated forward by using the extended STM, thus

χk = Φ̃ (tk−1, tk)χk−1 +Γ (tk−1, tk)ωk−1 (6.31)
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where the subscript k−1 and k refers to two consecutive TCM times, tk−1 and tk,

and the process noise ωk−1 is modeled as a random sequence, that is a random

piecewise-constant function. Moreover,

Γ (tk−1, tk)=
∫ tk

tk−1

Φ̃ (tk−1,τ)B(τ)dτ (6.32)

is the process noise transition matrix and the B = [0n, I3d]T .

As consequence the correction maneuver can be computed by exploiting the

differential guidance (Eq. (4.5))

∆vs
k =−

(
ΦT

rvΦrv + qΦT
vvΦvv

)−1 (
ΦT

rvΦrr + qΦT
vvΦvr

)
δ̃rk − δ̃vk (6.33)

with

δ̃xk = δxk +N
(
X̄k,Pk

)
(6.34)

with Xk and Pk output of the EKF filter.

For each Monte Carlo sample, all the ∆vs
k are converted in needed propellant

mass by the Tsiolkovsky equation

ms
p(tk)= mk

(
1− e

− ∆vs
g0 Ic

sp

)
(6.35)

Even if the spacecraft mass should be reduced by the stochastic correction, this

behavior is not considered, since its effects are limited. Moreover, TCMs are

performed using the same thruster, but in a cold gas fashion. This feature is a

characteristic of the M-ARGO propulsive system. In this case, I c
sp = 40s.

Once the stochastic propellant mass is computed for each Monte Carlo sample,

the kernel quantile estimation (Section 5.2.2) is used for the quantile evaluation.

Indeed, although Monte Carlo is used to compute the navigation costs, and, thus

a simple samples counting is possible, the use of KQE gives smooth, continuous

derivatives and, for this reason, it is preferred.

The final dispersion can be evaluated by exploiting Monte Carlo final states.

Indeed, it is possible to retrieve mean X̄ and covariance P (i.e. a Gaussian distri-

bution) for the error with respect to the nominal state. These value can be used

to build an uncertainty ellipsoid [68], useful to infer information on the state
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uncertainty at a given time. Since P is a positive-definite real matrix, it is always

possible to diagonalize it by applying the spectral theorem. Thus

D =


λ1 0 0

0 λ2 0

0 0 λ3

=UT PU (6.36)

with λi are the eigenvalues and U = [u1,u2,u3] is an ortho-normal matrix, con-

taining the eigenvectors as columns. The principal axes of P are

r̂′ =


x̂′

ŷ′

ẑ′

=UT r̂ (6.37)

where x̂ are the J2000 axes. Eventually, the probability ellipsoid is defined as

x̂′2

λ1
+ ŷ′2

λ2
+ ẑ′2

λ3
=σ2 (6.38)

where σ is the confidence level desired expressed in standard deviation lev-

els. Thus, the uncertainty ellipsoid will be defined as the ellipsoid having as

semi-major axes
√
λi , oriented as the direction of the eigenspace principal axes

associated to the covariance matrix.

At the final time, it is desirable that the trajectory ellipsoid is contained at a

certain confidence level inside the asteroid uncertainty ellipsoid, i.e.

E
(
x

(
t f

)
, t f

)⊆ EAst
(
t f

)
(6.39)

This condition can be checked by performing an eigenvalue analysis on the

ellipsoid representing matrices [6].

Generally speaking, a 3D ellipsoid can be represented using a matrix formulation

ZTCTT ZT = 0 (6.40)

with Z = [x, y, z,1]T , where

C =
[

P−1 03

0T
3 −1

]
(6.41)
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is a matrix containing dimensions and axis direction of the ellipsoid, and

T =
[

I 03

−x f 1

]
(6.42)

is the translation matrix, used to bring the center of the ellipsoid in x f (i.e.,

x∗(t f )+ X̄ for the spacecraft and xAst(t f ) for the target). Defining A the matrix

TCTT for the spacecraft and B the one of the asteroid, it is possible to show that

the condition in Eq. (6.39) is mathematically equivalent to [6]Im
(
eig

(
A−1B

))= 0

eig
(
A−1B

)≥ 1
(6.43)

Thus, the eigenvalues of matrix A−1B should be real and grater than the unity.

6.3 Statement of the problem

Once the methodology has been defined, Problem 0 can be adapted to cope with

the Scenario (2) using M-ARGO as test case. Following the collocation method

explained in Section 6.1.2, the general optimal control problem can be translated

in a NLP. Thus, the optimization problem for the Scenario (2) under the revised

approach can be stated as

Problem 2 (Scenario (2) fuel-optimal problem). Find the variable vector

y= [
x∗

1 , . . . , x∗
N , u1, . . . , uN , t f

]
(6.44)

minimizing the cost function

J(y)=−(
m(t f )−Q (0.99,ms)

)
(6.45)

i.e. maximizing the sum of the mass at the final time and a measure of the pro-

pellant mass needed for the stochastic correction (Eq. (6.35)) computed through

the KQE, subjected to the equality constraints:

• Defect vectors for the nominal state must be null to ensure continuity

between adjoint segments:

ζk = 0, ∀ k ∈ {1, N} (6.46)
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• Boundary condition at the initial time is enforced:
E [x∗(t0)]= x0 = xL2(t0)

