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1. Introduction
Every day billions of people use internet to
search for information. Google Chrome is the
most popular and used browser in the world and
the reason why the Google product became so
popular and used at the beginning of the 20th

century is PageRank; this algorithm successfully
ranks the importance of the webpages to allow
users to find proper information in the fastest
way possible.
In order to rank the webpages available online
PageRank computes a score for each webpage
j ∈ {1, ..., |V |} where |V | is the cardinality of
the set containing all the webpages available in
internet; The score xj ≥ 0 of the j-th page Pj

must meet two requirements:
• it must be high if it refers to a page cited

by many other pages.
• it must be high when referring to a page

cited by very significant pages.
The simple counting of links pointing to a page
is not enough to represent the score since it does
not require the second condition.

2. Objective
This work applies the PageRank algorithm in
different contexts and explains diverse methods
to enrich the available tools that can be used to
rank a list of objects.

The algorithms can be applied whenever the ob-
jects analyzed are represented in a network. One
of the initial complexities is how to define the
edges of the graph; this is why PageRank can-
not be developed in all the problems. This work
also explains how to integrate the final rank us-
ing other information of the nodes in the graph:
this is presented in the so-called PageRank with
personalization.
In the end the described methods are powerful
tools as they allow to get a final rank of the ob-
jects analyzed by combining different algorithms
to create one output; this allows the system to
use multiple types of knowledge to generate a
unique result.

3. Algorithm and Development
A set of web pages P1, . . . , Pn can be rep-
resented as a directed graph G = (V,L) where
V represents the vertices and coincides with all
the pages Pi available online and (Pi,Pj) ∈ L if
and only if there exists a link from page Pi to
page Pj .
We denote by A = [aij ] the adjacency matrix of
G = (V,L) such that:{

aij = 1 if ∃ link from Pj to Pi

aij = 0 else

From the two conditions imposed to the score
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it is more appropriate to define it such that the
score xi of page Pi is proportional, with c con-
stant of proportionality equal for all pages, to
the sum of the scores of the pages which refer to
Pi:

x = cAx ⇒ Ax = λx (1)

If the solution exists then the problem reduces
to the computation of an eigenvector associated
to the eigenvalue λ = 1/c.
Let’s now normalize A to M = [mij ]:{

mij =
1
Nj

if ∃ link from Pj to Pi

mij = 0 else
(2)

where Nj is the number of pages which can be
directly reached from page Pj .
Pages with no forward links are called dangling
pages. There are different ways to treat the dan-
gling pages; the easiest way is to let all the dan-
gling pages to point to each page of the web such
that:

M̃ = M +
1

n
1nB

T (3)

where 1n = [1, ..., 1]′ and B is a vector such that
Bi = 1 if Pi is a dangling page and Bi = 0
otherwise.
M̃ is a left stochastic matrix and it represents
the transition matrix of a Markov chain describ-
ing a random walk of a "random surfer" between
web pages assuming that surfing the web occurs
according to the forward links of the last page
visited; i.e. the "random surfer" is crawling the
web by randoming clicking on successive links in
the pages. If the "random surfer" is in a dan-
gling page the probability transition is a uniform
distribution of all the pages. However we will
show how different ways to treat dangling pages
will generate personalized ranks.
Even if M̃ is a left stochastic matrix there is still
one last issue: even if from one page of M̃ it is
possible to move at least to another page, not
necessarily it is possible to go from any page to
any other page i.e. the matrix M̃ is not irre-
ducible.
To face this issue it’s sufficient to perturb M
with the usage of a positive matrix E >> 0 to
build the Google matrix:

G = (1− α)M̃ + αE (4)

where α ∈ (0, 1) is the perturbation factor.

To give a logical interpretation of the final
Google matrix G we go back to the "random
surfer" model: by adding the perturbation we
consider that the surfer can move to other pages
by directly entering the URL in the address bar.
This is called teleportation and it allows to give
a more sensible and realistic model to the "ran-
dom surfer". E is the matrix distribution that
the surfer uses when he chooses to jump to a new
page by using teleportation, E is called person-
alization matrix.
Since G is a positive and irreducible matrix
the invariant probability distribution exists: this
will be the score of the nodes in the network.
If you have m different datasets containing in-
formation of the nodes in the network and α1 =
α2 = ... = αm = α/m (uniform weight for the
datasets) then it is possible to generalize PageR-
ank algorithm using multiple personalization:

G =

1−
∑
j

α

m

 M̃ +
∑
j

α

m
Ej =

= (1− α)M̃ +
∑
j

α

m
Ej

(5)

(6)

4. PubMed
PubMed is one of the most popular search en-
gine in the world accessing an enormous archive
of biomedical and life sciences journal literature.
Its database contains more than 33 million cita-
tions and abstracts of biomedical literature and
on an average working day, there are about 2.5
million users conducting 3 million searches and
9 million page views.
PubMed uses Best Match sort to rank the arti-
cles that a user is searching for; this algorithm is
applying machine learning using signals such as
the number of matches between the search terms
and the PubMed record, or the publication type
and year.
In the PubMed application we would like to
compute PageRank to rank the articles; to do
so the network is built by:
• Considering each publication of PubMed

associated to a query as a node of the graph.
• Considering as an edge of the graph each

connection between two nodes i and j if ar-
ticle j is cited by article i.

• Considering the network as the directed
graph composed by nodes and edges: this
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network is a representation of the relations
between the publications in PubMed.

The idea is to apply the PageRank algorithm
in PubMed in order to compare its result with
the one used by PubMed (Best Match sort algo-
rithm) that uses only machine learning.
To understand both from a qualitative analysis
and also from a quantitative point of view we
decided to build a webapp using the Streamlit
library in python; in this way users from Politec-
nico di Milano and other universities could work
with the webapp and answer in a questionnaire
to some simple questions regarding their opin-
ions on the behaviour of the different methods
proposed.
Regarding the three algorithms proposed on the
webapp one is the basic match sort using ma-
chine learning defined by PubMed, one is PageR-
ank using as personalization vector a distribu-
tion that considers information of the single pub-
lications, the last one uses multiple personaliza-
tion vectors. The information used to build the
personalization vectors is described in the fol-
lowing section. Observe that these algorithms
are simply called Algorithm 1, Algorithm 2 and
Algorithm 3 in the webapp so that users don’t
know which algorithm has been used behind the
different ranks; this is done in order to avoid bias
in the answers to the questionnaire.

Figure 1: Webapp interface

4.1. Data
In order to build the personalization vector used
in the PageRank algorithm we cooperated with
Altmetric, a company that has the aim to track

and analyze online activities around researches
and publications from numerous diverse sources
(public policy documents, social media, blogs,
wikipedia...). Altmetric provided us with an
API to collect many different data regarding
each publication analyzed by using its DOI: the
Digital Object Identifier of an article.
Data used in the analysis are the following:
• Citation by feeds count.
• Citation by posts count.
• Citation by tweeters count
• Citation by policies count
• Citation by patents count
• Citation by Wikipedia count
• Citation by accounts count
• Score
• Readers count
• Mendeley index
• Connotea index

We have an unsupervised ranking problem in
which we would like to create a rank of all the
citations based only on the above features; this
rank will be fundamental to build a probabil-
ity distribution on the publications: this will be
used as personalization vector.
In figure 2 it is observable that taking into con-
sideration only the first two principal compo-
nents of the dataset is more than enough in order
to explain more than 80% of the total variabil-
ity: the new dataset has a reduced dimension of
two and is simpler to build the personalization
vector.

Figure 2: Explained variance wrt principal com-
ponents

Using the loadings of the first 2 PCs and their
meanings we can construct a personalization
vector:
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Algorithm 1 Order metric used to sort the ele-
ments
1: Consider two different publications i and j
2: Define k > 0 ∈ R
3: if PC1(i) > PC1(j) + k then
4: i is ranked before j
5: else if PC1(j) > PC1(i) + k then
6: j is ranked before i
7: else
8: if PC2(i) > PC2(j) then
9: i is ranked before j

10: else if PC2(j) > PC2(i) then
11: j is ranked before i
12: else
13: i and j are in the same position
14: end if
15: end if

4.2. Personalized distribution
After having built a ranking based on the Alt-
metric features it is finally possible to create a
discete distribution over the publications. The
distribution that has been chosen is the Geomet-
ric one since it is a flexible distribution for this
problem.
In particular the distribution considered in the
teleportation of the Markov chain random walk
simulations is a Truncated Geometric (truncated
since the number of publications are not unlim-
ited); indeed let X the random variable "what is
the next page chosen by the random surfer?", let
i the publication in the i-th position of the rank
and F (x; p) the cumulative distribution function
of a Geometric of parameter p evaluated in x
then

X ∼ TruncGeom(p)

P (X = i) =
p(1− p)i−1

F (|V |; p)

(7)

(8)

where |V| is the cardinality of the publications
set.
After having tuned the parameter for several
queries the final value of p chosen is p = 0.25,
this value is a good tradeoff to both avoid giving
too much importance to the first pages and to
avoid uniform weights.

Figure 3: Geometric distribution for different
parameters p

4.3. PageRank with two personaliza-
tion

This algorithm is applicable in PubMed as for
each publication we have two different types of
information: one is provided by Altmetric; the
other is referred to the ranking given by Best
Match sort. It is known that Best Match sort
uses machine learning to focus on the content of
each publication and the historical information
of the articles.
The new Google matrix is the following:

G = (1−
2∑

j=1

αj)M̃ +

2∑
j=1

αjEj (9)

where Ej is the personalization matrix identifies
by the jth dataset and αj is the perturbation
factor associated to the jth dataset.
With the ranking given by the Altmetric fea-
tures and the ranking given by Best Match sort
it is possible to compute two distribution as al-
ready discussed in 4.2.
The two distributions are used to compose ma-
trices E1 and E2 to apply in the PageRank
with multiple personalization. Uniform weights
α1 = α2 = α have been chosen and since more
information on the publications have been used
it is understandable to increase the importance
of the distributions with respect to the topology
of the network: that’s why α is increased from
0.15 used in the previous algorithms to 0.2.

