
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Microarchitecture-aware Mixed Precision Tuning

Relatore: Prof. Giovanni AGOSTA
Correlatore: Dott. Daniele CATTANEO

Dott. Stefano CHERUBIN
Dott. Michele CHIARI

Tesi di laurea di:
Nicola FOSSATI Matr. 915244

Anno Accademico 2019–2020

Ringraziamenti

Vorrei ringraziare tutte le persone che mi hanno accompagnato durante il periodo
di studi ed, in particolare, durante questo difficile semestre che ha segnato la fine
del mio percorso. Ringrazio il prof. Giovanni Agosta, il Dott. Stefano Cherubin, il
Dott. Daniele Cattaneo, il Dott. Michele Chiari e tutti i membri del team taffo:
le loro ineguagliabili competenze e la passione dimostrata verso questo complesso
argomento di ricerca mi hanno permesso di completare la stesura della tesi.

Ringrazio, poi, tutti i membri dell’HEAPLab che, oltre a mettere a disposizione
l’hardware e i consigli necessari per il progetto di tesi, hanno allietato le poche
giornate di lavoro prima del lockdown con una sana dose di risate e (forse troppa)
caffeina, con il rammarico di non aver potuto trascorrere maggior tempo insieme.

Ringrazio la mia famiglia, che ha reso possibile questo cammino e che mi ha
supportato, soprattutto moralmente, durante il percorso di studi e questi ultimi
mesi impegnativi.

Un enorme grazie a Simona, la persona che più di tutte è riuscita a capirmi
e a darmi sempre, grazie alle sue parole, sostegno e motivazione per continuare,
specialmente nei momenti di sconforto.

Ringrazio, inoltre, Francesco, Matteo e Giuseppe per le intense giornate di studio
e le lunghe nottate passate a configurare qualche strana distribuzione Linux o a
correggere simulazioni Matlab. Senza di loro questi cinque lunghi anni non sarebbero
stati gli stessi.

Ringrazio, infine, tutti coloro che, in un modo o nell’altro, mi sono stati vicini e
mi hanno aiutato a raggiungere questo importante traguardo. A loro è dedicata la
mia tesi, momento più determinante della carriera universitaria di uno studente.

Infine, ringrazio Te, lettore, che, addentrandoti in questa tesi, stai dimostrando
interesse nel lavoro svolto, sperando tu possa trovare le risposte che stai cercando.

Abstract

The increasing demand to perform more complex computations on every kind of plat-
form — ranging from low-cost processors found in internet of things devices, to large
data centers — demands an increased effort in the optimization of each algorithm
for the particular target architecture. The requirement of ever faster processing time
and devices with longer battery life of portable devices calls for deeper knowledge of
the applications domains in order to better optimize each algorithm.

Because of these factors, mixed precision tuning is increasingly being used in a
vast number of application areas. This technique aims at lowering the execution
time of an algorithm by changing the precision of some values. It exploits the great
multitude of data types for number representation, each one with its own strength.

In this field, scientific research has focused its efforts on finding innovative ap-
proaches to automate the process, and as a result it developed several tools to do so,
although they require very long processing times.

In this thesis, we propose an innovative approach to deal with the problem of
precision tuning, based on the widely used theory of linear programming. It works
by building a model of the program being optimized during the compilation. This
approach tackles the problem in a static way, thus reducing the computation time.

The proposed solution has been implemented by extending a state of the art
tool, taffo, which in turn relies on the llvm toolchain. This tool, originally built
to convert existing programs to work with fixed point math, has been extended to
allow it to handle multiple output data types.

Our work has been evaluated by applying mixed precision tuning on the Poly-
bench benchmark suite, to prove the effectiveness of the solution proposed.

Sommario

La crescente necessità di effettuare computazioni sempre più complesse su ogni tipo di
piattaforma, dai processori a basso costo utilizzati in contesti di tecnologia pervasiva
ai grandi centri di elaborazione, richiede uno sforzo sempre maggiore nell’ottimizzare
ogni algoritmo per la specifica architettura sulla quale verrà eseguito. La richiesta
di tempi di elaborazione sempre più brevi e l’obiettivo di rendere l’autonomia dei
dispositivi sempre più lunga richiedono una conoscenza approfondita dei domini di
applicazione al fine di ottimizzare gli algoritmi.

Per questo motivo, il mixed precision tuning viene sempre più spesso utilizzato
negli ambiti più diversi. Questa tecnica permette di ridurre il tempo di esecuzione di
alcuni algoritmi riducendo la precisione di alcuni valori, grazie all’utilizzo di svariati
tipi di rappresentazione per i dati numerici, ognuno con i propri vantaggi, all’interno
di un singolo programma.

La ricerca in questo settore sta concentrando gli sforzi per trovare modi innovativi
di automatizzare l’operazione, proponendo diversi tool che adempiono al compito, a
discapito dei lunghi tempi di elaborazione.

In questa tesi, viene proposta una nuova metodologia per affrontare il problema,
basandosi sulle tecniche emergenti della programmazione lineare, costruendo un mo-
dello del programma durante la compilazione. Il metodo proposto permette quindi
di risolvere il problema in modo statico, riducendo quindi i tempi di elaborazione.

La modellizzazione proposta è stata quindi implementata in un tool allo stato
dell’arte, taffo, basato sulla toolchain llvm. Questo tool, pensato inizialmente per
convertire programmi esistenti al fine di utilizzare i fixed point, è stato esteso per
permettere la conversione in diversi tipi di dato finali.

Il lavoro è stato quindi valutato effettuando il processo di precision tuning sulla
suite di benchmark Polybench, per confermare la validità del modello.

Contents

1 Introduction 1

2 Basic notions 4
2.1 Real number representations . 4

2.1.1 Integer representation . 5
2.1.2 Fixed point representation . 5
2.1.3 Floating point representation 6
2.1.4 Arbitrary precision representations 8
2.1.5 Other types of representations 8

2.2 Errors in numeric representations . 9
2.2.1 Arithmetic Overflow . 10
2.2.2 Representation Mismatches 10
2.2.3 Round off . 10

2.3 Linear Programming . 11
2.3.1 Problem formulation . 12
2.3.2 Discrete and Integer Linear Programming 12

3 State of the Art 14
3.1 Precision Tuning process . 14

3.1.1 Tuning Scope Investigation 15
3.1.2 Requirement collection . 16
3.1.3 Code Manipulation . 17
3.1.4 Verification . 17
3.1.5 Type Casting Overhead Estimation 18

3.2 Previous work about mixed precision 19
3.2.1 CRAFT . 19
3.2.2 Precimonius . 20
3.2.3 HiFPTuner . 21
3.2.4 CAMPARY . 22

3.2.5 Daisy . 23

4 Compilation frameworks 25
4.1 Structure of a Compiler . 26

4.1.1 Front-end . 26
4.1.2 Middle-end . 28
4.1.3 Back-end . 30

4.2 taffo . 32
4.2.1 Pass overview . 33
4.2.2 taffo strengths and limits 35

5 ILP for Mixed Precision tuning 37
5.1 Overview of the approach . 38

5.1.1 Instruction microbenchmarks 38
5.1.2 New dta algorithm . 39
5.1.3 Enhanced Conversion . 39

5.2 Comparing heterogeneous data types: the IEBW 39
5.2.1 The ulp . 39
5.2.2 The iebw metric . 41
5.2.3 The problem of fair comparison 42

5.3 A cost model for mixed precision tuning 44
5.3.1 Minimizing the number of type casts 44
5.3.2 Minimizing the introduced error 49
5.3.3 Optimizing execution time . 50
5.3.4 Useful iebw propagation inside code regions 51
5.3.5 The objective function . 56

6 Experimental evaluation 57
6.1 Experimental setup . 57

6.1.1 Ahead-of-time profiling . 57
6.1.2 Benchmark setup . 59
6.1.3 Software setup . 59
6.1.4 Hardware setup . 61
6.1.5 Model parameters . 62
6.1.6 Evaluation metrics . 63

6.2 Result analysis . 64
6.2.1 Speedup . 64
6.2.2 Error . 65
6.2.3 Summary of compilation results 75

6.2.4 Precision mix . 75
6.2.5 Compilation times . 76
6.2.6 Number of tests . 78

7 Conclusions 80

A Speedup data 87

B Error data 91

C Compilation slowdown data 95

D gesummv data 96

List of Figures

4.1 Internal structure of llvm . 26
4.2 The logo of the taffo project. 32
4.3 taffo architecture . 34

5.1 New taffo architecture . 38

6.1 Stm32 speedup chart . 66
6.2 Raspberry speedup chart . 67
6.3 Intel speedup chart . 68
6.4 AMD speedup chart . 69
6.5 Stm32 error chart . 71
6.6 Raspberry error chart . 72
6.7 Intel error chart . 73
6.8 AMD error chart . 74
6.9 Compilation time slowdown for each kernel. 77
6.10 gesummv speedup. 79
6.11 gesummv error. 79

List of Tables

2.1 Most common floating point formats. 7

6.1 Results of elementary operation benchmark 58
6.2 List of all the possible parameters of the new dta 60
6.3 Hardware specifications for each platform used. 61
6.4 Model parameters chosen for each configuration. 63
6.5 Correctly handled test cases for each platform. 75
6.6 Instruction mix for the Stm32 platform 76

A.1 Speedup for Stm32 target platform 87
A.2 Speedup for Raspberry target platform 88
A.3 Speedup for Intel target platform . 89
A.4 Speedup for AMD target platform 90

B.1 MPE for Stm32 target platform . 91
B.2 MPE for Raspberry target platform 92
B.3 MPE for Intel target platform . 93
B.4 MPE for AMD target platform . 94

C.1 Compilation time and slowdown . 95

D.1 Data collected for test gesummv. 96

Listings

4.1 A simple C program using floating point computation. 28
4.2 The llvm-IR generated from the program shown in Listing 4.1. . . . 28
4.3 The llvm-IR of the program shown in Listing 4.2 after optimization. 29
4.4 x86 Assembly code generated from the program shown in 4.3. 31
4.5 Annotation example . 33
4.6 Annotation example for a structure 33
5.1 Simple declaration and use example 45
5.2 Virtual cast operator example . 46
5.3 Sum example . 48

Chapter 1

Introduction

A general purpose program usually spends the majority of the time while executing
a very small amount of instructions. This section of the program is called computa-
tional kernel. Normally these computational kernels have very specific requirements
for the input data, and ensure that the computation is carried out within specific
error bounds.

Modern consumer hardware has become more and more powerful in the last
years. Programmers working on these machines usually do not focus on the specific
data type used for every computation, assigning to all the numerical variables the
data type double, the most precise floating point data type present in the majority
of the modern programming languages. This choice, of course, allows to program
very accurate kernels. As drawback, long computation times may be required by the
kernel to produce the results.

While this is not a problem for general purpose applications running on per-
sonal computers, it may become cause of concern in particular use cases. Such
issues are present in scientific research, running on High Performance Computing
infrastructures [11], on embedded systems, and in general in systems with reduced
computational power.

In the former case, the computational kernel may be run several times: even a
small reduction in the computation time may results in saving of thousands of Joule
of energy, that can impact economically the specific research in progress [54] [55].

In the latter case, embedded systems usually need to continuously carry out the
computation in a loop, while being subject to strict timing requirements. Moreover,
on these platform, due to consumption requirement, several kind of hardware accel-
erators, such as FPUs or Vector Units, are not present, thus making double precision
computation too slow and therefore infeasible. Additionally, longer computation
times prevent the device to go into a low-power consumption mode, thus threaten-

CHAPTER 1. INTRODUCTION 2

ing the battery life [4]. This aspect is very important in safety critical devices and
systems in remote locations.

However is not always possible to choose a different data type to carry out the
whole computation. Even if some computation are resilient to the introduction of
some noise, others are not. In fact, the precision of the result may be lowered too
much and useless results may be produced.