E
[
(x∗(t0)−x0) (x∗(t0)−x0)T

]
= P0

m(t0)= m0

(6.47)

• Stochastic boundary condition on the final state must be satisfied:Im
(
eig

(
A−1B

))= 0

eig
(
A−1B

)≥ 1
(6.48)

with A and B computed as per Section 6.2.3

and to the inequality constraints:

• Thrust cannot overcome its allowable maximum value:

T −Tmax(Pmax)≤ 0 (6.49)

• Transfer time is less than 2.5 years, being consistent with the Table 6.1:

t f − t0 ≤ 900days (6.50)

• Final mass must be positive:

−m(t f )≤ 0 (6.51)

States for both L2 and Asteroid are retrieved using SPICE kernels, while target

covariance at the final time is retrieved by exploiting a telnet connection with

NASA Horizon system [40]. Asteroid covariance matrix is retrieved at some

specific times and then interpolated by means of a cubic splines using not-a-knot

end conditions, in order to have a C 2-class function.

The procedure used to estimate relevant quantities for the optimization problem

are collected in Algorithm 2.
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Algorithm 2: Integrated approach algorithm for Scenario (2)
Procedure INTEGRATED APPROACH

Define spacecraft and navigation settings, and uncertainty properties;
Function INITIALIZATION

Compute the random variables for the Monte Carlo simulation;
Function KNOWLEDGE ANALYSIS

Consider the nominal trajectory;
for i = 1 to nP .Loop through nP sub-phases

switch sub-phase
case OD phase

Function ORBIT DETERMINATION

Find the visibility windows;
Retrieve the nM measurement times tk;
for k = 1 to nM .Loop through nM meas. times

Retrieve observation data;
Generate the pseudo-measurement;
Apply the extended Kalman filter;
Get mean and covariance from the filter;
Propagate mean and coviariance to tk+1;

end
Propagate mean and coviariance up to the final time tOD

f ;
Result: X̄k and Pk at each OD final time

otherwise
Propagate statistics up to the final sub-phase time;

end
end

Result: Knowledge time evolution
Function NAVIGATION COSTS & FINAL ELLIPSOID

for ∀ Monte Carlo sample
for i = 1 to nP .Loop through nP sub-phases

switch sub-phase
case Thrusting phase

Propagate the deviation up to the TCM time;
Estimate the correction maneuvers; .See Eq. (6.33)
Compute the needed propellant mass; .See Eq. (6.35)
Apply the maneuvers to each sample;

case OD phase
Propagate the the deviation up to the final OD time;
Evaluate the estimated deviaton; .See Eq. (6.34)

end
end

end
Compute the final state ellipsoid;

Result: Navigation cost estimate; Final state ellipsoid
Result: Cost function (Eq. (6.45)); Dispersion statistic (Eq. (6.48))
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6.4 Results

In order to evaluate the revised approach performances in the Scenario (2), a

benchmark trajectory should be selected. Asteroid 2000 SG344 is chosen as

nominal target due to the repeatability of its porkchop pattern and the needed

low propellant. By looking to its porkchop in Figure 6.7(a), a baseline solution, to

be used as Problem 2 first guess, is picked, following these criteria:

1. Sensitivity of mp both in horizontal (Dep. Date) and vertical (ToF) direction;

2. Far from the boundaries in order to surely have feasible solutions;

3. Baseline solution is chosen between 01 Jan 2023 and 31 Dec 2023, in order

to have a backup in the year 2024;

4. Among solutions with the same mp, a lower Time of Flight is preferred.

The trajectory selection is listed in Table 6.8.

Optimization solution is reported in Table 6.9 together with results associated to

the first guess. Exploiting a very good educated guess, the optimization algorithm

requires only 5 minutes on a quad-core Intel i7 2.80 GHz processor. However, a

bad initial guess can lead to long computational times and difficult converge.

The optimization under the revised approach leads to savings in propellant mass

amounting to 3%. However, if only the stochastic component is considered, the

needed propellant mass in the optimized case is only a half with respect to the

first guess one. Allegedly, this result is obtained by flying a trajectory with lower

dispersion. Figure 6.9 shows the control for the first guess and the optimized

solution. In the optimized case, the spacecraft thrusts during the last powered arc

in a region with a lower maximum thrust. Since the dispersion depends on the

thrust magnitude, a lower thrust level means lower dispersion and, thus, TCMs.

Figure 6.10 shows some important geometrical quantities for the revised approach

optimal solution, while the knowledge analysis is shown in Figure 6.11. Final

state uncertainty ellipsoids are depicted in Figure 6.12. The asteroid position

uncertainty, taken from the HORIZON system, is an order of magnitude higher

than the 3σ trajectory ellipsoid, deeming feasible the transfer to a wide extent.
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FIGURE 6.9. Control profile for M-ARGO baseline solution to 2000 SG344:
(a) First guess; (b) Optimized.
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FIGURE 6.10. Geometry assessment for 2000 SG344 Baseline Optimized
Trajectory: (a) Trajectory groundtrack (visibility in blue); (b) Exclu-
sion angle; (c) Elevation profile; (d) Daily Coverage from New Norcia.
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FIGURE 6.11. Knowledge analysis for 2000 SG344 Baseline Optimized
Trajectory: (a) Position; (b) Velocity.
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TABLE 6.8. Characteristics of baseline solution for M-ARGO.

