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Abstract

The advertisement aired by radio broadcasters is one of their major incomes. The

provider, i.e. the company which owns the radio station, and the customer, i.e.
whichever subject interested in advertising a product, sign a contract in which

some aspects of the advertisement campaign are specified.

Therefore it is evident the usefulness of an automatic systemwhich is capable

of assess the compliance with the contractual terms. A primary requirement for

such a system is to be able to univocally and as accurately as possible identify a

specific commercial break.

In this Thesis we analyze two Neural Networks approaches to carry out

the first step of the identification, i.e. the generic recognition of advertisement

segments among all the other audio contents. The first model consists of a deep

convolutional network which, taking an audio excerpt as input, it is capable of

responding with its probability of being an advertisement. The second model is

based on the TCN (Temporal Convolutional Network) architecture employed to

extract from the audio input the music and speech energies.

Moreover, to accomplish the training of these two Neural Networks, we col-

lectedadvertising,music and speechaudio samples fromsome italian radiobroad-

casts, then gathered in MUSPAD (MUsic, SPeech and ADvertisement) dataset.

The first model outperformed the second one in all the experimental results.

These noteworthyperformances let us think that such amodelmight be employed,

within the advertisement identification system, in an industrial context.

Keywords: Neural Networks, advertisement, clustering, classification
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Abstract in lingua italiana

Lapubblicità trasmessa alla radio èunadelle principali fonti di ricavoper le società

proprietarie delle emittenti radiofoniche. Il fornitore, in questo caso l’emittente

radio, e il cliente, cioè qualsiasi entità interessata a pubblicizzare un prodotto sulla

piattaforma radiofonica, si accordano in forma contrattuale su vari aspetti della

campagna pubblicitaria.

Risulta quindi evidente l’utilità di un sistema automatizzato capace di val-

utare il rispetto dei termini contrattuali. Requisito fondamentale di tale sistema

è quello di essere in grado di identificare in maniera univoca e il più possibile

precisa le singole pubblicità.

In questa Tesi analizziamo due approcci a Reti Neurali per portare a termine

il primo passo dell’identificazione, cioè il riconoscimento generico di segmenti

pubblicitari tra gli altri tipi di contenuti. Il primo modello consiste in una rete

convolutiva profonda che preso in ingresso un segmento audio è in grado di

stimare la probabilità che esso sia una pubblicità. Il secondo modello si basa

sull’architettura TCN (Temporal Convolutional Network), la quale viene impie-

gata per estrarre dall’audio in ingressouna stimadelle energie dovute al contenuto

musicale e del parlato.

Inoltre per portare a termine l’addestramento delle due Reti Neurali si è

resa necessaria la collezione di campioni radiofonici, da varie emittenti italiane,

contenenti pubblicità, musica e parlato, poi raccolti in MUSPAD (MUsic, SPeech

and ADvertisement dataset).

I risultati ottenuti vedono il primo modello superare come prestazioni il

secondo. I buoni risultati riscontrati dal primo modello inducono a pensare che

un’architettura di questo genere possa essere utilizzata, all’interno del sistema di

identificazione pubblicitaria, in contesto industriale.

Parole chiave: Reti Neurali, pubblicità, clustering, classificazione
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1. Introduction
Advertisement broadcasting constitutes a fundamental source of revenue for the

companies which own the radio stations. Radio companies (providers) sign con-

tracts with the entities that commission the advertising broadcasting (customers).
These contracts might set some important characteristics of the advertising cam-

paign, such as, for instance, the number of times that a commercial has to be aired

or the particular time of the day in which to broadcast it. In this scenario it is

natural to have at disposal a procedure to check if the terms in the contracts are

respected. Particularly this aspect is essential in the customers’ perspective.

Our work aims to satisfy this need for a way to automatically assess the

compliance of the broadcastings with the contracts. Such a machinery requires a

section which must be able to correctly identify the specific advertisements.

Previous efforts to solve the task of advertisement identification in a FM radio

stream are mainly based on the audio fingerprinting approach. This technique

consists of extracting a digest from an audio sample, i.e. the fingerprint, and store

it in a database together with its metadata. When an unlabeled audio sample is

presented to the system, its fingerprint is extracted and matched against those

stored in the database. In this way an unlabeled sample can be identified and its

metadata can be obtained. Many fingerprinting methods are in use, Cano et al.

[1] provided a review of them.

Therefore, since the fingerprinting approach can be exploited for any audio

sample, unregarding its content, it has been applied to advertising identification.

For instance Cerquides [2] proposed a system for real time advertisement tracking

in FM radio, based on the fingerprinting method by Haitsma et al. [3]. Ouyang

et al. [4] leveraged both audio and visual fingerprints to detect TV commercial

advertisements.

Surelymore explored is thefield ofmusic recognition. The song identification

is essential to check for copyright infringements and to collect the royalties owed

to the authors. Moreover this task was shared to the general audience by the

renowned application called Shazam® which, again, makes use of fingerprinting

(Wang [5]) to identify songs in real time.

Another approach to music recognition, and in general to the MIR (Music

Information Retrieval) tasks, are Neural Networks (NN). This approach, famous

for its great success in the field of visual pattern recognition, has been applied

also in the audio framework. Neural Networks indeed allow to leverage the

representativeness of the features learned by the model, instead of making use

of the manually extracted ones (e.g. Mel-Frequency Cepstral Coefficient, Zero-

Crossing Rate etc.), employed in the classical approaches to MIR.

Various network architectures has been taken into account for several tasks

with success. For instanceDong [6]managed to reach human-level accuracy in the

1



1. Introduction

task of music genre classification using Convolutional Neural Networks (CNN).

Benito et al. [7] evaluated several architectures, including CNNs and Recurrent

Neural Networks (RNN), in the field of music-speech segmentation. Again a

CNN is employed by Yu et al. [8] for cover song identification, i.e. to identify a

new recording produced by someone who is not an original composer or singer.

It is pretty straightforward to apply aNeural Network approach to our identi-

fication problem of advertisements broadcasted by radio stations. Such approach

let us split the identification task in a first stage of classification, which gets rid

of not-advertisement contents, and a second stage to actually identify the specific

advertising. Considering that commercial breaks occupy approximately only the

10% of the total time, this procedure could lead to a considerable inference speed-

up, excluding at the beginning of the pipeline the not-advertisement content.

In particular in this Thesis we aim to explore the possibility of implementing

an automatic identification systembasedonDeepNeuralNetwork (DNN)models,

i.e. we want to check if such a system can reach the minimum performances

required for a commercial application.

A possible structure for this machinery is composed by a segmentation front-

end (segmenter), a DNN-based classifier (classifier) and a DNN which perform

the identification task (identifier). In fig. 1.1 we show the general design of our

automatic system.

Figure 1.1.: Overall architecture of the identification system

In redwe have highlighted the part which is themain object of this Thesis, i.e.
the DNN-based classifier. We are going to test two different DNN architectures,

obtained with some modifications from already existing models, to see how they

compare and if, at least one of them, they show promising performance with a

view to employ them in a commercial application.

The first model is based on the SoundNet architecture by Aytar et al. [9]. It is

modified in order to provide, as output, the probability of a variable-length raw

audio segment to be an advertising. This is obtained adding to the 1D CNN block

a global pooling layer, to get a fixed length vector of feature, followed by a dense

layer with a sigmoidal nonlinearity.

The second model is structurally more complex being composed by two

stages. The first stage takes as input a variable-length raw audio and, after some

2



1. Introduction

preprocessing, it extracts estimates for the energies of the music and speech com-

ponents. The architecture consists of a conversion of the Temporal Convolutional

Network (TCN) by Meléndez-Catalán [10] to a regression task. The second stage

clearly looks like the last layers of the SoundNet being a stack of convolutional

layers plus global pooling and a dense layers. It takes the music and speech

energies extracted by the first stage and outputs, again, the probability of facing

an advertising sample. In this case the goal is not only assess the performances

of such a network, but also check if the music and speech energies alone provide

sufficient informations for the advertisement classification task.

Still referring to fig. 1.1, the green box denotes the segmenter stage. The goal

of this front-end section is to split a continuous audio stream in shorter segments

which present similar features. In an ideal condition the segmenter shoud be

able to provide the classifier with semantically coherent samples, e.g. dividing a

radio broadcasts in songs, news, advertisements etc. This technology is already

developed by MakarenaLabs SRL®1
, i.e. the company which provided this Thesis.

The final stage of the pipeline, in blue, is the identifier. The goal of this last

part is to decide whether a sample, which has been classified as an advertising,

is already present in the database or, being new, it must be inserted into it. We

decided not to employ a fingerprinting approach for this task, but to identify the

single advertising performing clustering in the space of features extracted by a

DNN. This choice inspired the title of the Thesis. In chapter 6 we give a brief

insight of how this clustering might be carried out, being clear that this is not the

central argument of the Thesis, but rather a future development.

The following digression is divided in: chapter 2 in which we give a brief

introduction of Neural Networks, chapter 3 providing explanation of the assessed

models, chapter 4 regarding the datasets employed to train such networks and

chapter 5 where we expose the experimental results. Finally conclusions and

further developments are dealt with in chapter 6. Theoretical and technical deep-

enings can be found in chapter A and chapter B.

1
https://www.makarenalabs.com/
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2. Background on Neural Networks
We briefly illustrate the concept of Neural Networks, from a mathematical point

of view, through the quintessential deep learning models: Deep Feed-forward Net-
works. Before proceeding with the more elaborate models called Convolutional
Neural Networks andTemporal Convolutional Networks, we discuss the network train-

ing process from a probabilistic viewpoint. These sections follow the presentation

by Bishop [11] chapter 5 and Goodfellow et al. [12] chapter 6.

2.1. Deep Feed-forward Networks
It is straightforward to introduce this argument in the linear models framework.

Linear models are in general based on linear combinations of fixed nonlinear basis
functions φj(x) and take the form:

y(x,w) = f
(
w0 +

M−1∑
j=1

wjφj(x)
)
= f

(
M−1∑
j=0

wjφj(x)
)
= f(wTφ(x)) (2.1)

where f(·) is a nonlinear activation function in the case of classification and

is the identity in the case of regression, and φ0(x) = 1. In the case of regression

this type of model is linear both in the parameters and in the basis functions.

Neural networks extend this kind of model making the basis functions φ(x)
depend on parameters, which can be adjusted alongside the coefficients {wj},
during training. In neural networks each basis function is a nonlinear function of

a linear combination of the inputs, where the coefficients in the linear combination

are trainable parameters. This leads to the basic neural network model as a

composition of functional transformation, as we see in the following.

We begin by building what is called a layer, composed of M units. This is

done by (1) assemblingM linear combinations of the layer input variables x(l) =
(1, x(l)

1
, ..., x

(l)
D
) in the form:

a
(l)
j

=

D∑
i=1

w
(l)
ji
x
(l)
i
+w(l)

j0
=

D∑
i=0

w
(l)
ji
x
(l)
i

(2.2)

for j = 1, ...,M and (2) applying a differentiable, nonlinear activation function
h(·):

z
(l)
j

= h(a(l)
j
) (2.3)
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2. Background on Neural Networks

The parameters w
(l)
ji

are referred as weights, while parameters w
(k)
j0

as biases.
The quantities a

(l)
j

are known as activations. The superscript l indicates that the

quantities belong to the l − th layer. Looking at eq. (2.1) it is clear the correspon-

dence zj↔ φj(x).
Repeatedly applying this construction, assuming as input of each subsequent

layer the output of the previous one, we obtain a stack of stages that eventually

end up with the output units. The layers stacked inside between the input and

the output are called hidden layers, and the correspondent units hidden units. In

particular for the j − th output unit of a network, with L − 1 hidden layers, we

have:

yj(x,w) = g
©«
M(L−1)∑
i=1

w
(L)
ji
z
(L−1)
i
+w(L)

j0

ª®¬ = g
©«
M(L−1)∑
i=1

w
(L)
ji
h(a(L−1)

i
) +w(L)

j0

ª®¬ =

= g
©«
M(L−1)∑
i=1

w
(L)
ji
h
©«
M(L−2)∑
k=1

w
(L−1)
ik

z
(L−2)
k
+w(L−1)

i0

ª®¬ +w(L)j0 ª®¬ =

= ... = g(fL(fL−1(...f1(x;w1)...);wL−1);wL) = f(x;w)

(2.4)

where M(l) is the number of units of the l − th layer. The meaning of f(·),
fl(·) and wl is clear from the context. Here, for simplicity, we have assumed h(·)
and g(·) as activation functions of respectively all the hidden units and all the

output units, which is not always the case. This composition of functions can be

represented in the form of a network diagram, as shown in fig. 2.1.

Figure 2.1.: Example of a 3-layers feed-forward network

5



2. Background on Neural Networks

Approximation property Using nonlinear activation functions on hidden units

allows us to approximate any continuous function on a closed and bounded

domain to arbitrary accuracy, provided that the network has a sufficiently large

number of hidden units and layers. This is true for a wide range of activation

functions, but excluding polinomials. This is why neural networks are said to be

universal approximators. See appendix section A.1 for a proof of this property.

Indeed in order to approximate a function f∗, given the network mapping

ỹ = f(x;w), during the training stage, at each input sample x feeded from the

dataset, we drive f(x;w) to match f∗(x). This is done by optimizing for w a

measure of the error between f(x;w) = ỹ and t, being t the known target value

attached to x, i.e. an estimate of the true function’s value: t ≈ f∗(x).
Even though this universality is reassuring, the key problem is to find a

suitable set of parameter values, given the finite number of training data. In the

next subsection we show the maximum likelihood approach to tackle this issue,

which is usable since in the supervised framework we have the ground truth

values at our disposal.

2.2. Network training
A general view of network training can be obtained by first giving a probabilistic

interpretation to the network outputs. We consider the regression and the binary

classification tasks, which are faced in this work.