From this trade off, the exploitation of the so called Mixed Precision tuning
becomes more important, so that the program will have in different parts of the
computational kernel the best data type to still carry out a meaningful result, while
reducing the computation time. Yet, this requires a very accurate low level under-
standing of the algorithm being tuned.

To help programmers, researchers developed many tools to automate this ap-
proach [9]. Nearly all the proposed solutions are based on exhaustive search. The
original program is modified changing the data type of some operation performed in
high precision. Then the program is executed and instrumented. If a faster version
of it has been generated while keeping the error under control, this new version is
accepted as best solution and the search goes on, trying all the possible combination
of assignments. Unfortunately, without any type of heuristic, the complexity of this
approach grows in an unsustainable way with the number of instructions in the pro-
gram. This may represent a problem if combined with relatively long compilation
and execution times. In fact the whole process may last hours even for very simple
kernels.

In this thesis, a new approach toMixed Precision tuning exploiting Integer Linear
programming is proposed, to solve the problems found.

Firstly, the program is analyzed and an integer linear problem is computed from
it. The model represents all the possible data type assignment in the program, and
also keeps track of the casting cost introduced if mixing more than one data type,
which is in general non negligible.

Afterwards, the model is solved given some parameters, such as the weight to
give to the computation time or to the precision. The solution is then processed,
and a version of the program implementing the data type assignment proposed by
the model is generated.

The solution has been implemented as an extension of taffo [12], a state of
the art precision tuning framework, and in particular as a set of passes of the llvm

compilation toolchain. This makes it both source language and target architecture
agnostic.

We finally evaluated the solution on the Polybench benchmark suite. The results
confirmed the validity of the model, in particular on embedded architectures.

CHAPTER 1. INTRODUCTION 3

The structure of the thesis is organized as follows. In Chapter 2, some basic
notions about number representations in computer memory are given, to better un-
derstand the following chapters. In Chapter 3, related work on mixed precision
tuning is explored. In Chapter 4, a deeper look is given to compiler theory, focusing
mainly on the llvm framework, together with an introduction to the various ele-
ment of the taffo framework architecture. In Chapter 5 the model construction,
the foundation of the proposed work, is reviewed. Afterwards, in Chapter 6 we eval-
uated the proposed solution. Finally, in Chapter 7, some conclusion on the whole
work are discussed.

Chapter 2

Basic notions

Before discussing about the Precision Tuning process, a brief introduction regarding
the different way to represent real numbers in computers memory is given in this
section. The different advantages and disadvantages of each data type will be dis-
cussed. Later on, various errors that may happen during the conversion between a
real number and different types of finite representation are explained. Finally, some
background about linear programming is given.

The interested reader can refer to Computer Arithmetic Algorithms [33] for a
more extensive description of the various number representations.

2.1 Real number representations

The problem of representing infinite real numbers in computers is as old as the
invention of such devices. In detail, numbers with possibly infinite ranges have to be
represented in a machine with a finite amount of memory. More formally, a bijective
function that maps every element of the set R, which is infinite, to a set of bits,
which is finite, must be found, and this is impossible. In fact, if a register with n bit
is considered, the number of different states in which it can be are 2n; if each state is
associated with a different number, at most 2n different numbers can be represented.

During the years, many different ways to represent numbers in computer memory
were proposed. Each representation is a trade-off between the number of bits used,
the range of the representation, and the complexity of the hardware that handles the
operations on them (or the time complexity of the algorithm, if hardware support is
not available and software emulation is used).

CHAPTER 2. BASIC NOTIONS 5

2.1.1 Integer representation

The integer representation is used to represent numbers without a fractional part.
There can be integer types of any dimension in terms of bits, however programs
usually exploit integer data types whose size is a multiple of the specific architecture’s
word size.

Besides the total amount of different numbers that can be represented, as dis-
cussed before, every data type has a range that specify the minimum and the max-
imum number that can be represented in it.

If n is the number of bits used, the range of an integer data type is usually
[0, 2n − 1] for the unsigned version, or [−2n−1, 2n−1 − 1] for the signed counterpart.

2.1.2 Fixed point representation

A fixed point number is represented by a tuple 〈sign, integer_part, fractional_part〉,
which represents the number (−1)sign · integer_part.fractional_part. In the same
way as integer numbers, fixed point number representation can be signed or unsigned.
In the latter case the sign is omitted in the tuple. The total dimension of the tuple
i.e. the sum of the dimensions of each single element is usually, but not limited to,
a multiple of the architecture word.

Said q the number of binary digits allocated to the fractional part, to get the
decimal number contained in the fixed point number, the number have to be con-
sidered as if it was an integer number. Then the number obtained have to be divided
by 2q.

This representation does not require specific structures or instruction implemen-
ted in the processor to carry out operations, as it can be stored and processed using
normal integer instructions. Therefore, this representation is usually used in ul-
tra low-power devices, where a FPU cannot be implemented due to energy and/or
silicon-space constraints.

As the splitting point between the integer and the fractional parts is not enforced
by the hardware, a dynamic version of this data type can be also used. In this case,
the position of the point is not fixed, but can change in different blocks of the
program. The conversion between different fixed point data types is achieved by the
scaling operation, which is a shift operation that takes into account the sign of the
number. The mathematical operations between compatible numbers are achieved
by using standard integer operations. Only multiplication and division requires a
scaling operation to be performed afterwards to keep the same representation in the
output.

As writing a program manually exploiting the fixed point data type is an error

CHAPTER 2. BASIC NOTIONS 6

prone and time consuming procedure, libraries to help the programmer have been
proposed[45][8]. The features range from simple auto-scaling down to complete data
type abstraction, so that the developer can completely ignore about the representa-
tion being used, and focus on more complex parts of the design.

2.1.3 Floating point representation

A floating point number is represented by a tuple 〈sign, significand, exponent〉; if
we represent the significand as d0.d1d2...dp−1, the number represented will be:

(−1)sign · (d0 + d1β
−1 + d2β

−2 + ...+ dp−1β
−(p−1)) · βexponent

where β is the base used in the representation, which is usually 2, and the exponent
is a signed integer number.

Although it is possible to represent a larger range of numbers, there is a trade off
between the magnitude of the number being represented and the maximum reachable
precision.

It is important to note that a number does not have an unique representation.
For example the number 110b can be represented in different ways, such as but not
limited to:

• 1.10b · 22 (normalized form)

• 0.110b · 23

• ...

In order to widen the range of the numbers that can be represented, the numbers
are usually expressed in normalized form, so that d0 is always equal or greater than
1. Using a binary base, since d0 is always forced to 1, it can be omitted, actually
gaining one more bit in the significand.

The floating point representation also has values for non numeric results such as
infinity and NaN, representing respectively the mathematical infinity (e.g. when an
overflow happens, or in case of operations like n ÷ 0 with n 6= 0) and non numeric
results (e.g. ∞−∞, 0÷ 0, and so on).

The most widely used format is defined by the IEEE-754 standard [27] defines,
and formalizes the behavior of operations (in particular in corner and special cases
with respect to rounding) and exceptions. In particular it specifies two fundamental
binary representation, single and double, using 32 and 64 bits respectively. The
latest revision to this standard renames these two types to binary32 and binary64

while introducing the binary128 format.

CHAPTER 2. BASIC NOTIONS 7

Name Common name Total bits Significand bits Exponent bits

binary16 Half precision 16 10 5

binary32 Single precision 32 23 8

binary64 Double precision 64 52 11

binary128 Quadruple precision 128 112 15

binary256 Octuple precision 256 236 19

bfloat16 Brain Floating Point 16 7 8

x86 80-bit long double 80 63+1 15

Table 2.1: Most common floating point formats.

The latest revision also proposes an interchange format [28], named binary16.
Despite being proposed as a storage format, GPU manufacturers started to embed
native support for binary16 floating point operations into their hardware.

Other formats have been proposed, for example the 80-bit x86 extended precision
format, also known as double extended format, supported by the x86 processors
family[29]. This format is very similar to the binary64 format, but has a longer
mantissa. Being 80 bits long, it needs the presence of particular registers in the
CPU. Therefore, under heavy register pressure, when the register is spilled into
memory, the compiler down-casts it to a 64 bit representation, nullifying the effect
of the gained precision in some situations[43]. This and the fact of its dimension
not being a power of 2 led to the deprecation of this data type on modern x86_64
architectures.

Another data type that is being increasingly adopted is the bfloat16 floating
point data type, which is in practice a binary32 with truncated mantissa, so that
the conversion between the two formats is achieved using a zero extension or a bit
shift operation. Indeed, it allows fast typecasting. Despite the intended use was in
deep-learning application, other applications are being investigated.

Table 2.1.3 shows a comparison between the various formats.
As numbers are logically split into parts with different meaning, integer operation

cannot be used to perform floating point computations. Therefore, software routines
or special hardware is needed. This kind of hardware is nowadays present in the
major part of high end processors and is usually referred to as FPUs. Although
having separate hardware can speed up floating point processing speed, it occupies
spaces on the silicon, especially if large data types are supported, increasing the
production costs and power requirements. Moreover, floating point operations have
different latencies with respect to normal integer operations and can introduce very

CHAPTER 2. BASIC NOTIONS 8

long stalls in pipelined architectures [48]. For this reasons no floating point unit was
implemented in one of the first MIPS releases [23].

Today some architectures are still lacking an FPU, in particular low-power or
very cheap micro-controllers like some ATMega and STM32 ones [42] [57]. Usually,
support for very large data types such as binary128 and binary256 is not present
on CPUs, but only in special purpose hardware [37].

2.1.4 Arbitrary precision representations

Arbitrary precision representations, or bignum representations, aim to represent
every possible number with virtually no precision or range constraint, being only
limited by the memory of the host system. It is mainly used where the precision
of the output is the main concern, while the computation time is not a constraint.
Indeed, there is no hardware support for this type of representation, exception made
for some deprecated architecture, like IBM 1620.

As algorithms to carry out operations with these kind of representation could
become quite complex, programmers usually make use of externals libraries, made
available by most programming languages. Notable ones are mpmath [30], for python
and GMP [19], for C/C++.

2.1.5 Other types of representations

Logarithmic number system (LNS)

Logarithmic number system represents numbers by storing the sign and the logarithm
of its absolute value in a given base b. For example to store the number −710 with
b = 2

log2(|−7|) = 2.8073549220...10

that converted into binary fixed point, used as representation for the fractional result
of the logarithm operation, becomes:

10.11001110101011101...2

and stored as an 7-bit fixed point, 4 fractional bits:

0010.1100

. The first bit is used to represent the sign of the original number and therefore it
becomes:

1010.1100

CHAPTER 2. BASIC NOTIONS 9

The main advantage of this representation is that it simplifies the multiplication
and division operations, by exploiting the well known logarithm properties

logb(a · c) = logb(a) + logb(c)

and
logb(a/c) = logb(a)− logb(c)

As a drawback, addition and subtraction become complex operations As a work-
around the implementation of lookup tables has been proposed. Indeed, practical
usage have been limited to very short word widths. Still, the European micropro-
cessor project has an implementation of this system, with a competitive solution
for addition and subtraction [13], making this kind of computation faster and more
accurate than floating point operations.

Residue number system (RNS)

The RNS stores numbers as a tuple of moduli with respect to a set of numbers
relatively prime. For example, fixed the moduli set {3, 5, 7}, the number 10 can be
represented as

10 mod 3 = 1

10 mod 5 = 0

10 mod 7 = 3

and therefore by the tuple (1, 0, 3). The maximum amount of different numbers
which can be represented is the product of the numbers in the moduli set, in the
example 3 · 5 · 7 = 105.

Additions and multiplications between numbers can be made one element at a
time with the respective ones in the other tuple, wrapping the operation with a
modulo.

Some studies proposed the use of RNS arithmetic in signal processing, but the
lack of hardware support makes them an impractical solution [56].