Name Departure Date TOF [d] mp [kg]

2000 SG344 09 NOV 2023 796 0.857

TABLE 6.9. Revised approach solution for M-ARGO case.

ToF [d] mp (det.) [kg] mp (stoc.) [kg] mp (Total) [kg]

First Guess 796 0.857 0.067 0.924
Optimized 798.12 0.858 0.038 0.896

FIGURE 6.12. Final time uncertainty ellipsoids for the optimized M-
ARGO case. Asteroid ellipsoid is shown in blue, while the spacecraft
3σ ellipsoid is depicted in red.
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SCENARIO 3

Scenario (3) displays a spacecraft performing several fly-bys in a planetary

system, maneuvering impulsively. This mission profile is representative of

ESA mission JUICE [16], planning to perform a tour of the Jovian system.

The work presented in this Section was performed during a visiting period in

ESOC, Darmstadt, partially funded by the European program Erasmus+1. The

whole investigation has been conducted by using the Generic Orbit Determination

and Optimisation Tool (GODOT)2, a powerful and flexible software under devel-

opment by Mission Analysis and Flight Dynamics Sections at ESOC. GODOT is

planned to be used for mission analysis at ESA as well as for operations of space

probes throughout the solar system.

7.1 Introduction

The Jupiter Icy Moon Explorer (JUICE) is an interplanetary mission, developed

by ESA, having the aim to study three of the Galilean Jupiter moons, namely

Ganymede, Callisto and Europa. The spacecraft is planned to be launched in
1https://ec.europa.eu/programmes/erasmus-plus/ (Retrieved on December 18, 2020)
2https://orbit_software.io.esa.int/godot/ (Retrieved on January 30, 2021)
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2022 and it will reach Jupiter in 2029. A tour of the Jupiter moons is foreseen,

having the twofold aim to change the spacecraft trajectory by reducing its energy

and increasing the inclination by exploiting several lunar fly-bys, and to perform

scientific observation during the close approaches. The tour ends in 2032 when

the spacecraft is inserted on a elliptic orbit about Ganymede. After some months

the spacecraft enters a circular orbit in order to study the moon at higher details.

FIGURE 7.1. JUICE insignia.

The mission aims to perform a thorough in-

vestigation of the Jovian system, with a spe-

cial focus to Ganymede, in order to character-

ize the body and evaluate its potential to sup-

port life. Surveys on Europa and Callisto give

a complete picture of the Galilean moons, pro-

viding a comparison among them. Two main

objectives can be identified [18], each one can

be split into three sub-objectives:

1. Investigate Jupiter, its complex system and interactions between elements:

a) Characterize the Jovian atmosphere;

b) Characterize the Jovian magnetosphere;

c) Characterize the Jovian environment, its satellites and ring system.

2. Study the three Jupiter icy moons, Ganymede, Callisto and Europa, to

understand the habitability of icy worlds:

a) Examine in detail Ganymede to assess body properties and to probe

its capacity to support life;

b) Explore Europa and its geological active zones;

c) Perform sounding of Callisto as a remnant of the early Jovian system.

JUICE mission can be conveniently split into two phases:

1. Interplanetary Transfer Phase (ITP): in this phase, the spacecraft perform

a deep-space cruise from the Earth to Jupiter. A number of gravity assists

exploiting Earth, Venus and Mars, is exploited in order to increase the
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trajectory mechanical energy. A special case of Earth fly-by, tagged as

Lunar Earth Gravity Assist (LEGA), can be used to increase the launch

mass, having higher navigation risks. However, in the nominal trajectory,

this feature is not included. Several options for the ITP are possible to

accomplish JUICE mission and some of them are listed in [18]. In this work,

only the nominal transfer is considered. In this case, the launch date is set

to be June 1, 2022 with an arrival in the Jupiter system on October 07, 2029,

after an EVEME-GA sequence. A summary of the nominal interplanetary

phase can be found in Table 7.1 and is depicted in Figure 7.2.

2. Nominal Science Phase (NSP) starts when the spacecraft enters the Jovian

system. In order to be captured by the giant planet, a Jupiter orbit insertion

(JOI) is performed at the incoming hyperbola pericenter. A first gravity

assist on Ganymede (1G1) is foreseen before the JOI with the aim to reduce

its magnitude. At the first apojove a Pericenter Raising Maneuver (PRM)

is applied in order to target the arrival velocity at the second Ganymede

gravity assist and to stabilize the perijove and compensate for the Sun

perturbations. Then, the first sub-phase of the moon tour, used for energy

reduction, is started. In this subleg, four Ganymede flybys are used to reduce

the dimension of the Joviocentric orbit and to bring the spacecraft on the

equatorial plane. Then the Europa Science sub-phase begins. The aim is to

perform two fly-bys of Europa in order to accomplish scientific observations

of the surface features. Thus, specific latitudes are targeted during Europa

gravity assists. Then, the inclination is raised by exploiting a series of

Callisto fly-bys. This leg brings JUICE on a orbit having an inclination of

29 deg with respect to Jupiter equator, having the possibility to investigate

Jupiter magnetosphere. Then the spacecraft is led back to the equatorial

plane, when the transfer to Ganymede is started. By performing the so

called standard Callisto–Ganymede ladder and a low energy endgame,

the spacecraft changes its orbit parameter in order to reduce the needed

propellant to close the orbit about Ganymede. At the end of this phase,

JUICE is weakly captured by the moon and a Ganymede Orbit Insertion

(GOI) is performed and the spacecraft is placed on a 200×10000km elliptic
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orbit about Ganymede, followed by a 500 km circular orbit to perform global

mapping. The science phase ends on June 26, 2033, three years and a half

after entering the Jupiter system, exploiting 29 fly-bys and requiring a

∆v = 1606m/s. A detailed summary can be found in Table 7.2.