Regression In the regression framework we start considering a vector of target

values t = (t1, ..., tp) ∈ ℝp and we model it as t = f(x;w) + ε, with ε ∼ Np(0,Σ)
and f is the network output vector function. Therefore we obtain the following

conditional distribution for t:

p(t|x,w) = Np(t; f(x,w),Σ) (2.5)

The choice of Gaussian noise might be, in some cases, restrictive, but it is

the best starting point for the analysis. Given a dataset consisting of: N i.i.d
inputs collected in the matrix X = (xT

1
, ..., xTq) ∈ ℝN×q and the corresponding N

targets stacked in T = (tT
1
, ..., tTp) ∈ ℝN×p, we can construct from eq. (2.5) the

correspondent likelihood function:

p(T|X,w,Σ) =
N∏
n=1

p(tn |xn,w,Σ) (2.6)

and, as usual, the more convenient log-likelihood function:

−Np
2

log(2π) − N
2

log |Σ| − 1

2

N∑
n=1

[tn − f(xn;w)]TΣ−1[tn − f(xn;w)] (2.7)

where |Σ| is the determinant of the noise covariance matrix. The solution for

the maximum likelihood estimate is obtained maximizing eq. (2.7).

6



2. Background on Neural Networks

With the goal of findingML estimate of the weights, i.e. wML, we minimize

the error function given by:

e(w) = 1

2

N∑
n=1

[tn − f(xn;w)]TΣ−1[tn − f(xn;w)] (2.8)

In the case in which the components of vector t are supposed independent

of each other, conditional on x and w, with shared known variance, we have

a diagonal covariance matrix Σ = σ2I. Therefore the minimization of eq. (2.8)

reduces to the minimization of the usual sum-of-squares error function:

e(w) = 1

2

N∑
n=1

[tn − f(xn;w)]T [tn − f(xn;w)] (2.9)

Averaging this quantity over a mini-batch1 we obtain the Mean Square Error
loss function. In practice, the nonlinearity of f(xn;w) causes the error e(w) to be

non-convex, so that local minima of the loss function may be encountered.

Binary classification In the binary classification framework we have a single

target variable t such that t = 0 denotes class C1 and t = 1 denotes class C2.
In this case our network function f(x;w) is scalar and restricted to the interval

[0, 1]. This is obtained with a single output unit having a sigmoidal activation

function. Moreover we can consider f(x;w) as the conditional probability p(C1 |x).
The conditional distribution of the targets given the inputs is then the following

Bernoulli distribution:

p(t|x,w) = f(x;w)t[1 − f(x;w)]1−t (2.10)

Considering a training set of independent observations, then the error func-

tion to be minimized is given by the negative log-likelihood, i.e. the Binary Cross-
entropy loss function:

e(w) = −
N∑
n=1

[tn log(f(xn;w)) + (1 − tn) log(1 − f(xn;w))] (2.11)

Minimizing the loss function This task of finding a weight vector which mini-

mizes the loss function e(w) cannot be accomplished simply by solving the gra-

dient equation ∇e(w) = 0.

Indeed the highly nonlinear behaviour of the function may lead to the pres-

ence of several stationary points inwhich the gradient vanishes or it is numerically

very small. Hence, for a successful application of neural networks, multiple sta-

tionary points need to be "visited" by the algorithm in order to find a suitable

minimum, which might not be the global one, but a sufficiently good solution.

1
A limited amount of samples used to update the gradient. The concept is made clearer in the

following.
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2. Background on Neural Networks

Moreover there is clearly no hope of finding an analytical solution for the gradient

equation.

To tackle this problem iterative procedures are employed. The usual scheme

is the following: after choosing some initial value w(0) for the weight vector, at

each iteration τ, we apply the update rule

w(τ+1) = w(τ) + ∆w(τ+1) (2.12)

until convergence.

Many methods involve the use of the gradient information, for instance the

gradient descent algorithm. Here the weight update is chosen to comprise a small

step in the direction of the negative gradient:

w(τ+1) = w(τ) − η(τ+1)∇e(w(τ)) (2.13)

In practice what mostly differentiates the various gradient-based algorithm

is the choice of the parameter η(τ) > 0, called learning rate, which can also change

at each iteration. In this work we use the well-known Adam algorithm (Kingma

et al. [13]), for more information see section B.2.3.

Note that the loss, i.e. the error function, is definedwith respect to the training

set, and so it is the gradient, which is computed from the data. The choice of how

many samples employ to evaluate ∇e, which is possible if the cost function is

additive like we will suppose in eq. (2.17), distinguishes three type of algorithms:

• Batchmethod: at each step the whole training set it used at once to compute

the gradient.

• Stochasticmethods: at each step the gradient is estimated randomly choosing

N samples from the training set. Therefore more than 1 step is needed to

complete an epoch2. They can further be divided in:

– Online method: N = 1 so that the gradient is estimated using only one

sample.

– Mini-batch method: N > 1, this is somewhere in between the previous

ones.

In table 2.1 we analyze the choice of the batch-size N.

Pros Cons

Small Faster convergence
i

More step to complete an epoch

batch-size Avoid redundancies in the dataset Multicore arch. underutilized

Regularizing effect

Large More accurate estimate of ∇e Gain
ii
less than linear i.e. ∼

√
N

batch-size Memory consumption

i
In terms of total computation, not in terms of number of updates.

ii
The standard error of the mean gradient estimated from N samples is given by σ/

√
N, where

σ is the true standard deviation of the value of the samples.

Table 2.1.: Pros and cons of increasing/decreasing the batch-size

2
An epoch is the passage of the algorithm on the whole training set
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2. Background on Neural Networks

Computing the gradient In this paragraph we illustrate an efficient technique

for evaluating the gradient of the error funtion ∇e(w) for a general feed-forward

network, which may comprise skip-connections3. This scheme is called error back-
propagation or backprop, as originally considered by Rumelhart et al. [14]. In a

general feed-forward network, each unit computes a weighted sum of the inputs

of the form:

aj =
∑
i

wjizi (2.14)

where zi is the output of a unit (which can be also the input units, i.e. zi ≡ xi)
that sends a connection to unit j, and wji is the weight associated with that

connection. Considering, for simplicity, a unique nonlinear activation function

h(·) at each hidden unit we have:

zj = h(aj) for j ∈ Jhidden (2.15)

As far as output units are concerned we fix:

zj = g(aj) for j ∈ Joutput (2.16)

We gather all weights, activations and units’ outputs respectively in w, a and

z. Many error functions, for instance those defined by maximum likelihood for a

set of i.i.d data, can be written as a sum over the samples:

e(w) =
N∑
n=1

en(w) (2.17)

Thereforewe can now consider the derivative of en(w)with respect toweight

wji. Gathering these terms in a vector we obtain the gradient ∇en(w). From

now on each activations aj, unit outputs zj and targets tj are to be considered

correspondent to the n − th training input instance xn. We omit to indicate it to

simplify notation.

∂en

∂wji
=
∂en

∂aj

∂aj

∂wji
(2.18)

wherewehave repeatedly applied the chain rule forpartial derivatives. More-

over deriving eq. (2.14) yields:

∂aj

∂wij
= zi (2.19)

so that:

∂en

∂wji
=
∂en

∂aj
zi (2.20)

3
A skip-connection is a forward link between two units belonging to non-subsequent layers.
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2. Background on Neural Networks

We are now required to compute the term
∂en
∂aj

, often called error. For the

output units it is straightforward. Indeed considering, for instance, a sum-of-

squares loss function:

en =
1

2

∑
k

(zk − tk)2 for k ∈ Joutput (2.21)

then:

∂en

∂ak
= (zk − tk)

∂zk

∂ak
= [g(ak) − tk]g′(ak) for k ∈ Joutput (2.22)

where tk as usual indicates the k − th element of the target.

While for a general hidden unit’s output we have:

∂en

∂aj
=

∑
i

∂ai

∂aj

∂en

∂ai
=

∑
i

∂ai

∂zj

∂zj

∂aj

∂en

∂ai
=

= h′(aj)
∑
i

wij
∂en

∂ai

(2.23)

where the sum runs over all units i to which unit j sends connections. The

recursive nature of eq. (2.23) is evident. This leads to the following algorithm:

1. Apply an input vector xn to the network and feed it forward to calculate all

the activations aj and correspondent outputs zj of the network.

2. Evaluate
∂en
∂ak

at output units utilizing eq. (2.22).

3. Backpropagate
∂en
∂aj

using eq. (2.23) to obtain this quantity at each hidden

unit in the network.

4. Use eq. (2.20) to compute the desired derivatives, i.e. the gradient ∇e(w).
For batch and mini-batch methods the derivative of the total error eq. (2.17)

is clearly given by the sum of the derivatives calculated at each sample n. Con-

sidering a network havingW weight parameters, backpropagation algorithm has

an overall cost of O(W) operations which make it very profitable with respect to

other methods, like for instance finite differenceswhich has a cost of O(W2) flop.

Regularization Besides optimization, another fundamental issue in the network

training is the regularization. This controls the balance between underfitting and

overfitting, i.e. the model’s property of being able to capture the problem complex-

ity and at the same time being general enough to be applied to new data obtaining

sensible results. Reporting the definition in Goodfellow et al. [12] regularization

is: any modification we make to a learning algorithm that is intended to reduce its gen-
eralization error but not its training error. At a first glance the generalization error

might seem a simple function of the numberM of hidden units. This usually false

due to the presence of local minima in the error function.

Here we give an overview of some regularization methods including some

that are used in this work:

10



2. Background on Neural Networks

• Early stopping. While for many of the optimization algorithms the training

error is a nonincreasing function of the iteration index, we find that, as far

as the validation error is concerned, it shows at the beginning a decreasing

pattern followed by an increasing one when the network starts to overfit.

Hence we can stop the training at the point of smallest validation error.

• Parameter norm penalties. It consists in substituting the usual loss function

to optimize with the regularized one, i.e. ẽ(w) = e(w) + αΩ(w)whereΩ(w)
represent some kind of measure of the magnitute of the weights. Indeed in

the neural network framework usuallyΩ penalizes only theweights, leaving

out the biases. Some examples are:

– L2 regularization, commonly known as weight decay. In this case we

add the regularization termΩ(w) = 1

2
wTw = 1

2
‖w‖2

2
.

– L1 regularization. Here the choice of regularization term is Ω(w) =∑
i |wi | = ‖w‖1.

Whereas both the regularizer function shrinks the weights w, in comparison

L1 regularization results in a solution that is more sparse. In addition these

regularizers can be interpreted as prior distributions over the weight vector

w, in particular in the case of the L2 weight decay it is a zero-mean Gaussian

prior.

• Dropout. First presented by Srivastava et al. [15] this technique has been

proved to bemore effective thanother standard computationally inexpensive

regularizers. Moreover it is computationally cheap and applicable to almost

any problem and training procedure. Here, each time we load examples

into a minibatch, a binary mask is randomly sampled with an inclusion

probability whose hyperparameter is fixed before training. This mask is

then applied to the non-output units of the network. Such a procedure of

including/excluding the units basically leads to the training of an ensemble

of subnetworks. The optimal weights are then computed using the weight
scaling inference rule: the estimated weights are divided by the reciprocal of

the inclusion probability, i.e. the reciprocal of one minus the dropout rate. In
this work we make use of the so called spatial dropout. In this particular case

the mask is randomly computed on the spatial coordinates only, then all the

channels correspondent to the selected items are discarded.

• Dataset Augmentation. A straightforward approach to improve the capacity

of the model to generalize is increasing the size of the training set. For some

problem this is possible by creating new fake data, for instance trasforming

or injecting noise in the samples already present in the training set.

• Batch normalization. See appendix section B.2.4.
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2. Background on Neural Networks

2.3. Convolutional Neural Networks
As defined in LeCun et al. [16], and previously investigated in LeCun [17], con-
volutional networks combine three architectural ideas: local receptive fields4, shared
weights and spatial or temporal subsampling. This approach ensures some degree

of shift, scale and distortion invariance. Because of that it can be considered a reg-

ularization method. Moreover this architecture needs to store fewer parameters,

leading to an improvement also in efficiency, and can manipulate variable-length

inputs.

Figure 2.2.: Example of a network with a convolutional and a dense layers

Local receptive fields and weight sharing are made possible by using the convo-
lution operation. These two concepts are well illustrated in fig. 2.2: a unit from the

hidden layer is affected only by three inputs and the links labeled with the same

color are constrained to be equal. From a bayesian point of view, this is equal to

choosing an infinitely strong prior distribution over the weight space of a fully

connected network
5
, imposing some weights to be zero and other to be equal.

We analyze now the 1-D version of the convolution operation. The 2-D

version, which is also used in this work, is a pretty straightforward generalization.

Before starting we have to clarify a point: the implementation of convolution

4
The receptive field is defined as the size of the region in the input which produces a particular

output, i.e. the set of all the inputs which are connected to it through a path of edges.

5
Network composed only by dense layers, i.e. layers in which each input is connected to each

output unit.
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2. Background on Neural Networks

in many neural network libraries actually features a related function called cross-
correlation. This is the same as convolution, but without flipping the kernel and

consequentially without commutative property. From now on we are going to

refer to this function as convolution. The discrete 1-D formula for a finite-length

input is given by:

st = (x ∗w)t = wTxt:t+K =

K−1∑
k=0

xt+kwk (2.24)

where K is the kernel length, x is the input and s is called feature map. Usually

in the applications we implement a centered version of the convolution with a

kernel having odd length like in fig. 2.3:

st = (s ∗w)t = wTxt− ˜K:t+ ˜K (2.25)

where
˜K = K−1

2
. Once computed the feature map onemay or may not add the

biases bt to obtain the activationsat = st+bt, and further apply the nonlinearities

zt = h(at).

Figure 2.3.: Example of a convolution operation with kernel-size=3 and stride=2

With the help of fig. 2.3 we introduce some of the parameters which define a

convolutional layer:

• kernel size. It is the shape parameter of the kernel. Bigger kernels means

bigger receptive fields but also more weight parameters to optimize.

• padding. It is the procedure of adding values, usually equal to zero, at the

input’s sides to obtain a feature map with the same dimension of the input.

Indeed we can clearly notice that, without padding, the application of the

convolution operation results in an implicit downsampling, with respect to

the input size.
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2. Background on Neural Networks

• stride. It is the distance between two consecutive values over which the

kernel is centered. This is a direct way to control the downsampling factor

of the convolution layer.

Since often the inputs include multiple channels, e.g. RGB image or stereo au-

dio, or anyway, deeper layer may have several channels in input, a correspondent

number of different kernel have to be applied. These kernels stacked together in

a tensor6 constitute what is called a filter. Now we can introduce another, very

important, parameter that defines a convolutional layer:

• number of filters. Many filters can be applied to allow us to extract different

patterns from the input. The chosen number of filter it is equal to the number

of channels that the layer is going to output. Check fig. 2.4 for the details.

