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Abstract

IN this thesis the stability of some different models for suspension bridges is studied. In partic-
ular, the main concern of this research is the distribution of the energy among the fundamental
vibrations of the structures considered. Our work is motivated by the fact that many bridges

suffered unexpected oscillations, sometimes leading to collapses, under moderate external stimula-
tion due to the wind or the crowd load. The most famous example of such phenomena, both because
of the intriguing video testimony and because of the huge interest it generated among engineers and
mathematicians, is represented by the failure of the Tacoma Narrow Bridge, occurred in 1940. So
far, the scientific community has not given a unanimous explanation of such accidents, also be-
cause of the large variety of different physical phenomena involved in the dynamics of suspension
bridges, including both external forces and internal structural interactions. In this work, we analyze
some of these factors.

We introduce an abstract nonlinear nonlocal evolution equation modeling the dynamics of real-
world structures subjected to an external load. This model turns out to be suitable to describe
plates undergoing large deflections and suspension bridges with multiple intermediate piers. Some
rigorous finite-dimensional approximations of the problem are studied. More precisely, we prove
that our equation may be asymptotically approximated by a finite-dimensional system of ordinary
differential equations under rather general hypotheses on the external load. In the case of antiperi-
odic in time forcing terms, we refine our results and we exploit them to analyze the distribution
of the energy among the longitudinal fundamental modes of a suspension bridge as the position of
the piers varies. We show that, according to the model considered, asymmetric suspension bridges
appear to be more stable than suspension bridges with piers symmetric with respect to the center of
the deck.

In order to analyze the appearance of the torsional motion in suspension bridges, we examine
a degenerate plate model also described by two coupled nonlinear nonlocal evolution equations.
This system represents the interaction between longitudinal and torsional motions generated by the
presence of the sustaining cables under the hypothesis of rigid hangers. The action of the wind
along the deck of the bridge is not considered as an explicit external force. Instead, in order to
focus on the role of the structural nonlinearities, the aerodynamic contribution to the dynamics is
introduced through the initial conditions. Since we are interested in the torsional motion triggered
by the internal resonances of the bridge, we consider the linearization of the model in a neigh-
bourhood of a purely longitudinal motion. The mathematical analysis of these equations strongly
depends on the boundary conditions. First, we study the case with boundary conditions describing a
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partially hinged plate model and we use some classical methods for the stability of the Hill equation
to our problem. Next, we consider partially clamped boundary conditions and we employ a KAM
reducibility scheme to study the stability of this system. In both cases, the torsional dynamics is
proven to be stable for a large measure set of longitudinal initial data.

Further developments may follow from this thesis. Our study of asymptotic approximations
of plate models undergoing an external load, though easily generalizable to large families of non-
linearities, does not cover the cases involving nonlinear nonlocal damping terms. Moreover, our
analysis of the torsional stability of degenerate plates does not apply to suspension bridges with
multiple intermediate piers because of the presence of weaker second order Melnikov’s conditions
in this case. Therefore, the extension of our results to more general models represents a concrete
challenge, to which future works might be devoted.
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CHAPTER1
Introduction

Estrema temerità mi è parsa sempre quella di coloro che voglion far la capacità umana misura di quanto possa e sappia operar la
natura, dove che, all’incontro, e’ non è effetto alcuno in natura, per minimo che e’ sia, all’intera cognizion del quale possano
arrivare i piú specolativi ingegni. Questa cosí vana prosunzione d’intendere il tutto non può aver principio da altro che dal non
avere inteso mai nulla, perché, quando altri avesse esperimentato una volta sola a intender perfettamente una sola cosa ed avesse
gustato veramente come è fatto il sapere, conoscerebbe come dell’infinità dell’altre conclusioni niuna ne intende.

Galileo Galilei, in Dialogo sopra i due massimi sistemi, Giornata I

One of the main characteristics commonly considered as defining of a living being is the ability
to respond to external stimuli. This capacity of interacting with the surrounding environment man-
ifests itself in the tendency of moving. For examples, bacteria tend to move towards or away from
chemicals (chemotaxis) or light (phototaxis), plants climb fences and walls and even more complex
and somewhat surprising behaviours might be observed in a lot of different species. In particular, in
the quest for resources and wellness, many animals, from ants to swallows, continuously overcome
a separation between two places, let it be due to the presence of a river, an obstacle or simply the
distance itself. Nonetheless, as observed by the german philosopher Georg Simmel, “path-building
[...] is a specifically human achievement” since the animal “do not accomplish the miracle of a
road: freezing movement into a solid structure that commences from it and in which it terminates.
This achievement reaches its zenith in the construction of a bridge.” [147].

The construction of a bridge represents a concrete challenge from many different aspects, both
economical and engineering. Because of its affordability, its ability to cover long spans and its
elegance, from the beginning of the XIX century until today, many suspension bridges have been
built. A suspension bridge is composed by four high towers sustaining two parallel cables which
in turn sustain the hangers and, lastly, the hangers are anchored to the roadway and sustain it from
above. Often, the roadway is supported from below by a girder composed by stiffening trusses in
order to improve the solidity as well as the stability of the structure.

1
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Chapter 1. Introduction

Figure 1.1: Skecth of a suspension bridge, from [82].

1.1 A short history of suspension bridges

The first design of a modern suspension bridge (Pons Ferreus) was a compromise between a sus-
pension bridge and a cable-stayed bridge and it is attributed [82, 111, 137] to Fausto Veranzio
(1551-1617) in the year 1595 [152]. This bridge, together with a similar project (Pons Canabeus),
was never built and the first suspension bridges were erected only at the beginning of XIX century
in Pennsylvania and, later, in England and France. Nonetheless, as noticed by Waddel in [153],
at the end of the XIX century “the field of bridgework [...] was neither a science nor an art, but
merely a business or trade - and a poor one at that!” and some pages later we found written that
“The designs of railway bridges in general were simply atrocious! They were absolutely unscien-
tific!”. Despite this lack of a rigorous science of construction, suspension bridges proved to be in
many cases the most economic and elegant option and, for this reason, they kept being built.

Unfortunately, due to a large variety of different factors, many bridges suffered unexpected
oscillations, sometimes leading to collapses, see e.g. [4,49,105]. In particular, the stability of such
structures with respect to the action of the wind had been questioned quite early [137, p.161]. The
failure of the Tacoma Narrow Bridge (TNB), occurred in 1940, raised a particular attention on
the topic and the sudden change from a vertical to a torsional mode of oscillation was considered
crucial by the board of engineers appointed by the Federal Works Agency to investigate about the
accident [6]. Torsional oscillations were also considered the main culprit for the collapse of other
suspension bridges, such as the Brighton Chain Pier (1836) [142], the Wheeling Suspension Bridge
(1854) [106] and the Matukiki Suspension Footbridge (1977) [107, Ex. 4.6, p. 180] (see [82] for
more details). The sudden appearance of the torsional motion was first attributed by Von Kármán to
the vortex shedding [6, p.31], but this explanation was proven by Scanlan [144] to be incompatible
with the phenomenon observed at the TNB by Farquharson [28, p.120] and the many attempts to
provide a purely aeroelastic explanation of the failure of the TNB gave unsatisfactory results. We
refer to [9] and the references therein for a detailed discussion of the related controversy. More
recently, some attempts [7, 8, 22–24, 78, 116] were made to provide a qualitative explanation of the
torsional motion in terms of internal resonances and structural instability. Nowadays, a complete
comprehension of the reasons and the mechanics involved in the oscillations (and the collapse) of
the TNB as well as of many other suspension bridges is not entirely achieved a lot of work is yet to
be done.

1.2 The challenges of an adequate mathematical modelling

The elaboration of a rigorous mathematical model of the considered structures represents an im-
portant step towards the understanding of the complex and different phenomena involved in the in-

2
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1.2. The challenges of an adequate mathematical modelling

stability of suspension bridges. Nevertheless, a fully reliable model appears out of reach, as we can
observe for example in the work of Abdel-Ghaffar [1]. There, a complete mechanical description
of an idealized suspension bridge is given and via variational principles a fairly general nonlinear
system of equations describing the dynamics of the structure is obtained. However, even this com-
plicated equations do not take into account the fluid-structure interaction between the bridge and the
wind, the slackening of the cables and other complex as well as important phenomena. Moreover,
after such huge effort, in order to make the problem analytically treatable, the author linearises
the equation obtained. In this case, the attempt of giving a precise and complete description and
motivation of the instability of a suspension bridge has been frustrated both by mathematical and
engineering issues. Despite this problematic being quite pervasive in the modelling of complex
physical systems, before and after the work of Abdel-Ghaffar a quite extensive literature around
the topic and many different models have been developed.

1.2.1 A first model: the Melan’s Equation

The various models developed to describe suspension bridges differentiate themselves by the de-
gree of approximation of the model and by the focus on some particular phenomena in spite of
others. After the fundamental report of Navier [137], that for several decades constituted the only
mathematical treatise of the topic, and the work of Rankine [141], the first attempts to model sus-
pension bridges were to view the roadway as a beam. This approximation was justified by the fact
that, from a mechanical point of view, the roadway may naturally be considered as a plate whose
width is much smaller than its length. We find this model in a milestone theoretical contribution
to suspension bridges [132] by the Austrian engineer Joseph Melan, where the Castigliano Theo-
rem [41, 42], is repeatedly applied to study the deflection of the structure. Biot-von Karman [29]
call the Melan equation, that is{

EIw′′′′(x)− (H + h(w))w′′(x) +
q

H
h(w) = p(x), ∀x ∈ (0, L),

w(0) = w(L) = w′′(0) = w′′(L) = 0,

the fundamental equation of the theory of suspension bridges. Here, E is the elastic modulus;
I is the second moment of area of the beams’s cross section; q and p(x) are the dead and live
loads per unit length applied to the beam; H is the horizontal tension in the cable, when subject
to the dead load q only and h = h(w) is the additional tension in the cable produced by the live
load p. We remark that the term h(w), which represents the additional tension of the sustaining
cables due to live loads, introduces a nonlocal nonlinearity in the equation and, for this reason, it
is often considered as a constant in the engineering literature. However, the nonlinear behaviour
of suspension bridges is by now well established, see e.g. [37, 60, 81, 116], and many different
versions of h(w) have been studied both from a theoretical and a numerical point of view [59, 83,
85, 120, 145, 146, 156]. The Melan equation and, more in general, monodimensional models, see
e.g. [119,131,135], play an important role in the study of suspension bridges nowadays, in spite of
failing to describe the longitudinal dynamics of the structure, that is one of the main menaces to the
survival of suspension bridges, as we mentioned above.

1.2.2 Some plate models for suspension bridges

In order to study the torsional instability of the roadway, many authors got back taking into ac-
count the previously neglected spacial dimension of the structure considered, thus obtaining a plate
model. Among the different plate models involved in the study of suspension bridges, we dis-
tinguish two main families of descriptions: the continuous partially-hinged plate model and the
degenerate plates models.

3
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Chapter 1. Introduction

The continuous partially-hinged plate describes the shape of the roadway with a certain function
u : Ω ⊆ R2 → R, where Ω = [−π, π] × [−ℓ, ℓ] with 0 < ℓ ≪ π. The main focus of those models
is on the movements of the structure due to the action of the wind, whose force exerted on the
deck of the bridge is usually considered in a suitable approximated form. Such models were firstly
introduced by Ferrero and Gazzola in [71] and they were later studied, both from an engineering
and a mathematical point of view, in a large variety of different analytical settings taking in account
dissipative and nonlinear effects and different approximations of the action of the wind (see for
example [5, 18, 33, 34, 70, 88]).

The degenerate plate models consider the cross section of the roadway as a rod having two de-
grees of freedom. The main advantage of such models is represented by the explicit separation
between longitudinal and torsional dynamics in the equations. On the other hand, as suggested by
Irvine [107], in those models the aerodynamic contribution on the dynamics is not explicitly de-
scribed by a forcing term and it is here introduced through the initial conditions on the longitudinal
dynamics. The attention in those models is focused on the nonlinear interaction between the differ-
ent components of the bridge, that is, on the structural instability of the bridge, and less relevance
is given to the interaction between the bridge and the external forces. Indeed, the developing lit-
erature regarding these descriptions of suspension bridges effectively shows how the phenomenon
of internal resonance, that is the sudden transfer of energy from the longitudinal to the torsional
dynamics, appears to be originated by the structure of the bridge itself rather than by the action of
external forces. We distinguish two main different approaches to such idea: the fish-bone model
and the Fermi-Pasta-Ulam-like (FPU-like) models.

The fish-bone model, firstly introduced in [23], is composed by a beam representing the midline
of the plate, whose displacement from the rest position at a certain time t is given by the function
u(x, t), and by cross sections that are free to rotate around the beam, whose angle with respect to
the horizontal position is described by the function θ(x, t) (see Figure 1.2). The fish-bone models

Figure 1.2: The fish-bone model.

has been analysed in a variety of different frameworks as the boundary conditions, the damping
effects and the nonlinearities involved in the dynamics varied (see for example [3, 23, 78, 82, 86]).

In the FPU-like models we consider the bridge as finitely many cross sections (modelled by rods)
linked by linear forces. Moreover, in order to model the action of the hangers on the structure, each
of the rods is linked at its endpoints to two hangers that apply a certain restoring force to the rod.
To the author’s knowledge, this model was first suggested by Rocard [143, p. 121]. The parallelism
with the celebrated FPU discrete system of nearest-neighbor coupled oscillators [69], which is the
reason why we decided to call such models “FPU-like”, is evident. This discretized model was first
employed in the analysis of suspension bridges by McKenna [127] and it was later improved by

4



i
i

“thesis” — 2022/4/2 — 11:48 — page 5 — #13 i
i

i
i

i
i

1.3. Motivations and structure of the thesis

McKenna and Tuama [129]. As the hypotheses on the restoring force exterted by the hangers on the
structures vary, both numerical and theoretical results proved that the nonlinear behaviour of such
structures plays a fundamental role in the sudden change from longitudinal to torsional dynamics
in suspension bridge (see, for example, [8, 63, 108, 118, 128, 130])

Figure 1.3: Skecth of the FPU-like model, from [8].

Many other things could be said regarding the modelling of suspension bridges. Recently, a vast
interest has been devoted to a fluidodynamic approach to the problem of instability [36, 76, 84, 87,
88] and to a detailed discussion of the many different mechanical issues of these structures, such as
for example the complex behaviour of the cables [31,32,40,57,62] and the possibility of composing
the deck of the bridge with different materials [18–21]. Unfortunately, a detailed discussion of
those interesting and challenging topics would go beyond the scopes of this introduction and of this
thesis.

1.3 Motivations and structure of the thesis

As we noticed so far, it is a common practice in the study of suspension bridges, as well as in
science more in general, to simplify the problems under examination through some more or less
justified assumptions in order to make them treatable from an analytic point of view. This need
of simplification is quite prominent for suspension bridges, as shown by the already cited work of
Abdel-Ghaffar as well as in the majority of the articles we mentioned above. In particular, otherwise
overwhelmingly complex infinite-dimensional dynamical systems are often simplified into a finite
dimensional problems and the nonlinear terms are sometimes neglected. These approximations are
a widespread practice often performed without a rigorous mathematical justification. This lack of
mathematical rigour if often partially compensated with a physical interpretation of the procedure
and by referring to the work of Galerkin [77] (we refer to Chapter 2 for a more detailed discussion).
Nonetheless, as we explained above, the stability of suspension bridges is deeply related with the
distribution of the energy among the fundamental modes of oscillation of the roadway and with
the delicate role played by the nonlinear interaction among the different components of the bridge.
Therefore, in this thesis, we aimed both to provide a rigorous justification of one of the most
common approximation procedures and to study some of the systems that were previously studied
in an approximated form only.

As we mentioned above, a widespread practice in the engineering approach to complex infinte-
dimensional systems consists in neglecting the larger modes of the system. Motivated by this, in
the Chapter 2, we aim to rigorously prove that some infinite-dimensional models for suspension
bridges might be approximated via a finite number of ordinary differential equations. To this end,

5
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Chapter 1. Introduction

we consider some general elastic systems modelled by the equation

utt + A2u+ δut + γ∥Aθ/2u∥2Aθu = g (1.1)

where A2 is a diagonal, self-adjoint and positive-definite operator and θ ∈ [0, 1]. As the operator
A2 and the value of θ vary, a large family of different physical models, both mono-dimensional and
multi-dimensional, turns out to be described by (1.1). We refer to Section 2.1 for a detailed discus-
sion of the many applications of equation (1.1). In order to study the possibility of approximating
the models described by (1.1) with a finite-dimensional system of ODEs, we proceed as follows.
First, by exploiting an adaptation to our framework of some abstract recent results of Haraux [98],
we analyze the dynamics in the case when the forcing term g is finite-dimensional. Next, we prove
the continuous dependence of u by the forcing term g and we employ such result to estimate the
error we commit by neglecting the modes larger than a certain N . We then prove, for a particular
class of forcing terms, a theoretical result allowing to study the distribution of the energy among
the modes and, with this background, we refine the previous results. Some applications to the study
of the stability of suspension bridges are given. More precisely we apply the theoretical results to
the multiple-intermediate piers model developed by Garrione and Gazzola in [78]. We study the
distribution of the energy among the longitudinal modes of a suspension bridge with two interme-
diate piers as the position of the piers vary and we show that asymmetric suspension bridges appear
to be more stable than suspension bridges where the piers are symmetric with respect to the center
of the deck.

In the third chapter we focus on the analysis of the torsional instability of suspension bridges. In
particular, we investigate how the internal resonances, which depend on the bridge structure only,
are the source of torsional oscillations. Therefore, since as it was observed during the TNB col-
lapse [6, p. 20] the longitudinal dynamics appeared to concentrate on a single mode of oscillation,
we consider a fish-bone model for suspension bridges linearised in a neighbourhood of a purely
longitudinal and unimodal dynamics. Since the instability of such structures is mainly originated
by the sustaining cables [78, Sec 2] [124], we set ourselves in the hypothesis of rigid hangers. The
stability analysis, which turns out to be strongly dependent on the boundary conditions, is carried
out by means of standard Floquet theory in the case of Dirichlet boundary conditions and via KAM
techniques in the case of Neumann boundary conditions. In both cases, the system is proven to be
torsionally stable for a large set of longitudinal initial data.

6



i
i

“thesis” — 2022/4/2 — 11:48 — page 7 — #15 i
i

i
i

i
i

CHAPTER2
Asymptotic finite-dimensional approximations for a class

of extensible elastic systems

2.1 Introduction

The main purpose of this chapter is to provide a rigorous finite-dimensional approximation for
some infinite-dimensional models for suspension bridges. To this end, we set ourselves in a rather
general framework suitable to describe a large variety of elastic systems involved in the description
of the long-term dynamics of the deck of a suspension bridged undergoing an external force.

Let A2 be a diagonal, self-adjoint, strictly positive operator, densely defined on a real Hilbert
space (H, (·, ·), ∥·∥) and we consider the following nonlinear nonlocal evolution equation

utt + δut + A2u+ ∥Aθ/2u∥2Aθu = g in H× R+ (2.1)

where θ ∈ [0, 1], δ > 0 and g ∈ C0(R+,H) is a given forcing term.
The purpose of the present chapter is to give a rigorous finite-dimensional approximation of

(2.1). To be more precise, we introduce the projection PN onto the space generated by the first N
modes, that is, by the first N eigenvectors of the operator A2 and we consider the approximated
problem

utt + δut + A2u+ ∥Aθ/2u∥2Aθu = PNg in H× R+ (2.2)

We remark that, by taking u(0) and ut(0) in PNH, equation (2.2) can be interpreted as a system
of N ODEs. Therefore, equation (2.2) actually provides a finite-dimensional approximation of
equation (2.1). We aim to prove that any solution of (2.2) is asymptotically finite-dimensional
and to estimate, for any ε > 0, the smallest N = N(ε) such that the asymptotic distance in the
phase space between the solution of (2.1) and the corresponding solution of (2.2) is less than ε. An
improvement of the result will be studied for a particular class of forcing terms.

The reduction of infinite-dimensional dynamical systems to finite-dimensional systems of ODEs
is a technique which has been widely used in the theoretical and numerical study of PDEs. The
idea was first stated by Galerkin [77] and it has been used in many different applied frameworks as

7
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

well as in the theory of finite-dimensional inertial manifolds (see [51, 55, 58, 64, 121, 151] and the
references therein). In particular, it is a fairly common procedure, which we aim to make rigorous,
in the study of suspension bridges [30] to approximate the physical system with the dynamics finite
number of modes in order to reduce the computational complexity of the model. This approach can
be physically justified by observing that “the higher modes with their shorter waves involve sharper
curvature in the truss and, therefore, grater bending moment at a given amplitude and accordingly
reflect the influence of the truss stiffness to a greater degree than do the lower modes" [148, p.11],
which means that the dynamics of the higher modes corresponds to a physically irrelevant phe-
nomenon. We remark that our goal would not be achieved just by estimating the dimension of the
inertial manifold of our system, since we are interested in providing a finite-dimensional approxi-
mation of its asymptotic behavior.

The problem of finding a finite number of natural parameters of a system that uniquely deter-
mine its asymptotic behavior was first discussed for the 2D Navier-Stokes equation [75, 117] and
to tackle it the concepts of finite-dimensional inertial manifold, determining modes and, later, de-
termining nodes and determining local volume averages were introduced (see [52, Ch. 5], [50] and
the references therein). Regarding our problem, Chueshov in [52, Ch. 5, Thm. 7.2] proved that the
dynamics of the first N modes of (2.1) completely determines the evolution of the system and Eden
and Milani in [65] proved that if the forcing term is N−dimensional, then any solution is attracted
to an M−dimensional manifold with M ≥ N .

Some particular cases of the damped equation (2.1) have been widely studied in mathematical
literature. An ODE version of the problem was investigated by Loud in [122, 123]. Fitouri and
Haraux in [73] improved some of the previous results on the ODE case and in [72] they provided
a close-to-optimal ultimate bound in the PDE version of the problem. More recently, some sharp
stability criteria for the unimodal version of (2.1) and for a related evolution equation were obtained
by Haraux in [98] in the case g = 0. The case when θ = 1 was studied in a slightly different
framework by Holmes and others in [102, 134] as an example of chaotic dynamics (see also [95])
and some undamped versions of (2.1) were studied in the case θ = 0 by Cazenave, Weissler and
Haraux in [43–46] in order to obtain a description of the qualitative behavior of more complicated
nonlinearities and by Gazzola and Garrione in [78] to study the dynamics of suspension bridges
with multiple intermediate piers.

The considered abstract equation was analyzed by many other authors in an even more general
framework. Biler [27] and de Brito [61] investigated the decay properties of the unforced problem
with weak damping and a more general nonlinear nonlocal term. Da Silvia and Narciso [109, 110]
studied an extensible beam model subject to a nonlocal nonlinear parameter-dependent damping
and a forcing term. A lot of different variations of (2.1) with a large variety of damping and
nonlinear terms has been studied in mathematical literature (see [52–54] and the references therein).

In addition to its mathematical relevance, our study also presents a certain physical and engi-
neering interest. In fact, the considered model is suitable to describe both mono-dimensional and
multi-dimensional physical systems. More precisely, some particular cases of (2.1) concerning the
dynamics of beams and plates was considered by Holmes and Marsden [100,101] in order to study
the problem of flow-induced oscillations (see also [103, 104]) and in order to provide some more
information about the nonlinear structural behavior of suspension bridges. In particular, we expect
our results to allow some progress in the study of the structural and torsional instability of plates,
to which a vast literature is devoted [16, 17, 22, 23, 80, 82].

If we set A2 = ∆2, θ = 1 and H = L2(Ω), where Ω is a bounded domain in RN (N ≥ 1) with
the smooth boundary ∂Ω, we obtain the equation

utt + δut +∆2u−
(∫

Ω

|∇u|2
)
∆u = g, in Ω× (0, T ).

8
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2.1. Introduction

This problem is a special case of the more general model

utt +∆2u− ϕ(∥∇u∥2L2(Ω))∆u = F(x, t, u, ut)

that was introduced in 1955 by Berger [25] as a simplification of the von Karman plate equation
which describes large deflection of plate. Some related models were later applied to the study of
the torsional instability of suspension bridges. In particular, our results apply also to the partially-
hinged plate problem discussed in [35, 70]

utt + δut +∆2u+
(
P − S

∫
Ω
u2r(r, s, t)drds

)
uxx = g in Ω× (0, T )

u = uxx = 0 on {0, π} × [−l, l]
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on [0, π]× {−l, l}

where S > 0 depends on the elasticity of the material of the deck of the bridge, l > 0 represents
the width of the bridge and σ > 0 is the Poisson’s ratio of the structure, which is assumed to be,
in the case of suspension bridges, between 0 and 0.5. The term P is called “prestressing constant”
and it expresses the buckling loads on the plate. In the case of suspension bridges, the compressive
forces along the edges are introduced in order to increase the stability of the structure. The abstract
prestressed model reads

utt + δut + A2u− PAu+ ||Aθ/2u||2Aθu = g in H× R+. (2.3)

The behaviour of the prestressed model is strongly dependent by the relationship between P and
α1, that is the first eigenvalue of the operator A2. The study of this equation will not be discussed
in detail since, under the hypothesis P < α

1/2
1 (weak prestressing), the prestressing term does not

modify the qualitative behavior of the system and in the case when P ≥ α
1/2
1 (strong prestressing)

our results do not hold. In fact, in a strongly prestressed suspension bridge the linear part of (2.3),
which is given by A2 − PA, is not a strictly positive operator anymore and the proofs of the main
theorems of this chapter do not work. Nonetheless, further investigations could be devoted to
generalize some of our results to a strongly prestressed framework, in the spirit of [95].

Concerning the case where the models describes the dynamics of a mono-dimensional structure,
if we take H = L2(I) (with I = [−π, π]) and A = −∂xx, we can distinguish three different
physically significant cases: θ = 0, θ = 1 and θ = 2.

In the first case, the considered model has been introduced by Garrione and Gazzola [78] in
order to describe the behavior of the deck of suspension bridges with two intermediate piers. In
the work of Garrione and Gazzola, the deck of the bridge is modeled by a degenerate plate consist-
ing of a beam with a continuum of cross sections free to rotate around the beam. Therefore, the
longitudinal dynamics of the bridge is modeled by a beam equation, whose nonlinear term can be
interpreted as a representation of “a stiffened beam where the displacement behaves superquadrat-
ically and nonlocally: if the beam is displaced from its equilibrium position in some point, then this
increases the resistance to further displacements in all the other points” [78]. The nonlocal nature
of such term is due to the elastic behavior of the components of the bridge, the sustaining cables
in particular. This choice of the nonlinear term follows from a comparison between the qualitative
behavior of some possible models and the actual behavior of suspension bridges. If we consider
D(A) = {v ∈ H2(I) ∩H1

0 (I) : v(−π) = v(π) = v(−aπ) = v(bπ) = 0} for a, b ∈ (0, 1), where a
and b model the position of the piers along the deck of the bridge, the system reads

utt + δut + uxxxx + ∥u∥2L2(I)u = g(x, t) ∀t ≥ 0,∀x ∈ I

u(0) = u0 ∈ H2(I) ∩H1
0 (I), ut(0) = u1 ∈ L2(I)

u(−π, t) = u(−πb, t) = u(πa, t) = u(π, t) = 0, ∀t ≥ 0.

9
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

An analogous equation, in a different functional framework, is involved in the study of the inter-
action between the cables and the deck of a suspension bridge in the case when the hangers are
considered inextensible (see [78, 124]).

The second case (θ = 1) was obtained by Woinowsky-Krieger [155] in 1950 and, independently,
by Burgreen [39] in 1951. It models the physical phenomenon that “if the beam is stretched some-
where, then this increases the resistance to further stretching in all the other points” [78]. The
system has been widely studied in both mathematical and engineering literature (see [65, 94] and
the references therein). If we choose D(A) = {v ∈ H2(I) ∩H1

0 (I) : v(−π) = v(π) = vxx(−π) =
vxx(π) = 0}, the model becomes

utt + δut + uxxxx − ∥ux∥2L2(I)uxx = g(x, t) ∀t ≥ 0, ∀x ∈ I

u(0) = u0 ∈ H2(I) ∩H1
0 (I), ut(0) = u1 ∈ L2(I)

u(−π, t) = uxx(−π, t) = uxx(π, t) = u(π, t) = 0, ∀t ≥ 0.

The case θ = 2 was first introduced in its non-dissipative version by G. Kirchoff in [112] as
a simplified model for transversal vibrations of elastic strings and it was later studied in many
different frameworks [78, 89, 92, 93]. If we consider H = L2(I) and A = −∂xx as we did before,
the nonlinear term ∥u∥2θAθ/2u reads ∥uxx∥2L2(I)uxxxx and the corresponding nonlinear equation can
be interpreted as a model for “a stiffened beam with bending energy behaving superquadratically
and nonlocally: this means that if the beam is bent somewhere, then this increases the resistance to
further bending in all the other points” [78]. Despite the physical interest of the case θ = 2, due to
its technical difficulty, in this work we decided to restrict ourselves to the cases where θ ∈ [0, 1].

The results of the chapter are given in three main theorems. First, in Theorem 2.2.1, we prove
that if the forcing term is finite-dimensional, i.e. if g is a combination of a finite number N of
modes, then any solution is asymptotically finite-dimensional too in a sense that we specify in
Definition 2.2. In the case of small oscillations or large damping, our result improves the one of
Eden and Milani [65]. The proof is based on an application of a recent work of Haraux [98]. Next,
in Theorem 2.2.2 we prove that, under suitable smallness conditions on the nonlinearity and on
the forcing term, we are able to give an M−dimensional approximation of (2.1). More precisely,
we prove that for any ε > 0 there exists N ∈ N such that the asymptotic distance between a
solution of (2.1) and a solution of (2.2) is controlled by ε in the phase space norm. The proof relies
on a continuous dependence result and on Theorem 2.2.1. To conclude, in Theorem 2.2.3, fixed
θ = 0, we focus on a particular class of forcing terms and we refine the result of Theorem 2.2.2.
In particular, under suitable smallness conditions on the solution, we improve the ultimate bounds
previously given for general forcing terms in [35, 72] and we estimate how much the dynamics
changes as we eliminate a single mode from the dynamics. This latter result represents one of the
main novelties of this work since, to the author’s knowledge, this is the first statement of this type
present in literature.

The chapter is organized as follows. In Section 2.2 we give some definitions and we state the
main results of the paper. In Section 2.3, some technical results are given. The proofs of the main
results are contained in Section 2.4, Section 2.5 and Section 2.6, which are devoted to the proof of
Theorem 2.2.1, Theorem 2.2.2 and Theorem 2.2.3 respectively. In Section 2.7, we present some
physical conclusions concerning the application of our results to suspension bridges with multiple
intermediate piers.

2.2 Statement of the main results

Let (H, (·, ·), ∥·∥) be a Hilbert space and consider a diagonal, self-adjoint and positive-definite
operator A2 : D(A2) ⊂ H → H, with eigenvalues 0 < α1 < · · · < αj ↗ ∞ and eigenfunctions

10
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2.2. Statement of the main results

en, solutions of the problem

(Aen, Av) = αn(en, v) ∀v ∈ D(A).