2.2 Errors in numeric representations

As the number of bits used to store numeric values is finite and the values to be
stored are usually infinite, some values are not stored exactly. In the next section
the various problems that may arise are briefly outlined [9].

CHAPTER 2. BASIC NOTIONS 10

2.2.1 Arithmetic Overflow

Arithmetic overflows are errors in representation that happens when an instruction
tries to save in a memory location a value that exceeds the largest number that can
be stored in that location. In particular these errors happens the integer and fixed
point representations, while other types may includes some ways to mitigate it —
such as the floating point, which has a way to store the value “infinity”.

The behavior in case of an arithmetic overflow is implementation-dependent. In
case of wrapping overflow, only the least significant bytes of the value are stored,
thus storing a smaller value, or in case of signed values, a negative value may be
stored instead of a positive one. On the other hand, in case of saturating overflow, if
such a condition happens, the maximum allowed values for that data type are indeed
stored.

Most programming languages have some way to prevent this error. For example,
the GCC toolchain supports various builtins to check overflow conditions for the C
language, while others languages, such as Java, throw an exception at runtime if an
overflow occurs, when using particular methods to perform the operation.

2.2.2 Representation Mismatches

Some data types may allow the programmer to store other values besides real num-
bers. IEEE-754 floating point numbers, for example, have representations for infinite
and Not a Number. As there is no representation for such values in the fixed point
notation, the conversion of these special cases is usually not handled, and therefore
an error is generated. These types of errors are called Representation Mismatches.

2.2.3 Round off

Round of errors derive from representing a real number with a finite number of bits.
Some bits will be truncated in the representation and therefore, if the bits are not
zeros, a cancellation error occurs. Clearly, the round off error made depends strictly
on the data type used.

Let’s consider two real numbers, r1 and r2, and a final data type. The function
F (r) converts the real number r into the wanted representation system. If no r′ exists
such that F (r1) < F (r′) < F (r2) and r1 < r′ < r2 then the distance between F (r1)

and F (r2) represents the bound of the error that will be made when representing
any real number in the interval [r1, r2]. In other words, if F (r1) and F (r2) are two
adjacent numbers in the representation system, then another real number between
r1 and r2 that can be represented without error does not exist.

CHAPTER 2. BASIC NOTIONS 11

A function ulp(x) can be defined as the maximum difference between x and the
closest numbers to x in the representation system. These numbers are called a and
b, and selected such that a ≤ x ≤ b and a 6= b. In particular, for floating point
number, if |x| ∈ [βe, βe+1) then ulp(x) can be computed as:

ulp(x) = βmax(e,emin)−p+1

Another constant usually defined for data types handling fractional numbers is
machine epsilon, εM , that stores the smallest distance between 1 and its successor.
While fixed point representation have the round off error equal to the machine ep-
silon, i.e. εr = εM = β−p, floating point representations have a variable round off
error, that depend both on the data type and the value x stored.

2.3 Linear Programming

Linear Programming [3] is a relatively young discipline of mathematics, born in 1947
with the key work by Dantzig, the simplex algorithm [15], still used today in many
solver tools. Initially meant to solve U.S. Air Force military logistic problems, it was
soon noted that with this method, a lot of classical problems, solved until that point
with hit-or-miss approaches, or by human experience, could be solved automatically
with the help of a computer.

From that point, the field saw an exponential growth.
The first machine implementation of such algorithm was done on the SEAC

computer at the National Bureau of Standards [26]. This implementation could
automatically solve problems up to 20 variables and 10 constraints. A new and
more performing implementation was made in 1953 on a CPC, Card Programmable
Calculator, which were able to solve a problem with 45 constraints and 70 variables
in about 8 hours.

Successive implementations raised the number of constraints and variables due to
improved calculators. In the mid and late 50s, the first implementation on a scientific
computer was made for the IBM 701 and then for the IBM 704. During these years,
the first commercial implementation was published and gained the attention of the
oil industry. The first attempts to solve Mixed Integers programs were made by these
implementations. In particular, LP/90/94 was the first commercial solver exploiting
the branch-and-bound technique [14]. In these years was also proved that these
technique could be used to solve real world problems.

During the 70s and 80s there was a great number of innovations, among which the
exploitation of the dual simplex algorithm [38] to solve the problems. All the imple-
mentation developed at that time were written in assembly and therefore were pretty

CHAPTER 2. BASIC NOTIONS 12

specific to every architecture. MIP solvers introduced new procedures to explore the
search tree. These optimization were made possible mainly due to innovations and
progression in computer architectures.

During the first years of the 80s, the first IBM personal computer was introduced.
In these years the first implementations of these algorithms in general purpose lan-
guage were made, proposing the PC as an alternative to mainframes, even if being
more than 100 times slower. Also notable, in 1979 Khachiyan proved that LP prob-
lems could be solved in linear time [32], although his approach was never used in
actual programs.

Further studies brought to the formulation of a class of algorithms known as
primal-dual log-barrier algorithms and their implementation in the FORTRAN lan-
guage in 1991. In these years there were also a growth in commercial solver.

For what regards MIP problems, the work of Gomory (cutting-plane techniques)
[21] on pure integer programs was notable. In general, MIP algorithms in use today
remain pretty similar to the ones used in 70s. The gains in terms of speed come
predominantly from advantages in computer processors and parallelization algorithm,
and exploiting the power of multicore processors.

2.3.1 Problem formulation

The main focus of Linear Programming is the solution of Linear Programming Prob-
lems (LP Problems).

A LP Problem aims to maximize or minimize a linear function (called objective
function) subject to a finite number of linear constraints [59]. More precisely, a LP
problem is usually formulated as follows:

maximize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi (i = 1, 2, ...,m)

xj ≥ 0 (j = 0, 1, ..., n)

where aij , bi and cj are real constants.

2.3.2 Discrete and Integer Linear Programming

When at least one variable xi is required to be integer, the problem becomes a
Discrete Linear Programming problem. If all the variables are integer, then the
problem is a Integer Linear programming (ILP problem).

Although its a formulation is very similar to a LP Problem, an ILP Problem
cannot be solved using LP algorithms; moreover it was proved that solving ILP
Problems is NP-complete [47].

CHAPTER 2. BASIC NOTIONS 13

In general, an ILP problem can be formulated as follow:

maximize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi (i = 1, 2, ...,m)

xj ∈ Z+ (j = 0, 1, ..., n)

where aij , bi and cj are real constants and Z+ is the set of positive integers numbers.

Chapter 3

State of the Art

In this section, we will focus on the precision tuning process, explaining each step of
it. As this methodology has already been covered extensively in literature, we will
present some research works in this field and we will describe in details each work
strengths and weakness.

3.1 Precision Tuning process

Precision tuning is a technique which aims to find the best data type (or the best
mix of data types, if more types are used) to implement in a computational kernel
in order to minimize a particular cost function, while observing some constraint.

A very common choice for the cost function is the computation time, or the energy
consumption, while the constraint is usually an error function, which describes the
mismatch between the output of the program using the precision mix used and the
exact output to a well known input [11]. A threshold not to be exceed can also be
defined.

Conversely, especially on embedded systems, the Worst Case Execution Time
plays a fundamental role. This measure gives an estimation of how long the compu-
tation will take in the worst case scenario, so that the real execution time will never
exceed the WCET. In real time systems, this parameter ensures that a computation
will finish before the critical deadline, making the results useful and therefore correct.
In this case, the best choice could be to use the error function as the cost function
and define a maximum WCET to respect, in order to provide a precision mix that
respects the computation deadline while using the best possible precision to carry
out the computation.

The precision tuning problem can be split into a finite number of steps, which
have already been covered in literature [9]. In the following sections every step is

CHAPTER 3. STATE OF THE ART 15

briefly discussed.

3.1.1 Tuning Scope Investigation

Tuning Scope Investigation aim is to find where in the program it could be advant-
ageous to apply the Precision Tuning technique. Not every part of a program can
be optimized effectively; indeed only some algorithms are resilient to the noise that
will be introduced by lowering the precision of some variables, and not necessarily
the whole program. It is important to identify these regions, in order to keep the
transformation as simple as possible (and therefore achieve better analysis time),
while still covering the portion of interest of the program.

The original program is divided into chunks called regions. Each region can have
its own sensitiveness to decrease of the precision level of the computation. There are
different approaches to deal with the identification and analysis of such regions.

The trivial approach is to simply ignore that the program may present code
regions with different characteristics. Hence, the whole program is analyzed, and an
optimal data type allocation for the computation is produced [34]. Although this
is a sound approach and provides correct results, the analysis of the entire program
could lead to very long processing time. Indeed, the complexity of the computation
of the precision mix grows exponentially with respect to the number of the variable
in the program, if an exhaustive search is used. Moreover, if used together with
static analysis, this approach usually leads to extremely pessimistic results, due to
its nature of being very conservative. Thus, the final precision mix would preserve
all the variables to the highest precision possible.

To overcome these difficulties, a similar is to use programmer hints to specify,
which specific region of code should be analyzed and which should be not. Tools usu-
ally exploit either external configuration files, or annotations [12] inside the original
source code. A notable variation of this approach is the so-called contract-based pro-
gramming. The user specifies the desired precision for each specific function, given
some preconditions on the input. These tools require a deeper understanding of the
application field because the annotations, such as variable ranges and final accuracy,
will be used to make decision about variable data types. Wrong ranges could lead to
mix that do not respect the requirements and therefore not suitable for the usage.

On the other hand, the dynamic approach tries to infer information about regions
of the original code by running an instrumented version of the program, with some
specific inputs [25]. The regions of the program more stressed by floating point
execution are then flagged for conversion, together with the collection of variables
and intermediate results behavior. Unfortunately, this approach only use some of
the possible input of the program and thus some corner cases may not be covered,

CHAPTER 3. STATE OF THE ART 16

leading to unpredictable results. This approach is particularly useful whenever the
programmer does not have in depth knowledge about the algorithm and its use, but
can rely on example of algorithm data input example.

3.1.2 Requirement collection

The Requirement collection step tries to infer the sensibility of the program in order
to understand how the different data types can affect the algorithm output.

There are various problems to take into account when changing one data type
into another, starting from the representation mismatch, as discussed before. For
example in some algorithms it may not be a problem infinite is not represented,
while in others, a saturating data type must be present to carry out the correct
computation. This problem can be avoided if the tools only consider compatible
data types as destination types (for example the types specified by the IEEE floating
point standard), but may become a problem while moving, for example, from it to
fixed point data type.

Usually, in this phase, the tool tries to infer ranges for the variables present in
the code region considered, and hence it selects set of safe data types to use in each
specific position.

There are three different types of approach.
The first approach follows a trial-and-error approach: the data types are changed

to less precise counterparts; then the code is run with a given set of inputs to check if
the results are still acceptable [53] [35]. If not, the final data types are changed and
the procedure is executed again. The tools that use this approach are distinguished
mainly by the algorithm used to perform the search.

The second type of approach includes all the tools that perform a static analysis
of the program [12] [16]. Such an analysis is necessary mainly to reduce the number
of data types that will be investigated during the data type assignment. For example,
data types that are too small to represent the full range of real numbers admissible
for a variable are dismissed. In this approach, the tools infer information about
variables range and errors propagation only by looking at the source code of the
application, never dealing with instance of program input. Sometimes, it is required
that the user enriches the original source code with annotations to characterize the
input of a particular routine.

All tools that perform a dynamic analysis falls into the third approach: the code
is run with a set of common inputs and then profiled to obtain the range of the
different variables in the program [34]. Other tools aim to find information about
how much the output is susceptible to variations of the input. In this way, the tool
can understand which input variables can be lowered in precision without introducing

CHAPTER 3. STATE OF THE ART 17

too much noise in the program and which must remain as precise as possible.

3.1.3 Code Manipulation

During this step, the actual conversion is made, in other words, an alternative version
of each code region is generated, exploiting the data types selected at the precedent
step.

In literature this problem has been tackled in a large variety of ways. The tools
are classified mainly depending at which level they make the manipulation. In more
depth, tools can be subdivided in four main areas.

