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ABSTRACT 

In the recent years, a growing interest on Additive Manufacturing (AM) emerged in 

scientific literature. The technology flexibility and agility, that allow production 

without specific tools needs, promoted the AM application in industrial scenarios, 

suggesting the technology to be a disruptive solution to respond quickly to unstable 

and unpredictable demands, possibly revolutionizing inventory management and 

Supply Chain (SC). Despite this, very limited research has been devoted to 

quantitatively analyse how AM can effectively fulfil demands and eventually reduce 

inventory levels. In addition, it has been noted a literature gap between the research 

focused on the AM production efficiency, that selects a batch production for 

optimizing at best the machine capacity, and the literature that investigates the AM 

application on inventory management and SC, that promotes the technique for a 

Make To Order (MTO) or piece-by-piece production. Furthermore, very often, the 

latter provides a generic description of the AM process, asserting many assumptions 

as infinite machine capacity, negligible set up and cool down times, not contemplated 

post processing operations and constant or generic distributed lead times. This work 

has therefore the aim to develop an accurate AM process description, critically 

removing the literature hypotheses and focusing in particular on Selective Laser 

Melting (SLM), to provide an exhaustive evaluation on the AM impact on the 

inventory management, considering a single-item, single-location scenario.  

Markov Chains with different levels of SLM modelling details have been developed 

to estimate the resupply time. It has been obtained that an accurate SLM process 

description can lead to more precise lead time evaluation, sensibly reducing the 

estimation error. Simulation models have been created to assess how AM, used as 

production technique to replenish the stock, can influence the inventory 

management. With the objective to fulfil the literature gap, the mentioned 

production strategies have been studied applying two different continuous review 

inventory policies: the (S-1,S) for MTO, and the (r,Q) for batch production. To 

strengthen the validity of the models, a case of study provided by the Italian Company 

Fubri has been examined. The analysis pointed out that a detailed SLM process 

description, considering all the time phases that the technique requires, can improve 

the selection of the optimal inventory parameters, reducing the total annual 

inventory cost and increasing the service level with respect to a more generic 

modelling. Furthermore, it has been shown that the (r,Q) inventory policy allows a 

reduction of the unitary resupply time and finally of the total annual inventory cost 

compared to the (S-1,S) one. This noteworthy outcome is the consequence of an 

improved optimization of the SLM machine capacity, a proper allocation of the 

production fixed times and a subsequent reduction of the total annual order costs.  
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SOMMARIO  

Negli ultimi anni, la letteratura scientifica ha dimostrato un crescente interesse per 

l’Additive Manufacturing (AM). La flessibilità e l'agilità di questa tecnologia hanno 

promosso la sua applicazione in diversi scenari industriali. L’AM è considerata infatti 

essere una soluzione dirompente per rispondere rapidamente a domande instabili e 

difficilmente prevedibili, e che possa offrire l’opportunità di rivoluzionare la gestione 

delle scorte e la Supply Chain (SC). Ciononostante, sono ancora limitati gli studi 

dedicati all'analisi quantitativa dell’efficacia e prontezza dell’AM in risposta al 

mercato, e di come questa tecnologia possa eventualmente ridurre i livelli di 

magazzino. Inoltre, è stato notato un divario bibliografico tra ricerche sull'efficienza 

produttiva dell’AM, che promuovono una produzione per lotti per ottimizzare al 

meglio la capacità di macchina, e gli studi sull'applicazione dell’AM nella gestione 

delle scorte e della SC, che incoraggiano una produzione Make To Order (MTO) o 

pezzo per pezzo. Si è notato, in aggiunta, come questi ultimi forniscano una 

descrizione generica del processo AM, portando ipotesi come capacità infinita di 

macchina, tempi di set up e raffreddamento trascurabili, operazioni di post-

processing non considerate e lead times costanti o genericamente distribuiti. Questo 

lavoro si pone quindi come scopo lo sviluppo di un'accurata descrizione del processo 

AM, rimuovendo le ipotesi della letteratura e concentrandosi in particolare sulla 

fusione laser selettiva (SLM), per fornire una valutazione esaustiva dell'impatto AM 

sulla gestione dei magazzini in uno scenario mono-prodotto e a singola location.  

Per rispondere a questo obiettivo, sono state sviluppate Catene di Markov con diversi 

livelli di dettaglio nella modellazione SLM per stimare il tempo di rifornimento delle 

scorte. Lo studio ha rivelato che un'accurata descrizione del processo SLM porta a 

una valutazione più precisa del lead time, riducendone sensibilmente l'errore di 

stima. Sono stati quindi creati modelli simulativi per valutare l’impatto dell’AM come 

tecnica produttiva per rifornire i magazzini. Considerando lo scopo di indagare il 

divario menzionato in letteratura, sono state suggerite due politiche di gestione delle 

scorte: (S-1,S) per una produzione MTO e (r,Q) per una produzione per lotti, 

entrambe a revisione continua. È stato possibile rafforzare la validità dei modelli 

sviluppati esaminando un caso di studio fornito dall’azienda Fubri. L’analisi ha 

sottolineato che una descrizione dettagliata del processo SLM, considerando tutte le 

fasi che la tecnica richiede, può migliorare la selezione dei parametri ottimali delle 

politiche di gestione delle scorte, riducendo il costo totale annuo di magazzino e 

potenziando il livello di servizio rispetto a una modellazione più generica. Inoltre, la 

scelta della politica (r,Q) consente una riduzione dei tempi unitari di rifornimento ed 

infine del costo totale annuo di magazzino rispetto a quelli (S-1,S). Questo 

importante risultato è la conseguenza di un'ottimizzazione della capacità della 

macchina SLM, di una corretta allocazione dei tempi fissi di produzione e di una 

risultante riduzione dei costi annui d’ordine. 
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1 Introduction  

1.1 Industrial background: Additive Manufacturing 

technology 

Additive Manufacturing (AM) is a technology that allows the production of physical 

objects adding up material layer-by-layer, line-by-line or surface-by-surface. This 

technology diffusion was possible thanks to the invention of computers, as well as of 

software for Computer Aided Design (CAD) and Manufacturing (CAM) and 

numerical control machines. In fact, AM process starts from the creation of a three-

dimensional model of the desired product using CAD software, considering all the 

details and final dimensions required. It is also possible to generate the model by 

computer tomography or magnetic resonance imaging that directly scan an already 

existing object to produce its digital model. Next, the 3D CAD file is converted into 

the stereolithography format file (STL), which is a discretization of the object surface 

into triangles, creating in this way a document that can be processed directly by the 

AM printing machines. Software dedicated to AM printing slices the digital model 

creating the cross-sections that the manufacturing process would build up, with the 

possibility to set up the scanning mode and scanning patterns. The model is 

subsequently setup on the AM machine, taking care of part locations and 

orientations. It is important to underline that AM technology often requires the 

introduction of support structures, which sustain the overhanging parts of the object 

to be built, avoiding them to undergo excessive stress, and allowing a better 

distribution of the thermal load. After these modelling phase, the AM machine is 

setup: material is loaded, process parameters initialized and often AM machine is 

preheated, especially for those processes that can cause consistent thermal gradients, 

as the ones that require the fusion of metal powder (e.g. Selective Laser Melting). 

Once the setup is completed, the AM machine proceeds printing the object following 

the sequence of layers imposed by the digital file. After production, the printed parts 

are removed from the machine, cleaned and submitted to post processing 

treatments, that depend specifically on the AM technique used. A scheme of the 

described process flow can be observed in Figure 1.1.  

The Additive Manufacturing technology dates back to 1986 with the invention of the 

Stereolithography Apparatus (SLA) by Charles W. Hull, a technique that is based on 

the photopolymerization: a photosensitive polymer resin is scanned and cured layer- 

bby-layer by means of an UV laser. Starting from this first patent, a series of different 

AM technologies were born, such as MIT’s 3D printing process in 1989 and Laser 

Beam Melting (LBM) processes in the early 1990s, followed by the successful 

commercialization of process technologies including Fused Deposition Modelling 
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(FDM), solid ground curing, and laminated object manufacturing in 1991, and laser 

sintering in 1992 (Thompson et al., 2016). This important growth in the AM 

technology is firstly due to improvement in geometric modelling capabilities and to 

the development of new and more performing CAD software, as well as the diffusion 

of computers and CNC machines. Consistent progresses in the technologies were 

gained in 1990s and 2000s with commercialization of new processes as Electron 

Beam Melting (EBM) and the improvement of the already existing ones, concurrently 

with the introduction of software specifically designed for AM printing, as the 

Materialise’s Magic, which is still used. These improvements and the potential that 

the AM technology was showing lead to its application to the production of specific 

tools and prototypes. Therefore, terms like Rapid Tooling’, ‘Rapid manufacturing’ 

and ‘Rapid Manufacturing’ were born. The ability to produce a great variety of 

features with the freedom in creating exactly the desired shape and the lack of need 

of specific tools that AM allowed, stimulated researchers to use this technique to 

make almost just in time a 3D model of the part to produce: this permitted the 3D 

visualization and allowed the testing of the object in terms of shape and design before 

giving it to production. An important application of rapid prototyping is found in the 

biomedical field: in case of complex operations, surgeons often take advantage of a  

Figure 1.1 Additive Manufacturing digital and physical process flow (Thompson et al., 2016). 
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3D model of the body part that needs medical treatment to visualize it and define a 

better  intervention strategy (Banoriya, Purohit and Dwivedi, 2015). 

The growing interest in the Additive technology and the evidence of its potential lead 

to the development of more performing technologies, investments on improving 

quality and reliability of the parts produced and finally, thanks to the expiring of the 

1980s patents, the process diffusion in the market competition. This spurred the 

innovation, increasing the demand encouraging the AM technology diffusion and 

application.  

Nowadays Additive Manufacturing is used in a great variety of fields: aerospace, 

automotive, military, medical and dental industries are just a bunch of the areas 

where the technology finds its applications. Giving some examples, Boeing equipped 

the 777X jet engine with more than 300 parts produced by  GE Aviation (GE Additive, 

2020); NASA made possible to even produce 3D printed part on the International 

Space paving the way to future long-term space expeditions (NASA, 2020) and 

launched a project for creating a rocket combustion chamber thanks to a 

combination of 3D-printing techniques, revealing its success (Ridinger, 2018); many 

examples of customized medical equipment as hearing aids, dental crowns and 

implants, patient-specific prostheses with efficient anatomical alignment can be 

found in the market (Thompson et al., 2016) as well as applications of the technology 

in aesthetic and fashion industry, as 3D printed dresses saw in Iris van Herpen’s 

Haute Couture show, ‘Voltage’ (Materialise, 2013) or the Adidas Futurecraft sport 

shoes made with an innovative Additive Manufacturing technique (Materialise, 

2015). 

The latest frontier in the diffusion in Additive Manufacturing consists in end users’ 

home. In fact, the increasing interest on the technology capabilities allowed a 

reduction of machine investment costs, making the process affordable even for 

common consumers, creating a completely new scenario of personal manufacturing, 

where end users are able to directly produce parts for their needs, opening a new 

future operation perspective (Ryan et al., 2017). 

1.2 Additive Manufacturing as production process: 

technological advantages and challenges 

The evolution of industries depends on innovative and cutting-edge research 

activities associated with manufacturing processes, materials, and product design. In 

addition to the customary demands of low price and best quality, the market 

competition in current production industries requires products that are intricate, 

possess shorter life cycles, exhibit reduced delivery times and involve customization. 

In fact, the current breed of products is very complicated and challenging to design 

(Abdulhameed et al., 2019). Accordingly, there is a strong incentive toward the 
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design, development, and implementation of new and ingenious manufacturing 

processes. 

These market and industrial requests can be satisfied by what the experts describe as 

a disruptive technology in the industry 4.0: Additive Manufacturing. The great 

potential that this technology offers had led to an increasing interest in its study. This 

can be appreciated by looking at the results of Ryan et al., (2017) work. The authors 

carried out a systematic literature review to appreciate the AM attention on research 

in terms of application of the technology in different production scenarios, starting 

from the technology birth until 2016. From Figure 1.2 it is possible to appreciate an 

increasing interest in AM application, especially since the old technology patents 

expired, making AM more accessible.  

Figure 1.2: Number of publications regarding AM applications in production scenario per year (Ryan et 
al., 2017) 

In addition, a sensible industrial diffusion of AM processes is taking place nowadays: 

according to the annual worldwide report on the progress of AM technologies 

produced by Wohlers Associates (Wohlers Report, 2012), the global revenues from 

AM production and associated services grew from $2.25 billion in 2012 to more than 

$6 billion in 2016 and the forecast is to reach $21 billion by 2020. In 2012, just 28% 

of AM components were functional and therefore used in a real industrial context, 

while in 2016 this percentage went up to almost 34% (Gisario et al., 2019). 

Furthermore, companies willing to invest in this technology keep increasing. Indeed, 

Marchese, Crane and Haley, (2015) state that 24% of manufacturing firms use AM in 

some form, a percentage that rises to 50% among Supply Chain leaders and affirm 

that this percentage is going to grow in the subsequent years.  

This growing interest in AM technology and its application in industrial production 

can be justified by looking at the benefit that this technology brings with respect to 
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traditional manufacturing. One of the most mentioned advantages is the design 

freedom and flexibility that AM allows without the request of specific tools. For 

example, AM has been used to create complex internal pathways for acoustic 

damping devices, optimized fluid channels and improved conformal cooling. 

Conformal cooling channels follow the external geometry to provide more effective 

and consistent heat transfer: complex geometry and internal features that 

conventional manufacturing techniques like milling have difficulties to obtain, are 

realized thanks to AM technique, leading to more uniform temperature distribution 

and improved quality (Figure 1.3) (Thompson et al., 2016).  

The design flexibility that AM provides allows a great degree of customization in the 

final product. An example is offered by the biomedical field, where AM is used to 

produce patient-specific models to facilitate surgical planning to improve accuracy 

and efficiency, as well as a wide variety of personalized and tailored products 

including hearing aids dental crowns, implants, customized prostheses (Figure 1.4).  

An additional advantage can be referred to topology optimization. It is a numerical 

approach that identifies where material should be placed in a given domain to 

Figure 1.3: Thermal conditioning ring with milled colling channels enclosed by a welded cover (left) and 
with additively manufactured conformal cooling channels (right). Temperature plots from finite elements 
model in the corresponding components (Thompson et al., 2016). 

Figure 1.4: Titanium implants for the skull (left) and pelvis (right) produced using an EOSINT M 280. 
(Thompson et al., 2016). 
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achieve a desired functionality (e.g. stiffness) for a given set of loads and constraints, 

while optimizing for properties such as minimal material usage/weight or uniform 

stress distribution (Thompson et al., 2016). For example, AM lattices can be used to 

produce high stiffness low weight structures really used in the aerospace field. In 

particular, AM implementation can reduce the critical “buy-to-fly” ratio, which 

represents in aeronautical field the amount of raw material used and the final 

component weight. Generally, this term is quite high because of hard manufacturing 

materials as titanium alloys that the sector requires. An example is provided by 

Lockheed: they have a buy-to-fly ratio of 33:1 traditionally machining a bleed air-leak 

detect (BALD) bracket using subtractive manufacturing. This ratio was brought  

down to nearly 1:1, reducing bracket manufacturing costs by over 50 percent thanks 

to the introduction of AM (Marchese, Crane and Haley, 2015). In addition, because 

of the lighter structures that can be designed, it is possible to obtain a weight 

reduction of 70% (Ghadge et al., 2018), leading to tangible benefits as fuel saving 

during utilization (Togwe, Eveleigh and Tanju, 2019). Finally, this advantage has 

implications even in supply chain in inventory management, transportation, 

warehousing, and purchasing: lower order quantities mean less transportation, and 

lower space requirements for raw materials (Kunovjanek and Reiner, 2020).  

Finally, AM can simplify process flow. In fact, parts that are made by different sub-

components, can be produced as just one piece. This reduces the time requested for 

the assembly process, the need of welding that can be critical for mechanical 

properties and can make the production process as well as the supply chain leaner. 

At the same time, manufacturers do not need to store and maintain different moulds 

to produce different components. Marchese, Crane and Haley (2015) report a case of 

a manufacturer that made use of die casting and then collected the parts for the final 

part assembly: they estimated an investment in die cast tooling accounted for 91 to 

99% of total part cost, depending on production volume. Therefore, AM can lead to 

a cost reduction, being competitive for low-volume production.  

Despite all the advantages reported, AM is still a quite new technique and possible 

limits related to the need of additional research can be found. In particular, the last-

mentioned advantage of assembly reduction can also show drawbacks. In fact, 

consolidating all the sub-components in just one part would require replacing the 

whole total component in case of failure, while the assembled one could have just one 

of its parts replaced. For sure having lots of component means keeping high 

inventory level, so strategies to balance both of these elements shall be discussed 

(Gisario et al., 2019). Furthermore, complains are related to the final part quality 

and mechanical properties. In fact, the components produced with AM generally 

shows anisotropic properties strictly related to the build direction.  

One common method to address these anisotropies is to modify the part or assembly 

orientation to minimize their impact. Other options include finishing operations 

after each layer (Thompson et al., 2016). 



 
 INTRODUCTION 
 

7 
 

Additionally, the layers made by AM are rarely, if ever, seamless. This leads to an 

object roughness strictly connected to the length scale and layer thickness used in 

discretization. For this reason, AM parts often require finishing operations. Another 

peculiarity of AM process is the need of support structures. Overhanging structures 

that are not sustained during production can collapse, having as consequence the 

total part production loss. Therefore, changes in build part orientation or the 

introduction of support structure are requested (Figure 1.5).  

Furthermore, support structures help to improve the thermal distortion caused by 

the thermal gradients generated during the manufacturing process (Jiang, Xu and 

Stringer, 2018).  These additional structures have to be subsequently removed in post 

processing operations (Gisario et al., 2019).  

Finally, it should be underlined that, in case of shift in production from conventional 

manufacturing (CM) to additive manufacturing, it is required to test and certify the 

final part mechanical and thermal properties, especially if it is a critical component. 

This is associated to cost spent in test phase, as well as time to be waited before the 

component launch on the market. Additionally, the transition would imply the 

purchase of industrial AM machines, that can be very expensive.  

To sum up, a transition to AM technology potentially comes with several challenges. 

For sure the capability and knowledge to produce properly with this technique should 

be acquired, and still barriers as “limited variety of materials,” “difficulties regarding 

the development of new materials” and “insufficient quality of (metal) parts” are 

preventing AM diffusion (Durach, Kurpjuweit and Wagner, 2017). Despite this, 

experts are confident that most of these barriers can be overcome in the near future 

thanks to technological improvement and a decrease in AM production cost is 

Figure 1.5: Closeup of build support strategies, (a) successful build with support, (b) failed to build 
with no support, (c) successful build with self-supporting structure (Thompson et al., 2016) 
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strongly expected. For this reason, the already appreciated trend in AM growing is 

supposed to be further enhanced, leading to completely exploit all the technological 

advantages that this technique can bring, both in production but even in inventory 

management and eventually on the whole supply chain.  

1.3  Problem introduction: Additive Manufacturing and 

Supply Chains  

It has been underlined that AM can bring numerous advantages in terms of design 

flexibility, fast response to changing requirements and to customers specific 

requests. The number of scientific researches on AM is proliferating, especially after 

the expiring of hold patents, leading to a wider technology diffusion. Despite this, 

most of them focus on technological aspects, without providing insights on a more 

managerial point of view, as the AM application in production and its impact on the 

supply chain.  

According to Costabile et al. (2016)  more than the 50% of the AM literature focuses 

on ‘AM overview’ and ‘AM technologies’ and around the 30% is about AM materials 

and technological parameters selection to obtain target quality and mechanical 

properties on the final produced part. Only the 10% of the AM research investigates 

the technology impact on supply chain cost structures and performance. The scarcity 

of literature regarding this last topic would prevent a more conspicuous diffusion of 

AM technology in production, considering possible transitions from Conventional 

Manufacturing (CM) to AM. In fact, it should be considered that manufacturers 

always struggle in balancing high capital and production costs, while on the other 

side they lack of incentives robust enough to evaluate AM production and its impact 

on supply chain. Furthermore, the AM is a quite new technology: born in the ’80, it 

starts having real production diffusion just in the recent years. This is due to the 

constant technological evolution that allows manufacturing improvement and costs 

reduction. Anyway, this technological progress has as drawback that the results 

reported in literature may be not so up to date and get old really rapidly, leading to 

Table 1.1: Benefits and Limitation of AM technology. 

Benefits and Opportunities Limitations 

Flexibility in design and operations Anisotropic mechanical properties  

Customization Not high level in roughness 

Topology optimization Tests and certifications requested  

Weight reduction and less wasted 

material 
Need of support structure 

Assembly reduction Limited raw materials 

No need of tools or moulds High machine costs 

Reduction of lead time and inventory  
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misguided conclusions. Therefore, continuous research and improvement are 

needed to further investigate the AM potential and quantitatively appreciate the 

impact of the technology. For this reason, the aim of this work is to provide a further 

insight in AM application in supply chain and production, with particular focus on 

inventory management. Regarding these areas, three main topics of interest are 

identified in literature:  

• AM production efficiency 

• AM impact on single-location inventory  

• AM impact on the whole supply chain 

Literature reports that AM can bring numerous advantages on the inventory 

management and eventually on the supply chain, as annual inventory cost reduction, 

lowered lead time and decrease in transportation, assessing the technology potential 

over the traditional manufacturing. Despite this, it has been noted that the analysis 

performed in the listed topics of interest is based on different assumptions. In fact, 

very often the technological choices suggested for an efficient production are 

different from the ones applied in inventory and supply chain management. One of 

the most relevant difference is the production strategy. Indeed, researches regarding 

AM impact on inventory and supply chain often select the AM technique for on 

demand or make to order production. This means that the stock held is equal to zero 

or to a minimum safety stock and manufacturers would wait until demands arrive to 

start production. On the contrary, studies focused just on AM production reveal that 

building more pieces in one job would optimize the SLM machine capacity, 

suggesting that collecting a proper number of demands before starting production 

would dramatically reduce the AM production time and costs.  

Furthermore, literature centred on AM production describes the AM technique in a 

detailed way, focusing on the different time steps that the technology requires. 

Indeed, these publications consider the set up and cool down times that the machine 

requests, but also post processing treatments that the manufactured parts have to 

undergo, and finally the limited machine capacity that characterize this process. 

These types of details are frequently neglected in a supply chain perspective, where 

the AM lead times are considered constant or described by comprehensive statistical 

distributions, the post processing is not always remarqued and the machine capacity 

is often infinite.  

It has been therefore noted a gap between AM production’s field of research and the 

application of AM in production when the aim is instead the evaluation of the impact 

on supply chain and inventory management. In this last area, in fact, lots of 

assumptions are made in describing AM production. These assumptions, that are 

mostly removed in a pure production contest, may therefore have an important 

impact on the final choices and results of inventory and supply chain management.  
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1.4 Aim of the work 

In the previous section, it has been underlined a literature gap in term of 

hypothesises and modelling details when the research focus regards mainly the AM 

production, and when instead the technology is employed in a wider and managerial 

context, as the inventory and supply chain ones. In particular, to deal with the first 

topic, an accurate description of the AM production process is provided, while for the 

second one a more comprehensive perspective is given, often making assumptions in 

order to simplify the modelling of a wider scenario. Having noted this discrepancy, it 

is considered interesting to further investigate if a detailed technology description 

could also have repercussions on decisions at inventory and supply chain 

management level. In particular, this topic is of specific interest because AM is often 

acclaimed in literature as a favourable technology that can bring numerous benefits 

on inventory and supply chain management, as stock reduction, annual cost 

decrease, lead time lowering and transportation requirements diminution with 

respect to conventional manufacturing. 

The technology analysed to answer this question is the Selective Laser Melting 

(SLM), defined one of the most promising and diffused AM technique, able to 

produce parts effectively used in different industrial field thanks to the obtained final 

mechanical properties and to the possibility of using different raw materials, one 

above all, metal powder. In the modelling, all the process stages would be considered, 

starting from the different time steps that the technique requires, but also post 

processing operations and limited machine capacity. A specific analysis on the SLM 

production time modelling is performed, evaluating both detailed and 

comprehensive solutions to represent it.  

AM would be then applied to resupply single-items, single-location inventory in two 

different scenarios. The first one considers the (S-1,S) inventory policy. This choice, 

that is often selected in literature, would represent the “on demand” or “Make to 

Order” (MTO) production scenario: in fact, when using the (S-1,S) model with 

unitary demand size, an order of unitary size is issued every time a demand arrives 

to replace the stock. On the contrary, the second scenario would model the lot size 

production, always preferred in case of efficient AM production. In this case, the (r,Q) 

inventory policy is chosen: an order of batch size Q is issued every time the inventory 

level reaches the reorder point r. 

In order to compare these two different scenarios, a proper AM inventory cost model 

is developed, tailored for the SLM technique. 

In conclusion, this works sets as a goal a systematic investigation of the SLM 

production process, aiming to establish a framework that could capture the impact 

of AM system on managing the inventory comparing different inventory policies, and 

providing an exhaustive and quantitative evaluation of SLM application for a single 

item, single location scenario. 
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2 State of the art  

2.1 Additive Manufacturing processes 

Nowadays, several Additive Manufacturing technologies are available, with 

differences in the raw materials used and in the specific processes followed, but 

mostly sharing the same principle for productions: layers of materials are built once 

per time up to the completion of the final part, rather than subtracting materials as 

conventional manufacturing does.  

To give a general overview on the Additive Manufacturing processes, a distinction is 

based on the raw material used. In fact, it is possible to find:  

• Liquid based AM  

• Solid based AM  

• Powder based AM  

For the first category, the most known processes are: 

• Stereolithography (SLA), which is the first created AM technology and it is 

based on curing photopolymer liquid resins line by line thanks to an 

ultraviolet (UV) laser. 

• Polyjet, which is again based on photopolymerization but in this case the raw 

material is placed using more precise jetting laser heads, following a 

technique really similar to normal inkjet printing method, leading to an 

evolution in term of accuracy and quality.  

• Digital Light Projection (DLP): in this case, the resin is cured surface by 

surface, thanks to the projection of the entire cross-section of the final part by 

means of UV light.  

The general applications for liquid-based AM techniques are prototypes for design 

analysis and functional testing, prototype tooling and models for conceptual 

visualization with a competitive build time and cost. Because of the raw materials 

generally poor mechanical properties, the parts produced are rarely used as final 

commercial components.  

The solid based AM technologies are quite different one from another in terms of 

processes, but all have the basic common feature of using solid materials to create 

the final part. The most diffused ones are: 

• Fused Deposition Modelling (FDM): this technique is based on the extrusion 

of a heated solid filament of a thermoplastic material, which is deposited line 

by line in a semi-liquid state. This technology is one of the cheapest and this 
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characteristic has allowed its diffusion even at amateurs’ home. Even thought, 

the final part quality is quite poor. 

• Solidscape benchtop system: it is an evolution of FDM which still uses heated 

thermoplastic material for creating the final part but, in this case, deposited 

thanks to two ink-jet type print heads, one for the final part’s material and 

one for the support’s material, generally made by wax, which is easier to 

remove.  

• Laminated Object Manufacturing (LOM): the raw materials are paper or 

plastic sheets that are cut by a laser or a knife and glued together layer by 

layer.   

It is clear that, because of the limited solid materials that can be used and because of 

the poor accuracy obtained, these types of processes find their applications in 

prototypes and rapid tooling, but they have the advantages to be very simple, cheap 

and versatile, with still a great margin for improvement, being the Solidscape 

benchtop system an example.  

The last family of AM technology is the one that uses powder as raw material. The 

most employed commercially are: 

• Inkjet printing binder, better known as 3D printing: this technology works 

creating layers of materials, mainly plaster (the most used is Gypsum), that 

are glued together by the deposition of a binder by the printer. This is a really 

simple and versatile technique, that allows high speeds and it is often used for 

producing footwear, packaging and medical equipment. Anyway, the surface 

finish is not so high and, because the powder is just glued together, the final 

object can be weak.  

• Electron Beam Melting (EBM): in this process, a high power electron beam is 

exploited to selectively melt the powder under vacuum conditions. The 

process guarantees superior productivity in comparison with Selective Laser 

Melting or Sintering, but with lower quality in terms of surface roughness and 

accuracy. Commercially, machine cost and the energy power consumption are 

high. The main application field is the biomedical one (e.g. prosthesis 

manufacturing). 

• Selective Laser Sintering (SLS): this technology follows a workflow really 

similar to the inkjet printing binder, but here the raw materials, which are 

generally polymers, are sintered by means of a laser beam. Indeed, the 

temperature increment generated by the laser-material interaction is 

sufficient to induce grain bonding just below the melting point. This 

technique leads to sufficiently good final parts that require little 

postprocessing. Anyway, the surface finishing is not so high and the polymeric 

materials find just a limited variety of applications in the industrial 

environment. 
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• Selective Laser Melting (SLM) or Direct Metal Laser Melting (DMLM): the 

process is really similar to SLS but here the metallic powder is selectively melt 

by a laser beam. Hence, this procedure allows to obtain higher density 

components. Considering its capability in terms of final part quality and raw 

materials that can be used, this technology finds application in multiple 

industrial fields, as aerospace and automotive. 

Among the described technologies, SLM is considered one of the most promising 

processes that can lead the future AM market (Durach, Kurpjuweit and Wagner, 

2017). In fact, it can operate with metals but also ceramics and composites, 

allowing the production of parts with critical applications, manufacturing tools 

and spare parts, providing high accuracy, complex geometries (like tools with 

undercuts and channels for conformal cooling) and an automated procedure.  

2.2 Selective Laser Melting technology 

Literature reports that SLM has become more and more popular in different fields as 

aerospace and automotive, defence and medical. This diffusion is due to its many 

advantages over traditional manufacturing, as the possibility to create lighter 

components, have a very low material wastage, and, not requiring specific tools or 

moulds, it provides flexibility, high geometrical freedom and possibility to 

customization (Nyamekye et al., 2017). The affirmation of this technology in a variety 

of manufacturing areas and its increasing use for final parts commercially available 

on the market are the reasons for which DMLM is the Additive Manufacturing 

technique studied in this work.  

2.2.1 The SLM production process 

SLM exploits a high-power laser beam to selectively scan materials in the form of 

powder feedstock. The laser beam is generated in the laser source, which is usually 

an active fiber laser (such as Yb:glass fiber laser, λ=1070nm) pumped with another 

diode laser. Then, the laser beam is transmitted through an optical chain to the 

powder bed surface. The optical chain usually comprises an optical fiber, 

for beam propagation; collimating lens, for beam collimation; mirrors, for beam 

deflection; galvo mirrors (in the scan head), for the beam displacement control; F-

Theta lens, for beam focalization. The laser beam, transmitted by the optical chain, 

selectively scans and melts a thin layer of powder according to a 3D computer-aided 

design model. A new layer of powder is distributed above the previously scanned 

layers and the process continues until the final object is built. According to the 

layerwise principle of this technology, the production of complex near net shaped 

products is enabled. Figure 2.1 depicts the process schematisation.  
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Being the melting process crucial for this technology, some thermal considerations 

have to be pointed out. During laser processing, the material is rapidly heated up and 

melted. The short laser-material interaction times combined with high cooling rates 

typical of this process, usually induce large thermal gradients within the parts, which 

influence the microstructure evolution and the residual stresses left after cooling. In 

particular, the latter may trigger unwanted defects, such as cracking, that are 

deleterious for the mechanical properties of the final parts. Furthermore, the 

previously melted and cooled layers of the 3D object continuously experience the 

thermal cycles owing to the heat dissipation inside the part. This effect may lead to 

variable mechanical properties over the part height. Therefore, the high thermal load 

and the sometimes long printing time (some pieces require even a week to be printed) 

create the need to actively control the temperature. The typical solution is the 

adoption of baseplate preheating. This technique involves the preheating (such as 

resistive heating) of the substrate on which components are built, usually up to 

200°C/300°C. This operation increases the setup time of the machine before 

building of an amount of time that depends on the preheating temperature selected 

and on the height and material of the substrate on which parts are built. Finally, if 

the preheating is performed, the SLM machine needs to undergo to a cool down stage 

once the building process is completed, to re-establish the ambient temperature.  

Moreover, during processing, it is of a paramount importance to work under proper 

environmental conditions. Indeed, high oxygen contents and spatter due to melt pool 

instability may reduce drastically the final part’s quality. Therefore gas recirculation, 

such as argon or nitrogen, are used to work in an inert atmosphere (King et al., 2015). 

Produced part 

Figure 2.1: Selective Laser Melting process (Marrey et al., 2019). 
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2.2.2 SLM production time steps 

The production process procedures that the SLM technology follows are associated 

to different time step durations that characterize the technology. Furthermore, it 

should be underlined that the machine setup and cool down require to reserve a 

certain amount of time both before and after the printing process. Considering this, 

it is possible to describe the SLM technique as a sequence of time-steps that have to 

be followed (Figure 2.2):  

i. Setup time: in this phase, the machine is prepared for the build job. The STL 

parts file is imported and scanning strategy and process parameters are 

assigned. The substrate is positioned, a new gas filter is placed and the powder 

tank is refilled with new feedstock, if needed. Finally, the baseplate is 

preheated and the protective gas injected to create the appropriate inert 

atmosphere. 

ii. Layer scanning: this time is spent on selectively scanning the cross-section 

area of the manufactured part. 

iii. Recoating: this time step is related to the spreading of the layer of powder for 

the subsequent layer generation, once the previous step is completed. 

iv. Cool down and finishing operations: in this time phase, if the preheating is 

performed, the machine is slowly cooled down to reduce the thermal gradient 

with the environment. Subsequently, the plate, together with the printed 

parts, is then extracted. Finally, the machine is cleaned from the powder 

excess and prepared for the next operations. This would also require changing 

the filter used for the gas injection and periodically substitute the powder 

spreading recoater and build plate because of wear out. 

After having completed the iv. step, the machine is idle again and ready to start a new 

job. 

Actually, there are still few researches in literature with the aim of creating a generic 

model in order to proper estimate the time intervals requested for each step in SLM.  

Figure 2.2: SLM production process steps (Images from Renishaw website). 
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Examples are given by Zhang et al., 2015 that used the Grey Theory integrated with 

a Bayesian form in order to deal with the limited availability of input parameter data 

set and to express the relationship between the part build time and its manufacturing 

and modelling factors; Di Angelo and Di Stefano (2011) exploited the Artificial Neural 

Network flexibility to manage the complexity in defining all the build time factors 

and their interdependence for the creation of a general model suitable for different 

AM processes; Zhang and Bernard (2014), Baumers et al. (2011), Brika et al. (2017) 

opted for analytical model, collecting data for parameters estimation and focusing 

only on SLM process; Di Angelo, Di Stefano and Guardiani (2019) extrapolated data 

and information directly from the GCode instruction used for governing AM 

computer numerical control (CNC) machines combined with Python code in order to 

find a quick, efficient and accurate method to determine the production time.  

Despite this last cited publication that provides an excellent estimation of the build 

time (built time estimation error almost null), but that anyway has as a prerequisite 

the availability of the CAD model of the specific product to be manufactured, the 

build time estimation error remains quite high, reaching up to 20% (Di Angelo and 

Di Stefano, 2011). This is due to the high number of parameters that have to be 

considered at the same time, which have a great variability depending on the AM 

technology and specific product to be manufactured. Examples are the printing 

speed, the part size, the layer thickness and the build orientation (Abdulhameed et 

al., 2019). Therefore, research is still needed to define a more accurate build time 

estimation model that can provide relevant information about SLM technology or 

even about a generic AM process: these data could be really useful and noteworthy, 

for example, in case of AM manufacturing scheduling and planning.   