The sequence (en)n≥1 is a complete orthonormal system of H. For our convenience, we preferred
to use A2 instead of A to build the functional framework of the problem. The operator A2 defines a
family of Hilbert spaces Hσ = D(Aσ/2) with σ ≥ 0, endowed with the norms ∥·∥σ induced by the
scalar products

u, v ∈ Hσ =⇒ (u, v)σ := (A
σ
2 u,A

σ
2 v) =

∞∑
n=1

ασ/2n unvn,

∥u∥σ :=
√

(u, u)σ

(2.4)

where un = (u, en) and vn = (v, en). In particular, ∥·∥0 = ∥·∥. In the context of this work, we
consider the cases when σ ∈ [−2, 2], where for negative s the space Hs is defined as the dual of
H−s. Throughout this chapter, we denote by ⟨·, ·⟩ the duality product of H2. It possible to verify
that Hρ ↪→ Hσ densely whenever 0 ≤ σ ≤ ρ and that

u ∈ Hρ, 0 ≤ σ < ρ =⇒ ∥u∥ρ ≥ α
ρ−σ
4

1 ∥u∥σ. (2.5)

In this framework, for any family of indices J = {j1, . . . , jn}, we define the projection

PJ : H → ⟨ej1 , . . . , ejn⟩

u =
∞∑
h=1

uheh 7→
n∑
r=1

ujrejr .

In particular, we denote by PN and QN := I − PN the orthogonal projections onto ⟨e1, . . . eN⟩ and
onto ⟨eN+1, . . . ⟩ respectively. In addition, for any k ∈ N we introduce the projection ⊓k onto the
orthogonal complement of ek given by

⊓k := I − PkQk−1 : H → ⟨ek⟩⊥.

Since A is a diagonal operator, we remark that

∀s ∈ [0, 2],∀M = {m1, . . . ,mn}, AsPM = PMA
s and AsQM = QMA

s. (2.6)

Moreover, if u = QNu for some N ∈ N, then the estimate (2.5) can be improved by

u ∈ Hρ, 0 ≤ σ < ρ =⇒ ∥u∥ρ ≥ α
ρ−σ
4

N+1∥u∥σ. (2.7)

By using the notation in (2.4), problem (2.1) may be rewritten as

utt + δut + A2u+ ∥u∥2θA
θu = g in H× R+. (2.8)

Let us make clear what is meant by weak solution of (2.8):

Definition 2.1. Assume that

g ∈ C0
b (R+,H) := C0(R+,H) ∩ L∞(R+,H). (2.9)

A weak solution of (2.8) is a function

u ∈ C0(R+,H2) ∩ C1(R+,H) ∩ C2(R+,H−2)

such that
⟨utt, φ⟩+ δ(ut, φ) + (u, φ)2 + ∥u∥2θ(u, φ)θ = (g, φ) ∀φ ∈ H2.

11
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

We remark that by this definition it follows that u(0) = u0 ∈ H2 and ut(0) = u1 ∈ H. In
the case where θ ∈ [0, 2), existence and uniqueness of weak solutions follows from an immediate
adaptation of the result in [94, Theorem 2.1] (see Theorem 2.3.1). The case where θ = 2 needs
stronger assumptions on the initial data because the Galerkin procedure does not allow to control
the nonlocal term. In the following, due to technical reasons, we have to further restrict ourselves
to the case where θ ∈ [0, 1].

First, we prove that if the forcing term if finite-dimensional, i.e. if g = PNg for some N ∈
N, then any weak solution of (2.8) is asymptotically finite-dimensional. Actually, we guarantee
the validity of the result for a more general family of forcing terms. We introduce the notion of
exponentially N−dimensional forcing term.

Definition 2.2. We say that g ∈ C0
b (R+,H) is exponentially N−dimensional if there exists η > 0

such that
lim
t→∞

∥QNg(t)∥eηt = 0.

In Section 2.4, we prove the following statement which describes the asymptotic behavior of the
solution in the case when the forcing term is exponentially N−dimensional.

Theorem 2.2.1. Assume (2.9), δ > 0 and let θ ∈ [0, 1]. If g is exponentially N−dimensional, there
exists M ≥ N and η̃ > 0, both depending on δ, lim supt→∞ ∥g(t)∥, θ, N , η and α1, i.e. the first
eigenvalue of A2, such that

lim
t→∞

(∥QMu(t)∥22 + ∥QMut(t)∥2)eη̃t = 0,

where u is a weak solution of (2.8).

Motivated by physical arguments (see Section 2.7), we now consider a “separated variables"
forcing term such as g(t) = gf(t), where g ∈ H and f ∈ C0

b (R+,R).
Let us consider a weak solution u of (2.8). Numerical simulations show that for some j we

have lim supt→∞ |(u(t), ej)| ≪ lim supt→∞ ∥u(t)∥, that is, we have that the asymptotic amplitude
of some modes of u seems to be negligible with respect to the overall dynamics (see Figure 2.3).
Hence, we expect to be able to neglect such modes both from the forcing term g and the solution
u, thus reducing the numerical complexity of the model. Therefore, for any finite family of indices
J = {j1, . . . , jm}, we consider the finite-dimensional approximation of (2.8) given by

vtt + δvt + A2v + ∥v∥2θA
θv = PJg. (2.10)

We remark that in virtue of Theorem 2.2.1, any solution of (2.10) is exponentially finite-dimensional.
We prove that under suitable smallness conditions on the forcing term, for an appropriate choice of
J , (2.10) is a good approximation of (2.8), i.e for any weak solution u of (2.8), the weak solution v
of (2.10) provides a good exponentially finite-dimensional approximation of u. More precisely, in
Section 2.5 we prove the following theorem:

Theorem 2.2.2. Assume δ > 0, θ ∈ [0, 1] and g(t) = gf(t) with g ∈ H and f ∈ C0
b (R+,R). There

exists ḡ∞ = ḡ∞(α1, δ, θ) > 0 such that, if

g∞ := lim sup
t→∞

∥g(t)∥ < ḡ∞,

then for every ε > 0 there exists a finite family of indices J = {j1, . . . jm} depending on α1, δ, g∞
and ε such that

lim sup
t→∞

(∥u(t)− v(t)∥22 + ∥ut(t)− vt(t)∥2) ≤ ε

12



i
i

“thesis” — 2022/4/2 — 11:48 — page 13 — #21 i
i

i
i

i
i

2.2. Statement of the main results

where u is a weak solution of (2.8) and v is a weak solution of (2.10).
Moreover, if g is exponentially N−dimensional, then there exist M ≥ N and η̃ > 0, both

depending on α1, δ, lim supt→∞ ∥g(t)∥, θ, N and η, such that, if J = {1, . . . ,M}, then

lim
t→∞

(∥PMu(t)− v(t)∥22 + ∥PMut(t)− vt(t)∥2)eη̃t = 0.

In Section 2.6 we further restrict ourselves to the case when the forcing term is sinusoidal in
time and, for the sake of simplicity, we focus on the case when θ = 0, i.e. we study the problem

utt + δut + A2u+ ∥u∥2u = g sin(ωt). (2.11)

For ∥g∥ small enough, Theorem 2.2.2 states that if we replace g with PMg, we commit an error
arbitrarily small as M grows. This suggests to consider the case when g = PMg for some M ∈ N.
Let v be a solution of

vtt + δvt + A2v + ∥v∥2v = ⊓kg sin(ωt). (2.12)
Let us now estimate the distance between u and v. The following theorem holds:

Theorem 2.2.3. Assume δ > 0, θ ∈ [0, 1] and let g(t) = g sin(ωt) with g = PMg for some M ∈ N.
There exists ḡ > 0 depending on δ, ω and αj with j = 1, . . .M , such that, if ∥g∥ < ḡ, then, for any
k ∈ {1, . . . ,M} and for any u and v weak solutions of (2.8) and (2.12),

lim sup
t→∞

(∥⊓ku(t)− v(t)∥22 + ∥⊓kut(t)− vt(t)∥2) ≤
C(g, ek)

4

((αk − ω2)2 + δ2ω2)2
,

where C = C(α1, . . . , αM , g, δ, ω) > 0.

The results involved in the proof of Theorem 2.2.3 are the most physically significant in the
applications considered (see Section 2.7). In fact, Theorem 2.2.3 relies upon an estimate on the
asymptotic amplitude of each mode, that allows us to study the distribution of the energy among
the modes (see Figures 2.3 and 2.5) and to obtain a new bound on the asymptotic H2−norm of u
that improves the estimate given in [35, Lemma 22] (see Figure 2.2).

Theorems 2.2.2 and 2.2.3 are not perturbation statements. Indeed, for any fixed δ > 0, an explicit
expression of the smallness conditions on g∞ and ∥g∥ required by the statements of Theorems 2.2.2
and 2.2.3 is obtained in Sections 2.5 and 2.6 respectively. Since the term g models the action of
the wind along the deck of the bridge, we physically interpret such smallness conditions on g∞ as
requirements on the aerodynamic load on the structure. In particular, the conditions of Theorems
2.2.2 and 2.2.3 are equivalent to require that the speed of the wind v is below a certain threshold
v̄. Moreover, we remark that such conditions can not be avoided since even in the ODE case large
forcing terms lead to a chaotic dynamics [122, 123] and the behavior of the solutions can be quite
complicated, even where the forcing term is periodic in time [79, 136].

Our results are adaptable to more general frameworks. In particular, exploiting the abstract
results of Haraux [98] and Chueshov [52], the cases with strong damping terms and with more
general nonlinearities such as Aθut and M(∥u∥2θ)Aθ/2u with 0 ≤ θ ≤ 1 appear to be treatable.
On the other hand, our results can not be immediately generalized to evolution equations with
nonlinear nonlocal damping terms such as N(∥u∥21)g(ut), since the linear analysis on which the
proof of Theorem 2.2.3 is based seems not to be easily extendable to such case.

We notice that the results of Theorem 2.2.2 and 2.2.3 are not dependent by the initial conditions
of (2.8) and (2.10). This is due to the presence of the damping term, as we can observe from
Proposition 2.3.3. Nonetheless, if the initial states of (2.8) and (2.10) were close to each other, a
uniform estimate on the distance in the phase space between the solutions of the approximated and
the exact problem would be expected to hold for any t ≥ 0. Unfortunately, we were not able to
obtain such estimate and the techniques exploited in the proofs of Theorems 2.2.2 and 2.2.3 do not
seem suitable to get this result.
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

2.3 Preliminary results

We start by recalling some basic properties concerning well-posedness and regularity of the solu-
tions.

Theorem 2.3.1. Let (2.9) hold. Then

1. (Weak solutions) If u(0) = u0 ∈ H2 and ut(0) = u1 ∈ H, problem (2.8) admits a unique
global weak solution such that

u ∈ C(R+,H2) ∩ C1(R+,H) ∩ C2(R+,H−2);

2. (Regular solutions) If u(0) = u0 ∈ H4 and ut(0) = u1 ∈ H2, problem (2.8) admits a unique
regular solution, that is, a unique global weak solution such that

u ∈ C(R+,H4) ∩ C1(R+,H2) ∩ C2(R+,H);

3. (Continuous dependence on initial data) Let (u0n, u1n) be any sequence with

(u0n, u1n) → (u0, u1) in H2 ×H,
and let un(t) denote the weak solution of (2.8) with initial data un(0) = un and ut(0) = u1n.
Then for every T > 0 we have that

(un(t), un,t(t)) → (u(t), ut(t)) uniformly in C0([0, T ],H2 ×H).

The proof follows from a standard applications of monotone operator theory with locally Lips-
chitz perturbations. We refer to [54, Theorem 1.5 and Proposition 1.15] and the references therein
for a detailed discussion, that we decided to omit. For an alternative approach, see [94, Theorem
2.1] for the global existence and uniqueness of weak solutions and continuous dependence on initial
data and [35, Theorem 5] for the global existence and uniqueness of regular solutions.

We remark that in Theorem 2.3.1 we did not introduce the concept of strong or classical solution.
This choice is motivated by the fact that in some applications such formulations are not possible, as
in the case of the multiple intermediate piers model discussed in the introduction (see [78, Section
4] for a more detailed discussion).

The following proposition gives some ultimate bounds on the Sobolev norms of u. Since the
result comes from a straightforward generalization of the estimates proved in Section 7 of [35], we
omit the proof.

Proposition 2.3.2. Assume (2.9) and let u be a weak solution of (2.8). We introduce the quantities
g∞ := lim supt→∞ ∥g(t)∥ and

E∞ := g2∞ max

(
2

δ2
,

1

2α1

)
, α :=

{
δ/2 if δ2 < 4α1,

δ/2−
√
δ2/4− α1 if δ2 ≥ 4α1.

Then, the following estimates on u hold:

lim sup
t→∞

∥u(t)∥2 ≤ 4E∞√
α2
1 + 4αθ1E∞ + α1

=: Φ0;

lim sup
t→∞

∥u(t)∥2θ ≤
4E∞ + 2α2Φ0√

α2−θ
1 + 2(2E∞ + α2Φ0) + α

1−θ/2
1

=: Φθ;

lim sup
t→∞

∥u(t)∥22 ≤ 2E∞ + α2Φ0 =: Φ2;

lim sup
t→∞

∥ut(t)∥2 ≤ min
λ>0

1 + λ

λ

(
2E∞ + max

s∈[0,Φ0]

(
(λ+ 1)α2 − α1s−

1

2
s2
))

=: Φv.

14
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2.3.1 Continuous dependence on the forcing term

We now prove the continuous dependence of the solutions on the forcing term under suitable small-
ness conditions on the parameters of the problem.

Proposition 2.3.3. Let u and v be weak solutions respectively of the problems

utt + δut + A2u+ ∥u∥2θA
θu = g1, vtt + δvt + A2v + ∥v∥2θA

θv = g2 (2.13)

where g1, g2 ∈ C0
b (R+,H). Let Υµ := lim supt→∞ ∥(u(t) + v(t))/2∥2µ with µ in [0, 2]. There exists

Fθ(α1, δ,Υθ,Υ2θ) such that, if Fθ < 1 holds, then there exists C > 0 depending on δ and g∞ such
that

lim sup
t→∞

(∥u(t)− v(t)∥22 + ∥ut(t)− vt(t)∥2) ≤ C lim sup
t→∞

∥g1(t)− g2(t)∥. (2.14)

Moreover, if there exists η > 0 such that lim supt→∞ ∥g1(t)− g2(t)∥eηt = 0, then there exists
η1 > 0 such that

lim
t→∞

(∥u(t)− v(t)∥22 + ∥ut(t)− vt(t)∥2)eη1t = 0. (2.15)

In particular, we can take

Fθ :=
2
√
ΥθΥ2θα

−θ/4
1 +Υθ

α
(1−θ)/2
1

max

(
1

δ
,

1

2
√
α1

)
. (2.16)

Proof. The idea of the proof is standard but, for our purposes, it is mandatory to fully report it since
we are interested in making the smallness conditions required from our results explicit.

Let α > 0. We define

Λα :=
1

2
∥wt∥2 +

1

2
∥w∥22 +

αδ

2
∥w∥2 + 1

16
∥w∥4θ + α(wt, w)

and let E be the quantity

E :=
1

2
∥wt∥2 +

1

2
∥w∥22 +

1

4
∥w∥4θ

with w a generic function regular enough for Λα and Eα to be well-defined. Remark that, by using
the Cauchy-Schwarz inequality, the Young inequality and (2.5), we get

Λα ≤ 1 + αε21
2

∥wt∥2 +
αδ

2
∥w∥2 + α1 + α/ε21

2α1

∥w∥22 +
1

16
∥w∥4θ ≤ C1E,

Λα ≥1− αε22
2

∥wt∥2 +
αδ

2
∥w∥2 + α1 − α/ε22

2α1

∥w∥22 +
1

16
∥w∥4θ ≥ C2E, (2.17)

where C1 and C2 are positive numbers, obtainable for suitable choices of the values of α, ε1 and
ε2. In particular, to get C2 we have to require

1− αε22 > 0, α1 −
α

ε22
> 0.

Hence, for every α such that α <
√
α1 we can find ε2 such that (2.17) holds.

We first consider u and v as regular solutions of the problems in (2.13). We define w := v − u
and r := g2 − g1. The function w is the regular solution of the problem

wtt + δwt + A2w + ∥v∥2θA
θv − ∥u∥2θA

θu = r. (2.18)

15
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

We remark that, if ξ := (u+ v)/2, we have

∥v(t)∥2θA
θv(t)− ∥u(t)∥2θA

θu(t) = 2(ξ(t), w)θA
θξ(t) + ∥ξ(t)∥2θA

θw +
1

4
∥w∥2θA

θw. (2.19)

From the definition of Λα, by using (2.18) and (2.19), since u and v are regular solutions we get

Λ̇α + (δ − α)∥wt∥2 + α∥w∥22 + 2(ξ, w)θ(A
θξ, wt) + ∥ξ∥2θ(A

θw,wt)+

+ 2α|(ξ, w)θ|2 + α∥ξ∥2θ∥w∥
2
θ +

α

4
∥w∥4θ = (r, wt + αw),

(2.20)

Let Cµ = supt≥0 ∥ξ(t)∥
2
µ for any µ ∈ [0, 2]. For a suitable choice of α, by using Cauchy-

Schwarz and Young inequality we have that for some positive constants ᾱ and α̃

(δ − α)∥wt∥2 + α∥w∥22 + 2(ξ, w)θ(A
θξ, wt) + ∥ξ∥2θ(A

θw,wt) + 2α|(ξ, w)θ|2+

+ α∥ξ∥2θ∥w∥
2
θ +

α

4
∥w∥4θ ≥ (δ − α)∥wt∥2+

+ α∥w∥22 − 2∥ξ∥θ∥w∥θ∥ξ∥2θ∥wt∥ − ∥ξ∥2θ∥w∥2θ∥wt∥+
α

4
∥w∥4θ ≥

≥

(
δ − α− 2

√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

)
∥wt∥2 +

(
α− 2

√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

)
∥w∥22+

+
α

4
∥w∥4θ ≥ ᾱE ≥ α̃Λα.

(2.21)

In particular, we choose the parameter α so that
δ − α− 2

√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

> 0

α− 2
√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

> 0,

⇐⇒


δ > α +

2
√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

α >
2
√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

.

Hence, since α <
√
α1, if 

δ >
2
√
CθC2θα

−θ/4
1 + Cθ

α
(1−θ)/2
1

,

√
α1 >

2
√
CθC2θα

−θ/4
1 + Cθ

2α
(1−θ)/2
1

we can find values of α such that (2.21) holds. Therefore we can find α such that (2.21) is satisfied
if

2
√
CθC2θα

−θ/4
1 + Cθ

α
(1−θ)/2
1

max

(
1

δ
,

1

2
√
α1

)
< 1. (2.22)

Now, for some positive α̃ and C̃ we get, from (2.20) and (2.21),

Λ̇α + α̃Λα ≤ (r, wt + αw) ≤ C̃∥r∥ =: f̃(t). (2.23)

By defining

Mα(t) = Λα(t)−
∫ t

t0

f̃(s)eα̃(s−t)ds,

from (2.23) we obtain
Ṁα(t) + α̃Mα(t) ≤ 0.

16
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2.3. Preliminary results

Hence, from the Gronwall inequality and from the fact that for any ε > 0 there exists t0 > 0 such
that |f̃(s)| ≤ C̃(ε+ lim supt→∞ ∥r(t)∥) for any s ≥ t0, we get

Λα(t) ≤ Λα(t0)e
−α̃(t−t0) +

∫ t

t0

f̃(s)eα̃(s−t)ds ≤

≤ Λα(t0)e
−α̃(t−t0) + C̃(ε+ lim sup

t→∞
∥r(t)∥)e−α̃t e

α̃t − eα̃t0

α̃
, ∀t ≥ t0.

(2.24)

Since we can take ε arbitrarily small as t0 goes to infinity, from (2.24) we infer that there exists
C > 0 such that

lim sup
t→∞

Λα(t) ≤ C lim sup
t→∞

∥r(t)∥. (2.25)

Moreover, if there exists η > 0 such that lim supt→∞ ∥r(t)∥eηt = 0, then (2.24) yields that there
exists η1 > 0 such that

lim
t→∞

Λα(t)e
η1t = 0. (2.26)

From (2.17), there exists a positive constant C2 such that Λα(t) ≥ C2E(t). Therefore, (2.25) and
(2.26) imply (2.14) and (2.15) respectively.

We remark that
lim sup
t→∞

∥ξ(t)∥2µ = Υµ.

Hence, we can take Cµ = Υµ. Therefore, from (2.22), we get that if

2
√
ΥθΥ2θα

−θ/4
1 +Υθ

α
(1−θ)/2
1

max

(
1

δ
,

1

2
√
α1

)
< 1,

then the thesis holds for regular solution u and v.
The same conclusions hold for u and v weak solutions of the problems in (2.13) by using a

standard density argument. Indeed, since H4 is dense in H2 and H2 is dense in H, setting (u(0) =
u0, ut(0) = u1) and (v(0) = v0, vt(0) = v1), there exists two sequences (u0n, u

1
n) and (v0n, v

1
n) in

H4 ×H2 such that

(u0n, u
1
n) → (u0, u1) and (v0n, v

1
n) → (v0, v1) in H2 ×H.

Hence, from Theorem 2.3.1 we have the two sequences of regular solutions un and vn with (un(0) =
u0n, un,t(0) = u1n) and (vn(0) = v0n, vn,t(0) = v1n) such that, for any T > 0,

(un, un,t) → (u, ut), (vn, vn,t) → (v, vt) uniformly in C([0, T ],H2 ×H).

Therefore, since all the calculations hold for un and vn (and the difference wn := un − vn), we get
the thesis for the weak solutions u and v passing to the limit when n→ ∞.

2.3.2 Some general stability results

In order to prove Theorem 2.2.1, we give a reformulation of Theorem 4.1 of [98] adapted to our
framework.

Proposition 2.3.4. Let (H, (·, ·), | · |) be a Hilbert space and let A2 be a self-adjoint and strictly
positive linear operator onH with dense domain D(A). We introduce the Hilbert space V := D(A)
endowed with the norm ∥·∥2 := (A·, A·) and we identify the unbounded operator A2 with its
extension in L(V, V ′). The duality pairing in V ′ × V will be denoted in the same way as the inner
product in H .

17
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

We consider B(t) ∈ C1(R+,L(V,H)) such that for any v ∈ V

0 ≤ lim sup
t→∞

(B(t)v, v) ≤ λ∥v∥2, lim sup
t→∞

(B′(t)v, v) ≤ λ′∥v∥2

for some positive numbers λ and λ′.
Let u be a bounded solution of

utt + δut + (A2 +B(t))u = g

where δ > 0, g ∈ C(R+, H) and limt→∞ |g(t)|ec0t = 0 for some positive constant c0.
If

λ′

δ
< 1

then there exists c > 0 such that

lim
t→∞

(∥u(t)∥2 + |ut(t)|2)ect = 0.

Proof. We proceed as in the proof of Theorem 4.1 of [98] and we define the quadratic form on
V ×H given by

Φ(t) =
1

2
(|ut|2 + ∥u∥2) + δ

2
(u, ut) +

δ2

4
|u|2 + 1

2
(B(t)u, u).

For any fixed t0 > 0 we have, if t ≥ t0,

Φt =
1

2
(B′(t)u, u)− δ

2
|ut|2 −

δ

2
(B(t)u+ A2u, u) + (g, ut +

δ

2
u) ≤

≤ 1

2
sup
t≥t0

(B′(t)u, u)− δ

2
|ut|2 −

δ

2
∥u∥2 +Ke−c0t.

for some positive constant K. Hence, for t0 large enough

Φt(t) ≤ −δ
2
|ut(t)|2 −

δ − λ′

2
∥u(t)∥2 +Ke−c0t

Therefore, if λ′ < δ we get, for some positive α,

Φt(t) + αΦ(t) ≤ Ke−c0t

for any t ≥ t0 and from Gronwall lemma we get the thesis.

We recall a further stability result due to Haraux for an ODE related to our problem.

Proposition 2.3.5. [Theorem 2.1 of [98]] Let λ, δ > 0, a ∈ L∞(R+) with a(t) ≥ 0 for any t ≥ 0.
Let x ∈ C2(R+) be a solution of

ẍ+ δẋ+ (λ+ a(t))x = 0. (2.27)

Assume
lim sup
t→∞

a(t) < δmax(δ, 2
√
λ).

There there are η1 > 0 and M > 0 such that any bounded solution x of (2.27) satisfies

x2(t) + ẋ2(t) ≤M [x2(s) + ẋ2(s)]e−η1(t−s)

for any s ≤ t.

With minimal effort, the same statement can be proven for x solving

ẍ+ δẋ+ (λ+ a(t))x = g̃.

where g̃ ∈ C(R+) satisfies limt→∞ g̃(t)eηt = 0 for some η > 0.
18
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2.3. Preliminary results

2.3.3 Linear analysis

Some preliminary results on the behavior of a damped and forced harmonic oscillator are useful in
order to simplify the following study. In particular, we study the equation

ÿ + δẏ + λy = Ψ, (2.28)

where we require Ψ to be antiperiodic. We recall that a function f : R → R is said to be antiperiodic
of antiperiod τ (i.e. τ−antiperiodic) if

f(t+ τ) = −f(t), ∀t ∈ R.
Proposition 2.3.6. Let us consider Ψ ∈ L2

loc(R+) antiperiodic of anti-period π/ω. We suppose that
λ > 0 and δ > 0. Then there exists an antiperiodic solution z of anti-period π/ω of (2.28) and we
have that for some η > 0, for any y(t) solution of (2.28),

lim
t→∞

(|y(t)− z(t)|+ |ẏ(t)− ż(t)|)eηt = 0.

Proof. Let us consider Aω ⊂ L2([0, π/ω]) the space of the locally square-integrable antiperiodic
functions with anti-period π/ω, endowed with the standard L2 norm on the interval [0, π/ω]. The
family {en =

√
ω/πe(2n+1)iωt}n∈Z is an orthonormal basis of this space. Hence, we write

Ψ(t) =

√
ω

π

∑
n∈Z

ψje
(2n+1)iωt.

Setting

z(t) :=

√
ω

π

∑
n∈Z

ψn
−ω2(2n+ 1)2 + λ+ iδω(2n+ 1)

e(2n+1)iωt,

it is immediate to verify that z(t) is an antiperiodic solution of (2.28). The thesis now follows from
the standard theory of ODEs. Indeed, any solution of (2.28) is given by the sum of z(t) with a
general solution yg of the associated homogeneous equation

ÿg + δẏg + λyg = 0,

which is given by
yg(t) = e−δt/2f(t),

with

f(t) :=


S sin

(
t

2

√
4λ− δ2 + φ

)
, if 4λ > δ2,

S cos(φ)t+ S sin(φ), if 4λ = δ2,

S sinh

(
t

2

√
δ2 − 4λ+ φ

)
, if 4λ < δ2,

where the arbitrary constants S and φ are dependent from the initial conditions. We notice that

max(|f(t)|, |f ′(t)|) ≤ Ceµt,

for some constants C > 0 and 0 ≤ µ < δ/2. Therefore, since y(t) = z(t) + yg(t), we get that for a
suitable choice of η > 0

lim
t→∞

(|y(t)− z(t)|+ |ẏ(t)− ż(t)|)eηt = lim
t→∞

(
|f(t)|+

∣∣∣∣f ′(t)− δ

2
f(t)

∣∣∣∣) e(η−δ/2)t ≤
≤ δ + 4

2
C lim

t→∞
e(η+µ−δ/2)t = 0,

which is the thesis.

19
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

Proposition 2.3.7. Let us consider Ψ ∈ L2
loc(R+) antiperiodic of anti-period π/ω and let y(t)

satisfy (2.28). We suppose λ, δ > 0 and 2
√
λ ̸= δ. We introduce the quantities

w±
λ :=

π2

ω2

(
λ− δ2

2
± δ

√
δ2

4
− λ

)
,

Ω2
λ :=

π4

2ω4(w+
λ − w−

λ )

tan

(√
w+

λ

2

)
√
w+
λ

−
tan

(√
w−

λ

2

)
√
w−
λ


where, for any w ∈ C,

√
w is the complex number z such that

z2 = w and z ∈ {ζ : ℜ(ζ) > 0} ∪ {ζ : ℜ(ζ) = 0 and ℑ(ζ) ≥ 0}.

Then the following estimate holds

lim sup
t→∞

y(t) ≤ Ωλ∥Ψ∥L∞([0,π/ω]). (2.29)

Moreover, if Ψ ∈ C2(R+), then

lim sup
t→∞

ẏ(t) ≤ Ωλ∥Ψ̇∥L∞([0,π/ω]).

Proof. From Proposition 2.3.6, equation (2.28) admits an antiperiodic solution z(t) and any so-
lution of y(t) of (2.28) converges exponentially to z(t), which yields that lim supt→∞ y(t) =
lim supt→∞ z(t). Hence, since from the antiperiodicity of z(t) we have that lim supt→∞ z(t) =
∥z∥∞, in order to get the result it suffices to estimate the L∞−norm of z(t). In the notation of
Proposition 2.3.6, we have that

z(t) :=

√
ω

π

∑
n∈Z

ψn
−ω2(2n+ 1)2 + λ+ iδω(2n+ 1)

e(2n+1)iωt,

Then, if cn =
√
(−ω2(2n+ 1)2 + λ)2 + δ2ω2(2n+ 1)2, from Cauchy-Schwarz inequality we ob-

tain

|z(t)| ≤
√
ω

π

∑
n∈Z

|ψn|
cn

≤
√
ω

π

√∑
n∈Z

|ψn|2
√

2
∑
n≥0

1

c2n
. (2.30)

Moreover, if Ψ ∈ C2(R+), we have

|ż(t)| ≤
√
ω

π

∑
n∈Z

|(2n+ 1)ωψn|
cn

≤
√
ω

π

√∑
n∈Z

|(2n+ 1)ωψn|2
√

2
∑
n≥0

1

c2n
. (2.31)

First, we remark that from Parseval’s theorem√∑
n∈Z

|ψn|2 = ∥Ψ∥L2([0,π/ω]) ≤
√
π

ω
∥Ψ∥L∞([0,π/ω]),√∑

n∈Z

|(2n+ 1)ωψn|2 = ∥Ψ̇∥L2([0,π/ω]) ≤
√
π

ω
∥Ψ̇∥L∞([0,π/ω]).

(2.32)
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Then, to conclude the proof, we compute a closed form for the serie∑
n≥0

1

c2n
=
∑
n≥0

1

ω4(2n+ 1)4 − (2λ− δ2)(2n+ 1)2ω2 + λ2
. (2.33)

We observe that (2.33) becomes∑
n≥0

1

c2n
=
∑
n≥0

π4

(w+
λ − w−

λ )ω
4

[
1

(2n+ 1)2π2 − w+
λ

− 1

(2n+ 1)2π2 − w−
λ

]
. (2.34)

We now recall that the Mittag-Leffler expansion for the cotangent function gives

cot(w) =
1

w
+

∞∑
n=1

2w

w2 − π2n2
.

Some straightforward computations give

1

2
tan
(w
2

)
=

1

2
cot
(w
2

)
− cot(w) =

∞∑
n=0

2w

(2n+ 1)2π2 − w2
.

Thus, we can infer that ∑
n≥0

1

(2n+ 1)2π2 − wλ
=

tan
(√

wλ

2

)
4
√
wλ

.

Hence, from (2.34) we can conclude that

∑
n≥0

1

c2n
=

π4

4ω4(w+
λ − w−

λ )

tan

(√
w+

λ

2

)
√
w+
λ

−
tan

(√
w−

λ

2

)
√
w−
λ

 . (2.35)

By using (2.32) and (2.35) in (2.30) and (2.31), we obtain the thesis.
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Figure 2.1: Comparison between the estimates on the ∥·∥∞−norm of y solution of (2.28) given by [97] (blue) and by
(2.29) (black) with δ = 1 and ω = 3 as λ vary from 1 to 150 (left) and with δ = 1 and λ = 5 as ω vary from 1 to 15
(right). In red, we represented the ∥·∥∞−norm of the antiperiodic solution of (2.28) with Ψ(t) = signum(sin(ωt)).
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

In [97, Theorem 2.1], a result similar to Proposition 2.3.7 is proven. In particular, the maximum
value of lim supt→∞ y(t) as the forcing term Ψ varies in the unitary ball of L∞(R) is determined.
On the other hand, for any fixed antiperiodic forcing term Ψ in C2(R), in Proposition 2.3.7 we
estimated lim supt→∞ y(t) and lim supt→∞ ẏ(t). As Figure 2.1 shows, Proposition 2.3.7 almost
always gives a better estimate on lim supt→∞ y(t).