Source-to-source compilers To this category belongs all tools which take as an
input the source code of the program and produces as an output a program written
(usually) in the same language [16] [34]. These tools are mainly used where it is
important to have a readable output after the conversion, so that a programmer can
still correct the code or tweak it if necessary.

Binary modification tools This category comprises all the tools that exploit an
already existing compiled executable version of the program and patch it at bin-
ary level, to implement a different precision mix. They do not need the original
source code of the application, and therefore are programming language agnostic
[35]. Unfortunately, they are bound to a specific architecture, and additional sup-
port for different destination architectures may require non-trivial efforts, due to the
differences between ISAs.

Compiler-level Transformation This category is composed by tools that work
during the compilation of the program [Precimonius] [12] [31]. In particular they
can be an extension to the compiler, or transform the intermediate representation
of the compiler, that is produced during the compilation process. They work at an
intermediate level between the two precedent approaches. Therefore, the output is
still in the IR language. Even though it is usually a low level language, and therefore
quite easy to manipulate automatically, it is easier for humans to read than binary
machine code. This approach also allows to be completely independent from the
source language, as long as the required source language has a front-end for the
compiler.

3.1.4 Verification

The output of the precedent step is analyzed to understand the error introduced and
accept or reject the it. The decision is made by looking at a certain threshold which

CHAPTER 3. STATE OF THE ART 18

can be expressed either in terms of ulp, absolute numeric value or relative value. In
case of rejection, the Code Manipulation step can be executed again, in order to vary
the selected mix, and then the result can be evaluated again.

Just like before, the tools can be split up in two groups based on the type of
verification that is done.

The first group is composed by tools that use a static approach [12] [16]. This
method allows for computing error bounds without any input sample, through the
exploitation of range arithmetic. Unfortunately, these methods alone usually overes-
timate the error, and therefore provide less useful information. However, if an error
bound is found, it is formally proved, and therefore correct for every input. Some
tools use formal methods to restrict the bound previously found, usually implemen-
ted as SMT solvers. Other tools use affine arithmetic to tighten the error bound
propagation, without increasing the complexity of the computation too much.

The other group uses a dynamic approach instead [35] [53] [25]. This kind of
verification cannot be used to formally prove the error bound (therefore it cannot be
use for safety critical real-time systems) but it can give an idea of how much error is
introduced. The modified program is run and the output is compared with the one
produced by the original program.

3.1.5 Type Casting Overhead Estimation

Changing a data type in a specific region of a program requires the conversion of
the data from the original data type to the requested one, both at the start of the
converted region and at the end. Such conversions requires the insertion of casting
operations, which add overhead to the final program. The overhead added can
become non negligible in case a lot of data needs to be converted, such as arrays
of elements or casting in a loop. Therefore it may happen that the performance
improvements due to the conversion are counteracted by the overhead introduced by
the casting.

An high number of different data types generate a large amount of castings, thus
introducing a non negligible overhead. Therefore the Analysis step usually tries to
choose the most uniform type mix. However, the estimation of this kind of overhead
is still an open challenge, poorly addressed in the literature.

Some attempts to solve this problems tries to use dynamic performance profiling,
but this can introduce high costs in terms of tuning time, as the code must be
executed at every transformation.

Some others tools exploit heuristic/greedy algorithms to reduce the number of
casts inside the new code as much as possible. This approach can effectively reduce
the number of casts, but can also fall into a locally optimal solution, and never find

CHAPTER 3. STATE OF THE ART 19

the best assignment to provide the best performance-precision trade off.

3.2 Previous work about mixed precision

As the mixed precision field of research is being explored by many years, many tools
have been developed exploiting state of the art techniques. In the following section
the main tools will be presented, with a focus on the particularities of each one.

3.2.1 CRAFT

CRAFT [35] is a framework for analyzing a previously compiled binary that uses
double precision data types, and successively modify it to build mixed precision ver-
sions. Indeed, the original source code of the application is not needed. Moreover, it
implements a search algorithm to find the best precision mix in the original program.
Despite not being dependent on any particular programming language, it is indeed
dependent on the target architecture.

The framework works as follows.
In the first place the binary is instrumented, by using the Intel Pin library [41].

Each function, basic block, and instruction is analyzed and a search tree is built, in
order to understand which parts of the code will be able to exploit reduced precision
computation. All the double precision operations in the program are candidates to
be reduced in precision.

The Configuration Generator then builds, using a breadth-first algorithm, mul-
tiple mixed precision configurations for the same executable. The search is completely
automatic and is provided in different flavors. The first is implemented as an heur-
istic search, which is quicker but may not provide the optimal solution. The second
one is a complete search, which only reduces the search space by purging unfeasible
precision mixes, such as mix with a lower precision than a previous mix that has
already been proved to be unfeasible. Each configuration is stored as a series of
human readable mappings; each instruction is mapped to one of the following types:

Single when the precision of the operation need to be lowered

Double when the precision of the operation needs to be performed in double pre-
cision and casts should be made if any parameter in input to this operation
single precision

Ignored if the computation must be left in the original computation, for example
in random number generation routines

CHAPTER 3. STATE OF THE ART 20

The file can be edited by the programmer, to provide hints to the tool.
The Binary Modification tool, by exploiting the Dynist library, performs the real

binary patching and produces many versions of the input program, as specified by
the given configurations. In detail, the framework replaces all the instruction which
are not flagged as ignored, with a custom routine, that performs the necessary casts
and then carries out the computation. This is needed even for double precision
operations, as a cast may be required for the input registers. When dealing with
reduced size computations, the single precision values are stored in the same place
as the double precision ones, precisely in the lower 32 bits, while in the upper 32
bits contain a flag (0x7ff4DEAD) that if the value is incorrectly interpreted as a
double value it transforms into a NaN value, thus preventing the propagation of
wrong values in the program.

The mixed precision binaries are then run against some test input data, and the
results are evaluated by a user-specified routine. It is very important that the input
provided by the user is very similar to a final use case, as the quality of the search
will depend on this factor. When the search is completed, a final mix is proposed to
the user, along with an executable which implements it.

This framework has been evaluated on many open source benchmarks and pro-
grams.

An extension to this work is the CRAFT framework. CRAFT instruments the
program to understand how many bits of mantissa are necessary to still carry out a
useful result. The approach followed for the analysis is similar as the one explained
before. However, the tool is not proposed as a precision reduction tuner tool, but
only as a tool to help the programmer understand how precise each operation should
be, in order to guide the precision tuning process.

Both approaches are very useful to understand how the precision of an algorithm
affects the output of a program, however it does not help the programmer to actually
perform the tuning in the source code. Moreover, the quality of the results depends
heavily on the input data and on the Verification Routine, and no guarantee on the
soundness of the proposed solution is given for other inputs.

3.2.2 Precimonius

A similar approach to CRAFT is Precimonius [53], which is a framework build against
the llvm infrastructure, which aims is to find the best precision mix to exploit in a
program, while maintaining a precision comparable with the original one. It is built
from four components.

The first component duty is to analyze the program, represented as llvm bitcode,
in order to list all the variables that will be tuned, each associated with a set of

CHAPTER 3. STATE OF THE ART 21

floating point data types that will be explored.
The second component deals with the actual search, implementing a variant of the

delta-debugging algorithm, trying to find a type configuration which runs faster, but
still meets the requirements specified. The metrics used to understand the speed-up
are user-provided.

The third component generates the program variant that each step of the delta-
debugging algorithm needs to analyze. Indeed, it modifies directly the bitcode rep-
resentation, by changing the allocations made for variables and inserting additional
operations when needed (floating point extensions and truncations).

Finally, the last part validates the program generated, by checking both the cor-
rectness and the speed-up achieved. It runs the program against a known input,
comparing the results with respect to the original result. If the results are accept-
able (i.e. under a certain threshold given by the programmer), the results of the
instrumentation are handed over to the search algorithm, which goes on with the
search.

This approach is very similar to CRAFT, however it is both source language
and target machine independent, because it works on an intermediate representation
(llvm-IR). Unfortunately the framework still needs to run the to be tuned program
and the effectiveness of the evaluation heavily depends on the quality of the input
test data and on the error threshold given by the programmer. Moreover, delta-
debugging has in average a complexity of n log n (n2 in worst case) and cannot
distinguish between a local minimum and a global one.

In a successive work, the same authors use an approach called Blame Analysis, im-
plementing the shadow execution, to reduce the search space of Precimonius. Blame
Analysis provides a blame set, which specifies whose variables can be lowered to a
smaller data type without changing the final precision of the program. In this way
these variable can be lowered immediately, reducing the final search space where
Precimonius will act on. With shadow execution, multiple versions of the same
program are executed in parallel, with different data types for each floating point
instruction, thus requiring only one true execution. More precisely, the tool keeps
for every variable a set of values with different types, with a trace of the instructions
that generates it.

3.2.3 HiFPTuner

HiFPTuner [25] falls again in the dynamic analysis tool group. Instead of treating the
program as a black box, it analyzes both the source code and the runtime behavior
of the program, in order to find dependencies between floating point variables in the
program. In this way, the algorithm reduces the search cost by reducing the search

CHAPTER 3. STATE OF THE ART 22

space, for the sake of scalability.
The tool, first of all, exploits the dependence analysis and Edge profiling tech-

niques to build a graph where the nodes are the variables, and each arc represents
the dependency of a value from another (i.e. the value of a variable is used to com-
pute the value of another). The weights on the arcs represents how many times that
dependence is found. In particular, the various weights are extracted at runtime, by
a dynamic analysis.

After this step, the tools tries to identify viable variable groupings by applying a
community detection problem algorithm, as used in networks. The sets will contain
variables that interacts frequently and therefore are likely to have the same require-
ments in terms of precision. The graph is then collapsed by assembling the variables
in the same set into a single node, and the community detection algorithm is applied
again. In this way an hierarchy can be established, represented by the various run
of the algorithm.

Once the hierarchy is built, the tool performs the actual precision tuning. The
algorithm starts from the top most level — the one where the variables are most
condensed — and searches for the best configuration by treating all the variables in
the same community as having the same data type. The results found are propagated
to the next level downwards, in order to reduce the search space and avoid looking for
more precise alternatives, if a lower precision configuration is found to be effective.

When a configuration is set, it must be verified in order to check if it keeps the
error in the required bound, and if the final program has a speedup.

The tool is heavily based on Precimonius, as it shares with it the program trans-
formation llvm pass. Doing so makes HiFPTuner independent both from the source
language and the destination architecture. Still, the quality of the output depends
on the test data, and the program o be optimized need to be executed many times
for profiling purposes.

3.2.4 CAMPARY

Campary [24] is an auto tuning tool that aims to increment performances in applic-
ation requiring high precision libraries by generating mixed precision version.

This process is composed by two phases.
The first phase determines a tuning plan, which is a collection of tuning iterations.

In each one, a specified set of variables whose precision can be reduced.
The tuning strategy prefers to reduce the precision of operations that probably

impacts less the result of the program. In their work, they defined different groups
of operations that require special consideration.

First of all, loops with high number of iterations may propagate larger errors

CHAPTER 3. STATE OF THE ART 23

when variables are implemented with lower precision. Therefore, precedence is given
to instruction outside loops, then the loops are sorted in order of increasing number
of iterations. The number of iterations can be inferred either from static analysis or
by dynamically profiling the algorithm.

Accumulation patterns also play a role in error propagation. Tuning down short
sequences of instructions will likely introduce less error with respect to longer se-
quences. Then, precedence is given to the first one.

Finally it is considered that different operations have different costs even when
done with the same precision. Therefore, operations that are costly in higher preci-
sion are scheduled to be reduced in earlier iterations.