2.3 The batching problem 

An interesting topic that emerges from literature is the AM production efficiency. In 

fact, also for this newer technology and as conventional manufacturing, studies are 

focused on the production optimization to reduce the total production time, the 

material wastage and the energy consumption.  

Regarding the AM technology studied in this work, SLM, one first important 

consideration concerns the building time. In fact, every time a job is run, set up time 

and cool down time should be waited, no matter how many pieces would be printed. 

This means that if the production is run for just one part, this results in waiting every 

time that these two phases are performed, allocating their time interval totally  to the 

production time of only one part. Another relevant insight is linked to the time 

required to spread the powder for every layer: if the part manufactured is just one 

and small with respect to the building plate, and considering that the SLM machine 

would spread the powder anyway all over the building plate, most of the time would 

be spent to distribute the metal powder in areas that would be not printed. Knowing 
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that the AM parts are made of a quite high number of layers, this leads to a 

considerable loss of time (Rickenbacher, Spierings and Wegener, 2013; Piili et al., 

2015). 

In addition to the mentioned considerations about a possible waste of building time, 

some studies underline the disadvantages in terms of energy consumption in case of 

unitary piece manufacturing. In fact, the machine set up and cool down, responsible 

of the control and regulation of the build chamber temperature, as well as the 

creation of a proper atmosphere by means of specific gas injection, have specific 

energy requirements for a quite long period of time that would be associated to the 

production of just one piece. An example is provided by Piili et al., (2015) research: 

they reported that filling the building chamber with the maximum number of pieces 

possible could lead to a reduction of the energy consumption cost per piece ranging 

between the 80% and 90% because of the distribution of the fixed setup and cool 

down requirements on all the pieces in the building chamber. 

Furthermore, it should be remembered that in SLM the majority of the unmelted 

powder in the building chamber can be recycled, but a certain percentage is wasted. 

This is due to the fact that the really high temperature produced by the laser source 

can partially melt also the powder around the surface to be scanned and the high 

temperature atmosphere can damage the remaining raw material.  Additionally, 

during the process it is possible that spatters are generated, contaminating the 

unmelted power. Finally, part of the powder not melted is lost during the building 

plate extraction, powder recycling and cleaning operations. For this reason, it is 

generally considered a scrap factor in order to estimate the percentage of powder not 

melted that cannot be reused. It can be pointed out that if many pieces are printed, 

the not melted powder is less, and therefore also the wasted material. Knowing that 

the metal powder used in SLM is quite expensive, this reasoning would lead to a 

sensible reduction of the cost of the scrapped raw powder.  

The described considerations generate as a consequence the idea of starting a 

production by batches: this would mean to collect a certain number of demands and 

manufacture the different pieces all together, placing them in the same building 

chamber. This would lead to allocate and distribute the set up and cool down time on 

a higher number of pieces, as well as optimizing the time step related to the powder 

spreading: if more parts are present on the same building plate, the fixed time 

requested by the recoating blade to distribute the material in every layer would be 

now divided and allocated on a higher number of pieces. In addition, the energy 

consumption in the set up and cool down phases would be shared by all the parts 

present in the machine, reducing the total energy request for every unit. Finally, the 

percentage of scrapped material would be reduced. 

The literature reports the advantages of Additive Manufacturing batch production in 

terms of both building time and energy consumption saving, leading finally to a 
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reduction of production costs. Nyamekye et al. (2017) studied the energy 

requirements and efficiency in case of Powder Bed Fusion (PBF) printing, 

considering the whole phases of the process: preheating, printing and cool down. 

They obtained that the energy consumption per piece decreases if several 

components can be built simultaneously. Piili et al (2015) compare the SLM 

production in case of one part per build and in case of the completely filled build 

platform. They report that the time saving in case of batch production is around the 

80/90%, compared to the unit production one.  Rickenbacher, Spierings and 

Wegener (2013) underline that printing more than one part in the same job can lead 

to a reduction up to 40% of the time required for powder spreading together with the 

one spent in scanning strategy and auxiliary processes, as parameters loading and 

adjusting. In fact, because of the simultaneous building of parts, the coating time can 

be divided on the number of parts printed, and more efficient scanning strategies can 

be used. Baumers et al. (2011) focused their research on the evaluation of possible 

energy saving considering batch manufacturing. Comparing the energy requirements 

for printing a single part per time or a number of parts in order to saturate the 

machine capacity, authors found savings of 21.7% and 28.06% for each part built in 

case of batch production, depending on the SLM machine used. This is motivated 

considering that extensive energy investments are related to set up and cool down 

phases that are shared in case of multiple parts manufacturing, leading to a more 

efficient machine utilization.  

Another interesting consideration that batch production can allow is related to the 

cost calculation. One of the first attempt in filling up the build plate in order to utilize 

its maximum capacity was provided by Hopkinson and Dickens, (2003). They 

studied the cost related to STL, FDM and SLS which share a similar process to SLM, 

placing a large number of parts in each build job to minimize the final part cost. 

Because the costs were allocated already considering the maximum capacity 

utilization, the results suggest the absence of a relationship between unit cost and 

build volume utilization (Figure 2.3).  

Figure 2.3: Constant and quantity dependent unit cost models in the literature for Laser Sintering 
technology (Baumers and Holweg, 2019). 
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A further development in the model was provided by Ruffo, Tuck and Hague (2006) 

that presented a detailed cost structure for SLS considering the impact of sub-

maxima capacity utilization on unit cost, allowing in this way the possibility to 

establish a relationship between the number of parts in a job and the production cost. 

From Figure 2.3 it is possible to note that the unit cost decreases adding more parts 

in the building chamber. The peaks are showed whenever it is requested to add a new 

vertical layer to insert a new part in the job. Overall, this model development proved 

the effectiveness of batch production, with a cost reduction when the AM machine 

and the different overlapped strata printed are saturated. 

Similar considerations are suggested by Baumers and Holweg (2019), that studied 

different packing configurations in order to fully exploit the building chamber 

volume in case of SLS technology. They observed a unit cost decrease of 79% in case 

the horizontal plate is fully occupied (Figure 2.4b), and a 52.2% considering possible 

vertical stacking of the piece produced (Figure 2.4c).  

 

 

Figure 2.4: Build volume allocation and capacity utilization in the additive manufacturing process 
(Baumers and Holweg, 2019). 

The mentioned decrease in unit production cost considering batch printing 

stimulated an increasing interest in literature in a proper organization and 

optimization of the AM batching production. Examples are given by the works of Fera 

et al. (2018), Li and Zhang (2018), Chergui, Hadj-Hamou and Vignat (2018) and 

Kucukkoc (2019) that have as a common general aim the creation of algorithms able 

to determine the optimal batch size and solve scheduling problems. In this way, the 

utilization of the machine can be maximized, the production makespan is reduced at 

minimum, having as consequences the total production costs reduction and an 

increased efficiency in manufacturing operations. 

Literature therefore suggests that, in order to maximize the SLM machine utilization, 

the strategy of printing many pieces inside the building chamber is successful. In fact, 

in this way the set up and cool down times and the time for spreading the powder can 

be allocated to the number of pieces produced, optimising the total production time. 
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Furthermore, energy savings are reported, as well as a reduction of the unitary 

production cost. Therefore, it can be stated that batch production is the promoted 

choice to have an efficient AM production. From a technological point of view, it is 

reminded that anyway, placing many pieces in one job introduces the problem of 

maintain high part quality: in fact, it is possible that spatters generated during the 

printing phase can contaminate the unmelted powder, creating possible defects in 

the components to be built. In this respect, further test on the final batch properties 

should be performed to confirm the parts reliability.  

2.4 AM for inventory management  

Managing inventory in complex supply chains scenarios is a multifaceted challenge. 

Forecasting product demand, estimate lead times, predict components weekly 

request are some of the problems that inventory experts have to deal with in order to 

set adequate stock levels. These issues are further enhanced when working with parts 

with erratic and unstable demand and long lead times. The often chosen solution to 

overcome this problem is to produce following the make-to-order policy (Chen et al., 

2019). Anyway, this can cause a loss of protection in case of unexpected issues, having 

as consequence to carry extra-inventory as backup items. Although this last solution 

can minimize the risk in case of disruption or request of emergency parts, it 

significantly increases the capital tied up and the parts can become obsolete. An 

example of a category of components that are subjected to such problems are spare 

parts: these items are used to maintain equipment or original product in operating 

conditions and are requested both in case of preventive maintenance and corrective 

maintenance. This means that parts demand can occur when the component reaches 

its expected life or when it breaks down. This leads to intermittent and unstable 

demands, causing difficulty in proper managing the inventory. The consequence is a 

quite high inventory cost or an excessive amount of spare parts stock. Airbus 

maintains a 36,000-square meter warehouse for spare parts in Hamburg, Germany 

(White and Lynskey, 2013). The United States (U.S.) military reports spending in 

2009 $194 billion on logistics operations and its spare parts supply chain with $104 

billion spent on supply, $70 billion budgeted for maintenance, and $20 billion 

budgeted for transportation (Khajavi, Partanen and Holmström, 2014). Spare parts, 

which increase inventory costs, may be used infrequently and can become obsolete 

due to innovation (Liu et al., 2014). The U.S. Navy estimates the cost of obsolescence 

to be $750 million annually (Khajavi, Partanen and Holmström, 2014). During a 

recent conflict, the Osprey V-22 program had 12 aircraft deployed and spare parts for 

36 aircraft on-hand; however, only 13% of those parts were needed (Gertler, 2010; 

Togwe, Eveleigh and Tanju, 2019).  

This growing cost of inventory stock is a significant operational challenge that firms 

can manage by taking innovative steps. Hence, the promotion of an improving 

strategy that allows flexibility and an agile approach, capable of delivering 
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components with reduced lead time and suitable for lumpy and unstable demand is 

pursued. For this scope, Additive Manufacturing is seen as a possible effective 

solution. In fact, its capability in producing complex and high customized objects on 

demand would facilitate firms in delivering what the customer needs when he needs 

it. Therefore, AM technology’s potential to revolutionize manufacturing  as 

underlined in scientific research (Sirichakwal and Conner, 2016) and its unique 

capabilities could offer unprecedented opportunities for firms to improve their 

inventory efficiencies. 

Regarding the possible application of AM in inventory management, literature offers 

different perspectives and research. The most significant ones for the scope of this 

work are reported in the following paragraphs.  

AM impact on lead time, holding inventory and stockout risk  

Sirichakwal and Conner (2016) studied the implications of the introduction of AM 

for resupply spare parts inventory in an aeronautical scenario. This industrial field is 

often defined critical for its lumped and uncertain demand of components, and also 

for the request of emergency parts that, if missing, lead in the airline industry to the 

grounding of airplanes. Authors studied how AM could deal with these issues. They 

used the (S-1,S) inventory policy for inventory replenishment using AM in 

production. Furthermore, they considered a constant lead time for the spare parts to 

arrive to the stock. Authors observed that the introduction of AM allows a reduction 

in holding cost. This is due to the possibility to stock less expensive and bulky raw 

materials with respect to the conventional manufactured final parts. The 

consequence is having the opportunity to store more at the same cost, leading to a 

reduction in the stock out risk. In addition, they affirm that AM can decrease the lead 

time, providing a reduction of the holding inventory. This may have as drawback an 

increase of stockout risk, and therefore a proper balance between the combined 

contributions of cost and lead time reduction in suggested. They affirm anyway that 

under any circumstance, the total inventory cost is reduced thanks to the positive 

effect brought by AM introduction.   

Parallel use of AM and CM for reducing inventory cost 

Knofius, van der Heijden and Zijm, (2019) used stochastic dynamic programming 

and numerical experiment to assess if a transition to AM becomes profitable for low 

volume spare parts business. In particular, they used as a case study a radar system 

component with a low demand that may require even more than half a year as 

replenishment time with CM techniques. They obtained that moving to AM leads to 

a cost reduction of 35% considering a service horizon of 8 years. This is due to the 

possibility of discarding CM tools and, thanks to a just in time production and 

therefore a relatively short replenishment time, to a reduction in stock level and 

stockout risk. In particular, they pointed out that saving holding cost is the primary 

benefit of the transition to AM, caused by the reduction in lead time and in the 
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backorder probability. An additional interesting consideration is linked to the 

possibility of dual sourcing, so AM and CM used in parallel, as a viable solution in 

case of high initial AM cost per piece. In this scenario, they showed that CM would 

be used for regular parts, and AM for emergency ones: this cause the reduction of the 

stock while the high AM purchased cost is maintained within limits, until the new 

technology becomes completely profitable.  

Switchover from TM to AM for spare parts resupply  

Heinen and Hoberg, (2019) aimed to extend the literature perspective on the impact 

of AM introduction to manage spare parts inventory in the aerospace sector. In 

particular, they considered a very large portfolio of spare parts to understand the 

volume of parts that can be produced with AM instead of CM to reduce the total 

inventory cost. For modelling the inventory, they used (r,Q) policy for Traditional 

Manufacturing (TM), assessing that conventional manufacturing often requires set 

up cost, while they applied the (S-1,S) policy for AM, saying that this technology 

would request a lower inventory and neglecting the set up cost. They underlined that 

this choice can be a limitation for the model, even because the (S-1,S) model implies 

that the parts are produced one per time, not maximizing the machine capacity. 

Furthermore, they considered both the production technologies having the same 

average constant lead time to resupply the stock and cost approximations were 

assumed. Despite the underlined hypothesis and limitations, authors found that 

manufacturing shift from TM to AM is suggested for a percentage of stock keeping 

units, having as a consequence the reduction of total inventory cost and the 

possibility to more flexible replenishment options.  

Set-up time consideration for moving from CM to AM production 

Another interesting work is provided by Cestana et al., (2019). Authors investigated 

how the duration of set-up time can favour the shift from CM to AM in case of 

managing a single-location, single-spare part inventory. They applied a continuous 

(S-1,S) inventory policy to manage both the CM and AM stocks, considering as target 

product the slow moving aerospace spare parts. In order to model the resupply time, 

Markov Chains were applied, even if with some hypotheses as infinite machine 

capacity, negligible AM set-up time and an overall AM production time estimated 

longer with respect to the CM one. Authors demonstrated that AM outperforms CM 

when CM set-up times are long, which often happens in case of a production that 

must adapt to low and lumpy demand rate as the one for spare parts. On the contrary, 

if the AM production time is much longer than the CM one, CM still is the optimal 

technology to minimize the total inventory cost, having an overall resupply time 

which is lower than the AM one, despite the set-up requested. Overall, they 

concluded that the optimal stock levels can benefit from the AM application, being 

lower than the CM ones, and AM can lead to considerable savings considering the 

total company portfolio of spare parts available.  
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Moving to a decentralized AM production and impact on inventory 

management: introduction of AM added values in cost computation  

Togwe, Eveleigh and Tanju, (2019) evaluated the impact of the introduction of AM 

to manufacture aeronautical spare parts: their aim was to understand the 

consequence on the inventory management of an increasing percentage of 

components in the product mix produced by this technique. In order to proper 

evaluate the advantages that AM can bring, they introduced a very relevant concept 

in terms of technology evaluation and inventory costs. They suggested that, 

generally, literature is focused on comparing conventional and additive 

manufacturing using activity base costing, and therefore considering mainly 

machine, material and personnel cost. They underlined that categories as form 

factor, proximity, obsolescence and lightweight are rather considered, making AM 

aptly penalize in a side-by-side comparison with CM. They therefore believed that it 

is crucial to recognize the added value brought by this new technology, rather than 

focusing only on the added cost. For this reason, they calculated the annual cost rate 

relying on this consideration, providing to CM a higher rate in fungibility, form factor 

and obsolescence. To analyse the problem, a simulation model was created. In 

particular, the authors considered a batch reorder policy, meaning that the inventory 

level is continuously checked and orders are triggered when the inventory level 

reaches a specific reorder point. Lead times were modelled using triangular 

distributions from data collected by experts. Authors obtained that increasing AM 

percentage in spare parts allows a sensible reduction in the overall spare parts lead 

time (about 33% when 35% of spare parts are produced with AM). In addition, 

considering the value added for the computation of the annual holding cost rate 

calculated considering the benefits that AM would bring that very often are not 

quantitatively recognized, and the advantages provided by the technology, AM 

results in a less capital in inventory tied up and a reduced total annual inventory cost.   

In depth analysis of AM production process and machine capacity 

Zhang et al. (2019) used discrete event simulation to appreciate the effectiveness of 

the very acclaimed make to order production that additive manufacturing would 

allow, comparing it with the traditional warehouse strategies in case or spare parts 

demands. They performed an in-depth analysis on the PBF processes as SLM and 

SLS, examining all their production stages to obtain a more accurate production time 

estimation. The production steps listed are the setup, printing and cool down of the 

machine, described by means of statistical distribution. In addition, they considered 

the possibility of attribute priority rules to the spare parts in arrival, giving 

precedence to the emergency parts requested. It is worth pointing out that this work 

considered and studied the possible queue formation of parts waiting to be processed 

by the AM machine, not hypothesizing an infinite machine capacity nor a generic and 

comprehensive production lead time. They obtained interesting results: because of 

the limited AM machine capacity, if the demand rate is high, queue formation is 
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really likely to occur, leading to an increase of penalty cost because of long waiting 

times. In particular, emergency spare parts are often prioritized, not giving space to 

the regular spare parts production. In addition, by changing the demanded spare part 

size, they observed that AM operations perform the best when the majority of the 

parts is of small size. This is because the small spare parts have a higher likelihood to 

enter the AM system in the volume filling process, rather than the larger one. This 

can be appreciated in Figure 2.5 that underlines that the small parts are always the 

most frequent produced, even varying the demanded part’s volume. 

They finally obtained that, because of the penalty cost due to the limited capacity of 

the AM machine, the on-demand production can be more disadvantageous than the 

classical warehouse strategy, especially for the larger parts. This is an interesting 

result because it is in contrast with the general literature outcome that reports AM as 

a just in time technique. This may be due to the lack in model completeness, 

especially regarding the limited AM machine capacity and the too generic lead time 

estimation, underlining in this way the importance of their consideration. 

Figure 2.5: Part size characteristics in the AM operations under different spare parts size attribute (Zhang 
et al., 2019) 

AM for Maintenance, Repair and Operations: analysis for target parts  

Chen et al. (2019) discussed the challenges in Maintenance, Repair and Operations 

(MRO) parts inventory management linked to erratic demand, long and irregular 

lead times and risk of obsolescence and how Industry 4.0 technologies can be 

leveraged to address them. They categorized MRO parts in four main groups, 

depending on their demands, lead time, usage and volume request. They 

demonstrated that each group may have different specific inventory policy, helped 

by the aid of Industry 4.0. In particular, they qualitatively suggest that Additive 
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Manufacturing could be useful for those parts with long lead time low volume and 

moderate cost. In fact, considering that in these years the AM cost is dramatically 

reduced, the technology could be used for make to order production, reducing lead 

times and avoiding to an excessive increase of stock levels and obsolescence.  

AM on raw material inventory impact, considering its actual industrial 

degree of adoption  

Kunovjanek and Reiner (2020) studied the impact on the raw materials inventory in 

case of AM adoption with respect to CM and pointed out possible impact on supply 

chain. They firstly underlined that AM introduction can lead to a reduction of raw 

materials requirements with respect to subtractive manufacturing, decreasing the 

waste and making production leaner. In addition, change in design introducing 

lighter lattice structures and the design freedom that this technology provides allow 

to reduce further the material request. This has as a consequence a possible reduction 

of the material inventory. It is interesting that authors considered in their research 

also the degree of adoption on AM. In fact, they said that the technology diffusion is 

still behind expectation, but the interest in it keeps increasing. This limited diffusion 

is also considered in the system dynamic approach used to obtain results, in order to 

have a more realistic perspective. Despite the low degree of adoption in AM use in 

production smoothens the results, they obtained that the materials inventory can be 

still reduced by 4%. In addition, they remarked that higher reduction can be obtained 

considering not only the manufacturing process, but also the interaction with all the 

stages of Supply Chain: if AM can allow make to order production, inventory can be 

further decreased having repercussion on work in progress and raw materials. They 

also predicted that the most total reduction will take place between 2019 and 2039, 

considering the technology time trends. In addition, the inventory lowering would 

increase the perceived usefulness of the technology, leading to a cascade of positive 

effects on its adoption and accelerating its impact on raw materials supply chain.  

In conclusion, literature provides a quite broad perspective on the use of AM to 

improve the inventory management of a single supply chain location, pointing out 

the ability of this technology of reducing the holding costs and the lead time thanks 

first of all to a faster and more agile production, but also to its flexibility, that permits 

the disposal of old tools and the production of a great variety of product. Anyway, 

what appears from the mentioned researches is that, because of the complexity of the 

inventory system, lots of hypotheses are requested: lead time supposed constant, 

demand difficult to predict, infinite machine capacity and AM set up times not 

considered are some of them. Sometimes these assumptions can be a limitation for 

the model results, as suggested by Zhang et al., (2019), that, proper considering AM 

machine capacity and developing a detailed description of its production process, 

provided a higher in-depth view of the system, better underlining which parts and 

scenarios could be suitable for AM production. It is therefore suggested that a 

detailed and advanced description of the AM production can provide further insight 
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on inventory management, revealing consequences often not evident in more generic 

models. 

2.5 AM impact on the Supply Chain  

An interesting point is to exploit the potential of AM not only on a single warehouse, 

but also on the whole Supply Chain (SC). In general, supply chain is designated as 

the network of organizations that are involved through upstream and downstream 

linkages through the different processes and activities which produce value in the 

form of products and services delivered to the ultimate consumer (Mentzer et al., 

2001). In other words, SC is an integrated process where the raw materials are 

manufactured into final products, then delivered to customers considering their 

requirements (Benita M. Beamon, 1999). Nowadays the biggest challenge in SC 

management is the efficient and effective delivery of products to fulfil customers 

demand and maintain high service level. This is not so straightforward, considering 

the volatility of the demand, the risk associated to possible disruptions or delays in 

supplier production, the stock out risk, the issues or slow-down in transportation and 

the high costs associated to it because of market distance.  

To overcome these obstacles and make SC leaner, experts considered in these recent 

years the opportunity of introducing AM and appreciate if the technology would be 

fungible for the scope. In fact, AM is known for its high flexibility and capability of 

producing on demand, giving the possibility of obtaining high fulfilment rate (Li et 

al., 2017), requiring less material usage and resource wastage (Liu et al., 2014). The 

focus of the research is generally related to the comparison of AM techniques with 

the CM ones, considering if this recent technology can bring as consequence SC total 

costs reduction. Some of the benefits underlined in literature are reported in the 

following paragraphs. 

Leaner Supply Chain 

In order to appreciate the impact of the AM introduction on the total SC cost, the first 

element to start the discussion is the simplified production process that the 

technology establishes. In fact, AM allows to redesign the part arising the possibility 

of making one single part instead of assembly different components as the 

conventional manufacturing requires. This can have a major impact in terms of 

reduction in labour input, tool and machining centre request, being AM, in addition, 

an automated technique. Furthermore, the opportunity of not requiring the assembly 

anymore has a direct consequence on Supply Chain Network: the number of tiers and 

echelons is reduced because less different raw materials are requested, and there is 

no need of leaning on a vast network of suppliers to find and get all the components 

that the final part require, being AM able to produce the final component as a whole 

(Figure 2.6).   
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Following the same reasoning, the higher level of independence from suppliers and 

the SC simplification have also an impact on the inventory stocks. In fact, it is 

possible to reduce the number of components and parts hold, as well as diminishing 

the work in progress. Furthermore, the safety inventory stored to be protected from 

possible disruption at supplier level that could lead to a higher risk of stock-out, can 

be reduced thanks to the autonomous and just in time production that AM 

introduces. Additionally, one important concept that is very often emphasized in 

literature is the possibility to produce on demand: it is in fact supposed that AM 

would allow to reduce to zero the on-hand stock, embracing the chance of producing 

the components following a make to order policy (Liu et al., 2014; Li et al., 2017; 

Roca et al., 2019). Overall, these consequences have an economical SC impact, with 

the reduction on the total inventory cost. Finally, it is underlined that these results 

also have impact on administrative costs, that, thanks to the simplification 

underlined, can be reduced (Li et al., 2017). 

Lead time and carbon footprint reduction 

Another outcome of the more streamlined SC that AM introduction would provide is 

the reduction of the lead time. Researches point out that producing using AM offers 

the possibility to deliver parts just in time, cutting all the waiting stages related to 

a) 

Figure 2.6: a) Traditional Supply Chain network versus b) Additive Manufacturing Supply Chain 

network (Janssen et al., 2014). 

b) 
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materials and components procurements from suppliers (Liu et al., 2014). In 

addition, the AM supply chain redesign leads also to a reduction of the transportation 

levels and times. Li et al., (2017) compared in their work the traditional SC and a 

redesigned AM one, pointing out that the main cost that affect the first one is the 

transportation one, accounting for the 57% of the total SC cost, that could be reduced 

up to the 32% in case of AM introduction. The direct consequence of this 

transportation reduction is a decrease in SC carbon footprint. Considering the whole 

SC emission, both of production processes, manufacturing and transportation, 

authors found that AM introduction can reduce up to 76% the carbon emission. This 

is due for sure to the decrease in transportation, but also considering that AM has 

the potential of lowering the environmental impact: less raw materials are requested 

and waste and scraps can be reduced to a minimum, leading to a leaner 

manufacturing (Mashhadi, Esmaeilian and Behdad, 2015).  Another interesting 

perspective is provided by Ashour Pour et al., (2017). They published an innovative 

point of view comparing AM and TM inventory management and SC performance 

considering lot production and orders lots. This approach is quite different from the 

others presented in literature, more focused on the just in time production and not 

providing insights on AM production process and limited machine capacity. 

Researchers demonstrated that batch AM production can be advantageous with 

respect to the TM one in terms of inventory and transportation cost, underlining that 

an optimal production lot size can be found in order to minimize the total 

expenditure. Rogers, Baricz and Pawar, (2016) qualitatively described the impact 

that AM introduction would have from a service point of view.  They underlined that 

AM allows build to order policy to promptly satisfy customer demands, launching the 

production only when customer requires specific products. Nevertheless, they 

considered that, to maximize the build chamber and machine utilization, one 

solution is to collect different orders and print them all together in one job. This 

scenario would be feasible considering what authors call “facility service”: this type 

of service provider would satisfy the customers’ requests to transform 3D modes into 

3D printed objects accumulating different demands for example by means of online 

platform, and manufacturing the different components requested in one job. 

AM flexibility and agile production systems 

One important benefit that AM introduces is the flexibility, defined as the ability to 

react promptly to changing requirements (Ivanov, Das and Choi, 2018). This 

advantage that AM shows leads to the possibility to fast change the product design 

and allows the product customization on large scale. Terms as “mass-customization” 

are introduced, and a higher integration of customer into the manufacturing, 

providing the option of choosing individual features, are possible (Durach, 

Kurpjuweit and Wagner, 2017). Furthermore, the lead time decrease together with 

AM flexibility would promote the growth of an agile production system. An agile 

production system is recognized as a system with capability to meet the rapidly 
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changing demand of the market both in terms of the volume and the variety of 

products (Mashhadi, Esmaeilian and Behdad, 2015). This system is fairly compatible 

with make to order strategy, that can follow rapidly the market demands changing 

and the quick responses often requested. Ryan et al., (2017) reported in their work 

that AM would be indeed suitable for engineering to order and make to order 

strategy, identified as the 81,6% most probable AM applications scenarios, because 

of the facility of producing always new design with minimal setup costs.  

AM and centralized or decentralized SC perspective 

Another point of discussion that is often found in literature is the evaluation of AM 

application in two main different scenarios: the centralized one, where regional 

distribution centres owns the AM machine and products are then distributed in all 

the SC by dedicated transportation systems, and the decentralized one, where 

multiple AM production centres are collocated directly at service locations, nearer to 

customer demand (Figure 2.7). In order to discern which of the two can be the most 

cost effective scenario and to optimize the locations selection where to collocate the 

AM production centres, researchers focused their attention in developing proper 

algorithms, taking care of the balance between the total demand and its geographical 

allocations, as well as of transportation and production costs (De Brito et al., 2019). 

The results obtained demonstrate that the decentralized solution is the best choice 

to decrease the transportation costs, meet the demand as quick as possible and 

reduce the inventory and holding costs at minimum (Li et al., 2017). An additional 

factor that could promote the decentralized solution is highlighted by Jia et al., 

(2016). They considered the utilization of the Additive technique applied to chocolate 

production. The advantage that AM can bring is the possibility to customize the 

product following the customer’s desires directly at the retailer shop, leading to 

revenues increase. Furthermore, thanks to the digitalization of the technology, 

customized online orders where the final consumer can design his own desired final 

product are also possible, leading to a business improvement. Further insights are 

provided by Ghadge et al., (2018), who studied the impact of a shift in production 

from CM to AM with the aim to reduce the total inventory cost in the aerospace 

industry. In fact, they underlined that AM could simplify the SC producing the part 

on demand and in a decentralized way, installing an AM machine at every service 

location. This would lead to a reduction in the resupply time with respect to CM, 

identified with a more complex SC, requiring at least raw material suppliers, first 

tiers suppliers that sub-assembly parts, and original equipment manufacturer that 

finalize the product. They obtained a significant reduction of the inventory level in 

the AM case, being the AM inventory about the 25% of the mean CM one. This is 

mainly due to the decrease of both the production time and the total resupply time 

all along the SC brought by the introduction of AM technique. It should be underlined 

that, anyway, limitations in this model can be related to the fact that infinite 
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production capacity is hypothesized and no specific details about the AM or CM 

technologies analysed are provided.  

An innovative point of view is provided by Chekurov et al., (2018) who interviewed 

managers and manufacturers experts in the spare part sector to appreciate their 

willingness in adopting Digital Spare Parts (DSP). This term is used to represent the 

introduction of AM in production. It would allow the digitalization of spare part 

portfolio, reducing the need of high inventory stocks to fulfil demands and the risk of 

obsolescence. Experts agree that AM can reduce the repair and delivery time, 

decrease the inventory costs, and limit the material wastage and emissions. They 

suggest that a possible solution is the “replacement of central storage with model 

database, and the introduction of distributed manufacturer” to be able to satisfy 

requirements faster than with a traditional SC. Despite this, some issues that do not 

emerge with CM, arise. In fact, if AM allows to send digital files instead of physical 

Figure 2.7: a) Centralized Supply Chain configuration, b) Decentralized Supply Chain 
configuration (Holmström et al., 2010). 

a) 

b) 
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components or materials, dramatically reducing the lead times, the need of 

intellectual property protection become an issue. Digital files security and advanced 

software development are required to make this transformation possible. 

Despite the possible positive outcomes brought by the adoption of the decentralized 

solution, some researchers underline that the scenario choice is not straightforward. 

In fact, some factors can be crucial in the decision. One important discriminating 

parameter is the purchase cost: to justify the machine investment for a decentralized 

solution, related to the acquisition and allocation of different AM machines to cover 

the parts’ request in different and far away locations, the demand should be high and 

stable. If this is not the case, the risk of bad machine capacity utilization may occur, 

leading the centralized scenario to provide better SC performance (Liu et al., 2014; 

Roca et al., 2019). In addition, the administrative costs can increase due to the 

production dislocation, and may affect the results, even if in small percentage (Li et 

al., 2017; Roca et al., 2019). Furthermore, Roca et al., (2019) showed in their study 

on the production of non-critical spare parts for aerospace industry in USA, that the 

post-production costs that AM requires are a limit for the production 

decentralization. In fact, due to the high expenses incurred in post-processing 

equipment, the decentralized scenario is excluded, and only a reduction of these 

necessary costs would make the decentralized choice preferred. 

In conclusion, literature shows how additive manufacturing can be an excellent 

opportunity for reducing the costs and the risks associated to the traditional SC, 

improving the service level and decreasing the lead time. Attention should be paid to 

the particular application environment, opting for centralized or distributed SC 

scenarios, keeping in mind that many different factors have to be considered to 

provide an optimal solution evaluation. Finally, because AM is a technology that 

progresses with a rapid pace, its scenario applicability should be regularly checked, 

updating it with new materials availability, machine efficiency and costs evolutions.  

2.6 AM application in different production contexts 

In the recent years, a growing interest about AM is perceived. Nevertheless, the 

research on the impact of this technology on SC is still limited and immature. It is 

clear anyway, that much effort is put in order to represent and hypothesise what type 

of scenarios could fit the best AM applications in production to eventually have 

positive impact on inventory management and the whole supply chain.  

The most interesting literature papers on this field are summarised in Table 2.1 and 

classified depending on the main topic they deal with: AM impact on single-location 

inventory management, AM and production efficiency and AM impact on the whole 

SC. In particular, those papers that conduct quantitative analysis with respect to the 

more qualitative ones have been selected.  
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It is interesting to observe some particular drivers with which the different analyses 

are performed. One important main difference is the production strategy selected. In 

case of the AM application for resupply inventory or to substitute CM in the SC, the 

preferred production choice is the make to order one, meaning that every time a 

demand occurs, an AM job is scheduled. This strategy often corresponds to the (S-

1,S) inventory policy. On the contrary, for a more detailed production perspective, 

the lot production is always selected. In this case more pieces are placed all together 

in the AM building chamber to maximize the machine utilization.  

Other important differences between the papers dealing with production efficiency 

and the ones centred on AM for SC are related to the technology modelling. In fact, 

in case of AM for supply chain or inventory management, very often approximations 

on the lead time or resupply time are done, considering it described by a generic 

statistical distribution or even by a constant term. Furthermore, the setup and cool 

down times as well as post processing operation are often ignored, and the machine 

capacity is considered infinite. These types of assumptions are instead removed in 

case of studies for AM production, where a more detailed model about the technology 

is provided.  

It is therefore evident that a discrepancy regarding the AM production modelling is 

present, showing general approximations in case of AM application in the SC.  In all 

likelihood, these assumptions are justified considering that SC modelling is complex 

and requires to consider many parameters and factors. 

Nevertheless, it could be interesting to appreciate the impact of a more detailed 

description of the AM technology on the SC, and in particular on the single-location 

inventory management, and possibly evaluate if this modelling choice would have 

consequences on the production strategy. In fact, it is worth noting that Zhang et al., 

(2019), providing a detailed description of AM technology, pointed out that the make 

to order  production can be inefficient with respect to maintain a certain inventory 

stock. In the same way, Roca et al., (2019) who again modelled AM considering 

machine capacity and post processing  requested, asserted that considering on 

demand production can limit the AM decentralized solution, being the AM post 

processing requirements really expensive, giving in this way additional insight about 

the technology application.  
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2.7 Supply Chain disruption risk  

For the sake of completeness, even if it would be not the main topic of research, it is 

considered interesting to complete the present work’s State of the Art considering the 

influence that AM can have on supply chain disruption risk, underlining the wide 

application scenarios that the technology can positively impact.  