An Extended Science Phase (ESP) is foreseen after the NSP. Additional 100 days

about Ganymede are planned ending with an uncontrolled impact on its surface.

TABLE 7.1. Summary of the nominal Interplanetary Transfer Phase.

Event Epoch ∆v [m/s]

Launch 01 JUN 2022 (v∞ = 3.05km/s)
DSM1 09 SEP 2022 44.37
DSM2 04 MAR 2023 59.32
First Earth swing-by 31 MAY 2023 -
Venus swing-by 23 OCT 2023 -
Second Earth swing-by 02 SEP 2024 -
Mars swing-by 11 FEB 2025 -
Third Earth swing-by 26 NOV 2026 -
Arrival 07 OCT 2029 (v∞ = 5.49km/s)

Total 7.4 y 103.69

FIGURE 7.2. JUICE nominal interplanetary transfer phase (from [18]).
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7.1. INTRODUCTION

7.1.1 Europa Phase

In this work, the focus is placed on the Europa scientific phase (highlighted in

blue in Table 7.2), with the beginning placed two days before 5G5 and the end two

days after Callisto first fly-by. Between the first and the second Europa swing-by,

a maneuver, tagged as EU1, is performed in order to prepare the spacecraft for

the second Europa encounter. This leg is summarized in Table 7.3.

TABLE 7.3. Europa scientific phase summary. Only relevant quantities
for this work are reported.

Event Epoch ∆v [m/s] C/A altitude [km] C/A lat. [deg]

Start 01 SEP 2030 - - -
5G5 03 SEP 2030 - 1282 -
6E1 17 SEP 2030 - 403 -47
EU1 19 SEP 2030 19.452 - -
7E2 01 OCT 2030 - 403 -
8C1 13 OCT 2030 - 412 -
End 15 OCT 2030 - - -

Total 45 d 19.452

During the Europa Phase, three sub-phases repeating in loop can be identified,

similar to one in the other Scenarios:

1. OD phase, in which the spacecraft performs flight dynamics tasks in order

to determine its position and schedule the subsequent correction maneuver;

2. Cut-off phase, the target guidance is exploited to compute the TCM, which

is given at the end of the phase;

3. Ballistic phase, a simple uncontrolled flight is followed by the probe.

The orbit determination is performed following a weekly regular scheme. However,

in order to minimize the possible trajectory errors related to incorrect fly-bys,

an OD session is placed three days before each close approach, and another OD

session is scheduled to happen 5 days after each fly-bys in order to correct as

soon as possible the state deviations related to imprecise swing-bys. A cut-off
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time lasting 2 days is enforced between the OD and the subsequent TCM. All

these hypotheses are reported in Table 7.4. From these navigation assumptions,

a timeline can be inferred and it is reported in Figure 7.3.

TABLE 7.4. JUICE navigation assumptions during Europa phase.

Time before C/A Time after C/A Min. cut-off time Duty-cycle

3 days 5 days 2 days 7 days

FIGURE 7.3. JUICE Europa phase timeline in the non-optimized case,
when nominal navigation assumptions for the times are considered.
Dots indicate when a specific event is triggered. The final OD phase
is not considered in practice.

7.1.1.1 Dynamics

A high-fidelity model is needed to properly describe the motion of the spacecraft

orbiting Jupiter and performing several fly-bys about its moons. A widespread

model used to describe the dynamics of a probe executing a series of swing-bys is

the patched conics approach: the whole trajectory is cut in different legs, each one

subjected to the gravitational force of a single body, patched properly. Although
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this approach is simple to implement and gives fast results, since it has closed

solutions for each leg, trajectories generated by exploiting it are not accurate and

reliable for the application in this work. For this reason, a high-fidelity dynamical

model comprehensive of all the possible force sources, affecting significantly the

spacecraft motion, is used. In Table 7.5, parameters used to build the right-hand

side of the equation of motion are presented.

TABLE 7.5. Parameters of the dynamical model used in JUICE case.

Body Parameter Value

Jupiter µ 126686534.9218008 km3/s2

J2 0.014735
Europa µ 3202.738774922892 km3/s2

Ganymede µ 9887.834453334144 km3/s2

Callisto µ 7179.28936139727 km3/s2

Io µ 5959.916033410404 km3/s2

7.1.1.2 Uncertainty

In Scenario (3), some uncertainty related both to navigation and command errors

are considered.

Navigation errors are taken into account as state deviations at the end of the OD

phase and through an imperfect state knowledge at the initial time. The latter

leads the initial state to be modeled as a Gaussian random variable with mean as

the nominal initial state, i.e.

x(t0)∼N (x0,P0) (7.1)

where P0 is the 6-dimensional covariance matrix related to the initial time.