2.3.4 Structure of the chapter

The remainder of the chapter is organized as follows. First, in Section 2.4 we apply the results
of Subsection 2.3.2 in order to prove Theorem 2.2.1. In particular, we apply Proposition 2.3.4 to
prove that for N large enough, if g is exponentially N−dimensional, then there exists N̄ ≥ N such
that any solution u of (2.8) is exponentially N̄−dimensional (see Lemma 2.4.1). After that, fixed
n > N , we study the asymptotic amplitude of un(t) = (u(t), en) for any u solution of (2.8) and in
Lemma 2.4.2 we determine whether un(t) decays exponentially as t goes to infinity. In subsection
2.4.2 we exploit Lemma 2.4.1 and Lemma 2.4.2 in order to get Theorem 2.2.1. We remark that, even
though the thesis of Theorem 2.2.1 follows from Lemma 2.4.1, Lemma 2.4.2 is necessary in order to
improve the result of Lemma 2.4.1. More precisely, Lemma 2.4.2 provides an improvement of the
smallest number M ≥ N obtained in Lemma 2.4.1 such that if g is exponentially N−dimensional
then any solution u is exponentially M−dimensional.

Next, by exploiting the continuous dependence of the solution from the forcing term, that is,
Proposition 2.3.3, and Theorem 2.2.1, in Section 2.5 we give the proof of Theorem 2.2.2.

In Section 2.5, by proceeding as in a result of Bonheure, Gazzola and Moreira dos Santos [35,
Theorem 6], we show that (2.11) admits an antiperiodic solution p. In Lemma 2.6.2 we use Propo-
sition 2.3.7 to estimate, for any n ∈ N, the asymptotic amplitude of pn(t) := (p(t), en). Such result
yields an estimate on the Hs−norms of p (see Lemma 2.6.3) which we numerically verified to be
better than the a-priori estimates obtained in [35] (see Figure 2.2). From Proposition 2.3.3, we have
that under suitable smallness conditions on lim supt→∞ ∥g(t)∥, any solution u of (2.11) converges
to p in the phase space norm. Hence, from Lemma 2.6.2 and Lemma 2.6.3, in Lemma 2.6.4 we get
an estimate on the asymptotic amplitude of un(t) = (u(t), en) and on the Hs−norms of u for any u
solution of (2.11). Finally, in Lemma 2.6.5, we exploit the previous results of Section 2.6 in order
to get a results for finite-dimensional systems of ODEs and in Subsection 2.2.3 we apply Lemma
2.6.5 and Lemma 2.6.4 to get Theorem 2.2.3.

2.4 Proof of Theorem 2.2.1

2.4.1 Stability of the higher modes

We now apply the results of the previous section to our framework in order to prepare the proof of
Theorem 2.2.1.

Lemma 2.4.1. Let u be a weak solution of (2.8). Let g be exponentially N−dimensional. If there
exists N̄ ≥ N such that

lim sup
t→∞

(
1

α1−θ
1

∥u(t)∥22 + ∥ut(t)∥2
)
< 2δα

(2−θ)/2
N̄+1

then there exists η̃ > 0 such that

lim sup
t→∞

(∥QN̄u(t)∥
2
2 + ∥QN̄ut(t)∥

2)eη̃t = 0.
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Proof. Fix N̄ ≥ N and, for any s ∈ [0, 2], let Υs := lim supt→∞ ∥u(t)∥2s. We introduce the
operator-valued function B(t) := ∥u(t)∥2θAθ. By using (2.6), we get that w = QN̄u solves

wtt + δwt + (A2 +B(t))w = QN̄g. (2.36)

By using (2.7) we remark that for any v ∈ H2 such that QN̄v = v

0 ≤ lim sup
t→∞

(B(t)v, v) = lim sup
t→∞

∥u(t)∥2θ∥v∥
2
θ ≤

Υθ

α
(2−θ)/2
N̄+1

∥v∥22,

lim sup
t→∞

(B′(t)v, v) = lim sup
t→∞

(ut(t), A
θu(t))∥v∥2θ ≤

≤ 1

2α
(2−θ)/2
N̄+1

lim sup
t→∞

(
1

α1−θ
1

∥u(t)∥22 + ∥ut(t)∥2
)
∥v∥22.

(2.37)

We introduce

φ(t) =
1

2
(∥ut(t)∥2 + ∥Au(t)∥2) + δ

2
(u(t), ut(t)) +

δ2

4
∥u(t)∥2.

By applying Proposition 2.3.4 to (2.36), from (2.37) we get that if

lim sup
t→∞

(
1

α1−θ
1

∥u(t)∥22 + ∥ut(t)∥2
)
< 2δα

(2−θ)/2
N̄+1

,

then φ(t) → 0 exponentially as t goes to infinity. This yields that there exists η̃ > 0 such that

lim
t→∞

(∥Aw(t)∥2 + ∥wt(t)∥2)eη̃t = 0.

Therefore, since ∥Aw∥2 = ∥w∥22, we get the thesis.

We now apply Proposition 2.3.5 to the projection of (2.8) on the n−th mode. The following
lemma holds.

Lemma 2.4.2. Let g be exponentially N−dimensional. For any weak solution u of (2.8), if

∃n ≥ N + 1 such that lim sup
t→∞

∥u(t)∥2θ < δmax(2θδ1−θ, 2α(1−θ)/2
n ), (2.38)

then for any M ≥ n there exists η̃ > 0 such that for any n ≤ N̄ ≤M

lim
t→∞

(|(u(t), eN̄)|2 + |(ut(t), eN̄)|2)eη̃t = 0.

Proof. Fixed n ≥ N + 1, we consider the projection of u on the n−th mode, i.e. un := (u, en).
The function un satisfies

ün + δu̇n + (αn + ∥u(t)∥2θα
θ/2
n )un = (g, en).

Since n ≥ N+1, for some η > 0, limt→∞(g(t), en)e
ηt = 0. Let us suppose that lim supt→∞ ∥u(t)∥2θ <

δmax(2θδ1−θ, 2α
(1−θ)/2
n ). Since

max(2θδ1−θ, 2α(1−θ)/2
n ) ≤ max

(
δ

α
θ/2
n

, 2α(1−θ)/2
n

)
,

we have that
αθ/2n lim sup

t→∞
∥u(t)∥2θ < δmax(δ, 2

√
αn),
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which yields that, from Proposition 2.3.5,

lim
t→∞

(|un(t)|2 + |u̇n(t)|2)eη1t = 0.

Since (αj)j is strictly increasing, max(2θδ1−θ, 2α
(1−θ)/2
n ) is an increasing sequence. Hence, if

(2.38) holds, then for any N̄ ≥ n

lim sup
t→∞

∥u(t)∥2θ ≤ δmax(2θδ1−θ, 2α
(1−θ)/2
N̄

),

that implies that for any M ≥ n there exists η̃ > 0 such that for any n ≤ N̄ ≤M

lim
t→∞

(|uN̄(t)|2 + |u̇N̄(t)|2)eη̃t = 0,

that is the thesis.

2.4.2 Completion of the proof of Theorem 2.2.1

Let g be exponentially N−dimensional and let u be a weak solution of (2.8). We recall that, from
Proposition 2.3.2, we have

lim sup
t→∞

∥u(t)∥2θ ≤
4E∞ + 2α2Φ0√

α2−θ
1 + 2(2E∞ + α2Φ0) + α

1−θ/2
1

=: Φθ;

lim sup
t→∞

∥u(t)∥22 ≤ 2E∞ + α2Φ0 =: Φ2;

lim sup
t→∞

∥ut(t)∥2 ≤ min
λ>0

1 + λ

λ

(
2E∞ + max

s∈[0,Φ0]

(
(λ+ 1)α2 − α1s−

1

2
s2
))

=: Φv.

(2.39)

We introduce the quantity N̄ defined as the smallest integer number greater than N such that

1

α1−θ
1

Φ2 + Φv < 2δα
(2−θ)/2
N̄+1

. (2.40)

From (2.39), (2.40) implies

lim sup
t→∞

(
1

α1−θ
1

∥u(t)∥22 + ∥ut(t)∥2
)
< 2δα

(2−θ)/2
N̄+1

.

Hence, from Lemma 2.4.1, if (2.40) holds then there exists η1 > 0 such that

lim
t→∞

(∥QN̄u(t)∥
2
2 + ∥QN̄ut(t)∥

2)eη1t = 0.

We introduce the set

B := {n ∈ N : n ∈ [N, N̄ ] and Φθ < δmax(2θδ1−θ, 2α
(1−θ)/2
n+1 )}

and we define

N :=

{
minB if B ̸= ∅
+∞ if B = ∅.

From Proposition 2.3.2 we have that lim supt→∞ ∥u(t)∥2θ ≤ Φθ. Hence, from Lemma 2.4.2, if
N ̸= +∞, there exists η2 > 0 such that

lim
t→∞

(|(u(t), en+1)|2 + |(u̇(t), en+1)|2)eη2t = 0
24
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for any n ∈ [N, N̄ ] ∩ N, which yields

lim
t→∞

(∥QNPN̄u(t)∥
2
2
+ ∥QNPN̄ut(t)∥

2)eη2t.

Hence, if we set P∞ := I , Q∞ := 0 and M := min{N, N̄}, for some η̃ > 0

lim
t→∞

(∥QMu(t)∥22 + ∥QMut(t)∥2)eη̃t = lim
t→∞

(∥QNPN̄u(t)∥
2
2
+ ∥QNPN̄ut(t)∥

2)eη̃t+

+ lim
t→∞

(∥QN̄u(t)∥
2
2 + ∥QN̄ut(t)∥

2)eη̃t = 0.

This concludes the proof of Theorem 2.2.1.

2.5 Proof of Theorem 2.2.2

Let us suppose that
2
√
ΦθΦ2α

(θ−2)/4
1 + Φθ

2α
(1−θ)/2
1

max

(
1

δ
,

1
√
α1

)
< 1, (2.41)

where Φθ and Φ2 are defined in Proposition 2.3.2. Since Φθ and Φ2 depend on g∞ and δ, we get
that, for any fixed δ, (2.41) translates into Fθ(α1, δ, g∞) < 1 for some Fθ. Therefore, for any fixed
δ > 0, there exists ḡ∞ > 0 such that if g∞ < ḡ∞, then (2.41) holds. We remark that, since the term
g models the action of the wind along the deck of the bridge, we physically interpret (2.41) as a
requirement on the load exerted on the structure by the wind. In particular, since ḡ∞ in engineering
applications (see [68]) is proportional to the speed of the wind v, the relation (2.41) is equivalent to
require that v < v̄ for some v̄ > 0.

Let u be a weak solution of (2.8) and for any J = {j1, . . . , jm} let vJ be a weak solution of the
problem

vJtt + δvJt + A2vJ + ∥vJ∥2θA
θvJ = PJg.

We introduce the quantities Υµ = lim supt→∞ ∥(u(t) + vJ(t))/2∥2µ, where µ ∈ [0, 2]. From
Proposition 2.3.3 with g1 = PJg and g2 = g = PJg + QJg, there exists a function Fθ =
Fθ(α1, δ,Υθ,Υ2θ), given by (2.16), such that if Fθ < 1 then there exists a constant C > 0 such that

lim sup
t→∞

(∥u(t)− vJ(t)∥22 + ∥ut(t)− vJt (t)∥
2
) ≤ C lim sup

t→∞
∥QJg(t)∥. (2.42)

Since g = gf(t), for a suitable choice of J , we have that C lim supt→∞ ∥QJg(t)∥ < ε. Hence we
can conclude that, for a suitable choice of the family J , (2.42) gives

lim sup
t→∞

(∥u(t)− vJ(t)∥22 + ∥ut(t)− vJt (t)∥
2
) ≤ ε. (2.43)

From Proposition 2.3.2 and (2.5), we have that Υθ ≤ Φθ and Υ2θ < αθ−1
1 Φ2. Hence, Fθ < 1 is

implied by (2.41). Therefore, fixed δ, if g∞ < ḡ∞ for some positive constant ḡ∞, where ḡ∞ does
not depend by J , then (2.43) holds. This proves the first part of Theorem 2.2.2.

Let now g be exponentially N -dimensional and let M ≥ N be obtained from Theorem 2.2.1,
i.e. let M ≥ N be such that for some η > 0

lim
t→∞

(∥QMu(t)∥22 + ∥QMut(t)∥2)eηt = 0. (2.44)

Let u and v be, respectively, weak solutions of (2.8) and

vtt + δvt + A2v + ∥v∥2θA
θv = PMg.
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

We remark that u is solution of the following problem

utt + δut + A2u+ ∥u∥2θA
θu = g = PMg +QMg.

Since we supposed g to be exponentially N -dimensional and M ≥ N , there exists η > 0 such that

lim
t→∞

∥PMg(t) +QMg(t)− PMg(t)∥eηt = lim
t→∞

∥QMg(t)∥eηt = 0.

Therefore, from Proposition 2.3.3 with g1 = PMg and g2 = g = PMg + QMg we have that, fixed
δ, if g∞ is sufficiently small, then there exists η1 > 0 such that

lim
t→∞

(∥u(t)− v(t)∥22 + ∥ut(t)− vt(t)∥2)eη1t = 0.

Since v = PMv, from (2.44) we get that for some η̃ > 0

lim
t→∞

(∥PMu(t)− v(t)∥22 + ∥PMut(t)− vt(t)∥2)eη̃t = 0.

This concludes the proof of Theorem 2.2.2.

2.6 Proof of Theorem 2.2.3

2.6.1 Some preliminary results

In Theorem 2.2.3, we restrict ourselves to the case when the forcing term is antiperiodic in time
due to the engineering interest of this case (see Section 2.7). Moreover, for the sake of simplicity,
we consider the case θ = 0. The antiperiodicity of the forcing term allows us to provide some
more information about the solution of (2.11). In particular, proceeding as in Theorem 6 of [35],
where the result was proven in the periodic framework, by using Proposition 2.3.6, we obtain the
following statement:

Proposition 2.6.1. If g(t) is a continuous antiperiodic function of anti-period τ , then there exists a
solution of (2.8) antiperiodic of anti-period τ .

Proof. The proof proceeds as in [35, Theorem 6]. First, we fix n ≥ 1 and we prove the existence
of a τ−antiperiodic solution for the problem

utt + δut + A2u+ ∥u∥2u = Png. (2.45)

Hence, we seek a τ−antiperiodic solution un in the form

un(x, t) :=
n∑
k=1

hnk(t)ek(x).

We consider the spaces C2
τ (R) and C0

τ (R) of C2 and C2 τ−antiperiodic functions and in the same
notations of [35, Theorem 6] we have that (2.45) is equivalent to

Ln(h(t)) +∇Gn(h(t)) = g(t),

where h := (hn1 , . . . , h
n
n), g := (g1, . . . , gn), Ln is a diagonal operator such that

Lkn(h) := ḧk + δḣk + αkhk

and

Gn(h) :=
1

4

n∑
j,k=1

h2jh
2
k.
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We observe that for any q ∈ (C0
τ (R))n from Proposition 2.3.6 there exists a unique h ∈ (C2

τ (R))n
such that Ln(h) = q. Thanks to the compact embedding (C2

τ (R))n ⊂ (C0
τ (R))n, we have that the

nonlinear map Γn : (C0
τ (R))n × [0, 1] → (C0

τ (R))n defined by

Γn(h, ν) = L−1
n (g − ν∇Gn(h)), ∀(h, ν) ∈ (C0

τ (R))n × [0, 1]

is compact. Moreover, from Proposition 2.3.2 we have that there exists Hn > 0 (independent of ν)
such that if h ∈ (C0

τ (R))n solves h = Γn(h, ν), then

∥h∥(C0
τ (R))n ≤ Hn.

Hence, since the equation h = Γn(h, 0) from Proposition 2.3.6 admits a unique τ−antiperiodic
solution, the Leray-Schauder principle ensures the existence of a solution h ∈ (C0

τ (R))n of h =
Γn(h, 1). This proves the existence of a τ−antiperiodic solution of (2.45). The proof the result
follows from the existence of a τ−antiperiodic solution of (2.45) exactly as in [35, Theorem 6] by
showing that the sequence (un) converges to a τ−antiperiodic solution u of (2.11).

In this section we use the quantities

w±
j :=

π2

ω2

(
αj −

δ2

2
± δ

√
δ2

4
− αj

)
,

Ω2
j :=

π4

2ω4(w+
j − w−

j )


tan

(√
w+

j

2

)
√
w+
j

−
tan

(√
w−

j

2

)
√
w−
j


(2.46)

obtained by replacing λ by αj in Proposition 2.3.7.
We now apply Proposition 2.3.7 in order to get an estimate on the j−th mode of the antiperiodic

solution p of (2.11), which we proved to exist in Proposition 2.6.1. In the following, whenever a
real-valued function f(t) will be antiperiodic, we will write interchangeably lim supt→∞ f(t) and
∥f∥∞.

Lemma 2.6.2. Let p be an antiperiodic solution of (2.11). If

max
j

Ωj lim sup
t→∞

∥p(t)∥2 < 1 (2.47)

where Ωj is defined in (2.46), then, if Υ0 := lim supt→∞ ∥p(t)∥2 and Υv := lim supt→∞ ∥pt(t)∥2,
gj

(1 + Υ0Ωj)
√

(αj − ω2)2 + δ2ω2
≤ lim sup

t→∞
|pj(t)| ≤

gj

(1−Υ0Ωj)
√
(αj − ω2)2 + δ2ω2

,

(ω(1−Υ0Ωj)− 2
√
Υ0ΥvΩj)gj

(1− (Υ0Ωj)2)
√
(αj − ω2)2 + δ2ω2

≤ lim sup
t→∞

|ṗj(t)| ≤
(ω(1−Υ0Ωj) + 2

√
Υ0ΥvΩj)gj

(1−Υ0Ωj)2
√
(αj − ω2)2 + δ2ω2

,

where pj := (p, ej) and gj := lim supt→∞(g(t), ej) = (g, ej).

Proof. We study the j−th component of the problem (2.11), namely

p̈j + δṗj + αjpj + ∥p∥2pj = gj sin(ωt). (2.48)

We consider the antiperiodic solution v of the problem

v̈ + δv̇ + αjv = gj sin(ωt). (2.49)
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It is possible to verify that the general solution of (2.49) is given by

v(t) =
gj√

(αj − ω2)2 + δ2ω2
sin

(
ωt+ arctan

δω

ω2 − αj

)
+ Se−δt/2 sin

(
t

2

√
4αj − δ2 + φ

)
,

where the constants S and φ are determined by the initial data of (2.49). Hence, it follows that, for
any choice of the initial data of (2.49),

lim sup
t→∞

v(t) =
gj√

(αj − ω2)2 + δ2ω2
, lim sup

t→∞
v̇(t) =

ωgj√
(αj − ω2)2 + δ2ω2

. (2.50)

If we subtract (2.49) from (2.48), if w := pj − v we get

ẅ + δẇ + αjw = −∥p∥2pj.

Hence, from Proposition 2.3.7 we get, if p(0)j := lim supt→∞ pj(t), p
(1)
j := lim supt→∞ ṗj(t), Υ0 :=

lim supt→∞ ∥p(t)∥2 and Υv := lim supt→∞ ∥pt(t)∥2,

lim sup
t→∞

|w(t)| ≤ Υ0Ωjp
(0)
j ,

lim sup
t→∞

|ẇ(t)| ≤ Ωj∥2(p(t), pt(t))pj(t) + ∥p(t)∥2ṗj(t)∥L∞(0,π/ω) ≤

≤ 2
√

Υ0ΥvΩjp
(0)
j +Υ0Ωjp

(1)
j .

(2.51)

Since p and v are both antiperiodic, w is antiperiodic and (2.51) gives∣∣∥v∥∞ − ∥pj∥∞
∣∣ ≤ ∥w∥∞ ≤ Υ0Ωjp

(0)
j ,∣∣∥v̇∥∞ − ∥ṗj∥∞

∣∣ ≤ ∥ẇ∥∞ ≤ 2
√

Υ0ΥvΩjp
(0)
j +Υ0Ωjp

(1)
j .

We get then

lim sup
t→∞

v(t)−Υ0Ωjp
(0)
j ≤ p

(0)
j ≤ lim sup

t→∞
v(t) + Υ0Ωjp

(0)
j ,

lim sup
t→∞

v̇(t)− 2
√

Υ0ΥvΩjp
(0)
j −Υ0Ωjp

(1)
j ≤ p

(1)
j ≤ lim sup

t→∞
v̇(t) + Υ0Ωjp

(1)
j + 2

√
Υ0ΥvΩjp

(0)
j .

Hence, from (2.50) we get, since hypothesis (2.47) holds,

gj

(1 + Υ0Ωj)
√

(αj − ω2)2 + δ2ω2
≤ p

(0)
j ≤ gj

(1−Υ0Ωj)
√

(αj − ω2)2 + δ2ω2
,

which yields

(ω(1−Υ0Ωj)− 2
√
Υ0ΥvΩj)gj

(1− (Υ0Ωj)2)
√

(αj − ω2)2 + δ2ω2
≤ p

(1)
j ≤ (ω(1−Υ0Ωj) + 2

√
Υ0ΥvΩj)gj

(1−Υ0Ωj)2
√
(αj − ω2)2 + δ2ω2

that is the thesis.

We now apply the results of Lemma 2.6.2 in order to get an estimate on the H−norm and
H2−norm of an antiperiodic solution p of (2.11).

Lemma 2.6.3. Let p be an antiperiodic solution of (2.11). Let us suppose that

max
j

ΩjΦ0 < 1,
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where Φ0 is defined in Proposition 2.3.2. Then the following estimates hold:

lim sup
t→∞

∥p(t)∥2 ≤
∞∑
j=1

g2j
(1− Φ0Ωj)2((αj − ω2)2 + δ2ω2)

=: φ <∞, (2.52)

lim sup
t→∞

∥pt(t)∥2 ≤
∞∑
j=1

(ω(1− Φ0Ωj) + 2
√
Φ0ΦvΩj)

2g2j
(1− Φ0Ωj)4((αj − ω2)2 + δ2ω2)

=: φv <∞, (2.53)

lim sup
t→∞

∥p(t)∥22 ≤
∞∑
j=1

αjg
2
j

(1− Φ0Ωj)2((αj − ω2)2 + δ2ω2)
=: φ2 <∞. (2.54)

Proof. We prove (2.54) only, since the proofs of (2.52) and (2.53) are completely analogous. From
Lemma 2.6.2, by using that from Proposition 2.3.2 Υ0 := lim supt→∞ ∥p(t)∥2 ≤ Φ0,

lim sup
t→∞

∥p(t)∥22 ≤
∞∑
j=1

αj∥pj∥2∞ ≤
∞∑
j=1

αjg
2
j

(1− Φ0Ωj)2((αj − ω2)2 + δ2ω2)
.

We recall that the sequence (αj)j is divergent. Therefore, for j large enough, w−
j = w+

j and
|w+

j − w−
j | = 2π2δ

√
αj − δ2/4/ω2 ≥ π2δ

√
αj/ω

2. Hence

∣∣Ω2
j

∣∣ ≤ π2

δω2√αj

∣∣∣∣∣∣∣∣∣ℑ

tan

(√
w+

j

2

)
√
w+
j


∣∣∣∣∣∣∣∣∣ ≤

π2

δω2√αj

∣∣∣∣tan(√
w+

j

2

)∣∣∣∣√
|w+

j |
.

We remark that

|tan(a+ ib)| ≤

√
sin2(2a) + sinh2(2b)

(cos(2a) + cosh(2b))2
.

Moreover, from the definition ofw+
j (see (2.46)), we have that ℑ(w+

j ) → +∞. Hence, we conclude

that limj→∞ | tan(
√
w+
j /2)| = 1 and consequently

lim
t→∞

Ωj = 0.

Then, since limj→∞ αj = +∞ and maxj ΩjΦ0 < 1, we have that, for some positive constant C,
for any j ∈ N

αj
(1− Φ0Ωj)2((αj − ω2)2 + δ2ω2)

< C.

Therefore, by using that
∞∑
j=1

g2j = ∥g∥2 <∞,

we get that
∞∑
j=1

αjg
2
j

(1− Φ0Ωj)2((αj − ω2)2 + δ2ω2)
≤

∞∑
j=1

Cg2j = C∥g∥2 <∞,

that is the thesis.
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

We observe that, from Proposition 2.3.3, any solution u of (2.11) exponentially converges to p
under suitable smallness conditions on ∥g∥. Hence, Lemma 2.6.2 and Lemma 2.6.3 hold for any
weak solution u of (2.11). More precisely, the following lemma holds.

Lemma 2.6.4. Let u be a weak solution of (2.11). If

max
j

ΩjΦ0 < 1, F (ξ∞) < 1,

where F (ξ) = 3ξmax(1/δ, 1/(2
√
α1))/

√
α1 and ξ∞ :=

(
(
√
Φ0 +

√
φ)/2

)2, then

lim sup
t→∞

∥u(t)∥2 ≤ φ, lim sup
t→∞

∥u(t)∥22 ≤ φ2, lim sup
t→∞

∥ut(t)∥2 ≤ φv,

and
gj

(1 + φΩj)
√

(αj − ω2)2 + δ2ω2
≤ lim sup

t→∞
|(u(t), ej)| ≤

gj

(1− φΩj)
√
(αj − ω2)2 + δ2ω2

,

(ω(1− φΩj)− 2
√
φφvΩj)gj

(1− (φΩj)2)
√
(αj − ω2)2 + δ2ω2

≤ lim sup
t→∞

|(ut(t), ej)| ≤
(ω(1− φΩj) + 2

√
φφvΩj)gj

(1− φΩj)2
√
(αj − ω2)2 + δ2ω2

,

where φ, φv and φ2 are defined in (2.52), (2.53) and (2.54) respectively.

Proof. Let p be an antiperiodic solution of (2.11). We define w = p− u. The function w solves

wtt + δwt + A2w + ∥p∥2p− ∥u∥2u = 0.

We proceed as in Proposition 2.3.3 and we get that if

F (lim sup
t→∞

∥ξ(t)∥2) < 1

where ξ = (u+ p)/2, then

lim
t→∞

(∥u(t)− p(t)∥22 + ∥ut(t)− pt(t)∥2) = 0. (2.55)

Since

lim sup
t→∞

∥ξ(t)∥ ≤ lim supt→∞ ∥u(t)∥+ lim supt→∞ ∥p(t)∥
2

≤
√
Φ0 +

√
φ

2
,

from the monotonicity of F we get that F (ξ∞) < 1 implies (2.55). Hence, the thesis follows from
Lemma 2.6.2 and Lemma 2.6.3.

2.6.2 The role of a single mode in the dynamics

Let us consider the finite-dimensional problem

ẍ+ δẋ+ Λx+ ∥x∥2x = g(t) (2.56)

where x(t) = (x1(t), . . . , xn(t)) ∈ Rn, g(t) = (g1(t), . . . , gn(t)), Λ = diag(αj)nj=1 and ∥·∥ is the
Euclidean norm in Rn. This problem is a finite-dimensional approximation of (2.11).

Here, we estimate how much the evolution of the system changes as we eliminate a single mode
from the dynamics. For the sake of simplicity, in the following we consider the case when the
higher mode is the one we choose to neglect. We observe that

Pn−1ẍ+ δẋ+ Λn−1Pn−1x+ ∥Pn−1x∥2Pn−1x+ x2nPn−1x = Pn−1g(t) (2.57)
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2.6. Proof of Theorem 2.2.3

where Pn−1(a1, . . . , an) = (a1, . . . , an−1), Λn−1 = diag(αj)n−1
j=1 . We consider now the function

y(t), solution of
ÿ + δẏ + Λn−1y + ∥(y, 0)∥2y = Pn−1g(t) (2.58)

At this point, the question is reduced to estimate the (asymptotic) distance between the solution x
of (2.56) and the solution y of (2.58). To this end, with a slight abuse of notations, we introduce the
Rn−norms ∥·∥1 and ∥·∥2 defined by ∥x∥1 = |x1|+· · ·+|xn| and ∥x∥2 =

√
α1|x1|2 + · · ·+ αn|xn|2.

We remark that the result is completely independent of the choice of the mode neglected. The
following lemma holds.

Lemma 2.6.5. Let x and y be solutions of equations (2.56) and (2.58) respectively. Let g =
g sin(ωt) with g ∈ Rn and we suppose that F (ξ∞) < 1, where ξ∞ is defined in Lemma 2.6.4 and
F (ξ) = 3ξmax(1/δ, 1/(2

√
α1))/

√
α1. Moreover, we suppose that

max
j

ΩjΦ0 < 1, max
j

Ωjφ < 1.

Then there exists a function S of the parameters of the problem such that if S < 1 then we have
that

lim sup
t→∞

∥Pn−1x(t)− y(t)∥
2
≤ C(χ)χ2

n,

lim sup
t→∞

∥Pn−1ẋ(t)− ẏ(t)∥ ≤ C1(χ, χv)χ
2
n + C2(χ, χv)χn,vχn

where χ = (χ1, . . . χn), χj := lim supt→∞max(|xj(t)|, |yj(t)|), χv = (χ1,v, . . . χn,v) and χj,v :=

lim supt→∞max(|ẋj(t)|, |ẏj(t)|).

Proof. First, we remark that as in Lemma 2.6.4, since F (ξ∞) < 1, we have that there exist two
antiperiodic functions p1 ∈ C2(R+,Rn) and p2 ∈ C2(R+,Rn−1) such that

lim
t→∞

∥x(t)− p1(t)∥22 + ∥ẋ(t)− ṗ1(t)∥2 = 0,

lim
t→∞

∥y(t)− p2(t)∥22 + ∥ẏ(t)− ṗ2(t)∥2 = 0.

Therefore, since we are interested in the asymptotic behavior of our system, we can restrict our-
selves to the case when x and y are both antiperiodic without loss of generality.

Let us consider the difference between equation (2.57) and (2.58). If we set w := Pn−1x and
z := w − y, we get

z̈ + δż + Λn−1z = Ψ

where Ψ = −x2nw− (∥w∥2−∥y∥2)y−∥w∥2z and for the sake of simplicity, abusing the notations,
we wrote ∥w∥ and ∥y∥ instead of ∥(w, 0)∥ and ∥(y, 0)∥ respectively.