During the second phase, for each tuning iteration, the tool modifies the original
program by converting instructions to the data types requested. Then the modified
program is run, so that it can be verified for error bound constraint specified. When
the program violates some precision constraints, the tuner stops the tuning plan. The
optimization of the program starts from on a higher precision version of it, having
all the floating point variables converted to CAMPARY 256-bit data types [31]. The
implementation of the proposed auto tuning algorithm is done as passes of the llvm

compiler infrastructure.
Like the previous proposal, this approach does not provide guarantees about the

quality of the precision mix found, and the tuning still requires multiple run of the
original program. Moreover, the evaluation of the quality of the new mix depends
on user provided data and is not guaranteed to be appropriate for different data.

3.2.5 Daisy

A different approach to mixed precision tuning is given by Daisy [16]. It is a source
to source compiler whose aim is to reduce the precision of variables in a given code
region while still preserving the wanted precision as specified by the programmer.

The input program shall be written in a real-valued language, but it is not limited
to it, and usually a single function at a time is processed. Preconditions and post
conditions of the computation are specified using the keywords require and ensuring ;
the compiler, knowing the preconditions, will find a precision mix that will respect
the condition on the outputs. The body of the function can be a combination of all
the common operation, transcendental functions and local variables, but does not
support loops. After the tuning process, Daisy will produce a Scala or C source code
with all the required casts and declarations.

The data types currently supported by Daisy are fixed-point (16 or 32 bits) and
IEEE754 single, double and quad precision. It can be easily extended to support
other representations, possibly custom ones.

CHAPTER 3. STATE OF THE ART 24

The tuning procedure is split up into several steps.
During the first step named Rewriting, the tool rewrites the expression into equi-

valent ones that has a small roundoff error. A genetic algorithm is used to generate
the new expressions to evaluate; the error is computed as if all variables had a uniform
precision. This procedure is based on the Xfp tool, which has been extended to per-
form more effective transformation at each iteration of the algorithm. The algorithm,
moreover, optimize both for performance and for uniform precision. Therefore the
resulting expression will never be slower in computation than the original one, it will
evaluate with a lower error than the original one in a finite precision environment.

During the second phase, Daisy rewrites the expressions in a sort of static single
assignment form.

In the third phase, the range analysis is carried out, in order to perform bounds
computation in the tuning phase. The analysis can be done using interval arithmetic,
affine arithmetic or a more expensive alternative, using a mix of interval arithmetic
and an SMT solver.

During the fourth phase, the actual mixed precision tuning is performed. A vari-
ation of the delta-debugging algorithm implemented by Precimonius is used to reduce
the search space. Unlike other tools presented previously, Daisy performs a static
error analysis, without running the original program and without any input/output
examples. Because of this, the error bounds computed by Daisy are proven to be
valid, and will always be correct, disregarding the specific input values. The error
computation is derived from a precedent work of the same author, Rosa [17].

Daisy not only focus on variable data type tuning, but also on intermediate
results. The running time for the algorithm is also computed statically using a
prediction model, based on static costs.

In the last fifth phase, the best mix found in the previous phases is materialized
into a human readable programming language (C or Scala), together with all the
necessary casts and declarations.

The tool provides guarantees on the output program in terms of errors and exe-
cution time. However, Daisy does not accept programs written in a general purpose
programming language. In addition, it lacks supports for conditional execution (as
example, the if statement) or loops.

Chapter 4

Compilation frameworks

A compiler is a program that takes another program, written in an human intelligible
language, and performs a conversion into a language understandable by machines,
called machine code.

The firs compilers were simple syntax driven translators. They took as input a
low-level programming language, such as assembly code, and translated it directly
into machine code in binary format. In these language each statement was converted
into a machine opcode.

With the growth in popularity of higher level languages, such as C and FOR-
TRAN, which allowed to build more complex projects that were easy to maintain
and understand by multiple programmers, compilers became even more important,
in order to let programmers obtain a final program that was as quick as if it was
written directly in assembly.

Nowadays, compilers are more complex and can perform optimizations of any
kind, in order to exploit peculiarities of the target machines. For example, taking
advantage of a larger number of registers available or exploiting the presence of
particular instructions that can process more data in one shot (SIMD instructions).
Other optimizations are not linked to a particular target architecture, but can be
made by exploiting properties of the program, such as strength reduction in loops or
constant propagation.

Modern compilers rarely are monolithic programs, but they usually are a set of
tools that transform source code into highly optimized machine code. In the following
section, the analysis of common structure of the modern compiler will is proposed,
with particular focus on the llvm toolchain [36], on which the later presented work
is based. It follows an introduction to taffo, which is the specific toolchain this
work is based on.

CHAPTER 4. COMPILATION FRAMEWORKS 26

C source code

FORTRAN
soruce code

C parser
(clang)

FORTRAN
parser (flang)

llvm-ir
intermediate

representation

Middle end
(opt and
passes)

Optimizer
llvm-ir

Machine
dependent

transformation
and x86

assembler

Machine
dependent

transformation
and ARM
assembler

x86 executable

ARM
executable

Middle end Back endFront end

Figure 4.1: Internal structure of llvm. Each pass is heavily decoupled from others.

4.1 Structure of a Compiler

Due to the fact that compilers are complex tools, most compiler designs are struc-
tured as a three-stage pipeline. This division is mainly required for abstracting the
destination architecture from the source code language, in order to specialize each
part of the compiler to better achieve its scope.

The llvm Compiler Framework is an example of modern compiler following the
best practices in the state of the art, and it has gained consideration in the last years
both from academical research and the industry. Its main strength is its modularity
which allows to share wide part of the compiler across multiple source language and
architecture.

4.1.1 Front-end

The front-end is the component of the compiler which is in charge of analyzing the
source code, given as input in a high level language, in order to lower it into a low level
representation used internally by the compiler, called intermediate representation
(IR).

The program is usually specified in a sufficiently expressive language, written
using formal rules, such as Context Free grammars. The front-end performs several
analysis on the input program.

The lexical analysis takes the input program, in form of text, and transforms it
into a series of tokens that cannot be split anymore. All comments and white spaces
of the input file are removed and only atoms are left, such as keywords, constants,
identifiers and so on.

The tokens generated by the lexer are then analyzed by the syntax analyzer which
compute which rule of the programming language grammar has been used to generate

CHAPTER 4. COMPILATION FRAMEWORKS 27

a particular statement. At the end of this procedure, a parse tree is produced,
containing all the rules used. All the leaves of the tree will contain terminal symbols,
which are part of text that cannot be split further more using the grammar rules. If
no rule can match a particular statement an error is produced.

Finally, the semantic analyzer checks that the parse tree is not only correct from
a syntactic point of view, but that the meaning of the rules used is also sensical.
A common error that could happen is when there is a type mismatch between a
declaration of a variable and its successive use, such as assigning a string to an
integer variable.

The front-end is independent from the target architecture. It depends only on
the source language.

The IR is usually as low-level as the assembly language, however it is independ-
ent from the destination machine. Like in the assembly language, each statement
describes a primitive operation, such as mathematical operations, function calls,
memory accesses and so on. However the memory is still viewed as a set of logical
variables, rather than a set of bytes referenced by an address. Most IR languages
in use have an unlimited number of registers available and are in Single Static As-
signment Form (SSA) [51]. In the Single Static Assignment form, each register is
assigned exactly once in the program. This is done mainly to simplify further code
transformations. The source code is transformed to the intermediate representation
through a process called lowering, where high-level constructs are converted into
simpler objects.

The process of lowering does not preclude the IR from carrying additional in-
formation about the original program, in the form of metadata, which may allow
further optimizations in later stages of the compilation.

In the llvm toolchain, Clang is the front-end for the C and the C++ languages,
converting them into LLVM’s IR, called “llvm-IR”.

llvm-IR represents the program as a collection of global variables and functions.
In turns, functions are composed by basic blocks, and basic blocks contain a list of
instructions.

The number of instructions in the IR is low due to the fact that many opcodes
are overloaded thanks to the type system used. The llvm-IR type system is fully
statically and strongly typed. Thanks to this choice, all type-checking operations
can be offloaded to the frontend.

The most important data types are arbitrarily-sized integers, floating point types,
pointers to such data types and vectors of them. The majority of operators are in
three-address form, taking two operands and producing one results.

Being in SSA form, each value is declared and assigned exactly once.

CHAPTER 4. COMPILATION FRAMEWORKS 28

In Listing 4.2 we present the resulting llvm-IR from the compilation of the simple
program shown in Listing 4.1. While complex instructions have been converted into
simpler ones, it is still easy to identify and understand the semantics of the program.
For example the alloca instruction is used to allocate space on the stack to store
variables, while load and store instruction are used to access the memory.

1 #include <stdio.h>
2 int main(int argc , char* argv []){
3 double a, b, c=2.0, d, e;
4 scanf("%lf %lf", &a, &b);
5 d=(a+b)*c;
6 e = d / 3.14159265358979323846264338;
7 printf("%lf", e);
8 }

Listing 4.1: A simple C program using floating point computation.

1 define dso_local i32 @main() {
2 %a = alloca double , align 8
3 %b = alloca double , align 8
4 %c = alloca double , align 8
5 %d = alloca double , align 8
6 %e = alloca double , align 8
7 store double 2.000000e+00, double* %c , align 8
8 %call = call i32 (i8*, ...) @scanf(i8* getelementptr inbounds ([8 x

i8], [8 x i8]* @.str , i32 0, i32 0), double* %a, double* %b)
9 %0 = load double , double* %a , align 8

10 %1 = load double , double* %b , align 8
11 %add = fadd double %0, %1
12 %2 = load double , double* %c , align 8
13 %mul = fmul double %add , %2
14 store double %mul , double* %d, align 8
15 %3 = load double , double* %d , align 8
16 %div = fdiv double %3, 0x400921FB54442D18
17 store double %div , double* %e, align 8
18 %4 = load double , double* %e , align 8
19 %call1 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4

x i8], [4 x i8]* @.str.1, i32 0, i32 0), double %4)
20 ret i32 0
21 }

Listing 4.2: The llvm-IR generated from the program shown in Listing 4.1.

4.1.2 Middle-end

The middle-end is the part of the compiler that performs optimizations that are
independent from the target architecture. It executes units called passes on the

CHAPTER 4. COMPILATION FRAMEWORKS 29

IR of the source program. There are two types of passes in llvm: analysis passes
gain information about a program and have as a product of the computation these
information; on the other hand optimization passes modify the code in order to
change some property of the program, producing as output new IR code.

Optimization passes can be very expensive in terms of execution time, therefore
only a reduced set of them are enabled by default. The programmer can control
whether to enable a specific optimization or not.

Examples of target machine independent optimizations are constant propagation
and folding, which tries to simplify expressions dealing with constants values. Other
optimizations deal with dead or unreachable code elimination, to reduce the size of
the final program. A special group is composed by all transformations dealing with
loops, such as unrolling and skewing.

Sometimes, there is a dependence between passes — in other words a pass needs
to be performed before another one. For example a loop must be in canonical form in
order to be optimized, thus the pass responsible for the transformation to canonical
for must be performed in advance to the actual optimization. The pass manager is
the component that is in charge of scheduling the passes correctly.

llvm decouples the middle end from the front-end and the back-end, meaning
that the same pass can be used for different source languages and destination targets.

In addition to internal passes, llvm supports plugins for adding other custom
passes. These plugins are compiled as external objects that are loaded at runtime.

Listing 4.3 has been generated as an output of the optimization of the program
shown in Listing 4.2. The effect of the optimizations is For example, the optimizer
promoted some variables to registers. The variable d, for example, has a limited live-
ness inside the program, and has no meaning outside the main function. Therefore,
it is not necessary to store it in a memory location, but can remain in a register. On
the contrary, as the a variable is referenced from the outside (its address is passed
to the scanf function), it must be preserved as a normal memory variable.

Another optimization that can be easily spotted is constant propagation. As the
c variable is used to only store a constant, it is removed from the program and its
use is replaced by an immediate containing the constant value.