4.4. Results
It is simple to evaluate the performance of the al-
gorithm. Indeed PubMed is used by many users
all over the world hence we can consider that its
searching engine is a good rank to compare the
result with.
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This is done by analyzing the answers in the
PageRank form of the webapp; the results are in-
teresting: out of 20+ users of the app that filled
the form it seems that the algorithm is perform-
ing well. Algorithm 2 is referring to PageRank
with personalization, Algorithm 3 is Best Match
sort, the PubMed one and finally Algorithm 1 is
Pagerank with two personalizations.

Figure 4: Behaviour of the three different algo-
rithms

Figure 5: Good overall results for the three al-
gorithms

Figure 6: Best algorithm and why

Firstly the majority of the users have stated that
the three different algorithms behave in different
ways.
Overall the three algorithms have provided good
results for the users.
Furthermore on average Algorithm 2 is the less
performing one to provide more accurate results
to the queries; on the other hand Algorithm 1
is the most efficient one, this corresponds to
PageRank with multiple personalization.

5. Conclusions
Generalized PageRank allows PageRank to be
used in combination with other rankings, this
empowers to integrate PageRank with whichever
other algorithms that rank a list of objects.
One downside is that the basic PageRank can-
not be used in all the contexts but only when the
lists of objects to be ranked can form a mean-
ingful directed graph, meaning a network where
the score given to the nodes (to rank the nodes
in the output) must meet two requirements:
• it must be high if it refers to a node linked

by many other nodes.
• it must be high when referring to a node

linked by very significant nodes.
It is not always easy to create this network but
this work analyzed three completely different en-
vironments where a network can be built.
The problem of ranking a list of objects is a very
complex problem as there is no absolute solu-
tion. Indeed ranking the webpages for the users
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can depend on the user that is using the algo-
rithm, the best solution for the user is subjec-
tive. In the PubMed analysis users were slightly
more satisfied by the results given by PageRank
in comparison to the ones given by Best Match
sort, this means that on average the algorithm is
performing well to spot the best articles to show
to the users.
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Abstract

The PageRank algorithm or Google algorithm was introduced by Larry Page, one of the
two founders of Google, in 1999; this algorithm is still partially used by Google in order
to rank the webpages in the Google search engine. One of the interesting aspects of this
algorithm is how to start from a really complex problem and end up with an effective
but simple solution. Indeed the trademark Google reminds of a stratospheric number
(googol=10100): the reason is that the scale of the problem that the search engines have
to face and solve is enormous.

Given a query of a random user the aim is to order the importance of all the pages related
to that query. The algorithm uses a graph of connections between the nodes (webpages)
based on the hyperlinks between the pages and it returns a score for each page; this score
determines the position of the page in the final rank. The higher the score, the higher the
page will be on the list given in output to the user.

This work has the scope to apply PageRank in different contexts to prove that this
algorithm is still valuable to rank a list of objects connected one another. The algorithm
is integrated by using statistical tools to make it more powerful for each context analyzed.
The final aim is to enrich the available tools that can be used to solve the so-called ranking
problems.

Keywords: PageRank, Network, Ranking, Search Engine





Abstract in lingua italiana

L’algoritmo PageRank o algorithmo di Google è stato introdotto da Larry Page, uno
dei fondatori di Google, nel 1999. Questo algoritmo è ancora parzialmente utilizzato
nel motore di ricerca sviluppato da Google. Uno degli aspetti interessanti e innovativi
di questo algoritmo sta nel fatto di risolvere un problema alla base molto complicato
applicando concetti basilari della matematica e statistica. Difatti il nome Google deriva
dal numero stratosferico, parte del suo significato (Googol=10100): la ragione sta nella
complessità del problema che il motore di ricerca deve risolvere.

Data una query di un utente casuale l’obiettivo è di trovare un ordine di importanza delle
pagine relative alla query. L’algoritmo usa una rete diretta dove le connessioni tra i nodi
(pagine web) è basata sugli hyperlink tra le pagine web; la classifica finale delle pagine
web è determinata da uno score calcolato tramite l’algoritmo. Più elevato è lo score di
una pagina e più alta sarà la posizione della pagina nella classifica.

Questo lavoro ha l’obiettivo di applicare PageRank in diversi contesti per dimostrare che
questo algoritmo ha ancora un valore per classificare una lista di oggetti. L’algoritmo
viene integrato utilizzando strumenti di statistica applicata per renderlo adattabile ai di-
versi contesti analizzati. L’obiettivo finale è quello di arricchire con nuovi metodi i modelli
già esistenti per classificare liste di oggetti.

Parole chiave: PageRank, Grafo, Classifica, Strumento di ricerca
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1| Introduction

Every day billions of people use internet to search for information. Google Chrome is
the most popular and used browser in the world; this is because of its search engine: the
software that allows users to search for information on the web ranks the results. The
reason why the Google product became so popular and used at the beginning of the 20th

century is PageRank; this algorithm successfully ranks the importance of the webpages
to allow users to find proper information in the fastest way possible.

The exact implementation of Google search engine is not publicly known as it is protected
by copyright; furthermore the algorithm has changed and drastically improved over the
years. On the other hand it is known that PageRank is still internally used in the search
engine a a small part of the huge system to rank the webpages.

In order to rank the webpages available online PageRank computes a score for each page
j ∈ {1, ..., |V |}; notice that |V | is the cardinality of the set containing all the webpages
available in internet. This score vector allows then to rank the webpages in decreasing
order from the most important page to the least important one.

The score xj ≥ 0 of the j-th page Pj must meet two requirements:

• it must be high if it refers to a page cited by many other pages.

• it must be high when referring to a page cited by very significant pages.

The simple counting of links pointing to a page is not enough to represent the score since
it does not require the second condition.

Indeed, a major page as https://www.wikipedia.org/ has hundreds of thousands of pages
pointing to it. This fact generally implies that the page is quite important and should be
ranked high. On the other hand if a web page has a citation from the wikipedia home
page, it may be only one link but it is a very important one. This implies that this page
must be ranked higher than other pages with more links but from less important pages.

This project uses and integrates the PageRank algorithm in three different environments:

• Twitter social media: plain algorithm.
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• Pubmed search engine: combination of algorithms and PageRank with personaliza-
tion.

• Wimbledon tennis grand slam: multiple personalization.

1.1. Objective

This work applies the PageRank algorithm in different contexts and explains diverse
methods to enrich the available tools that can be used to rank a list of objects.

The algorithms can be applied whenever the objects analyzed are represented in a network.
One of the initial complexities is how to denote the edges of the graph; this is why
PageRank cannot be developed in all the problems.

On the other hand PageRank is a useful tool as it uses the topology of the network. This
work explains how to integrate the final rank using other information of the nodes in the
graph. This is done by incorporating the result of the plain PageRank with other ranks.

In the end the described methods are powerful tools as they allow to get a final rank of
the objects analyzed by combining different algorithms to create one output; this allows
the system to use multiple independent information to generate a unique result.

The work considers only ways to make the final results as powerful as possible; the project
does not take into consideration the time complexity of the algorithms. Indeed for example
in PubMed the time taken to collect data and finalize the result is approximately 5
minutes, this is due to the fact that the code is developed in Python and the data is
collected every time from scratch.

To make the algorithms time performant it is suggested to download and store the data
server side and develop the code in C++.
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2.1. PageRank algorithm

2.1.1. Introduction

A set of web pages P1, . . . , Pn can be represented as a directed graph G = (V, L)

where V represents the vertices and coincides with all the pages Pi available online and
(Pi,Pj) ∈ L if and only if there exists a link from page Pi to page Pj. We denote by
A = [aij] the adjacency matrix of G = (V, L) such that:{

aij = 1 if ∃ link from Pj to Pi

aij = 0 if ∄ link from Pj to Pi

(2.1)

Notice that the sum of the elements in the i-th column of A represents the number of
outlinks (or forward links) of Pi, i.e. the number of pages which can be directly reached
from Pi, while the sum of the elements in the i-th row of A represents the number of
inlinks (or backward links) of Pi, i.e. the number of pages having a link which leads to
Pi.

From the two conditions imposed to the score it is more appropriate to define it such that
the score xi of page Pi is proportional, with c constant of proportionality equal for all
pages, to the sum of the scores of the pages which refer to Pi:

x = cAx ⇒ Ax = λx (2.2)

If the solution exists then the problem reduces to the computation of an eigenvector
associated to the eigenvalue λ = 1/c.

One of the main issues of this formulation is the risk to overestimate the score of the pages
that have many incoming links from irrelevant pages. A possible solution is to normalize
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A to M = [mij]: {
mij =

1
Nj

if ∃ link from Pj to Pi

mij = 0 if ∄ link from Pj to Pi

(2.3)

where Nj is the number of pages which can be directly reached from page Pj.

We can observe that M is nearly a left stochastic matrix i.e. a matrix such that each
element is non negative and each column sums up to 1. In reality M is not a stochastic
matrix since there could exist pages with no forward links; in this case there are columns
with sum of elements equal to 0 and the matrix is not stochastic. Pages with no forward
links are called dangling pages.

There are different ways to treat the dangling pages; the easiest way is to let all the
dangling pages to point to each page of the web such that:

M̃ = M +
1

n
1nB

T (2.4)

where 1n = [1, ..., 1]′ and B is a vector such that Bi = 1 if Pi is a dangling page and
Bi = 0 otherwise.