We focus on one component, say j, in order to treat only scalar quantities. Hence, we consider
the equation

z̈j + δżj + αjzj = Ψj (2.59)

where Ψj = −x2nxj − (∥w∥2−∥y∥2)yj −∥w∥2zj = −x2nxj − (w− y, w+ y)yj −∥w∥2zj . The fact
that x and y are antiperiodic implies that Ψ is antiperiodic too. Hence, we can apply Proposition
2.3.7 to (2.59) and, if we introduce the quantities

φ := maxt≥0max(∥x(t)∥2, ∥y(t)∥2), φv := maxt≥0max(∥ẋ(t)∥2, ∥ẏ(t)∥2),
χj := max(∥xj∥∞, ∥yj∥∞), χj,v := max(∥ẋj∥∞, ∥ẏj∥∞) for j = 1, . . . , n,

then, set Z := maxt≥0 ∥z(t)∥, we have

∥zj∥∞ ≤ Ωj∥Ψj∥∞ ≤ Ωj(χ
2
nχj + 2

√
φχjZ + φ∥zj∥∞).
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

Therefore, set Zj := ∥zj∥∞ and Cj := Ωjφ, by requiring that Cj < 1 for any j = 1, . . . n we get

Zj ≤
Cjχj
1− Cj

(
χ2
n + 2

√
φZ

φ

)
. (2.60)

We define the quantity

S :=
n−1∑
j=1

2Cjχj
(1− Cj)

√
φ

and we suppose S < 1.
We remark that for any x ∈ Rn, ∥x∥ ≤ ∥x∥1 := |x1| + . . . |xn| and, for any bounded function

f : R → Rn, supt ∥f(t)∥1 ≤ ∥f1∥∞+ · · ·+∥fn∥∞. Hence we have that Z ≤
∑n−1

j=1 Zj . Therefore,
by summing (2.60) over j and solving in Z we get

Z ≤ S

1− S

χ2
n

2
√
φ
. (2.61)

Next, we remark that for any bounded function f : R → Rn we have that supt ∥f(t)∥2 ≤
√
α1∥f1∥∞ + · · · + √

αn∥fn∥∞. Hence Z2 := maxt≥0 ∥z(t)∥2 ≤
∑n−1

j=1

√
αjZj and from (2.60)

and (2.61) it follows that

Z2 ≤
n−1∑
j=1

√
αjZj ≤

n−1∑
j=1

Cjχj
√
αj

1− Cj

(
χ2
n + 2

√
φZ

φ

)
≤ 1

φ(1− S)

n−1∑
j=1

Cjχj
√
αj

1− Cj
χ2
n. (2.62)

In particular, from (2.61) and (2.62) we conclude that there exist two positive constants b and c such
that

Z ≤ bχ2
n, Z2 ≤ cχ2

n. (2.63)

Moreover, from (2.63) and (2.60), there exist constants aj such that

Zj ≤ ajχ
2
n for any j = 1, . . . , n− 1. (2.64)

We now define Z(1)
j := ∥żj∥∞ and Z(1) := maxt≥0 ∥ż(t)∥. By applying Proposition 2.3.7 to (2.59)

we get
Z

(1)
j = lim sup

t→∞
|żj(t)| ≤ Ωj lim sup

t→∞
|Ψ̇j(t)|. (2.65)

Since ∥w∥2 − ∥y∥2 = (w + y, w − y) = (w + y, z), we have

Ψ̇j =− 2xnẋnxj − x2nẋj − (ẇ + ẏ, z)yj+

− (w + y, ż)yj − (w + y, z)ẏj − 2(w, ẇ)zj − ∥w∥2żj.
(2.66)

Therefore from (2.66) and (2.65) we get

Z
(1)
j ≤ Ωj(2χnχn,vχj + χ2

nχj,v + 2
√
φvχjZ + 2

√
φχjZ(1) + 2

√
φχj,vZ + 2

√
φvφZj + φZ

(1)
j ).

Hence, by using (2.63) and (2.64), if Lj := χj,v + 2
√
φvφaj + 2(

√
φχj,v +

√
φvχj)b and Cj is

defined as before, then

Z
(1)
j ≤ Cj

1− Cj

2χnχn,vχj + Ljχ
2
n + 2

√
φχjZ(1)

φ
.
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2.6. Proof of Theorem 2.2.3

By reasoning as before we conclude that, if S < 1, then

Z(1) ≤ 1

1− S

(
S
√
φ
χnχn,v + Lχ2

n

)
where L is a suitable constant.

We are now able to estimate the asymptotic distance between x and y, since

lim sup
t→∞

∥⊓nx(t)− y(t)∥
2
≤ cχ2

n,

lim sup
t→∞

∥⊓nẋ(t)− ẏ(t)∥ ≤ S

(1− S)
√
φ
χnχn,v +

L

1− S
χ2
n.

(2.67)

We remark that, since we can estimate φ and φv in function of χ and χ
v
, S and L are dependent by

χ1, . . . χn and χv,1, . . . χv,n only. Therefore, from (2.67) we get the thesis.

2.6.3 Completion of the proof of Theorem 2.2.3

Since g = PMg, from Lemma 2.6.4 we get that, if F (ξ∞) < 1,

lim
t→∞

|(u(t), ej)| = 0, lim
t→∞

|(ut(t), ej)| = 0 for j > M.

Therefore, we can rewrite (2.11) and (2.12) as finite-dimensional dynamical systems of the form
(2.56) and (2.58) respectively.

We introduce the quantities

χj := lim sup
t→∞

|(u(t), ej)|, χj,v := lim sup
t→∞

|(ut(t), ej)| for j ≤M.

From Lemma 2.6.5, we have that if ΩjΦ0 < 1, Cj = Ωjφ < 1 for any j ≤M and

S =
M∑
j=1

2Cjχj
(1− Cj)

√
φ
< 1

where Φ0 and φ are defined in Proposition 2.3.2 and in Lemma 2.6.3, then

lim sup
t→∞

∥⊓ku(t)− v(t)∥2 ≤
1

φ(1− S)

M∑
j=1

Cjχj
√
αj

1− Cj
χ2
k,

lim sup
t→∞

∥⊓kut(t)− vt(t)∥ ≤ S

(1− S)
√
φ
χkχk,v +

L

1− S
χ2
k,

(2.68)

where L is obtained in the proof of Lemma 2.6.5. Fixed δ, we recall that S and L are constants
depending on χ1, . . . χn and χv,1, . . . χv,n. Hence, since from Lemma 2.6.4 we have that

χj ≤
gj

(1− φΩj)
√

(αj − ω2)2 + δ2ω2
, χv,j ≤

(ω(1− φΩj) + 2
√
φφvΩj)gj

(1− φΩj)2
√
(αj − ω2)2 + δ2ω2

,

from (2.68) we obtain that

lim sup
t→∞

(∥⊓ku(t)− v(t)∥22 + ∥⊓ku(t)− v(t)∥2) ≤ Cg4k
((αk − ω2)2 + δ2ω2)2

,

where C is a constant depending on A2, g and ω, that is the thesis.

33



i
i

“thesis” — 2022/4/2 — 11:48 — page 34 — #42 i
i

i
i

i
i

Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

2.7 The intermediate piers model

In this section we show how the analysis performed in this chapter can be useful in order to get
some more information about the stability of real world structures such as suspension bridges.

While in the first part of the chapter (Theorem 2.2.1 and Theorem 2.2.2) we study the general
case given by (2.8), in the second part (Theorem 2.2.3) we focus in particular on the case when
θ = 0 and

g = g sin(ωt).

In particular, taking H = L2(I) with I = [−π, π],A = −∂xx and D(A) = {v ∈ H2(I)∩H1
0 (I) :

v(−π) = v(π) = v(−aπ) = v(bπ) = 0} for a, b ∈ (0, 1), the results of Section 2.6 apply to the
system 

utt + δut + uxxxx + ∥u∥2L2(I)u = g(x) sin(ωt) ∀t ≥ 0,∀x ∈ I

u(0) = u0 ∈ H2(I) ∩H1
0 (I), ut(0) = u1 ∈ L2(I)

u(−π, t) = u(−πb, t) = u(πa, t) = u(π, t) = 0, ∀t ≥ 0.

(2.69)

This choice of the forcing term comes from the fact that, in engineering literature (see [96]), the
load due to the vortex shedding of the wind along the structure of the bridge is usually modeled in
this way with g(x) ≡ g∞ ∈ R. The coefficient g∞ depends on the wind speed and on the geometry
of the structure and ω is the frequency at which vortex shedding occurs. More precisely, we have
that in engineering applications g(x, t) = W 2 sin(ωt), where W is the scalar velocity of the wind
blowing on the deck of the bridge and ω can be expressed in terms of the structural constants of
the bridge and the aerodynamic parameters of the air. We refer to the European Eurocode [68] (see
also [35]) for a more detailed discussion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.5

1

1.5

2

2.5

3

Figure 2.2: Comparison between the general estimate on lim supt→∞ ∥u(t)∥2 (blue) and the one obtained by using
the antiperiodicity of the forcing term (red).

The peculiar expression of the forcing term allows us to improve the estimate on the asymptotic
H2−norm of the solution of (2.69) that one is able to obtain with no other information on g than
the value of lim supt→∞ ∥g(t)∥. A comparison between the general estimate on lim supt→∞ ∥u∥2
(see Proposition 2.3.2) obtained by using the methods of [35, Lemma 22] and the one obtained by
using the antiperiodicity of the forcing term (see Lemma 2.6.4) is given in Figure 2.2. The data
considered are a = b = 14/25, δ = 1.5, and ω = 20. The maximum value of g∞ considered
represents the largest value of g∞ such that Lemma 2.6.4 can be applied.
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Figure 2.3: Comparison between the asymptotic estimate on the amplitude of the first 20 modes for different values of
ω and for different configurations of the piers.

The improvement in the estimates on the asymptotic H2−norm is obtained by using also ulti-
mate bounds of the asymptotic amplitude of each mode. We represent in Figure 2.3 a comparison
between these estimates, obtained in Lemma 2.6.4, and a numerical estimate on the asymptotic am-
plitude of each of the first 20 modes. Fixed δ = 1.5 and g∞ = 1.5, we considered the cases when
ω = 5 (left) and ω = 10 (right). We considered different positions of the piers, namely we chose
a = b = 14/25 (up) and (a, b) = (0.51, 0.67) (down). Each of these choices respect the hypothesis
of Lemma 2.6.4. We remark that the mode with largest amplitude is such that √αj/ω ≈ 1.

Figure 2.4: Plot of a theoretical estimate of the asymptotic H2−norm in function of a and b.

The estimates on each single mode of u allow us to study more precisely how the asymptotic
H2−norm of u varies as the position of the piers vary, i.e. as a and b varies (see Lemma 2.6.4).
Since most suspension bridges have symmetrical piers with a = b ∈ [1/2, 2/3], we restrict our-
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Chapter 2. Asymptotic finite-dimensional approximations for a class of extensible elastic systems

selves to the case where (a, b) ∈ [1/2, 2/3] × [1/2, 2/3]. We represent in Figure 2.4 the estimate
on the asymptotic H2−norm given by Lemma 2.6.4 in function of a and b, with δ = 1.5, g∞ = 1.5
and ω = 10 fixed. We remark that this figure does not give any information about the stability of
the bridge as a and b vary. In fact, the stability of a bridge is more endangered by the concentration
of the energy on a single mode than by the generalized oscillation of the structure.

Figure 2.5: Number of 0.1−prevailing modes in function of a and b.

In order to study the distribution of the H2−norm among the modes, we introduce the concept
of family of asymptotic η−prevailing modes.

Definition 2.3. Let 0 < η < 1. We say that a weak solution of (2.8) has a family S = {j1, . . . jn}
of asymptotic η−prevailing modes if

lim sup
t→∞

∥QSu∥22 < η4 lim sup
t→∞

∥PSu∥22.

In Figure 2.5 we plot the number of η−prevailing modes for η = 0.1. The value of the parame-
ters is the same as in Figure 2.4, namely δ = 1.5, g∞ = 1.5 and ω = 10. We can observe that the
asymptotic H2−norm concentrates on few modes as a = b. Moreover, we notice how the energy
turns out to be more dispersed among the modes when a ̸= b.

In conclusion, we are able to assert that under suitable smallness conditions on the asymptotic
amplitude of the forcing term and on the nonlinearity, we are able to perform a rather accurate
modal analysis for the nonlinear nonlocal beam equations considered. In particular, Figure 2.5,
allows us to conclude that the more stable configurations are achieved when a ̸= b. This suggests
that, according to the model considered, asymmetric suspension bridges are more stable than
suspension bridges where the piers are symmetric with respect to the center of the deck.
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CHAPTER3
The role of boundary conditions in the torsional stability

of suspension bridges

3.1 Introduction

In the previous chapter we focused on studying the distribution of the energy among the fundamen-
tal modes of an abstract equation suitable to describe a large variety of extensible elastic models.
The results were applied to analyse the longitudinal dynamics of a multiple-intermediate piers
model and its stability. Instead, this chapter is devoted to the study of the sudden appearance of tor-
sional movement starting from a purely longitudinal dynamics for the deck of a suspension bridge.
This analysis is carried out by mean of a linear model describing the interaction between the lon-
gitudinal and the torsional dynamics of the structure. More precisely, we consider the following
linear partial differential evolution equation

θtt − ∂2xθ + γ∥uδ∥2L2(I)θ + 2γ(uδ(t), θ)L2(I)uδ(t) = 0

θ(−π, t) = θ(π, t) = 0 ∀t ≥ 0

θ(0, x) = θ0(x) ∈ H2(I), θt(0, x) = θ1(x) ∈ L2(I)

(3.1)

where γ ≪ 1, I ∈ [−π, π] and uδ solves the problem{
uδ,tt + ∂4xuδ + ν∥uδ∥2L2(I)uδ = 0

uδ(0) = δen, uδ,t(0) = 0,
(3.2)

to be complemented with some boundary conditions; here, en is the n−th eigenfunction of ∂4x in
D(∂4x) ⊂ L2(I) and 0 < ν ≪ 1. Our aim is to study the Lyapunov stability of the trivial equilibrium
θ ≡ 0 of (3.1) for different boundary conditions on (3.2) as δ > 0 varies.
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

This problem comes from a degenerate plate model, the “fish-bone model”, composed by a
beam representing the midline of the plate, whose displacement from the rest position at a certain
time t is given by the function u(x, t), and by cross sections that are free to rotate around the
beam, whose angle with respect to the horizontal position is described by the function θ(x, t), see
Figure 1.2. The main contribution to the instability of such structures comes from the sustaining
cables [78, Sec 2] [124] and, therefore, we only consider the restoring forces due to their action on
the plate. As explained in [78, Sec. 5.2], [23], the interaction between longitudinal and torsional
dynamics due to the presence of the cables in the hypotesis of rigid hangers is described by the
following nonlinear nonlocal beam-wave system of evolution equations:

utt + ∂4xu+ γ

(∫
I

(u2 + θ2)

)
u+ 2γ

(∫
I

uθ

)
θ = 0

θtt − ∂2xθ + γ

(∫
I

(u2 + θ2)

)
θ + 2γ

(∫
I

uθ

)
u = 0

(3.3)

where we impose Dirichlet boundary condition on θ. The situation where u ≡ 0 in I represents the
rest position of the midline of the bridge and γ ≪ 1 is a parameter proportional to the tension at rest
of the cables of the structure. Since we are willing to describe how small torsional oscillations may
suddenly become large ones because of the nonlinear interaction with the longitudinal dynamics,
we consider the linearization of (3.3) in a neighborhood of θ ≡ 0, that is, we consider the problem

utt + ∂4xu+ γ

(∫ π

−π
u2
)
u = 0,

θtt − ∂2xθ + γ

(∫ π

−π
u2
)
θ + 2γ

(∫ π

−π
uθ

)
u = 0.

(3.4)

Motivated by the Federal Report on the Tacoma Narrow Bridge collapse [6, p. 20] where we learn
that, in the months prior to the collapse “one principal mode of oscillation prevailed”, we restrict our
analysis to the class of unimodal longitudinal solutions, that is, we impose the boundary conditions
in (3.2). Under such physical assumptions, equation (3.4) may be seen as an evolution problem for
θ of the form (3.1)-(3.2).

The engineering interest with respect to the torsional motion of suspension bridges and their
instability is more than a hundred years old. From the beginning of the XIX century until today,
many suspension bridges have been built, even though their stability with respect to the action of
the wind had been questioned quite early [137, p. 161]. Indeed, many bridges suffered unexpected
oscillations, sometimes leading to collapses, see e.g. [4, 105]. The failure of the Tacoma Narrow
Bridge (TNB), occurred in 1940, raised a particular attention on the topic and the sudden change
from a vertical to a torsional mode of oscillation was considered crucial by the board of engineers
appointed by the Federal Works Agency to investigate about the accident [6]. Torsional oscillations
were also consdered the main culprit for the collapse of other suspension bridges, such as the
Brighton Chain Pier (1836) [142], the Wheeling Suspension Bridge (1854) [106] and the Matukiki
Suspension Footbridge (1977) [107, Ex. 4.6, p. 180] (see [82] for more details). The sudden
appearance of the torsional motion was first attributed by Von Kármán to the vortex shedding [6, p.
31], but this explanation was proven by Scanlan [144] to be incompatible with the phenomenon
observed at the TNB by Farquharson [28, p. 120] and the many attempts to provide a purely
aeroelastic explanation of the failure of the TNB gave unsatisfactory results. We refer to [9] and the
references therein for a detailed discussion of the related controversy. More attempts [7, 8, 22–24,
78, 116] provided a qualitative explanation of the torsional motion in terms of internal resonances

38



i
i

“thesis” — 2022/4/2 — 11:48 — page 39 — #47 i
i

i
i

i
i

3.1. Introduction

and structural instability. The attention has turned to the nonlinear interaction between the different
components of the bridge, which is here considered as an isolated systems, that is, neglecting both
the aerodynamic forces and dissipation as suggested by Irvine [107]. Instead, the aerodynamic
contribution to the dynamics is now introduced through the initial conditions on the longitudinal
dynamics. In particular, the model (3.3), which takes into account the nonlinear interaction between
the deck of the bridge and its sustaining cables, has been studied by many authors in a variety of
different frameworks [3, 23, 78, 82, 86].

From a mathematical point of view, our work fits in the framework of the studies of the stability
of linear differential equations with periodic coefficients. The first fundamental results concerning
this topic were given in the finite-dimensional case by Hill [99] in order to study the motion of the
lunar perigee and, later, by Floquet [74] and Lyapunov [125]. We refer to [38,47,48,126,149,150]
and the references therein. The infinite-dimensional case appears in general to be much more
complex than the finite-dimensional case and various technical difficulties prevented to simply
extend the Floquet theory developed in the finite-dimensional case to such framework, as explained
in [113]. Nonetheless, the stability of different plate models has been largely studied with a variety
of techniques by many authors [10, 11, 35, 43–45, 90, 91, 95]. In this article we apply the KAM
machinery which was first developed by Pöschel and Kuksin [114, 115, 138–140] by improving
and developing the results of Eliasson [66] and Wayne [154]. More precisely, we follow the KAM
reducibility procedure developed in [13, 14], which is actually a small modification of [139], and
we adapt it to our framework.

The main novelties presented in this chapter are represented by the the fact that, to the author’s
knowledge, for the first time the torsional instability of the system considered is not studied in
the simplified and approximated case of the interaction between one longitudinal mode and one
torsional mode. Indeed, we study the stability of (3.5) with no particular hypotheses on θ. On the
other hand, technical difficulties forced us to consider γ < ν, at least in Theorem 3.2.1. Moreover,
our results do not apply to the multiple intermediate piers model developed in [78], due to the fact
that the torsional eigenvalues of such model do not respect the second order Melnikov’s condition
requested in the KAM iterative scheme we employed. Future works may be devoted to improve
our estimates in order to cover the case γ = ν and to apply the recent works of Baldi, Bambusi,
Montalto, Langella and others [12, 15, 133] concerning KAM techniques for systems with very
weak Melnikov non-resonance conditions to our framework, in order to obtain analogous results
also for suspension bridges with multiple intermediate piers.

The results of the chapter are given in two main theorems. First, in Theorem 3.2.1, we prove a
stability result in the case when (3.2) is endowed with Dirichlet boundary conditions. The proof is
based on the application of a stability result for the Hill’s equation due to Burdina [38, 149]. Next,
in Theorem 3.2.2 we prove another stability result for “clamped” boundary conditions by adapting,
applying and improving the KAM reducibility scheme employed in [13, 139]. Both Theorems
3.2.1 and 3.2.2 provide a threshold γ∗, depending on δ such that for any γ < γ∗ there exists a large
measure set of perturbations such that (3.1) is stable, in a sense that we specify in Section 3.2.

The chapter is organized as follows. In Section 3.2 we give some definitions and we state the
main results of this part of the thesis. Next, in Section 3.3 we give some preliminary definitions and
results necessary for the proof of both Theorem 3.2.1 and Theorem 3.2.2. In Section 3.4 we col-
lect some stability results concerning the Hill’s equation, which we employ in Section 3.5 in order
to prove Theorem 3.2.1. Then, in Section 3.6 we provide the Hamiltonian machinery required in
order to prove Theorem 3.2.2, whose proof is given in Section 3.7. Finally, the appendices contain
some technical lemmas we exploited to prove Theorem 3.2.1 and 3.2.2 and to explicitly compute
the constants involved in the KAM estimates.
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

3.2 Statement of the main results

In this section we present our results concerning the problem
θtt − ∂2xθ + γ∥uδ∥2L2(I)θ + 2γ(uδ(t), θ)L2(I)uδ(t) = 0

θ(−π, t) = θ(π, t) = 0 ∀t ≥ 0

θ(0, x) = θ0(x) ∈ H2(I), θt(0, x) = θ1(x) ∈ L2(I)

(3.5)

with uδ solution of the evolution equation{
uδ,tt + ∂4xuδ + ν∥uδ∥2L2(I)uδ = 0

uδ(0) = δen, uδ,t(0) = 0.
(3.6)

where ν ≪ 1 and en is the n−th eigenfunction of ∂4x in D(∂4x) ⊂ L2(I) corresponding to the
eigenvalue λn.

We first complement equation (3.6) with the following boundary conditions

u(−π, t) = u(π, t) = uxx(−π, t) = uxx(π, t) = 0, ∀t ≥ 0, (3.7)

physically corresponding to “hinged ends”. The following result holds:

Theorem 3.2.1. Let u and θ solve (3.6) and (3.5) with boundary conditions (3.7) and let us fix
δ∗ > 0. There exists γ∗ = γ∗(n, δ∗) > 0 such that for any δ ∈ [0, δ∗] and for any γ < γ∗, there
exists a positive measure set ∆n,γ,δ ⊆ [0, δ] such that for any δ̄ ∈ ∆n,γ,δ we have that

∥θ(t)∥H1(I) + ∥θt(t)∥L2(I) ≤ C(∥θ(0)∥H1(I) + ∥θt(0)∥L2(I)), ∀t ≥ 0

and, moreover,
|[0, δ] \∆n,γ,δ| < c

√
γδ

for some positive constants c = c(n, δ∗) and C = C(n, δ∗)

The proof of this result is obtained by using a classical stability criterion for the Hill equation
due to Burdina [38] (see Section 3.4 and 3.5).

Next, we complement (3.6) with boundary conditions given by

u(−π, t) = u(π, t) = ux(−π, t) = ux(π, t) = 0, (3.8)

physically corresponding to “clamped ends”. We obtain the following theorem:

Theorem 3.2.2. Let u and θ solve (3.6) and (3.5) with boundary conditions (3.8) and let δ∗ > 0 be
such that ν(δ∗)2 < 2λn. There exists γ∗ = γ∗(n, δ∗) > 0 such that for any δ ∈ [0, δ∗] and for any
γ < γ∗, there exists a positive measure set ∆n,γ,δ ⊆ [0, δ] such that for any δ̄ ∈ ∆n,γ,δ there exists
an almost periodic function Θ ∈ C∞(R+, H

1(I)) such that

sup
t≥0

(∥Θ(t)∥H1(I) + ∥Θt(t)∥L2(I)) ≤ C(∥θ0∥H1(I) + ∥θ1∥L2(I))

and
sup
t≥0

(∥θ(t)−Θ(t)∥H1(I) + ∥θt(t)−Θt(t)∥L2(I)) ≤ cγδ2

for some positive constants C := C(n, δ∗) and c := c(n, δ∗). Moreover, we have that for some
c∆ = c∆(n, δ

∗)
|[0, δ] \∆n,γ,δ| ≤ c∆γ

1/6δ1/8.
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3.3. Preliminary definitions and results

Due of the techniques employed in their proofs, the stability results of Theorem 3.2.1 and The-
orem 3.2.2 are quite different. Indeed, Theorem 3.2.1 provides us information about the distance
between θ and the equilibrium θ ≡ 0 in function of the initial state of θ only while Theorem 3.2.2,
by using the estimate on Θ, gives a weaker estimate on θ, depending on the initial state of θ and on
δ as well. Therefore, in the case of partially clamped boundary conditions, the obtained results are
weaker than in the case of partially hinged boundary conditions.

The proof of Theorem 3.2.2 is obtained via KAM techinques. The procedure is essentially an
adaptation to our framework of the methods developed by Pöschel, Bambusi and Graffi in [13, 14,
139]. Nevertheless, here we explicitly computed all the constants involved in the KAM estimates
and we improved some of them. This allows us to study the applicability of the results to the study
of the stability of real world structures such as suspension bridges.

We remark that both Theorem 3.2.1 and Theorem 3.2.2 are susceptible of physical interpreta-
tions. Indeed the parameter δ describes the initial amplitude of the oscillations of the structure
and γ expresses the tension at rest of the cables of the suspension bridge. In particular, the case
γ = 0 models a suspension bridge with rigid cables. Let us denote by ∆n,γ,δ the set of initial
data δ̄ ∈ [0, δ] such that the trivial torsional equilibrium of (3.4) is stable. We observe that for
any fixed δ, as γ goes to 0, ∆n,γ,δ tends to coincide with [0, δ]. This is equivalent to say that the
more rigid the cable is taken, less likely are torsional oscillations to appear. Moreover, it is possible
to observe from the proofs that the constants c = c(n, δ∗) in Theorems 3.2.1 and 3.2.2 increases
as n grows. Hence, as the mode of longitudinal oscillations grows, the bridge is more likely to
present torsional oscillations, which is compatible with the physical observations collected during
the accident of the Tacoma Narrow Bridge [6]. To conclude, for any fixed γ, the measure of the
set ∆n,γ,δ shrinks faster as δ grows in the case of clamped boundary conditions than in the case
of hinged boundary conditions. Hence, clamped suspension bridges appears to be more likely to
develop torsional movements. Nonetheless, we remark that this observation could follow from the
technical difficulties of the case with clamped boundary conditions, and further investigations are
needed.

3.3 Preliminary definitions and results

3.3.1 The longitudinal dynamics

For any fixed n ∈ N and ν > 0, let us consider uδ the solution of the problem{
utt + ∂4xu+ ν∥u∥2L2(I)u = 0

u(0, x) = δen(x), ut(0, x) ≡ 0.

where en is the n−th eigenfunction of ∂4x in D(∂4x) ⊂ L2(I) corresponding to the eigenvalue λn. It
is possible to verify that uδ(x, t) = Uδ(t)en(x), where Uδ(t) is the unique solution of the following
ODE {

Üδ + λnUδ + νU3
δ = 0

Uδ(0) = δ, U̇δ = 0.

Setting Uδ(t) =
√
λn/νZ(

√
λnt), we get that

Z̈ + Z + Z3 = 0

Z(0) =

√
ν

λn
δ, Ż = 0,
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

which from [80] is solved by

Z(t) =

√
ν

λn
δcn

[
t

√
1 +

ν

λn
δ2,

√
νδ√

2(λn + νδ2)

]
.

where cn[t,m] is the Jacobi elliptic cosine function, which is defined as follows:

cn(t,m) = cos(ϕ), where t =
∫ ϕ

0

dθ√
1−m2 sin2 θ

. (3.9)

This yields that

Uδ(t) = δcn

[
t
√
λn + νδ2,

√
νδ√

2(λn + νδ2)

]
.

Moreover, the period of the solution Uδ is given by

T (δ) = 4
√
2

∫ 1

0

dθ√
(2λn + νδ2 + νδ2θ2)(1− θ2)

.

3.3.2 Frequency-dependent formulation

We introduce the following change of variables

ω(δ) :=
2π

T (δ)
.

Since T (δ) is a continuous and strictly decreasing function and T (δ) → (2π/
√
λn)

− as δ → 0+, we
have that if δ ∈ [0, δ∗], then ω ∈ [

√
λn, ω

∗] where ω∗ := ω(δ∗) and we can express δ as a function
of ω, i.e. we have that

δ(ω) = T−1

(
2π

ω

)
.

Let us consider the operator Q(δ, t)θ := ∥uδ(t)∥2L2(I)θ + 2(uδ, θ)uδ. It is immediate to verify that
Q(δ, t)θ = U2

δ (t)(1 + 2(en, θ)L2(I))θ. We consider the function

V (ω, ϕ) := U2
δ(ω)

(
T (δ(ω))

2π
ϕ

)
= δ2(ω)cn2

[
T (δ(ω))

2π
ϕ
√
λn + νδ2(ω),

√
νδ(ω)√

2(λn + νδ2(ω))

]
and the operator

P (ω, ωt) := V (ω, ωt)(1 + 2(en, θ)L2(I))θ.

By observing that P (ω(δ), ω(δ)t) = Q(δ, t), we rewrite

θtt − ∂2xθ + γ∥uδ(t)∥2L2(I)θ + 2γ(uδ, θ)uδ = 0

as the following abstract evolution equation

θtt +B2θ + γP (ω, ωt)θ = 0,

where we set B2 = −∂2x. If we introduce the space

H := {θ ∈ L2(I) : θ(−π) = θ(π)}, (3.10)

the following lemma holds:
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Lemma 3.3.1. P ∈ Lip([
√
λn, ω

∗], C∞
2π(R+,B(H,H))).

Proof. Since P is a “separate variable” time-dependent operator, that is P (ω, ϕ) = V (ω, ϕ)R,
where V is a real valued function and R ∈ B(H,H), the thesis is equivalent to prove that V ∈
Lip([

√
λn, ω

∗], C∞
2π(R,R)).

We observe that δ2(·) ∈ Lip([
√
λn, ω

∗]). Indeed, since T ′(δ) < 0 for any δ > 0, we have that
for any ε ∈ (0, ω∗ −

√
λn), δ2(·) ∈ Lip([

√
λn + ε, ω∗]). Moreover, if we set m = νδ2/(2λn)

T (δ) = 4
√
2

∫ 1

0

dθ√
(2λn + νδ2 + νδ2θ2)(1− θ2)

=
4√
λn

∫ 1

0

dθ√
1 +m(1 + θ2))(1− θ2)

θ=cos(α)
=

4√
λn

∫ π/2

0

dα√
1 + 2m−m sin2 α

=
4√

λn
√
1 + 2m

K

(
m

1 + 2m

)
,

(3.11)

where K is the complete elliptic integral of the first kind, which is defined as

K(x) :=

∫ π/2

0

dt
1− x sin2 t

. (3.12)

Hence, since from [2, 17.3.11, p.591] we have that

K(x) =
π

2
+
π

8
x+ o(x), as x→ 0,

we get

4√
λn

√
1 + 2m

K

(
m

1 + 2m

)
=

4√
λn

(1−m+ o(m))
(π
2
+
π

8
m+ o(m)

)
=

2π√
λn

− 3π

2
√
λn
m+ o(m) as m→ 0,

that is, as δ → 0,

T (δ) =
2π√
λn

− 3π

4

νδ2

λ
3/2
n

+ o(δ2).

Therefore, since ω = 2π/T , by using the Lagrange’s reversion theorem [2, 3.6.25, p.16],

νδ2(ω)

λ
3/2
n

=
8

3
(ω −

√
λn) + o(ω −

√
λn), as ω →

√
λn

+
.

Hence,
d+

dω
δ2(
√
λn) =

8λ
3/2
n

3ν
,

which implies that δ2(·) ∈ Lip([
√
λn, ω

∗]).
The thesis follows from the regularity properties of δ2 and of the Jacobi elliptic cosine function.

Indeed, from [2, 16.13.2, p. 573] we have that as m→ 0+

cn2(t,m) = cos2(t) +
m

16
sin(2t)

(
t− sin(2t)

2

)2

+ o(m),
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

which yields that as ω →
√
λn

+, since δ(ω) → 0+, we have for any x ∈ R

δ2(ω)cn2

[
x,

√
νδ(ω)√

2(λn + νδ2(ω))

]
= δ2(ω) cos2(x)+

√
νδ3(ω)

16
√
2λn

sin(2x)

(
x− sin(2x)

2

)2

+o(δ3(ω)).