Supply chain system faces a great variety of disruptive events: external risks, such as 

the earthquake and tsunami in Japan in 2011 or the Hurricane Katrina in 2006; 

demand risks due to an unusual demand variability, customer bankruptcy or 

fragmentation; supply disruption risks due to price instability caused by financial or 

political crisis; time risks due to huge delays in the SC or information risks caused by 

communication breakdown or legal dispute (Ivanov, Dolgui and Sokolov, 2019). In 

addition, nowadays the global SC is impacted in its totality by a specific case of 

disruption risk: the epidemic one, due to the Covid-19 pandemic. This catastrophic 

outbreak is affecting the worldwide SC, both from operational and economical side, 

leading to substantial consequences in trading and commerce (Ivanov, 2020). It is 

therefore of primarily attention to understand how a disruption risk propagates 

along the SC in order to ideate mitigation action to contain the effects and re-stabilize 

the status quo.  

Disruptive events that propagate along the SC for a long-term period, cause the so-

called Ripple Effect. This phenomenon occurs when disruptions, rather than 

remaining localized to one part of the SC, cascade downstream, impacting at its 

different levels. It is related to low frequency but high impact risks, that leads to a 

long-term performance decrease, maybe semi-annual or annual, and it require a long 

recovery period, with high investments to be done. This can be considered as the 

opposite of the Bullwhip Effect, that concerns recurrent and operational risks as 

demand fluctuations that affect daily or weekly performance and can be compensated 

in a short-term period (Dolgui, Ivanov and Sokolov, 2018).  

Supply chain weakest points identification  

Because of the huge impact that the ripple effect brings to the SC, research is done to 

model this phenomenon, having the aim of finding the weakest SC points and 

connection that should be strengthened. In this way, decision-makers can analyse in 

a proactive stage the vulnerability of the SC and the possible disruption paths, 

evaluating in advance where reinforcing actions are required (Figure 2.8). In 

particular, Hosseini, Ivanov and Dolgui, (2020) modelled the SC with Dynamic 

Bayesian Network to simulate the disruption propagation behaviour, combined with 

Discrete Time Markov Chain to model the state of every single supplier in time 

(disrupted or not) and appreciate its vulnerability and ability to recover. Pavlov et 

al., (2019) used the Genome Method in order to represent the SC network and 

observe the various disruption paths and optimize possible flow reconfiguration and 
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Blos, da Silva and Wee, (2018) exploited the potential of the Petri Net for giving a 

graphical and mathematical representation and easy interpretation of the network, 

together with Agent Based model to represent the interactions between the suppliers. 

The aforementioned models can be considered an effective tool to appreciate the 

disruption propagation and its magnitude in the possible SC paths.  

Mitigation actions 

Having identified the critical points, it is necessary to present some possible 

mitigation actions to prevent and quickly react to disruptive events. In particular, the 

general purpose is making the SC more resilient. The resilience is "a property which 

involves the ability of the SC to change itself quickly, structurally and functionally 

depending on the current execution state, while simultaneously reaching SC 

management goals through a change in SC structures and behaviour" (Dolgui, Ivanov 

and Sokolov, 2018) and it is linked to "durability, recoverability and the maintenance 

of SC processes" (Ivanov, Dolgui and Sokolov, 2019). The SC resilience can be 

obtained thanks to redundancy. This characteristic is given by the balance between 

robustness and flexibility. In fact, robustness allows a direct application of 

redundancy, using, for example, risk mitigation inventory or backup suppliers, 

allowing the SC to be able to meet planned performance expectations despite 

disruption, whereas the flexibility is more related to an indirect usage or redundancy, 

considering the ability of changing the system behaviour by reallocating inventories, 

capacities and sourcing in a quick and effective way (Figure 2.9). Robustness and 

flexibility are therefore considered both necessary in order to absorb and react to 

Figure 2.8: Concept of a decision-support system for Supply Chain rick analysis (Ivanov, 
Dolgui and Sokolov, 2019) 
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possible disruption events, and can be regarded as an 'uncertainty cushion' in a SC 

(Ivanov, Das and Choi, 2018). 

 

Figure 2.9: Ripple effect control elements (Dolgui, Ivanov and Sokolov, 2018) 

Literature shows a quite wide variety of possible mitigation actions that can make the 

SC more resilient both at the proactive stage, so before the risky event happens, or 

even after, at the reactive stage, to respond quickly to the problem. Increase the 

inventory level, consider a possible risk mitigation inventory, so extra inventory 

stored to meet demand in case of uncertainty, or additional reserve capacity are one 

of the most typical solutions in term of robustness. Lücker, (2019) demonstrates in 

his works how a proper selection and balance of the order quantity, reorder point and 

reserve capacity, depending on disruption probability and duration, can lead to a 

reduction of the disruption impact in term of penalty costs in the SC; also Carvalho 

et al., (2012) show how a proper increase of the safety stock can reduce the delay that 

the supply and production have because of disruption at suppliers level. Hosseini et 

al., (2019) suggest a more strategical solution: in their model, they consider relevant 

to geographically segregate the supplier. This is because, in case a disruption event, 

for example a natural catastrophe, affects a certain area of the globe, only some nodes 

of the SC are impacted, allowing to keep production flowing without big 

consequences. In addition, they point out how a proper supplier selection is 

fundamental: supplier must be reliable and resilient to avoid great penalty costs 

because of their vulnerability and inability to resist to the risky events or to recover 

fast after disruption, that can lead to the ripple effect manifestation. Cockx, 

Armbruster and Bendul, (2019) observe how the possibility of sharing resources such 

machines, know-how and personnel could reduce the supply risk, avoiding possible 

bankruptcy among supplier, missed payment and delays, that, due to the ripple 

effect, can affect the whole SC, rather than being limited to only one node. The 

authors demonstrate how this method can lead to better results than the use of the 
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risk mitigation inventory, but implying that competitors should be prone to 

cooperate and share resources, which can be a limit, considering the general 

companies view.  

Other researchers consider the use of flexibility to implement mitigation actions to 

react to disruption events. In particular, Hosseini et al., (2019) evaluate the best 

suppliers to select examining their ability to expand capacity to absorb disruption 

effect, utilizing fewer additional resource investments, or considering the use of 

back-up supplier as a contingency strategy that allows the reconfiguration of the 

channels for the movement of materials. In a similar way, Carvalho et al., (2012) 

demonstrate how back-up transporters that can substitute the disrupted one, even at 

higher costs, can effectively mitigate the ripple effect, avoiding delays in the SC and 

leading to a final reduction of the total SC costs. Also Ivanov et al., (2016) consider 

the company flexibility as a solution to avoid disruption propagation, studying the 

impact on a time critical SC, as the dairy ones. They showed how the adaptability, 

that is the ability to change SC plans, scheduling, or inventory policies in order to 

achieve a certain desired output, can be realized by means of flexible choices: using 

back-up distribution centres and alternative transportation means reduce the impact 

on SC performance in an efficient way.  

Additive Manufacturing as flexible and fast mitigation action 

The aforementioned mitigation actions show the ability of reducing the ripple effect 

by means of conventional solution. Ivanov, Dolgui and Sokolov, (2019) give in their 

work an innovative view about the possible mitigation strategy to follow, considering 

the increasing influence that industry 4.0 and digital technology are having on SC 

disruption risk management. They suggest applying the Additive Manufacturing 

flexibility and adaptability to react to disruptive events. In fact, this technology gives 

the possibility to produce components and modules in one place and in a faster way, 

without requiring special tools or a great number of suppliers (Figure 2.10).  

The SC chain simplification that AM causes has as consequence the reduction of the 

exposure to external risks and allows a faster and effective response reactions put in 

place (Liu et al., 2014; Li et al., 2017; De Brito et al., 2019; Roca et al., 2019). In 

addition, at a proactive stage, AM can avoid the implementation of robust solution 

as the increase of inventory level or the purchase of additional capacity thanks to the 

possibility to have a digital inventory always available and produce what is needed 

exactly when it is needed. This flexibility can therefore answer quickly to demand 

oscillation, avoiding the ripple effect propagation in the SC. 

Figure 2.10: Impact of Additive Manufacturing on the ripple effect (Ivanov, Dolgui and Sokolov, 2019). 
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Additive Manufacturing is shown to have a great potential to be exploited in case of 

disruptive events and could be an answer to the SC issues caused nowadays because 

of Covid-19 pandemic outbreak. As Ivanov (2020) initial prediction study about 

Covid-19 impact and propagation shows, the pandemic would affect the global SC 

with a long-term performance consequences and great losses, and solutions to deal 

with them are needed. In addition, Ivanov (2019), demonstrated in his work that 

disruption effects are still present in SC even after the disruption itself is ended, and 

if the conventional mitigation actions are deactivated just after the capacity recovery, 

this would lead to destabilization of inventory system and backlog. This is due to the 

presence of disruption tails, as delayed orders and service level decrease, caused by 

inefficiency and unmet demand during disruption period. Therefore, only an 

application of revival policy in the post-disruption period can lead to a complete 

recovery and improve SC resilience. This last work demonstrates the big effort 

required in order to re-stabilize the SC, suggesting AM as prompt response, being a 

technology with an enormous potential to deal with this requirement in a fast, 

flexible, efficient and effective way. 
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3 Resupply time: a Markov 

Chain based model 

The aim of this work is to provide an exhaustive analysis of the AM application in 

inventory management, comparing different inventory policies. One of the goals is to 

define an accurate model of the AM production, describing in detail all the stages 

that this technology requires to further develop the lead time modelling, often 

assumed constant or generally distributed in scientific literature. This particular 

focus on an appropriate production modelling is fundamental for the inventory 

policies. In fact, in order to completely define the inventory model, information about 

the lead time or resupply time must be provided. In particular, in inventory 

management, the resupply time can be defined as the interval of time that elapses 

between an order issue and its arrival to the inventory stock (Muckstadt and Sapra, 

2010). In general, it includes the production time, set up time, possible waiting times, 

transportation times and material handling times, depending on the scenario and 

assumptions posed. This work considers a scenario with a single location 

manufacturer that controls the AM production, in particular SLM, to replenish the 

inventory stock. Hence, the lead time would involve (Figure 3.1): 

• Possible waiting times since SLM machine has limited capacity and queue 

can be created   

• SLM machine setup time  

• Scanning of all the part’s layers 

• SLM machine cool down time  

• Thermal treatments, with possible queue 

• Parts removal from the build plate and support removal, with possible 

queue 

• Finishing operations, with possible queue 

Figure 3.1: Resupply time steps. 

It is clear that a sufficiently detailed model of the SLM production can have important 

consequences on the inventory stock optimization, being strictly correlated to the 

resupply time evaluation. Therefore, it is worth creating a proper model that 

effectively represents the AM resupply time considering all the SLM process steps. A 
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common representation of demand arrivals, server with limited capacity and waiting 

times can be found in Markov Chain. These analytical models are selected and 

specifically designed for SLM production, as illustrated in this work section. 

3.1 System description 

The first point of analysis is a detailed description of the SLM production process 

applied to resupply the inventory stock. In particular, the technology is used to 

manufacture orders triggered by a specific inventory policy. The focus of this section 

would be on the production process only, to further analyse it.   

In particular, orders arrive following a specific statistical distribution with 

interarrival rate λ. Subsequently, a queue can be created because the SLM machine 

is not idle or ready, and finally the production phase takes place, identified by the 

SLM machine. Note that for the moment the post processing phases as thermal 

treatments and finishing operations are excluded.  

The main modelling focus is on the SLM production representation. As explained in 

the introduction about this innovative technology, the production process is made by 

a sequence of steps that are briefly reminded and schematized in Figure 3.2. These 

are:  

i. Set up phase, when the machine is heated up, the gas is injected, the STL file 

and all the manufacturing parameters are loaded. 

ii. Manufacturing phase, when the part cross sections are scanned layer by layer 

and the powder is spread.  

iii. Cool down phase, when the machine is cooled down, parts are removed from 

the building chamber and the cleaning process takes place.  

The objective is to describe all these steps by designing a dedicated Markov Chain for 

SLM technology. In particular, it is possible to note that the manufacturing phase (ii) 

can be described by the sum of many other subphases, associated to every layer build. 

In fact, one can define a single manufacturing sub-step as the process to realize one 

Figure 3.2: SLM production steps (pictures from Renishaw website). 
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single layer, made up by the recoating time and the scanning time. Consequently, the 

manufacturing phase is the sum of m different subphases, where m is the total 

number of layers that the part requires to be processed and it is proportional to the 

part height.  

In addition to this m manufacturing phases, other two steps are performed: the set-

up and the cool down, leading to a total of n = m+2 different time steps to describe 

the whole SLM production. 

It can be noted that the time associated to each step is quite different. In fact, the set 

up and cool down phases require much longer time with respect to the scanning and 

powder spreading related to a single layer. Therefore, the focus would be now 

directed to represent all these time steps in a way as adherent as possible to reality, 

using MC as modelling tool.  

3.2 Analytical model for AM resupply time evaluation  

Markov Chain (MC) modelling is the selected analytical approach to represent the 

SLM production process to replenish the inventory stock and analyse the resupply 

time estimation. In particular, MC in continuous time and with discrete state space 

are dealt in this work. This choice is motivated considering that they allow the 

description of systems evolving continuously in time and assuming particular values, 

i.e. certain system state, with a certain probability and in a discrete fashion, so that 

the set of values is countable. Examples of the MC models applications are given by 

the number of clients that visited a shop in function of time, the number of people in 

queue at the supermarket, the number of orders waiting to be manufactured in a 

production system. Considering AM application to replenish the inventory stock, the 

MC model would describe the demands’ arrivals, which are the orders triggered 

depending on the inventory policy and that can happen in any point in time, queue 

and waiting times because of SLM limited machine capacity, and finally SLM 

production, considering all the discrete time stages requested by the technology 

(Figure 3.3). 

3.2.1 The demand process 

The AM production scenario is characterized by a low annual demand rate so that 

the technology can be competitive and cost-effective. Furthermore, considering a 

possible field of applications as the aerospace one or the production of very specific 

Figure 3.3: Demand and SLM production process. 
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tools with peculiar characteristic, it has been hypothesized that demands are discrete, 

independent and arrive one per time.  

To model this demand behaviour, the Poisson distribution is chosen. The Poisson 

distribution, in fact, is widely used in quality control, reliability, and queuing theory. 

It can be applied to represent the customer arrivals at a service in a certain period of 

time: this distribution type is very often used for describing the number of inventory 

demands (Law, 2007). Furthermore, it can be applied to describe Stock Keeping 

Units (SKU) demands used to meet request in case of components failure. In fact, in 

general, the assumption of Poisson processes can be justified either when lifetimes 

of components are exponential or when lifetimes are generally distributed and the 

number of machines that is served by the warehouse is sufficiently large (van 

Houtum and Kranenburg, 2015) 

In the developed models, the AM manufacturer is therefore subjected to an 

independent identically distributed (i.i.d.) demand, described by a Poisson 

distribution with parameter λ:  

𝑝(𝑥) =  
𝑒−𝜆𝑡 (𝜆𝑡)𝑥

𝑥!
           𝑥 = 0, 1, 2 … 

where p(x) defines the Poisson probability mass function. 

3.2.2 The production process: an introduction to Phase Type 

distribution 

It is reminded that one of the fundamental hypotheses on which queuing theory is 

based is the exponential distribution’s memoryless properties, on which MC are 

constructed. The compliance with the Markovian process hypothesis, together with 

the objective of developing a sufficiently detailed model for SLM production, find the 

answer in the application of the phase type distribution. 

Phase type (PH) distributions are an extremely versatile class of statistical 

distribution. It is possible to approximate any distribution on the non–negative real 

numbers by a PH distribution, and the resulting queueing models can be analysed 

almost as if one has dealt with the exponential distribution. In particular, they are 

defined as the distribution of the lifetime, i.e. the time spent in some transient phases 

before entering in an absorbing state (Buchholz, Kriege and Felko, 2014).  

PH distributions family owns some well-known distributions, as the Erlang one. In 

particular, the Erlang distribution En
λ with n degrees of freedom (or stages) and 

parameter λ is the distribution of the sum of n exponential random variables with 

parameter λ: 

𝑓(𝑥)𝐸𝑟 =
𝜆𝑛

(𝑛 − 1)!
𝑡𝑛−1𝑒−𝜆𝑥 
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A graphical representation of the Erlang distribution as sum of exponential 

distributions stages is given in Figure 3.4: 

The Erlang distribution (Er) can be represented as the holding time in the transient 

state set {1, … , n} of a MC with absorbing state n + 1, and the only possible transitions 

occur from a state k to the next state k +1 (for k = 1, … ,n), with rate λ each.  

The first two moments of this distribution are given by the following formulas:  

𝐸[𝑋]𝐸𝑟 =
𝑛

𝜆
                                  𝑉𝑎𝑟[𝑋]𝐸𝑟 =

𝑛

𝜆2
 

Another important PH distribution, which is a generalization of the Erlang one, is 

the Hypoexponential distribution (HE). This type of distribution is obtained if one 

admits the Erlang exponential stages to have different λi parameters. The graphical 

representation of the Hypoexponential distribution is given in Figure 3.5: 

The density function of this distribution is: 

𝑓(𝑥)𝐻𝐸 =  ∑( ∏
𝜆(𝑗)

𝜆(𝑗) − 𝜆(𝑖)
) ∗ 𝜆(𝑖)𝑒−𝜆(𝑖)𝑥  𝑓𝑜𝑟 𝑥 ≥ 0, 𝜆(𝑖) ≠ 𝜆(𝑗)

𝑛

𝑗=1,𝑗 ≠𝑖 

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

The first two moments are: 

𝐸[𝑋]𝐻𝐸 = ∑
1

𝜆(𝑖)
𝑛
𝑖=1                     𝑉𝑎𝑟[𝑋]𝐻𝐸 =  ∑

1

𝜆(𝑖)2
𝑛
𝑖=1  

It is possible to note that the aforementioned PH distributions are all based on the 

exponential distribution.  

The next step is therefore substituting the exponential distribution, which is the most 

common distribution to represent the transition rate in MC, with these more general 

distributions, bringing the advantage of a more versatile description of the 

Markovian Process. In fact, it is possible to show that the phase type distributions, 

being in the same family of the exponential one, have again memoryless properties 

(Breuer and Baum, 2005). 

Figure 3.5: Hypoexponential distribution. 

Figure 3.4: Erlang distribution. 
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3.2.3 The Markov Chain detailed model 

The possibility to substitute the classical exponential distribution with a PH one in 

the MC leads to a greater versatility of the model. In particular, the PH distributions 

would be used to model the sum of different phases that describe the SLM production 

time. The distribution that fits the most the AM requirements is the Hypoexponential 

one. In fact, this distribution is the sum of n different exponentials that can have 

different rate λ(i).  

For this work purpose, the following scenario is presented and the assumptions made 

are underlined:  

• SLM requires a set up phase. This step would be modelled as one of the PH 

phases, the first one. This phase will be associated with a particular rate, su. 

• SLM requires also a cool down phase. Similarly to the set up step, this phase 

would be modelled as one of the PH phases, the last one. A rate cd would be 

associated to this phase. 

• The main manufacturing stages performed are related to the powder 

spreading and the scanning time. These stages are represented as phases of 

the PH distribution, as many as the number of layers to be realized. These 

steps have associated a particular production rate, called prod.  

The modelling of the AM manufacturing process by a Hypoexponential distribution 

would lead to the following graphical representation (Figure 3.6): 

Figure 3.6: Representation of the SLM manufacturing process by means of Hypoexponential 
distribution. 

It is underlined that the hypothesis of modelling AM manufacturing times by means 

of sum of exponential distributions is not so far from reality. In fact, every stage 

presents a certain variability in the execution depending the production steps, on the 

extension of the cross-section to be scanned or on the scanning strategy chosen, and 

in the setup and cool down stages by the volume of the building chamber or by the 

temperature to be reached. Therefore, the modelling of each of these stages by an 

exponential distribution with a suitable rate * can allow the description of the 

variability related to the production times, permitting at the same time the 

employment of the MC, a powerful instrument for the system modelling.    

Figure 3.6 is a part of the total MC model, the production stage. The whole MC model 

is now described. Some hypotheses should be taken into account:  

• Arrivals are described by a homogeneous Poisson process with rate λ. 

Every arrival is associated to one single product.  
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• The manufacturing process is described by the Hypoexponential 

distribution, with variables rate (su, prod, cd) 

• There is only one server and the service discipline is First Come, First 

Served (FCFS) 

• The waiting room capacity is infinite such that there are no units lost. 

Note that the arrivals are independent, i.e. demands can arrive in every stage of the 

production, so even when the SLM machine is already busy.  

Because of the accurate description of the SLM process steps, the developed MC 

model would be identified as the “detailed model”. Every system state is described by 

two variables: the first one, i, represents the number of parts in the system. It is 

reminded that the SLM machine has limited capacity. Hence, having i > 1 means that 

there is already a part in the manufacturing stage, making the server busy, and 

therefore the other orders are placed in queue waiting the machine to be idle again. 

The second index that identifies each stage, j, is associated to the system phase. For 

example, j = 1 is linked to the set-up stage, and j = n represents the cool down step.  

The state space of the system ΩHE would be therefore described by a set of stages 

identified by couple of variables (i,j):  

ΩHE = {(i, j), ∀i: i ∈ 𝑁 , ∀𝑗: 𝑗 ∈ [0, 𝑛]}  = {(0,0), (1,1), (1,2), … , (1, n), (2,1), … }      

In the developed model, two types of states transitions are possible. The first ones 

are represented by order arrivals with rate λ. This type of transition increments the 

number of parts in resupply, increasing in this way the index i by one. The second 

type of transition is instead referred to the production stream. In particular, it is 

possible to move from state j = 1 to state j = 2 following the set up phase with rate su; 

subsequently, there would be m different transitions from each of the stages with j = 

2 until j = n that represent the manufacturing of the m part layers with rate prod. 

Finally, the cool down stage would be performed with rate cd, considering a 

transition from j = n back to j = 1 and reducing by one the number of parts in the 

system i, having completed the SLM production process. 

In particular, considering that the developed model is a continuous time MC, the 

process behaviour can be analysed in a very small time interval of length Δt. Calling 

1/υ(ij) the mean of exponentially distributed sojourn time in state (i,j), it is possible to 

define the mentioned infinitesimal transition rates 𝑞(𝑖𝑗),(𝑖∗𝑗∗) from one state (i,j) to 

another state (i*,j*) as  

𝑞(𝑖𝑗),(𝑖∗𝑗∗) = 𝜈(𝑖𝑗) ∗ 𝑝(𝑖𝑗),(𝑖∗𝑗∗)            and              𝜈(𝑖𝑗) =  ∑ 𝑞(𝑖𝑗),(𝑖∗𝑗∗)(𝑖𝑗)≠(𝑖∗𝑗∗)  

where 𝑝(𝑖𝑗),(𝑖∗𝑗∗) is the one-step transition probability of leaving the state (i,j) for 

jumping in the state (i*,j*). The 𝑞(𝑖𝑗),(𝑖∗𝑗∗) themselves are not probabilities but 



 
RESUPPLY TIME: A MARKOV CHAIN BASED MODEL  
 

46 
 

transition rates. However, for Δt very small, 𝑞(𝑖𝑗),(𝑖∗𝑗∗)Δ𝑡 can be interpreted as the 

probability of moving from state (i,j) to state (i*,j*)  within the next Δt time units 

when the current state is state (i,j) (Tijms, 2003). Finally, it is possible to completely 

define the developed continuous time MC {X(t)} property:  

𝑃{𝑋(𝑡 + Δ𝑡) = (𝑖∗, 𝑗∗)| 𝑋(𝑡) = (𝑖, 𝑗)} =  {
𝑞(𝑖𝑗),(𝑖∗𝑗∗)Δ𝑡 + 𝑜(Δt),   (𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

1 − 𝜈𝑖𝑗Δ𝑡 + 𝑜(Δ𝑡),        (𝑖, 𝑗) = (𝑖∗, 𝑗∗)
  

where 

• 𝑞(𝑖𝑗),(𝑖+1 𝑗) = λ    ∀i, j ∈  ΩHE 

• 𝑞(𝑖 1),(𝑖 2) =  μsu  ∀i ∈  ΩHE  

• 𝑞(𝑖 𝑗),(𝑖 𝑗+1) =  μprod  ∀i ∈  ΩHE , 𝑗 = 2, … , 𝑛 − 1  

• 𝑞(𝑖 𝑛),(𝑖−1 1) =  μcd , 𝑖 = 1, 2 …  

The described detailed MC model is described by the state transition diagram in 

Figure 3.7. 

The final aim of the MC developed model is an estimation of the resupply time 

requested to replenish the inventory stock. To obtain this parameter, it is first 

necessary to calculate the MC state probabilities. For this work, the interest would be 

focused on steady state probabilities, so to the stationary distribution of the 

Markovian process at an infinite point in time. These probabilities are associated to 

Figure 3.7: Markov Chain representation of the AM manufacturing process using a Hypoexponential 
distribution. 
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the number of clients, i.e. parts in resupply, in the system. It is reminded that these 

probabilities can be calculated if the developed MC is irreducible and positive 

recurrent. In particular, the MC model is irreducible because there is not a closed 

subset of states, and therefore it is always possible to define a step transition from 

one state to another (Figure 3.7) In addition, it can be said positive recurrent because 

the stability condition holds:  

𝜌 =
𝐸[𝑆]

𝐸[𝐻]
< 1 

where E[S] is the mean service time, while E[H] is the mean inter-arrival time. 

Considering the Hypoexponential case with Poisson arrival, it is given:  

𝜌𝐻𝐸 =
𝐸[𝑆]𝐻𝐸

𝜆
< 1 

with  

𝐸[𝑆]𝐻𝐸 =
1

𝜇𝑎𝑣𝑔𝐻𝐸

=  
1

𝜇𝑠𝑢

+
1

𝜇𝑐𝑑

+
𝑚

𝜇𝑝𝑟𝑜𝑑

 

To calculate the steady state probabilities of being in every MC state, it is necessary 

to write and solve a system of equations. Every equation is a balance equation: the 

sum of the rates belonging to the arcs entering each state has to be equal to the one 

exiting the state.  

The balance equations describing the system are derived as follow:  

In particular, the first system equation is referred to state (0,0), affirming that the 

sum of the transitions entering this state times their probability (cd *π1,n) must be 

equal to the sum of the transitions exiting the state (λ*π0,0). The other equations can 

be derived following the same logic.  

The transition rate matrix Q, that collects all the possible transition rates from each 

one of the states described by the state space ΩHE, is finally defined: 

(3.4) 

(3.2) 

(3.3) 

(3.1) 
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Because equations 3.4 are linearly dependent, it is necessary to add the 

normalization equation to solve the system. This equation assures that the sum of all 

the probabilities in the probability vector is equal to 1.  

Finally, it is possible to write:  

{

𝜋𝑄 = 0 

∑ 𝜋𝑖,𝑗 =  1

∞

𝑖,𝑗=0

 

Where π is the probabilities vector and Q the transition rate matrix. This system of 

equations is solved numerically using Matlab software. The complete codes can be 

found in the Appendix A.1. In this way, the vector of probabilities π is found.  

Finally, calling E[N] the expected number of clients in the system, i.e. the number of 

parts in resupply, the application of Little’s Law allows to calculate the expected 

resupply time �̅�𝐻𝐸:  

𝐸[𝜏]𝐻𝐸 = τ̅𝐻𝐸 =  
𝐸[𝑁]

𝜆
 =  ∑ ∑

𝑖𝜋𝑖𝑗

𝜆

𝑛

𝑗 = 0

∞

𝑖 = 0

 

For the sake of completeness, also other system performance measures are defined. 

The expected residual service time E[R] is the residual time that a client still has to 

spend in the server before completing the process when a new client arrives. In 

particular, it can be demonstrated that  

𝐸[𝑅] =
𝐸[𝑆𝑠]

2𝐸[𝑆]
=

𝜎𝑆
2 + 𝐸[𝑆]2

2𝐸[𝑆]
 

where 𝐸[𝑆] and  𝜎𝑆
2  are the service time mean and variance. The complete 

calculations development can be found in Adan and Resing (2015). Therefore, the 

expected residual service time for the developed MC model E[R]HE can be defined as 

𝐸[𝑅]𝐻𝐸 =

[
1

(𝜇𝑠𝑢)2 +
1

(𝜇𝑐𝑑)2 +
𝑚

(𝜇𝑝𝑟𝑜𝑑)
2] + [

1
𝜇𝑠𝑢

+
1

𝜇𝑐𝑑
+

𝑚
𝜇𝑝𝑟𝑜𝑑

]
2

2 [
1

𝜇𝑠𝑢
+

1
𝜇𝑐𝑑

+
𝑚

𝜇𝑝𝑟𝑜𝑑
]

 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Having identified the expected residual time, it is possible to derive the expected time 

spent waiting in queue E[W]. In particular, when a new order arrives, it has to wait 

the residual service time of the order already in process, if any, plus the time needed 

to serve all the orders already in queue. By the PASTA (Poisson Arrival See time 

Average) theorem (Tijms, 2003 for the complete derivation), it is know that the 

server is busy on arrival with probability ρ (Equation (3.1)). Denoting with Lq the 

number of orders waiting in queue, then  

𝐸[𝑊] = 𝐸[𝐿𝑞]𝐸[𝑆] + 𝜌𝐸[𝑅] 

Applying the Little’s Law on the parts in queue  

𝐸[𝐿𝑞] = 𝜆𝐸[𝑊] 

it is possible to obtain the formula commonly referred as Pollaczek-Khinchin mean 

value formula 

𝐸[𝑊] =
𝜌𝐸[𝑅]

1 − 𝜌
 

that describes the expected average time spent in queue. By substituting the derived 

relationship for ρ and E[R] (Equations (3.2) and (3.9)) in (3.10) the expected waiting 

time in queue for the developed MC model is found.  

Finally, it possible to define the mean duration of the server busy period. In 

particular, a  busy period begins when an arriving customer finds the system empty 

and ends when a departing customer leaves the system empty behind (Tijms, 2003). 

The formulation of the expected value of the performance is not straightforward, but, 

following the derivation provided by Tijms (2003) it can be demonstrated that it is 

equal to  

𝐸[𝐵𝑃] =
𝐸[𝑆]

1 − 𝜌
 

By substituting E[S] with Equation (3.3) and ρ with Equation (3.2), the developed 

model expected busy period E[BP]HE is computed. 

3.3 Alternative analytical models 

The model described in Section 3.2.3 uses an Hypoexponential distribution with the 

aim to fit as best as possible the SLM production process. It can be interesting to 

compare this model, called the “detailed model”, with other more conventional and 

standard queuing theory models to appreciate the differences and possible 

advantages.  

(3.10) 

(3.11) 
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3.3.1 The Exponential model 

One of the most known models in queuing theory is the M/M/1 Markov Chain. In 

this case, the arrivals follow a Poisson process, hence the inter-arrival times are 

exponentially distributed, distribution also applied for the service time. In addition, 

there is only one server with limited capacity of one unit per time, and the service 

discipline is FCFS. This type of chain is also known as “birth death process”. In fact, 

a part arrives (birth) with a certain rate λ and is than processed by the server with a 

production rate . After that, it leaves the system (death). The state space of the 

system ΩEx is described by only one variable i, associated to the number of customers 

present in the system state:  

ΩEx = {i, ∀i: i ∈ 𝑁 } = { 0,1,2,3 … }      

This type of MC would be identified as the “exponential” (Ex) one because of its 

service time distribution. 

This type of queuing system is well known and studied (Tijms, 2003). In particular, 

there exists a closed formula to calculate the average number of clients in the system, 

and finally the average resupply time, without the need to numerically solve the 

system of equations. This is a great advantage, because numerical system 

implementation is avoided, and computational times are saved. Therefore, it would 

be interesting to compare the results provided by the detailed model with the one 

obtained from an M/M/1 queue having the same arrival rate λ and a production rate 

equal to the average production rate of the Hypoexponential process.  

The production rate of the M/M/1 queue would be set as follow: 

𝜇Ex =
1

𝐸[𝑆]𝐻𝐸

= 𝜇𝑎𝑣𝑔𝐻𝐸
=  

1

1
𝜇𝑠𝑢

+
1

𝜇𝑐𝑑
+

𝑚
𝜇𝑝𝑟𝑜𝑑

  

where E[S]HE is the production time expected value in case of Hypoexponential 

distribution (Equation (3.3)).  

The resulting queuing system can be represented as follow (Figure 3.8):  

Figure 3.8: Markov Chain representation of the AM manufacturing process using M/M/1 queue. 

To find the average resupply time it is sufficient to apply the following closed formula 

(Adan and Resing, 2015): 

𝐸[𝜏]𝐸𝑥 = �̅�𝐸𝑥 =
1

𝜇𝐸𝑥 − 𝜆
 (3.12) 
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3.3.2 The Erlang model 

Another interesting comparison that can be made is considering what would happen 

approximating the Hypoexponential distribution with an Erlang one having as 

production time expected value, and as number of stages n the same of the detailed 

one. This would mean developing a MC having all equal production rates, not 

distinguishing the set-up and cool down phases. 

Imposing the mean production time to be the same as the Hypoexponential one, it is 

found: 

𝐸[𝑆]𝐻𝐸 = 𝐸[𝑆]𝐸𝑟 =
1

𝜇𝑎𝑣𝑔𝐻𝐸

=  
𝑛

𝜇𝑝𝑟𝑜𝑑𝐸𝑟

   

therefore  

𝜇𝑝𝑟𝑜𝑑𝐸𝑟
= 𝑛 ∗  𝜇𝑎𝑣𝑔𝐻𝐸

 

where µavgHE is defined in Equation (3.3). From Equation (3.13), it is seen that each 

one of the nth stage in the M/Er/1 Markov Chain would have a rate n times higher 

than the average one found in the M/M/1 queue and all the Erlang states would have 

the same production rate.  

As for the detailed model, state space of this model ΩEr is described by couple of 

variables, i and j. The first one represents the number of parts in resupply, while the 

second one the machine state. 

ΩEr = {(i, j), ∀i: i ∈ 𝑁 , ∀𝑗: 𝑗 ∈ [0, 𝑛]}  = {(0,0), (1,1), (1,2), … , (1, n), (2,1), … }      

Finally, it is possible to represent the developed model with the following transition 

diagram (Figure 3.9):  

Figure 3.9: Markov Chain representation of the AM manufacturing process using M/Er/1 queue. 

(3.13) 
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Note that this model would be defined as the “Erlang” one because of its service time 

distribution. 

To obtain the probabilities vector from the M/Er/1 model, it is necessary again to 

solve the system of equations associated to the MC. In particular, this is constructed 

in the same way as the detailed model one (Equation (3.6)).  

{

π𝐸𝑟𝑄𝐸𝑟 = 0 

∑(𝜋𝑖,𝑗)𝐸𝑟

∞

𝑖,𝑗

= 1
 

where πEr is the probabilities vector, QEr is the transition rate matrix (built similarly 

as in the Hypoexponential case) and the last equation is the normalization equation, 

needed to uniquely determine the system solution. As for the detailed model, the 

system is solved numerically using Matlab software (code in 0A.1, but with adjusted 

transition rates for the Erlang model).  

Finally, having calculated the probability vector π, it is possible to estimate the 

average system resupply time using the Little’s Law (Equation (3.7)). 

3.4 Analytical models comparison 

The aim of this section is to appreciate how the resupply time can vary depending on 

which one of the three described models is used. It is reminded that the three models 

are all constructed so that:  

• The arrival rate λ is always the same. 

• The average production time is always the same, and it is set to be the 

expected value of the detailed model. 