Notice that M̃ is a left stochastic matrix and it represents the transition matrix of a
Markov chain describing a random walk of a "random surfer" between web pages assuming
that surfing the web occurs according to the forward links of the last page visited; i.e.
the "random surfer" is crawling the web by randoming clicking on successive links in the
pages. If the "random surfer" is in a dangling page the probability transition is a uniform
distribution of all the pages. However we will show how different ways to treat dangling
pages will generate personalized ranks.

The dominant eigenvalue of the stochastic matrix M̃ is λM̃ = 1 and the computation of
the rank of the web pages is equivalent to the computation of the eigenvector R associated
to λM̃ = 1 i.e. the invariant probability distribution for the associated Markov chain GM̃ :

R = M̃R, Ri ≥ 0 (2.5)

Even if M̃ is a left stochastic matrix there is still one last issue: even if from one page
of M̃ it is possible to move at least to another page, not necessarily it is possible to go
from any page to any other page i.e. the matrix M̃ is not irreducible and the directed
graph GM̃ associated to M̃ is not strictly connected. This property is important because
it guarantees, through the application of important theorems of Markov chain processes,
the existence and unicity of the invariant distribution i.e. the solution of the problem.
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2.1.2. PageRank with personalization vector

To face this issue it’s sufficient to perturb M̃ with the usage of a positive matrix E >> 0

to build the Google matrix:

G = (1− α)M̃ + αE (2.6)

where α ∈ (0, 1) is the perturbation factor.

To give a logical interpretation of the final Google matrix G we go back to the "random
surfer" model: by adding the perturbation we consider that the surfer can move to other
pages by directly entering the URL in the address bar. This is called teleportation and
it allows to give a more sensible and realistic model to the "random surfer". E is the
matrix distribution that the surfer uses when he chooses to jump to a new page by using
teleportation, E is called personalization matrix and at first we will consider it as a
random distribution for all the pages. However we will show how different choices of E
will generate personalized ranks.

G is a strictly positive transition matrix hence G is irreducible and primitive; in addition
G is stochastic because both M̃ and E are stochastic. By Markov-Kakutani theorem A.2

G accepts an invariant probability distribution and by Perron-Frobenius theorem A.3 this
invariant distribution is unique:

GR = R, R ≥ 0,
∑
j

Rj = 1 (2.7)

R is the dominant eigenvector of G and its components Rj give the final ranks of the
webpages; we are not much interested in the value of the Rjs but in their decreasing
order.

By notorius theorems (A.4, A.5 and A.6) it is known that:

lim
k→+∞

GkP0 = R for all P0 initial distribution (2.8)

Furthermore all the columns of Gk converge to R as k tends to inf:

lim
k→+∞

Gk = [R|R|...|R] (2.9)

These theoretical results allow computers to solve the real problem and the difficulties
related to the size of the involved matrices. Indeed the computation algorithm of the
dominant eigenvector by the power method can be very fast: Theorem A.6 states that



6 2| Algorithm and Development

the convergence velocity is linked to the second eigenvalue of G.

If we consider the following discrete dynamical system:

Pk+1 = GPk, P0 probability distribution (2.10)

Relations 2.8 and 2.9 describe the asymptotic behaviour of the system and by exploiting
the composition of G we reduce the system to the following one:

Pk+1 = (1− α)M̃Pk + αE, P0 probability distribution (2.11)

Since M̃ is a sparse matrix it is much more useful to use the power method on the last
system.

Since G is a positive and irreducible matrix the invariant probability distribution exists
and another method to compute it is to simulate a random walk on the Markov chain
represented by the Google matrix G. By 2.8 the Montecarlo simulation of a Markov chain
with a number of steps k → ∞ identifies the invariant distribution with the average time
that the surfer has spent on the single nodes of the network.

2.2. Example

Let’s make an example to clarify the above explanation and let’s consider the following
network:

Figure 2.1: First basic example of a graph.

Let’s consider 6 nodes, by simplicity analyzed as 6 web pages on internet, and let’s say



2| Algorithm and Development 7

that P1 is cited by P6, P2 is cited by P4, P3 is cited by P2 and P1, P4 is cited by P3,
P5 is cited by P1, P2 and P3; finally P6 is cited only by P5.

First of all notice that in this network of 6 pages no page is a dangling page because each
one has at least one forward link. Moreover observe that the graph is already strongly
connected since from any couple of pages i and j it is possible to find a path that connects
page i to page j. In this easy example the affinity matrix is the following:

A =



0 0 0 0 0 1

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 0 0

1 1 1 0 0 0

0 0 0 0 1 0


=⇒ M̃ =



0 0 0 0 0 1

0 0 0 1 0 0
1
2

1
2

0 0 0 0

0 0 1
2

0 0 0
1
2

1
2

1
2

0 0 0

0 0 0 0 1 0


To calculate the PageRank vector we consider α = 0.15 and we use the Uniform person-
alization matrix that for each row has a uniform distribution e = [1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
].

It follows that G is denoted by:

G = (1− α)M̃ + αE =



0.025 0.025 0.025 0.025 0.025 0.875

0.025 0.025 0.025 0.875 0.025 0.025

0.45 0.45 0.025 0.025 0.025 0.025

0.025 0.025 0.45 0.025 0.025 0.025

0.45 0.45 0.45 0.025 0.025 0.025

0.025 0.025 0.025 0.025 0.875 0.025


The PageRank vector calculated by the power method is with convergence tolerance 10−6

is
π = [0.208, 0.103, 0.157, 0.092, 0.224, 0.216]

and the final rank of this network given by the PageRank algorithm is:
Page 5
Page 6
Page 1
Page 3
Page 2
Page 4

Notice that Page 5 is the most important one for this algorithm as there are three nodes
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that are directly linked to it. Even if page 6 has only one node directly linked to it, that
node is page 5 hence page 6 is in the second position of the ranking. The same observation
can be done for page 1. Even if pages 2 and 4 have the same number of inner links than
page 5 they are in the last positions.

Let’s now suppose that it is known from outside that page 2 refers to an important content
in the network or that page 2 can be more useful for the "random surfer" that is browsing
the 6 pages. Hence we can personalize the algorithm by changing the personalization
matrix to take into consideration this hypothesis keeping always the perturbation factor
α = 0.15. If we consider for each row of the new personalization matrix the distribution
ẽ = [ 1

10
, 1
2
, 1
10
, 1
10
, 1
10
, 1
10
] we get the following result:

G̃ =



0.015 0.015 0.015 0.015 0.015 0.865

0.075 0.075 0.075 0.925 0.075 0.075

0.44 0.44 0.015 0.015 0.015 0.015

0.015 0.015 0.44 0.015 0.015 0.015

0.44 0.44 0.44 0.015 0.015 0.015

0.015 0.015 0.015 0.015 0.865 0.015


The new PageRank vector computed is:

π̃ = [0.161, 0.206, 0.156, 0.066, 0.222, 0.189]

and the final rank of this network given by the algorithm is:
Page 5
Page 2
Page 6
Page 1
Page 3
Page 4

It is interesting to notice that a simple change in the personalization matrix results in a
change in the standing of the web pages. Page 5 is still the first page ranked but now page
2 becomes the second most important page since we put a priori more probability to page
2 in the teleportation part of the algorithm; however notice that page 2 and page 5 have
very close scores hence this result is not robust since a small change in the personalization
distribution will provide different result especially in the top three pages.

Page 1, 3 and 4 are in the same relative order, indeed page 1 is still the most important
of the three as it is the only one linked directly by page 2.
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2.3. Development

The objectives of this project is not only to explain the different ways in which PageRank
can work but also to enrich the available tools in order to let the algorithm performs in
the best way in the different environments in which it is used.

Two of the main issues of the algorithm are related to the dangling nodes and the tele-
portation distribution. The two matters in question are really important since they are
strongly related to the final result. Indeed if a "random surfer" is considered it is funda-
mental to understand what is the behaviour when he/she lands in a dangling node and
what happens when teleportation occurs.

If we want to model the behaviour of a "random surfer" browsing the nodes in a network
we need to consider that the basic approach of a uniform distribution in case of dangling
page or teleportation is not satisfactory enough. Indeed the real distribution will be based
on the importance of the different nodes and also on the nature and attitude of the user
who is accessing the network. This is why this distribution is related to personalization
of the results; it can be used to find different ranks based on the user’s characteristics
and personality. Indeed one of the main reason to call it personalization is because
Google wanted different distribution vectors to model different types of surfers in the
most accurate way. Of course we don’t have any information regarding a "random surfer"
browsing the internet but it is still useful to try different models for the personalization
matrix and understand how the rank results behave in the different situations.

2.3.1. Personalization vector and comparison metrics

It is satisfactory to use as personalization matrix a matrix in which the vectors columns
are the same; in this case we consider that in case of teleportation the user will behave in
the same way even if he/she is in different pages. That’s why from now on we will refer
to the personalization matrix as personalization vector.

Different distributions used are:

• Uniform distribution, method with no further knowledge about the nodes.

• Weighted distribution, based on features that measure the importance of the nodes
isolated from the network.

• Weighted content distribution, based on the content verification of the information
in the nodes i.e. if it matches properly with the query fixed at the beginning.
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Notice that even if the Uniform distribution is not satisfactory enough to model the
behaviour of a "random surfer" it is still useful since it allows to observe how much
the PageRank vector depends on the difference in personalization vector; somehow the
Uniform distribution is used as a standard metric of comparison.

In order to compare the different results the Kendall Tau distance is used in order to
quantify the similarities between the different ranks. Kendall Tau distance is a metric
function that measures the number of pairwise disagreement between two ranking lists.
From the algorithmic side this distance is computed with the usage of the bubble sort
algorithm since it is equivalent to the number of necessary swaps to do to place one list
in the same order of the other list; indeed the metric is also called bubble sort distance.
The Kendall tau ranking distance between two lists τ1 and τ2 is

Kd(τ1, τ2) = |{(i, j) : i < j, [τ1(i) < τ1(j) ∧ τ2(i) > τ2(j)] ∨ [τ1(i) > τ1(j) ∧ τ2(i) < τ2(j)]}|.

where τ1(i) and τ2(i) are the rankings of the element i in τ1 and τ2 respectively; Kd(τ1, τ2)

will be equal to 0 if the two lists are identical and 1
2
n(n − 1) if one list is the reverse of

the other.