Therefore, since δ2(·) ∈ Lip([
√
λn, ω

∗]), we get that for any x ∈ R

δ2(·)cn

[
x,

√
νδ(·)√

2(λn + νδ2(·))

]
∈ Lip([

√
λn, ω

∗]). (3.13)

Moreover, since T (δ(·)) ∈ C1([
√
λn, ω

∗],R), we have that T (δ(·)) ∈ Lip([
√
λn, ω

∗]), which yields
that for any m ∈ (0, 1),

δ2(·)cn2

[
T (δ(·))
2π

ϕ
√
λn + νδ2(·),m

]
∈ Lip([

√
λn, ω

∗]). (3.14)

The thesis follows from (3.13) and (3.14).

3.4 Preliminaries for the proof of Theorem 3.2.1

Let us consider the Hill’s equation
ÿ + p(t)y = 0, (3.15)

where p is a real T − periodic function, Lebesgue-integrable in [0, T ]. We recall the following
stability criterion for (3.15), first proved by Burdina in [38] (see also [149]):

Proposition 3.4.1 (Burdina). Let i1, . . . is and j1, . . . js be respectively the maximum points and the
minimum points of p(t) on the half-open interval 0 ≤ t < T . Let

q :=

∫ T

0

√
p(t)dt− 1

2
ln

(
p(i1) . . . p(is)

p(j1) . . . p(js)

)
, Q :=

∫ T

0

√
p(t)dt+

1

2
ln

(
p(i1) . . . p(is)

p(j1) . . . p(js)

)
If

nπ < q ≤ Q < (n+ 1)π

for some integer n = 0, 1, 2, . . . , then the trivial solution of (3.15) is stable.

We conclude this section with the following result concerning an estimate on the bounded solu-
tion of a particular family of Hill’s equations.

Lemma 3.4.2. Let a ∈ C1(R+,R+) be a T−periodic function. Let y ∈ C1(R+,R) be a bounded
solution of

ÿ + (α + a(t))y = 0. (3.16)

Then, there exists ᾱ = ᾱ(T, ∥a∥L∞([0,T ]), ||ȧ||L∞([0,T ])) > 0 such that, if α > ᾱ, then

max
t≥0

(ẏ2(t) + αy2(t)) ≤ 8(ẏ2(0) + αy2(0)).

Proof. We introduce the functions

E(t) =
1

2
ẏ2(t) +

α + a(t)

2
y2(t), Λ(t) =

1

2
ẏ2(t) +

α

2
y2(t).
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We remark that since for any t ∈ R+ we have a(t) ≥ 0, then Λ(t) ≤ E(t) for any t ∈ [0, T ].
Moreover, if α ≥ 2∥a∥L∞[0,T ], we have that E(t) ≤ 2Λ(t) for any t ∈ [0, T ]. Since y solves (3.16),
we have that Ė(t) = ȧ(t)y2(t)/2, which yields, for any t ∈ [0, T ],

Λ(t) ≤ E(t) ≤ E(0) +
T

2
||ȧ||L∞([0,T ]) max

t∈[0,T ]
y2(t)

≤ 2Λ(0) +
T

2
∥ȧ∥L∞([0,T ]) max

t∈[0,T ]
y2(t).

(3.17)

Hence, since Λ(t) ≥ αy2(t)/2, if α ≥ 2T∥ȧ∥L∞([0,T ]) we get that

α max
t∈[0,T ]

y2(t) ≤ 8Λ(0),

which yields, from (3.17),

max
t∈[0,T ]

ẏ2(t) ≤ 4Λ(0) +
8T∥ȧ∥L∞([0,T ])

α
Λ(0) ≤ 8Λ(0).

Therefore, if α ≥ ᾱ = 2max(∥a∥L∞([0,T ]), T∥ȧ∥L∞([0,T ])), then

max
t∈[0,T ]

(ẏ2(t) + αy2(t)) ≤ 8(ẏ2(0) + αy2(0)). (3.18)

Let X(t) be the transition matrix of ż(t) = A(t)z(t), where

z(t) =

(
ẏ(t)

y(t)

)
, A(t) =

(
0 1

−α− a(t) 0

)
.

It is well-known that X(T ) satisfies, for any t ≥ 0, z(t + T ) = X(T )z(t) and that y is a bounded
function if and only if ρ(X(T )) ≤ 1, where ρ(X(T )) denotes the spectral radius ofX(T ) (see [149,
vol.1, p.97]). Therefore, we conclude that for any t ≥ 0

ẏ2(t+ T ) + αy2(t+ T ) =

∣∣∣∣X(T )

(
1 0

0 α

)(
ẏ(t)

y(t)

)∣∣∣∣ ≤ ẏ2(t) + αy2(t), (3.19)

where we denoted by | · | the Euclidean norm in R2. From (3.18) and (3.19), we get the thesis.

3.5 Proof of Theorem 3.2.1

In this section, we consider the problem{
θtt − ∂2xθ + γ∥uδ∥2L2(I)θ + 2γ(uδ, θ)uδ = 0

θ(−π, t) = θ(π, t) = 0,
(3.20)

where uδ solves 
uδ,tt + ∂4xuδ + ν∥uδ∥2L2(I)uδ = 0,

uδ(π, t) = uδ(−π, t) = uδ,xx(π, t) = uδ,xx(−π, t) = 0,

uδ(x, 0) =
δ√
π
sin
(

4
√
λn (x+ π)

)
, uδ,t(x, 0) = 0.
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

with δ ∈ [0, δ̃] for some δ̃ > 0 and where we now have that

λn :=
(n
2

)4
.

As we showed in subsection 3.3.2, equation (3.20) may be reformulated as an abstract problem

θtt +B2θ + γP (ω, ωt)θ = 0 (3.21)

with θ ∈ C1(R+,H), where

H := {θ ∈ L2(I) : θ(−π) = θ(π)}

and
P (ω, ωt)θ := V (ω, ωt)(θ + 2(en, θ)L2(I)en),

where

V (ω, ϕ) = δ2(ω)cn2

[
T (δ(ω))

2π
ϕ
√
λn + νδ2(ω),

√
νδ(ω)√

2(λn + νδ2(ω))

]
.

If we set ω̃ = 2π/T (δ̃), then ω ∈ [
√
λn, ω̃] and from Lemma 3.3.1 we have that

P ∈ Lip([
√
λn, ω̃], C

∞
2π(R+,B(H,H))).

Moreover, since ej(x) = ej(x) = sin(4
√
λj(x + π/2))/

√
π, where we denoted by en(x) the n−th

normalized eigenfunction for the operator −∂2x in D(−∂2x) ⊆ H, it follows that

θ(t, x) =
1√
π

∞∑
j=1

θj(t) sin
(

4
√
λj (x+ π)

)
, uδ(t, x) =

1√
π
V (ω, ωt) sin

(
4
√
λn (x+ π)

)
,

and it is immediate to verify that

P (ω, ωt)ej(x) =

{
V (ω, ωt)ej(x)

3V (ω, ωt)ej(x).

that is, P (ω, ωt) is a diagonal and strictly positive operator for any choice of ω ∈ [
√
λn, ω̃] and

t ∈ R+.
Let us write (3.21) as a pair of first order equations: θt = ϑ, ϑt = −B2θ − γP (ω, ωt)θ. The

solution of this system depends linearly on the initial condition at time zero, thus defining a time-
dependent map Φ(t) via the equation

Θ(t) = Φ(t)Θ(0), Θ(t) =

(
θ(t)

ϑ(t)

)
, t ∈ R+.

We say that the equation (3.21) is spectrally stable if the corresponding evolution operator Φ(2π/ω)
has no spectrum outside the unit circle. The following lemma holds:

Lemma 3.5.1. Let u and θ solve (3.6) and (3.5) with boundary conditions (3.7) and let us fix
ω∗ > 0. There exists γ∗ = γ∗(n, ω∗) > 0 such that for any ω ∈ [

√
λn, ω

∗] and for any γ < γ∗,
there exists a positive measure set Ωn,γ,ω ⊆ [

√
λn, ω] such that for any ω̄ ∈ Ωn,γ,ω we have that

(3.21) is spectrally stable.
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Proof. Let θ be a solution of (3.21). We set ph(ω, ωt) := γ(P (ω, ωt)eh, eh) and we observe that,
since P is diagonal, (3.21) may be interpreted as an infinite-dimensional dynamical system given
by

θh,tt + β2
hθh + ph(ω, ωt)θh = 0, h ≥ 1. (3.22)

Let us define ah(ω, ωt) = β2
h + ph(ω, ωt) and introduce the quantity

Λh(ω) =

∫ 2π/ω

0

√
ah(ω, ωt)dt.

From Proposition 3.4.1, since ph(ω, ωt) is 2π/ω−periodic, the trivial solution of (3.22) is stable if
there exists n ∈ N such that

nπ < qh ≤ Qh < (n+ 1)π, (3.23)

where, according to the notations of Proposition 3.4.1,

qh := Λh(ω)−
1

2
ln

(
ah(ω, i1) . . . ah(ω, is)

ah(ω, j1) . . . ah(ω, js)

)
, Qh := Λh(ω) +

1

2
ln

(
ah(ω, i1) . . . ah(ω, is)

ah(ω, j1) . . . ah(ω, js)

)
.

Moreover, we notice that, fixed ω̃ > 0, there exists a positive quantity α such that

∀h ≥ 1,∀ω ∈ [
√
λn, ω̃], β2

h ≤ ah(ω, ωt) ≤ β2
h + γα,

and the Lipschitz dependence of P by ω yields that there exists a positive constant αL such that

∀h ≥ 1,∀ϕ ∈ R+,∀ω1, ω2 ∈ Ω, |ph(ω1, ϕ)− ph(ω2, ϕ)| ≤ γαL|ω1 − ω2|.

Since ω 7→ δ(ω) is a strictly increasing function and for any m ∈ (0, 1) from (3.9) cn2(x,m) ≤ 1,
we have that, setting δ̃ = δ(ω̃),

α = 3δ̃2, αL = 3 sup
ω1,ω2∈[

√
λn,ω̃]

ϕ∈[0,2π]

∣∣∣∣V (ω1, ϕ)− V (ω2, ϕ)

ω1 − ω2

∣∣∣∣ .
Therefore, since ah(ω, ϕ) has 2 maximum points i1, i2 and 2 minimum points j1, j2 in [0, 2π], we
have that

1

2
ln

(
ah(ω, i1)ah(ω, i2)

ah(ω, j1)ah(ω, j2)

)
≤ 3γδ̃2

β2
h

.

Hence, (3.23) is implied by

Λh(ω) ∈

(
nπ +

3γδ̃2

β2
h

, (n+ 1)π − 3γδ̃2

β2
h

)
,

which is equivalent to require that

Λh /∈

[
0,

3γδ̃2

β2
h

]
∪

∞⋃
n=1

[
nπ − 3γδ̃2

β2
h

, nπ +
3γδ̃2

β2
h

]
,

that is, we have that equation (3.22) is stable for any h ∈ N if and only if

∀h ≥ 1, n ≥ 0, |Λh(ω)− nπ| > 3γδ̃2

β2
h

.
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

We observe that

Λh(ω1)− Λh(ω2) =

∫ 2π/ω1

0

√
ah(ω1, ω1t)dt−

∫ 2π/ω2

0

√
ah(ω2, ω2t)dt

=
1

ω1

∫ 2π

0

√
ah(ω1, ϕ)dϕ− 1

ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

=
1

ω1

∫ 2π

0

√
ah(ω1, ϕ)−

√
ah(ω2, ϕ)dϕ− ω1 − ω2

ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

which yields

|Λh(ω1)− Λh(ω2)| ≤
∣∣∣∣ 1ω1

∫ 2π

0

√
ah(ω1, ϕ)−

√
ah(ω2, ϕ)dϕ

∣∣∣∣+ ∣∣∣∣ω1 − ω2

ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

∣∣∣∣
|Λh(ω1)− Λh(ω2)| ≥

∣∣∣∣∣∣∣∣ 1ω1

∫ 2π

0

√
ah(ω1, ϕ)−

√
ah(ω2, ϕ)dϕ

∣∣∣∣− ∣∣∣∣ω1 − ω2

ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

∣∣∣∣∣∣∣∣ .
Since β2

h ≤ ah(ω2, ω2t) ≤ β2
h + 3γδ̃2, we have that

|ω1 − ω2|
ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ ≤

2π
√
β2
h + 3γδ̃2

λn
|ω1 − ω2| (3.24)

and
|ω1 − ω2|
ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ ≥ 2πβh

ω̃2
|ω1 − ω2|. (3.25)

Moreover, since∣∣∣√ah(ω1, ϕ)−
√
ah(ω2, ϕ)

∣∣∣ =√β2
h + ph(ω2, ϕ)

∣∣∣∣∣
√

1 +
ph(ω1, ϕ)− ph(ω2, ϕ)

β2
h + ph(ω2, ϕ)

− 1

∣∣∣∣∣
≤ |ph(ω1, ϕ)− ph(ω2, ϕ)|

2βh
≤ γαL|ω1 − ω2|

2βh

then
1

ω1

∫ 2π

0

(
√
ah(ω1, ϕ)−

√
ah(ω2, ϕ))dt ≤

πγαL|ω1 − ω2|
βh

√
λn

. (3.26)

Therefore, by combining (3.24) and (3.26),∣∣∣∣Λh(ω1)− Λh(ω2)

ω1 − ω2

∣∣∣∣ ≤ 2π
√
β2
h + γα

λn
+

πγαL

βh
√
λn
.

Moreover, if∣∣∣∣ 1ω1

∫ 2π

0

√
ah(ω1, ϕ)−

√
ah(ω2, ϕ)dϕ

∣∣∣∣ ≤ ∣∣∣∣ω1 − ω2

ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

∣∣∣∣ ,
which is implied, from (3.25) and (3.26), by

πγαL|ω1 − ω2|
βh

√
λn

≤ 2πβh
ω̃2

|ω1 − ω2|,
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that is

γ <
2
√
λnβ

2
1

αLω̃2
=: γ∗(n, ω̃),

we get that∣∣∣∣Λh(ω1)− Λh(ω2)

ω1 − ω2

∣∣∣∣ ≥ ∣∣∣∣ 1

ω1ω2

∫ 2π

0

√
ah(ω2, ϕ)dϕ

∣∣∣∣−
∣∣∣∣∣ 1ω1

∫ 2π

0

√
ah(ω1, ϕ)−

√
ah(ω2, ϕ)

ω1 − ω2

dϕ

∣∣∣∣∣
≥ 2πβh

ω̃2
− πγαL

βh
√
λn
.

Hence, since βj = j/2, from Corollary A.2 we conclude that if δ̃ satisfies

γ <

√
λn

2αLω̃2
,

(
∞∑
j=1

8(
√
j2 + 4γα/λn + 4γαL/(j

√
λn) + 2/(ω̃ −

√
λn))

j3/ω̃2 − 4γαLj/
√
λn

)
3γδ̃2 < 1 (3.27)

then there exists a positive measure set Ωγ,n,ω̃ ⊂ [
√
λn, ω̃], such that

|[
√
λn, ω̃] \ Ωγ,n,ω̃| ≤

(
∞∑
j=1

8((ω̃ −
√
λn)(

√
j2 + 4γα/λn + 4γαL/(j

√
λn)) + 2)

j3/ω̃2 − 4γαLj/
√
λn

)
3γδ̃2 (3.28)

=: F (δ̃, n, γ)γδ̃2.

and

∀ω̄ ∈ Ωγ,n,ω̃,∀n ∈ N,∀h ≥ 1, |Λh(ω̄)− nπ| > 3γδ̃2

β2
h

.

Therefore, for any ω̄ ∈ Ωγ,n,ω̃, we conclude that for any h ≥ 1, (3.22) is stable, that is, for any
h ≥ 1, the linear map Φh(2π/ω̄) associated with (3.22) has no spectrum outside the unit circle.
Hence, since σ(Φ) =

⋃
h≥1 σ(Φh), (3.21) is spectrally stable.

Since from Lemma 3.1 we have that

lim
ω→

√
λn

+

δ2(ω)

ω −
√
λn

=
8λ

3/2
n

3ν
< +∞,

and ω 7→ αL(ω) and ω 7→ δ(ω) are strictly increasing functions, we have that for any fixed ω∗ > 0,
there exists γ∗(n, ω∗) > 0 such that the conditions in (3.27) hold. Hence, we have that for any
ω < ω∗ and for any γ < γ∗, there exists Ωγ,n,ω ⊆ [

√
λn, ω] such that if ω̄ ∈ Ωγ,n,ω, then (3.21) is

spectrally stable, that is the thesis.

Lemma 3.5.2. Let u and θ solve (3.6) and (3.5) with boundary conditions (3.7) and let us fix δ∗ > 0.
There exists γ∗ = γ∗(n, δ∗) > 0 such that for any δ ∈ [0, δ∗] and for any γ < γ∗0 , there exists a
positive measure set ∆n,γ,δ ⊆ [0, δ] such that for any δ̄ ∈ ∆n,γ,ω we have that (3.21) is spectrally
stable.

Proof. The proof follows from Lemma 3.5.1. Indeed, we observe that for any fixed δ∗ > 0, the
applications

[0, δ∗] ∋ δ 7→ αL(ω(δ)), [0, δ∗] ∋ δ 7→ ω(δ)

are strictly increasing functions, which yields that if δ < δ∗, γ∗(n, ω(δ)) < γ∗(n, ω(δ∗)) and, if δ∗

satisfies the conditions in (3.27), then, in the notations of Lemma 3.5.1, F (δ, n, γ) ≤ F (δ∗, n, γ).
Therefore, by reasoning as in Lemma 3.5.1, we have that for any fixed δ∗ > 0 there exists γ∗0 =
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

γ∗0(n, δ
∗) > 0 such that for any γ < γ∗ and for any δ ∈ [0, δ∗], the conditions in (3.27) hold, which

yields that there exists Ωn,γ,δ ⊆ [
√
λn, ω(δ)] such that for any ω̄ ∈ Ωn,γ,δ, (3.21) is spectrally stable.

Moreover, from (3.28) we have that

|[
√
λn, ω] \ Ωn,γ,ω| ≤ C1γδ

2

for some positive constantC1 = C1(n, δ
∗) > 0. Since, as we showed in Lemma 3.3.1, ω 7→ δ(ω)2 is

a strictly increasing and Lipschitz function of ω in [
√
λn, ω

∗] with Lipschitz constant L = L(n, δ∗)
and [0, δ2] = δ2([

√
λn, ω]), we have that δ2(Ωn,γ,ω) ⊂ [0, δ2] and

|[0, δ2] \ δ2(Ωn,γ,δ2)| < L(n, δ∗)C1(n, δ
∗)γδ2. (3.29)

By using Lemma A.4, if we set c(n, δ∗) :=
√
L(n, δ∗)C2(n, δ∗) and ∆γ,n,ω := δ(Ω′

γ,n,δ), from
(3.29) we get that

|[0, δ] \∆n,γ,ω| ≤ c(n, δ∗)
√
γδ. (3.30)

We remark that from (3.30) we get that for γ small enough, ∆γ,n,ω is a set of positive measure.
Summarizing, we have that for any δ∗ > 0 there exists γ∗ = γ∗(n, δ∗) > 0 such that for any γ < γ∗

and for any δ ∈ [0, δ∗] there exists a positive measure set ∆n,γ,δ ⊆ [0, δ] such that for any δ̄ ∈ Ωn,γ,δ

equation (3.21) is spectrally stable, that is the thesis.

3.5.1 Completion of the proof

Let θ be a solution of (3.21) and let θh be the projection of θ on eh. From Lemma 3.5.2, there exists
γ∗ = γ∗(n, δ∗) > 0 such that for any γ < γ∗ there is a nonempty set ∆n,γ,δ ⊂ [0, δ] such that for
any δ̄ ∈ ∆n,γ,δ, (3.21) is spectrally stable. This is equivalent to say that

∀δ̄ ∈ ∆n,γ,δ,∀h ≥ 1, θ̇2h(t) + β2
hθ

2
h(t) ≤ Ch(θ̇

2
h(0) + β2

hθ
2
h(0))

for some positive constant Ch. From Lemma 3.4.2, we have that for any δ̄ ∈ ∆n,γ,δ there exists
h̃(δ̄) = h̃(δ̄, n, ν) such that for any h ≥ h̃ we can take Ch ≡ 8. Hence, if h̄ := maxδ∈[0,δ∗] h̃(δ), we
have that

∀ω ∈ Ωγ, ∀h ≥ h̄, θ̇2h(t) + β2
hθ

2
h(t) ≤ 8(θ̇2h(0) + β2

hθ
2
h(0)).

Next, let us consider h ≤ h̄. If we set C̄ := maxh≤h̄Ch, we have that

∀ω ∈ Ωγ,∀1 ≤ h ≤ h̄, θ̇2h(t) + β2
hθ

2
h(t) ≤ C̄(θ̇2h(0) + β2

hθ
2
h(0)).

Hence, if we set C = max(C̄, 8), we conclude that for any δ∗ > 0 there exists γ∗ = γ∗(n, δ∗)
such that if γ < γ∗, for any δ < δ∗ there exists ∆n,γ,δ such that for any δ̄ ∈ ∆n,γ,δ, for any h ≥ 1,

θ̇2h(t) + β2
hθ

2
h(t) ≤ C(θ̇2h(0) + β2

hθ
2
h(0)) (3.31)

and by summing (3.31) over h we get the thesis.

3.6 Preliminaries for the proof of Theorem 3.2.2

3.6.1 Hamiltonian machinery

Let us consider the formal infinite polynomials

∞∑
i,j=1

Fijηiξj,

∞∑
i,j=1

Fijηiηj

∞∑
i,j=1

Fijξiξj. (3.32)
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We introduce the spaces

Y s
C := {(ξ, η) ∈ ℓ2(N,C)× ℓ2(N,C) : ∥(ξ, η)∥2Y s :=

1

2

∑
j∈N

j2s(|ξj|2 + |ηj|2) <∞}.

and the spaces Y s ⊆ Y s
C , where

Y s := {(ξ, η) ∈ Y s
C : ηj = ξ̄j ∀j ∈ N}. (3.33)

In the following, we denote Y := Y 1/2. Moreover, for any s ≥ 0, we introduce the spaces

(Hs := Hs(I) ∩H, ∥·∥s)

where Hs(I) is the standard Sobolev space and ∥θ∥s := 2∥(−∂2x)s/2θ∥L2(I). We define for any
s > 0, H−s as the dual of Hs and we remark that H0 = H. The following lemma holds.

Lemma 3.6.1. Let F ∈ B(H1/2,H1/2+k) with k ≥ 0 and let Fij := (Fei, ej). Then

∞∑
i,j=1

Fijηiξj : Y
1/2 7→ C.

Proof. We observe that for any k ≥ 0 we have B(H1/2,H1/2+k) ⊂ B(H1/2,H1/2). Moreover,
F ∈ B(H1/2,H1/2) if and only if B1/2FB−1/2 ∈ B(H,H), that is, if and only if the operator M
with matrix Mij = i1/2Fijj

−1/2 belongs to B(ℓ2, ℓ2). Therefore, by Cauchy-Schwarz inequality we
have that, if we take x ∈ ℓ2 with xi = 1/i,∣∣∣∣∣

∞∑
i,j=1

Fijηiξj

∣∣∣∣∣ =∑
i,j

i1/2Fijj
−1/2i−1i1/2ηij

1/2ξj

≤

(
∞∑
j=1

jξ2j

)1/2
 ∞∑

j=1

(
∞∑
i=1

i1/2Fijj
−1/2i−1i1/2ηi

)2
1/2

≤

(
∞∑
j=1

jξ2j

)1/2
 ∞∑

j=1

(
∞∑
i=1

i1/2Fijj
−1/2i−1

)2( ∞∑
i=1

i1/2ηi

)2
1/2

≤

(
∞∑
j=1

jξ2j

)1/2( ∞∑
i=1

iη2i

)1/2
 ∞∑

j=1

(
∞∑
i=1

i1/2Fijj
−1/2i−1

)2
1/2

≤ ∥(ξ, η)∥2Y 1/2∥Mx∥ℓ2 < +∞.

By proceeding as in Lemma 3.6.1, it is possible to prove that if F ∈ B(H1/2,H1/2+k) with
k ≥ 0, then all the expressions in (3.32) are well-defined C−valued functions from Y 1/2. We
define the spaces

Hk−,k+ :=

F : Y 1/2 C1

→ C

∣∣∣∣∣∣∣∣∣
F (ξ, η) :=

∑
i,j∈N0

F−
ij ηiξj +

1

2

∑
i,j∈N0

F+
ij ξiξj +

1

2

∑
i,j∈N0

F+
ij ηiηj,

where F± ∈ B(H1/2,H1/2+k±) and F±
ij := (F±ei, ej)

with F− = (F−)† and F+ = (F+)†
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endowed with the norm

∥F∥Hk−,k+ := ∥F−∥B(H1/2,H1/2+k−∧k+ ) + ∥F+∥B(H1/2,H1/2+k−∧k+ ), where k− ∧ k+ := min(k−, k+).
(3.34)

For the sake of brevity, in the following we set Hs := Hs,s and we call Hamiltonian function any
function in Hk−,k+ . From Lemma 3.6.1, we conclude that the elements of Hk−,k+ are well-defined
functions from Y to C for any k−, k+ ≥ 0.

We consider ζ = (ζs)s∈Z with ζs = (ξs, ηs)
t and for any F ∈ Hh,k we denote by XF the linear

operator defined by

XF ζ :=

(
−i∇ηF (ζ)

i∇ξF (ζ)

)
. (3.35)

For any F,G ∈ H0 we define the Hamiltonian {F,G} as the unique Hamiltonian such that

X{F,G} = XGXF −XFXG =: −[XF , XG].

By direct computation, it is possible to verify that {·, ·} is the Poisson bracket associated to the
symplectic form i

∑
s dξs ∧ dηs, that is

{F,G} =
∑
s∈N0

i
∂F

∂ξs

∂G

∂ηs
− i

∂F

∂ηs

∂G

∂ξs
,

which yields that
{F,G}− = i(F−G− −G−F− +G+F+ − F+G+),

{F,G}+ = i(F−G+ +G+F− − F+G− −G−F+).
(3.36)

Lemma 3.6.2. Let F ∈ Hs. Then XF : Y s → Y s and ∥XF∥B(Y s,Y s) ≤ ∥F∥Hs .

Proof. We remark that, since

ψ1 =
∑

j∈N ξjej ∈ Hs

ψ2 =
∑

j∈N ηjej ∈ Hs ⇐⇒ ζ = (ξ, η) ∈ Y s
C

and we have that
1

2
(∥ψ1∥2s + ∥ψ2∥2s) = ∥ζ∥2Y s ,

it follows that

sup
∥ζ∥2Y s=1

∥XF ζ∥Y s =
1

2
sup

(∥ψ∥2s+||ψ̄||2s)/2=1

(
∥F−ψ + F+ψ̄∥s + ∥F−ψ + F+ψ∥s

)
≤ sup

∥ψ∥s=1

(∥F−ψ∥s + ∥F+ψ̄∥s) ≤ sup
∥ψ∥s=1

∥F−ψ∥s + sup
||ψ̄||s=1

∥F+ψ̄∥s = ∥F∥Hs ,

that is the thesis.

3.6.2 Lie transform

For any F ∈ Hk−,k+ , let us denote by ϕtF the Hamiltonian flow of F with respect to the symplectic
structure i

∑
s dξs ∧ dηs, that is ϕtF (x) = (y1(t), y2(t)) where y(t) solves

ẏ = XFy with y(0) = x.

52



i
i

“thesis” — 2022/4/2 — 11:48 — page 53 — #61 i
i

i
i

i
i
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Lemma 3.6.3. F ∈ H0 if and only if ϕ1
F : Y → Y . Moreover, if ∥F∥H0 ≤ 5/4, we have that

∥id − ϕ1
F∥B(Y,Y ) ≤ 2∥F∥H0 .

Proof. We have that ϕ1
F : Y → Y if and only if for any ζ ∈ Y we have that XF ζ ∈ Y . Since, if

ζ ∈ Y ,

(XF ζ)s =


−i
∑
j

F−
sjξj − i

∑
j

F+
sjηj

i
∑
j

F−
jsηj + i

∑
j

F+
sjξj

 ∈ Y ⇐⇒ F− = (F−)†, F+ = (F+)†

we conclude that F ∈ H0 if and only if XF ζ ∈ Y for any ζ ∈ Y , that is, F ∈ H0 if and only if
ϕ1
F : Y → Y . Next, we observe that by definition

d

dt
ϕtF = XFϕ

t
F ,

which yields that

ϕ1
F =

∞∑
n=0

Xn
F

n!
.

Therefore, from Lemma 3.6.2, if ∥F∥H0 ≤ 5/4 we have that

∥id − ϕ1
F∥B(Y,Y ) ≤

∞∑
n=1

∥XF∥nB(Y,Y )

n!
≤

∞∑
n=1

∥F∥nH0

n!
≤ exp(∥F∥H0)− 1 ≤ 2∥F∥H0 .

Definition 3.1. Let F ∈ Hk1,h1 and G ∈ Hk2,h2 with k2, h2 ≥ 0. Then the Lie transform of F
generated by G is the unique Hamiltonian function LieGF such that

XLieGF
:= ϕ1

GXFϕ
−1
G .

By proceeding exactly as in [13, Lemma 3.2], we obtain the following lemma.

Proposition 3.6.4. Let F ∈ Hh1,k1 and Z ∈ C1(R+, H
h2,k2). Assume that ζ(t) = (ξ(t), η(t))T

fulfills the equation
ζ̇ = XF ζ

Then Ξ defined by
Ξ = ϕ1

Zζ

satisfies
Ξ̇ = XTZFΞ

with

TZF := LieZF − YZ , YZ :=

∫ 1

0

(Lie(1−ε)ZŻ)dε.

In particular, we remark that if F = G+H , then TZF = LieZG+ LieZH − YZ .

In the following, we shall consider Hamiltonian functions F (ω, ϕ, ζ) ∈ Hk−,k+ depending ana-
litically and periodically on ϕ. We recall that any analytic and periodic function F can be identified,
for some positive r, with an holomorphic and bounded function F̃ defined in S1

r := {Φ = α + iξ :
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

α ∈ S1, ξ ∈ R with |ξ| < r} such that F̃ |R = F . Slightly abusing the notation, we will de-
note the holomorphic extension of F to S1

r by the same letter. In addition, we require F to be
Lipschitz-dependent by ω, that is

sup
ω1 ̸=ω2∈Ω

∥F (ω1, ϕ)− F (ω2, ϕ)

ω1 − ω2

∥
h,k

<∞, ∀ϕ ∈ S1
r .

For our convenience, we introduce the space

Bh,kr (Ω) := Lip(Ω, C∞(S1
r , H

h,k))

endowed with the norm |·|h∧k,r and the seminorm |·|Lh∧k,r defined by

|F |h∧k,r := sup
ω∈Ω

sup
ϕ∈S1

r

∥F (ω, ϕ)∥Hh∧k |F |Lh∧k,r := sup
ω1 ̸=ω2∈Ω

∣∣∣∣F (ω1)− F (ω2)

ω1 − ω2

∣∣∣∣
h,k

.

For the sake of simplicity, in the following we write Bhr (Ω) := Bh,hr (Ω) and we set |·|2,r = |·|r and
|·|L2,r = |·|Lr . Moreover, abusing the notations, for any real periodic analytic function a(ω, ϕ) we
define |a|r := |ã

∑
i β

2
i ξiηi|r and |a|Lr := |ã

∑
i β

2
i ξiηi|r, where ã is the holomorphic extension of a

to S1
r . By further abusing the notations for any F ∈ H0 we define

|XF |r := sup
ω∈Ω

sup
ϕ∈S1

r

∥XF (ω, ϕ)∥B(Y,Y ).

