
Executive Summary of the Thesis

Latent Variable-based Reinforcement Learning for FX Trading

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Adriano Mundo

Advisor: Prof. Marcello Restelli

Co-advisor: Riccardo Poiani

Academic year: 2021-2022

1. Introduction
The Foreign Exchange, also known as Forex or FX,
dominates as the world’s largest financial market.
It is a decentralized global marketplace where cur-
rencies are bought and sold simultaneously 24 hours
daily from Sunday to Friday. According to the Tri-
ennial Central Bank Survey of Foreign Exchange by
the Bank of International Settlements (BIS), the FX
market has a volume of traded instruments up to
$7.5 trillion per day, surpassing the stock market
in size. The motivations behind why FX trading
is commonly pursued are the facilitation of inter-
national trade and commerce, hedging against risks
and speculation. The technology supporting FX has
completely evolved in the last two decades. The
advancement in computational power, coupled with
the availability of high-frequency data, has facili-
tated the development of new advanced strategies.
Indeed, classical algorithmic trading and, more re-
cently, Machine Learning (ML) techniques have been
extensively studied in financial markets with appli-
cation to FX, equities and commodities aiming to
construct systems able to generate profits by outper-
forming human traders. The trading problem, inde-
pendently from the asset class, can be framed math-
ematically as a Sequential Decision Problem (SDP)
where an agent must continuously decide what ac-
tion to perform to maximize returns. It is possible
to model such a problem in a discrete-time setting as
a Markov Decision Process (MDP), where the agent
collects information from the environment and se-
lects the position to hold at each time step. If the

underlying model is known, the MDP can be solved
through Dynamic Programming (DP), but since the
dynamics of the FX market are uncertain, Reinforce-
ment Learning (RL) must be used [12].
The scope of the thesis was to investigate the effec-
tiveness of RL techniques enhanced by latent vari-
able models in a non-stationary setting. The intu-
ition was that the latent models could extract rele-
vant information for learning from the latent vari-
ables. Those are not directly observable but are
inferred from other observable variables and used
to represent underlying factors that cannot be mea-
sured. Then, the model was applied to FX trading.
Therefore, the work sought to answer the two re-
search questions: what is the impact of incorporat-
ing latent variables on the performance of a batch-RL
algorithm in financial markets? Can an RL agent
be trained to learn trading strategies that outperform
human traders and algorithmic strategies?
The study experimented with two of the most liq-
uid currency pairs: EUR/USD and USD/JPY, to
trade small sizes intraday without any market im-
pact. The focus was on the application of a batch-
RL algorithm, Fitted-Q-Iteration (FQI) [5], which
is efficient in an offline setting with historical data,
and its extensions with action persistence (PFQI)
[8]. It is a model-free and off-policy algorithm that
learns the optimal policy without interacting with
the environment. Indeed, directly employing model-
based planning approaches can lead to significant
errors when the underlying model is imperfect. In
the thesis, FQI has been extended with latent vari-
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ables, namely Latent Variable (Persistent) Fitted-Q-
Iteration (LV-FQI, LV-PFQI), where the latent rep-
resentation was extracted through Variational Auto-
Encoders (VAE) models. VAE help obtains a set
of latent features representing the time series where
only the most influential and significant aspects are
kept. The resulting model demonstrates the abil-
ity to leverage the structure of future temporal se-
quences effectively. This implies the algorithm can
capture and utilise the inherent patterns and dynam-
ics of the non-stationary time series without relying
on explicit model-based assumptions.
The contribution of the study is two-fold and mainly
empirical. On one side, it provides a performance
comparison of LV-FQI, and its persistent version,
augmented with latent variables, in a realistic trad-
ing scenario based on FX historical data and transac-
tion fees, against existing RL algorithms and trading
baselines. On the other side, it presented a two-step
approach for combining the training of deep VAE for
learning compact feature spaces with state-of-the-
art batch-RL algorithms to learn trading strategies
(or policies) that can capture the structure of future
temporal sequences of exchange rates.

2. Background
This section provides the necessary theoretical back-
ground in order to understand the proposed ap-
proach.