Figure 2.4.: Overview of 1D convolution performed on a 2-channel input with a

4-channel feature map

We discuss now how the third idea combined in neural network, i.e. subsam-

pling, is carried out. So far we have seen that both convolution without padding

and the strideparameter control the subsampling in the temporal or spatial dimen-

sion. Despite that, the most used method to achieve a meaningful subsampling is

the so called pooling.
Pooling consists in extracting patches through a moving window along tem-

poral or spatial axes and substituting them in the outputwith single values, which

are summary statistic of each patch. This is done for each channel independently.

Basically the output of the net at a certain location is substituted with a sum-

mary statistic of the nearby outputs. Moreover, to be effective, pooling layer must

feature a stride greater than one in order to downsample the input.

6
Here the generalization of a matrix to n dimensions.
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2. Background on Neural Networks

Another important consequence of applying pooling is the invariance of the

representation to small translation of the input and the reduction, i.e. translation
within the kernel size. In addition, subsampling the featuremaps let the following

convolutional layers to learn high level patterns, indeed pooling increase their

unit’s receptive field. Finally an implicit advantage is the reduction of the number

of parameters which leads to less memory consumpion and faster optimization.

The most common pooling strategy is max pooling (Zhou et al. [18]) which

consist of extracting the maximum value from the pooling sliding window. This

has been proven to be more effective than other pooling approaches, e.g. average
pooling or L2 -norm pooling.

We conclude this section with an observation on the terminology. Often we

call convolutional layer the stack of a convolution, a detection and a pooling stages,

since these three operation are usually applied together sequentially (Goodfellow

et al. [12]). See fig. 2.5.

Figure 2.5.: A convolutional layer in complex terminology

2.4. Temporal Convolutional Networks
In Bai et al. [19] the temporal convolutional network (TCN) is presented as a family of

architectures, for sequences modeling, distinguished by two main characteristics:

• the convolutions in the architecture are causal, meaning that there is no

information "leakage" from future to past.

• the architecture can take a sequence of any length and map it to an output

sequence of the same length.

While the first point is achieved performing convolutions where an output at

time t is convolved only with elements from time t and earlier, the second point is

accomplished using a 1D fully-convolutional network (FCN) architecture (Long

et al. [20]), where each hidden layer has the same length as the input layer, since
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2. Background on Neural Networks

zero padding of length (kernel size - 1) is added to keep subsequent layers the

same length as previous ones.

With this basic design, in order to achieve a long effective history size, we

need either an extremely deep network or very large filters. To overcome this

trade off between longer history size and the extreme deepness of the consequent

network, which make the model very difficult and hard to train, TCNs integrate

two techniques: dilated convolutions and residual connections. To explain this two

features we follow the Bai et al. [19] exposition.

Dilated convolutions Consider a 1D sequence input x ∈ ℝn and a filter w of

length K. The dilated convolution is defined as:

st = (x ∗d w)t =
K−1∑
k=0

xt−d·kwk (2.26)

where the multiplier d is the dilation factor. Employing this version of the

convolution allow us to enable an exponentially large receptive field. Indeed, for

our simple stack of convolutional layers, the formula for the this quantity is given

by:

RF = 1 +
L∑
i=1

d(i)(K(i) − 1) (2.27)

where d = (d(1), ...,d(L)) is the vector of dilation rates and K = (K(1), ...,K(L))
is the vector of kernel lengths. This gives us two ways to augment the receptive

field of the TCN: choosing larger filter sizes K and increase the dilation factors

d. The effective history of one of such layers is (K(i) − 1)d(i). Finally, when using

dilated convolutions it is common to increase d(i) exponentially with the depth

of the network in order be sure that at least one filter hits each input within its

effective history. This is clear in fig. 2.6.
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Figure 2.6.: Stack of dilated convolution layers with kernel size=3

Residual connections When deep network are able to start converging, a degra-
dation problem has been discovered: with the network depth increasing, accuracy

gets saturated and then degrades rapidly. The origin of this phenomenon it is

still not clear. It seems not to be caused by overfitting since adding more layers

to a deep model leads to higher training error. He et al. [21] (resNet) proposed a

method to tackle this issue.

Consider a shallow network and its augmented version obtained by adding

more layers on top of it. There exists a solution by contruction to this deeper

model: the added layers featuring identity mappings. Obviously in this case the

augmented model should not produce higher training error than its shallower

counterpart. Experimental results show that our current optimizers are unable to

find solutions comparably goodwith respect to the constructed solution featuring

identity mappings. Using residual connections we explicitly let the layers to learn

modifications to the identity mapping rather than to the entire transformation.

Indeed consider a stack of layers and its overall applied transformation given

by f(x;w). It is considered a residual block when the input x is summed to the

transformation within the activation function (see fig. 2.7):

z = h(x + f(x;w)) (2.28)

The branch that jumps from the input directly into the activation is called skip
connection or shortcut connection.

Since we are summing x and f(·) which may have different dimensions, e.g.
they may have a different number of channels, sometimes a linear projection is

needed to match the dimensions. Usually to modify the number of channels 1× 1
convolution is applied. Note that the implementation of a skip connection does

not need extra parameters (leaving the 1 × 1 convolution out).

We propose an example of degradation problem and the solution consisting

in the usage of residual connections in appendix section A.2.
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Figure 2.7.: Structure of a residual block, w = (w1, ...,wL)

To conclude, still following Bai et al. [19] paper, we list some advantages of

TCN architecture:

• Parallelism. Convolutions can be done in parallel since the same filter is used

in each layer. A long input sequence can be processed as a whole without

waiting for the predictions relative to previous time steps.

• Flexible receptive field size. We can change the receptive fields inmultipleways

controlling the number of layers, the dilation factor and the kernel size.

• Stable gradients. The backpropagation path is different from the temporal

direction of the sequence. This let TCNs to avoid the problem of explod-

ing/vanishing gradients.

• Low memory requirement for training. TCN exploit the parameter sharing of

the convolutional layers without adding extra parameters.

• Variable length inputs. This is also an advantage due to the usage of convolu-

tional layers.

One notable disadvantage is the fact that whenwewant to transfer the model

to a different domain often we will have to change the hyperparameter to satisfy

the request of a larger receptive field.

A final clarification: at the beginning of this section we have defined the

TCN’s kernels to be causal. Actually Lemaire et al. [22] have proven that TCNs

featuring non-causal filters (ncTCN) are able to achieve better results in the task of

speech and music detection. Obviously this is not possible in all the applications

since to compute the convolution output at time twe need samples from instants

t + ˜k.
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3. Models under investigation
In this chapter we detail the two models under investigation with the goal of

discriminating between advertisement and other type of radio contents. Hence

for both models the framework is the binary classification advertisement versus
other, i.e.music and speech, though the second model is more complicated in that

it features an energy extractor front-end. Bothmodels are inspired by networks in

literature. We highlight the original features and our additions subdividing the

sections in two dedicated paragraphs.

3.1. SoundNet-based network
The original architecture We called this first model "SoundNet-based" since it is

based on the work of Aytar et al. [9], which dates back to 2016.

While the fields of object recognition, speech recognition, machine transla-

tion have been revolutionized by the emergence of massive labeled datasets and

learned deep representations, this is not the case as far as natural sound under-

standing is concerned, which is the goal of the SoundNet project.

The SoundNet utilizes a teacher-student architecture to leverage the natural

synchronization between vision and sound in order to learn acoustic representa-

tion using two-million unlabeled videos. Unlabeled videos have the advantage

that they can be acquired economically at a massive scale and they contain useful

signals about sounds. Strong progress in computer vision has enabled machines

to recognize scenes and object in images and videos with good accuracy.

The SoundNet architecture transfer this discriminative visual power into

sound using unlabeled video as bridge. This model is based on a deep convolu-

tional network that learns directly on raw audio waveforms, which is trained by

transferring knowledge from vision into sound. The overall structure can be seen

in fig. 3.1.

In their work the authors chose to use videos from Flickr1, an online commu-

nity where users share images and videos, because they are natural, not profes-

sionally edited, short clips recorded with audio in everyday situations. Over two

million videos have been downloaded querying for popular tags and dictionary

words. The resulting dataset features over one year of continuous natural sound

and video. The clips’ lengths are variable between few seconds and several min-

utes. Since they aim to process sound waves in the raw the only post-processing

required done on the videos was to convert sound tomp3 format, fix the sampling

rate to 22050 Hz, and transform to a single channel audio. This was done to facil-

itate the storage and the usage during training of this very large dataset. Finally

1
www.flickr.com
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they scaled the waveform to be in the interval [−256, 256].
As previouslymentioned, themodel itself consists of a deep convolutional ar-

chitecture, as far as the sound part of the network is concerned. More specifically

a series of 1D convolutions are employed, followed by nonlinearities, i.e.ReLU lay-

ers, in order to process sound. Between each of these layers a batch-normalization

stage is employed to speed-up the training phase.

The convolutional framework had been chosen for a couple of reasons.

Firstly, like for images, the network is needed to be invariant to translations.

This necessity leads also to the advantages of reducing the number of parameters

to learn and of increasing efficiency.

Secondly, stacking more convolutional layers enables the network to detect

higher-level concepts through a series of lower-level detectors. Since the authors

desired to work with audio samples which can vary in temporal length, the

network must be able to handle this kind of inputs.

The solution implemented is a fully convolutional network, i.e. a network

composed by convolutional and pooling layers only.

The output layer as well has to be designed to work with variable lengths

inputs. Unlike us, they chose not to use a global pooling strategy to squeeze the

temporal dimension, that is not to downsample a variable length input to a fixed

size vector which may be connected, through a dense layer, to the classification

neurons. Instead, since also video is variable length, they use a convolutional out-

put layer to produce an output over multiple timesteps in video. Such a strategy

avoids the discard of potential useful informations for high-level representations.

Leveraging the large amount of videos in the dataset makes it feasible to use deep

architectures without significant overfitting.

The authors experimented with both five-layers and eight-layers networks

with the latter which performed better.

We do not deepen into the visual part of the network since it is not useful for

ourpurposes. We simply outline the fact that thenetwork is trainedoptimizing the

well known Kullback-Leibler divercence between the visual and the sound outputs,

since they can be interpreted as probability distributions over the 1401 possible

categories.

Moreover, given the fact that not all of the audio categories that they wish

to recognize appear in visual models, the authors trained a linear SVM on a

small amount of labeled sound data for the concepts of interest. The SoundNet

architecture makes it simple to pick a layer in the network to use its activations as

features in order to train the SVM classifier.

The authors evaluated this classifier on three different acoustic scene classi-

fication datasets (DCASE, ESC-50 and ESC-10) outperforming existing state-of-

the-art methods by around 10% on everyone of the three with respectively 88%,

74.2% and 92.2% accuracy. Moreover they proved the semantic relevance of the

features extracted from the 7-th convolutional layer using the t-SNE embedding.
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Figure 3.1.: Original SoundNet architecture

Our modified architecture Given the good results and the semantic relevance

of the features obtained from this network we decided to mimic its acoustic-

dedicated architecture.

As we have seen the SoundNet is dedicated to natural sound classification,

or better, to extract relevant features then used for the classification task via SVM.

This different dedication prevented us from simply train a dense classification

network with the features extracted from the 7-th layer of the SoundNet as inputs,

i.e. to perform transfer learning between natural sounds’ domain to ours. Indeed

we decided to keep unaltered the convolutional structure and to add on top of

that a global pooling layer, followed by a dense layer to perform classification. In

fact we want our classifier to be totally based on a neural network approach and

do not rely on other methods like SVMs.

This altered structure is to be completely trained from scratch on our dataset.

We can look at the described overall architecture in fig. 3.2, while for an insight

of the 1D CNN stage see table 3.1. Between each two consecutive layers a batch-

normalization layer is insertedwhichoperates along the features axis. It is inserted

after the convolutional layer activation and before the activation function. After

the batch-normalization, when it is scheduled, a max-pooling layer is put in the

pipeline. The global-max-pooling at the end shrinks thewhole time axis to unique

samples to obtain the 1024 features from the 7-th layer. These features are then

connected through a dense layer to a single output unit, provided with a logistic

sigmoid activation, as usual for binary classification.

This model is composed by a total of 2,879,384 parameters, of which 4,064

non-trainable, due to batch-normalization layers.

As Aytar et al. [9] have explored in their paper defining the SoundNet, this
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3. Models under investigation

Figure 3.2.: Overall structure of the SoundNet-based model

architecture is easily suitable to the removal or insertion of one or more con-

volutional blocks in order to extract fewer or more features, depending on the

need.

1st layer 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer

filters num 16 32 64 128 256 512 1024

kernel size 64 32 16 8 4 4 4

kernel stride 2 2 2 2 2 2 2

padding 32 16 8 4 2 2 2

activation ReLu ReLu ReLu ReLu ReLu ReLu ReLu

pool size 8 8 no no 4 no GlobMax

pool stride 8 8 no no 4 no -

Table 3.1.: Architecture of the 1D CNN stage

3.2. CNN-TCN-based network
The secondmodel that we propose follows a different idea: instead of feeding the

network with the raw audio data, we give as input to a CNN-dense classifier the

music and speech energies extracted by a CNN-TCN front-end network.

This approach is based on the hypothesis that music and speech energies,

and their time course, might encode sufficient information for our advertisement

detection task. Indeed listening to advertisement samples suggests that they are

usually composed of music and speech segments alternating in time. This fact

should let such energy-based network to distinguish between advertisement and

music, i.e.music does not contain speech, and between advertisement and speech,

i.e. speech does not contain music.

Nonetheless the situation might be more complicated. That is because for

speech we mean also an audio sample in which the focus is clearly on the spoken

parts, but music presence is allowed. In fact often in radio broadcasts, expecially

the ones focused on music, the radio hosts speak over a music background. This

instance is considered speech in our dataset. While sometimes, during broadcasts,

such a music background has a rather high volume, this is not the case for the

majority of the advertising. Indeed, for the sake of clarity of the advertising

message, commercials usually show an alternatig structure in which the most

important spoken parts clearly emerge from a quieter music background.