In this notation, from Lemma 3.6.3 we obtain the following corollary:

Corollary 3.6.5. Let F ∈ B0
r(Ω). Then, if |F |r ≤ 5/4,∣∣id − ϕ1

F

∣∣
r
≤ 2 |F |r .

3.7 Proof of Theorem 3.2.2

We now consider the problem{
θtt − ∂2xθ + γ∥uδ(t)∥2L2(I)θ + 2γ(uδ(t), θ)uδ(t) = 0

θ(−π, t) = θ(π, t) = 0,
(3.37)

where uδ solves 
uδ,tt + ∂4xuδ + ν∥uδ∥2L2(I)uδ = 0,

uδ(π, t) = uδ(−π, t) = uδ,x(π, t) = uδ,x(−π, t) = 0,

uδ(x, 0) = δen(x), uδ,t(x, 0) = 0.

for some fixed ν > 0, with δ ∈ [0, δ̃] for some δ̃ > 0 and where we now have

en(x) =


1√
2π

(
cos(λ+(n+1)/2x)

cos(λ+(n+1)/2π)
−

cosh(λ+(n+1)/2x)

cosh(λ+(n+1)/2π)

)
if n is odd,

1√
2π

(
sin(λ−n/2x)

sin(λ−n/2π)
−

sinh(λ−n/2x)

sinh(λ−n/2π)

)
if n is even,
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3.7. Proof of Theorem 3.2.2

with λ±n defined as the n− th positive solution of the equation

tan(λ4π)± tanh(λ4π) = 0.

In the following, we refer to the eigenvalue corresponding to en as λn. By reasoning as in subsection
3.3.2, we have that equation (3.37) may be reformulated as follows:

θtt +B2θ + γP (ω, ωt)θ = 0

where θ ∈ C1(R+,H), H is defined as in (3.10), ω ∈ Ω := [
√
λn, ω̃], ω̃ := ω(δ̃), B2 := −∂2x and

P (ω, ωt) := V (ω, ωt)(θ + 2(en, θ)L2(I)en,

where

V (ω, ϕ) = δ2(ω)cn2

[
T (δ(ω))

2π
ϕ
√
λn + νδ2(ω),

√
νδ(ω)√

2(λn + νδ2(ω))

]
.

We remark that if we set a(ω, ϕ) := V (ω, ϕ)/2 and R(ω, ϕ)θ := 2V (ω, ϕ)(en, θ)L2(I)en, we have
that

P (ω, ϕ) := 2a(ω, ϕ)id +R(ω, ϕ).

where id is the identity operator. Since from Lemma 3.3.1, δ2 ∈ Lip(Ω), we have that a ∈
Lip(Ω, C∞

2π(R+,R+)) and, since for any n ∈ N we have that en ∈ H2,R ∈ Lip(Ω, C∞
2π(R+,B(H,H2))).

We observe that, since the function cn(z,m) has a simple pole in z = K(1−m), whereK is defined
in (3.12), from (3.11) we have that V (ω, ϕ) has a pole in

ϕp(m) =
π

2

K
(
1−

√
m√

1+m

)
K
(

m
1+2m

) , where m :=
νδ2

2λn
. (3.38)

Since if νδ2 < 2λn, then m ∈ [0, 1] and minm∈[0,1] ϕp(m) ≈ 1.54, we get that there exists r > 1

such that P̃ (ω, z) = cn(z,m) is holomorphic on S1
r and the restriction of P (ω, z) to the real line

coincides with P̃ (ω, z) for any choice of ω.

3.7.1 Complex formulation

Following [26, 67], we reformulate

θtt +B2θ + 2γa(ω, ωt)θ + γR(ω, ωt) = 0, (3.39)

as a complex Hamiltonian system. Setting p = θt and

ψ :=

√
2

2
(B1/2θ + iB−1/2p),

from (3.39) we get for the complex function ψ(t, x) the equation

ψ̇ = −iBψ − iγ(D(ω, ωt) +R(ω, ωt))(ψ + ψ̄), (3.40)

where
D(ω, ωt) := a(ω, ωt)B−1, R(ω, ωt) :=

1

2
B−1/2R(ω, ωt)B−1/2.

We remark that, since θ ∈ H1 and p ∈ H, we have that ψ ∈ H1/2
C , where for any swe denote by Hs

C
the complexification of (Hs, (·, ·)s). In the following, for the sake of simplicity the complexified
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

space will again be denoted by (Hs, (·, ·)s). The convention adopted here is that the scalar product
(·, ·)s is linear in the first argument and antilinear in the second. We set

ψ =
∑
s∈N

ξses, ψ̄ =
∑
s∈N

ηses.

We have that (3.40) is equivalent to the Hamiltonian system{
ξ̇s = −i∂H/∂ηs
η̇s = i∂H/∂ξs

where s ∈ N, (3.41)

restricted to the space Y := Y 1/2 ⊆ Y
1/2
C endowed with the complex symplectic structure i

∑
s dξs∧

dηs, where the Hamiltonian functionH is defined byH(ξ, η) = Λ(ξ, η)+γD(ξ, η)+γS(ξ, η) with

Λ(ξ, η) :=
∑
j∈N

βjξjηj, D(ξ, η) :=
∑
i,j∈N

Dijξiηj +
1

2

∑
i,j∈N

Dij(ηiηj + ξiξj),

S(ξ, η) :=
∑
i,j∈N

Rijηiξj +
1

2

∑
i,j∈N

Rij(ηiηj + ξiξj)

where Dij := (Dei, ej) and Rij := (Rei, ej). In the notation of subsection 3.6.1, we can write
(3.41) in the form

ζ̇ = XHζ. (3.42)

We proceed in two steps. First, we regularize the perturbation D + S into a smoother perturbation
R0. Then, we proceed by KAM techniques in order to conclude the proof.

3.7.2 Smoothing the perturbation

The following lemma is completely standard. Nonetheless, we decided to insert its proof for the
sake of completeness and in order to explicitly compute all the constants involved in the estimates
needed.

Lemma 3.7.1. Let
a(ω, ϕ) =

∑
k∈Z

ak(ω)e
ikϕ ∈ Lip(Ω, C∞(S1

r ,C)).

We consider the functions

â(ω, ϕ) :=
∑

k∈Z\{0}

ak(ω)

ikω
eikϕ, ā(ω) :=

1

2π

∫
S1

a(ω, ϕ)dϕ.

Then â and ā are Lipschitz functions of the frequencies and â is an analytic function on S1
r−σ for

any positive σ < r.

Proof. We observe that

|ak(ω1)− ak(ω2)| =
∣∣∣∣ 12π

∫
S1

(a(ω1, ϕ)− a(ω2, ϕ))e
−ikϕdϕ

∣∣∣∣
ϕ′=ϕ+irsign(k)

=

∣∣∣∣ 12π
∫
S1

(a(ω1, ϕ
′ − ir)− a(ω2, ϕ

′ − ir))e−ikϕ
′
e−|k|rdϕ′

∣∣∣∣
≤ |a(ω1)− a(ω2)|r e

−|k|r ≤ |a|Lr e
−|k|r|ω1 − ω2|,
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that implies |ak|L ≤ |a|Lr e−|k|r. In particular, since ā = a0, we get that |ā|L ≤ |a|Lr . By proceeding
as above, we obtain that maxω∈Ω |ak(ω)| ≤ |a|r e−|k|r. Moreover,

â(ω1, ϕ)− â(ω2, ϕ) =
∑

k∈Z\{0}

ak(ω1)− ak(ω2)

ikω1

eikϕ +
∑

k∈Z\{0}

ak(ω2)
ω2 − ω1

ikω1ω2

eikϕ.

Fixed 0 < σ < r, if ϕ ∈ S1
r−σ, then |eikϕ| ≤ e|k|(r−σ). Therefore, we have that

|â(ω1, ϕ)− â(ω2, ϕ)| ≤

 ∑
k∈Z\{0}

|a|Lr
e−|k|σ

|k|ω1

+
∑

k∈Z\{0}

|a|r
e−|k|σ

|k|ω1ω2

 |ω1 − ω2|

≤ C0(σ)

(
|a|Lr
ωm

+
|a|r
ω2
m

)
|ω1 − ω2|

where

C0(σ) := 2
∞∑
n=1

e−σn

n
.

Therefore we have that

|â|Lr−σ ≤ C0(σ)

ωm
|a|Lr +

C0(σ)

ω2
m

|a|r

and, in the same way, we obtain that

|â|r−σ ≤ C0(σ)

ωm
|a|r .
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

We are now ready to prove the following lemma:

Lemma 3.7.2. Let ω ∈ Ω and suppose max(|S|1+σ0 , |a|1+σ0) = ε0, max(|S|L1+σ0 , |a|
L
1+σ0

, ε0) =
ε1 for some positive constants σ0, ε0, ε1. There exists a γ∗ = γ∗(ε0, σ0) > 0 such that if γ < γ∗,
then there exists an Hamiltonian Z ∈ B1

1+σ0
(Ω) such that if ζ is a solution of (3.42), then φ := ϕ1

γZζ
solves

φt = XH0φ, where H0 = Λ0(ω) + γR0(ω, ωt) (3.43)

with Λ0 :=
∑

j∈N λ0,jηjξj , λ0,j := βj + γā(ω)β−1
j and R0 ∈ B3,2

1 (Ω). Moreover

|R0|1 ≤ |S|1 + |a|1+σ0 +K0γε
2
0, |R0|L1 ≤ |S|L1 + |a|L1+σ0 +KL

0 γε
2
1 (3.44)

for some positive constants K0 = K0(ωm, ωM , σ0) and KL
0 (ωm, ωM , σ0) and∣∣ϕ1

Ξ0
− id

∣∣
1
≤ K1γε0 (3.45)

with K1 = K1(ωm, ωM , σ0).

Proof. We consider the Hamiltonian Z(ω, ωt) defined by

Z−(ω, ωt) := â(ω, ωt)B−1, Z+(ω, ωt) :=
i

2
a(ω, ωt)B−2.

We observe that from Lemma 3.7.1 we have that

|Z|0,1 = sup
ω∈Ω

ϕ∈S1
r

∥Z(ω, ϕ)∥H0 = sup
ω∈Ω

ϕ∈S1
1

(∥Z−(ω, ϕ)∥B(H1/2,H1/2) + ∥Z+(ω, ϕ)∥B(H1/2,H1/2))

≤ |â|1 β
−1
1 +

β−2
1

2
|a|1 ≤

2C0(σ0)β1 + ωm
2ωm

β−2
1 |a|1+σ0

(3.46)

where β1 is the first eigenvalue of B, and, analogously,

|Z|L0,1 = |â|L1 β
−1
1 +

β−2
1

2
|a|L1 ≤ C0(σ0)

ω2
m

β−1
1 |a|1+σ0 +

2C0(σ0)β1 + ωm
2ωm

β−2
1 |a|L1+σ0

where C0(σ0) is defined in Lemma 3.7.1. From Proposition 3.6.4, φ := ϕ1
γZζ solves φt = XH0φ

with
H0 = Λ+ γ(D + {Λ, Z} − Ż) + γR̃0 (3.47)

where γR̃0 = LieγZΛ− Λ− γ{Λ, Z}+ YγZ + γŻ + LieγZD −D + LieγZS and {Λ, Z} is given
by, according to (3.36),

{Λ, Z}− = i(Λ−Z− − Z−Λ− + Λ+Z+ − Z+Λ+) = 0

{Λ, Z}+ = i(Λ−Z+ + Z+Λ− − Λ+Z− − Z−Λ+) = −a(ω, ωt)B−1.

Therefore, we have that

D + {Λ, Z} − Ż =

(
a− d

dt
â

)∑
j∈N0

β−1
j ξjηj +

1

2

∑
j∈N0

i

2

d

dt
aβ−2

j (ξ2j − η2j ).

Let us observe that

a(ω, ωt)− dâ(ω, ωt)

dt
= a(ω, ωt)−

∑
k∈Z\{0}

ak(ω)e
ikωt = a0(ω) = ā(ω).
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It follows that (3.47) reads

H0 =
∑
j∈N

(βj + γā(ω)β−1
j )ξjηj + γR0

where
R0 := R̃0 +

i

4

∑
j∈N0

d

dt
aβ−2

j (ξ2j − η2j ).

We notice that Z ∈ B1,2
1 (Ω) and the transformation φ = ϕ1

Ξ0
ζ is canonical. Let us suppose that

γ |Z|0,1 < 5/8, which from (3.46) is implied by

2C0(σ0)β1 + ωm
2ωm

β−2
1 γ |a|1+σ0 <

5

8
, (3.48)

which is equivalent to require that γ < γ∗(ε0, σ0).
Since

{{Λ, Z}, Z} = −
∑
i∈N0

a2β−3
i ηiξi +

i

2

∑
i∈N0

2âaβ−2
i (η2i − ξ2i ) ∈ B3,2

1+σ0
(Ω),

which yields that

|{{Λ, Z}, Z}|1 ≤ |a|21 β
−1
1 + 2 |â|1 |a|1 ≤

(
β−1
1 +

2C0(σ0)

ωm

)
|a|21+σ0 .

Therefore, from Lemma B.5, if (3.48) holds, then

|LieγZΛ− Λ− γ{Λ, Z}|1 ≤ γ2 |{{Λ, Z}, Z}|1 ≤
(
β−1
1 +

2C0(σ0)

ωm

)
γ2 |a|21+σ0 ,

Analogously, by proceeding as in Lemma B.5, if (3.48) holds, we get that

|LieγZD −D|1 ≤ 2γ |{Z,D}|1 ≤ 4

(
β−1
1 +

C0(σ0)

ωm

)
γ |a|21+σ0 ,

|LieγZS − S|1 ≤ 2γ |{Z, S}|1 ≤ 4γ |Z|0,1 |S|1 ≤ 2β−2
1

(
1 +

2C0(σ0)

ωm
β1

)
γε20.

In the exact same way, we obtain that

|LieγZΛ− Λ− γ{Λ, Z}|L1 ≤ 2C0(σ0)

ω2
m

γ2 |a|21+σ0 + 2β−2
1

(
1 +

2C0(σ0)

ωm
β1

)
|a|1+σ0 γ

2 |a|L1+σ0 ,

|LieγZD −D|L1 ≤ 4C0(σ0)

ω2
m

γ |a|21+σ0 + 8β−2
1

(
1 +

2C0(σ0)

ωm
β1

)
γ |a|1+σ0 |a|

L
1+σ0

,

|LieZS − S|L1 ≤ 2γ(|Z|L0,1 |S|1 + |Z|0,1 |S|
L
1 ).

We remark that

{Z, Ż} =

(
a
dâ

dt
− â

da

dt

)∑
i∈N0

β−3
i (ξ2i + η2i ).

Since ∣∣∣∣dâdt
∣∣∣∣
1

= |a− ā|1 ≤ 2 |a|1+σ0 ,
∣∣∣∣dâdt
∣∣∣∣L
1

= |a− ā|L1 ≤ 2 |a|L1+σ0
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and that by Cauchy’s integral formula

da

dt
(ω, ωt) =

ω

2πi

∮
γσ0 (ωt)

a(ω, ξ)

(ξ − ωt)2
dξ,

where γσ0(ϕ) is the circle of center ϕ and radius σ0 in the complex plane, which yields that∣∣∣∣dadt
∣∣∣∣
1

≤ ωM
σ0

|a|1+σ0 ,
∣∣∣∣dadt
∣∣∣∣L
1

≤ 1

σ0
|a|1+σ0 +

ωM
σ0

|a|L1+σ0 ,

we have that

|{Z, Ż}|1 ≤
(
|a|1

∣∣∣∣dâdt
∣∣∣∣
1

+

∣∣∣∣dadt
∣∣∣∣
1

|â|1
)
β−1
1 ≤ 2

(
1 +

ωM
ωmσ0

C0(σ0)

)
β−1
1 |a|21+σ0

|{Z, Ż}|L1 ≤

(
|a|L1

∣∣∣∣dâdt
∣∣∣∣
1

+

∣∣∣∣dadt
∣∣∣∣L
1

|â|1 + |a|1

∣∣∣∣dâdt
∣∣∣∣L
1

+

∣∣∣∣dadt
∣∣∣∣
1

|â|L1

)
β−1
1

≤
(
2 |a|L1 |a|1 +

1

σ0
(|a|1+σ0 + ωM |a|L1+σ0) |â|1 + 2 |a|1 |a|

L
1 +

ωM
σ0

|a|1+σ0 |â|
L
1

)
β−1
1

≤
(
C(σ0)

σ0

(
1

ωm
+
ωM
ω2
m

)
|a|21+σ0 + 2

(
2 +

ωM
σ0ωm

C(σ0)

)
|a|L1+σ0 |a|1+σ0

)
β−1
1 .

Therefore, from Lemma B.5

|YγZ + γŻ|1 ≤ γ2|{Z, Ż}|1 ≤ C1γ
2ε20,

|YγZ + γŻ|L1 ≤ γ2|{Z, Ż}|L1 + γ2 |Z|L0,1 |{Z, Ż}|1 ≤ C2γ
2ε21,

for some positive constants C1 = C1(ωm, ωM , σ0) and C2 = C2(ωm, ωM , σ0). Hence,

γ |R0|1 ≤ |LieγZΛ− Λ− γ{Λ, Z}|1 + γ |S|1 + γ |LieγZS − S|1
+ |YγZ + γŻ|1 + γ |LieγZD −D|1 ≤ γ |S|1 +K0γ

2ε20,

γ |R0|L1 ≤ |LieγZΛ− Λ− γ{Λ, Z}|L1 + γ |S|L1 + γ |LieγZS − S|L1 +
+ |YγZ + γŻ|L1 + γ |LieγZD −D|L1 ≤ γ |S|L1 +KL

0 γ
2ε21,

where K and KL can be explicitly computed by exploiting the previous results. Moreover, since
{{Λ, Z}, Z}, {Z,D}, S, and {Z, Ż} belong to B3,2

1 (Ω), from Remark B.4 we have that R0 ∈
B3,2
1 (Ω).

To conclude, we observe that if γ |Z|0,1 ≤ 5/4, which is implied by (3.48), then, from Corollary
3.6.5 ∣∣id − ϕ1

γZ

∣∣
1
≤ 2γ |Z|0,1 <

2C0(σ0)β1 + ωm
ωm

β−2
1 γ |a|1+σ0 .

Corollary 3.7.3. Let δ∗ > 0. There exists γ∗0 = γ∗0(n, δ
∗) > 0 such that for any δ ∈ [0, δ∗] and for

any γ < γ∗0 , there exists a canonical transformation Ξ such that if φ = Ξζ , then φ solves

φt = XH0φ, where H0 = Λ0(ω) + γR0(ω, ωt), (3.49)

with Λ0 :=
∑

j∈N λ0,jηjξj , λ0,j = βj + γā(ω)β−1
j and R0 ∈ B3,2

1 (Ω). Moreover we have that

|R0|1 ≤ C(n, δ∗)δ2, |R0|L1 ≤ CL(n, δ∗)|V |L4/3. (3.50)

and that
|Ξ− id|1 ≤ K̃1(n, δ

∗)γδ2 (3.51)
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Proof. The thesis follows immediately from Lemma 3.7.2 by observing that from (3.38), R(ω, ϕ)
and S(ω, ϕ) are holomorphic in ϕ in the strip {ϕ ∈ C : ℑ(ϕ) < 3/2} and Lipschitz dependent by
ω ∈ Ω := ω([0, δ̄]) = [

√
λn, ω

∗], where ω∗ := ω(δ∗). Indeed, in the notation of Lemma 3.7.2,
setting σ0 = 1/3, since ε0 = ε0(n, δ) and ε1 = ε1(n, δ) and

δ 7→ ε0(n, δ), δ 7→ ε1(n, δ)

are increasing functions. Therefore, we get that for any δ∗ > 0 there exists γ∗(n, δ∗) > 0 such that
for any γ < γ∗, δ < δ∗, if we define Ξ := ϕ1

γZ and φ := Ξζ as in Lemma 3.7.2, φ satisfies (3.49).
Moreover, from (3.44) and (3.45), since ε0 ≤ C0(n, δ

∗)δ2, which yields that for any r ∈ [0, 4/3]
and for any δ < δ∗,

|S|r ≤ 2|V |r ≤ C1(r, δ
∗)δ2, |a|r ≤ |V |r ≤ C2(r, δ

∗)δ2,

we get (3.50) and (3.51).

3.7.3 The KAM step

The procedure comes from a quite straightforward adaptation of the KAM procedure shown in [13]
to our framework. For any Hamiltonian function A(ω, ωt), we define the Hamiltonian

[A](ω) :=
∑
i∈N0

Ã−
ii(ω)ηiξi where Ã−

ii(ω) :=
1

2π

∫ π

−π
A−
ii(ω, ϕ)dϕ.

Let λ = (λj)j ⊂ Lip(Ω,R). For any fixed µ > 0, we introduce the set of frequencies Ωµ(λ) ⊆ Ω
given by

Ωµ(λ) :=

{
ω ∈ Ω : ∀h, k ∈ N, ∀l ∈ Z, |λh(ω)± λk(ω) + lω| > µ

⟨h± k⟩
1 + l4

}
.

From Lemma 3.7.2, there exists a canonical transformation such that (3.42) is transformed into

ϕt = XH0ϕ (3.52)

where H0 = Λ0(ω)ϕ+R0(ω, ωt) and Λ0 :=
∑

j∈N0
λ0,j , λ0,j := βj+γā(ω)β

−1
j and R0 ∈ B3,2

1 (Ω).
For any a : Ω → R, we introduce the quantities

|a|∞ = sup
ω∈Ω

|a(ω)|, |a|L = sup
ω1,ω2∈Ω

∣∣∣∣a(ω1)− a(ω2)

ω1 − ω2

∣∣∣∣ .
The following lemma holds:

Lemma 3.7.4. Fix µ > 0 and r > 0 and let σ = 1/2m < r for some m ∈ N such that m ≥ N(ωm),
where N(ωm) is defined in Lemma C.3. Let us suppose that

γ(|a|L /2 + 4 |a|∞) < 1, γ |R0|1 ≤
5σ4

8C
,

µ < min

((
ωM − ωm

CΩ

)3/2

,
1

4
− γ |a|∞

)
,

(3.53)

where C := C(4) and CΩ are defined in Lemma C.1 and in Lemma A.3 respectively. Then there
exists a Lipschitz-analytic canonical transformation Ξ1 ∈ B0

1(Ωµ(λ0)) such that if ϕ0 is a solution
of (3.43), then ϕ1 := Ξ1(ω, ωt)ϕ0 solves

ϕ1,t = (Λ1(ω) + γ2R1(ω, ωt))ϕ1 (3.54)
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

where Λ1 := Λ0 + γ[R0] and R1 ∈ B3,2
1−σ(Ωµ). Moreover,

|R1|1−σ ≤ K

σ9
|R0|21 , |R1|Lr−σ ≤ KL

σ9

(
|R0|L1 +

|R0|1
σ4

)
|R0|1 ,

|Ξ1 − id|1−σ ≤ 2C

σ4
|R0|1 , |Ξ1 − id|L1−σ ≤ 2C

σ4
|R0|L1 +

2CL

σ8
|R0|1 .

where CL := CL(4) and K := K(C,CL) and KL := KL(C,CL).

Proof. We observe that, since βj = j/2 and ā ∈ Lip(Ω,R), we have that there exist K00 > 0, G00

and K10 > 0 such that

K00|h± k| ≤ |λ0,h(ω)± λ0,k(ω)| ≤ G0|h± k|,
∣∣∣∣∆(λ0,h(ω)± λ0,k(ω))

∆ω

∣∣∣∣ ≤ K10. (3.55)

In particular, since we can take

G0 =
1

2
+ 2γ |a|∞ , K00 =

1

2
− 2γ |a|∞ , K10 = 2γ |a|L ,

where

|a|∞ = sup
ω∈Ω
ϕ∈S1

|a(ω, ϕ)|, |a|L sup
ω1,ω2∈Ω

ϕ∈S1

∣∣∣∣a(ω1, ϕ)− a(ω1, ϕ)

ω1 − ω2

∣∣∣∣ ,
from (3.53), we have that K00 ≥ K10/8, µ < K00/2 and G0 ≤ 5/8 < 2. Therefore, since from
Lemma A.3, |Ω \ Ωµ(λ0)| ≤ CΩµ

2/3 for some positive constant CΩ > 0, if (3.53) hold, then
Ωµ ̸= ∅.

We introduce the Hamiltonian X defined by

X±
hk(ω, ϕ) = −i

∑
l∈Z

R±
0,hkl(ω)

λ0,h(ω)± λ0,k(ω) + lω
e−ilϕ.

We remark that since ω ∈ Ωµ(λ0), then X is well defined. Moreover, if we define ϕ1 := ϕ1
γXϕ0,

from Proposition 3.6.4 we have that ϕ1 solves

ϕ1,t = XH1ϕ1

with H1 := Λ0 + γR0 + γ{Λ0, X}− γẊ + γR1 where R1 := LieγXΛ0 −Λ0 − γ{Λ0, X}+ YγX +

γẊ + LieγXR0 −R0. Since

{Λ0, X}−hk = −i(λ0,h − λ0,k)X
−
hk, {Λ0, X}+hk = −i(λ0,h + λ0,k)X

+
hk

it follows that ϕ1 solves (3.54) with R0 + {Λ0, X} − Ẋ = [R0]. Moreover, we observe that
{{Λ0, X}, X}, {X, Ẋ} and {R0, X} belong to B3,2(Ωµ(λ0)). Therefore, from Remark B.4, R1 ∈
B3,2(Ωµ(λ0)).

From Lemma C.3 we have that

|X|1−σ ≤ C

σ4
|R0|1 , |X|L1−σ ≤ C

σ4
|R0|L1 +

CL

σ8
|R0|r . (3.56)

Hence, from Proposition B.2, if γ |X|1−σ < 5/8, which is implied by

γ |R0|r ≤
5σ4

8C
, (3.57)
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we have that, from (B.4), (B.6) and (B.9), since β1 = 1/2,

|R1|1−σ ≤ |LieγXΛ0 − Λ0 − γX|1−σ + |YγX + γẊ|1−σ + |LieγXR0 −R0|1−σ

≤ 16γ |X|1−σ
(
2ωM
σ

γ |X|1−σ/2 + |R0|1−σ
)
+

32ωM
σ

γ2 |X|1−σ/2 |X|1−σ + 16γ |X|1−σ |R0|1

≤ 32γ |X|1−σ |R0|1 +
64ωM
σ

γ2 |X|1−σ |X|1−σ/2 ,

and, analogously, from (B.5), (B.16) and (B.10)

|R1|L1−σ ≤ |LieγXΛ0 − Λ0 − γX|L1−σ + |YγX + γẊ|L1−σ + |LieγXR0 −R0|L1−σ
≤ 32

σ
γ2 |X|1−σ/2 |X|1−σ +

32ωM
σ

γ2(|X|1−σ/2 |X|L1−σ + |X|1−σ |X|L1−σ/2) + 16γ |X|1−σ |R0|L1

+ 16γ |X|L1−σ |R0|1 +
32

σ
γ2 |X|1−σ/2 |X|1 +

32ωM
σ

γ2 |X|1−σ |X|L1−σ/2

+
32ωM
σ

γ2 |X|1−σ/2 |X|L1 + 16γ |X|1−σ |R0|L1 + 28γ |X|L1−σ |R0|1

≤ 44γ |X|L1 |R0|r + 32γ |X|1−σ |R0|L1 +
64

σ
γ2 |X|1−σ |X|1−σ/2

+
64ωM
σ

γ2(|X|1−σ |X|L1−σ/2 + |X|1−σ/2 |X|L1−σ)

which yields, from (3.56) and from σ ≤ 1/4,

|R1|1−σ ≤ 4γ
8σ5C+ 256ωMγC

2

σ9
|R0|21 ≤

K

σ9
γ |R0|21 ,

|R1|L1−σ ≤ 4γ

σ9
|R0|1

(
(512C2γωM + 19Cσ5) |R0|L1 +

11CLσ5 + 256C2γσ4 + 4352CCLγωM
σ4

|R0|1
)

≤ KL

σ9
γ |R0|1

(
|R0|L1 +

1

σ4
|R0|1

)
,

where we set

K = 256ωMγC
2 + 8/45C,

KL := max(512γC2ωM + 19C4−5, 11CL4−5 + 256γC24−4 + 4352γCCLωM).
(3.58)

To conclude, from Corollary 3.6.5 we obtain that, from Lemma C.1 and Lemma C.2,∣∣id − ϕ1
γX

∣∣
1−σ ≤ 2γ |X|1−σ ≤ 2C

σ4
γ |R0|1 ,

∣∣id − ϕ1
γX

∣∣L
1−σ ≤ 2

σ4
γ

(
C |R0|L1 +

CL

σ4
|R0|1

)
.

Lemma 3.7.5. Under the assumption of Lemma 3.7.4, the eigenvalues of Λ1(ω) fulfill (3.55) with
new constants given by

K01 := K00 − 2γ |R0|1 , K11 := K10 + 2γ |R0|L1 , G1 := G0 + 2γ |R0|1
Let us introduce two positive constants K0 and K1 such that

K1 ≤
K0

8
, K01 ≥ K0, K1 ≤ K11. (3.59)
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

If we consider K > 0 such that 2γ(1 +K4) < µ/ |R0|1, then we have that

|Ωµ(λ0) \ Ωµ1(λ1)| ≤ C ′
ΩK

−1µ1,

where C ′
Ω = C ′

Ω(K0, K, ωM) and

µ1 = µ− 2γ(1 +K4) |R0|1 .

Proof. The proof proceeds exactly as the proof of Lemma 6.4 of [13], with τ = 4 and κ = 3. In
particular, the equation (6.40) of [13] gives∣∣∣∣∣⋃
i,j

Rijk

(
λ1,

µ1

1 + k4

)∣∣∣∣∣ ≤∑
i,j

4

K0

µ1

1 + k4
≤ 4

K0

2ωM
K0 − µ

|k|
(
K0

4

)1/3

|k| µ1

1 + k4
≤ 2 · 41/3ωM

K5/3
0

µ1
1

k2

which yields that

|Ωµ(λ0) \ Ωµ1(λ1)| ≤
2 · 41/3ωM

K5/3
0

µ1

∑
|k|>K

1

k2
≤ 2 · 45/3ωM

K5/3
0

K−1µ1.

Lemma 3.7.6. Let K00, K10 and G0 be defined as in Lemma 3.7.4 and let N = N(ωm) be defined
in Lemma C.3. Let us introduce the following sequences:

ε
(l+1)
1 :=

K

σ9
l+1

(ε
(l)
1 )2, ε

(l+1)
2 :=

KL

σ9
l+1

ε
(l)
1

(
ε
(l)
2 +

ε
(l)
1

σ4
l+1

)
, where σl :=

1

2l+N
,

K(l) = (ε
(l)
1 )−1/8, µ(l+1) = µ(l) − (ε

(l)
1 )1/2,

K0(l+1) = K0(l) − 2ε
(l)
1 , K1(l+1) = K1(l) + 2ε

(l)
2 , G(l+1) = G(l) + 2ε

(l)
1

where K and KL are defined in (3.58) and we set K0(0) := K00, K1(0) := K10 and G(0) := G0. Let
ε
(0)
1 and ε(0)2 be such that ε(l)1 and ε(l)2 are decreasing sequences. Moreover, let us suppose that

ε
(0)
1 <

5σ9
1

8C
=

5

29N+11C
(3.60)

and that for any l

µ(l) ≥ Γ, K0(l) ≥ K0, K1(l) ≤ K1, G(l) ≤ 2

where K0 and K1 satisfy (3.59), then for any l there exists a positive sequence λl = (λl,j(ω))
∞
j=1

and a Lipschitz analitic map Ξl(ω, ωt) defined on Ωµ(l)(λl) such that the function ϕl defined by the
sequence

ϕj+1 = Ξjϕj, with ϕ0 solution of (3.43)

solves

ϕl,t = XHl(ω,ωt)ϕl, with Hl(ω, ωt) = Λl(ω) + γlRl(ω, ωt)

where Λj(ω) =
∑∞

j=1 λj(ω)ξjηj , Rl ∈ B3,2
rl
(Ωµ(l)(λl)), γl = γ2

l
and rl := 1−

∑l
j=1 σj . Moreover
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we have that

|Ωµ(l−1)(λl−1) \ Ωµ(l)(λl)| ≤ C ′
Ωµ

(l)(ε
(l)
1 )1/8,

K0l|i± j| ≤ |λl,i ± λl,j| ≤ Gl|i± j|,
∣∣∣∣∆(λl,i ± λl,j)

∆ω

∣∣∣∣ ≤ K1l|i± j|,

|λl,i ± λl,j + ωk| ≥ µ(l)

1 + k4
⟨i− j⟩, |i− j|+ |k| ≠ 0,

γl|Rl|rl ≤ ε
(l)
1 , γl|Rl|Lrl ≤ ε

(l)
2 ,

|id − Ξl|rl ≤
2C

σ4
l

γl |Rl|rl , |id − Ξl|Lrl ≤
2C

σ4
l

γl |Rl|Lrl +
2CL

σ8
l

γl |Rl|rl .