2.1. Reinforcement Learning
Reinforcement Learning (RL) is one of the main
paradigms of ML alongside Supervised and Unsu-
pervised Learning. It focuses on developing artifi-
cial agents able to learn from sequential interaction
with the environment. A sequential decision-making
problem, if the state is completely observable and
Markovian, is often mathematically modelled as a
Markov Decision Process (MDP) [9]. A discrete-time
MDP is defined as a tuple M = ⟨S,A,P,R, γ, µ⟩
where S is a measurable state-space containing all
the states, A is a measurable action-space contain-
ing all the actions, P : S ×A → ∆(S) is the tran-
sition model, or kernel, that assigns to each state-
action pair (s, a) a probability measure P(·|s, a) of
the next state, R : S ×A → R is the reward func-
tion, which assigns to every (s, a) a probability mea-
sure R(·|s, a), γ ∈ [0, 1) is the discount factor to
weight future reward and µ : S → ∆(S) is the ini-
tial state distribution from which the starting state
is sampled. Here ∆(S) denotes the set of probability
measures over S.
To take actions, the agent follows a policy π that
associates to each state a probability over the ac-
tions; hence it is defined as π : S → π(·|s) ∈ P(A).
Instead, to evaluate the utility of a state is used
the state-value function of a given policy π, for-

mally defined as V π = E[
∑∞

t=0 γ
trt|s0 = s, π] where

rt is the immediate observed reward at time step
t. The expectation is over all the possible trajecto-
ries starting in state s and by following the policy
π. A more helpful quantity used in practice is the
action-value function, or Q−function, which allows
stating the first action explicitly, and it is defined as
Qπ = E[

∑∞
t=0 γ

trt|s0 = s, a0 = a, π].

2.2. Batch Reinforcement Learning
RL often requires having a simulator for the agent
to interact with. This is not always available be-
cause it is either nonexistent or hard to build due
to the complex unknown systems dynamics. Batch-
RL, also known as offline-RL, aims at filling this gap
by providing algorithms that can learn near-optimal
control policy from a fixed dataset without addi-
tional interaction with the environment [7]. There
exist two different settings in batch-RL: pure batch
where the agent learns a policy from the pre-collected
dataset without interacting with the environment
during training; growing batch where the agent can
occasionally interact with the environment with the
latest policy to build the batch incrementally.
This thesis focuses on the finite horizon or episodic
MDP, where the agent learns to optimize its be-
haviour within the context of each episode. They
can also be used in batch-RL, where a fixed dataset
of episodes is collected and used. Therefore, in prac-
tice, it is convenient to define a problem with a dis-
tinct beginning and end via episodic MDP, where the
agent interacts with the environment over a series of
discrete episodes, and each episode consists of a fi-
nite number of time steps, or horizon T . The goal is
to learn an optimal policy π∗ is the one that maxi-
mizes the expected sum of rewards over all possible
episodes:

π∗ = argmax
π

J(π) = argmax
π

E

[
T∑

t=1

rt | π

]
(1)

where J(π) is the sum of rewards from time step t
to the end of the episode.

2.3. Fitted Q-Iteration
Fitted-Q-Iteration (FQI) [5] is a model-free, off-
policy, and offline algorithm that learns an approxi-
mation of the optimal action-value function Q∗ start-
ing from a set of experience samples collected in the
dataset D =

{
(skt , a

k
t , s

k
t+1, r

k
t+1)|k = 1, 2, ..., |D|

}
where st+1 is the state that the agent reaches af-
ter applying action at in state st while collecting
reward rt+1 for this transition. At the N -th iter-
ation, given Q-function approximated at the previ-
ous iteration QN−1(s, a)∀(s, a), QN is trained on the
following training set:

TSFQI =
{
(ik, ok)|k = 1, 2, ..., |D|

}
(2)
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where the input is the state-action pair ik = (skt , a
k
t )

and the output is:

ok = rkt+1 + γmax
a∈A

QN−1(s
k
t+1, a) (3)

FQI can be understood intuitively as expanding the
optimization horizon at each iteration performing re-
gression. However, an increasing number of itera-
tions may lead to a larger planning horizon and prop-
agation of errors, so the Q-function may not converge
to Q∗. Persistent Fitted-Q-Iteration (PFQI) [8] ex-
tends the original algorithm taking into account the
possibility of persisting actions, which means repeat-
ing each action for a certain number of consecutive
steps. A higher persistence gives the agent more con-
trol but decreases the signal-to-noise ratio and neg-
atively impacts sample complexity. Lastly, it influ-
ences the optimization horizon since it requires fewer
iterations to reach the same horizon. Formally, per-
sistence can be seen as an environmental parameter
k that can be configured to generate a family of re-
lated decision processes Mk = ⟨S,A,Pk,Rk, γ

k, µ⟩
that whenever an action is issued, the resulting tran-
sition lasts for k steps, with all the one-step rewards
collected with discount in the new distribution Rk.