In this test case, orbit determination is not simulated by performing pseudo-

measurements and exploiting a navigation filter, but a simpler mechanism is

preferred, in order to reduce computational effort. For this reason, mechanization

error is employed as surrogate model for the OD algorithm. Since the spacecraft

state relative to the on-ground Earth facilities can be considered almost constant

during the short Europa phase time-span, the assumption of an OD error having
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a prescribed statistics can be considered valid. However, in order to increase the

accuracy of the model, a smaller error is considered in the radial direction from

the spacecraft to the Earth, while higher errors are considered in the track and

cross-track directions.

Uncertainty associated to deterministic maneuver is put also in the loop in order

to increase the model reliability. Mechanization error is taken into account both

for modulus and direction. Eq. (5.22) is used to transform the covariance matrix

from spherical to Cartesian coordinates.

In conclusion, 57 (i.e. 6 related to the initial state, 3 to EU1, and 48 (6×8) to

the OD) uncertainties affect Europa phase for JUICE. Table 7.6 contains all the

characteristics related to Scenario (3) uncertainties.

TABLE 7.6. Stochastic characteristics of JUICE uncertainty.

σr0 [km] σv0 [m/s] σ∆v [%] σδ [deg]

1 0.01 1 1

σr [m] σt,c [m] σvr [mm/s] σvt,c [mm/s]

6.108 66.1 0.121 0.606

7.2 Methodology

The basic blocks, needed to apply the revised approach to Scenario (3), are devised.

A great attention is posed on how to estimate the uncertainty propagation, and

how to compute the stochastic maneuvers and the final dispersion.

7.2.1 Uncertainty propagation

Following the trade-off performed in Section 3.2, in the Scenario (3), uncertainties

are propagated by exploiting Polynomial Chaos Expansion. However, two different

approaches are used following the presence or absence of OD errors. In the first

case, the number of uncertainties is limited to 9 and a quadrature on a sparse

grid is exploited; in the second case, least-square regression is implemented (Eq.

(3.31)) in order to mitigate the curse of dimensionality.
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If navigation is not considered in the loop, the technique labeled as PCE-CUT is

exploited, as per Section 5.2.1. However, the several gravity assists undergone

by JUICE are expected to heavily spread and twist the final state stochastic

distribution. For this reason, a higher-order accurate cubature method is selected.

Sixth-order conjugate unscented transformation (CUT6) is considered to have the

best balance between computational effort required and accuracy and it is able to

properly describe the stochastic state associated to Scenario (3). The even order

MCEs, up to the sixth-order, that should be satisfied are [5]

E
[
ξ2

i
]= 1, E

[
ξ4

i
]= 3, E

[
ξ2

i ξ
2
j

]
= 1,

E
[
ξ6

i
]= 15, E

[
ξ4

i ξ
2
j

]
= 3, E

[
ξ2

i ξ
2
jξ

2
k

]
= 1

(7.2)

The conjugated axes (Table 5.4) are chosen such that the number of points is

minimized and the quadrature weights are positive. Table 7.7 summarizes the

axes selection. Combining the axes definition with Eq. (7.2), the MCEs read [4]

2r2
1ω1 +2dr2

2ω2 +4(d−1)(d−2)r2
3ω3 = 1

2r4
1ω1 +2dr4

2ω2 +4(d−1)(d−2)r4
3ω3 = 3

2dr4
2ω2 +8(d−2)r4

3ω3 = 1

2r6
1ω1 +2dr6

2ω2 +4(d−1)(d−2)r6
3ω3 = 15

2dr6
2ω2 +8(d−2)r6

3ω3 = 3

2dr6
2ω2 +8r6

3ω3 = 1

1−2dω1 −2dω2 − 4d(d−1)(d−2)
3 ω3 =ω0

(7.3)

System in Eq. (7.3) can be numerically solved and, for a 9-dimensional scenario,

has the solutions listed in Table 7.8. Under these assumptions, PCE-CUT6 re-

quires the propagation of 1203 samples, while using the full grid tensor product

would require 262144 samples, while sparse quadrature on a Smolyak’s grid will

used 1177 points. Even if Smolyak’s method needs a slightly less initial points

to be propagated, the high number of negative weights adversely impacts the

numerical stability, giving less accurate results. Thus, a penalty of only 26 nodes

is considered to have a negligible effect on the computational times, but it helps

in preventing quadrature value to go berserk.
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TABLE 7.7. Quadrature points for CUT6.

Number of points Position Weights

1≤ i ≤ 2d ξi = r1σi ωi =ω1
1≤ i ≤ 2d ξi+2d = r2cl

i ωi+2d =ω2
1≤ i ≤ 4d(d−1)(d−2)/3 ξi+2d+2d = r3c3

i ωi+2d+2d =ω3
1 ξ0 = 0d ω0 =ω0

M = 2d+2d +4d(d−1)(d−2)+1

TABLE 7.8. CUT6 parameters solution for d = 9.

Parameter Value

r1 2.343907321979811
r2 1.023262223057007
r3 2.534286449570529
ω1 0.015076391080550
ω2 0.001134271796355
ω3 0.000157273136994
ω0 0.042190252761366

If the mechanization error affecting the estimated state at the OD times is consid-

ered, the number of uncertainties needs an amount of samples to be propagated

that is unbearable even for a modern powerful computer. For this reason, the

use of a least-squares approach to evaluate the PCE coefficients is preferred

(Eq. (3.31)). In order to reduce the computational effort to a manageable level,

Polynomial Chaos Expansion is limited to polynomial bases up to order 3 (i.e.

p = 3). Thus, the total number of coefficients (computed through Eq. (3.29)) is

L = 24804. As suggested by [46], a number of samples M = L is chosen.