We summarize the observations in support to this claim, about the sufficiency

of music and speech energies to carry out our classification task, in table 3.2.
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3. Models under investigation

Foreground music Only speech Speech+background music

Advertisement Presence of Presence of Alternating structure with

speech music clear emerging speech-only parts

Table 3.2.: Energy-based features that should discriminate between advertising

and other contents

A comparison, in terms of performances, with the SoundNet-based model

will justify or deny our hypothesis.

In fig. 3.3 we can take a look to the overall pipeline. The total number of

parameters of this network is 1,924,299.

In the followingwe deepen into both the front-end energies-extractor and the

back-end classifier.

Figure 3.3.: Overall structure of the CNN-TCN based model

3.2.1. CNN-TCN energies extractor
The original architecture The goal of this section of the network is to extract,

from the radio broadcasted samples, robust estimates of normalized music and

speech energies.

Given the similarity between our and their tasks we employ the architecture

proposed by Meléndez-Catalán [10] in 2020. In this paper the authors aim to

estimate the relative music loudness of an audio source, i.e. to divide an audio

stream in segments of three classes: foreground music, background music and

no music (for instance speech).

This is done employing a Temporal Convolutional Network (see section 2.4)

which works, and that is the novelty introduced by the paper, on top of a CNN
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front-end. They expect the CNN front-end to work as a feature extraction strategy

to achieve a more efficient usage of the network’s parameters; while TCNs are

a type of architecture with the ability to model temporal context, which is a

fundamental characteristic when analyzing temporally correlated signals such as

music.

In the case of simple music detection the foreground and background music

are not separated in two classes. The detection of background music, distin-

guished by foreground music, has become relevant in the literature since it is an

harder problem. This fact gave birth to the relative music loudness challenge.

Clearly, for our goal, it is essential to implement a network which is able to

discriminate between foreground and background music, as we have illustrated

previously. Indeed the presence of background music in a sample is a simple

index of the fact that we could be in presence of an advertising.

Back to the network structure, the authors claimed that the insertion of the

CNN front-end could lead to improvements in the classification performance. To

prove that, they compared this CNN+TCN network versus a TCN-only network.

Beyond performances, what is sure is the fact that this insertion of a CNN front-

end with a proper number of channels yields a model with less parameters than

the TCN-only network.

As network inputs the authors use audio with a sample rate of 8000 Hz and

16 bits precision, normalized to have a maximum amplitude value of 1. From the

audio data they then compute the power spectrogram with a Hanning window

of length 512 samples, i.e. 64 ms, and hop size of 128 samples, i.e. 16 ms. A Mel

filter bank with 128 filters is applied to obtain the Mel-spectrogram. This filter

bank converts the usual Hertz scale of frequencies to the Mel scale, which is a

perceptual scale of pitches judged by listeners to be equal in distance from one

another. This is motivated by the fact that humans do not perceive frequencies

on a linear scale. For instance we can easily tell the difference between two low

frequencies sounds, but increasing the frequency the same difference becomes

harder to tell. Such change of scale allows a more granular sampling of the low

frequencies in which sounds humans are used to, e.g. voices, are located. Finally
the Mel-spectrogram is converted to logarithmic scale and min-max normalized

to the interval [0, 1]. Since the audio samples have a fixed length of 10 s the

resulting inputs are matrices with shape 128 × 625.
The samples utilized are gathered in the OpenBMAT dataset, composed of

over 27 hours of TV-broadcasted audio from various countries distributed over

1647 one-minute long excerpts.

These inputs are fed to the CNN front-end which consists of a stack of 7

blocks that comprehend: (1) a 2D convolutional layer with Ncnn 3 × 3 filters and

ReLU activation function, (2) a spatial dropout layer with a dropout rate dr and

(3) a max-pooling layer. The max-pooling layer is applied only to the frequency

axis reducing its dimensionality by a factor of two until it is equal to one. The

TCN reads the output of the CNN asNcnn scalar temporal sequences andmodels

their evolution.

Speaking of which the TCN model is composed by a stack of 6 residual blocks
(see section 2.4) featuring also spatial-dropout layers with dropout rate again dr.
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All the 1D convolutional layers have Ntcn non-causal filters of length L. The

structures of the convolutional blocks which composes the CNN front-end and of

the residual blocks are shown in fig. 3.4.

At the end of the pipeline a 1D convolutional layerwith kernel length equal to

1 allows to sum the skip connections coming from the various blocks and outputs,

thanks a softmax activation, a probability distribution over the three class, for each

time frame.

At this point each time frame is assigned to the class with higher probabil-

ity. Since classifying at time frame level is very precise, but makes the algorithm

susceptible to produce short erraneous segments, a smoothing window is ap-

plied. The time frame, on which the window is centered, is assigned to the most

represented class in such interval.

Notice that the whole network leaves the time axis invariated in terms of

dimension, i.e. there is no time downsampling. Such a feature perfectly fits our

energy extractor’s needs.

During training, firstly, a grid search over hyperparameters was performed,

which yielded as best choices: Ncnn = 32, Ntcn = 16, L = 7 and dr = 0.15. Their

training results showed also how the presence of a CNN front-end is effective in

the task of relativemusic loudness estimation: in termsof accuracy theCNN+TCN

network gains more or less 4% over the TCN-only model reaching the 90%.

Figure 3.4.: Structure of the 2D convolutional and of the residual blocks

Our modified architecture These encouraging results obtained by Meléndez-

Catalán [10] in the task of relative loudness estimation pushed us to employ a
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similar architecture, comprising the CNN front-end, for our energies extractor.

Indeed the good performances (∼85% precision and recall) obtained by the au-

thors in recognizing also background music makes us suppose that a similar

architecture may yield a good estimate of music energy, even when it appears in

background.

What we have to do is basically convert the paper’s 3-classes classification

setting to our 2-channels regression framework, i.e. one channel represents music

energy and the other the speech one. In fact their proposed network features an

output that consists of a probability distribution over the three classes for each

time-frame in the input, i.e. an Nframe × 3 matrix, obtained employing soft-max

activation functions. Since our desired output is an estimate of normalized music

and speech energies, for each time-frame, it has the shape Nframes × 2.
Wenoticed that the energies normalized in the interval [0, 1] alwayspresented

almost-zero positive values. To make better use of the ReLU activation function

we extended the normalization range to the interval [0, 100]. Therefore, since

the output energies are constrained to be positive and less than 100, we apply a

thresholded ReLU activation function at each time frame of the 2-channels output.

As far as the inputs are concerned, we employ the ADV-MUSAN dataset

which can be created synthetically from the MUSAN corpus, as described in

section 4.2. Thus the inputs to the network are mini-batches of normalized log-

magnitude mel-spectrogram tensors with dimension 128 × Nframes × 1 where

the initial single-channel is made explicit. Notice that, contrary to the Meléndez-

Catalán [10] case, our inputs are variable in length.

Insights on the utilized architecture can be found, compared to the original

network, in fig. 3.5b, along with the blocks’ characteristics showed in table 3.3 and

table 3.4.

(a) Structure of the original

CNN-TCN classifier by

Meléndez-Catalán [10]

(b) Structure of the CNN-TCN

energies extractor
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1st layer 2nd layer 3rd layer

type Conv 2D SpatialDropout 2D MaxPooling 2D

filters num 32 - -

kernel size 32 × 32 - -

kernel stride 1 × 1 - -

padding "same" - -

activation ReLu - -

pool size - - 2 × 1
pool stride - - 2 × 1
dropout - dr -

Table 3.3.: Architecture of a 2D convolutional block

1st layer 2nd layer 3rd layer 4th layer

type Conv 1D SpatialDropout 1D Conv 1D SpatialDropout 1D

filters num 16 - 16 -

kernel size 7 - 7 -

kernel stride 1 - 1 -

dilation
i

2
b−1

- 2
b−1

-

padding "same" - "same" -

activation ReLu - linear -

dropout - dr - dr

i
Where b = 1, ..., 7 is the index of the current block.

Table 3.4.: Architecture of a residual block

Notice that we kept invariated the design parameters with respect to best

setting exposed in the Meléndez-Catalán [10] paper, except for the dropout rate

dr. Substituting this choice of parameters in eq. (2.27) yields us a receptive field
which is 379 time-frames long, i.e. approximately 4 seconds. As far as the dropout

rate dr is concerned we realized, after testing with few values, that the best choice

was to completely remove the spatial dropout layers, i.e. dr = 0. This is motivated

by the fact that our synthetic dataset is arbitrary large and various since it is

generated online during the training. Therefore there is no need for such a strong

regularizer to mitigate overfitting.

In total the energy extractor is composed by 82,850 trainable parameters.

3.2.2. CNN-dense classifier
The CNN-dense classifier is trained on our MUSPAD dataset. One of the advan-

tages of the CNN-TCN method is that we can storage the sole music and speech

energies yielded by the CNN-TCN energy extractor from a segment, instead of

the whole audio in raw, saving a great quantity of memory space (∼ 100 times)

and working with smaller inputs.

These samples of energies are then smoothed using a moving average ap-

proach, before being fed to the classifier network. Its optimal window’s length is

obtained through the cross-validation approach with 4 folds.

The resulting Nframes × 2 × 1 tensor of energies meets a 2D convolutional

block which aim to mix the music and the speech dimensions in a unique one.
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Indeed keeping only the valid outputs of the 2D convolution yields a column

˜Nframes × 1 × 1 vector. Basically what we are doing here is performing several

linear combinations of the two energies, dependent on the filters’ weights, and

saving these information in the correspondent feature maps. Looking at table 3.5

notice that we chose not to skip any time frame, i.e. the kernel stride is set to 1.

The time length of the 2D kernel is 16. We made this choice by progressively

increasing the kernel length and noticing that, after 16, the performance of the

classifier, regarding validation scores, were not getting any better at the price of

more training parameters to be optimized.

Another choice could have been to elaborate the two energies separatedly,

considering themas twodifferent inputs. Since before thefinal dense classification

layer the informations extrapolated from the two energies must, in any case, be

merged, we prefer to carry this out immediately in the front-end. This approach

let us employ less training parameters. Moreover, the already mentioned stride

equal to 1 and, in addition, the large number of applied filters, i.e. 128, makes us

confident that none or a little information might be lost.

A series of three 1D convolutional and pooling layers are then cascaded, until

a final dense layer, which performs the binary classification.

This layer structure clearly resembles some aspect of the SoundNet network.

Indeed we perform an upsampling in the number of filters to extract higher level

feature maps; meanwhile we downsample in time domain employing "valid"

padding plus convolution and pooling strides greater than one until a final global-

max pooling layer to definitely suppress the time axis. Notice also that the last

convolution layer extract 1024 feature maps, exactly like the SoundNet. ReLU

activation functions are utilized in all layers, except for the last dense one which,

obviously, presents a sigmoidal output. We think that implementing the CNN

classifier in this similar fashion is likely to give acceptable results.

To conclude, the total number of parameters of this block of the network is

1,842,049.

1st layer 2nd layer 3rd layer 4th layer 5th layer

filters num 128 256 512 1024 Dense

kernel size 16 × 2 8 4 2 -

kernel stride 1 × 1 2 2 2 -

padding "valid" "valid" "valid" "valid" -

activation ReLu ReLu ReLu ReLu Sigmoid

pool size - 4 2 GlobalMax -

pool stride - 2 1 - -

Table 3.5.: Architecture of the CNN classifier
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4.1. MUSPAD: the MUsic, SPeech and ADvertisement
dataset

A fundamental part of the Thesis has been the fabrication of a suitable dataset.

Indeed no such a dataset was found already available. The requirements on data

for our binary classification task were very specific. We needed audio samples

from radio broadcasts labeled as "advertisement" or "not advertisement". Since it

was easy to carry out, we enriched the taxonomy distinguishing between music

and speech content, within the already existing "not advertisement" label.

The labeling task has been carried out by the author during the period from

the end of June and the beginning of September 2021. Tipically one hour-long

radio streams at 22050Hz have been recorded, from 14 renowned italian radio

stations, through online openly available links, using VLC1
as recorder. The

labeling procedure has been performed using the softwareAudacity2 resulting in a

text file containing timestampsand relative classes associated to the corresponding

segment in the recordedmp3 audio file. Given the small amount of labels to assign

and their relatively easy identifiability, typically, the labelling of an hour of raw

audio took more or less 50 minutes. The effort strongly depended on the radio

station, particularly on the number and duration of the aired advertisings. All the

labeling process has been carried out with the maximum possible care, precision

in cutting and consistency in labeling.

The assigned labels are:

• adv for advertisements. For a human being, advertisement fragments are,

almost always, clearly recognizable from the context due to some reasons: (1)

the topics covered, (2) the fact that they are usually clustered and sometimes

well separated by characteristic jingles or sounds. The temporal course of the

audio usually presents only-speech, only-music or both mixed alternating

sections. In general the structure may be very varied.

• speech. A section is labeled as speech when the focus is clearly on the

spoken part. For instance a piece of a radio broadcast in which the host is

speaking above a background music is classified as speech. Clear examples

of speeches are radio news, weather forecasts and traffic forecasts besides

any other themed radio program.

1
VideoLan, 2006. VLC media player, Available at: https://www.videolan.org/vlc/index.html.

2
Audacity® software is copyright © 1999-2021 Audacity Team. The name Audacity® is a regis-

tered trademark.
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• music. Only complete songs have been timestamped and classified as music.

Uncompleted music chunks or other music-like interludes were ignored.

Advertisement and music pieces has always been kept unsegmented. This

means that the dataset contains single advertisements and single songs as an

unique piece; while in few cases some very long seamless speeches has been

divided in more segments.

One important aspect to take into account is the fact that the same specific

advertising may appear more than once in the dataset. That is because recording

the streams during a rather short period of time makes the chances to encounter

the same advertisement, possibly on different radio stations, relatively high. As

better explained below, for the advertising clustering purpose we randomly se-

lected approximately one hundred advertisement samples and we labeled them

with specific meaningful labels, which summarise their brand and their content.

In this selection the worst case was an advertisement repeated four times, in dif-

ferent radio stations. This specific commercial break was clearly part of a summer

advertising campaign. We think that this issue does not constitute a problem for

training a meaningful model. Conversely it establishes a natural form of data

augmentation given the fact that such samples surely are not identical, due to

temporal segmentation differences or different streaming quality and filtering

between radio stations.