2.4. Variational Auto-encoders
Variational Auto-encoders (VAE) [6] are latent vari-
able models trained to ensure that their latent space
has general properties to generate new data. VAE
combines elements from different research areas. The
term variational stems from the relationship between
the regularization and the variational inference in
statistics, while auto-encoders from the encoder-
decoder architecture used to produce new features
in a low-dimensional space, also called latent space,
and the reverse process of decompressing the space
into the original input while retaining as much infor-
mation as possible, as described in Fig. 1.
In a formal setting, we have a dataset X and a vec-
tor of latent variables z in a high-dimensional space
Z that we can sample according to some probability
density function P(z) over Z. The wish is to opti-
mize θ such that we can sample z from P(z) and,
with high probability P(X|z; θ) will be as close as
possible to X.

P(X) =

∫
P(X|z; θ)P(z)dz (4)

Theoretically, by sampling a large number of z val-
ues {z1, z2, . . . , zn}, it is possible to approximately
compute the probability P(X) ≈ 1

n

∑n
i=1 P(X|zi).

Instead, in practice, for most z, the value of P(X|z)
will be nearly zero, hence contributing almost noth-
ing to the estimate of P(X). The key idea behind
the VAE is to attempt sampling values of z that are
likely to have produced X and compute P(X) from
those.

Figure 1: Architecture of a VAE, where X and X’ represents
respectively the input and the reconstructed input; qϕ and pϕ
the encoder, decoder probabilities, z the reparameterization
trick and ϵ the Gaussian noise.

Thus, it is needed to define a new function Q(z|X)
which can take a value of X and give us a dis-
tribution over z values that are likely to produce
X, the latent distribution. In this way, Q is “en-
coding” X into z, and P is “decoding” z to recon-
struct X. Therefore, the objective is two-fold: max-
imizing logP(X) while simultaneously minimizing
KL[Q(z|X)∥P(z|X)], the KL−divergence.
To compute the optimization can be sampled a sin-
gle value of X and a single value of z from the dis-
tribution Q(z|X), and consequently computed the
gradient of:

logP(X|z)−KL[Q(z|X)∥P(z)] (5)

Then, the result will converge by averaging the gra-
dient of the function over arbitrarily many samples
of X and z.

3. Related Works
This section briefly overviews RL techniques applied
to FX trading, focusing on those relevant to our
work. The core idea behind Evolutionary RL (ERL)
is that genetic algorithms (GA) can improve the per-
formance of RL trading systems by finding a suitable
state representation; hence these works try to com-
bine value-based methods with such algorithms. The
Recurrent RL (RRL) approach represents the first
attempt to overcome the limitation of supervised
learning methods by creating a system that combines
recurrent neural networks and policy-based mecha-
nisms to outperform value-based methods and max-
imize profit. Instead, with the availability of com-
putational power, there has been the emergence of
Deep Reinforcement Learning (DRL), which extends
the RRL approach by using deep neural networks to
handle the diversity of market dynamics and directly
optimizing trading strategies.
Studies that share more similarities with our work
fall into the category of the Batch-RL (BRL). The
first attempt at using FQI for finding a trading strat-
egy has been proposed by framing the problem to
include risk aversion as a multi-objective MDP [1].
To build the Pareto frontier of different financial ob-
jectives, they implemented Multi-Objective FQI con-
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sidering as risk measure the reward volatility, which
evaluates the uncertainty about the step-by-step re-
wards obtained from the environment. Thus, profit
maximization alongside risk minimization creates a
multi-objective optimization problem. Experimen-
tal results demonstrated that the agent can identify
profitable temporal patterns exploited to maximize
returns. An extension of the previous work intro-
duced a simultaneous multi-currency trading frame-
work via FQI with extra trees, focusing on the two-
currencies and three-currencies models [10]. Their
contribution is two-fold. On the one hand, they an-
alyzed the performance on a multi-asset scenario; on
the other hand, they evaluated performance with dif-
ferent trading frequencies. They studied the impor-
tance of tuning the control frequency by proposing
the idea of action persistence, which is crucial to
obtain effective policies and exploiting the best op-
portunities. The most recent approach tried to over-
come the financial market regime switches issue by
modelling the trading task as a non-stationary RL
problem [11]. Their two-layer approach allows choos-
ing algorithmically the best strategy among a set of
RL models with an online-learning method. They
employed FQI with XGBoost as a regressor for the
RL layer and Optimistic Adapt ML-Prod for online
learning. Hence, the model selection procedure be-
comes dynamic and choosing a strategy based on its
performance in past regimes is unnecessary.