3.4.1 Design of experiments 

It is considered interesting to appreciate the influence of the following parameters 

on the final results:  

• The number of strata manufactured, directly proportional to the part height. 

• The arrival rate λ. 

• The production rate 𝜇𝑝𝑟𝑜𝑑, related to the SLM machine building rate but also 

to the number of pieces printed. In fact, it is assumed that the scanning time 

is directly proportional to the number of pieces in the job, especially if the 

pieces are all equal and therefore have the same cross-sectional area.  

In particular, it has been decided to analyse the resupply time dependency on these 

particular parameters because they are the ones that in a real SLM manufacturing 

(3.14) 
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production system can be varied the most, depending on the scenario defined, the 

parts geometry or the number of pieces to be printed.  

The test case input parameters used are: 

• Number of layers: 20, 50, 100 and from 100 up to 1400, with a discretization 

step of 100 layers. Considering that, in general, SLM has a layer thickness of 

50µm, this would mean to print a part with height starting from 1mm up to 

70mm. This choice is taken to have a sufficiently wide perspective on model 

performance. 

• Interarrival rate: 1/100 h-1 [Ld], 1/50 h-1 [Hd]. These two demand scenarios 

are chosen considering the low demand that characterize the AM production. 

• Production rate µprod = 1/0.003 h-1 (equal to 1/10.8 s-1) [Lp] and µprod = 1/0.03 

h-1 (equal to 1/108 s-1) [Hp]. These two cross-sectional manufacturing rates 

are selected considering the data range obtained from experimental tests 

developed at Politecnico di Milano laboratories. The powder spreading time, 

which is equal to 0.001h (around 3.5s) is already considered in these input 

parameters. 

The set up and cool down times are considered constant and equal to 55 min and    

4.5 h respectively, having as reference the data collected at Politecnico di Milano 

Additive Manufacturing laboratory. 

Four different test cases are developed (Table 3.1) from the combination on the High 

[H] or Low [L] demand and production rates selected:  

Test case λ [1/h] µprod [1/h] 

1 [Ld-Hp] 1/100 1/0.003 

2 [Hd-Hp] 1/50 1/0.003 

3 [Ld-Lp] 1/100 1/0.03 

4 [Hd-Lp] 1/50 1/0.03 

Table 3.1: MC models test case parameters. 

3.4.2 Results and observations 

The different average resupply time �̅� results are shown in Figure 3.10. It is possible 

to appreciate that, despite all the three models have the same average production and 

interarrival times in each of the test cases, the average resupply time results are 

different. In particular, the Exponential model leads to the highest average resupply 

time, while the Erlang model gives the lowest results.  

In all the test cases, the resupply time difference between the Erlang and the detailed 

model is almost constant with respect to the number of strata printed. On the 

contrary, the Exponential model provides an increasing resupply time difference 

with respect to the detailed model as of the number of layers printed increases.  
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Furthermore, it has been calculated that the maximum percentage difference on the 

resupply time is low, around the 2-4%, and similar for all the test case in case of the 

Erlang model. In particular, in Figure 3.10 c) and d) the detailed and Erlang model 

results almost overlap, being the resupply time really similar but strongly different 

with respect to the Exponential model. Different are instead the outcomes in case of 

the Exponential model. In fact, this model seems to be more sensitive to the 

interarrival and production rate variation, leading to an increasing resupply time 

difference when the production rate is slower. This error is further pronounced, 

arriving up to the 230,92% in test case 4, when the slow production rate is combined 

with a high interarrival rate. In particular, this last scenario models a case in which 

the volume to be printed is high (low µprod), and the demand is high (high λ). 

The motivation beside these results can be found in the statistical distribution 

variances. 

  

a) b) 

c) d) 

Figure 3.10: Resupply time results for a) Test case 1, b) Test case 2, c) Test case 3, d) Test case 4. 

Legend:  Exponential model            Detailed model            Erlang model 

  

  

Ld - Hp  Hd - Hp  

Ld - Lp  Hd - Lp  
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In fact, it is possible to calculate the variances of the different phase type 

distributions used for modelling the production time as follow:  

Detailed model production time variance 

𝑉𝑎𝑟[𝑆]𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑 =  ∑
1

(𝜇𝑖 )
2

=
1

(𝜇𝑠𝑢)2
+

1

(𝜇𝑐𝑑)2
+

𝑛 − 2

(𝜇𝑝𝑟𝑜𝑑)
2

𝑖

 

Erlang model production time variance  

𝑉𝑎𝑟[𝑆]𝐸𝑟 =
𝑛

(𝜇𝐸𝑟)2
=

𝑛

(𝑛 ∗ 𝜇𝑎𝑣𝑔𝐻𝐸
)

2 =
1

𝑛 ∗ 𝜇𝑎𝑣𝑔𝐻𝐸
2

=  
1

𝑛
[

1

𝜇𝑠𝑢

+
1

𝜇𝑐𝑑

+
𝑛 − 2

𝜇𝑝𝑟𝑜𝑑
]

2

 

~
1

𝑛 ∗ 𝜇𝑠𝑢
2

+
1

𝑛 ∗ 𝜇𝑐𝑑
2 +

𝑛 − 2

𝜇𝑝𝑟𝑜𝑑
2  

Exponential model production time variance  

𝑉𝑎𝑟[𝑆]𝐸𝑥 =
1

(𝜇𝐸𝑥)2
=  

1

(𝜇𝑎𝑣𝑔𝐻𝐸
)

2 = [
1

𝜇𝑠𝑢

+
1

𝜇𝑐𝑑

+
𝑛 − 2

𝜇𝑝𝑟𝑜𝑑
]

2

  

~
1

𝜇𝑠𝑢
2

+
1

𝜇𝑐𝑑
2 +

(𝑛 − 2)2

𝜇𝑝𝑟𝑜𝑑
2  

being µavgHE the average production time obtained from the detailed model and n the 

total number of stages in the MC model.  

The first order approximation of the Erlang and Exponential production time 

variance shows the Erlang one to be always lower than the detailed model one, while 

the Exponential to be always higher than the detailed one. This reflects the behaviour 

found in the resupply time results. In fact, the higher production time variability has 

direct repercussion on the queue generation, causing longer waiting time and 

therefore longer average resupply times. Furthermore, it can be noted that Var[S]Ex 

increases almost with the square of n, explaining the increase in resupply time with 

the increase of the number of layers. On the contrary, the Var[S]Er shows a more 

complex relationship with n: it increases with n for the term linked with µprod, while 

it decreases together with the terms proportional to µsu and µcd. This combination of 

dependencies leads to an almost constant variance with the number of strata, not 

influencing the final resupply times behaviour. These considerations can be 

appreciated by looking at Figure 3.11 that compares the production time variances 

for both the high and low production rates. 

The Exponential model 

The Ld - Lp test case has shown that if the µprod is decreased, the difference between 

the Exponential and detailed model resupply time is further increased. This 

behaviour is again revealed by looking at the variance’s formulation: the term 
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proportional to µprod in Var[S]Expo would in fact increase its weight on the variance 

calculation, having as result a rapid increase of the Exponential variance (Figure 3.11 

b) and finally of the average resupply time. 

The second parameter studied is the interarrival rate λ. it can be appreciated that, 

comparing the Ld-Hp and Hd-Hp test cases or the Ld-Lp and the Hd-Lp test cases, 

if the interarrival time is shortened, the resupply time �̅�  increases and so does the 

distance between the detailed and Exponential model resupply times. This behaviour 

is related to the system dynamics: if the interarrival is reduced, the SLM machine’s 

utilization increases, rising the parts waiting time in queue.  This justifies the �̅�  

increase in the selected test cases comparison. Nevertheless, the higher variability 

shown by the Exponential model has a further impact on the system performance. In 

fact, the higher production time variance propagates along the SLM production 

models, leading to longer queue formation, especially when the system saturates. 

This consideration proofs the increase in the difference between the detailed and 

Exponential �̅�  when λ is increased. 

Overall, this system behaviour is taken to the extreme considering Hd-Lp test case. 

In fact, the λ increase is combined with the lower µprod and therefore higher 

Exponential variances (Figure 3.11). The synergy of these two factors has as a 

consequence an overestimation of the resupply time of the 230% with the 

Exponential model with respect to the detailed model.  

The Erlang model  

The detailed and the Erlang models lead to similar behaviour. It can be observed, in 

fact, that the two models’ production time variances approximated at the first order 

differs only for a n factor at the µsu and µcd terms denominator. This means that these 

two models would lead to similar trends in resupply times, with the difference 

a) b) 

Figure 3.11:  Tested production time statistical distributions variances, analytically calculated. 

a) µprod = 1/0.003 h-1,b) µprod = 1/0.03 h-1. 

Legend:  Exponential model            Detailed model              Erlang model 
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depending on the µsu and µcd chosen. Anyway, it is underlined that the set up and cool 

down times have a lower variability with respect to the interarrival time or the 

production rate because they depend on the SLM machine characteristic: once the 

AM server is chosen, these two parameters are fixed, characterizing definitely the 

system behaviour. Finally, it is underlined that the Erlang model approximation 

would always lead to an underestimation, even if small, of the average resupply time.  

Final observations 

From the obtained results, it is possible to appreciate that using the Exponential 

approximation of the production time could lead to important resupply time 

overestimations, especially if the demand is high and the production rate low. 

Therefore, despite the Exponential model has the great advantage of using the fast 

and easy closed formula (3.12) for the resupply time calculation, it would be better to 

have a more realistic approximation of SLM build time even if it requires solving a 

numerical model, to reduce the resupply time estimation error. Finally, even if the 

Erlang and detailed models lead to similar results, the model definition and 

implementation for both the solutions is really similar, and the detailed one does not 

introduce evident complications with respect to the Erlang one, that has all the strata 

with equal production rate. To avoid underestimation of the average resupply time, 

it is therefore suggested to apply the detailed model.  

Overall, it is possible to conclude that a sufficiently detailed modelling of the SLM 

production times, avoiding assuming constant or generally distributed resupply 

time, can significatively impact the resupply time calculations, especially for high 

part volume and increasing demand. 

3.5 SLM machine analysis using the detailed MC model  

Having underlined sensible differences applying the developed models and the 

importance of considering the different time steps that SLM requires in a detailed 

way, it is now interesting to appreciate the impact of the input parameters in the 

detailed model on the final resupply time result.  

3.5.1 Design of experiments 

The cool down time is a time interval that can vary depending on the operator’s 

experience in parts extraction and machine cleaning, on the number of operators that 

performs the steps and on the machine model used. Regarding this last 

consideration, an example is provided by the Renishaw AM250 SLM machine 

utilized in the Politecnico di Milano laboratories. For this time step, it requires at 

least 3h or even more depending on the build plate thickness, because this procedure 

is performed waiting until the machine autonomously cool down at the open air. On 

the contrary, more performing machines as the Trumpf TruPrint3000, have 
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implemented a fans system to speed up the cool down phase, reducing sensibly its 

duration around to 15 or 20 min.  

For this reason, three different cool down times are tested: 1.5h in case of SLM 

machine as Trumpf TruPrint3000 and expert operator, 4.5h which is an average 

value sum of the Renishow AM250 cool down time and cleaning operations, and a 

final worst scenario with a longer cool down time requirements, for a total of 6h. 

Another interesting parameter is the layer printing time. This value strongly depends 

on the geometry to be printed, on the number of parts placed in the building chamber 

and on the SLM machine building rate. Also for this case, three different parameters 

are tested selected considering data provided by the Politecnico di Milano 

laboratories (Table 3.2). It is reminded that the data reported in Table 3.2 already 

consider in their definition the time tspeading = 0.001 h (around 3.5s) requested to 

spread the metal powder.  

Finally, a variation on the setup time is considered. Similarly to the cool down time, 

this phase duration depends on the SLM machine performance and on the ability of 

the operator to load the input data. Despite this, generally this parameter has a lower 

variation with respect to the cool down one. The parameter tested are reported in 

considering the information provided by experts at the Politecnico di Milano AM 

laboratories.  

The parameters testes are collected in Table 3.2. 

Cool down time [h] 1.5 4.5 6 

Printing time [h] 0.003 0.015 0.03 

Set up time [h] 0.75 0.92 1.5 

Table 3.2: Sensitivity analysis Set up, Printing and Cool down parameters. 

A reference test case has been defined, with the parameters in Table 3.3:  

 Set up Cool 

down 

Printing 

time 

Interarrival 

time 

Reference    

test case 

parameters  

0.92h 4.5h 0.015h  100h 

Table 3.3: Reference test case parameters. 

To evaluate the impact of the set up, cool down and printing times, these parameters 

are varied one per time in the experiments, maintaining the others constant and 

equal to the reference test case ones. For all the test case, the number of layers printed 

is varied starting from 20 and reaching 2500. This last value corresponds to the 

production of a part with maximum height of around 10 cm depending on the layer 

thickness selected. 
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3.5.2 SLM machine analysis results 

Figure 3.12 shows the test case results obtained using the detailed MC model. 

It can be generally pointed out that the main differences in terms of resupply time 

are observed with the higher number of layers printed, 2500. In fact, being the 

production volume and therefore the production time for this case higher, also the 

SLM machine utilization is increased, reaching around the 42% and, possibly, queues 

are created. Hence, the input parameters’ variability is further perceived. For this 

reason, the following analysis reports detailed data focusing more on this particular 

case, where the resupply times differences emerge strongly. In addition, 2500 layers 

could correspond to a part height of around 10 cm, which is a typical AM 

manufactured part dimension.  

Set up time test  

Figure 3.12a shows the resupply time �̅�  results when the set up time is varied. It can 

be noted that �̅�  almost overlaps, being the variation of the input set up time minimal. 

It has been computed that the final resupply time difference on the base case is the 

double with respect to the absolute delta tested (for example, in case of reducing the 

a) b) 

c) d) 

Figure 3.12: Test case for sensitivity analysis a) Set up time test case b) Cool down time test case c) Layer 
printing time test case d) High SLM machine utilization test case. 
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set up time by 0.17h, it is obtained a resulting delta on �̅�  of -0.35h). Despite this, the 

total influence on the resupply time is minimal. In fact, reducing the set up time by 

0.17h leads to a resulting �̅� percentage difference with the base case of just the -

0.59%, while increasing the set up time lead this difference to be 2.63%. These results 

are also related to the small set up time possible variability.  

Cool down time test  

Figure 3.12b shows the results obtained when the cool down time is varied. Also for 

this case, it has been calculated that the final resupply times difference with respect 

to the base case is around the double of the absolute delta tested. For example, 

reducing the cool down time by 3h leads to a final delta on �̅�  of 6.03h with respect to 

the base case. In addition, the impact of the variation of the cool down time on the 

total resupply time is significative, especially when the cool down selected is 1.5h, 

leading to a percentage difference on the total resupply time equal to -10.18%. This 

result can be a significative index of the positive impact of the choice of a more 

performing SLM machine with a reduced cool down time. 

Layer printing time test   

Figure 3.12c shows the results when the layer printing time is varied. Comparing this 

result with the previously described ones, it is easy to appreciate a higher impact of 

this parameter on the total resupply time. In fact, the increase (or decrease) of this 

parameter, strongly influences the SLM machine utilization. In case of layer printing 

time = 0.003h, the utilization is around the 12.9% with 2500 layers printed, while 

when the layer printing time is 0.03h, the machine utilization increases to 80.4%. 

This results in a higher SLM machine busy time (or idle time), with a respective 

longer (or lower) waiting time. This finding significantly impacts the final resupply 

time, with an estimated total difference on the base case of –76.37% when the 

printing time is reduced to 0.003h, and of 308.31% when the printing time is 

increased to 0.03h.  

High SLM machine utilization test   

Having proved that the layer printing time and the cool down time can significatively 

impact the resupply time, it has been decided to test the case of high utilized SLM 

machine (printing time = 0.03h) while varying the cool down time. In particular, this 

test can represent a scenario where multiple pieces are placed in one job to optimize 

the SLM building chamber utilization, or when one high volume piece is 

manufactured. Results are provided in Figure 3.12d. 

The cool down time reduction has a positive impact on the resupply time �̅�. In fact, it 

has been obtained that reducing it of 3h leads to a total saving on �̅�  of 33.20h, being 

this result around eleven times higher with respect to the tested time difference. This 

decrease also sensibly impacts the final resupply time, with a percentage decrease of 

13.73%. On the contrary, increasing the cool down time by 1.5h has as consequence a 
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resulting delta on final �̅�  of 19.72h, with a percentage increase of 8.15% with respect 

to the base case. 

Final observations 

In conclusion, this analysis showed that the resupply time is strongly influenced by 

the layer printing time, and therefore by the number of pieces to be printed, by their 

volume, or by the SLM machine building rate performance, having significative 

consequence on machine utilization. It can be underlined that, when the system is 

particularly saturated, a positive solution to reduce the resupply time is the cool down 

time decrease. This can be done selecting a high performing machine as the Trumpf 

TruPrint3000, with an embedded cool down system, and expert operators’ 

employment that can accelerate the removal and cleaning stage. The selection of such 

a machine could also positively impact the production time rate, offering a possible 

higher build rate with respect to the Renishaw AM250, meaning that, for the same 

printing time, the productivity can be increased, or, for realizing the same 

components, the resupply time can be reduced. On the contrary, the set up time 

modification is less significant for the total resupply time calculation, even because 

it was found that this parameter is less subjected to time variation and it has also a 

smaller absolute value compared with the cool down and total printing time ones.   
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4 Inventory models 

The scenario defined for this work involves a single-location inventory managed by 

the AM manufacturer, who uses this technology to replenish the stock and owns both 

the inventory stock and the production workshop. Basically, in a real manufacturing 

system, clients ask to the producer a specific product: if the component is available 

on the stock, the warehouse owner picks the part from the stock satisfying just in 

time the client. This operation leads to a decrease in the inventory level. Hence, the 

need of developing and optimizing the right inventory policy for stock replenishment 

arises.  

In this work, two different policies are considered: the (S-1,S) and the (r,Q) ones. In 

both of the cases a continuous time inventory review is assumed. This is not a strict 

or unrealistic assumption, knowing that nowadays the inventory level monitoring is 

often automated thanks to the use of designed inventory software combined with 

scanning systems as bar code or QR code that track the parts and make possible to 

update and control the inventory just in time.  

In addition, it is assumed that the unmet demands are backordered: if the part 

required is not available, the customers are asked to wait for their requests to arrive, 

and eventually their orders are satisfied. In contrast, other models apply the lost sales 

policy: if the demand cannot be immediately satisfied by the parts already available 

in the stock, the request is definitely lost. Considering backorders possible leads to 

the introduction of penalties costs. In fact, manufacturer would incur in a higher part 

cost due to discounts offered to clients because of miscarriage, clients’ unsatisfaction 

risk, discredit and eventually loss of new clients.  

A general assumption for all the suggested inventory policies regards the demand 

process. As reported in Section 3.2.1, the AM production scenario is characterized by 

a low and unstable parts demand. Very often, in fact, AM is proposed in literature as 

the flexible solution to promptly respond to the unpredictable demand of aerospace 

spare parts, or to realize customize components for different client requirements. 

Considering the scenario defined, the Poisson process is therefore again selected to 

model the demand arrivals in the inventory system. All the distribution characteristic 

and peculiarities can be found in Section 3.2.1. 

4.1 Analytical models 

In this Section, the selected (S-1,S) and (r,Q) inventory policies analytical models are 

presented. The approach followed is the one suggested by Muckstadt and Sapra 

(2010). 
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4.1.1 The (S-1,S) policy under Poisson demand 

The first inventory policy studied in this work is the so-called (S-1,S) policy. It is 

based on placing an order matching exactly the demand size whenever a demand of 

one or more units of items occurs. This procedure explains the policy nomenclature: 

calling S the inventory position, which measures the inventory hold, or on-hand 

inventory (OH), plus the outstanding orders (O) minus the backorders (B), once it is 

decreased by at least one unit (S-1,S), an order matching the demand size is 

immediately placed to bring it back to S.  

𝑆 = 𝑂𝐻 + 𝑂 − 𝐵 

In the particular case of this work, demands are considered of unitary size. This can 

be motivated since AM application for inventory replenishment is advocated in 

scenarios where the annual demand is very low, lumpy and uncertain, as the case of 

aeronautical spare parts or customized components, that are often asked one per 

time and when needed for a specific application. The (S-1,S) inventory logic applied 

to a SLM production scenario is represented in Figure 4.1. 

The (S-1,S) policy has often been promoted for controlling inventories of expensive, 

slow-moving items, i.e., in situations where the demand for the item is infrequent 

and the item is expensive, so that the cost of ordering is negligible when compared to 

the costs of holding and shortages (Schultz, 1990). Hence, this policy models the 

make to order (MTO) or piece-by piece production mentioned in scientific literature 

regarding AM application in supply chain. In fact, in this research field, the AM 

technology is used to produce just in time the demanded component with the aim to 

avoid high stock levels and to incur in risk of obsolescence.  

The (S-1,S) model is characterized by an objective function developed to minimize 

the total annual inventory cost, having the inventory position S as the only decision 

variable. To delineate the objective function, the costs expressions should be found. 

In particular, the costs incurred for this inventory policy are the holding costs and 

the backorders cost. The procurement or order costs are not considered because an 

(4.1) 

Figure 4.1: (S-1,S) inventory logic. 
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order is placed whenever a demand occurs and therefore, they do not depend on the 

decision variable S. Furthermore, this kind of one-for-one replenishment strategy is 

generally applied when the fixed order costs are generally irrelevant with respect to 

the final part value. If the fixed order costs start to be significative, other inventory 

policies where it is possible to accumulate demands and place fixed order quantity 

should be considered, as the (r,Q) one (van Houtum and Kranenburg, 2015).   

The formulation of the cost function follows Muckstadt and Sapra, (2010) approach. 

It should be noted that the model assumes that the Palm’s Theorem, together with 

its hypotheses, is verified. In particular, this remarkable result is referred to the 

number of units in resupply calculation and it is briefly reported. 

Suppose S is the inventory position for an item whose demands are generated by a 

Poisson process with rate λ. Suppose further that the resupply time random 

variables have density functions g(τ) with mean �̅�, and have distribution functions 

G(τ). Suppose further that the resupply times are independent and identically 

distributed from customer order to customer order. Then the steady state 

probability that x units are in resupply is given by 

𝑃{𝑋 = 𝑥} = 𝑝(𝑥|𝜆�̅�) = 𝑒−𝜆�̅� ∗
(𝜆�̅�)𝑥

𝑥!
 

Being X the random variable defining the number of units in resupply. Thus, the 

probability that there are x unit in resupply is Poisson distributed with mean 𝜆�̅�, i.e. 

it is not needed to know the exact distribution of the resupply or procurement time, 

but just its mean value.  

Considering that the Palm’s Theorem holds, it is possible to develop the (S-1,S) 

inventory policy objective function. The whole procedure can be found in Appendix 

A.2.1. It is recalled that the demand follows a Poisson process with mean λ. 

In particular:  

• h is the holding cost per year associated to every single unit stock in 

the inventory. 

• 𝑏 is the backorder cost associated to every unit backordered. 

The optimization problem to find the optimal inventory position S* that minimizes 

the total annual inventory cost Ctot can be defined as follows 

𝑚𝑖𝑛 𝐶𝑡𝑜𝑡(𝑠) = 𝐶𝑂𝐻(𝑆) + 𝐶𝐵(𝑆) = ℎ[ 𝑆 − 𝐸[𝑋] + 𝐵(𝑆)] + 𝑏𝐵(𝑆) 

s.t. 

𝐹(𝑆) >  𝛼 

𝑆 ≥ 0  ∀ 𝑆 ∈ 𝑁 

where COH(S) and CB(S) are the expected holding and backorder annual costs 

computed calculating the expected number of units in resupply E[X] and the 

(4.2) 

(4.3) 
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expected annual number of backorders B(S). In addition, the fill rate F(S) (i.e. the 

expected fraction of demands that can be satisfied immediately from on-hand stock) 

constrained is considered In particular, it is assumed that this metric has to satisfy a 

target level α to be able to promplty meet demand and to satisfy customer 

requirements. 

4.1.2 The (r,Q) policy 

One of the possible limitations of the (S-1,S) policy in the designed AM scenario  is 

that an order of unitary size is placed every time a client demands a piece from the 

inventory. This means that production is run for manufacturing just one part per 

time. In the case of AM, this results in waiting every time for machine set up and cool 

down. Furthermore, if the part build is small with respect to the total printing area, 

most of the recoating time is spent to distribute the powder on areas that would not 

be scanned. Additionally, it should be remembered that a percentage of the unmelted 

powder cannot be recycled and must be scrapped: considering a low building volume 

utilization, this would mean to waste a great percentage of material. Regarding power 

consumption, the energy requested in the set up and cool down phases would be 

spent to produce just one piece. Finally, the manufacturer would incur in the order 

cost every time an order is issued and if the order costs are high, this would lead to 

high annual expenditure. Considering these observations, literature suggests that the 

batch production is the best choice to optimize SLM machine capacity and reduce the 

part production time. Bearing in mind the limitations of the MTO production and the 

literature outcomes regarding SLM production efficiency, it has been therefore 

considered interesting to evaluate the batch production repercussions on inventory 

management. For this reason, the reorder point, lot size (r,Q) inventory policy, which 

is suitable for batch orders, has been analysed.  

In particular, when employing this model, it is assumed that significant order costs 

are incurred whenever an order is placed. In the case of AM manufacturing, these 

costs can be related to energy requirements for set up and cool down phases. In 

addition AM, and in particular SLM, requires the substitution of some consumables 

as the gas filter, the recoating blade and the build plate that constitutes incurring 

fixed costs every time a job is given to production (Previtali et al., 2017), and, 

therefore, an order is issued. Similarly, also a fixed amount of inert gas is consumed 

in every job. Additionally, waiting every time for both the set up and cool down 

phases, as well as for post processing operations, increases the total resupply time, 

having as consequence the requirement of higher stock level to maintain the desired 

service level.  

To reduce the impact of the ordering costs on the total annual inventory cost, the 

(r,Q) policy suggests to accumulate demands and place batch orders of size Q instead 

of producing every time a demand arrives. The timing of the orders placement 

depends on the underlying demand process and on specific policy parameters 



 
INVENTORY MODELS  
 

66 
 

settings. In particular, when the inventory position, which is again (Equation (4.1)) 

the on-hand inventory (OH), plus the outstanding orders (O) minus the backorders 

(B), reaches a particular value, called the reorder point r, an order of size Q is sent. 

The underlying assumption for the development of this model is that the demand 

process is memory-less, and this is the case of the Poisson process. Otherwise, for 

determining the best time to place an order, it would be necessary to know when the 

last demand occurred, requiring therefore a more advanced solution (Muckstadt and 

Sapra, 2010). Figure 4.2 represents the (r,Q) inventory logic applied to a SLM 

production scenario.  

Figure 4.2: (r,Q) inventory logic. 

Also for this type of inventory policy, a continuous inventory review is considered, 

and the demands, which follow a Poisson process, occur for a single unit at time. 

Because of this hypothesis, the reorder point r is met exactly every time an order has 

to be placed and it is an integer number.  

When the number of units demanded in a customer order are more than one, policies 

other than the (r,Q) should be employed, like the (s,S) one (Axsater, 2000). Anyway, 

for the considered scenario, where AM is used for inventory replenishment, it is 

reminded that the demand hypothesized is low and lumpy: for the same motivations 

already provided for the (S-1,S) model, also for the (r,Q) one the unitary demand size 

is selected. 

The goal of the (r,Q) policy is to minimize the total annual inventory cost, which 

depends on the (r,Q) decision variables. Literature presents different analytical 

models to deal with this inventory policy, providing more or less stringent 

hypothesises and accurate solutions. The one used as reference in this work is 

suggested by Muckstadt and Sapra (2010) and Hadley and Whitin (1963) and brifly 

reported in the following section.  

An approximate model when backordering is permitted  

The first model described is an approximation based on many assumptions. This 

model is easy to understand, the resolution methods are quite simple, and can be 
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suitable for very low demands. Nevertheless, one must be aware of the impact of the 

assumption on the policy parameters resulting values.  

In fact, the key assumption in this model is that there is never more than one single 

order of size Q outstanding in any point in time. This implies that, whenever the 

reorder point r is reached, there are no orders outstanding, or, in other words, that 

the demand over the resupply time never exceeds Q. This model therefore does not 

allow the case in which, in a certain resupply time, the demand is so high that exceeds 

the size Q more than once, leading to the need of placing more than one order of size 

Q. In addition, it is also assumed that the average number of backorders at a random 

point in time is negligible.  

These assumptions allow to formulate the (r,Q) inventory policy optimization 

problem for selecting the optimal (r,Q) parameters to minimize the total annual 

inventory cost. The model is first computed considering a constant resupply time τ. 

The complete model formulation can be found in 0.0A.2.2. 

The cost accounted in the model are: 

• a fixed order cost, called K, associated to every order placing.   

• the backorder cost b, related to every unit backordered. 

• the holding cost h, the cost of carrying a unit of stock for a year. 

It is therefore possible to define the (r,Q) optimization problem as:  

𝑚𝑖𝑛 𝐶𝑡𝑜𝑡(𝑟, 𝑄) =
𝐾𝜆

𝑄
+  ℎ [

𝑄

2
+ 𝑟 − 𝜇] + 𝑏

𝜆

𝑄
∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥

∞

𝑟

 

s.t. 

𝑟 ≥ 0  ∀ 𝑟 ∈ 𝑁 

𝑄 > 0  ∀ 𝑄 ∈ 𝑁 

where µ is the expected resupply time demand and f(x) is the demand density 

function over the resupply time.  

Stochastic resupply time 

The above results were obtained considering a constant resupply time. It is possible 

that the replenishment time is stochastic, hence some modifications of the already 

described model are necessary. Considering the resupply time independent from the 

demand, the marginal distribution of the resupply time demand is:  

ℎ(𝑥) =  ∫ 𝑓(𝑥, 𝑡)𝑔(𝑡)𝑑𝑡
∞

0

 

being g(t) the density function of the stochastic resupply time. 

(4.4) 
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Following the calculations reported in the Appendix A.2.2, it can be demonstrated 

that the total annual average cost Ctot, considering stochastic resupply time, can be 

calculated as:  

𝐶𝑡𝑜𝑡(𝑄, 𝑟) =
𝐾𝜆

𝑄
+  ℎ [

𝑄

2
+ 𝑟 − 𝜇∗] + 𝑏 

𝜆

𝑄
∫ (𝑥 − 𝑟)ℎ(𝑥)𝑑𝑥

∞

𝑟

 

with µ* the expected resupply time demand i.e. µ∗ = ∫ 𝑥ℎ(𝑥)𝑑𝑥
∞

0
. 

The new total cost equation can be finally substituted in the optimization problem 

(4.4).  

The detailed model  

The assumptions made in the aforementioned model can be sometimes unrealistic. 

In fact, it can happen that there is more than one outstating order and the expected 

number of backorders is not always negligible. Considering the objective of 

describing the SLM process as much near to reality as possible, a second model is 

introduced. In particular, it gives an exact representation of the stationary 

probability of the net inventory, without approximation.  

Also in this case, the demand is assumed to follow a stationary Poisson process with 

annual rate λ, and customers arrive one by one. The model is firstly developed 

considering a constant resupply time τ. For synthesis purpose, all the formulas 

derivations can be found in the Appendix A.2.3.  

For this model, the costs incurred are:  

• a fixed order cost, called K, associated to every order placing.   

• the backorder costs b, related to every unit backordered. 

• the holding cost h, the cost of carrying a unit of stock for a year. 

• the backorder cost �̂� related to every unit backordered during a year. 

Following the equation derivation found in the Appendix A.2.3, it is possible to write 

the exact (r,Q) model optimization problem as follow:  

𝑚𝑖𝑛 𝐶𝑡𝑜𝑡(𝑟, 𝑄) =
𝜆𝐾

𝑄
+ ℎ [

𝑄 + 1

2
+ 𝑟 − 𝜇 + 𝐵(𝑟, 𝑄)] + 𝑏 ∗ 𝐸(𝑟, 𝑄) + �̂� ∗ 𝐵(𝑟, 𝑄) 

s.t. 

𝑟 ≥ 0  ∀ 𝑟 ∈ 𝑁 

𝑄 > 0  ∀ 𝑄 ∈ 𝑁 

In particular, two types of backorders expression are present: E(r,Q) which is the 

expected number of backorders incident per year, and B(r,Q) which represents the 

number of unit backordered in a generic point of time. Finally, µ is the expected 

demand over the resupply time. 

(4.5) 
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The exact model and stochastic resupply time  

The exact model formulated in the previous section considers the resupply time τ as 

a constant. Despite this, very often the resupply time is a stochastic variable. In 

particular, in case of the (r,Q) model application to the SLM production scenario, this 

time would be linked to the stochasticity of the manufacturing process. The 

introduction of the resupply time stochasticity in the exact (r,Q) formulation is not 

straightforward. In fact, in the case of the reported approximated (r,Q) model, it was 

sufficient to substitute the demand probability distribution with the marginal 

distribution of the resupply time demand h(x). This was possible because of the 

hypothesis of just one outstanding order. This is not the case of the exact model, that 

removes this assumption making impossible to rigorously assert that just one single 

order is outstanding.  

In case of more than one order is allowed to be outstanding, difficulties are 

encountered in properly represent the resupply time random variable (Hadley and 

Whitin, 1963). In fact, to provide simpler calculation, one would like to treat the 

resupply times as independent. This means that outstanding orders can cross, i.e. 

orders placed in a subsequent moment can be delivered before the first order placed. 

In practice, it is almost always true that this cannot happen, considering also that, 

generally, orders are placed in queue and wait in line the other orders to be fulfilled. 

Hadley and Whitin, (1963) suggest in their book some solutions to consider the 

resupply time stochasticity. Nevertheless, they are forced to define particular 

scenarios in which resupply times can be treated as independent or to consider the 

resupply time equal to its mean, removing in way the variability. Considering that 

the aim of this work is to provide a detailed analysis of the SLM production process, 

accurately describing its time steps, these types of assumptions are too strict. 

Simulation modelling can be a valid solution to represent a real system reducing the 

above hypotheses as minimum and allowing a fair good representation of reality.  

4.1.3 The (r,Q) model in case of lot size dependant resupply 

time 

The (r,Q) mathematical models described in the previous paragraphs consider, with 

more or less strict hypothesises, the resupply time constant or generically 

distributed. Despite this, very often in manufacturing systems the resupply time 

strongly depends on the lot size Q. In fact, it is easy to imagine that, while machines 

set up time is usually independent from Q, the processing time could well show a 

dependency on the number of parts to be produced, leading the resupply time to vary 

depending on the lot size. This particular behaviour is proper of the SLM 

manufacturing, where the printing time can be considered proportional to the 

number of parts to be realized. Hence, one major drawback of the models presented 

is that this outcome is not taken into account.  
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In particular, Karmarkar, (1987) showed in his work the importance of considering 

the processing time as dependant on the lot size Q starting to analyse just the impact 

on resupply time. He used Markov Chains to prove the impact of the production time, 

considered directly proportional to Q, on the system time. He found that the system 

time is strictly correlated to the lot size and exist a point of minimum dependent on 

Q to minimize it. If Q is too large, machine saturations and system congestion are 

caused, leading to performance decrease. Therefore, considering the resupply time 

constant can bring to not fair estimation of system capabilities.  