N of samples Durations

Advertisement 830 5h 21m 03s

Speech 561 18h 00m 56s

Music 495 1d 1h 47m 30s

Other 1056 1d 19h 48m 26s

Total 1886 2d 1h 09m 29s

Table 4.1.: Complete dataset specifications, Other = Speech + Music

adv

10.88%

speech

36.65%

music

52.47%

Durations

adv

44.01%

speech

29.75%

music

26.25%

Number of samples

Figure 4.1.: Pie charts of duration and number of samples
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The composition of theMUSPAD dataset is visualized in table 4.1 and in the pie

chart fig. 4.1, according both for the number of samples and for their duration. The

dataset is almost naturally balanced as far as the number of samples is concerned,

i.e. the number of advertisement is almost equal to the number of speeches and

songs together. These two quantities differs by approximately the 6%. This fact

is interesting since no effort was spent to balance the dataset during the labeling

procedure. We limited ourself to classify all the segments in the recorded streams,

and then, at the end of the labeling task, we analyzed the dataset composition.

On the contrary a clear asymmetry is present in terms of durations. In-

deed the advertisements obviously last less since the commercial message must

be transmitted in the shortest possible time to be effective and less expensive.

Therefore the total advertising duration only slightly exceeds 10% of the dataset

time length. While in term of number of samples music and speech are balanced

this is not the case as far as the total duration is concerned. This fact is motivated

by the length of the songs that are, in average, longer than spoken parts, and

by the dedication, of most of the radio stations recorded, to music broadcasting,

particularly during summertime.
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Figure 4.2.: Duration distributions of the complete dataset
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In fig. 4.3 we can see the durations exposed in the form of a boxplot. On the

right we have the detail of the advertisements durations. We notice at first glance

the sorting, based on durations, which shows music in the first place, followed by

speech and advertisement. The second annotation is about the dispersion of the

samples’ durations.

The speech class features several outliers and durations spreaded on a wider

range. That is because spoken parts, except perhaps for the news bulletins or

weather and traffic forecasts, may vary a lot depending not only on radio stations,

but also on the hour of transmission.

The argument is different formusic class. Its interval of durations is narrower

because songs occupywell definited time slots during the broadcast. Indeed often

the songs are edited to fit radio transmission requirements.

A similar discussion can be made about advertisements which must fit in not

only fixed but also shorter time slots. From that the even shorter range with a

maximum duration of about 1 minute and minimum of less than 5 seconds.
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Figure 4.3.: Histograms of the recording sessions distribution in time

Aspreviouslymentioned the creationof thedataset has beenundertakenduring

summertimeonly. Clearly this factmight bias the representativeness of the dataset

since it does not contain the whole spectrum of possible advertisements.

To reinforce the generality of the dataset and to employ it in commercial

applications it might be recommended to set up other recording and labeling

campaigns during different periods of the year. This is motivated by the fact that

it is possible that advertising campaigns, specifically aimed to a period of the year,

present peculiar audio features. Since we could split music and speech samples to

augment our dataset, or, however, music and speech samples are easily available,

e.g.MUSAN corpus, these additional campaigns can be done taking into account

only the advertising, reducing remarkably the time spent in labeling.

Moreover no streamhas been recordedduring night time. This in our opinion

doesnot constitute aproblemsince often thenight broadcasts are simply recording
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of what has been aired during the daytime. As we can see in fig. 4.3 the daytime

hours are well covered. Perhaps it is recommandable to fill the gaps in lunch time

and in the interval between 7 p.m and 9 p.m.

As far as the weekly coverage is concerned, it seems balanced and every day

has at least 5 hours of recorded streams.

Further additions Toassess themodel’s robustness and,moreover, tounderstand

its applicability to different domains, we recorded and labeled a few advertise-

ments from a British radio station. The procedure employed is the same applied

for the rest of the dataset, but this time, since we were interested in only the ad-

vertising, we recorded only these particular contents. A bunch of 119 commercial

breakswere extracted. Since the recording session has been carried out on a single

radio station and in a short period of time, i.e. within a week, it is likely to find

many instances of the same advertising. This fact should not compromise the

analysis, given that we are using these samples for testing the models in a realistic

situation and not to train them.

The other addition we made to the dataset consists of the timestamps and

specific labels obtained for some of the advertisements already present in the

corpus. For specific label wemean not just a generic "adv", but amoremeaningful

tag which is able to uniquely identify the advertisements among the other. In our

case such a label contains the brand name and a brief summary of the contents

of the advertising. This task has been carried out relistening and specifically

relabeling 110 advertisments randomly selected from the MUSPAD dataset. A

quantity of 92 samples presents unique labels, i.e. 18 samples are duplicates.

Finally we deepen in table 4.2, fig. 4.4 and fig. 4.5 the analyses already carried

out, for each radio station.

Radio station N of samples Tot duration [sec]

R101Diretta 188 13367

RDS100%GrandiSuccessi 166 13591

RMCRadioMonteCarlo 111 10501

RTL102.5 145 14000

RTLRadiofreccia 143 17152

Radio105 151 12694

Radio24 206 16010

RadioBruno 63 6914

RadioDeejay 166 13074

RadioKissKiss 142 14643

RaiRadio1 111 14465

RaiRadio2 95 12193

RaiRadio3 19 3489

VirginRadio 180 14878

Table 4.2.: Per radio station number of samples and duration
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4.2. ADV-MUSAN: a dataset of synthetically created
advertisement-like samples

In the task of music and speech energies extraction, performed by the CNN-TCN

feature extractor network described in section 3.2.1, we employ a synthetic dataset

extracted from the well-knownMUSAN corpus (Snyder et al. [23]).

The idea is to mimic the characteristics of an italian radio-broadcasted ad-

vertisement and contemporary leveraging the large amount of samples present in

the MUSAN dataset.

To achieve that we take into account only modern music and italian and

spanish speeches, discarding the rest. Since the task of the energy extractor is just

to extract the music and speech energies of a sample, and not direct advertising

recognition, this seems a good approach. Moreover, in the MUSAN corpus,

we have at our disposal music and speech samples, not mixed, from which we

can separatedly compute the energies to assemble the target variables for our

supervised task. The sample-rate of the dataset is 16kHz and all the audio tracks

contain values in the interval [−1, 1].
Here we list all the instructions to construct the dataset:

1. Merge all the selected music tracks in a unique stream, do the same for the

speech tracks in another unique stream.

2. Extrapolate a segment x(m)n from the music stream and one x(s)n from the

speech stream. The duration of the two segments is the same, randomly

extracted from a truncated normal distribution on the interval [10, 25] sec,
mean 15 and deviation 5. The two segment’s starting points are different and

uniformly generated accordingly to the lengths ofmusic and speech streams.

The choice of the length was imposed by hardware memory requirements.

3. Compute the energies of the twosignals, x(m)n andx(s)n , at eachnon-overlapping

rectangular frame F of duration 10ms: E
(m)
n (F) =

∑
t∈frame(F) x

(m)
n (t)2 and

E
(s)
n (F) =

∑
t∈frame(F) x

(s)
n (t)2.

4. Since the speech stream is taken from audio-books the signal level is rather

constant. We aim to inject some perturbation, in order to simulate a ra-

dio broadcasting, by multiplying the two segments for a gain factor gn(F)
defined for each frame. The gain factor is generated from a uniformdistribu-

tion over the interval [0, 1] for each frame F. To obtain a smooth transitions

between subsequent frames a moving average filter, with a random uniform

window size, is applied to the gain vector gn = (gn(1), ...,gn(F), ...). Then

we sum the two segments to obtain the mixed input: xn(t) = gn(F)x(m)n (t) +
[1 − gn(F)]x(s)n (t) for t ∈ frame(F).

5. Modify the energies of the two segment to take into account the gain fac-

tor and normalize them to the interval [0, 100], i.e. divide them for the

frame length fl and multiply by 100:
˜E
(m)
n (F) = 100× [gn(F)2E(m)n (F)]/fl and
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4. Datasets

˜E
(s)
n (F) = 100 × [(1 − gn(F))2E(s)n (F)]/fl. See an example in fig. 4.6. Then

stack the two normalized energy vectors in one matrix having two columns:

En = ( ˜E(m)n ,
˜E(s)n )T . More on the choice of the interval [0, 100] in section 3.2.1.

6. Compute the [0, 1]-normalized log10-mel-spectrum of the mixed input sig-

nal xn = (xn(1), ..., xn(t), ...) with a 128 filter-bank and STFT’s hop-size cor-

respondent to 10ms. In this way the resulting matrix Xn has the same

temporal dimension of the matrix En containing the energies of the musical

and speech contributions.

7. Return the couple (Xn,En) composedby thenormalized log10-mel-spectrum

of the mixed signal as input and the matrix of normalized music and speech

energies as target.

8. Repeat the points, from 2 to 7,N number of times to obtain as many samples

as desired.
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Figure 4.6.: Energies and correspondent gain factor of a mixed sample
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5. Experimental results
In this chapter we analyze the experimental results obtained implementing the

two models described in chapter 3. The structure of the two chapters presents the

same sections’ names for the sake of clarity plus the extra section about robustness

assessment. We compare the results obtained in the specific last section.

The training instances have been implemented using the deep learning API

Keras (Chollet et al. [24]) written in Python, running on top of themachine learning

platform Tensorflow (Martı n Abadi et al. [25]). The code has been executed on

Google Colaboratory Pro1 cloud-available GPUs and TPUs. We utilized the Adam
optimizer (see section B.2.3) with default settings for all the training. The embed-

dings of the features are visualized through the dimension reduction technique

called Uniform Manifold Approximation and Projection (UMAP) by McInnes et al.

[26].

5.1. SoundNet-based network
The training of this model has been carried out on a balanced selection of samples

randomly taken from our MUSPAD corpus leading to the dataset described in

table 5.1. The balancing procedure kept all the advertisements present in the

whole dataset and add speech and music segments accordingly, while trying to

balancing also within these two latter classes.

N of samples Binary label

Speech 415 0

Music 415 0

Other 830 0

Advertisement 830 1

Total 1660 -

Table 5.1.: Balanced dataset specifications: Other = Speech + Music

The dataset is further divided in a 1200-samples training set and a 460-

samples test set. The mini-batch size is fixed to 50 samples.

Clearly, to perform the optimization, samples within the same mini-batch

must have the same length. To satisfy this requirement we find the longest ad-

vertisement within the mini-batch and we truncate or 0-pad the other samples

consequentially. This strategy is carried on to avoid the loss of advertising infor-

mation which is the scarce resource in our problem.

1
https://colab.research.google.com/
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Since we decided to keep the SoundNet network as it is, no validation of pa-

rameters, except for the number of training epochs, is needed. A visual inspection

of the training and test trends has not given clear sign of overfitting. Hence we

run several times the optimization of the binary cross-entropy loss (section B.3.1)

for 150 epochs and we kept the best model in terms of test Precision-Recall Area
Under the Curve (PR-AUC). The training curves of this particular model can be

seen in fig. 5.1. They have been smoothed for sake of clarity.

0 20 40 60 80 100 120 140

0

5

10

15

20

25

30

epoch=89
value=0.343

train loss
smooth val loss

0 20 40 60 80 100 120 140

0.70

0.75

0.80

0.85

0.90

0.95

epoch=89
score=0.9753

smooth val AUC

Figure 5.1.: Training curves of the 1024 features model with the best AUC

We deepen the test results showing the confusion matrix in table 5.2 and the

test report in table 5.3.

Other Advertisement

Other 203 10

Advertisement 29 218

Table 5.2.: Confusion matrix of the 1024 features model. True labels as rows

Precision Recall F1-score Accuracy Support

Other 0.88 0.95 0.91 - 213

Advertisement 0.96 0.88 0.92 - 247

Macro avg 0.92 0.92 0.92 - 460

Weighted avg 0.92 0.92 0.92 - 460

Accuracy - - - 0.92 460

Table 5.3.: Test report of the 1024 features model

In fig. 5.2 we can have a look to the test Precision-Recall curve of class 1, i.e.
advertisement. We notice how our usual classification threshold of 0.5 is suitable

to obtain a good trade-off between precision and recall.
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Figure 5.2.: Advertisement class P-R curve of the 1024 features model

In order to show the semantic relevance of the 1024 features, we performed

a two dimensional UMAP embedding and visualized our balanced dataset in

fig. 5.3. This visualization suggests a strong discrimination property of the ex-

tracted features, along thehorizontal axis, as far as the advertisement’s localization

is concerned.

Moreover notice that, despite the fact that the classifier has been trained for

the binary classification task between advertisement and other, here also music

and speech classes are well separated along the vertical axis. Hence we can infer

that also the advertisement cluster presents commercials with strong musical

content on top, in correspondence with the music cluster, and with strong speech

content on bottom. This hypothesis is supported by the presence of a small cluster

of songs at the top of advertisement agglomerate and by the almost half-moon

shape of the latter. Indeed the top and bottom parts of the advertisement cluster

tend to be closer respectively to the music and speech agglomerates. In particular

the speech cluster results closer to the advertisement bottom offshoot, indicating

greater difficulty in discriminating this two classes.
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UMAP: n_neighbors=15, min_dist=0.1

1024 features - umap
adv
music
speech

Figure 5.3.: 2D UMAP embedding of the 1024 features model

To answer the question if a lower number of features may be sufficient for the

classification purpose we plot in fig. 5.4 the per-class normalized averaged values

of the 1024 features extracted by the network. Darker pixels mean higher values.
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Figure 5.4.: Per-class normalized averaged values of the 1024 features

A visual inspection suggests that a trial with fewer features should be carried

out. Indeed a significant amount of features seems to have, in average, low
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5. Experimental results

values in presence of both advertisement and other samples. The straightforward

approach to achieve this is removing the 7-th convolutional layer from thenetwork,

connecting the 6-th layer’s 512 features directly to the dense classification layer.

We can look at the obtained performances in table 5.4 and table 5.5.

Other Advertisement

Other 209 26

Advertisement 12 213

Table 5.4.: Confusion matrix of the 512 features model. True labels as rows

Precision Recall F1-score Accuracy Support

Other 0.95 0.89 0.92 - 235

Advertisement 0.89 0.95 0.92 - 225

Macro avg 0.92 0.92 0.92 - 460

Weighted avg 0.92 0.92 0.92 - 460

Accuracy - - - 0.92 460

Table 5.5.: Test report of the 512 features model

The result seems promising: it is comparable to the network with 1024 fea-

tures. To assess the semantic value of this 512 features extracted we show the

UMAP embedding fig. 5.5.