7.2.2 Dispersion and navigation costs

The estimation for the stochastic ∆v is based on the target guidance. In fact,

in this scenario there is no interest in exactly following the nominal trajectory.

However, it is of paramount importance to precisely target the close approach

altitude in order to have the post-fly-by state as close as possible to the its
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nominal value. Moreover, some requirement on the close approach latitude should

be respect during the first Europa gravity assist. The scientific objective is to

observe in detail some surface features, namely the Thera Macula and the Thrace

Macula, to evaluate the presence of biosignatures. This objective can be achieved

only having the incoming hyperbola pericenter at a specific location with respect

to Europa soil. Additionally, the final state is considered as a target, in order to

avoid large deviations at the final time. However, this target can be removed if

the whole NSP is considered, instead of a partial leg.

Following these consideration, the target functions f and the target trigger

functions g can be stated as

5G5 C/A altitude:

 f (x (t5G5))= ‖r−rG‖ = 1282km

g (x (t5G5))= (r−rG) · (v−vG)= 0
(7.4)

6E1 C/A altitude:

 f (x (t6E1))= ‖r−rE‖ = 403km

g (x (t6E1))= (r−rE) · (v−vE)= 0
(7.5)

6E1 C/A latitude:

 f (x (t6E1))=L (r)=−47deg

g (x (t6E1))= (r−rE) · (v−vE)= 0
(7.6)

7E2 C/A altitude:

 f (x (t7E2))= ‖r−rE‖ = 403km

g (x (t7E2))= (r−rE) · (v−vE)= 0
(7.7)

8C1 C/A altitude:

 f (x (t8C1))= ‖r−rC‖ = 412km

g (x (t8C1))= (r−rC) · (v−vC)= 0
(7.8)

State at final time:

 f
(
x

(
t f

))= x= x f

g
(
x

(
t f

))= t = t f

(7.9)

where the subscripts G, E, and C refer to Ganymede, Europa, and Callisto,

respectively, while L is a map, embedded in GODOT, computing the projected

latitude on Europa given the position of the spacecraft.

Once the functions associated to the desired targets are built, TG matrices Â

and Â0 can be evaluated. The automatic differentiation routines presented in
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GODOT are exploited to compute them inexpensively. Using their definition, the

correction maneuver can be evaluated at each TCM time as

∆vs
k =−Â†

k Â0,kδ̃xk (7.10)

with the subscript k indicating the quantities computed with respect to the k-th

TCM time, while

δ̃xk =Φ
(
tOD
k , tk

)(
δxOD

k +N (0,Pk)
)

(7.11)

with δxOD
k being the state at the k-th OD time, and Pk the mechanization error

covariance matrix, constructed by following values in Table 7.6.

It is important to recall that only the first ∆vs
k computed in Eq. (7.10) is applied

in reality; thus, only the first impulse computed in the TG algorithm is saved to

be used for statistical analysis. Procedure described in Section 5.3 is exploited to

compute the stochastic costs through KQE. The quantile value is estimated as

Q
(
p,∆vs

k
)= n∑

q=1

1
nh

1p
2π

exp
[
−1

2

(
1
h

(
i
n
− p

))2]
∆̃vs,i

k (7.12)

where ∆̃vs,i
k are the sorted value of

∥∥∥∆vs,i
k

∥∥∥. A number of 100000 ∆vs,i
k samples

are obtained through an inexpensive Monte Carlo simulation associated to PCE.

Once the samples ∆vs,q
k for each TCM are obtained, the PCE coefficients can be

retrieved as

cα =
M∑

q=1
∆vs,q

j ψ
q
αωq (7.13)

in case of perfect knowledge or as

cα =
(
ΨTΨ

)−1
ΨT∆vs,q

k (7.14)

in case of OD-in-the-loop, and then used to obtain the samples

∆vk
s,i =

∑
α∈Λp,d

cαψi
α (7.15)

where ψi
α are the basis functions evaluated at a random picked value ξi.

On the other hand, the generalized Fourier coefficients related to the final state

can be retrieved in the same way and used to feed a KDE algorithm (Eq. (5.32))

in order to find final state statistics. Differently from Scenario (1), in this case,

bandwidth h is left free to vary.
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7.3 Statement of the problem

Once the basics are modeled, Problem 0 has to be adapted to cope with Scenario

(3) test case, represented by Europa scientific phase of the spacecraft JUICE.

The general optimal control problem is converted into a NLP. The optimization

problem for Scenario (3) under the revised approach can be stated as

Problem 3 (Scenario (3) Fuel-Optimal Problem). Find the eight TCM times,

tTCMk , the EU1 maneuver time tm, and its nominal impulse ∆vEU1, such that

J = ‖∆vEU1‖+
8∑

k=1
Q(.95,∆vs

k) (7.16)

with Q(0.95,∆vs
k) representing the 95-percentile of the stochastic cost computed

through Eq. (5.35), is minimized. The state is subjected to initial constraintsE [x∗(t0)]= x0

E
[
(x∗(t0)−x0) (x∗(t0)−x0)T

]
= P0

(7.17)

and a final constraint

c = F̂d(10km)> 0.99 (7.18)

In order to be compliant with on-ground operation requirements, some linear

constraints are added

tTCMk − tODk > 2d ∀k ∈ {1,8} (7.19)

The navigation costs are estimated through Eq. (7.15), while the OD is simulated

using mechanization error as per Table 7.6.