4. Research Methods
In this thesis, we approach the FX trading prob-
lem from a machine learning perspective, using RL
value-based techniques and following the pipeline in
Fig 2. It consists of five steps that must be followed
to ensure proper execution and accurate performance
assessment.

Figure 2: RL pipeline workflow for single asset trading prob-
lem.

4.1. Problem Formulation
This section aims to define the trading task for a
single FX currency pair and explain how it can be
mapped into a mathematical framework.
Definition 4.1. (Trading). Given an asset to trade,
trading can be defined as a sequential decision process
in which at each (discrete) round t ∈ {1, . . . , T} over
a trading horizon T ∈ N, a trader decides whether to
go long, short or stay flat with respect to the asset to
maximize his wealth. The trader’s position is repre-
sented by the action at ∈ {−1, 0, 1}.

The asset is a currency pair in our problem. It refers
to the exchange rate between two currencies. For ex-
ample, the EUR/USD currency pair represents the
exchange rate between the Euro and the US Dollar.
In this case, the EUR is the domestic, or base cur-
rency, and the USD is the quote, or foreign currency.
An exchange rate indicates how much foreign cur-
rency is needed to buy one unit of the base currency.
Our problem formulation aims to maximize the prof-
its obtained in the domestic currency. Therefore,
we trade a variable amount of foreign currency for
some fixed amount of the base one, assuming USD
as the base currency. Returns must be expressed
in the same currency to evaluate performance ade-
quately; hence the collected rewards are converted
into the base currency at the end of a trading day.
To make a realistic assumption, we are considering
transaction costs but no market impact or slippage;
we operate on highly liquid instruments of small size;
therefore, no decision around the allocation size has
to be made.

4.2. Data Preparation
4.2.1 Data Collection

This work experiments on one-minute bar FX data of
EUR/USD and USD/JPY currency pairs from 2019
to 2022. The dataset covers the period from Mon-
day to Friday since the markets are closed on Satur-
day and Sunday. It includes date and time informa-
tion that allows for temporal analysis. At the same
time, the minute bars provide price information on
the opening, closing, highest, and lowest quotes for
each minute (OHLC), which is crucial for developing
and testing trading strategies.

4.2.2 Data Augmentation with Latent Vari-
ables

The proposed framework involves evaluating VAE
[6] architectures, namely TimeVAE [4] and LSTM-
VAE [3], to extract the latent representation from
the encoder output. The latent variables are
used as features for FQI to improve the learning
of trading strategies in a non-stationary setting
and demonstrate they can capture the underlying
patterns to better exploit the temporal structure
during regression. VAEs are trained using a specific
loss function that consists of two parts: the recon-
struction loss and the KL-divergence loss, formally
Ltotal = Lrecon + LKL. The reconstruction loss
measures how well it can reconstruct the input data
from the variables generated by the encoder as mean
squared error, while the KL-divergence loss mea-
sures the difference between the distribution of the
latent variables and a predefined prior distribution.

TimeVAE. It is a model for multivariate time series
generation with several properties: interpretability,
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ability to encode domain knowledge, and reduced
training times. The architecture uses a combination
of traditional deep learning layers and custom
layers to model time-series specific components such
as multi-polynomial trends and seasonal patterns [4].

LSTM-VAE. It is a deep learning model that
extracts features from time series data by combining
tLSTM and VAE [3]. In this architecture, LSTM is
a type of recurrent neural network responsible for
learning and representing long-term dependencies
in sequential data, while VAE learns a compressed
representation of the data.

4.3. Agent Design
In this section on agent design, we focus on the pro-
cess of designing an RL agent as an episodic (MDP).
To do that, we must consider how the environment
is described as an MDP and the actions, states, and
rewards.

4.3.1 Environment

The single currency pair trading problem can be
modelled as an episodic MDP, where each episode
corresponds to a trading day composed of 1230 time
steps. There are two reasons for the choice of the
fixed-length episode: it allows for the undiscounted
setting (γ = 1); closing all positions before the end of
the day is more practical from a financial standpoint.

4.3.2 State

The agent state design depends on the specific prob-
lem. A critical aspect is the Markov property, so
the state should contain all relevant information re-
lated to past market observations that may affect
the transition to the next state. Therefore, we in-
cluded: the last 60 exchange rate variations between
consecutive minutes computed as the differences be-
tween the price at a certain time-step and the previ-
ous one, normalized by the value of the former one:
dk,t = pt−k+1−pt−k

pt−k
where t is the time, p the refer-

ence price and {k = 1, 2, . . . , 60}; the portfolio posi-
tion xt of the previous time-step; the current time
until the end of the trading day; the day of the week
as a number between 1 (Monday) and 5 (Friday); the
vector λz = {λ1, λ2, . . . , λn} containing n estimated
latent variables from the underlying process.