1 @.str = private unnamed_addr constant [8 x i8] c"%lf %lf \00", align 1,
!taffo.info !0

2 @.str.1 = private unnamed_addr constant [4 x i8] c"%lf \00", align 1, !
taffo.info !0

3 define dso_local i32 @main(){
4 entry:
5 %a = alloca double , align 8
6 %b = alloca double , align 8
7 %call = call i32 (i8*, ...) @scanf(i8* getelementptr inbounds ([8 x

CHAPTER 4. COMPILATION FRAMEWORKS 30

i8], [8 x i8]* @.str , i32 0, i32 0), double* %a, double* %b), !
taffo.constinfo !6

8 %tmp = load double , double* %a , align 8
9 %tmp1 = load double , double* %b, align 8

10 %add = fadd double %tmp , %tmp1
11 %mul = fmul double %add , 2.000000e+00, !taffo.constinfo !7
12 %div = fdiv double %mul , 0x400921FB54442D18 , !taffo.constinfo !10
13 %call1 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4

x i8], [4 x i8]* @.str.1, i32 0, i32 0), double %div), !taffo.
constinfo !13

14 ret i32 0
15 }

Listing 4.3: The llvm-IR of the program shown in Listing 4.2 after optimization.

4.1.3 Back-end

The back-end of the compiler is the component that is invoked in order to produce
the final machine code. It takes as an input the IR code, directly from the front-end
or modified by the middle-end, and emits machine code.

The most important change the compiler must perform is to perform the trans-
formation from the IR — which has an unlimited number of registers to a concrete
architecture with finite registers. During this step the back-end must determine
in which target register to store each value and, in case there are not enough re-
gisters, which values to store in memory. This phase is called register allocation,
and it strongly depend on the liveness interference analysis. This analysis compute
whether two variables will be live at the same time in a specific portion of code
and thus both must be present in a register. If so, these variables interfere and
can not be stored in the same register. The problem is similar to the graph coloring
algorithm, which is intractable due to the exponential complexity. Compilers usually
implements heuristic to speedup the execution of the algorithm.

During these steps machine dependent optimizations are also performed. For
example, loops can be converted into SIMD instructions if the target architecture
supports them, or a peephole optimization converts sets of instructions into more
efficient ones.

As each architecture has its own particularities, a different back-end is needed not
only for different architectures (ex. ARM vs x86), but also for different revisions of
these architectures. This is necessary because some instructions may not be available
on older implementations, or a particular target may lack — for example — the
floating point unit. Moreover, the compilation can also be made for a different
target machine than the system running the compiler; in this case the compiler is

CHAPTER 4. COMPILATION FRAMEWORKS 31

performing a cross compilation.
llvm supports a wide number of target architectures, due to the fact that back-

end development is completely decoupled from the front/middle-end development.
The main supported targets are ARM, MIPS, PowerPC, x86, Amd GPU (OpenCL),
AVR and WebASM [40].

As the acronym suggests, the llvm-IR bytecode can also be executed as is. In
facts, the llvm toolchain also supports being used as just-in-time compiler.

In Listing 4.4 we show a snippet of the final result of the compilation for an Intel
CPU of the example program. The language used is quite difficult to understand
and uses instructions specific to the target architecture. For example, it is possible
to note the use of some instruction linked to the mmx extension, a family of SIMD
instructions. Moreover, each function call has been transformed to follow the calling
convention of the destination architecture. While still not understandable by the
machine as it is, this is the lowest-level human-readable programming language.

1 pushq %rbp
2 .cfi_def_cfa_offset 16
3 .cfi_offset %rbp , -16
4 movq %rsp , %rbp
5 .cfi_def_cfa_register %rbp
6 subq $48 , %rsp
7 movabsq $.L.str , %rax
8 movl %edi , -20(%rbp) # 4-byte Spill
9 movq %rax , %rdi

10 leaq -8(%rbp), %rax
11 movq %rsi , -32(%rbp) # 8-byte Spill
12 movq %rax , %rsi
13 leaq -16(%rbp), %rdx
14 movb $0 , %al
15 callq scanf
16 movsd .LCPI0_0 (%rip), %xmm0 # xmm0 = mem[0],zero
17 movsd .LCPI0_1 (%rip), %xmm1 # xmm1 = mem[0],zero
18 movsd -8(%rbp), %xmm2 # xmm2 = mem[0],zero
19 addsd -16(%rbp), %xmm2
20 mulsd %xmm1 , %xmm2
21 divsd %xmm0 , %xmm2
22 movabsq $.L.str.1, %rdi
23 movaps %xmm2 , %xmm0
24 movl %eax , -36(%rbp) # 4-byte Spill
25 movb $1 , %al
26 callq printf
27 xorl %ecx , %ecx
28 movl %eax , -40(%rbp) # 4-byte Spill
29 movl %ecx , %eax
30 addq $48 , %rsp

CHAPTER 4. COMPILATION FRAMEWORKS 32

Figure 4.2: The logo of the taffo project.

31 popq %rbp
32 .cfi_def_cfa %rsp , 8
33 retq

Listing 4.4: x86 Assembly code generated from the program shown in 4.3.

4.2 taffo

The Tuning Assistant for Floating Point to Fixed point Optimization framework
[12] [6], also known as taffo, is an optimization tool built on llvm whose aim is
to help developers to automatically change the program precision mix [10] in order
to optimize the execution time while preserving its correctness [18] [4]. A subset of
variables is selected to be transformed by the tool into fixed point. As this selection
process is completely automated, it fells in the auto-tuning framework category.

The tool is based on the llvm 8.0 compiler toolchain, and is implemented as a
collection of multiple passes which are run in sequence. The majority of the passes
are analysis passes, which means that they do not modify the code of the program
in any way, but they only parse it to infer information useful to later passes. Thus,
taffo operates within the middle end stage of the compiler.

Since taffo operates at the llvm-IR code level, it is both source language
agnostic and destination machine independent, thanks to the complete decoupling
between the front end and the back end in the llvm toolchain. Moreover each pass
is completely decoupled from the successive one. Thus, different version of each pass
employing different algorithm can be used without the need to modify other parts
of the tool.

The programmer is only required to share some knowledge with the tool about
the variables that will be converted. In particular, the variables that the programmer
wants to enable for conversion must be annotated with a special syntax that will let
taffo know which ones can be modified and which ones must be left as they are.

CHAPTER 4. COMPILATION FRAMEWORKS 33

taffo supports any kind of floating point variable: it is not limited to scalar values,
but also supports arrays and structures. Annotations are expressed as a text string,
and contains information about the range that a variable may assume at runtime,
and an initial seed value for the error propagation analysis.

In Listing 4.5 an example of annotation is shown. The array set will be converted
to fixed point. Each element of the array will contain, at the begin of the analysis,
elements between -256 and 255. The quantization error assumed for the variable
is considered to be 10−100. These ranges are hints given to taffo, if necessary,
taffo will enlarge them as needed. This behavior can be disabled by including the
parameter final.

1 double __attribute__ ((annotate("scalar(range (-256, 255) error (1e-100))
"))) set [100];

Listing 4.5: Annotation example

In Listing 4.6 an example of annotation of a structure is given. The annotation is
simply a set of scalar annotations corresponding to each element of the structure, in
the same order as they appear in it. If the structure contains some non floating point
variable which should be ignored, the keyword void may be used as a placeholder.
No value is given for the range as the taffo is able to compute it by analyzing the
program.

1 typedef struct {
2 float r;
3 float g;
4 float b;
5 int i;
6 float distance;
7 } RgbPixel;
8

9 RgbPixel pixels __attribute__ (("struct[scalar (),scalar (),scalar (),void
,scalar ()]"));

Listing 4.6: Annotation example for a structure

4.2.1 Pass overview

We will give a general overview of each pass of taffo, focusing on the internal
working of each step.

Initialization

The initialization pass is the first one to be executed by taffo. Given the source
program as an llvm-IR file, it parses the user provided annotations and transforms

CHAPTER 4. COMPILATION FRAMEWORKS 34

Initializer
pass

Range
Analysis

pass

Data Type
Allocation

pass
Conversion

Precision
tuned

program

Original
program Clang

Host machine

Feedback
estimator

Conversion non ok
Final

compilation
Conv

ok

Figure 4.3: taffo architecture. All the various steps are decoupled one from another.

them into metadata, a data structure easier to handle in the llvm framework.
This pass is also in charge of creating a different copy of each function for every

different call to it. For example, if the same function is called across the program
in three different places, after the execution of this pass there will be three identical
copies of the same function. This is useful later on in the auto tuning process, as the
arguments of each call may have different behavior in different program regions.

The metadata also provides information on whether a particular value has been
selected for precision tuning or not, allowing to exclude critical section of the program
to this process.

Value Range Analysis

The Value Range Analysis pass allows the successive passes to know the range of
every value in the program. This is a very important and complex operation, because
the more precise it is, the more accurate the selection of a data type will be. By
exploiting range arithmetic and by inferring additional information from the source
code, a final range for the variable is settled.

A multitude of different approaches can be used to acquire information on value
ranges. The approach exploiting range arithmetic is the fastest one, but also the
most inaccurate, as the predicted range can be very pessimistic and distant from
the real program behavior. A new technique relying on symbolic execution is in
development. This add analysis simulates the program behavior at compile time
in order to acquire an increased amount of useful data. Unfortunately, this new
approach may rise the compilation time.

Data Type Allocation

The goal of the Data Type Allocation pass (dta) is to select an appropriate data type
for each value in the program. The selection process is led primarily by the range of

CHAPTER 4. COMPILATION FRAMEWORKS 35

each value. Indeed, a suitable fixed point representation to fit the whole computed
range must be chosen. In current version of taffo, the algorithm is able to select
only the position of the point.

The exploitation of fixed point data types can generate a very heterogeneous
precision mix. Due to the fact that the conversion from a type to another has a cost,
the more heterogeneous the mix, the slower the final program will be. The DTA
step tries to limit excessive casts by merging similar fixed point types when used in
the same computation. In order to preserve the original semantics, the data type
selected as a replacement is the one with the smallest fractional part.

As multiple definitions of each function were generated during the initialization,
the dta pass will collapse all function with the same type assignment of the argu-
ments, to reduce the final code size.

Conversion

The Conversion pass is the only pass that modifies the llvm-IR code of the pro-
gram. Using information coming from the dta pass, each variable is converted to
the appropriate integer type and, if needed, instructions to convert between the fixed
point representation and the original data type are generated.

If a particular instruction cannot be converted, such as call to an external library
functions not available with fixed point parameters, a fallback code sequence is inser-
ted, which converts the values back to their original types, using it and then converts
the result back to a suitable fixed point type after the unsupported instruction.

Feedback Estimator

Finally, the Feedback Estimator pass analyzes the final code produced by Conversion
and evaluates if a useful speedup has been achieved and if the error introduced by
the data type selection is small enough. If any of these evaluations has a negative
outcome, the conversion starts again from the dta step, with different parameters.

4.2.2 taffo strengths and limits

While being a mature and complete framework, taffo has some limits that, cur-
rently, have not been solved.

Single output data type

Even if the use of annotations allows a certain degree of selectivity, as opposed to
other tools taffo does not allow converting kernels into different floating point types
than the original. Thus, the only mix achievable will contain fixed point types and

CHAPTER 4. COMPILATION FRAMEWORKS 36

the original data type. This can generate some issues during the transformation due
to the fact that some portions of the code may be slower than the original ones,
because of the usage of precise and expensive data types, even if not needed. In
fact, even if fixed point are unsuitable for portion of the program, other floating
point types may speedup the computation, while keeping the error into the required
bounds.

No guarantees on execution time

The final generated program does not take into account the target architecture where
the code will run, as all the annotated code is converted into fixed point. For some
architectures, the transformation to fixed point may slow down the code with respect
to the original one.

No guarantees on error

Although the final program is proven to be correct, as all the intermediate registers
are of a fixed point data type with enough integer bits to contain all the possible
ranges, no guarantees are given on the error in the computation results. Therefore,
even if the transformation provides a reduced version of the program, the results
may not be accurate enough for the specific application.