Having appreciated the relevance of the production time dependency on Q, one of 

the first attempts in studying the impact of the lot size Q on the inventory 

management can be found in the work of Kim and Benton, (1995): they suggest that 

in manufacturing environments Q can have significative consequence on the 

resupply time and therefore on the inventory costs. They analysed continuous review 

(r,Q) inventory policy introducing a linear dependency between Q and the resupply 

time with waiting times accounting as a proportion of the resupply time. They 

developed an iterative algorithm based on an adjusted economic order quantity and 

demonstrated that significant saving can occur if firms consider the interrelationship 

between the lot size and safety stock decision, finding more appropriate optimal 

inventory parameters.  

Çakanyildirim, Bookbinder and Gerchak, (2000); and Glock, (2012)  underlined in 

their research the necessity of finding an appropriate (r,Q) model to consider the 

dependency between lot size and resupply time. They therefore posed as goal the 

development of a continuous review (r,Q) inventory model considering stochastic 

demand and variable, lot size dependant resupply time. Both of the models allow 

backorders. Çakanyildirim, Bookbinder and Gerchak, (2000) discuss two cases: the 

resupply time linear and concave in lot size, finding for both the models a closed form 

solution. Glock, (2012) considers instead the resupply time as function of setup and 

transportation time, plus the manufacturing time, expressed as the production rate 

times Q and provides an iterative algorithm to find the optimal inventory parameter. 

Despite the results obtained from the two previous models, it is worth pointing out 

that both the works are based on the hypothesis that only one outstanding order per 

time is possible every cycle, i.e. no overshooting of orders is considered. These 

models are therefore an evolution of the approximated (r,Q) model (Section 4.1.2) 

and still, in order to find a possible solution, assumptions on the number of orders 

outstanding are required.  

An interesting research is done by Noblesse et al., (2014). They assumed a 

continuous review (s,S) inventory policy, underlining the importance of the impact 

of the lot size in determining the resupply time. In particular, they constructed a 

queueing system model that determines resupply time, and it is connected 

endogenously to a second analytical model that describe the inventory orders 

placing. In particular, the order quantities generated by the inventory model 
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determine the lot production size and therefore the (production) lead times. They 

tested the model comparing its result with the ones obtained by the often-used 

Economic Order Quantity one (EOQ). They showed that setting the inventory 

parameters based on the EOQ and ignoring the lot size impact on the resupply time, 

may results in significantly higher expected total cost. Table 4.1 reports the two 

models results comparison evaluating different decision variables in each of the 

cases. In particular, they underlined that savings can be obtained considering the 

dependency of the resupply time on Q because lead time variability strongly 

influences the total cost, and a proper selection of it can reduce the total annual 

expenditure. 

Cases 
(s,S) 

Endogenous 

C(s,S) 

Endogenous 

(s,S) 

EOQ-based 

C(s,S) 

EOQ-based 

Case 1 (36, 62) 42.9430 (108, 115) 116.8844 

Case 2 (46, 74) 54.1630 (143, 150) 151.3624 

Case 3 (35, 63) 45.4753 (41, 56) 51.4359 

Case 4 (46, 76) 55.5563 (54, 69) 64.2507 

Table 4.1: (s,S) parameters and corresponding expected costs per hour C(s,S)  when lead times are treated 
endogenous to the inventory policy, versus the traditional EOQ-based approach (Noblesse et al., 2014). 

Despite the model computation complexity and the necessary hypothesises to allow 

the use of Markovian processes, the model results clearly underline the importance 

of considering the dependency of resupply time on the order size, especially in case 

of limited capacity. The production and therefore the resupply times are in fact 

influenced by the number of units to be machined and to the machine utilization: if 

the system starts to be saturated and too high queue levels are created, drawbacks 

can be caused on the system and so inventory performance.  

In conclusion, it can be said that considering the resupply dependency on Q can 

result in a turning point for a proper total inventory cost estimation and eventually 

leading to a more accurate selection of optimal inventory parameters that bring to a 

reduction of total inventory costs. It is suggested therefore to develop an inventory 

model that could remove the stringent assumptions regarding the number of 

outstanding orders and resupply time formulations, with the objective to provide an 

exhaustive analysis of the AM impact on inventory management, considering that 

the resupply time, also for this technology, is strongly dependant on the number of 

pieces to be produced in each job.  

 

 

 



 
INVENTORY MODELS  
 

72 
 

4.2 Discrete events simulation models 

In this section, an alternative modelling tool given by discrete event simulation is 

introduced. In particular, the motivations beside this choice are first reported, and 

the developed models are subsequently illustrated.    

4.2.1 Motivations 

From the analytical models reported in Section 4.1, it can be noted that the main 

difference between the (S-1,S) and the (r,Q) policies is strictly related to the SLM 

production process. In fact, in the (S-1,S) policy an order is placed every time a 

demand arrives, leading to a make to order (MTO) or piece-by-piece production, very 

often advocated in the AM Supply Chain literature. On the contrary, in the (r,Q) 

policy, orders are issued only when the inventory position reaches the reorder point 

r, and the orders size is equal to the lot size Q, having as consequence a batch 

production, chosen in scientific literature when the scope is gaining AM production 

efficiency. Being the production strategy the focal driver to characterize the inventory 

policies, an accurate modelling of the SLM manufacturing is necessary. 

It is underlined that the SLM production is quite complex. In fact, the AM machine 

is characterized by three different phases: set up, printing and cool down. 

Furthermore, the manufactured components need to undergo to specific thermal 

treatments, parts must be removed from the build plate with wire EDM and also 

support structures have to be cut off, and finally finishing operations as grinding are 

often required. Overall, from modelling point of view, this would mean to consider 

an articulated process flow, characterized by different stages with specific time 

durations and peculiarities.  

Considering that the aim of this work is to remove the literature assumptions done 

to model SLM manufacturing, providing instead a detailed view of the AM 

production, the analytical models’ hypothesis described in the previous section may 

be too strict for this purpose. 

First, the (S-1,S) model is constructed on the Palm’s theorem (Equation (4.2)), that 

assumes that the resupply times are all independent and identically distributed. This 

is not always true: very often, in a real manufacturing system, if the machine has a 

high utilization rate, parts and orders are often requested to wait in buffers until the 

machine is idle for production. This means that, if the system is particularly 

saturated, the order resupply times can be dependent one from another. A proof of 

this behaviour is given Figure 4.3. 

Figure 4.3 compares the probabilities of having different number of parts in resupply 

calculated with Palm’s Theorem and with a simulation model. Both the models are 

constructed having the same demand and production times. In particular, it has been 

hypothesized to produce a part with 1250 layers and a mean layer production time of 
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0.003h. The set up phase is estimated to be 55min, while the cool down 4.5h. Two 

different demand interarrival times are tested: 10h and 300h.  

It can be noted that, in case of low interarrival time (Figure 4.3b) Palm’s Theorem 

and the simulation model provide comparable probability distributions, with a 

maximum and negligible error of 0.28% in case of 1 part in resupply. On the contrary, 

in case of higher interarrivals (Figure 4.3a), the two discrete probability distributions 

give sensible different results, with a maximum error of 10.5% in case of 5 parts in 

resupply. This is due to the fact that, if interarrival rate is increased, the system gets 

saturated and orders are forced to wait in queue until the server is idle. This leads to 

the loss of the independence assumption of Palm’s Theorem, leading to significative 

errors in probabilities estimation.  

Another interesting point of discussion is referred to the (r,Q) analytical model’s 

formulations existing in literature. For this case, one of the main issues is related to 

the resupply time evaluation. In fact, it is often assumed to be constant, and when it 

is represented by a stochastic distribution, the assumption of independent resupply 

times is necessary. In a real manufacturing system, when machine limited capacity 

is considered, this assumption can be too strict. Furthermore, literature suggests that 

the dependency between the resupply time and the lot size can be very significative 

in a production scenario, impacting in a remarkable way on the inventory total cost 

(Section 4.1.3) 

Considering all the possible limitations that the analytical inventory policy models 

present, considering the SLM process flow complexity, and remarking that the aim 

of this work is to describe a production scenario as much near to reality as possible 

to collect accurate results, it has been decided to make use of discrete event 

simulation to model the system. In fact, Kunovjanek and Reiner, (2020) underline 

that “mathematical analysis, in general, is not powerful enough to provide analytical 

solution in such complex systems. Experimental approaches are alternatives to that, 

but they cannot always be performed in real life, so simulation can be sometimes the 

only option”.  

a) b) 

Legend:    Simulation probabilities          Palm’s probabilities  

Figure 4.3: Palm and simulation probabilities comparison for a) interarrival time =10 h, b) interarrival 
time = 300 h 
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4.2.2 Inventory simulation models description 

Considering the previous reasoning, the SLM production scenario, together with the 

inventory management different approaches, are modelled using discrete event 

simulation in Arena by Rockwell Automation software. A brief model description, 

together with the assumptions considered, is reported in the following paragraph.  

SLM production 

SLM machine 

Considering the low demand that characterizes the AM production scenario, only one 

SLM machine is considered. The SLM machine is modelled as a server with a 

production time that is a sum of the three different stages that the technique requires: 

set up, printing and cool down (Figure 4.4). The Markov Chain results (Section 3.4.2) 

have underlined that the choice of a detailed statistical distribution to model the SLM 

production process can lead to accurate resupply time estimation, as opposed to the 

generic ones. For this reason, it has been decided to stick with this outcome 

describing the SLM machine by again a hypoexponential distribution. In particular, 

this distribution is the sum of exponential distributions with different means, which, 

for the SLM modelling, are: two different exponential stages for set up and cool down 

with mean 1/µsu and 1/µcd respectively, and m intermediate stages with equal mean 

1/µprod for building n layers. It is reminded that 1/µprod is given by the sum of the 

powder spreading time ts and the layer printing time tp. Hence, this distribution has 

been modelled in Arena by means of two exponential distributions for set up and cool 

down and an Erlang distribution with mean m/µprod for the production phase.  

Additionally, considering that all equal parts are produced, it is supposed a linear 

dependence between tp and the number of pieces to be printed. This assumption’s 

validity is confirmed by SLM experts’ opinion at Politecnico di Milano AM 

laboratories. Therefore, in case of batch production, the layer production time would 

be 

𝑡𝑝𝑟𝑜𝑑 = 𝑡𝑠 + 𝑄 ∗ 𝑡𝑝 =
1

𝜇𝑝𝑟𝑜𝑑(𝑄)
 

In order to characterize the SLM machine as a single server with limited capacity, a 

buffer of infinite capacity is placed in front of it, so that orders can wait in queue if 

the machine is busy. This buffer is symbolic: it is a way to state that potentially an 

infinite number of orders can be collected, meaning that a digital queue of STL file is 

scheduled, waiting to be concretely produced. 

Figure 4.4: SLM server modelling. 
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Post-processing operations 

After the three-step printing operation, the parts produced undergo to thermal 

treatment, wire Electric Discharge Machining (EDM) for parts and supports removal 

and finally grinding for finishing operations. These three subsequent operations are 

represented by three different single servers with an exponential production time, 

with a mean respectively of 1/µTT, 1/µEDM and 1/µG preceded by a buffer with infinite 

capacity (Figure 4.5). In particular, the thermal treatment time is considered 

independent of the number of pieces in the oven, while the EDM and grinding times 

are directly proportional to the parts to be manufactured. Therefore, as for the SLM 

machine, in case of batch production of size Q, the EDM and grinding servers would 

have a busy time Q times longer than the single piece one. It can be noted that there 

is no such a detailed attention in depicting these three operations (tool changes, 

downtimes...), being such a description beyond the scope of the work. Anyway, the 

stochasticity introduced by the selected exponential distribution can easily 

comprehend all these additional times.  

The approximation of considering infinite buffer capacity is not so unrealistic. In fact, 

the system described is constituted by distinct servers not positioned in a line, where 

instead one busy server can condition the behaviour of the other servers causing 

eventually their blocking. Hence, this assumption means that it would be always 

possible to find space (on the shop floor, pallets, trucks...) where to allocate parts to 

wait in case of the required server is not idle.  

Demand arrivals and inventory policy  

As hypothesised in Section 3.2.1, the demands are of unitary size and their arrivals 

follow a Poisson process with exponentially distributed interarrival times with mean 

1/λ. Once a client arrives, the demand can be satisfied just in time if parts are 

available in the stock, incrementing the counter of clients immediately satisfied. 

Otherwise, clients are asked to wait and the demand is backordered. Depending on 

the inventory policy chosen, two different ways of placing orders are requested. In 

case of (S-1,S) policy, there would be a variable that checks the inventory position I: 

when it reaches a value equal to S-1, a signal would be emitted and an order would 

be placed in the production stream. Differently, in case of (r,Q) policy, an order signal 

would be emitted when I reaches the reorder point r, placing an order of size Q. When 

the manufacturing stage completes the order production, the components would be 

used firstly to satisfy backorders, if any, and the remaining parts (if any) would 

increment the on-hand inventory. It is underlined that, thanks to the use of 

Figure 4.5: Post-processing operations modelling. 
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simulation, no constraint on the number of pending orders is present. Furthermore, 

it is assumed infinite stock capacity, i.e. there is always enough space to stock the 

components. Again, this is not such a stringent assumption, considering that the 

parts manufactured with SLM have small volume and have a low demand, leading to 

limited stock level and hence limited inventory space requirements.  

Collected KPIs 

To compute the total inventory cost together with the system performance, the 

following Key Performance Indicators (KPIs) are collected:  

• On-hand inventory over time OH: this is a time persistent statistic computed 

considering the number of parts available on stock at each simulation instant 

of time divided by the total time.  

• Backorders over time B: this is a time persistent statistic computed 

considering the number of parts backordered at simulation instant of time 

divided by the total time. 

• Number of orders O: the total number of orders placed every year. 

• Number of clients satisfy Just In Time (JIT) and total number of annual 

demands: these two variables’ ratio allow to compute the service level. 

• Resupply time: the time that elapses between an order issue and its 

completion, with the arrival to the stock. 

• Server utilization: percentage time fraction in which the server is busy over 

the total time. 

• Buffers waiting times: time that orders spend in queue.  

4.2.3 Optimization problems 

The implementation of proper simulation models for both the (S-1,S) and (r,Q) 

policies allows the inventory KPIs computation, overcoming the analytical models 

assumptions and permitting a detailed description of the SLM production scenario. 

It is therefore possible to formulate the two inventory models’ optimization problems 

based on the collected parameters.  

(S-1,S) optimization problem:  

The optimization problem objective function is constructed following the approach 

presented in Section 4.1.1, using Equations (4.3) as reference. The objective is the 

total annual inventory cost Ctot minimization, which is the sum of the average holding 

COH and backorder CB costs. These costs are computed multiplying the expected on-

hand and backorder inventory over time (E[OH(s)] and E[B(s)]) obtained from 

simulation, times the holding and backorder costs per unit. These costs are 

considered proportional to the unitary production cost Cu.p. times a factor, h and b for 

on-hand and backorders respectively, that define the impact of the unitary 

production cost on the final cost computation.  
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min 𝐶𝑡𝑜𝑡(𝑆) = 𝐶𝑂𝐻(𝑆) + 𝐶𝐵(𝑆) = ℎ ∗ 𝐶𝑢.𝑝. ∗ 𝐸[𝑂𝐻(𝑆)] + 𝑏 ∗ 𝐶𝑢.𝑝. ∗ 𝐸[𝐵(𝑆)] 

s.t. 

𝑆 ≥ 0 ∀ 𝑠 ∈ 𝑁 

(r,Q) optimization problem 

The optimization problem objective function is developed following the exact model 

approach presented in Section 4.1.2, using Equations (4.5) as reference. The objective 

is minimization of the total annual inventory cost Ctot, which is the sum of the average 

holding COH, backorder CB and order CO costs, that depend on the decision variables 

r and Q. The holding and backorder cost are computed in the same way as the (S-1,S) 

simulation inventory model. The order cost is defined as the product of the fixed 

unitary order cost Cu.o. times the expected number of orders per year Norders, collected 

from the simulation model. It is reminded that the lot size has an upper bound Qmax 

depending on the maximum number of pieces that can be printed in the same job 

using an SLM machine.  

min 𝐶𝑡𝑜𝑡(𝑟, 𝑄) = 𝐶𝑂𝐻(𝑟, 𝑄) + 𝐶𝐵(𝑟, 𝑄) + 𝐶𝑂(𝑟, 𝑄)

= ℎ ∗ 𝐶𝑢.𝑝. ∗ 𝐸[𝑂𝐻(𝑟, 𝑄)] + 𝑏 ∗ 𝐶𝑢.𝑝. ∗ 𝐸[𝐵(𝑟, 𝑄)] + 𝐶𝑢.𝑜. ∗ 𝑁𝑜𝑟𝑑𝑒𝑟𝑠 (𝑟, 𝑄) 

s.t. 

𝑟 ≥ 0 ∀ 𝑟 ∈ 𝑁 

1 ≤ 𝑄 ≤ 𝑄𝑚𝑎𝑥 ∀ 𝑄 ∈ 𝑁 

4.2.4 Simulation models validation  

To check the simulation model correctness, a verification and validation phases are 

performed. The simulation models are verified thanks to the Arena command trace 

that reports all the events happening during the simulation runs, together with the 

use of animations that help in visually following the process flow.  

The second step is the model validation. This phase is useful in order to determine if 

the simulation model is an accurate representation of a real system. Considering that 

it was not possible to find a real industrial case suitable for this work, being the 

application of AM in inventory management still immature, and taking into account 

also that no analytical models able to describe such a complex system without the 

imposition of many assumption exist, it was decided to validate the simulation 

models following a step-by-step procedure, with an increasing level of hypotheses 

removal and better representation of the real SLM production and inventory 

management case.  

The different steps followed for the simulation model validations are:  
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i. Validation of the SLM production stream 

In this step, the SLM production process is considered focusing only on the SLM 

server, together with its production queue and neglecting the post processing phases. 

In this way, it is possible to compare the simulation resupply times with the one 

obtained from the detailed MC model and validate SLM the production stage. 

ii. Validation of the (S-1,S) inventory model  

Also in this step, the simulation production process includes only the SLM machine 

together with its waiting queue. Additionally to this, the (S-1,S) logic for managing 

the inventory is added, and inventory KPIs are collected. These results are compared 

with the ones analytically calculated using both the developed MC detailed model 

and the analytical (S-1,S) model formulation (Sections 3.2.3 and 4.1.1). In fact, to 

overcome the limitation underlined in Palm’s Theorem application linked to i.i.d. 

resupply times, the probability of having x units in resupply is computed from the 

probability vector π that the MC model gives as result. In particular, having as 

reference the MC model notation of Section  3.2.3, it can be noted that the system 

state is defined by two variables: the number of units in resupply i and the SLM 

production stage j. By summing up all the n different stage probabilities πij for a 

certain number of units in resupply i, it is possible to find the probability of having i 

units in resupply πi: 

𝜋𝑖 =  ∑ 𝜋𝑖𝑗

𝑛

𝑗=1

 

Knowing the πi probabilities, it is possible to compute the annual average on-hand 

and backorders levels as expressed in the (S-1,S) analytical model, and compare them 

with the simulation model results.  

iii.   Validation of the (r,Q) model  

In order to validate the (r,Q) inventory model, the simulation results are compared 

with the ones analytically calculated with the detailed (r,Q) model described in 

Section 4.1.2. It is necessary to point out that this model assumes a constant resupply 

time to consider the possibility of having more than one outstanding order. For this 

reason, the simulation model is modified to obtain a constant resupply time: the SLM 

machine is duplicated many times so that the system can be considered having 

infinite capacity and no queue formation is verified. In this way, it is ensured that the 

resupply time is constant and equal to the value of the analytical model. The KPIs 

collected in the simulation model are than compared with the ones calculated 

analytically.  

It is pointed out that the hypoexponential resupply times validation is already 

provided in the validation step i. Hence, the positive validation of both the models in 
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steps i. and iii. is a positive feedback also for the correctness of the (r,Q) simulation 

model with stochastic resupply time, that cannot be numerically validated because of 

missing analytical models. 

Models validation results  

i. Validation of the SLM production stream 

In order to validate the SLM production, the model is tested considering different 

input parameters in terms of interarrival times, setup, cool down, production 

durations, and number of strata to be printed (Table 4.2). Every time ten different 

simulation runs of length 200,000h and a warm-up period of 60,000h are 

performed, from which the average resupply time and its confidence interval are 

extracted. The confidence intervals (CI) are calculated with a confidence level of 95%. 

The comparison between MC and simulation outputs and the validation proof are 

reported in Table 4.3. The complete table reporting all the simulation runs’ results is 

found in the Appendix A.3. From Table 4.3, it is possible to appreciate that the model 

is validated for all the different test cases.  

 

ii. Validation of the (S-1,S) inventory model  

To validate the simplified (S-1,S) model described in the previous section, the same 

test cases utilized for the SLM resupply time validation are used, with the addition of 

 
Interarrival 

time [h] 

Set up 

time [h] 

Layer 

production 

time [h] 

Cool down 

time [h] 
#strata 

Test case 1 10 1 0.003 1 1000 

Test case 2 24 0.5 0.003 0.5 500 

Test case 3 100 1 0.003 4.5 1000 

Test case 4 100 1 0.03 4.5 1000 

Table 4.2: SLM resupply validation test case input parameters 

 MC average 

resupply time 

[h] 

Simulation 

expected resupply 

time [h] 

Half CI Validated? 

Test case 1 7.7009 7.7011 0.0592 Yes 

Test case 2 2.1023 2.1003 0.0146 Yes 

Test case 3 9.0110 8.9951 0.1193 Yes 

Test case 4 45.4411 45.4760 0.6206 Yes 

Table 4.3: SLM resupply time validation: MC and simulation results of different test cases (CI calculated 
with a confidence level of 95%). 
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the inventory position S parameter (Table 4.4). In particular, ten different simulation 

runs of one year (i.e. 8760h) length are performed, considering a warm-up period of 

200,000h. The backorders (B) and on-hand (OH) inventory KPIs are collected, and 

their expected value, together with the CI (confidence level 95%) are calculated. The 

results are compared with the ones obtained from the analytical model based on the 

MC. The validation proofs are showed in Table 4.5 and Table 4.6 while the whole 

simulation runs results are collected in Appendix A.3. 

Table 4.4: (S-1,S) model validation: test cases input parameters. 

 

 B. analytical 

results 

Simulation 

expected B. 
Half CI Validated? 

Test case 1 0.0271 0.0245 0.0100 Yes 

Test case 2 0.0003 0.0003 0.0001 Yes 

Test case 3 0.0003 0.0003 0.0003 Yes 

Test case 4 0.0032 0.0031 0.0033 Yes 

 

iv. Validation of the (r,Q) model  

Also the simplified (r,Q) model with constant resupply time is validated. To prove the 

correctness of the model independently from the input parameters chosen, different 

test cases are selected, varying the reorder point r, the lot size Q, the interarrival rate 

and the resupply time (Table 4.7). Ten different replications for each test case are 

run, with a length of one year (i.e. 8760h) and a warm-up period of 250,000h. The 

 
Interarrival 

time [h] 

Set up 

time [h] 

Layer 

production 

time [h] 

Cool 

down 

time [h] 

#strata S 

Test case 1 10 1 0.003 1 1000 3 

Test case 2 24 0.5 0.003 0.5 500 3 

Test case 3 100 1 0.003 4.5 1000 2 

Test case 4 100 1 0.03 4.5 1000 3 

Table 4.5: (S-1,S) model validation: Backorders (B) analytical and simulation results for different test 
cases (CI calculated with a confidence level of 95%). 

Table 4.6: (S-1,S) model validation: On-Hand (OH) analytical and simulation results for different test 
cases (CI calculated with a confidence level of 95%). 

 OH. analytical 

results 

Simulation 

expected OH. 
Half CI Validated? 

Test case 1 2.2570 2.2619 0.0285 Yes 

Test case 2 1.8896 1.8906 0.0052 Yes 

Test case 3 1.9101 1.9041 0.0120 Yes 

Test case 4 2.5487 2.5641 0.0597 Yes 
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final results obtained from the simulation and the analytical model are shown in 

Table 4.8, Table 4.9 and Table 4.10, proving the model validation. The KPIs 

confidence intervals have been calculated considering a confidence level of 95%. The 

whole simulation runs result are reported in the Appendix A.3. 

            

 

 

 

   B. analytical 

results 

Simulation 

expected B. 
Half CI Validated? 

Test case 1 0.5339 0.5213 0.0386 Yes 

Test case 2 2.7473 2.7280 0.1684 Yes 

Test case 3 0.1072 0.1091 0.0138 Yes 

Test case 4 0.0137 0.0146 0.0053 Yes 

Table 4.8: (r,Q)  model validation: Backorders (B) analytical and simulation results for different test cases 
(confidence intervals calculated with a confidence level of 95%). 

 OH. analytical 

result 

Simulation 

expected OH. 
Half CI Validated? 

Test case 1 5.0339 5.0536 0.1003 Yes 

Test case 2 3.2473 3.1959 0.1743 Yes 

Test case 3 9.6072 9.5946 0.1439 Yes 

Test case 4 7.5137 7.5459 0.0992 Yes 

Table 4.9: (r,Q)  model validation: On-Hand (OH) analytical and simulation results for different test cases 
(confidence intervals calculated with a confidence level of 95%). 

 O. analytical 

result 

Simulation 

expected O. 
Half CI Validated? 

Test case 1 146.000 145.800 2.101 Yes 

Test case 2 146.000 146.300 2.238 Yes 

Test case 3 87.600 87.400 1.589 Yes 

Test case 4 87.600 86.900 1.767 Yes 

Table 4.10: (r,Q)  model validation: Orders (O) analytical and simulation results for different test cases 
(confidence intervals calculated with a confidence level of 95%). 

 Interarrival 

time [h] 

Resupply 

time [h] 
Q r 

Test case 1 4 30 15 4 

Test case 2 3 60 20 10 

Test case 3 10 30 20 5 

Test case 4 6 40 10 6 

Table 4.7: (r,Q) model validation: test cases input parameters. 
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4.3 Cost model  

In order to provide a proper estimation of inventory costs, it is necessary to define a 

cost model for Additive Manufacturing technology, and in particular for SLM.  

The costs associated to the selected inventory policies are listed in the following 

paragraphs and briefly described.  

4.3.1 Inventory policy costs 

Order costs 

The scenario considered in this work is represented by an AM manufacturer that 

controls both the production and the inventory system in the same location. For this 

reason, the order costs are all the fixed costs that incur every time an order is issued. 

In the SLM production case, the set up and cool down energy cost as well as the cost 

of the consumables that are requested every time a job is produced, fall into this 

category.  

Inventory holding costs  

The inventory holding costs are related to carry one unit in the inventory stock for a 

certain amount of time. In particular, it can be said that the instantaneous rate at 

which inventory carrying cost occurs is proportional to the investment in inventory 

at that point in time (Hadley and Whitin, 1963). For this reason, the physical 

dimension of inventory holding cost would be cost per unit time. This type of cost 

incurs because capital is tied up in inventory: if units stay in a warehouse possibly for 

a long time, there is an opportunity cost that one could have invested otherwise. 

Furthermore, holding costs are also related to insurance charges, breakage and 

pilferage at the storage site, soil rental and occupation space in a warehouse and 

obsolescence, if the part stored reveals not to be sellable anymore.  

Generally, this type of costs are considered as a percentage of the final part unit cost 

(Axsater, 2000), leading to the need of a proper estimation of the SLM 

manufacturing costs.  

Backorder costs 

The stockout costs occur when demands are not satisfied because the system is out 

of stock. In this work, this would lead to backordering the request: the clients are 

asked to wait until the products required are available again and the demand can be 

satisfied. This cost is often difficult to be estimated: it is related to loss of customer 

goodwill (because of the unsatisfied demand, the customer could decide to make 

business with other manufacturers) and the loss of image that a company can have 

not being able to satisfy requirements just in time. Therefore, backorder cost strictly 

depends on the relevance of the consequences that the inability to satisfy demand 
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can have for a manufacturer. Furthermore, they can be associated to a penalty cost 

that the manufacturer has to incur because offering discount to clients due to the 

service inefficiency offered.  

In this work, the backorder costs are considered proportional to the average amount 

of units backordered in every instant of time. For this reason, the physical dimension 

of backorder costs would be cost per unit time, as the holding cost one. As the holding 

cost, this type of costs is generally considered as a percentage of the final part unit 

cost, therefore a proper estimation of the unitary SLM production cost is necessary.   

4.3.2 SLM costs 

To evaluate the inventory costs, a proper estimate of the SLM fixed costs and unitary 

part costs is necessary, as described in the previous section. Hence, the need to 

develop a cost model appropriated for SLM emerges. It is reminded that the 

evaluation of production cost for a company represents an operation of considerable 

importance, because it directly impacts on the total annual expenditure. For this 

reason, it has been decided to follow as guideline the cost models developed by 

Previtali et al., (2017) and Rickenbacher, Spierings and Wegener, (2013), which 

provide a detailed and accurate cost estimation of SLM, considering different cost 

drivers.  

The costs of interest, collected in Figure 4.6, are:  

• Fixed SLM costs for order cost evaluation. 

• SLM unitary production costs for holding and backorder cost evaluation. 

 

Figure 4.6: SLM inventory costs. 
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Fixed SLM costs 

The SLM production is characterized by fixed costs that incur every time a job is 

realized. These costs are listed below.  

Consumable costs 

During SLM production, auxiliary tools and materials are partially or totally 

consumed during each build job. These components, referred as consumables, are:  

• the re-coater blade, which partially wears out in every print.  

• the build plate, which is partially consumed when SLM are removed.  

• the inert gas injected, which is contained in a tank partially consumed in every 

job. 

• the gas filter cartage that has to be substituted at every job.  

The costs of consumables would be calculated as follow:  

𝐶𝐶𝑜𝑛𝑠 =
𝐶𝑟𝑒

𝐿𝑟𝑒

+
𝐶𝑝𝑙𝑎𝑡𝑒

𝐿𝑝𝑙𝑎𝑡𝑒

+
𝐶𝑔𝑎𝑠

𝐿𝑔𝑎𝑠

+
𝐶𝑓𝑖𝑙𝑡𝑒𝑟

𝐿𝑓𝑖𝑙𝑡𝑒𝑟

 

where Cre, Cplate, Cgas and Cfilter are the cost of the re-coater blade, the building plate, 

the inert gas per cylinder and of the gas filter, while Lre, Lplate, Lgas and Lfilter are the 

respectively lives expressed in numbers of build-jobs.  

Energy requirements in set up and cool down phases  

When the SLM machine is heated up or cooled down, a certain amount of energy is 

required, no matter how many pieces would be printed. Furthermore, an additional 

energy requested by the computer station is necessary when the machine parameters 

are set up. 

The cost of energy consumption has been calculated as follow 

𝐶𝑒𝑛𝑓𝑖𝑥
= 𝐸 ∗ 𝑀𝑐𝑜𝑛𝑠 ∗ 𝑡𝑠𝑢 + 𝐸 ∗ 𝑀𝑐𝑜𝑛𝑠 ∗ 𝑡𝑐𝑑 + 𝐸 ∗ 𝑃𝐶𝑐𝑜𝑛𝑠 ∗ 𝑡𝑝𝑟𝑒𝑝 

where E is the cost for energy supply, in €/kWh, Mcons is the SLM machine energy 

consumption in set up and cool down phases, in kWh, and tsu and tcd are the time 

spent respectively in set up and cool down, measured in h. The last term is associated 

to the PC energy consumption that Rickenbacher, Spierings and Wegener, (2013) 

consider in the preparation phase, when the input parameters are loaded on the SLM 

machine, requiring a time tprep and a PC energy consumption PCcons, measured again 

in kWh. 

SLM unitary production costs 

This cost is associated to the sum of all the specific incurring costs that a 

manufacturer has to bear when producing a part with SLM. It can be underlined that 
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overhead costs (as, for example, human labour) or machine capital cost are not costs 

specifically associated to SLM final part manufacturing cost, being the AM machine 

already bought and there already exists a stable work force hired by the plant owner 

in the considered scenario.  

The relevant SLM manufacturing costs are listed below. 

Raw material costs  

This cost includes the powder used to selectively melt the parts’ layers in the job, 

together with the cost of the unmelt powder that cannot be recycled and therefore is 

discarded. It is calculated as follow: 

𝐶𝑚𝑎𝑡 = 𝑉𝑝 ∗ 𝜌𝑝 ∗ 𝐶𝑀 + 𝑉𝑠𝑐𝑟𝑎𝑝 ∗ 𝑓 ∗ 𝜌𝑝𝑜𝑤 ∗ 𝐶𝑀 

where CM is the material cost in €/kg, Vp is the final part volume [m3], ρp
 is the final 

part density [kg/m3], ρpow
 is the powder density [kg/m3], Vscrap is the volume of 

unmelt powder, which is calculated as the build job volume Vb minus the volume of 

the printed parts: 

𝑉𝑠𝑐𝑟𝑎𝑝 = 𝑉𝑏 − 𝑉𝑝 

being Vb the overall printed area times the height of the tallest part in the build job. 

Finally, f is known as the scrap factor, which is the powder percentage that cannot be 

recycled and therefore is wasted. 

Energy costs  

This cost is related to the amount of energy requested for melting the metal powder 

and build the final part.  

𝐶𝑒𝑛𝑝𝑟𝑖𝑛𝑡
= 𝐸 ∗ 𝑀𝑐𝑜𝑛𝑠 ∗ 𝑡𝑝𝑟𝑖𝑛𝑡 

where E is the cost for energy supply, in €/kWh, Mcons is the SLM machine energy 

consumption in the printing phase [kWh], and tprint is the printing time, measured in 

hours. 

Thermal treatment costs  

SLM parts require thermal treatments to reduce residual stresses and improve 

mechanical properties. The thermal treatments cost is generally given as [€/kg] and 

therefore is directly proportional to the total parts’s weight printed in a job.  

𝐶𝑇𝑇 = 𝑇𝑇 ∗ 𝑊𝑃 

where TT is the thermal treatment cost [€/kg] and Wp is the part weight [kg], 

computes as the part volume Vp times the part final density ρp. 
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Parts and supports removal 

Generally, the SLM parts are removed from the build plate with wire EDM and in the 

same way also the support structures. 

𝐶𝐸𝐷𝑀 = 𝐸𝐷𝑀𝑝𝑟𝑜𝑐 ∗ 𝑡𝐸𝐷𝑀 

Where EDMproc is the EDM process cost [€/h] and tEDM is the time requested for 

removing the part from the build plate, considered proportional to the contact area 

between the part and the plate, plus the time for support removal.  

Finishing operations  

To respect quality requirements, SLM parts often necessitate grinding operations to 

improve the surface roughness. 

𝐶𝐹𝑂 = 𝐺 ∗ 𝑡𝐺  

where G is the grinding process cost [€/h] and tG is the grinding time, proportional 

to the final part external surface.  