Proof. The proof immediately follows from an iterate application of Lemma 3.7.4 and Lemma
3.7.5. For the sake of clarity, we show how the condition in (3.60) is sufficient to the validity of the
result. For Lemma 3.7.4 to hold for any l ≥ 1, we have to require that (3.57) holds for any l ≥ 1,
that is

γl |Rl|rl ≤
5σ9

l

8C
. (3.61)

Since

γl
|Rl|rl
σ9
l

≤ ε
(l)
1

σ9
l

=

√
Kε

(l+1)
1 σl+1 ↘ 0 as l → +∞,

we have that (3.60) implies (3.61), that is, (3.60) is sufficient to guarantee the validity of the thesis
for any l ≥ 0.

3.7.4 The KAM result

From Lemma 3.7.4 and Lemma 3.7.5, the following proposition holds

Proposition 3.7.7. Let K0 and K1 be defined as in Lemma 3.7.4. Assume that for some positive ζ ,
we have that

max(|R0|1 , |R0|L1 ) ≤ ζ

Let us suppose that

γ <
1

28(N+2) max(K, 2KL)ζ
(3.62)

whereN = N(ωm) is defined in Lemma C.3 and the constants K and K̄ are defined in Lemma 3.7.4.
Moreover, for some positive constants C0, CΓ and Γ,

K00 − C0γζ > K0, K10 + C0γζ < K1, G0 + C0γζ ≤ 2 µ0 − CΓγ
1/2|R0|1/21 ≥ Γ, (3.63)

where K00 and K10 are defined in Lemma 3.7.4 and K0 and K1 satisfy (3.59). Then there exists a
positive sequence λ∞ = (λ∞,j(ω))

∞
j=1 and a Lipschitz analitic map U(ω, ωt) defined on ΩΓ(λ∞)

such that the transformation U(ω, ωt)ϕ′ = ϕ transform (3.52) into

ϕ′
t = XΛ∞ϕ

′, with Λ∞ =
∑
i,j∈N0

λ∞,jξjηj.

Futhermore, the following estimates hold:

|λ∞,i ± λ∞,j| ≥ (K0 − C0ζ)|i± j|,
∣∣∣∣∆(λ∞,i ± λ∞,j)

∆ω

∣∣∣∣ ≤ (K1 + C0ζ)|i± j|, (3.64)

|Ω \ Ω∞
µ∞| ≤ C∞

Ω γ
1/3, (3.65)

|id − U |r ≤ CUγζ. (3.66)
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for some r = r(ωm) and for some positive constants C0 and C∞
Ω dependent by γ, Ω, a and R0.

Proof. The proof immediately follows from Lemma C.1 and Lemma C.2 by proceeding as in [13,
Theorem 6.6]. In particular, let us introduce the sequences

ε
(l+1)
1 :=

K

σ9
l+1

(ε
(l)
1 )2, ε

(l+1)
2 :=

KL

σ9
l+1

ε
(l)
1

(
ε
(l)
2 +

ε
(l)
1

σ4
l+1

)
, where σl :=

1

2l+N
.

with N = N(ωm) defined in Lemma C.3. By setting ε(l)1 = ε
(l)
2 := ζ(l) and ζ(0) := γζ , we obtain

that, setting K̄ = max(K, 24KL),

ζ(l+1) ≤ 213(N+1)γK̄28l(ζ(l))2.

Hence, from Lemma D.5 we have that if (3.62) holds, then ζ(l) goes to zero and
∞∑
l=0

ζ(l) ≤ 2ζ(0) = 2γζ (3.67)

From Lemma 3.7.5, if we set µ(l+1) := µ(l) − 2(ε
(l)
1 )1/2 and µ0 = µ(0) := cµγ

1/2 for a suitable
constant cµ such that (3.63) holds, we have that

|Ωµ(l+1)(λl+1) \ Ωµ(l)(λl)| ≤ C ′
Ωµ

(l+1)(ε
(l)
1 )1/8 ≤ C ′

Ωµ
(0)(ε

(l)
1 )1/8 ≤ C ′

Ωcµγ
1/2(ζ(l))1/8

which yields that, by using Lemma A.3,

|Ω \ Ωµ∞| = |Ω \ Ωγ|+
∞∑
l=0

|Ωµ(l) \ Ωµ(l+1)| ≤ (CΩc
2/3
µ + C ′

Ωγ
1/6

∞∑
l=0

(ε
(l)
1 )1/8)γ1/3

≤ (CΩc
2/3
µ + 21/8γ1/6C ′

Ω(ε
(0)
1 )1/8)γ1/3.

Moreover, from Lemma 3.7.5, we have that

|λ∞,i ± λ∞,j| ≥ (K0 − 2
∞∑
l=0

ε
(l)
1 )|i± j| ≥ (K0 − 2

∞∑
l=0

ζ(l))|i± j| ≥ (K0 − 22γζ)|i± j|

and, analogously,∣∣∣∣∆(λ∞,i ± λ∞,j)

∆ω

∣∣∣∣ ≤ (K1 + 2
∞∑
l=0

ε
(l)
2 )|i± j| ≤ (K1 + 22γζ)|i± j|.

Hence from (3.67) we obtain that (3.64) and (3.65) hold with

C0 := 22, C∞
Ω := CΩc

2/3
µ + 21/8γ1/6C ′

Ω(ε
(0)
1 )1/8.

To conclude, we observe that, if Ξn := ϕ1
γnXn

where

X±
n,hk(ω, ϕ) = −i

∑
l∈Z

R±
n,hkl(ω)

λn,h(ω)± λn,k(ω) + lω
e−ilϕ,

setting Un = ΞnΞn−1 . . .Ξ0 and rn+1 = rn − σn+1 with r0 = 1, we have that

|id − Un|rn ≤ |id − Ξn|rn + |Ξn(id − Un−1)|rn (3.68)

≤ 25C24nζ(n) +
(
1 + 25C24nζ(n)

)
|id − Un−1|rn−1

,
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where we used that from Lemma 3.7.4

|id − Ξn|rn ≤ 2C

σ9
n

ε
(n)
1 = 29N+1C29nζ(n).

We introduce the following sequences:

un := |id − Un|rn , xn := 29N+5C29nζ(n).

Moreover, for any n ∈ N, we define the sequence

pn,j+1 = (1 + xn−j)pn,j, with pn,0 = 1

and we remark that, from Lemma D.5,

pn,j ≤
∞∏
j=0

(1 + xj) ≤ exp

(
∞∑
j=0

xj

)
≤ exp(29N+6Cζ(0)) =: p.

From (3.68) we get that

un ≤ xn + (1 + xn)un−1 ≤
n∑
j=0

pn,jxn−j + pna0 ≤ p

(
u0 +

∞∑
j=0

xj

)
≤ exp(29N+6Cζ(0))(29N+5Cζ(0) + 29N+6Cζ(0))

≤ 29N+5(1 + 2)C exp(29N+6Cγζ)γζ =: CUγζ.

Therefore, passing to the limit n→ ∞, we get (3.66).

3.7.5 Completion of the proof

Let us fix δ∗ > 0. We denote by en(x) the n−th normalized eigenfunction in H for the operator
−∂2x and we write

θ(x, t) =
∑
j∈N

θj(t)ej(x).

We introduce the variables

ξj =
β
1/2
j θj + iβ

−1/2
j θj,t√

2
, ηj =

β
1/2
j θj − iβ

−1/2
j θj,t√

2
, ζ :=

(
ξ

η

)
where β2

j = (j/2)2 is the n−th eigenvalue of B2 = −∂xx and we reformulate (3.37) by using the
notation in (3.35) as an abstract problem

ζ̇ = XHζ.

The Hamiltonian function H is defined as H(ζ) = Λ(ζ) +D(ζ) + S(ζ) with

Λ(ζ) :=
∑
j∈N

βjξjηj, D(ζ) :=
∑
j∈N

aβ−1
j ξjηj +

1

2

∑
j∈N

aβ−1
j (η2j + ξ2j ),

S(ζ) :=
∑
i,j∈N

Rijηiξj +
1

2

∑
i,j∈N

Ri,j(ηiηj + ξiξj),
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where we set Ri,j := (B−1/2RB−1/2ei, ej)L2(I)/2. From Corollary 3.7.3, we have that there exists
γ1,∗(δ

∗, n) > 0 such that, if γ < γ1,∗ and δ < δ∗, then there exists a canonical transformation Ξ
such that, if φ = Ξζ , then φ solves

φt = XH0φ where H0 = Λ0(ω) + γR0(ω, ωt) (3.69)

with Λ0 :=
∑

j∈N λ0,jηjξj , λ0,j = βj + γā(ω)β−1
j and R0 ∈ B3,2

1 (Ω). Moreover, we have that

|R0|1 ≤ C(n, δ)δ2, |R0|L1 ≤ CL(n, δ)|V |L4/3.

From (3.51), since Ξ is invertible and bounded we get that for some K1(n, δ) > 0,

sup
t≥0

∥φ(ω, ωt)− ζ(ω, ωt)∥Y = sup
t≥0

∥(Ξ(ω, ωt)− id)Ξ−1(ω, ωt)φ(ω, ωt)∥Y

≤
∣∣(Ξ(ω, ωt)− id)Ξ−1(ω, ωt)

∣∣
1
sup
t≥0

∥φ(ω, ωt)∥Y

≤ K1(n, δ) sup
t≥0

∥φ(ω, ωt)∥Y .

We now apply Theorem 3.7.7 to equation (3.69). We observe that, setting

ζ̃ := max(|R0|1 , |R0|L1 )

we have that ζ̃ = ζ̃(n, ν, δ, δ∗) and that, since ωm =
√
λn, in the notation of Proposition 3.7.7 we

have that N = N(λn). Therefore, by reasoning as in Corollary 3.7.3, from (3.62) and from the
conditions in (3.63) we get that there exists γ2,∗(n, ν, δ∗) > 0 such that, if γ < γ2,∗, then for any
ω < ω∗ := ω(δ∗) there exists a Lipschitz analitic map U(ω, ϕ) defined on Ωγ,n,ω ⊆ Ω = [

√
λn, ω]

such that for any ω̄ ∈ Ωγ,n,ω if U(ω̄, ω̄t)ϕ = φ, then ϕ satisfies

ϕt = XΛ∞ϕ, with Λ∞ =
∑
i,j∈N

λ∞,jξjηj.

We remark that, since from Proposition 3.7.7 we have that λ∞,j = βj + γgj(ω̄)β
−1
j for some gj(ω̄)

uniformly bounded in ω with respect to j, it follows that for some positive constants cβ and Cβ we
have that, if γ < γ3,∗ small enough,

cββj ≤ λ∞,j ≤ Cββj. (3.70)

Moreover, from (3.65), in the notations of Proposition 3.7.7

|Ω \ Ωγ,n,ω| ≤ (CΩc
2/3
µ + 21/8γ1/6C ′

Ω(ε
(0)
1 )1/8)γ1/3 (3.71)

and from (3.66) we have that

sup
t≥0

∥φ(ω, ωt)− ϕ(ω, ωt)∥Y = sup
t≥0

∥(U(ω, ωt)− id)ϕ∥Y

≤ |U(ω, ωt)− id|1 sup
t≥0

∥ϕ(ω, ωt)∥Y

≤ K2(n, δ̃) sup
t≥0

∥ϕ(ω, ωt)∥Y .

Since from Lemma A.3 we have that

CΩ ≤ Cω(n, δ
∗)δ1/3
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and we can estimate ε(0)1 ≤ Cεδ
2 for some positive constant Cε, from (3.71) we get for some

positive constant Kω = Kω(n, δ
∗)

|Ω \ Ωn,γ,ω| ≤ Kωγ
1/3δ1/4.

Hence, by considering γ < γ∗ = min(γ1,∗, γ2,∗, γ3,∗) and by reasoning as in Lemma 3.5.2, we
conclude that for any δ∗ > 0 and for any γ < γ∗ there exists ∆n,γ,δ ⊆ [0, δ∗] such that

|[0, δ] \∆n,γ,δ| ≤ K∆γ
1/6δ1/8 (3.72)

for some positive constant K∆ = K∆(n, δ
∗)

From Lemma 3.6.3 and from (3.70), since the transformations Ξ and U are obtained by combin-
ing transformations in the form ϕ1

Z for some Hamiltonian Z ∈ H0, we get that ϕ = (ϕ1, ϕ2) ∈ Y 1/2,
where Y 1/2 = Y is defined in (3.33). The real function

Θ(x, t) =
∑
j∈N

Θj(t)ej(x), where Θj(t) =
ϕ1,j(t) + ϕ̄1,j(t)√

2βj

solves the equation
Θtt + Λ2

∞Θ = 0, where Λ2
∞ = diag(β2

∞,j)

and we have that
cββ

2
j ≤ β2

∞,j ≤ c̄ββ
2
j (3.73)

for some positive constant c̄β and cβ . We remark that

∥Θt(t)∥2L2(I) + ∥Λ∞Θ(t)∥2L2(I) = ∥Θt(0)∥2L2(I) + ∥Λ∞Θ(0)∥2L2(I) (3.74)

and we observe that

∥Θt(t)∥2L2(I) + ∥Λ∞Θ(t)∥2L2(I) =
∑
j∈N

∣∣∣∣∣βj,∞ϕ1,j − βj,∞ϕ1,j√
2βj

∣∣∣∣∣
2

+ β2
∞,j

∣∣∣∣∣ϕ1,j + ϕ1,j√
2βj

∣∣∣∣∣
2

=
∑
j∈N

β2
j,∞

βj
|ϕ1,j|2

which yields, from (3.73), since βj = j/2,

c2β∥ϕ(t)∥
2
Y ≤ ∥Θt(t)∥2L2(I) + ∥Λ∞Θ(t)∥2L2(I) ≤ c̄2β∥ϕ(t)∥

2
Y . (3.75)

By observing that, since for any f ∈ H1(I) by using (3.73)

cβ∥f∥H1(I) ≤ ∥Λ∞f∥L2(I) ≤ cβ∥f∥H1(I),

equation (3.74) together with (3.75) implies that

∥Θt(t)∥2L2(I) + ∥Θ(t)∥2H1(I) ≤ Cβ∥ϕ(0)∥Y

withCβ > 0 a positive constant dependent on cβ and cβ . Since ϕ(0) = U−1(ω(δ), 0)Ξ(ω(δ), 0)ζ(0),
it follows that

∥ϕ(0)∥Y ≤ ∥U−1(ω(δ), 0)Ξ(ω(δ), 0)∥B(Y,Y )∥ζ(0)∥Y ≤ K(∥θt(0)∥2L2(I) + ∥θ(0)∥2H1(I))
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with K = K(n, δ∗) > 0. Therefore, we conclude that for some constant C = C(n, δ∗), we have
that

∥Θt(t)∥2L2(I) + ∥Θ(t)∥2H1(I) ≤ C(∥θt(0)∥2L2(I) + ∥θ(0)∥2H1(I)). (3.76)

Moreover, since both Ξ and U are bounded in B(Y, Y ) and near to the identity operators, that is
from (3.45) and from (3.66)

∥id − Ξ∥B(Y,Y ) ≤ CΞγδ
2, ∥id − U∥B(Y,Y ) ≤ CUγδ

2,

for some CΞ = CΞ(n, δ
∗) and CU = CU(n, δ

∗), it follows that

∥θt(t)−Θt(t)∥L2(I) + ∥θ(t)−Θ(t)∥H1(I) ≤ cγδ2 (3.77)

for some positive constant c = c(n, δ∗).
Summarizing, we have that for any δ∗ > 0 there exists γ∗ = γ∗(n, δ∗) > 0 such that for any

γ < γ∗ and for any δ ∈ [0, δ∗] there exists a positive measure set ∆n,γ,δ ⊆ [0, δ] such that (3.72)
holds and for any δ̄ ∈ Ωn,γ,δ, (3.76) and (3.77) hold, that is the thesis.

Appendices

A Some measure estimates

Lemma A.1. Let ωM > ωm > 0. Let us introduce the following sequences:

• λ = (λj)
∞
j=1 such that λj > 0, λj ≤ λj+1 for any j ≥ 1 and λj ∼ cjd for some d > 1;

• α− = (α−
j )

∞
j=1 such that α−

j > 0 and α−
j ≤ α−

j+1 for any j ≥ 1;

• α+ = (α+
j )

∞
j=1 such that α−

j < α+
j < c1α

−
j for some c1 > 0, for any j ≥ 1;

• Λ = (Λj)
∞
j=1 ⊂ Lip([ωm, ωM ],R+) such that

∀ω1 ̸= ω2 ∈ [ωm, ωM ],∀j ≥ 1, α−
j <

∣∣∣∣Λj(ω1)− Λj(ω2)

ω1 − ω2

∣∣∣∣ < α+
j . (A.1)

Let us introduce the set

Ωµ :=

{
ω ∈ [ωm, ωM ] : ∀n ≥ 0,∀j ≥ 1, |Λj(ω)− nπ| > µ

λj

}
Then, if µ < λ1π, we have that |[ωm, ωM ] \ Ωµ| < cµ where c = c(α+, α−, ωM , ωm, λj) > 0.

Proof. Let us consider the sets

Ωµ,j = {ω ∈ [ωm, ωM ] : ∃n ∈ N such that |Λj(ω)− nπ| ≤ µ/λj}.

We observe that [ωm, ωM ] \ Ωµ =
⋃
j≥1Ωµ,j and

Ωµ,j = [ωm, ωM ] ∩
∞⋃
n=0

Λ−1
j

([
nπ − µ

λj
, nπ +

µ

λj

])
.

Let nj = #{n ∈ N : [ωm, ωM ] ∩ Λ−1
j ([nπ − µ/λj, nπ + µ/λj]) ̸= ∅}. From (A.1) we have∣∣∣∣Λ−1

j

([
nπ − µ

λj
, nπ +

µ

λj

])∣∣∣∣ ≤ |(nπ − µ/λj, nπ + µ/λj)|
α−
j

=
2µ

α−
j λj

(A.2)
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and, if µ < λ1π,

nj ≤
|Λj(ωM)− Λj(ωm)|

π
+ 2 =

|Λj(ωM)− Λj(ωm)|+ 2π

π
. (A.3)

Therefore, by observing that |Ωµ,j| ≤ nj maxn≥0 |Λ−1
j ([nπ − µ/λj, nπ + µ/λj])|, we get, by using

(A.1), (A.2) and (A.3)

|Ωµ,j| ≤
2µ(|Λj(ωM)− Λj(ωm)|+ 2π)

α−
j λjπ

≤
2µ(α+

j (ωM − ωm) + 2π)

α−
j λjπ

Therefore, since λj ∼ cλj
d for some d > 1 and α+

j < c1α
−
j for some c1 > 0, we get that

|[ωm, ωM ] \ Ωµ| =

∣∣∣∣∣⋃
j≥1

Ωµ,j

∣∣∣∣∣ ≤
∞∑
j=1

2µ(α+
j (ωM − ωm) + 2π)

α−
j λjπ

= cµ (A.4)

for some positive constant c = c(α+, α−, ωm, ωM , λj).

From Lemma A.1, we immediately obtain the following corollary:

Corollary A.2. Let λ, α−, α+, Λ and Ωµ be defined as in Lemma A.1. If µ < λ1π and

∞∑
j=1

2(α+
j (ωM − ωm) + 2π)

α−
j λjπ

<
ωM − ωm

µ
, (A.5)

then |Ωµ| > 0.

Proof. From equation (A.4), we have that

|[ωm, ωM ] \ Ωµ| ≤
∞∑
j=1

2µ(α+
j (ωM − ωm) + 2π)

α−
j λjπ

.

Therefore, since |Ωµ| > 0 is equivalent to require that |[ωm, ωM ] \ Ωµ| < ωM − ωm, we get that if
(A.5) holds, then |Ωµ| > 0.

Lemma A.3. Let us consider a sequence λ(ω) given by

λi(ω) :=
i

2
+ γ

2ā(ω)

i
+ γ

νi(ω)

i3
,

where νi ∈ Lip(Ω,R) and ā(ω) is defined in Lemma 3.7.1. We require that there exists ε > 0 such
that

|νi|∞ := sup
ω∈Ω

|νi| ≤ ε, ∀i ∈ N.

Moreover, we suppose that there exists K0,K1 > 0 such that

|λi(ω)± λj(ω)| ≥ K0|i± j|,
∣∣∣∣∆(λi(ω)± λj(ω))

∆ω

∣∣∣∣ ≤ K1, ,

and we introduce the set

Ωµ(λ) :=

{
ω ∈ Ω : ∀i, j ∈ N,∀k ∈ Z, |λi(ω)± λj(ω) + kω| > µ

⟨i± j⟩
1 + k4

}
,
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where ⟨m⟩ := max(1, |m|). Then, if

K1 <
K0

8
, µ ≤ K0

2
(A.6)

we have that
|Ω \ Ωµ| ≤ CΩµ

2/3

for some positive constant CΩ = C(K0, ωM , µ, γ, λ).

Proof. We have that Ωµ = Ω+
µ ∩ Ω−

µ , where

Ω±
µ =

{
ω ∈ Ω : ∀i, j ∈ N,∀k ∈ Z, |λi(ω)± λj(ω) + kω| > µ

⟨i± j⟩
1 + k4

}
.

Let us suppose that i > j. Hence, i = j +m with m > 0. Then, since |ā(ω)| ≤ |a|∞,

|λi − λj| ≤ m/2 + δjm, where δj := γ
2|a|∞
j2

+ γ
2ε

j3
.

By proceeding as in [13, Lemma 5.2] (see also [139, Lemma 8]), introducing

R±
ijk(λ, α) := {ω ∈ Ω : |λi(ω)± λj(ω) + kω| < α⟨i± j⟩} ,

Qmjk :=

{
ω ∈ Ω : |m+ ωk| < µm

1 + k4
+mδj

}
.

and observing that Rijk ⊂ Qmjk and Qmjk ⊂ Qmj′k if j > j′, we get that⋃
i>j

R−
ijk

(
λ,

µ

1 + k4

)
⊂

( ⋃
i−j=m,j<j∗

R−
ijk

(
λ,

µ

1 + k4

))
∪

(⋃
m∈N

Qmj∗k

)
.

Therefore, by taking some j∗ > 0 and fixing k, since from [13, Lemma 5.2, Lemma A.2] we have
that ∣∣∣∣∣ ⋃

i−j=m,j<j∗

R−
ijk

(
λ,

µ

1 + k4

)∣∣∣∣∣ ≤ 4

K0

j∗m
µ

1 + k4
≤ 4ωM

K0(K0 − µ)

µj∗|k|
1 + k4∣∣∣∣∣ ⋃

m∈N

Qmjk

∣∣∣∣∣ ≤ 4ωM
K0(K0 − µ)

(
µ

1 + k4
+ δj∗

)
|k|

which yields that∣∣∣∣∣⋃
i,j

R−
ijk

(
λ,

µ

1 + k4

)∣∣∣∣∣ ≤ 8ωM
K0(K0 − µ)

(
µ(j∗ + 1)

1 + k4
+

2γ(|a|∞ + ε)

j2∗

)
|k|.

We take

j∗ :=

(
γ(|a|∞ + ε)

µ
(1 + k4)

)1/3

,

and, observing that µ < 1 we obtain that∣∣∣∣∣⋃
i,j

R−
ijk

(
λ,

µ

1 + k4

)∣∣∣∣∣ ≤ 8ωM
K0(K0 − µ)

(
µ(j∗ + 1)

1 + k4
+

2γ(|a|∞ + ε)

j2∗

)
|k|

=
8ωM

K0(K0 − µ)

(
µ(j∗ + 1)

1 + k4
+

2(γ(|a|∞ + ε))1/3µ2/3

(1 + k4)2/3

)
|k|
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By proceeding as in [13, Lemma 5.2], we get that, since for k large enough we have that j∗ > 1,
which yields that j∗ + 1 ≤ 2j∗, for a certain constant C = C(γ, |a|∞, ε)∣∣Ω \ Ω−

µ

∣∣ ≤ 16CωM
K0(K0 − µ)

∑
k∈Z\{0}

|k|
(1 + k4)2/3

(γ(|a|∞+ε))1/3µ2/3 ≤ 56CωM
K0(K0 − µ)

(γ(|a|∞+ε))1/3µ2/3 .

Since if R+
ij ̸= ∅, then

ωM |k| ≥ |ωk| ≥ |λi + λj| −
µ

1 + k4
|i+ j| ≥ (K0 − µ)|i+ j|,

which yields that
|i+ j| ≤ ωM

K0 − µ
|k|,

by reasoning as before, from [13, Lemma A.2, Lemma A.4] we obtain that∣∣∣∣∣⋃
i,j,k

R+
ijk

(
λ,

µ

1 + k4

)∣∣∣∣∣ ≤∑
k∈Z

∑
i,j:R+

ijk ̸=∅

4

K0

µ

1 + k4
≤ 2ω2

Mµ

K0(K0 − µ)2

∑
k∈Z\{0}

k2

1 + k4
=

5ω2
M

K0(K0 − µ)2
µ.

Therefore, we obtain that

|Ω \ Ωµ| ≤ |Ω \ Ω−
µ |+ |Ω \ Ω+

µ | ≤ CΩµ
2/3,

where, from (A.6),

CΩ :=
56CωM

K0(K0 − µ)
(γ(|a|∞ + ε))1/3 +

5ω2
Mµ

1/3

K0(K0 − µ)2

Lemma A.4. Let A ⊂ R+ be a measurable set and let B := {x ∈ R+ : x2 ∈ A}. Then we have
that

|B| ≤
√

|A|,
where |X| denotes the Lebesgue measure of X ⊆ R.

Proof. The proof proceeds by direct computation.

|B| =
∫
{x∈R+:x2∈A}

dx =

∫
{t∈R+:t∈A}

1

2
√
t
dt =

1

2

∫
A

1√
t
dt =

1

2

∫ ∞

0

∣∣∣∣{x ∈ A :
1√
x
≥ λ

}∣∣∣∣ dλ
=

1

2

∫ 1/
√

|A|

0

∣∣∣∣{x ∈ A :
1√
x
≥ λ

}∣∣∣∣ dλ+
1

2

∫ ∞

1/
√

|A|

∣∣∣∣{x ∈ A :
1√
x
≥ λ

}∣∣∣∣ dλ
≤ 1

2

∫ 1/
√

|A|

0

|A|dλ+
1

2

∫ ∞

1/
√

|A|
λ−2dλ =

√
|A|.

B Some norm estimates

Lemma B.1. Let Z, F ∈ B2
r(Ω). Then

|{Z, F}|r ≤ 2β−2
1 |Z|r |F |r (B.1)

|{Z, F}|Lr ≤ 2β−2
1 (|Z|Lr |F |r + |Z|r |F |

L
r ), (B.2)
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Proof. A direct computation shows that

{Z, F} =
∞∑
l=1

i
∂F

∂ξl

∂Z

∂ηl
− i

∂F

∂ξl

∂Z

∂ηl
=

=
∑
i,j∈N0

({Z, F}−)ijηiξj +
1

2

∑
i,j∈N0

({Z, F}+)ijξiξj +
1

2

∑
i,j∈N0

({Z, F}+)ijηiηj

where

{Z, F}− := i(Z−F− − F−Z− + F+Z+ − Z+F+)

{Z, F}+ := i(Z−F+ − F+Z− + F−Z+ − Z+F−).

Since H1/2+2 ⊆ H1/2 and we have that ∥u∥H1/2 ≤ β−2
1 ∥u∥H1/2+2 , then

∥Z∥B(H1/2,H1/2) = sup
u∈H1/2

∥Zu∥H1/2

∥u∥H1/2

≤ β−2
1 sup

u∈H1/2

∥Zu∥H1/2+2

∥u∥H1/2

≤ β−2
1 ∥Z∥B(H1/2,H1/2+2),

∥Z∥B(H1/2+2,H1/2+2) = sup
u∈H1/2+2

∥Zu∥H1/2+2

∥u∥H1/2+2

≤ β−2
1 sup

u∈H1/2

∥Zu∥H1/2+2

∥u∥H1/2

≤ β−2
1 ∥Z∥B(H1/2,H1/2+2).

Therefore, for any A,B ∈ B(H1/2,H1/2+2) we have that

∥AB∥B(H1/2,H1/2+2) ≤ ∥A∥B(H1/2+2,H1/2+2)∥B∥B(H1/2,H1/2+2)

≤ β−2
1 ∥A∥B(H1/2,H1/2+2)∥B∥B(H1/2,H1/2+2),

which yields that
∥AB∥ ≤ β−2

1 ∥A∥∥B∥,
where we set ∥·∥ := ∥·∥B(H1/2,H1/2+2). Hence, we get that

||Z−F− − F−Z− + F+Z+ − Z+F+|| ≤ 2β−2
1 (||Z−|| · ||F−||+ ||Z+|| · ||F+||),

||Z−F+ − F+Z− + F−Z+ − Z+F−|| ≤ 2β−2
1 (||Z−|| · ||F+||+ ||Z+|| · ||F−||).

Therefore, by using (3.36) and the notation in (3.34),

∥{Z, F}∥H2 ≤ 2β−2
1 (∥Z−∥+ ∥Z+∥)(∥F−∥+ ∥F+∥) = 2β−2

1 ∥Z∥H2∥F∥H2 ,

which yields (B.1). The estimate (B.2) follows as above by observing that for any A,B ∈ Lip(Ω,
B(H1/2,H1/2+2))

∥AB∥L ≤ β−2
1 (∥A∥L∥B∥+ ∥A∥∥B∥L).

Proposition B.2. Let Z, F ∈ B2
r(Ω). If

|Z|r−σ <
5

8
β2
1 , (B.3)

then

|LieZF − F |r−σ ≤ 4β−2
1 |Z|r−σ |F |r , (B.4)

|LieZF − F |Lr−σ ≤ 4β−2
1 |Z|r−σ |F |

L
r + 7β−2

1 |Z|Lr−σ |F |r (B.5)
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and

|YZ + Ż|r−σ ≤ 2β−2
1 |Z|r−σ |Ż|r−σ, (B.6)

|YZ + Ż|Lr−σ ≤ 2β−2
1 |Z|r−σ |Ż|

L
r−σ + 2β−2

1 |Z|Lr−σ |Ż|r−σ. (B.7)

Moreover, if Λ ∈ B1
r(Ω) and

R + {Λ, Z} − Ż = [R], (B.8)

where
[R] :=

∑
j∈N

R−
jjξjηj

then

|LieZΛ− Λ− {Λ, Z}|r−σ ≤ 4β−2
1 |Z|r−σ

(
2ωM
σ

|Z|r−σ/2 + |R|r−σ
)
, (B.9)

|LieZΛ− Λ− {Λ, Z}|Lr−σ ≤ 8

σ
β−2
1 |Z|r−σ/2 |Z|r−σ + 4β−2

1 |Z|r−σ |R|
L
r (B.10)

+ 4β−2
1 |Z|Lr−σ |R|r +

8ωM
σ

β−2
1 (|Z|r−σ/2 |Z|

L
r−σ + |Z|r−σ |Z|

L
r−σ/2).