UMAP: n_neighbors=15, min_dist=0.1

512 features - umap
adv
music
speech

Figure 5.5.: 2D UMAP embedding of the 512 features model
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Here we notice the lack of a strong separation, along one of the axis, between

advertisement and other classes. A clear leakage of advertisement samples to-

wards music and speech clusters is present respectively in the right and the left

parts of the figure. At least, a good discrimination along the x-axis betweenmusic

and speech classes is again present.

5.2. CNN-TCN-based network
Here we analyze the results obtained by the more complex CNN-TCN-based

network. As presented in section 3.2 the goal is the same of the SoundNet-based

network with the difference that the actual classification is carried out employing

only the estimated music and speech energies.

5.2.1. CNN-TCN energies extractor
We trained the model described in section 3.2.1 with the synthetic dataset in

section 4.2.

Leveraging on the large quantity of samples that can be generated in this way,

the dropout regularizer, implemented originally, resulted to be unnecessary.

We utilized 10000 samples for training and 5000 for validation purpose to

optimize the MSE loss function in eq. (B.15).

Also here, to perform the optimization, samples within the same mini-batch

must have the same length. To satisfy this requirement we find the longest

advertisement of the mini-batch and we truncate or 0-pad the other samples

consequentially.

The loss curves, as we can see in fig. 5.6 reach saturation. We chose the setting

which has given the best validation loss.
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Figure 5.6.: Energies extractor training and validation MSE losses
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Moreover this choice yielded also a good result (fig. 5.7) in term of cosine

similarity (section B.3.5), which monitors peaks alignement, since it consists in

the cosine of the angle between ground thruth and predicted vectors. A test value

of -1.83 ensures that the averaged alignement of both music and speech vectors is

at least -0.83, where the best possible value is -1.
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Figure 5.7.: Energies extractor training and validation cosine similarity

Visually we can look at the interpolation property of the selected model on

a generated test sample in fig. 5.8: the estimated energies follow rather well the

true ones in correspondence of peaks and also across low-energy zones for both

music and speech.
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Figure 5.8.: Performance of the energies extractor on a test sample
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As far as our MUSPAD dataset is concerned, the estimated energies are

consistent with the labels, i.e. we have high musical energy in music samples,

high speech energy in speech samples and a balanced content in advertisement

samples. We can see an instance in fig. 5.9. Notice how in the music sample the

speech energy values are almost everywhere lower than the music one. Probably

this is a form of noise or, perhaps, the energy extractor interprets the vocals of the

song as speech. Conversely the speech sample clearly shows the presence of, a

rather loud, background music, as oftens happens in radio broadcasts.
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Figure 5.9.: Performance of the energies extractor on a MUSPAD sample

5.2.2. CNN-dense classifier
This portions of the network estimates the membership class of a sample taking

as inputs only its music and speech estimated energy vectors.

Before that, a moving average smoothing window of length 29 has been

applied to both the energies yielded by the energies extractor. That is equivalent

to convolve the energies with the 29-samples long (1/29, 1/29, ..., 1/29) vector. The
choice of thewindow length has been cross-validatedwith 4 folds on theMUSPAD

dataset. Results in terms of loss and binary accuracy can be seen respectively in

fig. 5.10 and fig. 5.11. The solid lines represent the baseline window length equal

1 (no-smoothing) in black and the best choicewindow length equal 29 inmagenta.

The latter choice of smoothing window’s length, though in more epochs, seems

to reach a better minimum and maximum concerning respectively the loss and

accuracy.

As far as the architecture is concerned, the one which performes best is the

one described in section 3.2.2. Increasing the network depth or width, and hence

the number of parameters, was useless: no improvements in metrics were gained.

Neither did adding some form of regularization.

We optimized the binary cross-entropy loss function (section B.3.1). The

results of choosing the model with the lowest such value can be seen in table 5.6
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and table 5.7.
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Figure 5.10.: Cross-validation of the smoothing window length - Loss
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Figure 5.11.: Cross-validation of the smoothing window length - Accuracy

Other Advertisement

Other 210 30

Advertisement 39 101

Table 5.6.: Confusion matrix of the chosen model. True labels as rows
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Precision Recall F1-score Accuracy Support

Other 0.84 0.88 0.86 - 240

Advertisement 0.86 0.82 0.84 - 220

Macro avg 0.85 0.85 0.85 - 460

Weighted avg 0.85 0.85 0.85 - 460

Accuracy - - - 0.85 460

Table 5.7.: Test report of the chosen model

Here in fig. 5.12 we look at the advertisement class Precision-Recall curve:

the usual 0.5 threshold seems an equilibrate choice.
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Figure 5.12.: Advertisement class P-R curve of the chosen model

In fig. 5.13 we show the UMAP embedding. The 1024 features extracted

by the CNN classifier appears to have poor semantic values. Indeed the two

embedding variables both discriminate well between music and speech samples,

but the advertisement ones are dispersed, mostly in the speech area.
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UMAP: n_neighbors=15, min_dist=0.1

1024 features - umap
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Figure 5.13.: 2D UMAP embedding of the CNN-TCN model’s 1024 features

5.3. Robustness analysis
The audio presented as input to the two networks may show some kind of per-

turbation due to streaming quality or segmentation errors. Moreover these kind

of modifications represent basically the differences we may encounter among the

same advertising aired on different radio stations. Therefore it is essential, for the

sake of clustering, that also perturbed samples are truly classified as advertise-

ment.

To assess the robustness of the networks to these sort of perturbations we

take some true-positive samples, i.e. advertisement samples which are correctly

classified as advertisement by the model, and we modify them in the following

ways:

1. Left crop of 10% of the audio segment

2. Right crop of 10% of the audio segment

3. Left and right crop of 10% each of the audio segment

4. Centered crop of 10% of the audio segment at a random location

5. White noise injection in the whole audio segment

6. Resampling at 20% higher and lower sampling rate
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We compute the goodness of the model on this 7-times augmented adver-

tisement dataset, i.e. the percentage of perturbed samples which are however

correctedly classified advertisement, and plot the UMAP embedding of the 1024

features extracted.

5.3.1. SoundNet-based network robustness
We performed the robustness analysis on both the SoundNet-based model with

1024 features and the one with 512. Both the networks appear to be very robust,

at least concerning the kind of perturbations applied. Indeed they manage to cor-

rectly label as advertisement the 95% and the 96% of the 1400 perturbed segment,

correspondent to 200 true-positive original samples.

In fig. 5.14 we can look at the 2D embedding of the original and perturbed

samples’ features, in the case of the SoundNet-based network extracting 1024

features. We notice how, with few exception, mostly due to resampling, the

perturbed samples remain within the original cluster.
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Figure 5.14.: 2D UMAP embedding for robustness analysis of SoundNet-based

1024

5.3.2. CNN-TCN-based network robustness
The selected CNN-TCN-based network performance, on perturbed true-positive

samples, shows a considerable degradation. The 75% of the 1400 perturbed

samples, correspondent to 200 true-positive original samples are still correctly
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classified as advertisement. This is a clear index of sensitivity of this energy-

based network to the sort of perturbation applied.

For completeness we show the UMAP embedding in fig. 5.15.
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Figure 5.15.: CNN-TCN-based 2D UMAP embedding for robustness analysis

5.3.3. Test with english advertisements
We test our SoundNet-based network giving it as inputs some english advertise-

ments collected fromabritish radio station, as exposed in section 4.1. This analysis

was taken only on the SoundNet-based model because the CNN-TCN-based net-

work already showed critical issues regarding robustness.

The goal of this testing is to assess the possibility to extend the usage of the

network to radio broadcasts in other languages, in this case the english speech.

At first glance the british advertisements, or at least the ones here taken into

account, seem rather different from the italian ones. It looks like they contain less

musical background content and, consequentially, spoken parts which clearly and

strongly stand out. Many of them are even composed by basically only speech.

The SoundNet-based model manages to correctly classify as advertisements

100 of the 119 test samples. This means approximately 84% of accuracy.

Given the diversity, exposed before, between the inputted english advertise-

ments and the italian ones, which, by the way, were used for the model training,

it seems an interesting result. Indeed it is reasonable to claim that our network

may have learnt some features, useful to classify the advertising, which are robust

also to a change of language.
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We conclude showing in fig. 5.16 the UMAP embedding of the english adver-

tisements. Most of the samples appear correctedly within the advertising cluster,

whereas the few mistaken ones are mostly situated in the speech agglomerate.
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Figure 5.16.: SoundNet-based 2D UMAP embedding of english advertisements

5.4. Discussion of the results
In this section we compare the performances of the SoundNet-based model

with seven convolutional layers, which provides 1024 features (SN-1024), the

SoundNet-basedmodelwith six convolutional layers, which provides 512 features

(SN-512), and the CNN-TCN-based network composed by an energies extractor

combined with a CNN-dense classifier (CNN-TCN), providing 1024 features as

well.

Achitecture We compare the three architectures in terms of width, depth and

total numberof parameters. SN-1024 andSN-512 share themajority of thenetwork

architecture, except for the last convolutional layer, having respectively 7 and 6

1D-convolutional plus one dense layers.

As far as the CNN-TCN is concerned it has 7 2D-convolutional and 12,

grouped by two, 1D-convolutional layers due to the energies extractor. The su-

perimposed classifier add 5 more 1D-convolutional layers.

We summarize the depths and the total numbers of parameters in table 5.8.
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2D conv 1D conv Dense Tot trainable param

SN-1024 - 7 1 2,875,320

SN-512 - 6 1 774,609

CNN-TCN 7 17 1 1,924,899

Table 5.8.: Comparison among models in terms of depth and number of parame-

ters

While the depth and the total number of parameters are fixed, thewidths, and

thus the total numbers of units, of the three network depend on the cardinality of

the input. A longer audio sample results in a greater number of units at each layer,

until the global max-pooler, which squeeze the time dimension to obtain a fixed

lengthvector, i.e. the feature vector, to be fed to thedensefinal layer. Exactly for this

reason the audio input lengths have to be fixed within each mini-batch, to build a

consistent instance of the network. The previously described techniques to obtain

proper mini-batches let the network operate with sufficiently short samples. In

this way the networkwidths correspondent to eachmini-batch arewell contained,

without exceeding the GPU’s internal memory, during training. This particular

issue is important in the TCN part where the time dimension is left invariate. We

managed to train it since in this case our samples can be synthetically generated

online (section 4.2) with a feasible length.

Training and testing The training durations of SN-1024 and SN-512 are compa-

rable since they are both around 100 seconds per epoch.

Concerning the CNN-TCN, since the energies extractor and the classifier are

trained at different times, we separate the two durations. A training epoch of

the energies extractor typically took almost 2000 seconds. This is due to the fact

that the residual networks in general require long trainings and the fact that the

mini-batches are generated and assembled online. On the contrary the training

of the classifier part was very quick at less than 10 seconds per epoch, in average.

That is because the network is rather simple and the input energies consist of

fewer quantities of data. We can say that the more "effortful" work is done by the

energies extractor.

Comparing the training curves in fig. 5.1, fig. 5.6, fig. 5.7 and fig. 5.10, fig. 5.11

we notice that, while the two SoundNet-based model and the energies extractor

do not present clear signs of overfitting and they rather reach a sort of saturation

of the performances, in the CNN-classifier plots we can clearly identify the point

at which the test metric start to worsen. This is because the former ones employ

some kind of regularization techique or, in the case of the energies extractor,

leverage a large amount of training data, while the latter does not.

In the following table 5.9 we compare the metrics employed in the classifica-

tion tasks.

A separate discussion has already been taken about regression performances

of the energies extractor in section 5.2.1.
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Accuracy Adv precision Adv recall Adv F1-score

SN-1024 0.92 0.96 0.88 0.92

SN-512 0.92 0.89 0.95 0.92

CNN-TCN 0.85 0.86 0.82 0.84

Table 5.9.: Comparison amongmodels in termsof accuracy and the other adv-class

metrics

Performances of the two SoundNet-based models are almost identical while

they clearly outperform the CNN-TCN network.

Features embedding We plotted the UMAP embedding of the three models in

fig. 5.3, fig. 5.5 and fig. 5.13.

At first sight we notice the goodness of the SN-1024’s features embedding.

As already observed it presents a noticeable separation among the advertisement,

music and speech clusters. The SN-512 embedding seem to be less precise, with

more leakage between the classes, but still presents a good separation among

them.

The worse classification performance of the CNN-TCNmodel reflects on the

UMAP embedding of its extracted features. These features seem to be effective

only in separating music and speech clusters, while the advertisement samples

are spreaded in-between them.

It is clear that the two SoundNet-based networks are able to learn, from raw

audio inputs, a more semantically relevant vector of features than the CNN-TCN

from the sole energies extracted. In particuler SN-1024 achieves the best result.

Robustness We perturbed some correctedly classified advertisings to assess the

robustness of the networks under scrutiny.

The results are clearly better as far as SN-1024 and SN-512 are concerned.

They manage to correctedly recognize respectively 95% and 96% of the perturbed

samples as advertisement, while the CNN-TCN achieves only a 75%. We can

consider the robustness of SN-1024 and SN-512 comparable.

These results reflect in the UMAP embeddings fig. 5.14 and fig. 5.15. In the

SN-1024 features’ embedding the perturbed samples appear, with few exceptions,

well within the advertisement cluster.

Regarding the CNN-TCN instead, the perturbed samples are mapped all

around the space, mostly in the speech agglomerate.

The trial with english advertisings, performed only with SN-1024, yielded

a worse, but still reasonable, result. The network is trained only using italian

advertisments, therefore 84% accuracy means that italian and english advertising

share some, but not all, of the features that SN-1024 is able to extract.
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In this Thesis we have evaluated the performances of two Deep Neural Network

architectures to assess their possible industrial development, in the task of radio-

broadcasts advertising classification. We have also assembledMUSPAD, a dataset

containing music, speeches and advertisements recorded from some italian radio

stations. Moreover we explained a possible procedure (ADV-MUSAN) to build

synthetical advertisement-like samples to be employed in training the energies

extractor.