In summary, the decision vector is y= [
tTCMk , tm,∆vEU1

]
with k ∈ {1,8} are the

eight TCM times. Its bounds are listed in Table 7.9.

The process exploited to compute the cost function and constraints in Problem 3

is summarized in Algorithm 3.

143



CHAPTER 7. SCENARIO 3

TABLE 7.9. Decision vector bounds. Asterisk labels nominal values.

tTCMk tm ∆vEU1 [m/s]

Upper Bound tODk+1 −3d t∗m +3d 20
Lower Bound tODk +2d t∗m +3d 5

Algorithm 3: Integrated approach algorithm for Scenario (3)
Procedure INTEGRATED APPROACH

Define spacecraft;
Define uncertainty properties and navigation settings; .Table 7.6
Function INITIALIZATION

Evaluate the initial samples (CUT6 or MC);
Compute the random basis function for KDE-KQE;
Initialize the mechanization error;
Build the target guidance matrices;

Function NAVIGATION COSTS & DISPERSION

for i = 1 to nP .Loop through nP sub-phases
switch sub-phase

case OD phase
Propagate the samples up to the final OD time;
Draw the mechanization error;
Evaluate the estimated samples; .See Eq. (7.11)

case Cut-off phase
Propagate the samples up to the TCM time;
Estimate the correction maneuvers ∆vs

k ; .See Eq. (7.15)
Apply the maneuver to each sample;

otherwise
Propagate the samples up to the final sub-phase time;

end
end

Result: Navigation cost estimate; Target error; Final dispersion
Result: Cost function (Eq. (7.16)); Dispersion statistic (Eq. (7.18))

7.4 Results

Problem 3 is applied to Europa phase of the JUICE trajectory.

Optimization is performed using SNOPT [39], exploiting the Python interface

provided by Pygmo [14] to pass input and obtain outputs. The whole optimization

process takes up to 2 hours on a 20 cores workstation, due to the difficult dynamics

and the number of samples to be propagated. Moreover, the RAM required to
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handle it can easily reach 5 GB.

Results for Scenario (3) are provided in Table 7.10, while the new timeline is

depicted in Figure 7.4. The TCM time is increased up to 2.2 days. Furthermore,

if OD error is considered, the revised approach optimization allows to reduce

the needed ∆v of about a 5%. This result is mainly due to lower stochastic costs.

Navigation cost distribution is represented in Figure 7.5. In the optimized case, a

reduction of about the 50% is attained, allowing to save about 1 m/s.

The performances of the target guidance can be retrieved from Table 7.6. The

mean error of the first Europa gravity assist altitude is some tens of meters, while

on the final position the error is less than 4 km, proving the great precision of

the target guidance in this kind of problems. In order to make a comparison, the

stochastic costs CDF and 6E1 gravity assist altitude are presented in Figure 7.7.

TG performs better in both the cases, requiring 5 times less propellant and giving

4.5 times smaller errors in final position.

11200 11210 11220 11230 11240

Ganymede5 Europa1 Europa2 Callisto1

EU1
Fly-by
OD
TCM
Maneuver

FIGURE 7.4. JUICE Europa phase optimized timeline. The TCM times
are moved with respect to Figure 7.3.
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TABLE 7.10. Revised approach solution for JUICE case.

∆v (det.) [m/s] ∆v (stoc.) [m/s] ∆v (Total) [m/s]

First Guess 19.46 1.95 21.41
Optimized 19.46 0.90 20.36

(a)

1 0 1 2 3 4 5
V [m/s]

0

1000

2000

3000

4000

5000
( V)=0.81754
( V)=0.58033

N=100000
V distribution

Reconstructed
MonteCarlo

(b)

0 1 2 3 4 5

V [m/s]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

95-ile=1.95412 m/s

V CDF

(c)

0.0 0.5 1.0 1.5 2.0
V [m/s]

0

500

1000

1500

2000

2500

3000

3500

4000 ( V)=0.50836
( V)=0.20804

N=100000
V distribution

Reconstructed
MonteCarlo

(d)

0.0 0.5 1.0 1.5 2.0

V [m/s]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

95-ile=0.90313 m/s

V CDF

FIGURE 7.5. Navigation cost for the revised approach in the JUICE
Europa phase for (a) non-optimal and (b) optimal cases.
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FIGURE 7.6. Targets error in JUICE Europa phase for (a) the first fly-by
at Europa altitude and (b) final position.
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FIGURE 7.7. Differential Guidance performances in JUICE case: (a)
stochastic costs CDF and (b) first fly-by at Europa altitude error.
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8
CONCLUSIONS

In conclusion, a summary of the results attained in this work is presented.

Furthermore, possible future developments are addressed and suggestions

for the future work are given in the final section.

8.1 Summary of results

In this work, an integrated approach for preliminary mission analysis is devised

and its performances against a traditional sequential approach are discussed.

This technique has the aim to reduce the propellant mass needed to fly a trajectory

by embedding in the trajectory design and optimization the navigation assessment

and the associated stochastic costs.