It is important to reckon that there is not a real solution to the question: what is the
perfect rank for this query? The answer is subjective because it depends on the user
that is asking the question. That’s why it is also relevant to compare the different ranks
qualitatively by asking different users to use the algorithms and leave a feedback on their
behaviours; we don’t expect a uniform answer but at least we will have an idea on what
a sample of the users thinks about the different ranks.

When we ask the question about "comparing qualitatively different ranks" what we mean
is to consider two ranks in parallel, examine the orders couple by couple and understand
if it’s more important the element of the first rank or the one of the second rank. More
important signifies how significant and relevant an element is in terms of content and
quality of the page (always considering the query searched).

Furthermore in closed environment a new rank can be obtained using a combination of
the real rank given by the environment and the one given by PageRank algorithm. Indeed
if the two ranks of the webpages are put respectively in the rows and the columns of a
square matrix then a diagonal traversal can be computed; in this case a new result can be
worked out where the final sort are the ordered elements found in the diagonal traversal
where the element of the row and the element of the column matches. This is a new rank
using the combination of the two ranks.
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2.3.2. Diagonal traversal


x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4


In the above matrix a diagonal crossing is represented: starting from top left the traversal
is done by running across each diagonal of the matrix as shown in the matrix above. In
this example matrix the order of the elements given by the diagonal traversal is: x1, x2,
y1, x3, y2, z1 and so on and so forth.

Let’s now suppose to have 5 pages to be ranked: a, b, c, d and e. Let’s consider two
different ranks of the pages: one orders the page as a, b, e, d, c; while the other orders
them as b, c, a, e, d.

We can then build a square matrix by taking the two ranks in rows and columns as shown
below:

a b e d c


b ba bb be bd bc

c ca cb ce cd cc

a aa ab ae ad ac

e ea eb ee ed ec

d da db de dd dc

By computing the diagonal traversal of this matrix a new rank is built adding elements
one by one whenever the element of the row is the same of the element of the column.
In the diagonal traversal the first cell to have the same element is first row and second
column: b. The second one is third row and first column: a; and so on and so forth.

The final rank given by the combination of the two is the following:

[b, a, e, c, d]
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2.4. Generalized PageRank with personalization

It is not possible to use indipendent data to create a single personalization vector, in order
to use PageRank the algorithm must be generalized to handle multiple personalization.
Indeed if you consider internet and two different datasets: one is the dataset that provides
the quality of the webpages and the other contains the preferences of the pages given by
the users; to use PageRank based on both the datasets it is not possible to apply the
personalization with only one vector. That’s why it is useful to apply a generalization of
the PageRank algorithm by using multiple personalization matrices:

G = (1−
∑
j

αj)M̃ +
∑
j

αjEj (2.12)

where Ej is the personalization matrix identifies by the jth dataset and αj is the pertur-
bation factor associated to the jth dataset.

1−
∑

j αj is the weight importance given to the topology of the network with respect to
the information of the nodes contained in the datasets.

If you have m different datasets and α1 = α2 = ... = αm = α/m (uniform weight for the
datasets) then

G =

(
1−

∑
j

α

m

)
M̃ +

∑
j

α

m
Ej = (1− α)M̃ +

∑
j

α

m
Ej (2.13)

By searching the invariant distribution in the new Google matrix G it is possible to find
the solution to the Generalized PageRank: a way to integrate PageRank with multiple
different personalization.

2.5. Metrics to evaluate results

The most difficult aspect of ranking algorithms is how to evaluate their performance and
efficacy. Indeed the problem of ranking is an unsupervised learning problem; there is
no correct answer to the question: what is the best way to rank this list of objects?
The answer is subjective and it depends on the characteristics of the objects that a user
considers to make preferences.

This is why in the three different applicative cases diverse ways are considered to evaluate
the results. In general the approach used is to examine the result in comparison with
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another rank taken into consideration; if a second rank is present the result is firstly
compared in a quantitative way using the Kendall tau distance between the two; this is
done to check if the two ranks are in disagreement or if they provide similar results.

If they are dissimilar a qualitative approach is used to analyze which rank is better. This
is different for each case examined as there is no absolute method to qualitatively evaluate
the results; this strongly depends on what is the case that has been investigated. For each
example before analyzing the results it is explained what criteria and metrics have been
used to evaluate the performance of the algorithm.
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PubMed is one of the most popular search engine in the world accessing an enormous
archive of biomedical and life sciences journal literature. Its database contains more than
33 million citations and abstracts of biomedical literature and on an average working
day, there are about 2.5 million users conducting 3 million searches and 9 million page
views. Before 2018 the algorithm used by PubMed to rank the results of a specific
query was the standard PubMed Best Match sort: it was based on a weighted term
frequency algorithm that calculates the frequency with which terms appear in PubMed
records. Those frequencies were then applied in a weighted fashion to return a ranked
list of PubMed citations that match with the query terms. Recently PubMed added
to the algorithm a more sophisticated part that includes machine learning to re-rank
the top articles. This algorithm combines over 150 features that are helpful for finding
best matching results. Most of these signals are computed from the number of matches
between the search terms and the PubMed record, while others are either specific to a
record (publication type, publication year...) or specific to a search (search length...).
Best match sort remains a content driven algorithm that does not consider the geometry
of the network built by using citations between publications: that’s why it’s interesting
to compare Best Match sort with PageRank algorithm.

3.1. Data preparation

To build the Google G matrix for this application the first step is to create the network
composed by the published articles in PubMed.

In analogy with the Google matrix built on the web it is possible to build it by:

• Considering each publication of PubMed associated to a query as a node of the
graph.

• Considering as an edge of the graph each connection between two nodes i and j if
article j is cited by article i.

• Considering the network as the directed graph composed by nodes and edges: this
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network is a representation of the relations between the publications in PubMed.

To create this network the Python library BeautifulSoup is used in order to download the
HTML of the PubMed webpages; then a process of scraping allows us to gather all the
information regarding the different citations.

Now it is possible to transform the affinity matrix associated to the network into the
stochastic matrix M̃ by:

• Construct M using equation 2.3.

• Transform M into M̃ using equation 2.4

The final matrix G is built by using equation 2.6 setting at first the perturbation factor
α = 0.15 as this is the constant chose by Google to apply the PageRank algorithm on the
web.

Different personalization vectors will be used to compare different ranking results as ex-
plained in the below sections.

3.2. Development

The idea is to apply the PageRank algorithm in PubMed in order to compare its result
with the one used by PubMed (Best Match sort algorithm) that uses machine learning
and does not consider the topology of the network related to the system.

Another interesting aspect is to combine the two algorithms considering the rank given
by Best Match sort in the personalization part of the PageRank algorithm; this implies
merging the features of machine learning with the ones related to the geometry of the
network of citations. Doing so we can understand the importance of the personalization
vector used in the teleportation of the PageRank algorithm; indeed if the results do not
change it means that the personalization is negligible, otherwise it means that different
personalization vectors can alter the results leading to diverse ranks.

The first queries tested in the simulations of the algorithm by different users are related to
distinct scientific topics; the topic of autism in children (Attention-Deficit/Hyperactivity
Disorder (ADHD) and Applied Behavior Analysis (ABA)), the medical topic (asthma
treatment guidelines) and pharmaceutical topic (ibuprofen).

In these cases the networks built are not enormous as the results given by PubMed for
these queries are not more that 10000 citations. Moreover the dangling nodes are not a big
issue because for the queries tested only a low number of publications have no citations;
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indeed more than 98% of the publications found have at least one citation.

3.3. Webapp

To understand both from a qualitative analysis and also from a quantitative point of view
we decided to build a webapp using the Streamlit library in python; in this way users
from Politecnico di Milano and other universities could work with the webapp and answer
in a questionnaire to some simple questions regarding their opinions on the behaviour of
the different methods proposed.

Indeed the webapp shows the results of the rank of three different algorithms for different
queries; moreover a search button has been added to let the users search for new queries
inside PubMed. We decided to present at most the top 30 results for each query since
usually this number is more than enough to let the surfers find what they are searching.
The scraping considers only the results considered in the first 10 pages of PubMed results.
This is to restrict the amount of time the user has to wait for getting the results. We
considered the first 10 pages since it is not restricted to state that important results for
the users are in the first 10 pages.

Regarding the three algorithms proposed one is the basic match sort using machine learn-
ing defined by PubMed, one is PageRank using as personalization vector a distribution
that considers information of the single publications, the last one is the combination of the
first and second algorithm using the diagonal traversal already introduced in the chapter
Objectives. The three algorithms are described more in details in the following sections.
It is interesting to understand if the third algorithm can spot the best peculiarities of
best match sort matching them with the ones of PageRank which considers more the
topology of the network. Observe that these algorithms are simply called Algorithm 1,
Algorithm 2 and Algorithm 3 in the webapp so that users don’t know which algorithm has
been used behind the different ranks; this is done in order to avoid bias in the answers to
the questionnaire.

It is important to mention that pure PageRank algorithm with no personalization or
with uniform personalization does not provide good results since it occurs that for some
queries top results of the rank are important publications in the network built but they
don’t match properly the query that the user has been searched. That’s why it is reckoned
that in order to find good results it is fundamental to use a personalization vector which
verifies the content of the articles and considers only the once that matches with the query
examined.
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One method tried to take into account the content of the articles was to consider at the
end of the PageRank score computations only the publications that are a good match with
the query considered and remove all the ones that don’t agree in terms of content with
what it has been searched. This proposal has not been considered at the end because it is
difficult to define a threshold to understand if an article can be a match or not with the
query; therefore it is better to apply the information verification in the complete network
in the teleportation of the PageRank algorithm.