From an industrial point of view the SoundNet-based architecture shows

promising results. Both SN-1024 and SN-512’s performances in the classification

task are remarkable. We think that fine-tuning this architecture could lead to

state-of-the-art results feasible for commercial applications. For instance, as we

have seen exploring the results, the best number of features extracted may be

found within 512 and 1024 to balance between the model dimension and the

significance of the embedding.

As far as the CNN-TCN-based network is concerned, it is clearly outper-

formed by the SoundNet-based model. Perhaps some improvements can be ob-

tained with some more trials and different tunings of both the energies extractor

and the classifier stages. However we claim that such a network weakness is

given by the fact that the classification is solely based on the estimates of music

and speech energies. This means that we are basically forcing a bottle-neck in

the flow of informations between the raw audio input and the classifier. Still

this is true for at least some kind of advertisements, i.e. the ones that induce the

approximately 10% difference in performances.

With this in mind it could be interesting to perform an analysis of the

SoundNet-based model’s interpretability to understand which kind of audio fea-

tures allow this network to outperform the energy-based one. A proper techinque

to carry out this kind of analysis can be GradCAM (Selvaraju et al. [27]). Since

it was developed for the visual context of object recognition it requires some

modification to be effective also in the audio field.

Back to the CNN-TCN-based network, not everything is to be discarded. For

instance we have proven that the TCN model with a CNN front-end proposed

by Meléndez-Catalán [10], after a slight modification, perfoms rather well in the

regression task of estimating music and speech energies. Moreover a further

trial could be done using a CNN-TCN novel architecture to directly carry out

the classification, without passing through the energies extraction. A CNN-

TCN-CNN-Dense pipeline could yield results comparable or even better than the

SoundNet-based model.

Furthermore having at disposal TV advertisement samples, i.e. samples com-

posed by both visual and audio components, would let us experiment a teacher-
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student architecture similar to theoriginal SoundNetwhich strenghten the learned

features using the visual informations.

As we already expressed, improvements can be made also to the MUSPAD

dataset. Besides simply expanding it’s dimension, this could be done in a mean-

ingfulway, i.e.programming the recording and labeling campaigns to be spreaded

over a whole year. This fact should yield a generalization improvement and thus

better representation of the radio advertising’s universe. Moreover the recording

sessions ought to cover the whole day.

Finally trying to perform classification with english advertisements shows

how, to achieve good results, one probably should collect a dataset specific for

the language used in the broadcasts in question and then retrain the model. This

means that for a commercial deployment in other countries a tailor-shapeddataset

should be collected.

Towards advertisement clustering The final goal of the whole automatic system

is to identify a specific advertising aired by the radio stations.

The clustering inference consists of assigning an incoming advertisement to

a particular cluster, in the space of the features, by means of a specific employed

metric. Since this particular cluster represents an advertising, the incoming one

is predicted to be such specific advertisement. In the simplest case the cluster is

represented by a single advertising stored in a database in the form of a features

vector.

How is this algorithm able to tell when a new, i.e. still not present in the

database, advertisement is encountered? A classic approach is to fix a confidence

threshold c to be compared with the computed metric. Basically if the incoming

advertisement is at a "sufficient distance" from all the samples present in the

database, then it is considered new and directly stored or sent to other processing

stages. Such a "sufficient distance" is governed by the confidence threshold. The

previously exposed is the inference phase.

The training of the DNN clustering network is carried out employing batches

of perturbed and transformed advertisements and minimizing a particular loss.

Such a loss should be small when a perturbed sample (positive) is compared with

its original one (anchor) and large when compared with a different advertisement

(negative). For instance a suitable loss function can be the triplet loss (Chechik et al.

[28]) utilized, among the others, by the face recognition and clustering network

FaceNet (Schroff et al. [29]).

To summarise, looking at fig. 1.1 in the Introduction, the trained clustering

DNN extracts the vector of features fp from an incoming advertisement. A mea-

sure of distance is computed between fp and all the advertisings present in the

database, by means of their features vectors (f1, f2, ..., fi, ..., fN). If the smallest dis-

tance computed is d(fp, fi), and this quantity is less than the confidence threshold

c, then the incoming advertisement is recognized as the i − th advertisement in

the database. Otherwise it can be added to the database, i.e. fN+1 = fp.
In the following we show an example of this algorithm at work. Since,

with respect to the classification network, the clustering network is a completely

distinct model and undergoes another training procedure, the extracted features
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are obviously different.

Here we unproperly make use of the features extracted, in the classification

framework, by SN-1024 to perform clustering, because they are already at our

disposal. Usually the training and tuning of a clustering network take a lot of

time and care, and these are not arguments of this Thesis.

We could find useful this exemplary analysis to assess whether the SoundNet

architecture might be used for the clustering network as well.

Our setting contemplates a database of 92 true advertisements, which has

been relabeled with a specific tag, as exposed in section 4.1. To simulate an

incoming batch of advertisings, to be clustered against this database, we pertubate

its 92 records, with cropping and noise, obtaining 460 samples. Moreover we

inserted in the batch 200 advertisements to simulate the arrival of new samples to

be added to the database.

For the cluster assignement we chose to use the simple euclidean distance

and the cosine similarity. Therefore we computed the distances between each

sample in the batch and each record in the database, more precisely the distances

between their features vectors. Then the 460 perturbed incoming advertisements

are assigned to their nearest cluster in the database. Of course the nearest cluster

in the database is the one represented by the record at the smallest distance, or

greatest similarity.

This clustering network based on SN-1024 is able to assign 368 out of 460

incoming advertisements to the correct record in the database, i.e. the 80%. This

performance is achieved using the euclidean distance as metric. Regarding the

cosine similarity the accuracy slightly degrades to the 74%.

We keep track also of the metrics’ best values computed for the 200 new

incoming advertisements. These should give interesting suggestion for the choice

of the confidence threshold c. Indeed have a look at fig. 6.1.
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Figure 6.1.: Distributions of the metrics’ best values

In green we have the metric’s values which led to an exact cluster’s assigne-
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ment, in red the values that led to a wrong assignement and in blue the best

metric’s values computed for the new advertisements. Ideally we would like to

have the green and the blue distributions as separated as possible and few red

samples in the middle.

Again this is a toy example in which the network used for clustering was

originally trained for the classification task, and thus the extracted features are

not the proper ones.

Such a plot of the distributions may help in choosing a suitable metric d and

an efficient confidence threshold c. The latter should be chosen taking into account

the application and in particular the cost of assigning a new incoming advertise-

ment to a wrong cluster and, on the contrary, labeling as new an advertisement

already present in the database.

In conclusion this experiment suggests that the SoundNet architecture should

be a profitable choice also for the clustering network. Indeed, with all the limi-

tations already highlighted, SN-1024, trained for classification, provides features

which yielded decent accuracy results also for clustering.
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A. Theoretical background on Neural
Networks

In this chapter of the Appendix we deepen two theoretical aspects of Neural

Networks. In the first section we expose the universal approximation property of

Neural Networks, in the second a practical example of the residual connections’

usefulness is proposed.

A.1. Approximation result
In this section we present a result on the approximation property of a network

with linear output units and a single hidden layer. More precisely it has been

proven, in different ways by several authors, that such a network can approximate

any continuous function uniformly on compacta, by increasing the size of the

hidden layer. There are also some results on the rate of approximation, i.e. how
many units are needed to approximate to a specific accuracy, but they are not very

useful in practical problem.

We present the following proposition as exposed by Ripley [36] section 5.7.

The above network represents the function:

yk = fk

(
bk +

J∑
j=1

wjkfj

(
bj +

I∑
i=1

wijxi

))
(A.1)

Consider a function f : ℝn → ℝp linking n inputs to p outputs. We wish

to approximate such a function using g from the class of functions expressed

by eq. (A.1). Uniform approximation on compacta means that given a compact

set K ⊂ ℝn and ε > 0 we can find a function g, within our class, such that

‖f(x) − g(x)‖
2
< ε for all x ∈ K.

Proposition A.1. Ripley [36] Any continuous function f : ℝn → ℝp can be approxi-
mated uniformly on compacta by functions g of the form eq. (A.1)with linear output units
and sigmoidal, threshold or ramp units in the hidden layer.

Proof. The proof proceeds by building up the class of functions that we can ap-

proximate.

a) We begin taking n = p = 1. Let K be a compact set. Then K ⊂ [a,b]
since a compact set is always contained in a closed interval. Moreover any

continuous function f can be uniformly approximated on [a,b] by a step

functionwith steps of size less than ε/2. Indeed for each x ∈ [a,b] define the
interval I(x) = (l(x),u(x))where l(x) = max{y < x : |f(y) − f(x)| ≥ ε/4} and
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u(x) = min{y > x : |f(y)−f(x)| ≥ ε/4}. Theopen sets I(x) clearly cover [a,b],
hence so does a finite collection I(xi). Sort the xi in increasing order, and

let g take the value f(xi) on [li,ui) = [u(xi−1),u(xi)). Then by the triangular

inequality |∆g(li)| = |f(xi−1)−f(xi)| ≤ |f(xi−1)−f(li)|+|f(xi)−f(li)| ≤ 2ε/4. A
step functionbelongs to the classdefinedbyA.1 if the activation functions are

thresholds. However sums of sigmoidal or ramp functions can approximate

a step function arbitrarily closely, except at the steps, and certainly to within

one half of the largest step size.

b) We thenextend the result to trigonometric functionsof the form

∏n
i=1 cos(ωix+

φi) for any n. By repeatedly applying the well-known summation formula

2cos(A)cos(B) = cos(A+B) + cos(A−B) this can be written as a sum of the

form

∑
j ajcos(ω̃jx + ˜φj). Each term in this sum is continuous, so it can be

approximated by point (a), thus the whole sum can, as well as linear com-

binations of these functions, including arbitrary trigonometric polynomials

on ℝn.

c) From Fourier theory any continuous function f : ℝn → ℝ can be approxi-

mated by a trigonometric polynomial.

d) Fix K and ε > 0. Each component function fj of f is continuous, so, from

previous points, we can find functions gj within the class A.1 such that:

sup

x∈K
|fj(x) − gj(x)| <

ε

p1/2
∀j ∈ {1, ...,p} (A.2)

Recall ‖f(x) − g(x)‖
2
=

(∑p
j=1
|fj(x) − gj(x)|2

)
1/2

. From eq. (A.2) we have:

|fj(x) − gj(x)|2 <
(
ε

p1/2

)
2

∀x ∈ K,∀j ∈ {1, ...,p}
p∑
j=1

|fj(x) − gj(x)|2 < p
(
ε

p1/2

)
2

‖f(x) − g(x)‖
2
< p1/2

(
ε

p1/2

)
= ε ∀x ∈ K

(A.3)

The function g(x) = (g1(x), ...,gp(x)) is within the class eq. (A.1) since we can

take separate groups of hidden units for each coordinate function.

�

A.2. Residual connections
In this section, exploring what we have dealt about in section 2.4, we show a

toy example of degradation effect and its adopted solution, i.e. residual networks.
Consider the two simple architectures in fig. A.1.
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Figure A.1.: Architecture of both baseline and residual networks

They are both built with a stack ofM blocks: one featuring baseline blocks

composed by two dense layers with ReLU activation, and the other having an

additional skip connection from input to output.

Since skip connections are not parametrized, indeed they implement an iden-

tity mapping, the total number of parameters is the same for both the models.

We compare this two networks on the task of approximating the cosine func-

tion in an interval across
π
2
. In fig. A.2 we plot the training loss in function of

the total number of layers. The two models are trained with the same number of

epochs.

We can clearly see that increasing the number of layers over approximately

ten leads a degradation in the performance of the baseline network. Despite this

fact the residual network continue to improve well over ten layers. Since we are

looking at the training loss this phenomenon cannot be referred to overfitting.

In fig. A.3 we compare the interpolation ability of the two models.

As we have seen in section 2.4, the idea behind adding skip connections is quite

simple: models obtained stacking more layers onto a baseline network should

not perform worse if we give them the possibility to explicitly learn the identity

mapping. Indeed in this way we build a path where the information can directly

flow from the baseline network to the output.

Consider a baseline network function g(x;w)with input x and stack on top of

it the layers represented by f(·; w̃). Calling y the output, if y ≈ g(x;w), which can

happen often when the baseline network already provides a good approximation,
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Figure A.2.: Training loss of the baseline and residual networks

1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

cosine
baseline net
residual net

Figure A.3.: Interpolation ability of the best baseline and residual networks
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the added layers should learn the identity mapping, i.e. f(z; w̃) ≈ z. This task

may not be trivial and it is exacerbated by nonlinearities in f giving rise to the

degradation problem.

Adding skip connections we have y = f(g(x;w); w̃) + g(x;w). In this case the

solution would be f(z; w̃) ≈ 0 which is easier to learn, i.e. set all the weights to

zero, w̃ = 0.

Nonetheless the reason why residual networks can be efficiently trained is

still largely unknown.

One line of research studies empirically the problem. Veit et al. [37] interpret

the ResNet as a collection af varying size dependent smaller networks and reveal

that these small network alleviate the vanishing gradient problem. Deepening this

fact Balduzzi et al. [38] have shown that, in residual networks, the gradients decay

sublinearly, in contrast to the exponential decay in feedforward NN. Moreover

Li et al. [39] visualize the loss landscape discovering that skip connections yield

smoother optimization surfaces.

The other line of research investigates the ResNets theoretically. Hardt et al.

[40] show that a linear residual network has no spurious local optima, i.e. local
optima that yield larger loss values than the global optima. Also Li et al. [41] has

proven the absence of spurious local optima and saddle points, for a two-layers

ResNet, of which only one unknown, trained using Stochastic Gradient Descent.

They are also able to characterize the local convergence of SGD around the global

optimum.

However these theoretical results are often considered too optimistic since

they are based on oversimplified assumptions, e.g. that results obtained for linear

residual networks can be well approximate the nonlinear cases.

To conclude we add fig. A.4 and fig. A.5. These are respectively the contour

plots and the surface plots of the loss landscapes correspondent to the baseline

and the residual architectures, for the problem previously discussed.

The residual network’s landscape presents a clearer and deeper mimimum.