Overall production cost 

It can be noted that, in case of lot production, these cost drivers are directly 

proportional to the number of pieces printed. Only the material cost presents a 

peculiarity. In fact, the cost of the scrapped powder is proportional to the volume of 

powder unmelted, so to the total building chamber volume, which is constant if the 

part height is fixed, minus the volume of the pieces printed, which varies with the lot 

size. Overall, the total variable printing cost in case of batch production is made by a 

cost factor C* directly proportional to the lot size Q, plus to a constant term:  

𝐶𝑝𝑟𝑜𝑑(𝑄) = 𝑄 ∗ 𝐶 + 𝐶𝑀 ∗ (𝑉𝑏 − 𝑉𝑝 ∗ 𝑄) ∗ 𝜌𝑝𝑜𝑤 ∗ 𝑓 

= 𝑄 ∗ 𝐶∗ + 𝐶𝑀 ∗ 𝑉𝑏 ∗ 𝜌𝑝𝑜𝑤

= 𝑄 ∗ 𝐶∗ + 𝐶𝑠𝑐𝑟𝑎𝑝
∗   

with            𝐶∗  = 𝐶 − 𝐶𝑀 ∗ 𝑉𝑝 ∗ 𝜌𝑝𝑜𝑤 ∗ 𝑓 

where C includes Cenprint, CTT, CEDM and CG, and the material cost directly proportional 

to the number of parts printed. Finally, C* is the new unitary production cost which 

considers the savings brought knowing that a portion of the total building chamber 

volume is occupied by the printed part (Vp), leading to a minor powder volume 

scrapped and therefore a minor unitary production cost. C*scrap is instead the cost 

incurred in case no parts are present in the SLM machine and therefore the whole 

building chamber volume scrap fraction is wasted.  

Finally, by dividing the production cost by the lot size, it is possible to formulate the 

unitary production cost:  

𝐶𝑢.𝑝.(𝑄) = 𝐶∗ +
𝐶𝑠𝑐𝑟𝑎𝑝

∗

𝑄
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5 Case study: description  

The scientific literature focused on the AM production for inventory management is 

still limited and consequently it is even more difficult to find real industrial 

applications for this scenario perspective. Nevertheless, it has been considered 

interesting to test the developed models on the production of a real SLM 

manufactured industrial component. For this reason, it has been identified a possible 

case study suitable for the work purpose.  

Fubri is an Italian Company specialized in the precision gear tool manufacturing, 

offering a complete range of them: hobs, shapers, shaving are some examples. In 

particular, gear hobs are one of the most widely used cutting tools in gear industry. 

To increase the production, the classical single-thread hobs evolved in multi-thread 

hobs. The limitations that often verifies is that they are not as accurate as single-

thread hobs. Furthermore, very often these tools are customized for fitting specific 

gear profiles, and, therefore, they require specific manufacturing technique. An 

example is provided in Figure 5.1. In order to obtain such features, conventional 

machining often requires the employment of very advanced machines, as four axis 

CNC machines, followed by specific grinding operations.  

 

Figure 5.1: Three-dimensional view of Gear Hob (Ayathamaraju and Demir, 2020). 

Another important consideration is the tools request: being these components so 

case-specific, the annual demand is quite low. For example, Fubri presents a model 

that is requested just 8 times a year. Hence, considering the specialized requirements 

that these tools have, together with the customization that is often requested and the 

low annual demand, it is possible to assess that the gear hobs are perfect candidate 

for AM production.  

One previous work (Ayathamaraju and Demir, 2020) developed at Politecnico di 

Milano Mechanical Engineering Department, confirmed the production feasibility of 
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the Fubri gear hobs by means of SLM, evaluating the best process parameters in 

order to respect the quality of conformance requirements that the Company asked.  

Having demonstrated the tools production feasibility by SLM, it would be interesting 

to use this result to appreciate the impact of the adoption of this new technology on 

the annual inventory costs.  

In order to perform the analysis, it is of primary importance a proper estimation of 

the gear hobs’ production times by SLM. Having this purpose in mind, technical data 

of the already performed experimental campaign are collected, and SLM experts as 

Politecnico di Milano interviewed for the not available information. The data are than 

elaborated and the models input parameters calculated. The results are presented in 

the following sections.  

5.1 Gear hobs manufacturing scenario  

5.1.1 SLM machine  

The production time calculations are performed considering the use of the Renishaw 

AM250 machine, already employed in the experimental campaign that revealed the 

tools production feasibility (Ayathamaraju and Demir, 2020). The SLM system 

operates with a Yb:glass fiber laser source with a wavelength of λ=1070nm, 

maximum power of 200W and a beam diameter in the focus position of 70µm. The 

laser source operates with a pulse wave emission (PW). The system can be equipped 

with a reduced build volume system (RBV) that reduces the building volume to 78 x 

78 x 50 mm3 for allowing the test of new raw materials with low powder quantities. 

Other important technical specifications are reported in Table 5.1.  

Maximum building volume 245mm x 245mm x 300mm 

Building rate  5 – 10 cm3/h  

Layer thickness  20 – 100 µm   

Inert Gas utilized Argon  

Table 5.1: Renishaw AM250 technical specifications. 

5.1.2 Production lot characteristics 

The reference gear hob models studied in this work are related to Fubri’s production 

data for the year 2019-2020. In particular, Fubri has manufactured 121 different 

components with a demand ranging from 1 up to 15 units/year, for a total number of 

296 components. In order to better focus the work analysis, the different products 

are grouped into five categories, depending on their main dimensions and 

peculiarities. The production lot, with all the specifications, is reported in Table 5.2. 
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Model Length [mm] Diameter [mm] Quantity [year] 

M1 50 45 24 

M2 100 80 64 

M3 150 100 106 

M4 180 120 94 

M5 260 160 8 

Table 5.2: Gear hobs production categories (Ayathamaraju and Demir, 2020). 

It is remarked that both the (S-1,S) and the (r,Q) models developed are single-item, 

single-location inventory policies. Therefore, the focus of the analysis would be on 

the production and inventory management of a single selected gear hob model per 

time.  

The M1 and M3 models are identified as the two more appropriate test cases. In fact, 

it can be noted that M1 is the smallest one: this would allow to better exploit the SLM 

machine building chamber volume, by adjusting many different gear hobs one near 

the others, permitting to have a good range of variation of the lot size Q in case of the 

(r,Q) model. M3 is instead selected because it has higher volume with respect to the 

M1 and it is the most frequently demanded.  

5.1.3 Raw material  

The metal powder used for the gear hobs production is the MC90 Intermet, a 

designation given for Fe-Co-Mo grade by Böhler Uddeholm (Lancaster et al., 2016). 

This is a carbon-free tool steel appropriate to be used for cutting tools, possessing 

high hardness at elevated temperatures.  

5.2 Data collected  

5.2.1 SLM production times 

The SLM expert’s interview provided a detailed description of the time steps that the 

production of both the M1 and M3 models requires. In particular, for both the cases, 

the setup phase consists in:  

• Build file importing and process parameters assignment. 

• Recoater mounting and alignment procedure. 

• Baseplate preheating. 

• Building chamber preparation (injection of inert gas (Ar) and inert 

atmosphere creation). 

For a total average time tsu = 55 min.  

After the printing, both the models incurred in the same time steps, identified 

globally with the term cool down:  
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• SLM machine and build plate cool down: 3h, on average. 

• Build plate removal: 10 min, on average. 

• SLM machine cleaning: 1h 20 min, on average. 

For a total time tcd = 4 h and 30 min.  

It is reminded that the baseplate preheating and cool down times depend on the 

material and dimensions of this component. The data collected are related to the 

average SLM machine utilization at Politecnico di Milano Laboratories. 

After these stages, the SLM machine is ready to start printing again. All the data are 

collected in Table 5.3.  

 M1 M3 

Set up time [h] 0.92 0.92 

Cool down time [h] 4.5 4.5 

Table 5.3: Gear hobs set up and cool down time using Renishaw AM250. 

It can be noted that the cool down time is sensibly higher with respect to the set up 

one. This result is obtained considering the Renishaw AM250 machine, which is not 

equipped with a refrigerating system that would accelerate this phase. The cool down 

is simply performed by leaving the machine to reach autonomously the ambient 

temperature.  

It is underlined that it is not strictly necessary to load powder at the beginning of the 

printing: the SLM machine already has metal powder in the tank from previous jobs, 

and the raw material can be easily re-loaded while the machine is working. Therefore, 

this time interval is not considered.  

The printing time tp was calculated for each model considering an average machine 

production rate equal to 7.5 cm3/h and taking into account the average cross-

sectional area that has to be scanned. From Table 5.2 it is possible to appreciate that 

M3 has a diameter more than double than the M1 one: for this reason, the layers 

printing time are quite different, being the M3 one more than four times higher than 

the of the M1 one.  

The recoating time is then estimated. The Renishaw AM250, for every layer to be 

printed, first positions the recoater blade, then unload the powder that is 

subsequently spread by the tool. The total evaluated time ts is recoating time around 

3 or 4s = 0.001h.  

Furthermore, the optimal layer thickness of 40µm selected in Ayathamaraju and 

Demir, (2020) work has been kept to obtain a good final part quality. Knowing the 

part height and this parameter, it was possible to estimate the number of layer that 

each model requires.  

The data collected for the printing phases are showed in Table 5.4. 
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 M1 M3 

Average cross-sectional area [mm2] 535.02 2642.08 

Layer scanning time [h] 0.003 0.014 

#layers  1250 3750 

Volume [mm3] 26751 396332 

Average total scanning time [h] 3.75 52.5 

Table 5.4:  M1 and M3 experimental parameters. 

Last line of Table 5.4 describes the average total scanning time for M1 and M3, 

calculated as the layer scanning time times the number of layers. It is assumed that 

the parts produced are defect-free, and so the whole manufactured lot can be sellable. 

This hypothesis is based on the reliability of the results obtained from the 

Ayathamaraju and Demir, (2020) experimental campaign, that tailored the SLM 

printing parameters for obtaining high quality components, and considering that no 

data are available on discarded parts.  

5.2.2 Post processing durations 

In order to have a complete view on the SLM resupply times, the post-processing 

durations are collected. In this case, data are estimated from the already executed 

experimental campaign (Ayathamaraju and Demir, 2020). 

In particular, all the pieces need to undergo to an aging thermal treatment for 3h fro 

residual stress relief. Subsequently, parts are removed from the build plate using wire 

EDM: in this case, the removal time has been considered proportional to the 

connection area between parts and build plate (Rickenbacher, Spierings and 

Wegener, 2013) and an additional time is considered for support removal. Finally, 

grinding is performed to obtain the final finishing requirements. The post-processing 

durations are summarized in Table 5.5. 

 M1 M3 

Thermal Treatment [h] 3 3 

Wire EDM removal [h/part] 0.084 0.415 

Grinding [h/part] 0.8 2.4 

Table 5.5 Post-processing duration for M1 and M3 parts. 

5.2.3 Batching 

An additional point of discussion is related to the (r,Q) model’s specific case. In fact, 

this inventory policy introduces the problem of creating batches. Hence, it is 

necessary to estimate the maximum number of pieces that can be allocated in the 

Renishaw AM250 building chamber. This procedure is called “nesting” because the 

different pieces have to be nested on the build plate in order to maximize the space 
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utilization, considering a certain tolerance in order to avoid the components contact 

or difficulties in part removal. Considering the M1 and M3 base area, the total build 

plate surface and tolerance requirements, the Renishaw AM250 building chamber 

can accept:  

• 25 max pieces of the M1 model  

• 5 max pieces of the M3 model  

Therefore, these two results are considered the upper bound of the maximum lot size 

Q possible. It is assumed that for all the lot dimensions the parts are defect free. No 

experimental results are in fact available on the possible defects generation in case 

of high lot size. Instead, the Ayathamaraju and Demir, (2020) work experimental 

campaign reveal the gear hobs SLM production feasibility with final desired quality.   

5.3 Gear hobs costs estimation 

The cost model developed in Section 4.3, specifically constructed for SLM, is now 

applied to Fubri gear hobs, used as case study to evaluate the impact of AM on 

inventory costs. A detailed description of the cost estimation is listed below.  

5.3.1 Fixed costs 

Consumable costs 

Table 5.6 reports the consumable cost in case of using SLM as AM technique. Data 

are collected in accordance with Ayathamaraju and Demir, (2020) work. The re-

coater blade is made by an extruded polymeric material and laboratory research 

reports that it can be used for three different prints before wear-out. The inert gas 

used is Argon, and it is estimated that a tank of 200l at 200bar lasts for 4 prints. The 

metal plate is rectified after the end of each print because of parts removal, and it has 

an estimated life of 12 prints before its thickness is too low for sustain the printed 

part. Finally, the filter, which filters the inert gas holding the volatile particles 

developed during the printing, is replaced every print. 

Consumable Life [Build 

jobs] 

Costs [€] Cost/life 

[€/build job] 

Re-coater blade 3 2.5 0.83 

Inert gas cylinder 4 60 15 

Build plate 12 241.5 20.12 

Gas filter 1 27 27 

Table 5.6: Consumable costs (Ayathamaraju and Demir, 2020). 

Therefore, a total cost of 62.95€ per print is estimated.  
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Energy requirements in set up and cool down phases  

This cost is proportional to three different terms: the energy requested for heat up 

the SLM baseplate to reduce the thermal stresses on the parts produced, the energy 

for cool down phase, when the SLM is cooled down before parts removal, and finally 

the PC energy requirements when input parameters are loaded. These costs are 

calculated considering the requirements of the Renishaw AM250 machine, used for 

realizing the test case pieces. In particular, this machine is not equipped with an 

internal cool down system, but, at the end of each print, the machine is left cooling 

down autonomously for about three hours. Hence, the energy costs related to this 

step is not considered.  

The necessary data for the energy requirements calculation are provided in Table 5.7. 

The data reported has as reference the average Italian energy supply cost, while the 

machine and PC workstation requirements as well as the time durations are obtained 

considering the Renishaw AM250 performances used in the test (Table 5.1). 

E: Electricity cost [€/kWh] 0.22 

Mcons: Machine consumption [kWh] 4 

PCcons: PC workstation consumption [kWh] 0.385 

tsu: setup time [h] 0.92 

tprep: preparation time [h] 0.3 

Table 5.7: Energy requirements in setup and cool down phases. Energy consumption data are referred to 
Ayathamaraju and Demir, (2020).  

The total cost related to energy requirements in setup and cool down stages is 

therefore 𝐶𝑒𝑛𝑠𝑢−𝑐𝑑
= 0.83 €/𝑝𝑟𝑖𝑛𝑡 . 

Finally, the total fixed cost for the Fubri test case, that will be used in the order cost 

computation, is equal to: 

𝐶𝑢.𝑜. = 𝐶𝑐𝑜𝑛𝑠 + 𝐶𝑒𝑛𝑠𝑢−𝑐𝑑
= 63.78

€

𝑝𝑟𝑖𝑛𝑡
 

5.3.2 Unitary production costs 

Material cost 

Fubri gear hobs are made by MC90 powder, which is a mixture of Fe-Co-Mo that 

shows mechanical properties appropriate for gear hob tools. The material cost, 

density data and the scrap factor obtained from the experimental campaign are listed 

in Table 5.8. 
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CM: material cost [€/Kg] 50 

ρp: Final part density [g/cm3] 8.05 

ρpowder = powder density [g/cm3] 4.3 

f: scrap factor  0.15 

Table 5.8:  Material costs input data (Ayathamaraju and Demir, 2020). 

Scrap cost  

It is necessary to estimate the C*scrap defined in the cost model as the cost associated 

to the wasted material in case no parts are printed in the building chamber. This cost 

is directly proportional to the building chamber volume Vb, which depends on the 

Renishaw AM250 build plate dimensions and on the part height. Data for the M1 and 

M3 Fubri gear hobs are reported in Table 5.9. 

 M1 M3 

Vb [cm3] 3001.25 9003.75 

Table 5.9: M1 and M3 gear hobs total building chamber volume. 

This parameter is than multiplied by the material cost CM, scarp factor f and powder 

density ρpowder, already provided in Table 5.8. 

Energy cost 

After having interviewed experts at the Politecnico di Milano AM laboratories, the 

energy cost E and the machine consumption Mcons for the printing phase are 

estimated to be the same as the set up one (Table 5.7) for the Renishaw AM250 

machine. In this case, the energy cost would be proportional to the printing time of 

every single piece realized in a job. 

Post-processing costs 

Thermal treatment costs TT, EDM process cost EDMproc and grinding cost G are 

reported in Table 5.10. These data are assumed from previous research 

(Ayathamaraju and Demir, 2020). These parameters would be than multiplied by the 

respective time durations (tEDM and tG) or by the part weight (Wp) for computing the 

final post-processing cost. 

TT: thermal treatment cost [€/kg] 1.5 

EDMproc: EDM processing cost [€/h] 45 

G: Grinding cost [€/h] 25 

Table 5.10: Post-processing parameter cost (Ayathamaraju and Demir, 2020). 
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M1 and M3 unitary production cost 

The M1 and M3 models time durations data and the geometrical characteristic 

collected in Section 5.1 are finally applied to compute the tools unitary production 

cost following the developed cost model. It is reminded that the unitary production 

cost is a function of the lot size, considering the specific characteristics of the SLM 

technology: 𝐶𝑢.𝑝.(𝑄) = 𝐶∗ + 𝐶𝑠𝑐𝑟𝑎𝑝
∗ /𝑄. The two parameters that allows the unitary 

production cost calculation for the M1 and M3 models are reported in  Table 5.11. 

 M1 M3 

C* [€/piece] 37.32 276.63 

C*scrap [€] 96.79 290.37 

Table 5.11 M1 and M3 gear hobs unitary production costs parameters. 

It is worth pointing out that the C*scrap is comparable with the C* parameter for the 

M3 model, while is sensibly higher in case of the M1 model. This difference is due to 

the smaller M1 volume, which is far more small with respect to the total building 

chamber volume. This characteristic leads to a higher material waste in case on small 

batch jobs. Hence, the cost of material wastage in case of small lot size has a high 

impact on the unitary cost computation, suggesting that the strategy of producing 

more pieces in the same build job would allow a less material wastage and 

consequently costs savings.  
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6 Case study: inventory 

policies comparison 

This chapter has the objective to analyse the impact of the SLM application to 

resupply the inventory stock. In particular, two different policies are compared in 

terms of total annual inventory costs using of the developed simulation models: the 

(S-1,S) and the (r,Q) ones. Both the policies are continuous review ones, and a single-

location, single-item scenario is assumed, with unitary size demand. It is reminded 

that the first policy is linked to the often advocated in literature make to order 

production, considering that an order of unitary size is placed every time a demand 

arrives. On the contrary, the (r,Q) one is based on the production of batch orders of 

size Q, with the aim of better exploiting the SLM machine capacity as the literature 

focused on AM production suggests. To strengthen the validity of the results, the 

models are applied to the production of the Fubri gear hobs introduced in the Case 

Study (Chapter 5). It is reminded that, aware of the outcomes obtained with the 

Markov Chains models (Section 3.4.2) the SLM production is modelled in a detailed 

way using an hypoexponential distribution, considering in this way all the time steps 

that the technology requires.  

6.1 Design of experiments  

The test case products analysed are the M1 and M3 Fubri gear hobs models, assuming 

their production on the Renishow AM250 SLM machine. Their specification can be 

found in Section 5, together with the production time parameters and the estimated 

unitary production and order costs.  

The demand assumed for the M1 and M3 gear hobs is coincident with the one 

provided by Fubri annual production. The data are reported in Table 6.1, where the 

calculation of the interarrival times and interarrival rate are also listed.  

 Annual demand 
[parts/year] 

Interarrival time 
1/λ [h] 

Interarrival rate λ 
[1/h] 

M1 24 365 0.0027 

M3 106 82.64 0.012 

Table 6.1: Annual demand, interarrival time and interarrival rate of gear hobs M1 and M3 models. 

A particular attention is given to the inventory cost definition. In fact, it is often 

difficult to provide an estimation of the factors h and b that define the percentage of 

the unitary production cost (u.p.c.) impacting the on-hand and backorder costs, 

respectively (Sections 4.2.3 and 4.3.1). In fact, their value is strongly correlated to 
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Companies’ evaluation of the opportunity cost of having capital tied up for the h 

parameter, and of the impact of a possible customer loss for the b parameter. 

Furthermore, the order cost calculation comprehends energy and consumable costs, 

that can vary from country to country, of from supplier to supplier.  

For this reason, different cost scenarios are tested, considering high (H) and low (L) 

values for the h and b parameters, and defining an order factor o that, multiplying 

the order cost, would again determine a high and a low order cost scenario. The 

parameters are estimated by looking at literature values (Heinen and Hoberg, 2019) 

and interviewing experts from Management Engineering Department of Politecnico 

di Torino. The results are reported in  Table 6.2.  

 L H 

b [% of the u.p.c.] 150 % 200 % 

h [% of the u.p.c.] 8 % 20 % 

o [order cost factor] 80 % 120% 

Table 6.2: Evaluation of the backorders on-hand cost and order parameters, considering different 
scenarios. 

The combinations of these values lead to define eight possible costs scenarios 

collected in Table 6.3. 

Scenarios b h o 

1 L L L 

2 H L L 

3 H H L 

4 L H L 

5 L L H 

6 L H H 

7 H L H 

8 H H H 
Table 6.3: Different costs scenarios. 

Simulation models were run testing different (r,Q) and S parameters, to obtain their 

optimal values to minimize the total inventory cost. S has been selected ranging from 

1 up to 25 parts, while the (r,Q) parameters used are reported in Table 6.4. All the 

possible combination between the chosen r and Q parameters are checked. 

 r Q 

M1 1, 2, 3, 5, 8, 10 5, 10, 15, from 20 to 25 

M3 From 4 to 11 From 1 to 5 

Table 6.4: (r,Q) input parameters tested. 

The data are collected at the steady state. For this reason, for the (r,Q) model a warm-

up period of 800,000h is selected, and the results are related to 30 simulation runs 

of one year length (1year = 8760h). For the (S-1,S) model, a warm up period of 
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1,000,000h and 300 simulations runs are considered. Confidence intervals are 

calculated with a confidence level of 95%. 

6.2 Results and discussion  

This section presents the results obtained for both the (S-1,S) and (r,Q) inventory 

policies, applied on M1 and M3 gear hobs management described in the Fubri case 

study. The analysis starts with the presentation of significant results in terms of 

unitary resupply time and subsequently showing the two inventory policies costs 

obtained. Regarding this, it is pointed out that in case of the (S-1,S) policy it is known 

that the order cost is not influencing the objective function, being constant for every 

order issue. Nevertheless, to provide a coherent comparison with the (r,Q) model that 

instead considers the order cost in the total annual inventory cost calculation, it is 

necessary to include this cost driver also in the (S-1,S) model total cost.  

6.2.1 Unitary resupply time analysis  

An interesting analysis can be performed calculating the unitary resupply time 

(u.r.t.). This time duration is obtained collecting the time interval that elapses 

between the order issue and its arrival to the stock, and finally dividing it by the 

number of parts produced in every order. Hence, the total resupply time includes the 

SLM production time plus the post processing durations together with all the waiting 

times that can incur because of servers limited capacity. The unitary resupply time is 

calculated for orders of size one, so the one placed in the (S-1,S) model, and for every 

Q parameter tested in the (r,Q) model runs (Table 6.4). The results are showed in 

Figure 6.1. 

Figure 6.1: M1 and M3 unitary resupply time varying the lot size Q. CI: 3% of the mean value. 
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It can be noted that the unitary resupply time decreases by increasing the number of 

pieces to be printed. As significant example, Table 6.5 reports the unitary resupply 

times calculated in case of only one piece and of the full lot size (25 pieces for M1 and 

5 pieces for M3) printed.  

 Q = 1 Q max Delta % u.r.t. 

M1 u.r.t [h] 14.48 5.05 186.97 

M3 u.r.t. [h] 158.65 63.43 150.12 

Table 6.5: M1 and M3 SLM unitary resupply time for minimum and maximum lot size, together with the 
delta% on their difference. CI: 3% of the mean. 

By looking at Table 6.5, it is possible to note that significant savings on the unitary 

resupply times can be gained by placing multiple pieces inside the SLM building 

chamber, with a total difference of 186.97% in case of the M1 model and of 150.12% 

in case of the M3 model between the unitary and completely filled lot. These results 

are coherent with the ones presented in literature: by placing many pieces inside the 

building chamber, it is possible to allocate the set up and cool down times, as well as 

the recoating time on all the parts to be produced, optimizing these fixed durations. 

Additionally, the overall unitary resupply time is decreased considering the decrease 

in the total waiting time. In fact, by analysing the SLM machine time spent in buffer 

in case of just one part printed and multiple parts printed, a sensible difference is 

noted (Table 6.6).  

 Q = 1 Q max 

M1 SLM waiting time [h] 0.18 0 

M3 SLM waiting time [h] 91.11 30.06 

Table 6.6: M1 and M3 SLM buffer waiting time for minimum and maximum lot. CI: 10% of the mean. 

From Table 6.6, it is clear that increasing the lot size, the AM buffer waiting time is 

strongly decreased. This result is obtained considering that, increasing the lot size, 

orders are placed less frequently, leading to fewer arrivals to the SLM machine and 

better balancing the system. Nevertheless, increasing the lot size means also 

increasing the production time. Despite this, times as set up, cool down and powder 

spreading remain fixed no matter how many components are produced. This would 

mean waiting at least 0.92h + 4.5h for every order. In addition, the total powder 

spreading time would require around 1.25h for M1 and 3.75h for the M3 model. 

Considering that M1 has an average scanning time of 3.75h and M3 of 52.5h (Table 

5.4) the fixed times would sensibly impact the total production time and the machine 

utilization, causing longer queues and waiting times in case of small order size.  

In conclusion, it can be observed that, considering the limited SLM machine capacity 

and taking into account the fixed times that the SLM production requires, the choice 

of increasing the batch size can have positive repercussions on the unitary resupply 

time, causing sensible savings on this parameter.   
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6.2.2 Total annual inventory cost comparison  

M1 model  

Table 6.7 shows the results obtained from the simulation models when the M1 model 

is produced. It is possible to observe that the (S-1,S) model leads to total annual 

inventory costs sensibly higher with respect to the (r,Q) ones. In particular, the total 

difference can reach up the 1462.09% in scenario 7, being the (S-1,S) total cost 

around fifteen times higher with respect to the (r,Q) one. 

Scenario 

[b,h,o] 
r Q 

Total (r,Q) 

Cost [€] 
S 

Total (S-1,S) 

Cost [€] 

1 - LLL 1 24 92.32 1 1221.78 

2 - HLL 1 24 92.32 1 1221.84 

3 - HHL 1 21 154.66 1 1237.31 

4 - LHL 1 21 154.66 1 1237.26 

5 - LLH 1 24 116.99 1 1827.44 

6 - LHH 1 24 181.49 1 1842.91 

7 - HLH 1 24 116.99 1 1827.49 

8 - HHH 1 24 181.49 1 1842.96 

Table 6.7: Optimal inventory policy parameters and total annual inventory cost in case of Fubri M1 gear 
hob production. CI inventory KPIs used for costs calculation: 3% of the mean value for the (r,Q) model and 
1.5% of the mean value for the (S-1,S) model. 

Optimal 

inventory  

parameters 

Average 

Backorders 

[parts] 

Average  

On-hand 

[parts] 

Average 

Number of 

Orders  

(r,Q) 1, 21  1.45*10-4 11.75 1.10 

(r,Q) 1, 24 0 13.00 0.97 

(S) 1 7.90*10-4 0.96 23.74 
Table 6.8: Average backorders, on-hand and orders level evaluated in the (r,Q) and S optimum points for 
M1 model. CI: 3% of the mean value for the (r,Q) model, 1.5% for the (S-1,S) model. 

The reason of such results is found considering the total annual cost composition. In 

case of the (S-1,S) model, around the 99% of the total annual inventory cost is made 

by order cost (Appendix A.4 reports the detailed results). This can be clearly 

appreciated by looking at Figure 6.3 that represent the (S-1,S) inventory cost, using 

the scenario 1 as example. This is due to the fact that every time a demand arrives, an 

order is issued to replenish the inventory stock. This consideration is confirmed 

observing the average number of annual orders placed in Table 6.8, that corresponds 

to the annual demand. This means to incur every time in the order cost. On the 

contrary, the order cost in case of the (r,Q) model is less than 50% of the total annual 

inventory cost, on average (Appendix A.4 reports the detailed results). This can be 
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appreciated by looking at Figure 6.2, noting that at the optimum point the order and 

on-hand costs almost have the same values.  

It can be noted that the scenarios 3 and 4 are the ones with lower lot size. These 

scenarios are characterized by a high (H) on-hand cost and a low (L) order cost. 

Considering the relevant impact on the on-hand cost on the total inventory cost 

(63.7%), it is preferred to reduce the lot size and stock less units a year, eventually 

placing more than one order per year.  

For both the models, it is always selected the lowest reorder point, equal to 1. This 

result can be easily justified considering the M1 low annual demand and its low 

production time (total printing time per piece of 5h), that can allow to maintain low 

Figure 6.2: On-hand, Backorder, Order and Total (r,Q) inventory costs for the M1 model considering 
the cost scenario 1. The red star indicates the minimum cost point. CI inventory KPIs used for costs 
calculation: 3% of the mean value. 

Figure 6.3: On-hand, Backorder, Order and Total (S-1,S) inventory costs for the M1 model considering the 

cost scenario 1. CI inventory KPIs used for costs calculation: 1.5% of the mean value. 
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on-hand inventory while successfully keeping the average number of backorders 

negligible, as can be observed by looking at  Table 6.8. 

M3 model  

Table 6.9 reports the results obtained from the simulation models when M3 is 

produced. Also in this case, the (S-1,S) policy leads to a total annual inventory cost 

which is higher with respect to the (r,Q) one, being the maximum total percentage 

difference equal to 374.29% and being the (S-1,S) cost 4.7 times higher in scenario 5. 

Scenario 

[b,h,o] 
r Q 

Total (r,Q) 

Cost [€] 
S 

Total (S-1,S) 

Cost [€] 

1 - LLL 5 5 1224.200 6 5644.82 

2 - HLL 5 5 1237.69 7 5664.32 

3 - HHL 5 5 1411.13 4 5892.46 

4 - LHL 5 5 1397.64 4 5835.94 

5 - LLH 5 5 1758.25 6 8339.27 

6 - LHH 5 5 1931.69 4 8538.11 

7 - HLH 5 5 1771.74 6 8361.43 

8 - HHH 5 5 1945.18 4 8594.62 

Table 6.9: Optimal inventory policy parameters and total annual inventory cost in case of Fubri M3 gear 
hob production. CI inventory KPIs used for costs calculation: 3% of the mean value for the (r,Q) model and 
1.5% of the mean value for the (S-1,S) model. 

Optimal  

(r,Q) 

parameters 

Average 

Backorders 

[parts] 

Average  

On-hand 

[parts] 

Average 

Number of 

Orders  

(r,Q) 5, 5  0.081 4.32 20.93 

(S) 4  0.20 2.31 105.92 

(S) 6 0.08 4.18 105.61 

(S) 7 0.03 5.13 105.81 
Table 6.10: Average backorders, on-hand and orders level evaluated in the (r,Q) and S optimum points for 
M3 model. CI: 3% of the mean value for the (r,Q) model and 1.5% for the (S-1,S) model. 

The reason beside this result can be found again in the order cost, which is in this 

case the 95% of the total annual inventory cost for the (S-1,S) model (Appendix A.4 

reports the detailed results). It should be pointed out that also for the (r,Q) model 

the order cost is one of the main drivers in determining the total annual inventory 

cost, being around the 84% of it (Appendix A.4 for the complete results). The 

importance of the order cost on the total cost computation can be appreciated looking 

at Figure 6.4 and Figure 6.5. In fact, the total cost has mostly the order cost shape. 
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Figure 6.4: On-hand, Backorder, Order and Total (r,Q) inventory costs for the M3 model considering the 

cost scenario 1. The red star indicates the minimum cost point. CI inventory KPIs used for costs calculation: 

3% of the mean value. 

 

This consideration justifies the decrease in the total inventory cost difference 

between the two models. In fact, being the M3 annual demand higher with respect to 

M1, and being the maximum order size equal to 5, it is necessary to place many more 

orders to satisfy the annual demand, incurring in higher order cost. This observation 

can be proved by looking at Table 6.10, noting that on average 20.93 orders per year 

should be placed in case of M3 production, in contrast with the around 1 order for 

M1. It is important to note that for every scenario, the maximum lot size Q has been 

Figure 6.5: On-hand, Backorder, Order and Total (S-1,S) inventory costs for the M3 model considering the 
cost scenario 1. CI inventory KPIs used for costs calculation: 1.5% of the mean value. 
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selected. This indicates that optimizing the SLM building chamber has a positive 

impact on reducing the inventory cost.  

Furthermore, higher reorder points are selected with respect to the M1 model. This 

result reflects the increase of the component annual demand, being of 106 pieces for 

M3 and only 24 for M1. In order to be able to satisfy the higher incurrence of demand, 

it is necessary to maintain a higher safety stock, especially when the backorder cost 

is high and the on-hand cost is low. In fact, it can be observed from Table 6.10 that 

increasing the target level S, the average number of backorders decreases and the 

safety stock increases, leading consequently to a decrease of the backorder cost while 

keeping low the on-hand costs.  

Even if the general optimal reorder point result has the same cause found in the 

increase of annual demand, it should be pointed out that two different production 

strategies are designed. In particular, the reorder point r equal to 5 in the (r,Q) model 

is strictly correlated to an increase of the resupply time mainly due to a longer 

production time. In fact, the production of five different M3 models in the same job 

would require 266.25h for just the SLM printing phase. This leads to stock more in 

order to be able to satisfy the demand. Different is the case of the (S-1,S) model. In 

fact, in this scenario the production time is related to just one M3 piece per time, 

being equal to 56.25h on average for the printing phase. Despite this, also this policy 

leads to select a target level S comparable with the (r,Q) policy. This result is caused 

by the longer queue and waiting times that characterize this production policy, as 

already mentioned in Section 6.2.1. Being the waiting times so impactful, these 

parameters provide a longer average resupply time in case of a make to order policy. 

This leads to select a higher target inventory level to maintain a sufficiently high stock 

level to promptly satisfy the demands, especially in those scenarios when the 

backorder cost is high and the on-hand cost is low. 

6.2.3 Analysis conclusions 

In conclusion, both the M1 and M3 test cases have demonstrated that applying the 

(r,Q) inventory policy consent to an overall decrease of the total annual inventory 

cost. This is mainly due to a reduction of the order cost impact on the total 

calculation, considering that the (r,Q) model would allow to place a reduced number 

of orders per year to satisfy the demand. Furthermore, considering the low annual 

demand, it is not necessary to have high safety stock level, leading to a low reorder 

point selection. On the contrary, for both the gear hobs models production, it is 

suggested to order the maximum lot size or a little less of it. This is justified 

considering that increasing the lot size means reducing the number of orders per year 

and therefore the order cost. In addition to this consideration, is has been observed 

that the lot size increase allows also to decrease the unitary production time and 

better exploit the SLM production capacity, obtaining in this way a more efficient 

system.   
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A further element that would suggest the selection of a higher lot size is the unitary 

production cost. In fact, it has been pointed out that a percentage of the unmelted 

metal powder is scrapped, quantity that decreases when many pieces are placed 

inside the building chamber. For this reason, the unitary production cost has been 

considered as a sum of a constant term, proportional to material, energy and post-

processing operations cost, plus a term with an inverse proportionality with the lot 

size, linked to the scrap cost (Section 4.3.2). Therefore, by increasing the lot size, the 

unitary production cost tends to decrease, positively impacting the final on-hand and 

backorder costs calculation. On the contrary, in case of an (S-1,S) production, the 

scrap cost is paid as a whole meaning, especially for the M1 model, to spend more for 

the wasted material rather than for the one utilized for the part production. One 

solution to lower this cost in case of a piece-by-piece production can be the selection 

of a smaller building chamber volume. Having generally the industrial SLM machine 

a building plate dimension around 250x250mm2 or even more, there exists some 

systems to reduce the building chamber printing volume. One of this, often used for 

research purpose to test different raw materials, is the Reduced Build Volume system 

(RBV), suitable for the Renishow AM250 machine. It consists in a smaller build plate 

equipped with specific powder tanks and a system of pistons to distribute the metal 

powder on a reduced area. The RBV application would therefore bring the advantage 

of reducing the wasted powder in case of piece by piece production, but has different 

drawbacks. One above all is the impossibility of preheating the baseplate, that can 

represent a technological problem. Indeed, this procedure is beneficial to reduce 

thermal stresses, and, for the processing of some metal alloys, it is desirable to avoid 

unwanted defects in the parts. Furthermore, having the RBV a complex dynamic for 

power spreading, the time requested for pistons movements and powder spreading 

is sensibly longer with respect to the one in the full-size machine: experts at 

Mechanical Engineering Department of Politecnico di Milano estimate it around 20 

or 30s, on the opposite of the 3 or 4s for the full size. This parameter would therefore 

create difficulties in the RBV industrial applications, and also it would sensibly affect 

the total resupply time, probably leading to a further increase on the total inventory 

cost difference between the two inventory models. 