Figure 3.1: Webapp interface

3.4. Personalized distribution

3.4.1. Data

In order to build the personalization vector used in the PageRank algorithm we cooper-
ated with Altmetric, a company that has the aim to track and analyze online activities
around researches and publications from numerous diverse sources (public policy docu-
ments, social media, blogs, wikipedia...). Altmetric provided us with an API to collect
many different data regarding each publication analyzed by using its DOI: the Digital
Object Identifier of an article.
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Data used in the analysis are the following:

• Cited by feeds count: Number of blogs that have mentioned the publication.

• Cited by posts count: A "post" is any online document that links to one or more
research objects (i.e. a post is a mention or a group of mentions). This field contains
the number of distinct posts that include one or more mentions of the research object
in question.

• Cited by tweeters count: Number of distinct Twitter users that have mentioned the
article.

• Cited by policies count: Number of policy documents that have mentioned the
publication.

• Cited by patents count: Number of patents that have mentioned the publication.

• Cited by Wikipedia count: Number of citations on Wikipedia

• Cited by accounts count: The sum of all "cited by" entries in social media.

• Score: Weighted count of all of the attention a research output has received. It is
based on 3 main factors: Volume, Sources and Authors.

• Readers count: Total number of readers.

• Mendeley: Number of unique Mendeley users that have added copies of a particular
document to their personal library.

• Connotea: Number of readers in Connotea (until the website was available).

3.4.2. The problem

We have an unsupervised ranking problem in which we would like to create a rank of all
the citations based only on the above features; this rank will be fundamental to build a
probability distribution on the publications: this will be used as personalization vector.
The problem can be solved in an easy way due to the fact that all the features satisfy the
propriety of monotonic importance, indeed the higher the feature is and the higher the
publication will be in the ranking.

Since there are too many covariates and it can be supposed that some of them are highly
correlated it is convenient to perform a PCA (principal component analysis) in order to
consider only the principal components that explain a high proportion of variability of
the data.
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Figure 3.2: Heatmap of the covariates for the query "Denver autism"

In figure 3.2 it is observable that several features are positively correlated, hence it is
useful to understand if it is possible to reduce the dimension of the dataset without losing
significant information on the variability of the dataset.

3.4.3. PCA

All the results shown are related to the fixed query "Denver autism" but it is important
to mention that many queries have been tested and all the results are really similar, that’s
why we can use a specific query to explain the general method of the analysis.
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Figure 3.3: Plots of the first three PCs

In figure 3.4 it is observable that taking into consideration only the first two principal
components is more than enough in order to explain more than 80% of the total variability,
that’s why it’s satisfying to examine the first two principal components so that the new
dataset has a reduced dimension of two.

Figure 3.4: Explained variance wrt principal components

In the interest of creating a ranking based on the two principal components it is necessary
to interpret the loadings to understand how the variables contribute to each one of the
principal components considered. From figure 3.5 it is understandable that the first
principal component is a weighted average of all the features, where the variables are all
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equally balanced except for features 4, 5 and 10 (cited by patents count, cited by wikipedia
count and Connotea respectively) which have lower weights. That’s a great result as we
can use this PC to build a rank easily since all the loadings are in agreement.

Figure 3.5: Loadings of the first PC

Regarding the second PC from figure 3.6 it is noticeable that the interpretation is more
complex; this principal component represents a contrast between from one side the number
of readers (components 8 and 9 are readers count and Mendeley count) and wikipedia
count, on the other side the citations in the social media (components 1, 2 and 6 refer to
posts, tweeters and accounts).

Many studies find out that Mendeley readers typically appear at least a year before
citations due to delays between other researchers reading a paper and their new study
being published. That’s why this variable can help to predict the impact that a recently-
published article will have in future. This means that also this second PC gathers useful
information of the dataset in order to rank the publications; hence we would like to use
it in the order algorithm.
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Figure 3.6: Loadings of the second PC

3.4.4. The distribution

As already discussed in the previous sections in order to build a distribution on the
publications we need to use the two principal components to create a ranking. Based on
the interpretation of the loadings the following ordering system has been chosen:

Algorithm 3.1 Order metric used to sort the elements
1: Consider two different publications i and j

2: Define k > 0 ∈ R

3: if PC1(i) > PC1(j) + k then
4: i is ranked before j

5: else if PC1(j) > PC1(i) + k then
6: j is ranked before i

7: else
8: if PC2(i) > PC2(j) then
9: i is ranked before j

10: else if PC2(j) > PC2(i) then
11: j is ranked before i

12: else
13: i and j are in the same position
14: end if
15: end if
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The idea behind the algorithm is simple: if the difference between the first PC of the
two elements is high enough then the element corresponding to the higher PC is ranked
higher, otherwise the second PC is considered and the element with the higher value of
second PC is ranked higher. This algorithm is strongly related to the interpretation of
the PCs; indeed when the first PCs of two elements are closed we consider the second PC
that is a prediction of the impact of the articles in the future. The higher k is and the
higher is the importance given to the second principal component.

Notice that even if the second PC has negative weights for some features we consider it
in a positive way in the algorithm. This is due to the fact that we are examining it only
when the first PCs (that is a weighted average of all the features) are very close.

To finally build the ranking of the publications the last point is to choose the parameter
k. This is done from a qualitative analysis of several queries and by tuning the parameter
k in the range [0.1, 0.7]. In the end k = 0.35 has been chosen.

3.4.5. Distribution for the personalization

After having built a ranking based on the Altmetric features it is finally possible to create
a discete distribution over the publications. The distribution that has been chosen is the
Geometric one since it is a flexible distribution for this problem.
In particular the distribution considered in the teleportation of the Markov chain random
walk simulations is a Truncated Geometric (truncated since the number of publications
are not unlimited); indeed let X the random variable "what is the next page chosen by
the random surfer?", let i the publication in the i-th position of the rank and F (x; p) the
cumulative distribution function of a Geometric of parameter p evaluated in x then

X ∼ TruncGeom(p) =⇒ P(X = i) =
p(1− p)i−1

F (|V |; p)
(3.1)

where |V| is the cardinality of the publications set.

The parameter p is the one that gives more or less importance to the ranking generated
by the Altmetric features. Indeed if p is large it means that the probability to choose
one of the first publications in the rank will be very high with respect to the others, on
the other hand if p is small it means that the Geometric distribution is converging to a
Uniform distribution. This is shown in figure 3.7.

As already done with parameter k in the Order algorithm also with the parameter p we
proceeded by analyzing the different results qualitatively for diverse values of p in the
range [0.1, 0.8]; too small and too high values of p have been discarded a priori in order
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to avoid extreme results in the final ranking.

After having tuned the parameter for several queries the final value of p chosen is p = 0.25,
this value is a good tradeoff to both avoid giving too much importance to the first pages
and to avoid uniform weights.

Figure 3.7: Geometric distribution for different parameters p

3.5. PageRank with two personalization

This algorithm is applicable in PubMed as for each publication we have two different types
of information: one is provided by Altmetric; the other is referred to the ranking given by
Best Match sort. It is known that Best Match sort uses machine learning to focus on the
content of each publication and the historical information of the articles; indeed some of
the features used by Best Match sort are publication year or type, number of query term
matches in title and click information (one year of logs for each document). We do not
have a dataset of the data used by Best Match sort but we have the final ranking given
by PubMed, this contains all the information used by the machine learning algorithm.

The new Google matrix is the following:

G = (1−
2∑

j=1

αj)M̃ +
2∑

j=1

αjEj (3.2)

where Ej is the personalization matrix identifies by the jth dataset and αj is the pertur-
bation factor associated to the jth dataset.
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With the ranking given by the Altmetric features and the ranking given by Best Match
sort it is possible to compute two distribution as already discussed in 3.4.5.

The two distributions are used to compose matrices E1 and E2 to apply in the PageRank
with multiple personalization. Uniform weights α1 = α2 = α have been chosen and since
more information on the publications have been used it is understandable to increase the
importance of the distributions with respect to the topology of the network: that’s why
α is increased from 0.15 used in the previous algorithms to 0.2.

The new rankings computed in this way are similar to the ones operating a diagonal
traversal, indeed the Kendall tau ranking correlation function proves that the two rankings
are in agreement as the measure is positive and close to 1 for mostly all the queries
analyzed.

3.6. Results

In this case it is simpler to evaluate the performance of the algorithm. Indeed PubMed
is used by many users all over the world hence we can consider that its searching engine
is a good rank to compare the result with.

This is done by analyzing the answers in the PageRank form of the webapp; the results are
interesting: out of 20+ users of the app that filled the form it seems that the algorithm is
performing well. Algorithm 2 is referring to PageRank with personalization, Algorithm 3
is Best Match sort, the PubMed one and finally Algorithm 1 is the combination of the
two rankings via diagonal traversal.

Figure 3.8: Behaviour of the three different algorithms
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Firstly the majority of the users have stated that the three different algorithms behave in
different ways. This is also proven by the fact that mostly all the queries searched have
a Kendall tau correlation measure between the rankings of the three algorithms that is
negative, indicating strong disagreement between the different results.

Figure 3.9: Good overall results for the three algorithms
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Overall the three algorithms have provided good results for the users, more specifically
Algorithm 1 and Algorithm 3 perform really well to spot articles that the users were
looking for. As for Algorithm 2 the analysis proves that several users are not satisfied by
the rankings of the algorithm.

Figure 3.10: Best algorithm and why

Furthermore on average Algorithm 2 is the less performing one to provide more accurate
results to the queries; on the other hand Algorithm 1 is the most efficient one.