Non convertible code

Particular regions of code, such as calls to external mathematical function, must
be handled carefully, as they cannot be transformed to take into account the use
of fixed point types. As previously described, before such a call, the fixed point
argument must be converted back to its original data type, and the return value of
the function must be converted into fixed point once again if necessary. This can
generate slowdowns because of unnecessary conversions.

Chapter 5

ILP for Mixed Precision tuning

In its current state of development, taffo only supports changing floating point
types to fixed point. Furthermore, it is currently not capable of exploiting informa-
tion on the target architecture during the Data Type Allocation process.

The objective of the proposed solution is to allow taffo to output an hetero-
geneous mix of data types, ranging from fixed points to standard floating points,
and eventually more exotic data types. The selection of a data type for each original
program variable and instruction should be carried out according to two fundamental
parameters: the desired ratio between precision the speed of the program after the
optimization. Usually, there is a trade-off between these two parameters: the more
a program is precise, the slower it is expected to. Unfortunately, this intuitive state-
ment is not always correct on modern architectures. Indeed, benchmarks show that
double precision floating point operations are not significantly more time consuming
than integer and single precision floating point operations. Therefore, particular at-
tention is required, because a lower precision version of a program that is also slower
than the original one should be avoided.

Ensuring that precision tuning poses a benefit is a complex task, mostly because
the transformation procedure has to take into account the real instructions timings
on the target hardware and the side effects of mixed precision, such as the casting
overhead.

In this chapter, we present a technique to auto tune a generic program. In par-
ticular, we discuss a procedure to automatically build a integer linear programming
(ILP) model. This model keeps into account both the execution time factor and the
error propagation factor of the program. The generation of the model and its usage
to perform an informed code conversion will be presented.

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 38

Initializer
pass

Range
Analysis

pass

Data Type
Allocation

pass

Instruction
Benchmark

Program
Model

Solver

Conversion
and final

compilation

Precision
tuned

program

Original
program Clang

Host machine

Target machine

Figure 5.1: New taffo architecture. The steps with a green background must be
done on the target machine. The steps with a blue background may be performed
on a different machine via cross-compilation techniques.

5.1 Overview of the approach

The proposed solution heavily builds upon and extends the taffo framework. More
precisely, the Data Type Allocation and Conversion passes have been greatly modi-
fied to support mixed precision with multiple data types.

In particular, the proposed implementation is composed of the following parts.

5.1.1 Instruction microbenchmarks

In principle, some metrics about the target machine are needed, in particular the re-
lative execution time of each basic mathematical instruction or conversion between
available data types. As information on the specific internal working of each archi-
tecture is not available, we chose to obtain this type of information via a dedicated
ahead-of-time profiling stage. With the help of a benchmark, the selected target is
profiled while executing a set of standard tests.

The benchmark collects the execution time of every possible mathematical in-
struction for every data type and of every possible cast operation. Since the exact
absolute execution time for every instruction may vary depending on the specific
machine, they are all normalized with respect to the fastest one.

Once the required information for the target machine has been collected, all
the remaining compilation steps can be performed on a different machine, the host
machine, whenever cross compilation needs to be applied.

Only this step requires the availability of a specimen of the target architecture
during the compilation. It is intended to be executed only once per each different
target architecture, independently from the number of compilations that will be done.
There is no need to run the final compiled program on the target to get information
regarding the new optimized kernel version.

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 39

5.1.2 New dta algorithm

The taffo framework is left unchanged until the Data Type Allocation pass. In this
stage, a linear model of the program being compiled is built, using both information
from the source code itself and architecture specific timing information gained from
the previous step. More details on the process involved in the generation of the model
will be given later on. The model exploits the or-tools [22] integer linear optimization
library to solve the optimization problem. Once the solution algorithm has found the
optimal variable assignment, the result is loaded back into the dta pass which finally
applies the data type recommended by the solver to each instruction and variable
allocation.

5.1.3 Enhanced Conversion

The Conversion pass is then executed, converting each instruction and variable to
the data type recommended by the model. This pass has been extended to support
as destination conversion data type every floating point type supported by llvm,
besides fixed point types which were already supported.

5.2 Comparing heterogeneous data types: the IEBW

When dealing with floating point data types and other real number representations
with a finite number of bits, it is challenging to find a parameter to compare them,
mainly because different types are defined in radically different way.

5.2.1 The ulp

A convenient method to compare two representation is to use the unit in the last
place, or ulp [20]. This parameter defines the largest error that can be committed
when representing a specific real number with that kind of representation.

ulp in floating point data types

The absolute error when using floating point types can be at most of 1/2 ulp, for
every number represented. This is due to the fact that the point can be moved, and
therefore the ulp is not fixed, but depends on the number that is being represented.
In particular, let us assume we have a floating point number with base β, which can
be considered without loss of generality equal to 2 and p digits in the fractional part.
Therefore, the represented number will be:

d0.d1d2...dp−1 · βe

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 40

that is
(d0 + d1β

−1 + d2β
−2 + ...+ dp−1β

−(p−1)) · βe (5.1)

Looking at (5.1), the absolute error can at most be

β

2
β−p · βe (5.2)

While for a fixed exponent e the absolute error is the same for all the number
representable with that exponent (i.e. the absolute error is only function of the
exponent), the relative error can vary. From (5.1) it can be noted that, with a
specific e the number that can be represented ranges from βe to β · βe, excluded.
Therefore, considering (5.2) the relative error ranges between:(

β

2
β−p · βe

)
· 1

β · βe
≤ rerr(e) ≤

(
β

2
β−p · βe

)
· 1

βe

which simplifies to

1

2
β−p ≤ rerr(e) ≤ β

2
β−p (5.3)

As denoted by (5.3), the relative error bound does not depend on the specific
number represented, but only on the number of bits p used for the fractional part.

ulp in fixed point data types

For fixed point data types, the problem can be formulated in a similar way. Therefore,
considering a fixed point number with n total bits and p− 1 fractional bits, with β
as base, the number represented will be:

dn−p−1β
n−p−1 + ...+ d1β

1 + d0β
0 + d−1β

−1 + ...+ dp−1β
−(p−1) (5.4)

The absolute error, similarly to what occurs for floating point numbers, is still

β

2
β−p (5.5)

but in this case it cannot be related to an exponent. Therefore the relative error
of a number – with the exception of the representation of the 0 – can be as high as
50% with respect to the smallest number that the fixed point can represent.

β

2
β−p · 1

β−(p−1)
=
β

2
β−p · β(p−1) = 0.5 = 50%

In other words, when representing a number as a fixed point format, the error com-
mitted can be as high as half the represented number.

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 41

5.2.2 The iebw metric

As a general rule, the floating point representation is better at representing sets of
numbers where the values are very heterogeneous (i.e. the range of possible values
is large), while fixed point formats are better at representing tighter ranges.

However, when exploiting mixed precision we need a metric which allows us to
understand how better or worse it is to represent a generic variable with a specific
data type. In the following discussion we introduce such metric, which we call iebw.

Let us consider a fixed point type with an unlimited number of bits (n → +∞)
but a finite number of fractional digits p−1. This allows the data type to contain any
number in (−∞; +∞) with a fixed absolute error, as expressed by Equation (5.5).
This representation takes the name of unrestricted fixed-point.

Now, consider a generic data type t, which we call iebw of t representing x,
defined as the minimum number of fractional bits an unrestricted fixed-point should
have to represent the same number x with a relative error lesser than or equal to the
relative error of t.

In other words, when representing x as an unrestricted fixed-point with a number
of fractional bits equal to the iebw computed, it will have a relative similar error to
the original one.

Finally, the notation iebw(data type, x) represents the iebw computed for the
specific data type which is representing the number x. This is handy for data types
that do not have a fixed absolute error for every value that they can represent. As
an example, in this set falls all the floating point types.

While being very similar to the absolute error, the proposed metric provides some
benefits. In practice, this is a linear function with respect to the number of fractional
bits in a fixed point number. This is important and will be useful when dealing with
linear problem as it is usually impossible to express other errors — like absolute and
relative error — using only linear operators.

The iebw can also be negative. In this particular case, it means that less than
0 fractional bits are needed in the unrestricted fixed-type to achieve the same error
when representing a number in the specified data type. This is common when the
original absolute error was greater or equal to the unit.

iebw for fixed point

The iebw computed for any fixed point with p−1 number of fractional bits is trivially
equal to p− 1.

It is important to note that the iebw does not depend on the number being

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 42

represented, and therefore

iebw(fixp, x) = iebw(fixp) = (p− 1) (5.6)

iebw for Floating point

As already seen, the absolute error while representing a number in a floating point
data type varies with the value itself. To compute the iebw it is useful to look at
the way a floating point value is converted back into a decimal.

More in detail, referring to (5.1), the fractional part is allocated to exactly p− 1

bits. Equating (5.2) (considering p and e fixed) with (5.5), which is a correct equation
for fixed point numbers as well, and assuming the same base β will result in:

β

2
β−pfloat · βefloat =

β

2
β−pfix (5.7)

which can be simplified to

β−pfloat · βefloat = β−pfix (5.8)

which finally gives
pfix = pfloat − efloat (5.9)

Therefore, remembering that (5.5) was computed for a fixed point having p − 1

fractional bits, the resulting unrestricted fixed-point will have a total number of
fractional bits equals to (p− e− 1).

e still needs to be computed and depends on the particular x represented. When
considering only normalized numbers, where d0 equals to 1, e can be computed as

efloat = min(blogb|x|c, emax) (5.10)

It is important to make a note for the IEEE-754 representation. For the purpose
of these formulas, pfloat should be set to the number of effective bits. In fact, in
the IEEE-754 specification, the number of stored bits is one less than the number
of effective bits, as the number is always normalized and d0 is therefore always
considered to be 1.

5.2.3 The problem of fair comparison

Dealing with mixed precision, it is important to make decisions regarding which data
type is the best for storing a particular value. In particular, thanks to the definition
of iebw a comparison between fixed point numbers and real number representation

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 43

is possible.
The main problem is to understand how to compute the iebw and in particular,

which x to choose as a representative number for the computation.
Before proceeding, it is essential to understand how a real number is represented

as a fixed point number. In principle, the total number of bits n is fixed, and in
general coincides with the number of bits available in a machine word of the target
architecture. Indeed, a typical CPU takes a comparable amount of time in computing
integer operations between a full word integer and smaller integer data types, when
ignoring cache pressure and SIMD instructions. Then, considering the maximum
representable number, inferred from the range of number that will be contained in
it, a sufficient number of bits are reserved for the integer part, and the remaining
digits are left for the fractional part. An additional digit is allocated to the integer
part if the register may contain negative numbers, to store the sign bit in accordance
to the two’s complement representation.

There are, in practice, two values for which the iebw can be computed. The
first one is the maximum absolute representable number, or Nmax, and the other one
is the minimum absolute representable number that can be stored in a particular
variable, or Nmin.

Formally, these two parameters can be computed, starting from a range [a, b], as
follows:

Nmin =

0, if sign(a) 6= sign(b)

a, if a ≥ 0

b, otherwise

Nmax = max(|a| , |b|)

When comparing two data types, in particular fixed point and floating point
types with the same number of bits, the maximum absolute representable number is
the least pessimistic case, as long as fixed point numbers are concerned. Indeed, in
this case, all the bits in the fixed point are eventually exploited, while in the floating
point case some bits (belonging to the exponent) are “wasted”. On the other hand,
when representing Nmin, a large number of digits of the fixed point representation
are put to zero and only a small amount of bits carry information. Conversely, in
the floating point all the bits are actually used to carry information.

This consideration is reflected as a trade off on where to compute the iebw: in
general purpose programs, the iebw should always be computed on the worst case, or
in the minimum absolute relative number, thus making this approach conservative

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 44

and sound. If other features about the input data can be inferred, such as the
distribution of values and so on, a representative sample of data (the average value,
for example) can be processed to compute a more tight iebw. In general these
features are not known during a static analysis by the compiler. Indeed they cannot
be exploited.