In conclusion, the choice of a lot production shows positive outcomes from different 

points of view: it is possible to reduce the unitary resupply time, better optimizing 

the SLM building chamber and allocating the set up and cool down times on more 

pieces, reducing also in this way the waiting times; the unitary production cost can 

be reduced because of a reduction in material wastage and finally the total annual 

inventory cost is decreased because of a reduction of the order and stock costs. These 

results are the outcomes of the accurate SLM process analysis and modelling, that 

allowed the removal of the assumptions often found in literature as infinite machine 

capacity, negligible set up and post processing time, and generic or constant 

distributed resupply times.  
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7 Case study: impact of SLM 

modelling on inventory 

costs 

The simulation tool has been selected to model the AM production together with the 

inventory resupply logic in their entireness. In this way, assumptions often found in 

literature as infinite SLM machine capacity, absence of set up and cool down phases, 

constant or generically distributed resupply time and neglected post-processing 

operations can be discarded, providing instead a more comprehensive 

representation of the scenario.  

In Chapter 3, it has been underlined how a sufficiently detailed SLM production 

modelling can sensibly impact the total resupply time. It is considered interesting to 

appreciate if such an accurate representation could also have consequence on the 

total inventory cost. Therefore, in this chapter the results obtained with the MC study 

on the production and resupply times are extended considering the AM application 

for inventory management in its totality, including the post processing phases and 

the inventory logic. In particular, the analysis is focused on the (r,Q) policy, shown 

to be the most cost effective, and permitting also to broaden the spectrum of analysis 

considering different batch size and consequently different production scenarios.  

7.1 Design of experiments 

In this section, the different SLM machine modelling assumptions are described, and 

the definition of the analysed test cases reported.  

7.1.1 SLM modelling 

The MC models have demonstrated that the application of the hypoexponential 

distribution, and therefore of a detailed description of the SLM modelling, can 

sensibly reduce the error in the resupply time estimation with respect to the use of a 

more general distribution, as the exponential one. It has been decided to apply these 

two different SLM stochastic representations also in the developed (r,Q) simulation 

model to appreciate if  they possibly impact the total annual inventory costs. 

The two models are constructed in the following way:  

i. Detailed model: the SLM production process is represented by the sum 

of different time steps: the set up and cool down phases, considered as 
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Exponential distributions with mean 1/µsu and 1/µcd, plus the printing 

phase, modelled as an Erlang distribution with mean m/µprod, where m is 

the number of strata to be printed. It is reminded that µprod includes both 

the strata scanning time, proportional to the number of pieces to be printed, 

plus the fixed powder spreading time. The sum of these phase type 

distribution corresponds to the hypoexponential modelling used in MC, as 

proved in the validation phase (Section 4.2.4). 

ii. Exponential model:  in this case, the SLM production is modelled using 

an Exponential distribution, made up of only one stage having mean equal 

to the average production time obtained in the detailed model: 

1

𝜇𝐸𝑥

=
1

𝜇𝑎𝑣𝑔

=
1

1
𝜇𝑠𝑢

+
1

𝜇𝑐𝑑
+

𝑚
𝜇𝑝𝑟𝑜𝑑

 

The post processing phases are modelled with exponential distributions with mean 

1/µTT, 1/µEDM and 1/µG for thermal treatments, wire EDM and grinding phases 

respectively. The demand process is Poisson, with mean 1/λ (Section 3.2.1). For an 

accurate description of the assumptions’ justifications, the reader is reminded and 

4.2, where the simulation model is described in detail.  

7.1.2 Test cases 

The analysis of the suggested different SLM modelling will be applied on the 

production of Fubri’s M1 and M3 gear hobs presented in the Case Study (Chapter 5), 

where all the input data utilized in terms of production and post processing duration, 

and costs estimation can be found.  

In order to have a broader analysis perspective, different demand scenarios are 

considered for the components production. In this respect, four different test case 

have been identified, as reported in Table 7.1. 

 M1 [Lv] M3 [Hv] 

Low annual demand [Ld] 87 87 

High annual demand [Hd] 1752 135 

Table 7.1: Different annual demand and production test cases. 

As it can be noted from Table 7.1, the different scenarios are identified by the volume 

of production and the annual demand. In particular, the M1 gear hob has been 

labelled as a low volume [Lv] part, while the M3 as a high volume [Hv] one, being its 

volume around 14 times higher with respect to the M1 one (Table 5.4). This 

characteristic influences the production time: the M3 printing phase, in fact, has a 

total printing time around 14 times higher with respect to M3 model. In this way, 

different production rates are tested.  
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Additionally, two different demand scenarios are reported: a low annual demand 

case [Ld], with a correspondent mean interarrival time of 100h, and a high demand 

case [Hd], developed with the aim of saturating the SLM machine. It can be noted 

that the M3 model has a lower high annual demand with respect to the M1 one 

because, having a longer production time, the SLM machine gets saturated for lower 

demands rate and therefore higher interarrival times of orders issuing [65h for M3 

compared with 5h for M1]. 

Considering the difficulty in estimate the inventory cost parameters as b and h or the 

SLM manufacturing costs, it has been decided to maintain the approach already 

described in Section 6.1 to calculate the total annual inventory costs. In this respect, 

eight different cost scenarios are defined (Table 6.3) considering all the possible 

combinations of the b, h, o parameters’ values (Table 6.2).  

The developed (r,Q) simulation models were tested with different (r,Q) parameters 

to find their optimal values. They are reported in Table 7.2. 

 r Q 

M1 [Ld] 1, 2, 3, 5,6, 10 5, 10, 15, 20, 23, 24, 25 

M1 [Hd] From 24 to 30, from 32 to 37 20, 22, 23, 24, 25 

M3 [Ld] From 1 to 12 From 1 to 5 

M3 [Hd] 
From 6 to 11, from 14 to 16, 

from 19 to 27 
From 1 to 5 

Table 7.2: (r,Q) parameters tested for the different scenarios. 

The data are collected at the steady state. For this reason, a warm-up period of 

800,000h for the detailed model and of 1,000,000h for the exponential model are 

selected applying the Welch method. The results are related to 30 replications runs 

of one year length (1year = 8760h). Confidence intervals are calculated considering 

a confidence level of 95%.  

7.2 Results and discussion  

In this section, the impact of the different SLM modelling on the inventory costs is 

analysed and reported. In particular, it has been considering interesting to identify 

the bottleneck of the AM production system, being this machine the one determining 

the system performances.   

7.2.1 Bottleneck identification 

Before going through the SLM modelling and inventory cost analysis, it is interesting 

to observe some AM production line performance. In this respect, a study is 

conduced to identify the bottleneck machine between the SLM and the post-

processing operations servers. The bottleneck represents a constraint in a production 

system because it conditions the overall line behaviour and performance. For this 
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reason, its operations are the main focus of a manufacturing system analysis, to 

understand the general system behaviour and eventually improve its KPIs. 

The bottleneck machine can be detected considering different performances: it is the 

server having the slower production rate, it is the most utilized and generally creates 

longer queues and waiting times (Urban and Rogowska, 2020). These main drivers 

are utilized in this work to identify the system bottleneck.  

First, an analysis on production time is done. Table 7.3 reports all the servers’ mean 

production times. In particular, the SLM one has been calculated as: 

𝑆𝐿𝑀𝑝𝑡 = 𝑡𝑠𝑢 + 𝑡𝑠𝑝𝑟𝑒𝑎𝑑 ∗ 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 + 𝑡𝑝𝑟𝑜𝑑 ∗ 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 ∗ 𝑄 + 𝑡𝑐𝑑 

considering the data reported for M1 and M3 test cases reported in Section 5.2.  

 M1 M3 

SLM 6.67ℎ + 3.75ℎ ∗ 𝑄 9.17ℎ + 52.5ℎ ∗ 𝑄 

Thermal treatment (TT) 3ℎ 3ℎ 

EDM 0.084ℎ ∗ 𝑄 0.415ℎ ∗ 𝑄 

Grinding (G) 0.8ℎ ∗ 𝑄 2.4ℎ ∗ 𝑄 

Table 7.3: Servers’ production times for M1 and M3 production. 

It can be noted that the SLM machine shows an average production time sensibly 

higher to the other ones, especially considering the case of having a high lot size Q.  

It is also considered interesting to observe the machine utilizations, the queue length 

and buffers waiting times. These performances analysis is reported for the M1 

production with high annual demand test case [Lv-Hd], being characterized by a high 

part request together with the possibility to place many pieces inside the SLM 

building chamber. In this way the system capabilities are fully exploited, observing 

with more evidence the results searched. It is anyway reminded that all the other test 

cases lead to the same conclusion. The analysis is performed considering the detailed 

model which better describes the SLM production process. 

Different lot sizes are tested (Q = 6, 8, 10, 15, 20, 23, 24, 25) to observe the general 

system behaviour. Ten independent simulation runs for each Q parameters are done, 

considering a warm-up period of 800,000h and a running period of 30 years (1year 

= 8760h). The results confidence intervals (CI) are calculated with a confidence level 

of 95%. The KPIs collected are:  

• SLM and post-processing machines utilization  

• SLM and post-processing average orders in queue 

• SLM and post-processing average waiting time in queue. 
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Server utilizations analysis 

Figure 7.1 reports the average machine utilization for all the different servers, 

obtained with a confidence interval of around 1% of the mean. It is clear that the SLM 

machine is the most utilized server for all the lot sizes, while the other servers show 

significantly lower utilization.  

Figure 7.1: Server utilization (CI: 1% of the mean value). 

Queue analysis 

Figure 7.2 shows the average number of orders in queue (a) and the orders average 

waiting time (b) for all the AM production server. The results have a CI of around 

10% over the mean. It is possible to note that these two KPIs for the thermal 

treatment (TT), wire EDM and grinding (G) operations overlap in figure, and are all 

null. On the contrary, the SLM machine presents up to 3.18 orders in queue with an 

Figure 7.2: a) Number of orders in queue; b) Waiting time in servers' queue. CI: 10% of the mean. 
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average waiting time of 95.48h when Q is equal to 6, and shows for all the lot size 

higher KPIs value with respect to the other servers. 

The results obtained from the machine production time analysis, machine 

utilizations, number of orders in queue and orders waiting time in queue all agree in 

selecting the SLM machine as the bottleneck of the AM production system, being the 

slowest, most utilized, with longer queue and higher waiting times server.  

7.2.2 Comparison between SLM production models 

It is significant to appreciate the extent of the impact on the total annual inventory 

cost selecting the (r,Q) optimal parameters with an approximated model as the 

exponential one on the real production scenario, modelled instead by the 

hypoexponential distribution. This is done collecting the (r,Q) parameters that 

minimize the total annual cost using the exponential model, and evaluating the 

detailed model for the same (r,Q) parameters. The annual cost found with this 

method is then compared with the one obtained with the detailed model evaluated in 

its optimal parameters. It is reminded that this analysis is focused on the proper 

modelling of the SLM machine because this server is the bottleneck of the line: its 

performances influence the whole system behaviour, and therefore an accurate 

process study is necessary. 

From a managerial point of view, this would mean to evaluate the possible error that 

an approximated model would cause in the ex-ante analysis performed for the 

optimal (r,Q) parameter selection, applied then on the real industrial SLM 

production. A possible total inventory cost error is calculated comparing this 

scenario with the one that uses a detailed model to optimize the inventory policy.  

The maximum total cost differences obtained considering all the cost scenarios tested 

are reported in Table 7.4. The complete optimal parameters and total cost calculation 

can be found in the Appendix A.5.1. 

  Total annual inventory 

cost difference 

Machine 

utilization 

M1 

[Lv] 

Ld 0.00% 4.01% 

Hd 6.09% 80.18% 

M3 

[Hv] 

Ld 13.43% 55.32% 

Hd 65.04% 83.40% 

Table 7.4: Maximum annual total inventory cost difference between the two SLM models and SLM machine 
utilization (CI: 3% of the mean value) in the different test cases.  

It can be noted that the two models give the same results in case of low part volume 

and low annual demand, while the costs discrepancy increases by increasing these 

two parameters, having its maximum value in case of high volume and high annual 

demand.  
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The reason beside these results can be motivated considering the statistical 

distribution properties together with the SLM machine utilization, reported in Table 

7.4 for the optimal exponential (r,Q) parameters obtained. It is firstly recalled that 

the MC model has already pointed out that the exponential and detailed models 

provide sensible different resupply times value when the production volume is high 

and the systems is saturated, so it is subject to high annual demand. This observation 

can easily reflect the results obtained in terms of total inventory cost difference. In 

fact, the inventory cost is strongly influenced by the average resupply time, being this 

duration the time requested to resupply the stock and therefore to be able to 

promptly satisfy customers demands. If the production volume is low, as in case of 

the M1 model, the error brought by the exponential model is limited. Additionally, 

considering this scenario in combination with a low annual demand [Lv-Ld], the 

direct consequence is a low SLM machine utilization, as reported in Table 7.4. From 

a practical point of view, these conditions are translated into a negligible SLM 

machine queue and waiting times, leading the average resupply time to be almost 

equal to the sum of the average production times. These observations can be proved 

by looking at the two models resupply times obtained for the optimal (r,Q) 

parameters of the detailed model, reported in Table 7.5. It can be noted, in fact, that 

the test case Ld-Lv shows an average resupply time difference equal to 1.0%, almost 

negligible from a statistical point of view. For the mentioned reasons, the two models 

lead to select the same (r,Q) optimal parameters, having a null difference on the total 

annual inventory cost. 

 Detailed model Exponential model 

 
 

Optimal 

(r,Q) 

Resupply 

time 

Optimal 

(r,Q) 

Resupply 

time 

M1 

[Lv] 

Ld (1,25) 126.39h (1,25) 128.19h 

Hd (29,25) 128.33h (35,24) 317.13h 

M3 

[Hv] 

Ld (4,5) 301.85h (9,5) 416.91h 

Hd (7,5) 394.23 (25,5) 1009.20h 

Table 7.5: Optimal (r,Q) detailed and exponential models parameters for the scenarios analyzed; Detailed 
and exponential models resupply time comparison calculated considering the optimal exponential (r,Q) 
parameters in the scenarios of analysis. CI: 3% of the mean for the detailed model, 6% of the mean for the 
exponential model. 

On the contrary, when the demand or the production volume are increased (Lv-Hd 

and Hv-Ld cases), the total annual inventory cost starts to diverge, with a maximum 

difference of 6.09% and 13.43% (Table 7.4). This result can be motivated again by 

looking at the statistical distribution used. In fact, the exponential distribution leads 

to higher error when the average production time is increased [Hv], because of the 

increase of its variance. This error affects the system stochasticity leading to longer 

waiting times and therefore higher average resupply times, as demonstrated in Table 
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7.5 (416.91h for the exponential model versus 301.85h for the detailed model). Even 

if the production volume is low (M1 model) and therefore the average production 

time is reduced, the increase of the annual demand leads to an increase of the 

machine utilization, causing the propagation of the exponential error on all the 

production line, with longer buffer queues and consequently longer average resupply 

times. In fact, the exponential model leads to an average resupply time equal to 

317.13h, while the detailed model to 128.33h for the same (r,Q) parameters (Table 

7.5). The combination of both a high production volume and a high annual demand 

(Hv-Hd) shows the highest annual inventory cost difference, equal to 63.04%, being 

the exponential model resupply time more than double of the detailed model one 

(Table 7.5).   

From an inventory management point of view, using an exponential model means to 

select higher reorder point. This can be observed by looking at Table 7.5, that collects 

the optimal (r,Q) parameters for the analysed scenarios,  while the complete optimal 

parameters results are available in the Appendix A.5.1.  As expected, the Lv-Ld case 

leads to the same optimal parameters selection. For the other cases, it can be noted 

that the lot size choice in both the models is equal or almost equal. The most sensible 

discrepancy is found by looking at the reorder point r, being the exponential one 

always higher. This is a direct consequence of the higher average resupply time 

pointed out before. In fact, the exponential model requires waiting longer before the 

orders come to replenish the stock. In order to be able to satisfy the customer demand 

avoiding to incur in high backorder cost, it is therefore better to stock more and have 

a higher safety stock. The direct consequence is an increase of the on-hand cost, 

leading to higher total annual inventory cost difference.  

Service level analysis 

One of the often studied inventory performances is the service level, defined as the 

ratio between the demand actually met and the overall demand. With this metric it 

is possible to measure the ability to promptly respond to customers’ demand, not 

incurring in backorder. It is considered interesting to analyse the service level 

behaviour in case of the SLM process modelling with a detailed or approximated 

model. 

Figure 7.3 shows the service level results for the different test cases. In particular, the 

green surface represents the detailed model, while the meshed white one the 

exponential model. The results are compared with a target service level of 95%, 

described by the red surface in figure. By looking at Figure 7.3, it is possible to 

observe how the exponential model’s service level is always lower with respect to the 

detailed one, especially for the high demand test cases (Figure 7.3 c and d). These 

results are in accordance with the analysis already done for the two models 

comparison. In fact, having the exponential model a higher variability, the average 

resupply time is much longer with respect to the detailed one, especially when the 
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SLM machine is highly utilized. This result in a lower system capability to respond 

just in time to clients’ requests, leading to higher average backorders cost and lower 

service level.  

Figure 7.3: Service level for the different test cases: a) Lv-Ld, b) Hv-Ld, c) Lv-hd, d) Hv-Hd. The green 

graph represents the detailed model, while the meshed one the exponential model. The red plane is the 

target service level, equal to 0.95. The blue and the pink stars are the service level for the optimal r,Q 

parameters for the detailed and exponential model respectively, while the red and the black ones are the 

new optimal points for respecting the service level constraint. CI: 3% of the mean value for the detailed 

model and a,b exponential model; 8% of the mean for the exponential c,d cases.   

To avoid this disservice, managers often define a target service level to meet. In this 

work it is selected equal to 95% and represented by the red surface in Figure 7.3. It is 

possible to appreciate that the detailed model is able to satisfy the service level 

constraint in most of the cases for the already selected optimal (r,Q) parameters (blue 

stars in Figure 7.3), or eventually it is possible to improve the result to meet the 

constrain (red star in Figure 7.3). This is not the case of the exponential model: the 

obtained service level for the high demand cases is not sufficient to meet the 

requirements, meaning that higher reorder points must be simulated and selected to 

satisfy the target, further increasing the annual inventory holding cost and finally the 

total annual inventory cost difference between the two models.  
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7.2.3 Alternative SLM modelling: the normal distribution test 

For sake of completeness, statistical distributions other than the exponential family 

ones are tested. In particular, it is interesting to appreciate the consequences on the 

inventory costs when a distribution with lower variance with respect to the 

exponential one is applied to model the service times, evaluating its comparison with 

the selected detailed model. 

One of the most used statistical distribution to describe operations as sum of 

different tasks is the normal distribution. To maintain a low variability, this 

distribution is created so that its coefficient of variation (CV), which is the ratio of 

the standard deviation to the mean, is equal to 0.1. This distribution type is applied 

to all the process stages of the AM production. In particular, having pointed out the 

relevance of a detailed description of the SLM printing steps and willing to provide a 

sufficiently accurate comparison with the already developed detailed model, the AM 

technology is again modelled as the sum of tree steps: set up, printing (layer scanning 

and powder spreading) and cool down. All these steps and also the post-processing 

operations are described by a normal distribution having mean equal to the detailed 

model one, and CV = 0.1. Since the normal distribution has an infinite domain, the 

left tail that goes to minus infinity has been cut, selecting a new interval domain (0, 

∞) for generating the random variables representing the production time durations. 

The demand process is still considered Poisson, being such a distribution appropriate 

for describing the erratic demand arrivals.  

The test cases studied are the same as reported in Section 7.1.2 and the same analysis 

is followed. The data are collected at the steady state. For this reason, a warm-up 

period of 800,000h is selected. Results are related to 30 simulation runs of one year 

length (1year = 8760h). Confidence intervals are with a confidence level of 95%. 

Table 7.6 reports the maximum total annual inventory cost difference evaluated 

considering all the cost scenarios studied. The results comparison is performed 

following the same procedure presented in the exponential and detailed model 

analysis. The complete results for all the scenarios tested with the respective optimal 

(r,Q) parameters can be found in Appendix A.5.2. 

Total annual inventory cost 

difference  

M1 [Lv] M3 [Hv] 

Low annual demand [Ld] 0.00% 3.35% 

High annual demand [Hd] 1.10% 5.32% 

Table 7.6: Maximum annual total inventory cost difference between the detailed and normal models. 

By looking at the results collected in Table 7.6 it is possible to appreciate that the two 

models total annual cost differences are significantly lower with respect to the same 

comparison performed with the exponential model (Table 7.4). In particular, the 

percentage difference reaches its maximum value again in the Hv-Hd case, but with 
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a value equal to just 5.32%. Overall, it can be said that the annual cost difference 

between the two models is statistically negligible.  

The motivation beside these results can be found observing the SLM distribution 

coefficient of variation. In particular, this analysis is mainly focused on the SLM 

machine and not on the post processing operations because the SLM machine has 

been recognized to be the bottleneck of the line, and therefore it is the main 

responsible for the resupply time behaviour and finally of the inventory dynamics 

and costs. The post processing operations servers, having an almost null queue for 

the selected optimal parameters, provide an operation time equal to the mean value 

for both the models, not impacting the difference in total resupply time.  

Figure 7.4 shows the three distributions applied for the SLM production time 

modelling coefficient of variations, for M1 (Figure 7.4a) and M3 (Figure 7.4b) 

manufacturing. In particular, the CVs are calculated considering the whole SLM busy 

time, starting to set up and finishing with cool down phase. It is reminded that the 

mean production time varies with the lot size, and so does the CV. From Figure 7.4, 

it is possible to note that the detailed model’s CV is always the lowest one considering 

the optimal lot size selected (Q = 25 for M1 and Q = 5 for M3), showing a value around 

or less than 0.1. This value is really similar to the normal distribution’s CV, which is 

around 0.1 as expected. On the contrary, the exponential’s CV, which is by definition 

equal to 1, is always sensibly higher with respect to the others two models. The CVs 

behaviour is reflected on the average resupply time evaluation. In fact, the 

exponential model leads to always higher average resupply time (Table 7.5) with 

Figure 7.4: Coefficient of variation for the different SLM distribution studied for a) M1 production, b) M3 
production. 
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respect to the detailed model, while the normal one provides very similar results 

(Table 7.7). 

 Lv Hv 

 Detailed  Normal Detailed Normal 

Ld 126.39h 125.84h 301.85h 301.33h 

Hd 128.33h 128.82h 394.23h 397.64h 

Table 7.7: Detailed and normal models resupply time comparison calculated considering the optimal 
normal (r,Q) parameters in the scenarios of analysis. CI: 3% of the mean value. 

7.2.4 Analysis conclusions 

The analysis carried out demonstrated the importance of an accurate description of 

the SLM production times, defining in a detailed way all the time steps that this 

technology requires. It is possible to note that modelling the SLM manufacturing 

time by means of a generic statistical distribution as the exponential one can lead to 

sensible errors in resupply time estimation, especially when the production volume 

is high or the annual demand is conspicuous. In these scenarios, in fact, the SLM 

machine is mostly utilized, causing orders to wait in queue before being 

manufactured. The higher variability provided by a comprehensive statistical 

distribution as in the exponential case propagates in all the system dynamics, having 

as consequence a higher average resupply time. This result has repercussion on the 

total annual inventory cost and service level. In fact, being the average resupply time 

longer, the orders need more time to replenish the stock: to not incur in high annual 

backorders cost, it is preferable to select higher reorder point and therefore have a 

higher safety stock and finally a higher annual holding cost. Furthermore, for the 

same reasons, the service level metrics is often unsatisfactory in case of the 

exponential model application, requesting the selection of higher safety stock to 

improve the inventory performance, leading again to an inventory cost increase. 

Therefore, the use of a generic statistical distribution for modelling the production 

ex-ante would drive the decision makers to stock more than what should be 

necessary, incurring in not justified annual inventory cost.  

In order to provide a more complete analysis, the detailed model’s exponential family 

distribution has been substituted with normal ones having a low coefficient of 

variation. Despite this, no statistically relevant differences have been noted between 

the two models, neither in term of total average resupply time not on total annual 

inventory costs. This sensitivity analysis demonstrated that an accurate description 

on the SLM production process, which has been recognized to be the bottleneck of 

the AM manufacturing system, is the main focal point to derive accurate inventory 

management decisions, rather than the selection of the statistical distribution to 

model each one of the single process phases.  
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8 Conclusions 

This work has posed as aim an in-depth analysis of the Additive Manufacturing (AM) 

production with specific focus on Selective Laser Melting (SLM), to evaluate the 

impact of this technology on Supply Chain (SC) and, more specifically, on inventory 

management. In particular, one of the objectives was to further investigate the 

identified literature gap between the studies evaluating possible AM consequences 

on SC and the ones focused on AM production efficiency. In fact, the firsts advocate 

AM as a make to order production, meaning that a job is run every time a demand 

occurs, while the latter suggests accumulating requests to fill up the AM machine 

building chamber to minimize the unitary production time, energy and material 

costs. Furthermore, researches that concern AM impact on SC often assert many 

assumptions, as infinite AM machine capacity, negligible set up times, not 

contemplated post processing operations and constant or generically distributed 

resupply times. It is interesting to appreciate if the removal of these hypotheses, 

providing instead an accurate SLM description as done in publications regarding AM 

production, can have relevant impacts also on inventory management. 

Data and information on the SLM process have been gathered. SLM production is 

made by the sum of different steps: set up for machine pre-heating and input 

parameters loading, powder spreading and laser scanning for 3D objects 

manufacturing, and cool down for temperature reduction and parts extraction. These 

manufacturing stages have been modelled in a production contest, considering 

limited AM machine capacity and therefore possible queues formation and waiting 

times, by means of specifically designed Markov Chains. In this respect, different 

statistical distributions have been tested to model the manufacturing times. It has 

been noted how the Hypoexponential distribution, which allows a detailed 

description of the process assigning a rate for each of the technology’s time phases, 

can lead to more accurate resupply time estimation. In fact, it has been proved that 

this model allows significant resupply time error reduction with respect to more 

comprehensive and general models that do not distinguish the different process time 

steps, as the use of an overall Exponential distribution. Furthermore, an accurate 

SLM machine analysis conducted with the developed model has pointed out how a 

reduction of the cool down time, possible thanks to the selection of high-performance 

machines, can positively impact the total resupply time, reducing this parameter 

significantly. This is an important outcome from an industrial scenario point of view, 

where the seek for efficiency and better performing systems is often desired.  

Having underlined the importance of an appropriate description of the SLM 

production process, the impact of this technology on the inventory management has 

been analysed. In this respect, two different inventory policies have been selected to 

provide an analysis on both the production strategies identified in literature: the      
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(S-1,S), in which orders are issued every time a demand arrives, leading to a make to 

order or piece-by piece production, and the (r,Q), that instead accumulates demands 

placing orders with a batch size equal to Q. The scenario depicted consists in a single-

item, single-location inventory managed by the AM manufacturer. Simulation tools 

have been selected to describe the complex system dynamics. In this way, it has been 

possible to consider the SLM limited capacity and therefore its waiting times and 

queues, post processing activities as thermal treatments and finishing operations, 

SLM machine set up and cool down times and finally SLM production times that vary 

with respect to the number of pieces allocated in the building chamber. An 

appropriate cost model has been defined to evaluate the SLM inventory costs, also 

taking care that a fraction of the unmelted raw powder is wasted, being this amount 

inversely proportional to the number of pieces in the building chamber. 

To provide an analysis as close to reality as possible, a case study has been identified 

to test the developed models. In particular, two gear hobs tools manufactured by 

Fubri Company have been selected as target components. Production times and costs 

data were collected both interviewing experts at Politecnico di Milano Mechanical 

Engineering laboratories and considering a previously conducted experimental 

campaign.  

The developed simulation models, applied to Fubri tools production and inventory 

management, are used to compare the (S-1,S) and (r,Q) inventory policies in terms 

of total annual inventory costs. The analysis revealed that the (r,Q) policy leads to 

lower annual inventory costs for both the components studied. This result is mainly 

due to the high impact of the order costs: with the (S-1,S) model, an order is placed 

every time a demand occurs, having as consequence an elevated incurrence of the 

order cost, that is not negligible with respect to the other inventory costs. 

Furthermore, following a make to order strategy would mean to not exploit the SLM 

machine capacity, requesting to wait the fixed time durations as set up, cool down 

and powder spreading for every order placement. Nesting many pieces in one job, 

following a (r,Q) policy, allows instead to optimize the fixed time durations, 

allocating them on all the parts to be printed. It has been in fact proved that the 

unitary resupply time sensibly decreases when the lot size is increased, thus 

improving the whole system efficiency. Finally, it is important to consider that 

locating many pieces in a single build job permits the reduction of the total raw 

material scrapped, leading to a decrease of the unitary production cost and 

consequently of the on-hand and backorder costs. 

It was finally considered interesting to evaluate the impact of an accurate SLM 

modelling on the inventory costs estimation. In this respect, the more detailed 

Hypoexponential distribution and the comprehensive Exponential distribution 

modelling analysed with the Markov Chain, have been employed to represent the 

SLM production process in the wider scenario identified by the inventory 

replenishment. In particular, the focus on the SLM machine modelling has been 
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further justified because this server has been observed to be the bottleneck of the AM 

manufacturing process, determining the system performance. The simulation results 

showed how an approximated modelling would lead to higher average resupply time 

and longer waiting times, especially when the production volume or the annual 

demand are high. This outcome has as a consequence an increase of the reorder point 

selection, causing higher and not justified annual inventory costs. Furthermore, the 

service level obtained with the approximated model is sensibly lower: to satisfy a 

target service level, the Exponential model would suggest stocking more units than 

the ones effectively needed. Finally, a conclusive analysis was performed replacing 

the Exponential family distributions with Normal distributions having the same 

mean and low variability, keeping the accurate description level given by the 

Hypoexponential model. Despite this, no statistically relevant differences were noted 

with respect to the detailed model in the optimal parameters estimation and in the 

total annual inventory cost computation. These results proved how a careful SLM 

production modelling, being the machine the line bottleneck, allows an improved 

evaluation of the optimal inventory policies parameters, providing decision makers 

an accurate tool to better define the inventory strategy.  

This work made possible to further investigate the AM application in inventory 

management. In particular, the accurate technology modelling, removing 

assumptions as infinite machine capacity or negligible set up times, revealed that the 

reorder point, lot size inventory policy can reduce the annual inventory costs and 

allowed, in addition, a better optimal policy parameters estimation. It is known that 

the work focus is directed on SLM technology only, but it is believed that the 

developed models can be easily adapted to others AM technologies working similarly 

to SLM as SLS or STL, and additional insights can be gained. Furthermore, it would 

be interesting to broader the selected scenario to a multi-inventory system, 

introducing in this way the scheduling problem and the product mix management, 

but also fully exploiting the AM flexibility, technology able to produce many different 

parts and shapes in just one job without requiring specific tools or dies to be 

continuously changed and set up.  
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 Appendix 

A.1  Markov Chain Matlab Codes 

This section reports the code for the Markov Chain analytical model computation, 

developer in Matlab and used for solving the models presented in Section 3.2.3. The 

implementation approach followed is the on suggested by (Stewart, 2009). It is 

presented the code formulated for the Hypoexponential distribution. The code for 

the Erlang model is really similar, having as only difference that the production rate 

would be equal for all the stages, as computed with the Equation (3.13) in Section 

3.3.2. 

clc 

clear all 

 

v = [20,100,400,700,1000,1300,1600,1900,2200,2500]; 

K = [20*ones(1,3),12*ones(1,8)]; 

  

%%  

for j=v 

%% variables definition 

mu = 1/(0.003);  

mu_su = 1/0.92; 

mu_cd = 1/4.5;  

lambda = 1/100;  

r=j+2; %number of states 

  

%% check stability  

production_time_avg = 1/(mu_su) +1/(mu_cd) +(r-2)/mu; 

mean_hypoexpo = production_time_avg; 

var_hypoexpo = 1/(mu_su)^2 +1/(mu_cd)^2 +(r-2)/mu^2; 

dev_standard_hypoexpo = sqrt(var_hypoexpo);  

cv_hypoexpo = dev_standard_hypoexpo/mean_hypoexpo; 

mu_avg = 1/production_time_avg;  

rho((find(v==j))) = lambda/mu_avg;  

  

if rho((find(v==j)))>=1 

    error('The MC is not stable') 

end 

 

% % sub-matrix construction to obtain the transition rate matrix Q 

  

% A0: sub-matrix that describes the transition from (k+1,n) state to 

(k,1). It is the cool down stage. 

 

 A_0(r,1)=mu_cd;  

  

 %A1: it is the Q diagonal.  

 diag_A1 = -(lambda+mu)*ones(1,r);  

 diag_A1(1) = -(lambda+mu_su);  

 diag_A1(end) = -(lambda+mu_cd);  

 A1_diag = diag(diag_A1); 
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 diag_sup_A1 = mu*ones(1,r-1); 

 diag_sup_A1(1) = mu_su;  

 A1_diag_sup = diag(diag_sup_A1,1); 

 A_1 = A1_diag+ A1_diag_sup; 

  

 %A2: sub-matrix that described the transition from(k,i) to (k+1,i), 

so clients arrivals. 

 diag_A2 = lambda*ones(1,r);  

 A_2 = diag(diag_A2);  

  

 %B00: Q diagonal for the first arrival. 