The reason why PageRank with personalization is not effective is the accuracy of the
content of the articles ranked, indeed the personalization does not consider how well the
articles match with the query searched. This means that important content articles are
ranked better, but not all of them match properly with the query in input. Algorithm 1
seems to be able to spot the best peculiarities of best match sort with the ones of PageR-
ank. In this way the result considers from one side the matching content between articles
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and queries given by best match sort and from the other the topology of the network
analyze in PageRank with personalization.

Moreover users that vote for Algorithm 3 used very popular queries while less popular
queries performed better in the ranking of Algorithm 1. This is expected as best match
sort uses machine learning algorithms and these work better with more data in input,
that’s why new queries do not have enough data to allow artificial intelligence to perform
well. On the other hand as PageRank does not need to train any machine learning models
also not popular queries perform well.
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The second application chosen to simulate the algorithm (instead of the world wide web) is
Twitter; this decision has been made since Twitter is a close environment and the network
of interest can be built more efficiently through the usage of a public API provided by
Twitter which allows Python developers to interact with the application in an easy and
fast way.

Twitter is the widest blogging social media that proves a billion tweets from many users.
Each tweet refers to a specific topic, and the tweets can be retweeted or quoted by another
user. A quote tweet is a retweet with an added comment which allows you to add your
thoughts on the retweet while still giving the original post an exposure.
In the proposed methodology, a network graph is built from Twitter where the tweets act
as nodes and retweets or quotes relations is the directed edge between the nodes i.e. two
nodes i and j are connected if and only if tweet i is quoting tweet j.

Moreover it is important to consider that in Twitter the ranks of the tweets are most
likely also related to what the users like based on their past activities in Twitter and on
the pages that the users follow. In this case we are taking into consideration a user new
to the platform that follows no one and is just searching a query; this is due to the fact
that we don’t have any information regarding the different users hence we cannot apply
any personalization.

4.1. Data preparation

First step is to create the Google G matrix for the Twitter application.

To rank the tweets the idea is that tweets with many retweets or quotes are ranked
higher; moreover tweets that have been retweeted or quoted by important tweets are
ranked higher. In this situation there is still an analogy between this application and the
Google problem to rank webpages.

In analogy with the Google matrix built on the web it is possible to build it by:
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• Consider each tweet in Twitter that mentions a query (using hashtag) as a node of
the graph.

• Consider as an edge of the graph each connection between two nodes i and j if tweet
j is retweeted or quoted by tweet i.

• Consider the network as the directed graph composed by nodes and edges.

The software Gephi and its Twitter streaming importer plugin to build a graph repre-
senting the system of tweets and quotes. Now as in the previous application it is possible
to transform the affinity matrix associated to the network into the stochastic matrix M̃

and then into the final matrix G setting the perturbation factor α = 0.15 to use the same
Google constant.

In this case as already introduced a user new to the platform is considered: this means
that the personalization vector is substituted by a uniform distribution just to make sure
that the final matrix is strongly connected.

4.2. Development

After fixing a query of interest the algorithm proceeds firstly to scrape all the tweets
related to the query in a certain period of time and secondly through the help of the
software Gephi and its Twitter streaming importer plugin to build a graph representing
the system of tweets and quotes.

The queries used in the simulations of the algorithm are related to Covid and to the war
between Russia and Ukraine because these are the two main topics of 2022 and there
are many data related to these queries in Twitter. The two query used are #Covid or
#Covid_19 and #Ukraine or #UkraineRussiaWar.
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Figure 4.1: Example of Gephi network visualization.

Due to the performance of the algorithm that decreases exponentially with the growth of
the netword we considered single days of tweets using networks of at most 10000 between
nodes and edges in order to avoid time and memory inefficiency. This is also due to the
fact that Twitter gave us capacity to analyze up to 10 millions tweets per month using
their API. Moreover each time that the API is requested it works for 10000 tweets.

In this case in the Twitter environment we also compare the results of the complete
network using also dangling nodes i.e. tweet with no retweets or quotes with the network
built by removing tweets with really low number of relations. Indeed fixing a threshold a
new network can be built considering only the nodes with total interactions that are less
than the threshold. This is done because in particular environment such as Twitter the
tweets with really low number of retweets or quotes can be considered negligible, indeed in
the results those tweets will be the last ones in the total rank. In this case the PageRank
issue related to dangling pages is not a problem since tweets with zero interaction are
rarely linked to important nodes of the network. However since we don’t want to lose
important information the threshold is low and is tuned in order to get similar results to
the one given by the complete network.

The best threshold found is 1 i.e. in order to not lose much information with respect to
the complete network it is sufficient to remove from the network only the dangling nodes,
nodes that don’t have any retweets.
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4.3. Results

In this case there is no comparison rank to take into consideration to analyze the results
in relation with another rank; indeed firstly Twitter uses personalization as the ranks
depend on the users and their preferences. Even considering a user that has just created
an account on Twitter to minimize the preference algorithm of Twitter searching engine
there is still an issue related to the fact that Twitter considers all the tweets associated
to a query. This algorithm uses at maximum 10000 live tweets imported with Gephi and
this makes the comparison useless.

The qualitative way to measure the performance of the algorithm is to analyze the content
of the tweets ranked as top 10: in particular the content of the tweet is examined to
understand how it is related to the query searched and if it contains relevant or useful
information.

Due to the privacy policy of Twitter single accounts and posts can’t be shown, results
have to be exposed in an aggregated way after using its API.

For the queries related to Covid the algorithm seems to perform well even if no personal-
ization has been used; indeed in the top 10 of the tweets ranked by the algorithm 5 tweets
were published by doctors, 2 by professional journalists and 1 by a politician, moreover
the top three doctors and their tweets were related to the analysis of the covid situations
with a link of number of cases in different locations.

One issue related to the PageRank algorithm with no personalization is that it does not
consider any information associated to the content of the tweet; this is proven by the
result of the "covid_19" query: in the top 10 tweets one is a tweet of a famous european
football club that informs its supporters that the coach of the club has been tested positive
to the covid. It’s clear that one limit of the algorithm is the fact that it examines only the
topology of the network without taking into consideration the text and the subject of the
tweets. In this case the results can be simply modified by using a personalization vector;
for example a uniform distribution over the scientific and political tweets and giving null
probability to the others. In this case the tweet from the football club is not in the
top 10 anymore while the other tweets remain the same. Also the Kendall tau ranking
correlation function confirms that the two rankings are in disagreement as the measure is
slightly negative.

In this case we can describe a general user with no specific preferences satisfied by the
result as the tweets contain related and useful information about the covid.
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As for the queries related to the war in Ukraine the algorithm performs really well as
the top results contain tweets from journalists or newspapers without any outliers; indeed
other significant tweets in the rank are from important politicians in Europe.

In general from a qualitative analysis it can be stated that the algorithm performs well in
Twitter; this is due to the fact that a generic user with no preferences can be satisfied by
the results. This was expected since tweets with many retweets and quotes are created
from popular scientists and doctors in the queries associated to covid and from journalists
and politicians in the queries related to the war in Ukraine. One controversy of PageRank
in this case is the fact that it considers only the networks without further analyzing the
content of the tweets. This can lead to outliers in the results as discussed in the example
of the "covid_19" query.
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5| Tennis

The ATP rankings are the merit-based method used by the Association of Tennis Profes-
sionals (ATP) for determining the qualification for entry as well as the seeding of players
in all singles and doubles tournaments. Ranking points are awarded according to the
stage of tournament reached, and the prestige of the tournament, with the four Grand
Slam tournaments awarding the most points (the winner gets 2000 points). The rankings
are updated every Monday, and points are dropped 52 weeks after being awarded (with
the exception of the ATP Finals, from which points are dropped on the Monday following
the last ATP Tour event of the following year).

5.1. The problem

In every tennis tournament there is always a problem during the matches of the tennis
players; in the different tournaments there are always good courts in which players want
to play and bad courts that players want to avoid. Every year this issue arises since the
best tennis players want to be in the centre court that is the most prestigious one with
the highest capacity.

ATP ranking is a good overall ranking for the players but it does not consider many
important factors; indeed tennis players are really different based on the surfaces in which
they play, it is well known that Rafael Nadal is really good in the red-clay courts (Roland
Garros), while Roger Federer is considered the best in the grass court (Wimbledon).
Moreover tennis players have different number of supporters independently on their ATP
ranking, Gael Monfils is a French player loved by many supporters since he is a showman
and his matches can be really interesting to follow.

5.2. Data preparation

First step is to create the Google G matrix for the Tennis Wimbledon application.

To rank the players using the network the idea is that player with many wins in the last
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year are ranked higher. In this situation there is still an analogy between this application
and the Google problem to rank webpages.

In analogy with the Google matrix built on the web it is possible to build it by:

• Considering each tennis player as a node of the graph.

• Considering as an edge of the graph each connection between two nodes i and j if
and only if player j has won against player i in a match

• Considering the network as the directed graph composed by nodes and edges.

The matches examined are the ones of the most important tournaments (Grand Slams
and Master 1000) in 2022 (the dataset is available in the website "http://www.tennis-
data.co.uk/data.php").

Now as in the previous applications it is possible to transform the affinity matrix associated
to the network into the stochastic matrix M̃ and then into the final matrix G setting the
perturbation factor α = 0.15 to use the same Google constant.

Multiple personalization vectors will be used to compare different ranking results as ex-
plained in the below sections. PageRank with multiple personalization will be used.

5.3. Development

This experiment has the objective to compute the PageRank of the tennis players con-
sidering all the factors mentioned above in the teleportation/personalization part of the
algorithm, in this way tennis players are ranked in different tournaments in order to choose
which one deserves more the best courts available in the tournament; in particular the
algorithm is applied to the next important tournament which is Wimbledon.