4.3.3 Action

The action is the allocation the agent wants to keep
for the next minute or the next ρ minutes if action
persistence ρ > 1. The action space is discrete, and
at time t, at is the portfolio position. Thus, the set
of available actions can be defined as {-1, 0, 1} whose
elements correspond to buy, sell, and hold.

4.3.4 Transition Probability

The transition probability refers to the probability
P(s′|s, a). In our case, the action affects only the
portfolio feature, so we have a deterministic transi-
tion xt+1 = at. In contrast, all the other features
are exogenous, and the action does not affect their
value.

4.3.5 Reward

Given the current portfolio allocation xt, the cur-
rent exchange rate pt, the action taken at, the next
exchange rate pt+1, and the fee rate ϕ, the reward
received by the agent at persistence ρ is defined as:
rt+1 = t(pt+ρ−pt)−ϕ|at−xt|. The first term consists
of the gain (or loss) associated with the exchange
rate variation, whereas the second corresponds to the
transaction costs that must be paid (ϕ = 2 · 10−5).

4.3.6 Latent Variable FQI

FQI is a model-free, off-policy, and offline algorithm
that allows an RL agent to learn the optimal pol-
icy without interacting with the environment but
by regression starting from the training set D, re-
fer to Sec. 2.3. Therefore, a novelty of this work
was to include latent variables extracted via VAE
into the FQI features and consequently as part of
the agent state. Hence, it is needed to enlarge the
set D to include a vector λz and define Dλ as:
Dλ =

{
(skt , a

k
t , λ

k
z,t, s

k
t+1, r

k
t+1) | k = 1, 2, ..., |Dλ|

}
where λz,t correspond to a latent features vector
λz,t = {λ1, λ2, . . . , λn} at time t with n number of
extracted features.

4.4. Evaluation
The evaluation process of RL algorithms is critical
to validate their effectiveness and robustness. It con-
sisted of two parts: an idea validation phase with
synthetic data generated and a following experimen-
tal phase with FX data.

4.4.1 Stochastic Models

The financial models used are respectively the Va-
sicek and the Geometric Brownian Motion (GBM).
The Vasicek model is a stochastic process used in
finance to model the evolution of interest rates over
time that assumes the short-term interest rate fol-
lows a mean-reverting process given by the following
equation: dSt = a(µ−St)dt+σdWt, where St is the
price of the underlying asset at time t, a the speed
of mean reversion, µ the long term mean level, σ the
volatility and Wt is the Wiener process.
The GBM is a stochastic process used to model
the dynamics of stock price following a Brownian
motion process with a drift, given by the equation
dSt = µStdt + σStdWt, where St is the price of the
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underlying asset at time t, Wt is Brownian motion,
µ the drift and σ the volatility.

4.4.2 Metrics

This section presents the evaluation metrics used
to assess the performance of the RL algorithm in
both synthetic and FX scenarios. The most im-
portant is the cumulative P&L that when consid-
ering a fixed action size and without reinvesting
gains/losses, the cumulative P&L becomes a sum
WT =

∑T
t=1 rt, where rt is the reward. Other im-

portant financial metrics are: the Sharpe Ratio (SR)
calculated as SR =

WA−rf
volA

where WA is the annu-
alized cumulative return and rf is the risk-free rate;
and the Maximum Drawdown (MDD) which is the
maximum observed loss from peak performance to
the trough before a new peak is attained, formally
MDD = TroughV alue−PeakV alue

PeakV alue .

5. Experimental Results
This chapter presents the empirical results obtained
from our Latent-Variable extension of FQI, trained
on synthetic and FX market data. It discusses the
findings that emerged from our experiments.

5.1. Synthetic Data
The synthetic experiments generated data from pre-
defined values where we hard-coded the latent vari-
ables, allowing us to evaluate the impact of using
latent variables on the performance in a controlled
setting. We assumed a prices environment where the
agents have access to the lagged shift price rate vari-
ations normalized at the first price of the day. Figure
3 shows the outperforming performance of LV-PFQI
with persistence ten and LV-FQI compared to the
best model without the latent variables. Further-
more, even the worst model with latent variables is
way above the best without.
The results confirmed our assumption that using la-
tent variables effectively enhances the model per-
formance providing a solid foundation for the sub-
sequent estimation of latent variables from the FX
data.