Note that the loss axis, i.e. z axis, is log-scaled. The visualization is obtained with

the method proposed by Li et al. [39], i.e. filter-wise normalization, along the first

two principal components directions in the parameter space.
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Figure A.4.: Surface plots of the loss landscape for the models with 20 blocks
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Networks

In this chapter of the Appendix we briefly expose the practical notions employed

in this work by arguments: the activation functions applied, the metrics used in

the networks’ trainings and the algorithm utilized for the optimization.

B.1. Activation functions
Recall the definition eq. (2.2) of activation:

aj =

D∑
i=1

wjixi +wj0 =
D∑
i=0

wjixi (B.1)

and the consequent definition eq. (2.3) of activation function:

zj = h(aj) (B.2)

There are several choices for the function h. Predicting in advance which one

will work best is sometimes difficult. A general property required to be a proper

activation function is differentiability. This is a basic requirement to allow the

gradient-based optimization algorithm to work fine. Some activation functions

are piece-wise differentiable having only a small number of nondifferentiable

points. In practice software implementations of neural network usually return

one of the one-sided derivatives rather than raising an error.

B.1.1. Rectified Linear Units
The Rectified Linear Unit, or ReLU (Jarrett et al. [30]; Nair et al. [31]), is an excellent

default choice for hidden units. The activation function is defined as:

h(aj) = max{0,aj} (B.3)

Since it is similar to linear units, i.e. units with activation function h(aj) = aj,
it shares its strengths with it. Indeed when the unit is active, i.e. in the positive

domain, the derivatives through a ReLU remain large and consistent. Moreover

the second derivative is 0 a.e. This leads to far more useful gradient directions

since no second-order effects are introduced. Some generalization of rectified

linear units have been developed to address one drawback: they cannot learn

via gradient-based methods on examples for which their output is zero, i.e. the
activation of the unit is negative. These generalizations guarantee thet they receive
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Figure B.1.: ReLU activation function and its thresholded version

gradient everywhere, for instance using a non-zero slope for negative activations,

i.e. aj < 0. In fig. B.1 we can see the ReLU activation function and a version of it

featuring the maximum output value set to 1.

B.1.2. Sigmoidal activation functions
The logistic activation function is defined as:

h(aj) = σ(aj) =
1

1 + e−aj (B.4)

This type of unit is very useful to output a probability, since it maps ℝ in

(0, 1). The problem is that this function saturates to 1 or 0 across most of its

domain. This widespread saturation, characteristic of sigmoidal units, can make

gradient-based learning very difficult, i.e. the derivative is often numerically zero.

That is why its usage in hidden units is discouraged, while, with an appropriate

loss function, which can undo the saturation, it is compatible with gradient-based

optimization. When the usage of a sigmoidal activation function, in hidden layers,

is compulsory, it is preferable to employ the hyperbolic tangent activation function
defined as:

h(aj) = tanh(aj) =
eaj − e−aj
eaj + e−aj (B.5)

This is related to the logistic activation function by: tanh(x) = 2σ(2x) − 1. It

resembles better an identity activation function h(aj) = aj since it passes through
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Figure B.2.: Sigmoidal activation functions

the origin, making the training of the network easier. Both activation functions

can be seen in fig. B.2.

B.2. Optimization algorithms
In this section we briefly present the algorithms and related techniques used in

this work. This overview is mostly taken from Goodfellow et al. [12] chapter 8

and articles directly related to the topics.

B.2.1. Optimization with momentum
The method of momentum (Polyak [32]) is designed to accelerate learning.

This algorithm accumulates an exponentially decaying moving average of

past gradients and continues to move in their direction. It does so introducing

a variable v that mimics the velocity, i.e. the direction and speed at which the

parameters w move through parameter space during the optimization.

The name momentum derives from the physical analogy: considering a parti-

cle of unitary mass we have that v may be regarded as its momentum.

The velocity is set to an exponential decaying average over the mini-batch of

the negative gradient. A hyperparameter α ∈ [0, 1) determines how quickly the

contributions of previous gradients vanish. The correspondent update rule is:
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v(τ+1) = αv(τ) − ε
N

N∑
n=1

∇en(w(τ))

w(τ+1) = w(τ) + v(τ+1)
(B.6)

whereN is themini-batch size. The largerα is relative to ε, themore previous

gradient affect current direction. When many subsequent gradients point in the

same direction the step size may grow bigger, hence accelerating the optimization

process.

Typically α follows an increasing schedule, while ε a decreasing one during

learning.

B.2.2. Optimization with Adaptive learning rates
Learning rate is one of the most difficult hyperparameter to set because it directly

affects the learning performance.

Observing that the loss function is often highly sensitive to some directions in

the parameter space and insensitive to others, and supposing that the directions of

sensitivity are somehow axis aligned, it couldmake sense to use separate learning

rate for each parameter. These learning rate automatically adapt througout the

course of optimization.

B.2.3. Adam method
Adam1

algorithm by Kingma et al. [13] combines adaptive learning rates with

momentum.

This method was designed to merge the advantages of two other, previously

defined, algorithms: AdaGrad (Duchi et al. [33]), which works well with sparse

gradients, and RMSProp (Tieleman et al. [34]) which works well in online and

non-stationary settings.

One of the main differences with the latter algorithm is that in this case

the momentum is incorporated directly as an estimate of the first-order moment

(with exponential weighting) of the gradient. Moreover Adam includes also bias

corrections to the estimates of both first-order and (uncentered) second-order

moments to account for their initialization at the origin.

We report here the gradient’s first moment m(τ) and second moment v(τ)
update rule:

m(τ+1) = β1m(τ) + (1 − β1)∇e(w(τ))
v(τ+1) = β2v(τ) + (1 − β2)∇2e(w(τ))

(B.7)

where the hyper-parametersβ1,β2 ∈ [0, 1) control the exponential decay rates
of these moving averages. As previously mentioned, m(0) = v(0) = 0.

Adam take this biasing toward zero into account providing a bias correction:

1
The name derives from the phrase "adaptive moments".
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m̂(τ) = m(τ)

1 − βτ
1

v̂(τ) = v(τ)

1 − βτ
2

(B.8)

Finally the parameters update is given by:

w(τ+1) = w(τ) + ∆w(τ+1) = w(τ) − α m̂(τ+1)

ε +
√

v̂(τ+1)
(B.9)

where α called step-size approximately bound the effective magnitude of the

steps taken in the parameter space at each timestep, i.e.
��∆w(τ)

�� / α. This can

be understood as establishing a trust region around the current parameter value,

beyond which the informations carried by the current gradient are not sufficient.

ε is a small constant for numerical stabilization.

Adam is generally regarded as being fairly robust to the choice of hyperpa-

rameters. Default settings, suggested by experimental results, are: α = 0.001,

β1 = 0.9, β2 = 0.999 and ε = 10
−8
.

B.2.4. Batch Normalization
Batch normalization (Ioffe et al. [35]) is not an optimization algorithm, instead it is

a method of adaptive reparameterization, motivated by the difficulty of training

some very deep models. Indeed the choice of a proper learning rate is made

difficult because the effects of an update to the parameters for one layer depend

so strongly on all the other layers.

Consider a small step in the parameter space δw. In a first-order ap-

proximation this leads to a correspondent update of the error function: δe ≈
(δw)T∇e(w). Therefore applying an update rule based only on the gradient:

w(τ+1) = w(τ) − η∇e(w(τ)), i.e. in this case δw = −η∇e(w), we decrease the loss

by η∇e(w)T∇e(w). Clearly setting the parameter η enables us to control the de-

crease of the loss function. Such useful control begins to fail when the first-order

approximation starts to be too much inaccurate. This fact happens when we have

lots of layer with many weights greater than 1. Indeed second and higher order

terms depends on the product among theweights belonging to subsequent layers,

i.e. they take into account the interaction between them.

The reparameterization introduced by batch normalization significantly re-

duces the problem of coordinating updates across many layers.

Let A be a mini-batch of activations, arranged in a design matrix, of the layer

(hidden or input) that wewant to normalize. To do sowe replace it with
˜A defined

as:

˜Aij =
Aij − µj

σj
(B.10)

where µ and σ are the average and deviation statistics computed over the

mini-batch, i.e. for a size-N batch:
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µ =
1

N

N∑
n=1

An:

σ =

√√√
ε + 1

N

N∑
n=1

(An: − µ)2
(B.11)

ε is a small constant such as 10
−8

to avoid the computation of the square root

of zero. In this way learning themodel is now very simple because the parameters

at the lower layers do not have an effect in most cases.

The actual implementation of batch normalization replace the
˜Aij with βj +

γj ˜Aij for each i. This is done to avoid the reduction of the expressive power of

the network, while mantaining it easy to learn with gradient descent. Indeed the

mean of A was determined by a complex interactions among the parameters in

the layers below, whereas now it is solely determined by β. At test time µ and σ
may be replaced by running averages that were stored during training time.

Experimental results show that batch normalization owns a regularization

effect as well.

B.3. Metrics
In this section we simply provide definitions and formulas of the performance

metrics used in this work. In the following we fix the number of samples per

batch to N. Moreover we name y the output of the network, i.e. the estimated

value correspondent to the couple input-target (x, t). When the metric is used

as loss function its evaluation is performed batch-by-batch, whereas if we are

interested in the metric’s value of an epoch we have to apply a further average

over the mini-batches.

B.3.1. Binary cross-entropy
The binary cross-entropy is a probabilistic metric utilized in the task of binary clas-

sification. It is probabilistic in the sense that its inputs, i.e. estimated and true

labels, are probabilities. In this case t and y are scalars correspondent to a unique

output unit. To avoid the problem exposed in section B.1.2 about sigmoidal acti-

vation functions, which output probabilities, in Tensorflow the actual computation

of the metric is done before applying the logit sigmoid. As we have seen in

section 2.2 minimizing the binary cross-entropy corresponds to maximizing the

log-likelihood function of a Bernoulli distribution. The general definition of the

binary cross-entropy loss function is:

e(t,y) = − 1

N

N∑
n=1

[yn log(tn) + (1 − yn) log(1 − tn)] (B.12)

The actual Tensorflow implementation provides a stable version:
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e(t,y) = − 1

N

N∑
n=1

[max{zn, 0} − zntn + log(1 + e−|zn |)] (B.13)

where zn is the activation of the output unit, i.e. the output value before

sigmoidal trasformation is applied. In Keraswe can apply the metric either to the

linear activation or to the sigmoidal output. In this latter case a logit
2
transforma-

tion in computed before applying the Tensorflow implementation of the metric in

eq. (B.13).

B.3.2. Binary accuracy, precision, recall and AUC
We define together these performancemetrics that we utilize for the binary classi-

fication task. We use this straightforward notation to denote the following binary

quantities: true positives (TP), true negatives (TN), false positive (FP) and false neg-
atives (FN). We take their meanings for granted. Hence we have the following

formulae:

• Accuracy. ACC = TP+TN
TP+TN+FP+FN , it is the frequency with which y matches

the target t.

• Precision or Positive Predicted Values. PPV = TP
TP+FP , it represents how many

of the samples which have been estimated positive are truly positive.

• Recall or Sensitivity or True Positive Rate. TPR = TP
TP+FN , it represents how

many of the positive samples present in the training or test set are truly

detected as positive.

• Area Under the Curve (AUC). In this work we use the area under the Precision-
Recall (PR) curve, i.e. the integral of the curve in the PR plane in which

each point represents precision and recall values for a given classification

threshold c. It well represents the trade-off between precision and recall

and summarise these two metrics. Moreover it remains meaningful even

though the dataset is class unbalanced. What is computed during training

is an approximation of the curve.

The latter two metrics are referred to the positive class. They can be computed

with respect to the negative class in a similar faschion.

B.3.3. Mean Squared Error
The Mean Squared Error (MSE) is the straightforward metric obtained via the

gaussian distribution model of the error described in section 2.2 for regression

purpose. Indeed it consists of the average over the sample in the batch of the

squared error, in the case in which we ignore the covariance structure. For

outputs of length P the Keras implementation provides:

2zn = log

(
yn

1−yn

)
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e(t,y) = 1

N

N∑
n=1

‖tn − yn‖22

=
1

N

N∑
n=1

(tn − yn)T (tn − yn)

=
1

NP

N∑
n=1

P∑
p=1

(tnp − ynp)2

(B.14)

In ourwork, in themodel described in section 3.2, the output of the regression

has two channel. We construct a proper loss function simply averaging over the

two channels indicated by the superscript:

e(t(1),y(1), t(2),y(2)) = 1

2N

N∑
n=1

[t(1)n − y(1)n
2
2

+
t(2)n − y(2)n

2
2

]
=

1

2N

N∑
n=1

[(t(1)n − y(1)n )T (t(1)n − y(1)n ) + (t(2)n − y(2)n )T (t(2)n − y(2)n )]

=
1

2NP

N∑
n=1

P∑
p=1

[(t(1)np − y(1)np)2 + (t(2)np − y(2)np)2]

(B.15)

B.3.4. Mean Absolute Error
In this work we use the Mean Absolute Error (MAE) as an additional metric to

check the goodness of the training, we does not employ it as loss function. MAE

is known to be robust to outliers, i.e. in this case samples for which the difference

|tn − yn | is high. The Keras formula is:

e(t,y) = 1

NP

N∑
n=1

P∑
p=1

|tnp − ynp | (B.16)

As for the MSE we implement the two-channel version:
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e(t(1),y(1), t(2),y(2)) = 1

2NP

N∑
n=1

P∑
p=1

[|t(1)np − y(1)np | + |t(2)np − y(2)np |] (B.17)

B.3.5. Cosine similarity
The cosine similarity is a measure of similarity between two vectors. In particular,

as the name suggests, it is equal to the cosine of the angle between the two vectors.

This fact shows how this metric takes into account only the alignement of the two

vectors neglecting theirmagnitudes and it is comprised in the interval [−1, 1]. The
formula is:

cs(t,y) = 1

N

N∑
n=1

< tn,yn >
‖tn‖2 ‖yn‖2

(B.18)

where < ·, · > denotes the usual scalar product in ℝP. When we use it as a

loss function we obviously want to minimize the distance, i.e. the negative cosine
similarity. In Keras the implemented loss function is:

e(t,y) = − 1

N

N∑
n=1

‖tn‖2 ‖yn‖2 (B.19)

Also in this case, when dealing with a two channels output, we sum the

metric over them leading to a metric which outputs values in [−2, 2].
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