Regarding the personalization vectors to use in the PageRank algorithm three distribu-
tions are built on all the nodes of the network:

• The first type of information used is the ATP ranking since it’s an overall ranking
of the tennis players active in 2022.

• The second one is the number of followers of the tennis players on instagram. This
number is extremely correlated with the number of supporters that the players have.

• The third one is based on the tennis court in which the analysis is done, in this case
the algorithm is applied to Wimbledon 2022 which is the next important tournament
available. Wimbledon is a grass court hence a ranking of the players in grass is
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computed (using the information of 2021 tournaments in grass), then a distribution
of all the players is built.

The Geometric distribution has been chosen since it’s a distribution on discrete values
and it is flexible with the change of the parameter p, as already discussed the parameter
p is set equal to 0.2.

The three distributions have been used in the teleportation part of the PageRank algo-
rithm in order to consider not only the topology of the network but also the information
of the single nodes; hence PageRank with multiple personalization has been chosen.

The final ranking found with this method is the following:
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PageRank with personalization

Tennis player

1 Nadal R.

2 Alcaraz C.
3 Djokovic N.
4 Zverev A.
5 Tsitsipas S.
6 Medvedev D.
7 Fritz T.
8 Berrettini M.
9 Ruud C.
10 Kecmanovic M.
11 Davidovich Fokina A.
12 Hurkacz H.
13 Korda S.
14 Norrie C.
15 Auger-Aliassime F.
16 Monfils G.
17 Dimitrov G.
18 De Minaur A.
19 Rublev A.
20 Kyrgios N.
21 Sinner J.
22 Cilic M.
23 Schwartzman D.
24 Murray A.
25 Opelka R.

Table 5.1: Ranking of tennis players for Wimbledon tournament given by PageRank.
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5.4. Results

Firstly it has to be considered that there is substantial difference between the first two
applicative cases and this one. Indeed in this case the PageRank algorithm is used to
automate the process of choosing the courts in which the players will play their games;
this procedure is something done manually by the ATP tennis association.

If the results are similar it means that the algorithm can be used to automate this process
of selections of players and courts. Indeed in this case to evaluate the results of the
algorithm it is sufficient to compare the choices made by the Wimbledon organizers with
the ones that the algorithm would choose. Every day of the tournament it is possible to
check in which courts the players played and compare this with what the algorithm would
have suggested.

Not all the days will be shown in the tables below but only relevant days, for the others
the analysis is similar.

5.4.1. Day 4

Court Winner Loser

Centre Court Rafael Nadal Ričardas Berankis
Court 1 Stefanos Tsitsipas Jordan Thompson
Court 1 Alex De Minaur Jack Draper
Court 2 Nick Kyrgios Filip Krajinović
Court 3 Liam Broady Diego Schwartzman
Court 3 Daniel Elahi Galán Roberto Bautista Agut

Table 5.2: Games during the fourth day.

These decisions are all in agreement with the ranking given by the algorithm, indeed Nadal
deserved Centre court, Tsitsipas and De Minaur are over Kyrgios hence they merits court
1 while Kyrgios has a better positions than tennis players in court 3 and this justifies why
he played in court 2.
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5.4.2. Day 5

Court Winner Loser

Centre Court Novak Djokovic Miomir Kecmanović
Centre Court Cameron Norrie Steve Johnsonn

Court 1 Carlos Alcaraz Oscar Otte
Court 2 Jannik Sinner John Isner
Court 2 Frances Tiafoe Alexander Bublik
Court 3 Jack Sock Maxime Cressy
Court 3 Tommy Paul Jiří Veselý

Table 5.3: Games during the fifth day.

During the fifth day there is one difference since for the algorithm Carlos Alcaraz would
have deserved to play in the centre court instead of Cameron Norrie. Apart from this
important decision the others are in agreement with PageRank ranking.

5.4.3. Day 7

Court Winner Loser

Centre Court Novak Djokovic Tim van Rijthoven
Centre Court Jannik Sinner Carlos Alcaraz

Court 1 Cameron Norrie Tommy Paul
Court 2 David Goffin Frances Tiafoe

Table 5.4: Games during the fifth day.

In this case the organizers change positions between Alcaraz and Norrie as the first is
playing in the centre court while the second is playing in court 1, the opposite of the
decision in day 5. This is in agreement with the algorithm as both Alcaraz and Djokovic
are playing in the centre court.



5| Tennis 43

5.4.4. Day 8

Court Winner Loser

Centre Court Nick Kyrgios Brandon Nakashiman
Centre Court Rafael Nadal Botic van de Zandschulp

Court 1 Taylor Fritz Jason Kubler
Court 2 Cristian Garín Alex De Minaur

Table 5.5: Games during the fifth day.

During the eighth day the only controvertial decision is related to Kyrgios’ match as for
the algorithm he probably would have deserved to play in court 1.

In general apart from singular outliers decisions it seems that the algorithm is in agreement
with the choices of the organizers of Wimbledon tournament.

It is interesting how in this case PageRank with multiple personalization vectors could
consider different metrics such as how many followers the players have or what the per-
formance of the players in Wimbledon (grass court) is; the final result is a combination
of the topology of the network with information regarding players and tournament.
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In the original work [11] of L. Page and S. Brin they proposed the solution to the problem
of a not strictly connected graph: the teleportation vector. They didn’t mention any
details to what vector to use in order to both have a strictly connected network and make
the solution better for the users. Many attempts have been made to enrich or modify the
algorithm in order to obtain better results. For example [16] tackle the link spamming
problem proposing an algorithm for computing a complete set of independent eigenvectors
for the second eigenvalue helping to detect link spamming. In our work we focus on trying
to obtain better results exploiting some personalization vectors; in general personalization
vectors can be used to personalize the ranking using the information and preferences of
the users or, as in these applications, knowledge of the nodes in the network. Indeed
in this work we did not consider the preferences of the users using the algorithm, still
we inspected different personalization vectors to make the algorithm more powerful. As
applied both in PubMed and in the Tennis Wimbledon tournament, it is possible to use
any information associated to the nodes of the graph to combine the topology of the
network and the information of the nodes:

• In the PubMed application we have used data collected by Altmetric, a company
that tracks and analyzes online activitites around researches and publications.

• In the Tennis application we have used multiple personalization vectors considering
ATP ranking of the players, number of followers of the tennis players on Instagram
and the ability of the players in tournaments played on grass.

Another important aspect of the algorithm is that PageRank can only be used when a list
of objects can be represented by a meaningful directed graph; this is not always simple to
apply. In the three applications three different types of network are built; these graphs
are constructed in analogy with the ones used in articles already published:

– In PubMed, according to article [18], "High citation rates are proposed to be pre-
dictive of article quality, thus in turn, scientific importance". On the other hand
citation count can be not accurate and fragile, hence article [18] proposes PageRank
since "Much as web pages are interconnected through hyperlinks, scientific articles
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are themselves linked via their citations". But one of the issue related to PageRank
with no personalization, as a result of the article [18], was that "A statistically sig-
nificant correlation between PageRank and citation count was observed with a high
correlation coefficient (R = 0.905)".

That’s why in this work PageRank with two personalization vectors is proposed;
this new algorithm considers both the topology of the graph but also analyses two
types of knowledge: the first one is described by the features from Altmetric detailed
in 3.4.1, the second one considers the results given by PubMed with Best Match
sort. Indeed PubMed recently changed its ranking algorithm with Best Match sort
that uses only machine learning; according to article [4] "the Best Match algorithm
is trained with past user searches with dozens of relevance-ranking signals (factors),
the most important being the past usage of an article, publication date, relevance
score, and type of article". In the webapp we have seen that PageRank with multiple
personalization performs slightly better than best match sort according to a sample
of 20+ users. Of course this algorithm is only a prototype as it is not been tested
by a enough populated sample of users; still this is an important result to consider
when comparing pure machine learning algorithms and the ones considering only
the network.

– In the Tennis application we have built the graph in analogy with article [3]: as
described in the article "We represent the data set as a network of contacts between
tennis players. This is a very natural representation of the system since a single
match can be viewed as an elementary contact between two opponents. Each time
the player i plays and wins against player j, we draw a directed connection from j

to i".

Even if the graph is built in the same way the applications were different: in article
[3] the author uses all the matches played by professional players between 1968 and
2010 to overall rank all the professional players. On the other hand in this work we
only examined matches in 2022 and considered different information of the players
(inside the personalization vectors) to rank them specifically for the Wimbledon
tournament. Moreover the final purpose of this work was not just to rank the
players but to use this rank in order to choose in which courts the players will have
to play in Wimbledon in an automatic way.

– In twitter we have built the graph in analogy with articles [12] and [7] with the
difference that in the two articles the nodes of the graph were the Twitter accounts;
as explained in [12] "We represent Twitter sharing diffusion networks as directed,
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unweighted graphs following this: for each unique URL we process all tweets con-
taining that hyperlink and build a graph where each node represents a unique user
and a directed edge is built between two nodes whenever a user re-tweets/quotes,
mentions or replies to another user". This basically means that in the new user
graph, an edge from user x to another user y indicates that at least one tweet from
user x has retweeted one or more tweets from user y. In our application the nodes
of the graph represent the tweets and an edge from tweet x to tweet y indicates that
tweet x retweets or quote tweet y. A similar approach is described in [13] where the
same network graph is used to calculate the Page Rank score and to compare it with
other node properties like centrality. Moreover [8] exploits a similar technique to
rank topical experts and [6] applies it to a very narrow twitter category. Surveys of
other attempts to measure user influence on Twitter are in [14] and in [2]. This type
of approach is not the only possible one, a long research stream started from studies
like [1] and investigating intriguing ideas such as mixing page rank and clustering
as in [9] oe exploiting Markov chains as in [10].

Moreover the application in our work has the purpose to rank the tweets in order
to show them to the users while the two articles taken in comparison focus more on
the credibility of Twitter users and classification of malicious information.