(a) Vasicek model. (b) GBM model.

Figure 3: Performance comparison of cumulative P&L for
Latent Variable models against standard FQI with synthetic
data.

Currency Pair Model Total Loss Total Loss (Testing)
EUR/USD TimeVAE 0.008 0.024

LSTM-VAE 0.093 0.104
stacked-LSTM-VAE 0.256 0.555

attention-LSTM-VAE 0.354 0.653
USD/JPY TimeVAE 0.015 0.033

LSTM-VAE 0.101 0.147
stacked-LSTM-VAE 0.351 0.550

attention-LSTM-VAE 0.649 0.948

Table 1: Performance of VAE models for EUR/USD and US-
D/JPY on train and testing data. TimeVAE has the lowest to-
tal loss, while stacked-LSTM-VAE and attention-LSTM-VAE
have higher total losses compared to TimeVAE and LSTM-
VAE.

5.2. VAE & Latent Variables
Existing methods fail to account for non-stationary
environments where time series are time-varying.
Therefore, we experimented with VAE [6] to derive
a compressed time-series representation that con-
tained the essential information for the modelling
phase. The objective was to evaluate the perfor-
mance in capturing the underlying time-series struc-
ture with an informative latent representation. We
selected the best-performing as the oracle model for
extracting latent variables from the encoder out-
put provided, denoted as z. Specifically, we tested
TimeVAE [4] and LSTM-VAE [3].
We performed extensive hyperparameter tuning for
all architectures, but the dimensionality of the latent
features was the most critical to tune. We found that
a dimension of 4 was the most effective. Thus, the
latent representation generated by the encoder had
four dimensions, providing a good representation re-
taining the essential features required for offline RL.
TimeVAE was the most performing model for both
currency pairs, as shown in Table 1. For EUR/USD,
the best model had a batch size of 32 and a latent
space dimension of 4. The model was trained for
30 epochs using an Adam optimizer with a learning
rate of 0.001, and early stopping was used to prevent
overfitting. For USD/JPY, the best model had the
same characteristics but a batch size of 64.

(a) EUR/USD Training. (b) EUR/USD Testing.

(c) USD/JPY Training. (d) USD/JPY Testing.

Figure 4: Best TimeVAE for EUR/USD and USD/JPY time-
series reconstruction in train: 2020-21 and testing: 2022.

5.3. FX Data
After outlining the synthetic experiments and latent
variable estimation, this section will go into FX.
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Hyperparameters Performance
Algorithm Persistence MinChildWeight Iterations P&L SR MDD

40.000 5 6.5± 2.26 1.75 4.23
FQI 1 60.000 3 7.9 ± 2.5 1.8 5.19

80.000 4 0.9 ± 3.28 0.22 2.0
10.000 2 11.8 ± 0.6 2.88 0.6

PFQI 5 20.000 3 6.6± 1.26 1.75 4.2
40.000 2 8.5 ± 2.21 2.7 1.22
500 1 2.2 ± 2.3 0.35 1.25

PFQI 10 5000 2 15.4 ± 1.8 4.05 1.26
60.000 2 3.3 ± 2.4 0.65 2.8
10.000 2 8.9± 2.43 1.42 0.95

LV-FQI 1 40.000 5 11.1± 1.3 2.5 44.9
80.000 2 26.8 ± 3.4 2.35 0.95
10.000 3 16.6± 1.36 3.17 0.47

LV-PFQI 5 20.000 3 14.1± 1.46 2.12 2.5
40.000 3 31.8 ± 2.2 3.0 1.08

500 2 15.4± 3.25 4.1 30.6
LV-PFQI 10 20.000 2 8.6± 2.24 2.49 3.28

40.000 2 15.8 ± 2.6 1.38 1.2

Table 2: Performance for EUR/USD on validation year: 2019
of FQI variations. SR stands for Sharpe Ratio, MDD for
Maximum Drawdown, P&L as mean ± standard deviation.
The table shows the best three runs after the tuning phase.