B_00 = -lambda;  

  

 %B01: sub-matrix for the first arrival. Transition from (0,0) to 

(1,1)  

 B_01 = zeros(1,r);  

 B_01(1) = lambda;  

 

  

 %B10: sub-matrix for transition from (1,r) to (0,0)  

 B_10(end) =mu_cd;  

 

 %% Q building 

 

 %k: parameter for Q dimensioning 

k =K(find(v==j));  

  

 %fist arrival 

  

 Q_it = [B_00,B_01,zeros(1,(k+1)*r); 

         B_10,A_1,A_2,zeros(r,(k)*r); 

         zeros(r,1),A_0,A_1,A_2,zeros(r,r*(k-1))];  

      

 %iteration for all the other arrivals 

  

 for i = 1:k-1 

     Q_it_new= [zeros(r,1),zeros(r,r*i),A_0,A_1,A_2,zeros(r,r*(k-

(i+1)))]; 

     Q_it= [Q_it; Q_it_new]; 

 end 

 

%add last line for Q to be square  

Q_end = [zeros(r,1),zeros(r,r*k),A_0,A_1]; 

Q = [Q_it; Q_end]; 

  

%% system solving 

Q=Q'; 

[n,m]= size(Q);  

if n~=m  

    error ('Q is not square’) 

end 

  

%vector of the known terms 

b = zeros(n,1); 

b(end) = 1;  

Q(end,:)= 1;  

  

pi = Q\b;  
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%% average clients’ number  

clients = [0]; 

for i = 1: (n-1)/r 

clients = [clients,i*ones(1,r)]; 

end 

 

avg_clients = clients*pi;  

 

%Little’s law and average resupply time computation 

tao_avg_exact_model(find(v==j)) = avg_clients/lambda 

end 
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A.2  Inventory policy formulas derivation 

For sake of completeness, the formulas derivation for the (r,Q) model are reported in 

this section. The procedure suggested is the one of Muckstadt and Sapra, (2006). 

A.2.1 (S-1,S) model formula derivation 

This section provides the detailed (S-1,S) inventory model optimization problem 

formulation, following the Muckstadt and Sapra, (2010) approach.  

It is reminded that the model formulation assumes that the Palm Theorem (Section 

4.1.1, Equation (4.2)) holds. In particular, this remarkable result, stating that the 

resupply times are independent and identically distributed, allows the calculation of 

the steady state probability that x units are in resupply as follow 

𝑃{𝑋 = 𝑥} = 𝑝(𝑥|𝜆�̅�) = 𝑒−𝜆�̅� ∗
(𝜆�̅�)𝑥

𝑥!
 

Being X the random variable defining the number of units in resupply and �̅�, the 

average resupply time. Thus, the probability that there are x unit in resupply is 

Poisson distributed with mean 𝜆�̅�, i.e. it is not need to know the exact distribution of 

the resupply or procurement time, but just its mean value.  

On the basis of this important result, it is possible to define the probability 

expressions of the backorders and on-hand inventory. At the steady state, it holds 

that: 

𝐵 = (𝑋 − 𝑆)+ = 𝑚𝑎𝑥{0, X − S}        𝑂𝐻 = (𝑆 − 𝑋)+ = 𝑚𝑎𝑥{0, S − X} 

In particular, backorders verify if and only if the unit in resupply x, are more than the 

one in stock S, i.e. x > S: this lead to unsatisfied demand. Otherwise, zero backers are 

expected. Consequently, the expected number of units backordered in steady state 

condition is:  

𝐵(𝑆) =  ∑(𝑥 − 𝑆) ∗ 𝑝(𝑥|λ�̅�) =   ∑(𝑥 − 𝑆) ∗ 𝑒−λτ̅ ∗
(λ�̅�)𝑥

𝑥!
 

𝑥>𝑆𝑥>𝑆

 

After having defined the backorders expression, it is possible to describe the formula 

for the on-hand inventory. Recall that the inventory position S is the sum of the on-

hand inventory (OH) plus on order (O) minus backorders (B). Therefore  

𝑂𝐻(𝑆) = 𝑆 − 𝑂 + 𝐵(𝑆) 

The on order inventory can be described by the expected value of the number of parts 

in resuplly, E[X] 
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𝐸[𝑋] =  ∫ 𝑥 𝑒−λτ̅ ∗
(λ�̅�)𝑥

𝑥!
 dx

∞

0

 

All the needed information are provided in to define the total cost function, which 

should be minimized:  

𝐶𝑡𝑜𝑡 = 𝐶(𝑂𝐻) + 𝐶(𝐵) = ℎ[ 𝑆 − 𝐸[𝑋] + 𝐵(𝑆)] + 𝑏𝐵(𝑆) 

Where h is the holding cost per year associated to every single unit stock in the 

inventory and b is the backorder cost associated to every unit backordered. 

Considering this type of inventory model, an important measure which is often used 

is the fill rate, defined as follow (Muckstadt and Sapra, 2010): 

Given a stock level of S, the fill rate, F(S), is the expected fraction of demands that 

can be satisfied immediately from on-hand stock.  

As is intuitively clear, as s increases the fill rate will increase. Generally, in an 

optimization problem, one of the condition is to consider the fill rate to fulfill a 

certain level α, in order to be able to meet demands and satisfy customer 

requirements. 

The above description provides all the elements useful to define the optimization 

problem in order to find the optimal inventory position S* 

min 𝐶𝑡𝑜𝑡(𝑠) = 𝐶𝑂𝐻(𝑆) + 𝐶𝐵(𝑆) = ℎ[ 𝑆 − 𝐸[𝑋] + 𝐵(𝑆)] + 𝑏𝐵(𝑆) 

s.t. 

𝐹(𝑆) >  𝛼 

𝑆 ≥ 0  ∀ 𝑆 ∈ 𝑁 

A.2.2 An approximated (r,Q) model when backordering is 

permitted: formulas derivation 

In this Appendix section, the inventory policy formula of the first (r,Q) model 

presented in Section 4.1.2 are derived. The Muckstadt and Sapra, (2010) approach is 

followed. This model is easy to understand, the resolution methods are quite simple, 

and can be suitable for very low demands. Nevertheless, it is based on many 

assumptions: one must be aware of their impact on the policy parameters resulting 

values.  

The key assumption in this model is that there is never more than one single order of 

size Q outstanding in any point in time. This implies that, whenever the reorder point 

r is reached, there are no orders outstanding, or, in other words, that the demand 

over the resupply time never exceed Q. This hypothesis has as consequence that, at 

the reorder point, the inventory position (I), which is the sum of the on-hand 
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inventory (OH), the units ordered (O) minus backorders (B), is equal to the net 

inventory N, so OH minus B. 

𝐼 =  𝑁 = 𝑂𝐻 − 𝐵 

Another assumption is that the reorder point r is non-negative. This is normally true 

in practice, because one will not normally wait until there are backorders to place 

orders. This assumption, together with the previous one, lead to affirm that, at the 

reorder point, the inventory position is exactly equal to the on-hand stock. This can 

be appreciated by looking at Figure A.1, that describes behaviour of systems 

inventory position and net inventory under this type of hypotheses. 

To simplify the subsequent calculations, another assumption is made. Backorders, 

especially if expensive, are undesirable and generally occur only at the end of a cycle 

and in a very small amount, as described by Figure A.1. Therefore, the average 

number of backorders at random point in time is very small compared to the average 

amount of stock on-hand. For this reason, in the computation of the expected annual 

net inventory, the expected number of annual backorders is considered negligible: 

𝐸[𝑁𝑒𝑡 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦] = 𝐸[𝑂𝑛 ℎ𝑎𝑛𝑑] − 𝐸[𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠] 

But 

𝐸[𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠] ≈ 0  

So  

𝐸[𝑁𝑒𝑡 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦] ≈ 𝐸[𝑂𝑛 ℎ𝑎𝑛𝑑] 

After having clarified the model assumptions, it is possible to derive the inventory 

costs formulations. It is reminded that, for this case, the resupply time τ is considered 

constant. Three different costs are considered: the order cost, the backorder cost and 

the holding cost.  

Figure A.1: Inventory dynamics (Hadley and Whitin, 1963). 
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The order cost is the annual cost associated to the total number of orders placed. 

Being the average annual demand rate λ and since an order is placed after Q 

demands, the average number of orders placed per year is 
𝜆

𝑄
. Therefore, the average 

annual cost for placing orders CO is: 

𝐶𝑜 =  𝐾
𝜆

𝑄
. 

To calculate the expected number of shortage cost per year, it is necessary to calculate 

the expected number of backorders per cycle, and multiply it by the number of cycles 

per year, which is again 
𝜆

𝑄
 and by the backorder unit cost b. 

A backorder verifies in case the on-hand inventory is not sufficient to meet the 

demand during the resupply time, so before the order already placed arrives. Let x 

the demand over the resupply time. A backorder therefore occurs if and only if x >r 

during the resupply time and x – r determines the number of backordered units. 

Hence 

∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥
∞

𝑟

 

represents the number of backorders per cycle, where f(x) is the demand probability 

mass function. In case of discrete demand, it can be also written as 

∑(𝑥 − 𝑟)𝑓(𝑥)

𝑥>𝑟

 

Therefore, the total annual backorders cost is given by 

𝐶𝐵 =  𝑏 ∗  
𝜆

𝑄
∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥

∞

𝑟

 

Finally, the holding costs is computed. It is reminded that, because the average 

number of outstanding backorders in a random point in time is considered negligible, 

the following relation holds:  

𝐸[𝑁𝑒𝑡 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦] ≈ 𝐸[𝑂𝑛 ℎ𝑎𝑛𝑑] 

Furthermore, the expected net inventory at the time of the order arrival is the safety 

stock, S, and it assume the value of S + Q immediately after the order arrival. Because 

of the above considerations, these values are also assumed by the on-hand inventory. 

Having defined as cycle the time that elapses between the arrivals of two orders, and 

knowing that the mean demand rate  in a cycle is constant, it is possible to calculate 

the average on-hand inventory during a cycle as:  

𝑆 + (𝑆 + 𝑄)

2
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To completely formulate the optimization problem only in the r and Q decision 

variables, the relation that holds between r and S is applied to the previous formula. 

The safety stock by the time of the order arrival, considered the mentioned 

assumption, is equal to r – x, with x the demand occurred in the resupply time. The 

expected value of the safety stock, averaged on all the x is therefore: 

𝑆 = ∫ (𝑟 − 𝑥)𝑓(𝑥)𝑑𝑥 = 𝑟 − 𝜇
∞

0

 

Being µ the expected resupply time demand. 

Consequently, the average annual cost of carrying inventory is: 

𝐶𝑂𝐻 = ℎ ∗ [
𝑄

2
+ 𝑟 − 𝜇] 

By combining the above expressions, it is possible to obtain the average annual total 

inventory cost:  

𝐶𝑡𝑜𝑡(𝑄, 𝑟) =
𝐾𝜆

𝑄
+  ℎ [

𝑄

2
+ 𝑟 − 𝜇] + 𝑏 

𝜆

𝑄
∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥

∞

𝑟

 

Stochastic resupply time 

The above results were obtained considering a constant resupply time. It is possible 

that the replenishment time τ is stochastic, hence some modifications of the already 

described model are necessary. Considering the resupply time independent from the 

demand, the marginal distribution of the resupply time demand is:  

ℎ(𝑥) =  ∫ 𝑓(𝑥, 𝑡)𝑔(𝑡)𝑑𝑡
∞

0

 

Being g(t) the density function of the stochastic resupply time.  

Therefore, the expected number of backorders would be: 

∫ (𝑥 − 𝑟)ℎ(𝑥)𝑑𝑥
∞

𝑟

 

And the safety stock 

𝑠 = ∫ (𝑟 − 𝑥)ℎ(𝑥)𝑑𝑥 = 𝑟 − 𝜇∗
∞

0

 

With µ* the expected resupply time demand i.e. µ∗ = ∫ 𝑥ℎ(𝑥)𝑑𝑥
∞

0
  

In the same way, it is possible to obtain the on-hand inventory expression COH: 

𝐶𝑂𝐻 = ℎ ∗ [
𝑄

2
+ 𝑟 − 𝜇∗] 

with µ* the expected resupply time demand i. e. µ∗ = ∫ 𝑥ℎ(𝑥)𝑑𝑥
∞

0
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The total annual average cost Ctot, considering stochastic resupply time, is calculated 

as:  

𝐶𝑡𝑜𝑡(𝑟, 𝑄) =
𝐾𝜆

𝑄
+  ℎ [

𝑄

2
+ 𝑟 − 𝜇∗] + 𝑏 

𝜆

𝑄
∫ (𝑥 − 𝑟)ℎ(𝑥)𝑑𝑥

∞

𝑟

 

A.2.3 The exact (r,Q) model: formulas derivation 

The derivations that follows aim to provide an exact formulation of the total cost 

function of (r,Q) policy described in Section 4.1.2, removing the assumptions done in 

the approximated model. 

Because of the loss of the approximated model assumption, it is necessary to 

determine the stationary distribution of the inventory position to determine the 

probability distribution of the inventory position and on-hand and backorders, which 

follow.  

First of all, it is possible to note that the inventory position I random variable is 

always a value between r +1 and r+ Q. In fact, when demand arises and lead the 

inventory position to reach r, an order of size Q is immediately placed, and therefore 

I does not assume the value of r for a positive amount of time.  

Because the demand follows a Poisson process, the time between two demand is 

exponentially distributed with mean 1/λ. In addition, the time until the next demand 

is independent of the state of the system is in, generally called r+j.  

Considering the above system properties, it is possible to state that the stationary 

distribution of the inventory position random variable is: 

𝑃[𝐼 = 𝑟 + 𝑗] =
1

𝑄
 

which is a uniform distribution between the values r+1 and r+Q.  

The second random variable distribution that should be defined is the one of the net 

inventory N. 

Suppose first that n≤r, being n the number of units in the net inventory. The 

inventory position at time t−τ can assume any value in {r+1,  … , r+Q} and have N = 

n at time t. The probability that N = n at time t, given that I = r+j at time t −τ, is p(r+ 

j−n; λτ), which is independent of t. Furthermore, P[I = r+ j] = 1/Q and therefore 

𝑃[𝑁 = 𝑛] =  ∑ 𝑝(𝑟 + 𝑗 − 𝑛;  𝜆𝜏)𝑃[𝐼 = 𝑟 + 𝑗]

𝑄

𝑗=1

 

=
1

𝑄
[℘(𝑟 + 1 − 𝑛;  𝜆𝜏) − ℘(𝑟 + 𝑄 + 1 − 𝑛;  𝜆𝜏)] 
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Suppose now that n >r. Than, I cannot be less than n at time t – τ, knowing that I = 

{ n, n+1, …, r+Q}. Consequently,  

𝑃[𝑁 = 𝑛] =  ∑ 𝑝(𝑟 + 𝑗 − 𝑛;  𝜆𝜏)

𝑄

𝑗=𝑛−𝑟

 

=
1

𝑄
[1 − ℘(𝑟 + 𝑄 − 𝑛 + 1;  𝜆𝜏)] 

When r+1 ≤n ≤ r+Q.  

Having described the stationary probability distribution of both the net inventory 

and the inventory position, it is possible to obtain the performance measure and 

formulate the total cost objective function, to be minimized. 

The average annual cost for placing orders CO is expressed by: 

𝐶𝑜 =  𝐾
𝜆

𝑄
 

Where the average number of orders placed per year is 
𝜆

𝑄
. 

Some different considerations should be taken into account for calculating the 

average annual backorder and holding costs.  

Starting from backorders, the PASTA (Poisson Arrival See Time Averages) is 

recalled:  

Let the probability that the system is out of stock at a random point in time be 

denoted by Pout. This probability is the same as the one that an arriving customer will 

find no stock on the shelf.  

When N = −n, n = 0,1, … , there is no stock on the shelf and therefore 

𝑃𝑜𝑢𝑡 =  ∑ 𝑃[𝑁 =  −𝑛]

∞

𝑛=0

 

=
1

𝑄
∑{℘(𝑛 + 𝑟 + 1;  𝜆𝜏) −  ℘(𝑛 + 𝑟 + 𝑄 + 1;  𝜆𝜏}

∞

𝑛=0

 

=
1

𝑄
[ ∑ ℘(𝑢;  𝜆𝜏)

∞

𝑢=𝑟+1

− ∑ ℘(𝑢;  𝜆𝜏)

∞

𝑢=𝑟+𝑄+1

] 

=
1

𝑄
[𝑔(𝑟) − 𝑔(𝑟 + 𝑄)] 

Where g(j) = ∑ ℘(𝑢;  𝜆𝜏)∞
𝑢=𝑗+1 . Hence, g(r) measures the expected demand in excess 

of r over a period of length τ. Likewise, g(r+Q) equals the expected demand in excess 

of r+Q over a period of length τ. 
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Therefore, the expected annual number of backorders can be calculated as  

𝐸(𝑟, 𝑄) =  𝜆 ∗ 𝑃𝑂𝑢𝑡 

In the same way, the average number of backorders outstanding at a random point 

in time is 

𝐵(𝑟, 𝑄) =  ∑ 𝑛 ∗ 𝑃[𝑁 =  −𝑛]

∞

𝑛=1

 

=
1

𝑄
∗ [𝐺(𝑟) − 𝐺(𝑟 + 𝑄)] 

where 𝐺(𝑗) = ∑ (𝑢 − (𝑗 + 1))℘(𝑢;  𝜆𝜏)∞
𝑢=𝑗+1 . G(j) measures the expected time-

weighted demand in excess of j over a period of length τ. 

Finally, the last performance measure to be computed is the on-hand inventory. By 

definition,  

𝐸[𝐼] = 𝑂𝐻(𝑟, 𝑄) + 𝐸[𝑜𝑛 𝑜𝑟𝑑𝑒𝑟] − 𝐵(𝑟, 𝑄) 

For Little’s law, the annual expected value of the inventory on order can be described 

as the product between the annual average demand λ and the resupply τ, which is the 

average resupply time demand  

𝐸[𝑜𝑛 𝑜𝑟𝑑𝑒𝑟] =  𝜆𝜏 =  𝜇 

The average expected value for the inventory position can be calculated knowing its 

stationary probability distribution:  

𝐸[𝐼]

=  ∑ (𝑟 + 𝑗) ∗ 𝑃[ 𝐼 = 𝑟 + 𝑗] =
1

𝑄

𝑄

𝑗=𝑟+1

∑ (𝑟 + 𝑗) =
1

𝑄
∗ [𝑄𝑟 + 𝑄 ∗

𝑄 + 1

2
] =

𝑄 + 1

2
+ 𝑟

𝑄

𝑗=𝑟+1

  

From the above formulas, it is possible to obtain the on-hand inventory at random 

point in time:  

𝑂𝐻(𝑟, 𝑄) =
𝑄 + 1

2
+ 𝑟 − 𝜇 + 𝐵(𝑟, 𝑄) 

The computation of all the inventory performances has been exactly formulated. 

Hence, it is possible to define the final average total cost function, that in the 

optimization problem would be minimized:  

𝐶𝑡𝑜𝑡(𝑟, 𝑄) =
𝜆𝐾

𝑄
+ ℎ [

𝑄 + 1

2
+ 𝑟 − 𝜇 + 𝐵(𝑟, 𝑄)] + 𝑏 ∗ 𝐸(𝑟, 𝑄) + �̂� ∗ 𝐵(𝑟, 𝑄) 
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A.3  Complete simulation output experiments for 

model validation  

This Appendix section reports the complete simulation models runs results that have 

been employed in the validation phase described in Section 4.2.4. 

 

Validation of the SLM production stream 

S
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s
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s

 [
h

] 

Test case 1 Test case 2 Test case 3 Test case 4 

7.636323 2.111745 9.174763 45.0769 

7.577715 2.085308 8.893261 44.840518 

7.755062 2.127225 8.783352 46.788435 

7.700529 2.119320 8.942468 44.539702 

7.688830 2.103038 8.965659 44.851956 

7.699845 2.118615 8.758597 44.924959 

7.713898 2.092738 9.167568 46.866257 

7.818487 2.060994 9.264734 46.00563 

7.822045 2.102723 8.983220 46.024815 

7.598624 2.081675 9.016923 44.840834 

Table A.1: Resupply time validation: simulation runs result of the different test cases. 

 

Validation of the (S-1,S) inventory model 

S
im
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p
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r
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] 

Test case 1 Test case 2 Test case 3 Test case 4 

0.010656 0.000068 0.001060 0.000147 

0.036399 0.000054 0.000456 0.002191 

0.051919 0.000088 0.000936 0.005070 

0.008915 0.000127 0.000000 0.000000 

0.022894 0.000625 0.000000 0.003195 

0.019787 0.000150 0.000000 0.001083 

0.033014 0.000350 0.000000 0.000000 

0.030343 0.000389 0.000112 0.004377 

0.006852 0.000549 0.000777 0.000000 

0.024066 0.000210 0.000000 0.014911 

Table A.2: (S-1,S) model validation: simulation runs backorders results of the different test cases. 
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p
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r
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] 

Test case 1 Test case 2 Test case 3 Test case 4 

2.295311 1.893502 1.889423 2.605895 

2.227857 1.883880 1.906325 2.597179 

2.184047 1.896137 1.906489 2.514159 

2.274004 1.886423 1.926663 2.534855 

2.261280 1.887805 1.923549 2.589909 

2.235021 1.896552 1.912352 2.607032 

2.254071 1.895882 1.880724 2.711796 

2.310388 1.896204 1.876739 2.393025 

2.313879 1.874848 1.910650 2.576043 

2.262665 1.894773 1.907950 2.511473 

Table A.3: (S-1,S) model validation: simulation runs on-hand results of the different test cases. 

 

Validation of the (r,Q) model  

S
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Test case 1 Test case 2 Test case 3 Test case 4 

0.521195 3.022794 0.100492 0.016389 

0.619626 2.660226 0.096908 0.003142 

0.466862 2.788286 0.124225 0.016689 

0.483154 2.577331 0.115176 0.010463 

0.579405 2.966326 0.084299 0.019993 

0.477611 2.880315 0.12025 0.025276 

0.546826 2.520177 0.101688 0.018145 

0.508274 2.440996 0.151905 0.020724 

0.557266 2.416517 0.095661 0.002748 

0.452928 3.007472 0.100707 0.012505 

Table A.4: (r,Q) model validation: simulation runs backorders results of the different test cases. 
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Test case 1 Test case 2 Test case 3 Test case 4 

5.0401 3.0472 9.6593 7.56668 

4.8811 3.3835 9.7593 7.57061 

5.0538 3.0841 9.5401 7.58581 

5.2187 3.2573 9.3362 7.60892 

4.8928 2.9008 9.4642 7.31599 

5.2458 2.9627 9.5116 7.53234 

4.9843 3.3247 9.8144 7.34948 

5.0185 3.4875 9.2908 7.50396 

4.9481 3.5802 9.6713 7.80663 

5.2529 2.9314 9.8988 7.61838 

Table A.5: (r,Q) model validation: simulation runs on hand results of the different test cases. 
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Test case 1 Test case 2 Test case 3 Test case 4 

144 149 86 87 

150 146 88 85 

145 148 88 87 

145 144 89 86 

151 149 87 87 

141 149 90 89 

146 144 84 89 

145 143 91 91 

147 141 85 82 

144 150 86 86 

Table A.6: (r,Q) model validation: simulation runs orders results of the different test cases. 
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A.4  Inventory policies cost analysis 

This Appendix section reports the complete backorder, on-hand and order 

percentage on the total annual inventory cost for both the (r,Q) and (S-1,S) model 

applied on M1 and M3 Fubri gear hobs production. The results are reported for all 

the eight scenarios tested, evaluated in the optimal inventory parameters.  

M1 model  

M3 model 

 

  

(r,Q) policy 

Scenario 
[b,h,o] 

OH B O 

1 - LLL 46.58% 0.00% 53.42% 

2 - HLL 46.58% 0.00% 53.42% 

3 - HHL 63.70% 0.01% 36.29% 

4 - LHL 63.70% 0.01% 36.29% 

5 - LLH 36.76% 0.00% 63.24% 

6 - LHH 59.23% 0.00% 40.77% 

7 - HLH 36.76% 0.00% 63.24% 

8 - HHH 59.23% 0.00% 40.77% 

(S-1,S) policy 

Scenario 
[b,h,o] 

OH B O 

1 - LLL 0.84% 0.01% 99.14% 

2 - HLL 0.84% 0.02% 99.14% 

3 - HHL 2.08% 0.02% 97.90% 

4 - LHL 2.08% 0.01% 97.90% 

5 - LLH 0.56% 0.01% 99.43% 

6 - LHH 1.40% 0.01% 98.59% 

7 - HLH 0.56% 0.01% 99.42% 

8 - HHH 1.40% 0.01% 98.59% 

Table A.7: (r,Q) and (S-1,S) on-hand (OH), backorder (B) and  order (O) percentage of the total 
annual inventory cost evaluated in the optimal inventory parameters for the M1 production. 

(r,Q) policy 

Scenario 
[b,h,o] 

OH B O 

1 - LLL 9.45% 3.31% 87.25% 

2 - HLL 9.34% 4.36% 86.30% 

3 - HHL 20.48% 3.82% 75.69% 

4 - LHL 20.68% 2.90% 76.42% 

5 - LLH 6.58% 2.30% 91.12% 

6 - LHH 14.96% 2.10% 82.94% 

7 - HLH 6.53% 3.05% 90.43% 

8 - HHH 14.86% 2.77% 82.37% 

(S-1,S)  policy 

Scenario 
[b,h,o] 

OH B O 

1 - LLL 3.36% 1.18% 95.47% 

2 - HLL 4.11% 0.58% 95.31% 

3 - HHL 4.45% 3.84% 91.72% 

4 - LHL 4.49% 2.91% 92.60% 

5 - LLH 2.27% 0.80% 96.93% 

6 - LHH 3.07% 1.99% 94.94% 

7 - HLH 2.27% 1.06% 96.67% 

8 - HHH 3.05% 2.63% 94.32% 

Table A.8: (r,Q) and (S-1,S) on-hand (OH), backorder (B) and  order (O) percentage of the total 
annual inventory cost evaluated in the optimal inventory parameters for the M3 production. 
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A.5  (r,Q) resupply time modelling 

This Appendix section reports the simulation model results for all the defined 

scenarios and test cases of Section 7.1.2 in their entireness. In particular, the optimal 

(r,Q) inventory parameters for both the exponential (and normal) and detailed 

models are collected, and the total annual inventory cost is computed. Subsequently, 

the total annual inventory cost of the detailed model evaluated in the optimal 

exponential (normal) parameters is reported, and the total cost difference between 

this value and the detailed one is computed. The scenario showing the highest delta 

costs, whose results are reported in Table 7.4 and Table 7.6 is highlighted in light 

blue. 

 

A.5.1 Detailed and Exponential model 

M1 production with low annual demand [Lv – Ld] 

Scenario 

[b,h,o] 

Detailed Exponential Det. total cost 

for optimal 

Exp. (r,Q) [€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 1 25 216.06 1 25 223.84 216.06 0 

2 - HLL 1 25 216.25 1 25 224.21 216.25 0 

3 - HHL 1 25 279.28 1 25 287.90 279.28 0 

4 - LHL 1 25 279.09 1 25 287.54 279.09 0 

5 - LLH 1 25 302.80 1 25 313.99 302.80 0 

6 - LHH 1 25 365.83 1 25 377.68 365.83 0 

7 - HLH 1 25 302.99 1 25 314.35 302.99 0 

8 - HHH 1 25 366.02 1 25 378.04 366.02 0 

Table A.9: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculated with the detailed and exponential model for M1 production with low annual demand. 
The 8th column reports the detailed annual inventory cost evaluated in the exponential optimal (r,Q) 
parameters, while the 9th column is the total annual inventory cost percentage difference between the value 
obtained in the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the 
mean value).  
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M1 production with high annual demand [Lv – Hd] 

Scenario 

[b,h,o] 

Detailed Exponential Det. total 

cost for 

optimal Exp. 

(r,Q) [€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 29 25 3614.26 35 24 4742.42 3808.76 5.38 

2 - HLL 29 25 3619.12 35 24 5065.72 3809.86 5.27 

3 - HHL 29 25 3701.96 35 24 5139.94 3923.26 5.98 

4 - LHL 29 25 3697.10 35 24 4816.64 3922.16 6.09 

5 - LLH 29 25 5386.50 35 24 6603.95 5673.69 5.33 

6 - LHH 29 25 5469.33 35 24 6678.17 5787.09 5.81 

7 - HLH 29 25 5391.35 35 24 6927.25 5674.79 5.26 

8 - HHH 29 25 5474.19 35 24 7001.47 5788.19 5.74 

Table A.10: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculated with the detailed and exponential model for M1 production with high annual demand. 
The 8th column reports the detailed annual inventory cost evaluated in the exponential optimal (r,Q) 
parameters, while the 9th column is the total annual inventory cost percentage difference between the value 
obtained in the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the 
mean value). 

 

M3 production with low annual demand [Hv – Ld] 

Scenario 

[b,h,o] 

Detailed Exponential Det. total cost 

for optimal 

Exp. (r,Q) [€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 4 5 1027.71 9 5 1173.10 1165.73 13.43 

2 - HLL 4 5 1034.69 9 5 1186.95 1165.73 12.66 

3 - HHL 4 5 1197.80 5 5 1474.38 1263.33 5.47 

4 - LHL 4 5 1190.82 5 5 1404.35 1259.56 5.77 

5 - LLH 4 5 1476.72 9 5 1625.51 1630.90 10.44 

6 - LHH 4 5 1639.83 5 5 1835.50 1719.63 4.87 

7 - HLH 4 5 1483.70 9 5 1639.37 1630.90 9.92 

8 - HHH 4 5 1646.81 5 5 1905.53 1723.40 4.65 

Table A.11: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculated with the detailed and exponential model for M3 production with low annual demand. 
The 8th column reports the detailed annual inventory cost evaluated in the exponential optimal (r,Q) 
parameters, while the 9th column is the total annual inventory cost percentage difference between the value 
obtained in the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the 
mean value). 

 

 



 
APPENDIX  
 

146 
 

 

M3 production with high annual demand [Hv – Hd] 

Scenario 

[b,h,o] 

Detailed Exponential Det. total cost 

for optimal 

Exp. (r,Q) [€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 8 5 1495.97 25 5 2037.60 1966.28 31.44 

2 - HLL 8 5 1505.72 25 5 2096.64 1966.28 30.59 

3 - HHL 8 5 1738.83 25 5 2813.19 2849.22 63.86 

4 - LHL 7 5 1726.34 25 5 2754.14 2849.22 65.04 

5 - LLH 8 5 2151.63 25 5 2728.97 2655.10 23.40 

6 - LHH 8 5 2384.74 25 5 3445.52 3538.04 48.36 

7 - HLH 8 5 2161.38 25 5 2788.02 2655.10 22.84 

8 - HHH 8 5 2394.49 25 5 3504.57 3538.04 47.76 

Table A.12: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculated with the detailed and exponential model for M3 production with high annual 
demand. The 8th column reports the detailed annual inventory cost evaluated in the exponential optimal 
(r,Q) parameters, while the 9th column is the total annual inventory cost percentage difference between the 
value obtained in the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% 
of the mean value). 

 

 

A.5.2 Detailed and Normal model  

M1 production with low annual demand [Lv – Ld] 

Scenario 

[b,h,o] 

Detailed Normal Det. total cost 

for optimal 

Norm.  (r,Q) 

[€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 1 25 216.06 1 25 215.59 216.06 0.00 

2 - HLL 1 25 216.25 1 25 215.80 216.25 0.00 

3 - HHL 1 25 279.28 1 25 278.03 279.28 0.00 

4 - LHL 1 25 279.09 1 25 277.82 279.09 0.00 

5 - LLH 1 25 302.80 1 25 302.33 302.80 0.00 

6 - LHH 1 25 365.83 1 25 364.56 365.83 0.00 

7 - HLH 1 25 302.99 1 25 302.54 302.99 0.00 

8 - HHH 1 25 366.02 1 25 364.77 366.02 0.00 

Table A.13: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculate with the detailed and normal model for M1 production with low annual demand. The 
8th column reports the detailed annual inventory cost evaluated in the normal optimal (r,Q) parameters, 
while the 9th column is the total annual inventory cost percentage difference between the value obtained in 
the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the mean value). 
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M1 production with high annual demand [Lv – Hd] 

Scenario 

[b,h,o] 

Detailed Normal Det. total cost 

for optimal 

Norm. (r,Q) 

[€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 29 25 3614.26 28 25 3617.18 3622.93 0.24 

2 - HLL 29 25 3619.12 28 25 3620.87 3629.06 0.27 

3 - HHL 29 25 3701.96 28 25 3698.06 3706.42 0.12 

4 - LHL 29 25 3697.10 25 25 3693.04 3737.87 1.10 

5 - LLH 29 25 5386.50 28 25 5394.52 5399.42 0.24 

6 - LHH 29 25 5469.33 28 25 5471.72 5476.78 0.14 

7 - HLH 29 25 5391.35 28 25 5398.20 5405.55 0.26 

8 - HHH 29 25 5474.19 28 25 5475.40 5482.91 0.16 

Table A.14: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculate with the detailed and normal model for M1 production with high annual demand. The 
8th column reports the detailed annual inventory cost evaluated in the normal optimal (r,Q) parameters, 
while the 9th column is the total annual inventory cost percentage difference between the value obtained in 
the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the mean value). 

 

 

 

M3 production with low annual demand [Hv – Ld] 

Scenario 

[b,h,o] 

Detailed Normal Det. total cost 

for optimal 

Norm. (r,Q) 

[€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 4 5 1027.71 4 5 1051.00 1027.71 0.00 

2 - HLL 4 5 1034.69 4 5 1059.73 1034.69 0.00 

3 - HHL 4 5 1197.80 3 5 1200.37 1234.04 3.03 

4 - LHL 4 5 1190.82 3 5 1178.11 1208.68 1.50 

5 - LLH 4 5 1476.72 7 5 1497.43 1526.21 3.35 

6 - LHH 4 5 1639.83 3 5 1631.37 1675.55 2.18 

7 - HLH 4 5 1483.70 7 5 1498.03 1526.96 2.92 

8 - HHH 4 5 1646.81 3 5 1653.64 1700.91 3.29 

Table A.15: (r,Q) optial parameters and respective total annual inventory cost for all the different 
scenarios, calculate with the detailed and normal model for M3 production with low annual demand. The 
8th column reports the detailed annual inventory cost evaluated in the normal optimal (r,Q) parameters, 
while the 9th column is the total annual inventory cost percentage difference between the value obtained in 
the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the mean value). 
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M3 production with high annual demand [Hv – Hd] 

Scenario 

[b,h,o] 

Detailed Normal Det. total cost 

for optimal 

Norm. (r,Q) 

[€] 

Total cost 

delta % r Q Total cost 

[€] 

r Q Total cost 

[€] 

1 - LLL 8 5 1495.97 9 5 1573.39 1569.47 4.91 

2 - HLL 8 5 1505.72 9 5 1586.27 1583.43 5.16 

3 - HHL 8 5 1738.83 9 5 1839.78 1831.30 5.32 

4 - LHL 7 5 1726.34 7 5 1807.20 1726.34 0.00 

5 - LLH 8 5 2151.63 9 5 2256.26 2250.64 4.60 

6 - LHH 8 5 2384.74 7 5 2479.87 2400.71 0.67 

7 - HLH 8 5 2161.38 9 5 2269.14 2264.60 4.78 

8 - HHH 8 5 2394.49 9 5 2522.65 2512.47 4.93 

Table A.16: (r,Q) optimal parameters and respective total annual inventory cost for all the different 
scenarios, calculate with the detailed and normal model for M3 production with high annual demand. The 
8th column reports the detailed annual inventory cost evaluated in the normal optimal (r,Q) parameters, 
while the 9th column is the total annual inventory cost percentage difference between the value obtained in 
the 8th column and the optimal detailed model one (4th column). (CI inventory KPIs: 3% of the mean value). 

  



  
 

 
 

 

 

 

 

 

 

 

 

 