Other useful applications can be found in article [5] such as bookrank to rank and suggest
books to the users or TrustRank and BadRank to provide information on the “spaminess”
of particular pages. For example TrustRank has the purpose to combat spam by filtering
the web based upon reliability. The method is a semi-automated process that firstly selects
a small set of seed pages to be evaluated by an expert. Once the reputable seed pages
are manually identified, a crawl extending outward from the seed set looks for similarly
reliable and trustworthy pages.

Another way to use PageRank to filter spam pages is also presented in the work [17]; in this
thesis the author applies particular personalization vector optimizing it by suppressing
the effect of link spamming. Indeed firstly the algorithm finds the spamming pages since
one of the effective methods of link spamming is creating irreducible subsets in the original
matrix. Creating irreducible subsets is very effective, that is because if a surfer gets there,
it cannot leave by following outlinks and can only exits the subset by using teleportation.

All these considerations can conclude that this work differs from the other applications
mostly because of the usage of the personalization vectors, firstly because different types
of knowledge is considered to rank the objects and secondly because of PageRank with
multiple personalization: the new algorithm to extend PageRank with personalization by
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using multiple vectors.
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In conclusion this work has analyzed different ways to use and integrate PageRank with
other algorithms.

Generalized PageRank allows PageRank to be used in combination with other rankings,
this empowers to integrate PageRank with whichever other algorithms that rank a list of
objects.

One downside is that the basic PageRank cannot be used in all the contexts but only
when the lists of objects to be ranked can form a meaningful directed graph, meaning a
network where the score given to the nodes (to rank the nodes in the output) must meet
two requirements:

• it must be high if it refers to a node linked by many other nodes.

• it must be high when referring to a node linked by very significant nodes.

It is not always easy to create this network but this work analyzed three completely
different environments where a network can be built.

This work has the scope to apply PageRank in different contexts to prove that this
algorithm is still valuable to rank a list of objects connected one another. The algorithm
is integrated by using statistical tools to make it more powerful for each environment
analyzed. The final aim is to enrich the available tools that can be used to solve the
so-called ranking problems.

By using a truncated geometric distribution or another discrete distribution, as examined
in PubMed analysis, it is possible to create a distribution on the set of nodes starting
from a rank. This distribution can be used in PageRank as the personalization vector.
When multiple ranks are available it is possible to generalize it by applying the generalized
PageRank that uses multiple personalization vectors.

The problem of ranking a list of objects is a very complex problem as there is no absolute
solution. Indeed ranking the webpages for the users can depend on the user that is using
the algorithm, the best solution for the user is subjective. In the PubMed analysis users
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were more satisfied by the results given by PageRank in comparison to the ones given by
Best Match sort, this means that on average the algorithm is performing well to spot the
best articles to show to the users.

In the Tennis analysis there is also no best solution but for the Wimbledon tournament the
algorithm has very similar results to the choices made by the ATP organizations. This
means that in this situation PageRank is helpful to automate the process of choosing
which player is playing in which court.

As already stated and described in general it is not always easy to build the graph as this
has to represent a meaningful relation between the objects to rank, otherwise the final
rank cannot be powerful.

From these considerations we can state that PageRank can still have an impact on several
applications. Moreover the generalization of PageRank with multiple personalization
allows developers to use it in combinations with other ranking algorithms, making the
tool even more powerful.

7.1. Algorithm performance

As already stated in the introduction this work considers only ways to build a powerful
tool result oriented; this project does not take into consideration the time complexity of
the algorithms. Indeed this algorithm is developed only using Python.

For all the applications data is not stored locally but it is downloaded every time that
the algorithm runs. PubMed webapp is the only exception as each query searched online
is stored server side for 10 days.

For Twitter there was a big restriction given by the API that gives a maximum capacity of
tweets scraped every day and every month. For Tennis only professional players competing
in tournaments masters 1000 and grand slams are considered hence there was no issue
related to time performance as there were not more than 50 players in the network.

PubMed is the only application where we decided to consider only the first 10 pages of
results in order to avoid the users to wait for too much time to get the results. We now
do not consider the time needed to scrape the results in PubMed and just consider the
time needed to compute the invariant distribution.

Here is the graph that represents the time used by the algorithm to compute the invariant
distribution against the number of pages considered in the scraping data preprocessing,
this is applied by using a convergence tolerance of 10−6:
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Figure 7.1: Time performance of the algorithm in PubMed

The expected result is an exponential function but of course since we are not using too
many pages here it seems more a quadratic function, probably representing the first branch
of the exponential function.

Even if in this work the time performance of the algorithm is not considered we can state
that for datasets up to 1000 data the algorithm performs well as no more than 15 seconds
are needed to compute the invariant and generate the ranking of the articles. Of course
Google has to dial with enormous datasets and this algorithm could not work in such an
environment. Still this algorithm can be used in many other situations where the first
dataset is not enormous or when a preprocessing algorithm is performed to filter only the
top 1000 nodes in the network.
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Theorem A.1. Suppose M is stochastic and P is a sequence that satisfies:

Pk+1 = MPk (A.1)

such that M = [mij] and Pk = [P1
k,P

2
k, ...,P

n
k ]

′. If the following condition
0 ≤ Pj

k ≤ 1, j = 1, ..., n
n∑

j=1

Pj
k = 1 ∀k ∈ N

(A.2)

holds for a fixed value k̃, then it holds for all k > k̃.

Proof. Relation A.1 says that Pk+1 is a linear combination of the columns of M whose
coefficients are the components of Pk. Since mij ≥ 0 and Pj

k ≥ 0∀i, j then Pj
k+1 ≥ 0 ∀j.

Furthermore

n∑
j=1

Pj
k+1 =

n∑
j=1

(
n∑

h=1

mjhPh
k

)
=

n∑
h=1

(
n∑

j=1

mjhPh
k

)
=

n∑
h=1

(
n∑

j=1

mjh

)
Ph

k =
n∑

h=1

Ph
k = 1

(A.3)

It follows Pk+1 ≤ 1 ∀j.

The validity of A.1 has been proven for k = k̃ + 1. The general case (k > k̃) follows by
induction.

Theorem A.2 (Markov-Kakutani). A transition matrix on a finite set of states Ω has
always at least an invariant probability distribution.

Proof. Let M be a Markov matrix on a finite set of states. The existence of an invari-
ant probability distribution for M coincides with the existence of a fixed point for the
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continuous function M : S → S. Given V ∈ S, k ∈ N 0 we define

Vk =
1

k

k−1∑
h=0

MhV (A.4)

Then Vk ∈ S ∀k, thanks to A.1.

By the Bolzano-Weierstrass Theorem, there exist a subsequence Vkl and W ∈ S such
that

lim
l→+∞

Vkl = W (A.5)

W is an invariant probability distribution because, after cancelling equal terms in the two
summations,

Vkl − W =
1

kl

(
kl−1∑
h=0

MhV −
kl−1∑
h=0

Mh+1V

)
=

1

kl

(
V −MklV

)
(A.6)

and then, passing to the limit l → +∞ in both sides and taking into account that
kl → +∞, ∥V∥Rn ≤ 1 and ∥MklV∥Rn ≤ 1, it follows that (V −MklV)/kl → 0 ⇒

lim
l→+∞

Vkl = W (A.7)

Theorem A.3 (Perron–Frobenius). . If M >> 0, meaning M = [mij] where mij > 0,
then its eigenvalue of maximum modulus (called dominant eigenvalue), denoted by λM > 0,
is unique, real, greater than zero and simple (algebraically and, therefore, geometrically).
Furthermore, there exists a strictly positive eigenvector VM (called dominant eigenvector)
associated to λM > 0.

Theorem A.4. Given a Markov chain with n states and transition matrix M = [mij], if
there exists the limit of a column of Mk as k → +∞, namely ∃j ∈ 1, 2, ..., n : ∀i ∈ 1, 2, ..., n

∃ limk→+∞ m
(k)
ij = βi (where m

(k)
ij = [Mk]ij then β = [β1, ..., βn] is an invariant probability

distribution.

Proof. βi ≥ 0 since M is a Markov matrix. Moreover

n∑
i=1

βi =
n∑

i=1

lim
k

m
(k)
ij = lim

k

n∑
i=1

m
(k)
ij = 1. (A.8)
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Furthermore

βi = lim
k

m
(k)
ij = lim

k
m

(k+1)
ij = lim

k

n∑
s=1

mism
(k)
sj =

n∑
s=1

lim
k

mism
(k)
sj =

n∑
s=1

misβs. (A.9)

Therefore Mβ = β.

Theorem A.5. Each regular Markov chain with n states has a unique invariant proba-
bility distribution P: the positive eigenvector (probability distribution) associated to the
dominant and simple eigenvalue 1. If M is the stochastic matrix of a regular Markov
chain and P is the corresponding invariant probability distribution, then all the eigen-
vectors and generalized eigenvectors of M different from (multiplies of) P are orthogonal
to the uniform probability distribution [1/n, 1/n, ..., 1/n]′ which is the (strictly positive)
dominant eigenvector of M ′. Moreover, for every initial probability distribution P0:

lim
k

MkP0 = P (A.10)

Moreover all the columns of Mk converge to P as k → ∞:

lim
k

Mk = [P,P, ...,P] (A.11)

Theorem A.6. if A is a primitive matrix of order n, VA is the positive eigenvector of
norm 1 associated to the dominant eigenvalue λA = λ1 > |lambda2| ≥ ...|λn|, then:

• if λ2 ̸= 0 then as k → +∞

Ak = (λA)
kVA(VA)′ +O

(
km2−1|λ2|k

)
(A.12)

where m2 is the algebraic multeplicity of λ2.

• if λ2 = 0 then for k ≥ n− 1

Ak = (λA)
kVA(VA)′ (A.13)
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