5.3.1 Model Selection

We trained our models in different conditions to com-
prehensively evaluate the LV-FQI algorithm. The
experiments were conducted on data from 2019 to
2022. To increase robustness, we used a training set
of two consecutive years, 2020 and 2021, to let the
agents experience enough market conditions. Then,
to select the models that better generalize, we con-
sidered the years before and after the training set:
the policies were validated in the former, 2019, and
tested in the latter, 2022. We trained different FQI
models to select the best trading agents, each char-
acterized by an action persistence (1, 5 and 10) and
a set of hyperparameters with a 1-minute sampling
frequency. Due to its outstanding performances in
terms of accuracy and high scalability, we chose XG-
Boost [2] as the regression mechanism for the Q-
function. It is sufficient to tune the min child weight
to regulate the model complexity. Generally, the
higher the threshold is, the simpler the trained model
becomes. Also, it is necessary to tune the number of
FQI iterations. As it grows, the optimized horizon
increases, allowing the model to learn longer-term
patterns. As mentioned previously, with LV-FQI, we
introduced an efficient method for integrating the la-
tent space representation of VAE into the batch algo-
rithm. Therefore, we extracted the latent variables
from the two years of training and included them as
features set for the regressor to improve the learning
of the optimal policy. To summarize, after extracting
the latent variables, we tuned the XGBoost complex-
ity and FQI iterations for each value of persistence
and performed three different runs. The best trading
agents were selected on the validation set.

5.3.2 Algorithm Performance

This section focuses on the performance compari-
son between the Latent-Variable FQI and standard
FQI. All the experiments consider a fixed $100K al-
location and transaction cost of ϕ = 2 · 10−5. The
results are reported in Table 2 for EUR/USD and

Table 3 for USD/JPY. They show the performance
in the validation year (2019) for the best three mod-
els after the selection phase. Examining the perfor-
mance metrics, it becomes clear that the latent vari-
able variation of FQI is the top performer not only
in terms of P&L but also in terms of SR and MDD.
Indeed, the proposed method shows, on average, a
higher SR than the other algorithms, indicating that
it can generate higher returns with lower risk and a
lower MDD; hence it can mitigate losses during mar-
ket downturns. Furthermore, in Fig. 5, the charts
show a comparative performance of the best vali-
dation run for all the FQI variations and manifest
that our proposed approach nearly doubles the P&L
so generating high profits. Another insight is that
those with persistence equal to 5 and 10 outperform
the ones trained with persistence equal to 1. The
worse signal-to-noise ratio can explain the poor per-
formances, which affects learning using high frequen-
cies. The significant impact of the latent variables
latent variable can be noticed in prediction by ana-
lyzing the feature importance. They allow to capture
hidden patterns and trends that may not be observ-
able through other means. Overall, using latent vari-
ables in the LV-FQI algorithm is essential because it
enables the algorithm to capture more complex rela-
tionships between the input features and the output
variable, leading to more performant trading strate-
gies. For example, in financial markets, aspects such
as market sentiment or the influence of large institu-
tional investors may not be directly observable but
can significantly impact market trends.

(a) EUR/USD. (b) USD/JPY.

Figure 5: Comparison performance of cumulative P&L for
FQI variations in Validation Year: 2019.

(a) LV-FQI. (b) LV-PFQI-10. (c) LV-PFQI-10.

(d) LV-FQI. (e) LV-PFQI-10. (f) LV-PFQI-10.

Figure 6: Feature importance EUR/USD (a,b,c) and US-
D/JPY (d,e,f) in Validation: 2019
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Hyperparameters Performance
Algorithm Persistence MinChildWeight Iterations P&L SR MDD

20.000 3 -5.0 ± 2.4 -1.74 15.5
FQI 1 60.000 4 4.9 ± 3.0 0.3 6.1

80.000 1 3.65 ± 2.35 4.6 4.2
5000 3 8.6 ± 1.2 0.41 10.2

PFQI 5 20.000 4 7.9 ± 1.2 1.1 2.4
40.000 2 6.85 ± 3.6 0.60 8.52
20.000 2 17.5 ± 2.1 1.8 1.4

PFQI 10 40.000 1 21.2 ± 3.5 1.17 0.76
80.000 1 9.4 ± 3.2 0.7 6.2
40.000 3 12.09 ± 2.74 1.15 7.90

LV-FQI 1 60.000 2 13.5 ± 1.8 1.91 3.1
80.000 3 18.6 ± 2.4 1.14 4.7
20.000 2 29.49 ± 1.8 1.62 1.67

LV-PFQI 5 40.000 1 22.2 ± 3.2 2.4 9.2
80.000 2 20.1 ± 2.9 2.02 3.96
5000 4 19.95 ± 2.05 1.93 2.66

LV-PFQI 10 40.000 3 23.88 ± 3.1 1.014 1.27
80.000 1 8.2 ± 0.9 0.84 5.2

Table 3: Performance for USD/JPY on validation year: 2019
of FQI variations. SR stands for Sharpe Ratio, MDD for
Maximum Drawdown, P&L as mean ± standard deviation.
The table shows the best three runs after the tuning phase.