Then, this method has been applied in three different scenarios, representing

trending topics in nowadays space exploration missions. Namely, they are

(1) A spacecraft flying in a strongly nonlinear environment, controlled by

impulsive maneuvers, represented by the CubeSat LUMIO (Chapter 5);

(2) A low-thrust satellite, following a spiral trajectory, as per the CubeSat

M-ARGO (Chapter 6);
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(3) A probe performing several fly-bys in a planetary system, similar to the

mission profile of ESA’s JUICE (Chapter 7).

For Scenario (1), a new technique, using conjugate unscented transformation to

compute the Polynomial Chaos Expansion coefficients, labeled polynomial chaos

expansion–conjugated unscented transformation, is devised and used to propa-

gate the uncertainties and estimate both the dispersion and the stochastic costs,

while the knowledge analysis is performed by a combination of this technique

with an ensemble square-root filter. This method is inserted in an optimization

scheme. Four trajectories, coming from a grid search algorithm, are used as edu-

cated initial guesses. After the optimization is found that the solution with the

best deterministic value is not the one with the minimum overall cost and the 8%

of the propellant mass is saved by the integrated approach optimal solution.

Scenario (2) employs a linearized approach and the navigation costs are evalu-

ated through a Monte Carlo simulation. The continuous thrust is injected as a

Gauss–Markov process. The M-ARGO baseline trajectory to asteroid 2000 SG344

is selected as test case and values coming from the Phase A high-fidelity opti-

mization are used as first guess. The optimization under the integrated approach

shows that a 3% of propellant mass can be saved.

In the Scenario (3), PCE is used for uncertainty quantification. A novel closed-

loop control algorithm, called target guidance, is implemented, having the aim

to target some engineering or scientific way-points along the trajectory while

minimizing the navigation costs. In this case, the revised approach allows to

reduce the total ∆v of about a 5%, and to halve the navigation cost.

The integrated approach, embedding stochastic features in the trajectory

optimization, is able to reduce the overall propellant mass in all the

mission scenarios proposed in this work, while satisfying the constraints.

This method will be fundamental in future space mission exploiting limited-

capability small spacecraft, where high navigation costs may jeopardize the

mission feasibility. Also large missions can benefit from this approach by reducing

propellant mass and by shortening the loop needed to design flyable trajectories.
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8.2 Future work

This thesis is just a starting point for the revised approach. However, more steps

can be performed in the future to improve some aspects with low fidelity in the

current work or that were only partially touched by this thesis. For example,

in Scenario (1), Gauss-Markov processes should be added to take into account

uncertainty continuous forces, due to Solar radiation pressure and residual non-

modeled accelerations. In Scenario (2), the whole porkchop can be obtained and

larger consideration should be done on the whole search space. Moreover, in the

JUICE case, representing Scenario (3), the orbit determination can be included

and the whole scientific phase can be considered to obtain a higher-fidelity result.

Finally, the revised approach can be applied in other mission scenarios and it

should be tested, in order to better assess its performances, when diverse test

cases are taken into account.
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NOTABLE DERIVATIVES

In this appendix, a proof for some important derivatives is given. Their

result is useful for the optimization problems found in this work. They are

presented here for the sake of clarity.

A.1 Cholesky decomposition derivative

Starting from the approach followed in [61], a proof for the derivative of the

Cholesky decomposition is sought.

Considering a symmetric positive-definite matrix A, the Cholesky decomposition

is a factorization such that

A = ST S (A.1)

Taking an infinitesimal perturbation to this expression, we got

dA = dST S+STdS (A.2)

Now, left-multiplying for S−T and right-multiplying for S−1, it is found that

S−TdAS−1 = S−TdST +dSS−1 (A.3)
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The right-hand side of this equation is made by two terms, one the transpose of

the other. Moreover, the first term is upper triangular, while the second one is

lower triangular and they share the same diagonal. For this reason, a function

T , appropriately defined, can be used to simplify the Eq. (A.3). Building T in

order to be a function that takes the triangular upper part of a matrix and halves

the diagonal, i.e.

Ti j(A)=


A i j j > i
1
2 A i j i = j

0 j < i

(A.4)

and applying to Eq. (A.3), we got

T
(
S−TdAS−1

)
= dSS−1 (A.5)

Finally, multiplying by S, the Cholesky decomposition derivative is found as

dS =T
(
S−TdAS−1

)
S (A.6)

A.2 Matrix square-root derivative

The aim of this section is to compute the derivative of the square root of a matrix,

defined as

A =
p

A
p

A (A.7)

By differentiating both the sides, it is possible to find that

dA = d
p

A
p

A +
p

A d
p

A (A.8)

Eq. (A.8) is a special case of the Sylvester equation. For the Sylvester equation in

the form

PX + XQ = R (A.9)

with P a n×n matrix and Q a m-dimensional square matrix, an analytic solution

exists and it can be written as function of the vectorization function vec and the
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A.2. MATRIX SQUARE-ROOT DERIVATIVE

Kronecker product ⊗ [11](
Im ⊗P +QT ⊗ In

)
vec X = vecR (A.10)

In Eq. (A.8), P =Q =p
A and C = dA, thus its solution is

vec
(
d
p

A
)
=

(p
A T ⊕

p
A

)−1
vec(dA) (A.11)

where the properties of the Kronecker sum ⊕ are exploited.
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