Proof. Since

XLieZF
= ϕ1

ZXFϕ
−1
Z =

∞∑
k=0

1

k!

dk

dεk

∣∣∣∣
ε=1

ϕεZXFϕ
−ε
Z =

∞∑
k=0

1

k!
XFk

,

where
F0 := F, Fk+1 = {Z, Fk},

at least formally we have that

LieZF =
∞∑
k=0

Fk
k!
.

Therefore observing as in [13] that from (B.1) we have

|Fk|r−σ ≤ (2β−2
1 |Z|r−σ)

k |F |r , (B.11)

we obtain that if (B.3) holds, then we have that

|LieZF − F |r−σ ≤ (e2β
−2
1 |Z|r−σ − 1) |F |r . (B.12)

Hence, since ex − 1 ≤ 2x if x ≤ −(2W−1(−1/(2
√
e)) + 1)/2 where W−1(x) is the Lambert W

function (see [56]), by observing that −(2W−1(−1/(2
√
e)) + 1)/2 ≥ 5/4, we get that, if (B.3)

holds, from (B.12) we get

|LieZF − F |r−σ ≤ 4β−2
1 |Z|r−σ |F |r .

By proceeding as in Lemma B.2 of [13], by using (B.2), we obtain that

|Fk|Lr−σ ≤ (2β−2
1 |Z|r−σ)

k |F |Lr−σ + 2β−2
1 |Z|Lr−σ k(2β

−2
1 |Z|r−σ)

k−1 |F |r−σ , (B.13)

which gives, by using (B.3),

|LieZF − F |Lr−σ ≤ (e2β
−2
1 |Z|r−σ − 1) |F |Lr + 2β−2

1 e2β
−2
1 |Z|r−σ |Z|Lr−σ |F |r

≤ 4β−2
1 |Z|r−σ |F |

L
r + 2β−2

1 (1 + 4β−2
1 |Z|r−σ) |Z|

L
r−σ |F |r

≤ 4β−2
1 |Z|r−σ |F |

L
r + 7β−2

1 |Z|Lr−σ |F |r .
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

By using Cauchy’s integral formula we have that

Ż(ωt, ω) = ω∂ϕZ|ϕ=ωt =
ω

2πi

∮
γσ(ωt)

Z(ξ, ω)

(ξ − ωt)2
dξ,

where γσ(ωt) is the circle in the complex plane |z − ωt| = σ/2 in the clockwise direction. This
yields that

|Ż|r−σ ≤ 4ωM
σ

|Z|r−σ/2 , |Ż|Lr−σ ≤ 4

σ
|Z|r−σ/2 +

4ωM
σ

|Z|Lr−σ/2 . (B.14)

Hence, we observe that if Z satisfies (B.8) then

|{Λ, Z}|r−σ = |Ż + [R]−R|r−σ ≤ 4ωM
σ

|Z|r−σ/2 + 2 |R|r =: b,

|{Λ, Z}|Lr−σ = |Ż + [R]−R|Lr−σ ≤ 4

σ
|Z|r−σ/2 +

4ωM
σ

|Z|Lr−σ/2 + 2 |R|Lr =: bL.

Therefore, following the procedure of Lemma B.3 of [13], we obtain that, if we set µ := 2β−2
1 |Z|r−σ,

by using (B.11) and (B.13),

|LieZΛ− Λ− {Λ, Z}|r−σ ≤
∞∑
k=2

1

k!
|Λk|r−σ ≤

∞∑
k=2

µk−1

k!
|Λ1|r−σ ≤ eµ − µ− 1

µ
b,

|LieZΛ− Λ− {Λ, Z}|Lr−σ ≤
∞∑
k=2

1

k!
|Λk|Lr−σ ≤

∞∑
k=2

µk−1

k!
|Λ1|Lr−σ + 2 |Z|Lr−σ

∞∑
k=2

(k − 1)µk−2

k!
|Λ1|r−σ

≤ eµ − µ− 1

µ
bL + 2 |Z|Lr−σ

eµ(µ− 1) + 1

µ2
b.

By observing that if (B.3) holds then

eµ − 1− µ ≤ µ2, eµ(µ− 1) + 1 ≤ µ2, (B.15)

we get (B.9) and (B.10). To conclude, (B.6) and (B.7) follow exactly as in [13, Lemma B.4] by
proceeding as above, observing that

YZ = −
∑
k≥0

1

(k + 1)!
Yk, where Y0 = Ż, Yk+1 = {Z, Yk}

and by using the inequalities in (B.11), (B.13) and (B.15).

Corollary B.3. Let Z, F ∈ B2
r(Ω). If (B.3) holds, then

|YZ + Ż|r−σ≤
8β−2

1 ωM
σ

|Z|r−σ |Z|r−σ/2 ,

|YZ + Ż|Lr−σ≤ β−2
1

(
8

σ
|Z|r−σ/2 |Z|r−σ +

8ωM
σ

|Z|r−σ |Z|
L
r−σ/2 +

8ωM
σ

|Z|r−σ/2 |Z|
L
r−σ

)
.

(B.16)

Proof. The inequalities in (B.16) immediately follow from (B.6) and (B.7) by using (B.14).

Remark B.4. By reasoning as in Proposition B.2 and Corollary B.3, we have that if {Z, F},
{Z, Ż}, {Z, {Z,Λ}} ∈ Bh,kr (Ω) for some h, k ≥ 0, then the Hamiltonians

LieZF − F, LieZΛ− Λ− {Λ, Z}, YZ + Ż

belong to Bh,kr−σ(Ω) for any σ ∈ (0, r).
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Lemma B.5. Let Z ∈ B0
r(Ω) be a bounded and diagonal operator and let A,B ∈ B2(Ω) be such

that {Z,A}, {Z, {Z,B}} ∈ B2
r(Ω). Then if |Z|0,r−σ < 5/8,

|LieZA− A|r−σ ≤ 2 |{Z,A}|r−σ
|LieZB −B − {Z,B}|r−σ ≤ |{Z, {Z,B}}|r−σ
|LieZA− A|Lr−σ ≤ 2 |{Z,A}|Lr−σ + 2 |Z|L0,r−σ |{Z,A}|r−σ ,
|LieZB −B − {Z,B}|Lr−σ ≤ |{Z, {Z,B}}|Lr−σ + |Z|L0,r−σ |{Z, {Z,B}}|r−σ

Moreover, if {Z, Ż} ∈ B2
r(Ω), then

|YZ + Ż|r−σ ≤ |{Z, Ż}|r−σ, |YZ + Ż|Lr−σ ≤ |{Z, Ż}|Lr−σ + |Z|L0,r−σ |{Z, Ż}|r−σ

Proof. Since for any diagonal operator A : H → H where H is an Hilbert space with basis given
by {e1, . . . , en, . . . }, if for any n ∈ N, Aen = αn, we have that

∥A∥B(H,H) = sup
n

|αn|,

it follows that for any s ∈ R we have that

|Z|s,r = |Z|0,r .

Therefore, by reasoning as in Lemma B.1, we get that

|{Z, F}|0,r ≤ |Z|0,r |F |r
|{Z, F}|L0,r ≤ (|Z|L0,r |F |r + |Z|0,r |F |

L
r )

and by proceeding as in Proposition B.2 we get the thesis.

C Estimates of an operator

Let us introduce the sequence (λj)j∈N ⊂ Lip(Ω,R+). For any choice of ω, ω′ ∈ Ω and for any real
valued function f = f(ω), we introduce the notation

∆f = f(ω)− f(ω′).

We suppose that there exists three positive constants G0,K0 and K1 such that

K0|i− j| ≤ |λi(ω)− λj(ω)| ≤ G0|i− j|,
∣∣∣∣∆(λi − λj)

∆ω

∣∣∣∣ ≤ K1.

Moreover, we assume that K0 ≤ 1, K1 ≤ 1 and G0 ≤ 2. For any operatorF ∈ Lip(Ω, C∞(S1
r ,B(ℓ2, ℓ2))),

by abusing the notation we define

|F |r := sup
ω∈Ω

sup
ϕ∈S1

r

∥F (ω, ϕ)∥B(ℓ2,ℓ2) |F |Lr := sup
ω1 ̸=ω2∈Ω

∣∣∣∣F (ω1)− F (ω2)

ω1 − ω2

∣∣∣∣
r

.

The following lemma holds

Lemma C.1. Let 0 < r ≤ 1 and let H ∈ C∞(S1
r ,B(ℓ2, ℓ2)). For any fixed µ > 0, let ω ∈ Ωµ,

where

Ωµ =

{
ω ∈ Ω : ∀k ∈ Z,∀i, j ∈ N, s.t. |k|+ |i− j| ≠ 0, |kω + λi − λj| >

µ⟨i− j⟩
1 + |k|τ

}
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Chapter 3. The role of boundary conditions in the torsional stability of suspension bridges

for some τ ≥ 1 and µ < 1, where ⟨x⟩ := max(|x|, 1). We introduce the operator W ∈
C∞(S1

r−σ,B(ℓ2, ℓ2)) defined by

Wij(z) :=
∑
k∈Z

|k|+|i−j|̸=0

Hijk

kω + λi − λj
eikz.

Then, if 0 < σ ≤ σ∗ for a certain constant σ∗ = σ∗(ωm, µ,K0, τ) < r, there exists a positive
constant C(τ) such that

|W |r−σ ≤ C(τ)

2στ
|H|r .

Proof. Let us consider ω ∈ Ωµ. For any i, j ∈ N, fixed c > 0, let us define Zi,j∞ ,Z
i,j
# ⊆ Z by

Zi,j∞ = {k ∈ Z : |kω + λi − λj| > cστ−1},
Zi,j# =

{
k ∈ Z : |kω + λi − λj| ≤ cστ−1, |k|+ |i− j| ≠ 0

}
.

It is immediate to observe that Zi,j∞ ∩ Zi,j# = ∅ and that Zi,j∞ ∪ Zi,j# = {k ∈ Z : |k| + |i − j| ≠ 0}.
Therefore, we can write W = W∞ +W#, where

W∞
ij =

∑
k∈Z

W∞
ijke

ikz, W#
ij =

∑
k∈Z

W#
ijke

ikz,

with

W∞
ijk =


Hijk

kω + λi − λj
if k ∈ Zi,j∞

0 if k ̸∈ Zi,j∞
, W#

ijk =


Hijk

kω + λi − λj
if k ∈ Zi,j#

0 if k ̸∈ Zi,j#
.

By denoting with |·| the B(ℓ2, ℓ2) norm, since for any H ∈ B(ℓ2, ℓ2) we have that
∞∑
i=1

|Hij|2 ≤ |H| .

Hence, by using Cauchy-Schwarz inequality, if cστ−1 < 1, then

∞∑
i=1

|W∞
ijk| =

∑
i:k∈Zi,j

∞

|Hijk|
|kω + λi − λj|

≤ |Hk|

√√√√ ∑
i:k∈Zi,j

∞

1

|kω + λi − λj|2

≤ |Hk|

√√√√2
∞∑
i=0

1

(cστ−1 +K0i)2
≤

√
2 |Hk|

√
ζ(2)

K0
2 +

1

c2σ2τ−2
≤

√
2
√
ζ(2) + 1

K0cστ−1
|Hk|

where we used that, since |kω + λi − λj| > cστ−1, for any fixed k ∈ Zi,j∞ there exists h ∈ Z such
that for any i ∈ N, we have that |kω + λi − λj| > cστ−1 +K0(h+ i), which yields∑

i:k∈Zi,j
∞

1

|kω + λi − λj|2
≤
∑

i:k∈Zi,j
∞

1

(cστ−1 +K0(h+ i))2
≤
∑
i∈Z

1

(cστ−1 +K0(h+ i))2

≤ 2

c2σ2τ−2
+

2

K2
0

∞∑
i=1

1

i2
.
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Therefore, by proceeding as in [139, Lemma A.1], we conclude that

|W∞
k | ≤

√
2
√
ζ(2) + 1

cK0στ−1
|Hk| ,

which implies that, if z ∈ S1
r−σ,

|W∞(z)| ≤
∑
k∈Z

|W∞
k | |eikz| ≤

√
2
√
ζ(2) + 1

cK0στ−1

∑
k∈Z

|Hk| |eikz|

≤
√
2
√
ζ(2) + 1

cK0στ−1

∑
k∈Z

e−|k|σ |H|r ≤
5
√
2
√
ζ(2) + 1

2cK0στ
|H|r ,

where we used that from Cauchy’s integral formula |Hk| ≤ |H|r e−|k|r and that∑
k∈Z∞

e−|k|σ <
5

2σ

for any σ < 1.
Next, we remark that, if we consider z ∈ S1

r−σ,

|W#
ij (z)| ≤

∑
k∈Zi,j

#

|Hijk|
|kω + λi − λj|

|eikz| ≤ 1

µ

∑
k∈Zi,j

#

|Hijk|
⟨i− j⟩

(1 + |k|τ )|eikz|

≤ 1

µ

∑
k∈Zi,j

#

|Hk|
⟨i− j⟩

(1 + |k|τ )|eikz| ≤ 1

µ⟨i− j⟩
|H|r

∑
k∈Zi,j

#

(1 + |k|τ )e−σ|k|,

where we used that
|Hijk| ≤ |Hk| ≤ |H|r e

−|k|r.

Hence,
∞∑
j=1

|W#
ij | ≤

1

µ
|H|r

∞∑
j=1

1

⟨i− j⟩
∑
k∈Zi,j

#

(1 + |k|)τe−σ|k|
σ<1

≤

≤ 1

µστ+1
|H|r

∞∑
j=1

1

⟨i− j⟩
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ.
(C.1)

We remark that, if k ∈ Zi,j# we have that

K0|i− j| − cστ−1

ω
≤ |λi − λj| − cστ−1

ω
≤ |k| ≤ |λi − λj|+ cστ−1

ω
≤ G0|i− j|+ cστ−1

ω
(C.2)

Therefore, if cστ−1/ω < 1/2, that is

σ <
( ω
2c

) 1
τ−1

, (C.3)

then for any i ∈ N we have Zi,i# = ∅, which yields that we can write

∞∑
j=1

1

⟨i− j⟩
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ =
∞∑
j=1

1

|i− j|
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ. (C.4)
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Moreover, since for any k ∈ Zi,j# ,
µ|i− j|
1 + |k|τ

≤ cστ−1,

if we require cστ−1 < µ/2, that is

σ <
( µ
2c

) 1
τ−1

,

we get

|k|τ ≥ µ|i− j| − cστ−1

cστ−1
≥ µ

2c

|i− j|
στ−1

.

Hence, if Zi,j# ̸= ∅, from (C.2) since G0 ≤ 2, if cστ−1 < 1,

µ

2c

|i− j|
στ−1

≤ |k|τ ≤
(
G0|i− j|+ cστ−1

ω

)τ
≤ 3τ

ω
|i− j|τ ,

that gives

Zi,j# ̸= ∅ =⇒ |i− j| ≥
( µω

3τ2c

)1/(τ−1) 1

σ
=:

K

σ
.

Therefore, from (C.4) we get

∞∑
j=1

1

⟨i− j⟩
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ ≤
∑

j:|i−j|>K/σ

1

|i− j|
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ

≤
(
3τ2c

µω

)1/(τ−1)

σ
∞∑
j=1

∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ
(C.5)

We remark that from (C.3), (C.2) gives that #Zi,j# ≤ 1. Let κi,j be the unique integer such that
κi,j ∈ [(|λi − λj| − cστ−1)/ω, (|λi − λj| + cστ−1)/ω]. Hence, since for any fixed i there exist at
most two integers j1 and j2 such that κi,j1 = κi,j2 we can estimate

∞∑
j=1

∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ ≤
∞∑
j=1

f(σκi,j)σ ≤ 2
∞∑
k=0

fτ (σk)σ, (C.6)

where fτ (x) = (1 + |x|τ )e−|x|. Moreover, from Proposition D.3 if σ < σf for a certain σf > 0, we
have that

2
∞∑
k=0

fτ (σk)σ ≤ 3

∫ ∞

0

fτ (x)dx =: ατ . (C.7)

Thus, from (C.1) and (C.5), by using (C.6) and (C.7) we obtain that

∞∑
j=1

|W#
ij | ≤

1

µστ+1
|H|r

∞∑
j=1

1

⟨i− j⟩
∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ

≤ 1

στ
|H|r

(
3τ2c

µτω

)1/(τ−1) ∞∑
j=1

∑
k∈Zi,j

#

(1 + |σk|τ )e−σ|k|σ ≤
(
3τ2c

µτω

)1/(τ−1)

ατ
1

στ
|H|r ,
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which yields that, by proceeding as in [139, Lemma A.1],

∣∣W#
∣∣
r−σ ≤

(
3τ2c

µτω

)1/(τ−1)

ατ
1

στ
|H|r .

Hence, if we set

c =
µω

1/τ
m

21/τ3

(
5
√
2
√
ζ(2) + 1(τ − 1)

K0ατ

) τ−1
τ

we obtain that

|W |r−σ ≤ 21/τ3α
(τ−1)/τ
τ

µω
1/τ
m

(
1

(τ − 1)(τ−1)/τ
+ (τ − 1)1/τ

)(
5
√
2
√
ζ(2) + 1

K0

)1/τ
1

στ
|H|r .

Lemma C.2. Let 0 < σL < r ≤ 1 and let H ∈ Lip(Ωµ, C
∞(S1

r ,B(ℓ2, ℓ2))). There exists a positive
σL = σ∗(ωm, µ,K0, τ) < r such if σ < σL, there exists a positive constant CL(τ) such that

|W |Lr−σ ≤ C(τ)

2στ
|H|Lr +

CL(τ)

2σ2τ
|H|r .

Proof. By reasoning as in [13, Lemma 6.2] we have that

|∆Wijk| =
∣∣∣∣ ∆Hijk

ωk + λi − λj

∣∣∣∣+ ∣∣∣∣ k∆ω +∆(λi − λj)

(ωk + λi(ω)− λj(ω))(ω′k + λi(ω′)− λj(ω′))
Hijk

∣∣∣∣
≤
∣∣∣∣ ∆Hijk

ωk + λi − λj

∣∣∣∣+ (k +K1)|∆ω|
|ωk + λi(ω)− λj(ω)||ω′k + λi(ω′)− λj(ω′)|

|Hijk|

= |W1,ijk|+ |W2,ijk||∆ω|

where we set

W1,ijk :=
∆Hijk

ωk + λi(ω)− λj(ω)
, W2,ijk =

k +K1

(ωk + λi(ω)− λj(ω))(ω′k + λi(ω′)− λj(ω′))
Hijk.

From Lemma C.1 we get that

|W1|r−σ ≤ C(τ)

2στ
|∆H|r .

In order to estimate |W2|r−σ, we introduce the sets

Zi,j∞ = {k ∈ Z : min(|kω + λi − λj|, |kω′ + λi − λj|) > cστ−1},
Zi,j# =

{
k ∈ Z : max(|kω + λi − λj|, |kω′ + λi − λj|) ≤ cστ−1, |k|+ |i− j| ≠ 0

}
,

Zi,jχ = Z \ (Zi,j# ∪ Zi,j∞).

By proceeding with the same notations of Lemma C.1, we write W2 = W∞
2 +W#

2 +W χ
2 . The

estimates of |W∞
2 |r−σ and of

∣∣∣W#
2

∣∣∣
r−σ

are obtained by proceeding as in Lemma C.1. In particular,

we have that

∞∑
i=1

|W∞
2,ijk| ≤ |Hk|

√√√√ 2

c4σ4τ−4
+ 2

∞∑
i=1

1

(cστ−1 +K0i)4
≤

√
2
√
ζ(4) + 1

cK2
0σ

2τ−2
|Hk| .
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Hence, if z ∈ S1
r−σ,

|W∞
2 (z)| ≤

√
2
√
ζ(4) + 1

cK2
0σ

2τ−2

∑
k∈Z

e−|k|σ |H|r ≤
5
√
2
√
ζ(4) + 1

2cK2
0σ

2τ−1
|H|r .

Next we have that, by requiring σ < σ∗ for a certain σ∗ > 0,

∞∑
j=1

|W#
2,ij| ≤

1

µσ2τ+2
|H|r

∑
j:|i−j|>K/σ

1

|i− j|2
gτ (σξi,j)σ

≤
(
3τ2c

µω

)2/(τ−1)
1

µ2σ2τ
|H|r

∞∑
j=1

g(σξi,j)σ ≤
(
3τ2c

µτω

)2/(τ−1)

λτ
1

σ2τ
|H|r ,

where we now set

gτ (x) := (1 + |x|)(1 + |x|τ )2e−|x|, λτ := 3

∫ ∞

0

gτ (x)dx.

Therefore, we obtain that

|W#
2 |r−σ ≤

(
3τ2c

µτω

)2/(τ−1)

λτ
1

σ2τ
|H|r .

Lastly, we observe that Zi,jχ = Zi,jχ,1 ∪ Zi,jχ,2, where

Zi,jχ,1 := {k ∈ Z : |kω′ + λi − λj| > cστ−1, |kω + λi − λj| ≤ cστ−1},
Zi,jχ,2 := {k ∈ Z : |kω′ + λi − λj| ≤ cστ−1, |kω + λi − λj| > cστ−1}.

Then, we have that W χ
2 = W χ,1

2 +W χ,2
2 , where

W χ,h
2,ij =

∑
k∈Zi,j

χ,h

k +K1

(ωk + λi(ω)− λj(ω))(ω′k + λi(ω′)− λj(ω′))
Hijk.

We have that,

|W χ,1
2,ij(z)| ≤

1

cστ−1

∞∑
k∈Zi,j

χ,1

1 + |k|
|ωk + λi − λj|

|Hijk| ≤
1

µcστ−1

1

⟨i− j⟩
|H|r

∞∑
k∈Zi,j

1,χ

(1+|k|)(1+|k|τ )e−σ|k|,

which yields, by proceeding as in Lemma C.1 and requiring σ < σ∗∗ for a certain σ∗∗ > 0

∞∑
j=1

|W χ
2,ij| ≤

2

µcσ2τ+1

∞∑
j:|i−j|>K/σ

1

|i− j|
hτ (σκi,j)σ ≤

(
3τ2c

µτω

)1/(τ−1)

2ψτ
1

σ2τ
|H|r , (C.8)

where we set

hτ (x) = (1 + |x|)(1 + |x|τ )e−|x|, ψτ := 3

∫ ∞

0

hτ (x)dx.

Inequality (C.8) gives

|W χ
2 |r−σ ≤

(
3τ2c

µτω

)1/(τ−1)

2ψτ
1

σ2τ
|H|r .
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Hence, since for any ω ̸= ω′, setting ρτ := λτ + ψτ ,

|∆W |r−σ ≤ |W1|r−σ + (|W∞
2 |r−σ + |W#

2 |r−σ + |W χ
2 |r−σ)|∆ω|

≤ C(τ)

2στ
|∆H|r +

(
5
√
2
√
ζ(4) + 1

2K2
0c

+

(
3τ2c

µτω

)1/(τ−1)

ρτ

)
1

σ2τ
|∆ω| |H|r

if we set

c =
µω

1/τ
m

21/τ3

(
5
√
2
√
ζ(4) + 1(τ − 1)

2K2
0ρτ

) τ−1
τ

,

for any σ < σL := min(σ∗, σ∗∗), we obtain that

|W |Lr−σ ≤ C(τ)

2στ
|H|Lr +

CL(τ)

2σ2τ
|H|r ,

where

CL(σ) :=
3ρ

τ−1
τ

τ

µω
1/τ
m

(
1

(τ − 1)(τ−1)/τ
+ (τ − 1)1/τ

)(
5
√
2
√
ζ(4) + 1

K2
0

)1/τ

.

Lemma C.3. Let σ = 1/2n for some n ≥ N(ωm) and let µ < ωm, σ < r ≤ 1 and K0 ≥ 1/4. Let
H ∈ Bh,kr (Ωµ) with h, k > 0, where

Ωµ =

{
ω ∈ Ω : ∀k ∈ Z, ∀i, j ∈ N, s.t. |k|+ |i− j| ≠ 0, |kω + λi ± λj| >

µ⟨i± j⟩
1 + |k|4

}
for some µ < 1, where ⟨x⟩ := max(|x|, 1). We introduce the Hamiltonian function W ∈ B0(Ωµ)
defined by

W±
ij (z) :=

∑
k∈Z

|k|+|i−j|̸=0

H±
ijk

kω + λi − λj
eikz.

Then we have that

|W |r−σ ≤ C

σ4
|H|r , |W |r−σ ≤ C

σ4
|H|Lr +

CL

σ8
|H|r .

where C := C(4) and CL := CL(4) are defined in Lemma C.1 and C.2.

Proof. We remark that F ∈ B(H1/2,H1/2+h) if and only if the operator F with matrix Fij =
i1/2+hFijj

−1/2 belongs to B(ℓ2, ℓ2). Therefore, from Lemma C.1 we have that if σ < σ∗, then∣∣W−∣∣
r−σ ≤ C

2σ4

∣∣H−∣∣
r
≤ C

2σ4
|H|r . (C.9)

More precisely, by recollecting the conditions on σ that we required in the proof of Lemma C.1,
we have that if

c1σ
3 < 1, σ < 1, c1σ

3 <
ω

2
, c1σ

3 <
µ

2
,

where

c1 :=
µω

1/4
m

21/43

(
15
√
2
√
ζ(2) + 1

K0α4

) 3
4

,
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which are equivalent to, since µ < ωm and µ < 1,

c1σ
3 <

µ

2
,

which is implied by, since K0 ≥ 1/4,

σ3 ≤ 1.13

ω
1/4
m

(C.10)

then (C.9) holds. We remark that (C.10) and σ ≤ 1/4 hold with σ = 1/2n if and only if

n ≥ max(log2(ω
1/4
m /1.13), 2) =: N(ωm).

By proceeding as in the proof of Lemma C.1, it is possible to show that if n ≥ N(ωm) then∣∣W+
∣∣
r−σ ≤ C

2σ4

∣∣H+
∣∣
r
≤ C

2σ4
|H|r ,

which yields that, together with (C.9),

|W |r−σ ≤
∣∣W−∣∣

r−σ +
∣∣W+

∣∣
r−σ ≤ C

σ4
|H|r .

To conclude, by reasoning as above, from Lemma C.2 we obtain that if (C.10) holds, then

|W |r−σ ≤ C

σ4
|H|Lr +

CL

σ8
|H|r .

D Some technical lemmas

Lemma D.1. Let f(x) ∈ L1(R+,R+) ∩ C1(R+,R+) and let σ ∈ (0, 1) be such that

max
x∈σ[k,k+1]

|f ′(x)| ≤ 2

3σ
min

x∈σ[k,k+1]
f(x), ∀k ≥ 0. (D.1)

Then
∞∑
k=0

f(σk)σ ≤ 3

2

∫ ∞

0

f(x)dx.

Proof. By using Lagrange’s theorem, if we set Ik = [σk, σ(k + 1)], we get∣∣∣∣∣
∞∑
k=0

(
f(σk)σ −

∫
Ik

f(x)dx

)∣∣∣∣∣ ≤
∞∑
k=0

∫
Ik

|f(σk)− f(x)|dx ≤
∞∑
k=0

max
y∈Ik

|f ′(y)|
∫
Ik

|x− σk|dx

≤
∞∑
k=0

2

3σ
min
y∈Ik

f(y)
σ2

2
≤ 1

3

∞∑
k=0

f(σk)σ

which yields
∞∑
k=0

f(σk)σ ≤ 3

2

∞∑
k=0

∫
Ik

f(x)dx =
3

2

∫ ∞

0

f(x)dx.

Lemma D.2. Let p(x) be a strictly positive polynomial function such that limx→+∞ p(x) = +∞
and let f(x) := p(x)e−x. Then there exists σf > 0 such that for any σ < σf , (D.1) holds.

84



i
i

“thesis” — 2022/4/2 — 11:48 — page 85 — #93 i
i

i
i

i
i

3.7. Proof of Theorem 3.2.2

Proof. Let M > 0 be such that f and |f ′| are decreasing, p(x) is increasing and p(x) > p′(x) on
[M,+∞). For M large enough, we have that

p(y)− p′(y)

p(y + σ)
≤ p(y)− p′(y)

p(y)
≤ 1,

which yields that, for σ such that for any σ < 2e−σ/3, i.e. for any σ < W (2/3) ≈ 0.43 where W
is the Lambert function,

p(y)− p′(y) ≤ 2

3

e−σ

σ
p(y + σ). (D.2)

Since for x ∈ (M,+∞), |f ′(x)| = (p(x) − p′(x))e−x, it is immediate to verify that for any
I = [y, y + σ] ⊂ [M,+∞), if σ < 3e−σ/2 from (D.2) we have that

max
x∈I

|f ′(x)| = (p(y)− p′(y))e−y <
2

3

1

σ
p(y + σ)e−y−σ =

2

3σ
min
x∈I

f(x).

By considering

σ ≤ 2

3
argminσ≤0.43 min

I⊆[0,M ]
|I|=σ

minx∈I f(x)

maxx∈I |f ′(x)|
=: σf , (D.3)

we get that for any I ⊂ [0,M ] such that |I| < σf

max
x∈I

|f ′(x)| ≤ 2

3σ
min
x∈I

|f(x)|.

Therefore, if σ < σf , then (D.1) holds for any interval I ⊂ R such that |I| = σ, that is the
thesis

By combining Lemma D.1 and Lemma D.2, we get the following proposition.

Proposition D.3. Let p(x) be a strictly positive polynomial function such that limx→+∞ p(x) =
+∞ and let f(x) := p(x)e−x. Then there exists σf > 0 depending on f such that for any σ < σf
we have that

∞∑
k=0

f(σk)σ ≤ 3

2

∫ +∞

0

f(x)dx.

Corollary D.4. Let us consider the functions

f1(x) = (1 + x4)e−x, f2(x) = (1 + x)(1 + x4)e−x, f3(x) = (1 + x)(1 + x4)2e−x.

Then, for any n ≥ 2 and for any j = 1, 2, 3, we have that
∞∑
k=0

fj

(
k

2n

)
k

2n
≤ 3

2

∫ +∞

0

fj(x)dx.

Proof. The thesis immediately follows from Proposition D.3 by computing σfj from (D.3). Indeed,
in the notation used in the proof of Lemma D.2, if we take Mj = max(Sj) where S is the set of
the positive zeros of fj , it is possible to verify by using a software that σf1 ≥ 1/4, σf2 ≥ 1/4 and
σf3 ∈ [1/16, 1/8). Nevertheless, since

∞∑
k=0

f3

(
k

4

)
k

4
≤ 3

2

∫ +∞

0

f3(x)dx,
∞∑
k=0

f3

(
k

8

)
k

8
≤ 3

2

∫ +∞

0

f3(x)dx,

we get the thesis for any j = 1, 2, 3 and for any n ≥ 2.
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Lemma D.5. For ν ≥ 0, define, for a > 1,

ζν+1 = c12
aνζ2ν .

Then one has
ζν =

1

c12a(ν+1)
(2ac1ζ0)

2ν .

Moreover, if 2ac1ζ0 < 1 and 21−ab < 1, for any b > 0 then∑
ν≥k

bνζν ≤
bk

2a(k+1)−1c1
(2ac1ζ0)

2k .

Proof. The proof proceeds exactly as in [13, Lemma C.3].
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