5.3.3 Trading Strategies

This section presents the performance of our Latent-
Variable FQI on EUR/USD and USD/JPY against
the best standard FQI and different active and pas-
sive trading benchmarks in the test year (2022) to as-
sess the effectiveness of our proposed approach. The
passive strategy is called Buy & Hold. It consists in
keeping a constant long portfolio position, instead
active strategies based on technical indicators. They
comprise: Momentum: it involves buying securities
already showing an upward price trend and selling
securities in a downward trend. The idea is to fol-
low the market’s momentum and take advantage of
the trend; MACD is a popular momentum indicator
used to identify potential trend reversals. This strat-
egy involves buying when the MACD line crosses
above the signal line and selling when it crosses be-
low the signal line, calculated by subtracting the 26-
period exponential moving average (EMA) from the
12-period EMA; Mean-Reverting: it involves buying
securities trading below their historical average price
and selling securities trading above their historical
average price. The idea is that prices will eventually
revert to their mean.

(a) Trading EUR/USD. (b) Best FQI EUR/USD.

(c) Trading USD/JPY. (d) Best FQI USD/JPY.

Figure 7: Comparison performance of cumulative P&L for
FQI variations against trading strategies in Test Year: 2022.

The results obtained in this study indicate that the
proposed algorithm, which utilizes latent variables
with offline RL, is a promising approach for algo-
rithmic trading in the FX market. Specifically, the
LV-PFQI model with the persistence of 5 and the
LV-FQI model outperformed existing trading strate-
gies, as demonstrated by the significantly higher cu-
mulative P&L achieved in both trading scenarios, as
shown in Fig. 7. Moreover, these models consistently
performed in the test year, indicating they can gen-
eralize well by beating the best PFQI model. These
findings suggest that utilizing latent variables can
enhance the performance of offline RL algorithms in
algorithmic trading, highlighting the potential of this
approach for practical applications.

6. Conclusions
The research of effective medium and high-frequency
trading strategies is a significant challenge for AI in
the FX market, as exchange rates are a prime exam-
ple of non-stationary and noisy time-series data. It
is challenging to learn from them due to their un-
predictability, and any attempt to extract patterns
using models designed for stationary time series is
susceptible to errors. To address this issue, we pro-
posed a novel two-stage RL framework to separate
representation learning and task learning by relying
on VAE to acquire a latent representation. Then, we
train the RL agent by leveraging the features from
the latent space with a model-free and offline algo-
rithm, FQI. It is a batch algorithm where the agent
can evaluate the effects of its possible portfolio al-
locations on a historical dataset while observing the
rates of the last hour. This raised interesting exper-
imentation around the optimal trading frequency to
find trading opportunities by trying different action
persistence values. Furthermore, by utilizing latent
variables for the underlying structure of the input
data, we could improve the trading policy learned
in the RL phase. Our proposed algorithm, Latent
Variable (Persistent) FQI, obtained robust results
on synthetic data generated from classical financial
models, where we validated the direct impact of the
latent features on the performance. In addition, it
obtained consistent results with an attractive per-
formance profile compared to existing baseline RL
agents and active and passive trading benchmark
strategies in terms of various metrics such as profit
and loss, Sharpe ratio, and maximum drawdown for
the EUR/USD and USD/JPY currency pairs, among
the most liquid ones. This empirically proves two key
points: firstly, the advantage of using latent variables
in a batch-RL algorithm to have a compact represen-
tation of the market non-linearity, hence improving
the results of previous work and overcoming the lim-
itations of model-based approaches; secondly, that
RL agents can outperform human and algorithmic
tradings strategies. To our knowledge, this is the
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first attempt to investigate the framework’s effec-
tiveness in the FX trading domain. Although the re-
search objectives have been achieved, improvements
can still be made to our approach from both prac-
tical and theoretical perspectives. Future studies
could develop a theoretical framework around the
latent approach in RL and test the generality of the
two-step method in other domains with high non-
stationarity, including mechanisms that can detect
regime shifts or handle price forecasting with non-
stationary time series. Instead, from an application
perspective, the system can be made more realistic
by incorporating the bid-ask spread and the order
book dynamics to create more complex strategies,
including limit and stop-loss orders and partial al-
location of the portfolio amount. Additionally, the
method can be applied to other asset classes, such
as equities and commodities. Finally, other promis-
ing approaches in asset trading include hierarchical,
multi-objective and robust RL.
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