5.3 A cost model for mixed precision tuning

During the conversion of a program into fixed point, the best fixed point format that
suiting the whole range is assigned to each register and variable under conversion.
Thus, different instructions operates on fixed point with different fractional bits, even
if they depend on each other.

This may lead to a very heterogeneous mix of fixed point data types, which can
generate a program slowdown during execution due to the large number of casts that
are required. Indeed, fixed point numbers with different position of the point are
and should be considered as different data types.

A basic solution to this problem, which has been implemented in taffo, is to
use a greedy algorithm that tries to merge the types of two similar data types. If
the difference between the number of decimal digits is below a predefined Q factor,
the fixed point type of a value and the type of the result of its use are merged [12].
By doing this, a moderate speedup can be achieved with relation to the baseline
conversion, while some registers may not be kept at the maximum precision allowable
by their range, thus introducing some noise in the computation [5].

Moreover, the problem grows in complexity when more than a single data type
is considered, as when allowing heterogeneous data types in the final program. The
algorithm described before, in fact, is hardly applicable because it assumes all types
are fixed point. In addition, the number of possible assignments grows exponentially
with the number of registers and instructions to be converted in the program.

The problem becomes even more complex when the output error of the program
must be considered. Lowering the precision of a variable in a section of a program
may make the high precision of other parts useless.

We propose a solution to this problem by exploiting a Linear Integer Program-
ming problem. The only assumption made is that the program is expressed as
llvm-IR code, the intermediate representation used by llvm.

5.3.1 Minimizing the number of type casts

Each time a register is given as input to an operation with a different data type than
its own, a cast is needed before the operation is performed. Due to the fact that a

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 45

casts are operations computed by the processor, it will slow down the computation.
In this first section, a model which aims to handle the casts in a program will be
described. As an extension, a version of the same problem is provided for mixed
precision programs, where more than one data type for fractional number represent-
ation is used, with particular attention to floating point numbers, both in single and
double precision.

Problem definition

Considering the following snippet of code:

1 %a = OP1 (...)
2 %b = OP1 (...)
3 ...
4 %res = OP2(%a , %b)

Listing 5.1: Simple declaration and use example

Registers %a and %b are used in the operation OP2 in order to compute a result
to store in register %res.

Some constraints may be imposed between the two registers, for example the
operator can require that both operands are of the same type. Moreover, additional
constraints may be imposed to the result, for example in a sum the result is of the
same type of the operands. These additional information can be exploited in order
to build a model of the program to be optimized to use a more efficient data type
assignment.

The procedure starts by assigning a set of variables to each register, for example
xa is assigned to %a. This variable will contain the number of binary fractional digits
to allocate to a specific register. By exploiting the information produced by the vra,
the possible values for each variable can be limited as follow:

xa ≤ aa
xa ≥ 0

where ai is a constant representing the maximum number of binary digits that can
be allocated to the register while still preserving the correct range. The number of
total bits for each variable is constant, and ai should take into account the sign bit.

An extension to this approach can enable the use of different final data types. In
particular, we add one variable for each data type: xa−float, xa−double and xa−fix,
which signifies whether a particular intermediate will use single-precision floating
point, double-precision floating point or fixed point. These will be binary variables,
i.e. integer variables in {0, 1} range, where 1 indicates that the associated data type
will be used, and 0 the opposite.

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 46

Since the final data type to be assigned to a register should be unique, the solver
must be forced to select only one of the possible data type available. To achieve this
behavior, the following constraint is inserted in the model:

xa−float + xa−double + xa−fix = 1

which means that exactly one data type should be selected, at any time.
When a floating point data type is selected, xa, which contains the number of

fractional bits, can still vary in an uncontrolled way. We introduce the following
constraint to solve this problem:

xa ≤M · xa−fix

If x is selected to be a fixed point (xa−fix = 1) then xa will be constrained; on the
other hand, when xa−fix = 0, xa is forced to 0. M is a big enough positive number.

Casts minimization

Each use of a register, when building the model, is interleaved with a “virtual” cast
after its declaration. For example, the code analyzed in Listing 5.1 becomes:

1 %a = OP1 (...)
2 %b = OP1 (...)
3 ...
4 %a_res_op2 = cast(%a)
5 %res = OP2(%a_res_op2 , %b)

Listing 5.2: Virtual cast operator example

The variable xa−res−op2 (and other variables for each data type) will be associated
to the register %a_res_op2 as explained before. The constraint, in term of maximum
number of bits, associated to this new variable are the same associated with the
original variable. Cast operations have a non negligible cost only if the type of %a
will be different from the type of %a_res_op2. Otherwise, no casting operations will
be inserted during the conversion pass and there will be no cost paid in term of
computation time.

To model such a behavior is necessary to introduce two more binary variables
that check if two data types are equal or not. If not, the cost of the casting should be
taken into account when computing the total cost. To model this, C1a−to−a−res−op2

and C2a−to−a−res−op2 are defined as binary variables C ∈ {0, 1}. These variables
should behave as follow:

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 47

(xa > xa−res−op2)→ (C1a−to−a−res−op2 = 1)

(xa < xa−res−op2)→ (C2a−to−a−res−op2 = 1)

which, translated into linear constraint, becomes:

(xa − xa−res−op2) < M · C1a−to−a−res−op2

(xa−res−op2 − xa) < M · C2a−to−a−res−op2

where M is a very big positive number.
Binary variable Ci will be the first component of the objective function, repres-

enting the casting cost:

min[...+ kcost · Icost · (C1a−to−a−res−op2 + C2a−to−a−res−op2) + ...]

where kcost is the cost for the specific conversion, which can be obtained by
benchmarking the target architecture. We call the sum of all these costs Cc. On the
other hand, Icost is a constant that should be proportional to the number of times
the cast will be executed at runtime. Usually loop analysis or dynamic analysis tools
can infer an approximation of this metric, in order to provide a better estimation
of the real cost. For our initial implementation, this factor has not been taken into
account.

Note that (C1a−to−a−res−op2 + C2a−to−a−res−op2) will be 0 if no conversion is
necessary.

The sum of all the casting costs will be called Cc.
If mixed precision mode is enabled, we also define two conversion cost variable

for each pair of data types. The total amount of conversion variable will be the
cardinality of the cartesian product of the set of possible variable types, excluding
where the two types are equal, plus two variables for the fix-to-fix cast described
before. Hence, the total number of new binary cost variables introduced are O(n2),
where n is the number of data types.

Each of these variables will have the following constraint:

(xa−fix + xb−float) ≤ Cia−to−a−res−op2 + 1

thus, when both variables on the left are equal to 1 (and therefore there is a
type mismatch, as we define these variable only for different data type pairs), the
conversion cost Ci will be enabled. Ci will be kept to zero by the minimization, if
not required.

These new Ci variables are intended to be inserted into the minimization formula
as well.

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 48

Even though other modelizations of the problem with less constraints may be
found, this formulation describes the problem in plain terms, taking into account the
estimated cost for each casting. Moreover, adopting a simple formulation eases the
maintainability of the model generator, if a new data type should ever be implemen-
ted.

Constraints on instruction arguments

Some operations have very specific requirements on their input and output values.
Considering the same example as Listing 5.1, let’s assume that OP2 is a sum. There-
fore:

1 %a_res_op2 = cast(%a)
2 %res = sum(%a_res_op2 , %b)

Listing 5.3: Sum example

The sum is an example of a special operation, since it requires the two operand to
have the same number of fractional digits in order to carry out a correct computation,
at least when using fixed point data types. Therefore the analysis should take this
into account, by inserting an explicit constraint into the model:

xa−res−op2 = xb

Moreover, the output format of the sum will be equal to the input, so the following
constraint should be taken into account:

xres = xb

xa−res−op2 = xres

It is important to remember that some operations, like the multiplication, always
requires a cast; therefore the output type is considered “free”, as the conversion cost
is usually present. The modeling of this cost can then be avoided.

When using mixed precision mode, more constraint must be taken into account.
Specifically, llvm requires the input data type to be equal for every floating point
operation, the operation itself produce a result of the same data type. For example if
a double precision floating point data type is used as first operand, the other operand
must be a double precision type and the same type will be found as output of the
computation.

To enforce this behavior, these constraints must be inserted into the model:

xres−float = xb−float

xa−res−op2−float = xres−float

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 49

and so on.
Constraints for other operations are omitted, as they are similar.
An important additional note must be done for external library call. In fact,

these functions are not usually part of the compilation unit, and the source code is
not available at compile time. Thus, the data type of every floating point argument
must be converted back to its original type. This behavior can be modeled by forcing
the data type after a “virtual” cast to the required one, and inserting it in the model
as a casting cost.

This behavior must be emulated because external functions cannot be instru-
mented or modified by taffo. A new technique has been developed to enable taffo

to modify calls to mathematical functions in order to achieve a better final execution
time [7]. It works by replacing the original function, which uses the floating point
data type, with a custom fixed point version of the function. As this feature is still
under development and it is not available for every function of the C math library,
it has not been exploited and therefore the model does not take advantage from it.

5.3.2 Minimizing the introduced error

The Integer Linear Programming problem as described up to now takes into account
only the execution time of casts, and does not perform any prediction about the
precision of the final program. In fact the less digits are given to the decimal part, the
less precise the calculation will be. The same applies to floating point representation:
the smaller the data type is, the less precise it will become.

A general solution is to consider the propagation of significant figures in the
program.

Penalizing the introduced error

We compute the error that each data type can introduce inside the model.
In particular, iebworig−x should be computed for every register and variable. It

represents the iebw of the original data type assigned. This is the equivalent number
of binary fractional digits assigned to the smallest absolute number that the register
can possibly store at runtime.

Therefore, in the cost formula, a new component for every variable and register
can be introduced:

min[...+ Ci · (iebworig−x − xn) + ...]

where xn is the iebw computed on the selected data type.
Usually this addend is negative if starting from a program using only double

precision floating point. Moreover, this expression can be simplified, as constant can

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 50

be eliminated in the objective function.
Therefore, the above expression will become:

min[...+ Ci · (−xn) + ...]

Ci is very similar to Icost discussed before, however this time it is greater than
1 if and only if the operation is used an iterative way, in order to model the loss
of precision caused by such operations. An example of use case where Ci might be
used is the reduction of an array (summing every element of an array to get one
value). With this approach the cumulative error has more impact than, for example,
in other cases such as summing a constant to a value in an array and storing it back
in the same place. In the first implementation of the model, this cost is left to 1.

We call the sum of all the components of this cost Ec.

Mixed precision and iebw

When dealing with the floating point representation, the number of fractional bits
available in the data type cannot be directly used as xn. In fact, doing this will give
a false indication of the precision achieved by the representation.

To compare heterogeneous data types the iebw can be used, as proposed in
section 5.2. As the concept of iebw is valid both for fixed and floating point data
type, the equation for floating point variables becomes:

−xn−float · (iebwn−float)

While this approximation is correct from a static point of view, it is unaware
of the precision lost during the program execution. For example, storing a low
precision result in an high precision variable does not restore the lost precision during
computation. Therefore, an expansion to this technique will be explained in a further
section.

5.3.3 Optimizing execution time

When formulating the problem in this way is quite intuitive that the solver will
select, in most cases, uniform floating point double precision data types, because of
their nature of having more precision than their smaller counterpart, producing a
useless result.

However, this result is undesirable, because the main aim of precision tuning is
to change the data types in the program to smaller ones in order to speed up the
computation or reduce power consumption, while maintaining a sufficient level of

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 51

precision to give useful results.
Therefore it becomes necessary to add a cost associated to every (mathematical)

operation, which proportional to the execution time — or the energy consumption
if applicable. Summing these costs in the minimization formula makes the model
aware of this trade off and therefore produces a precision mix that takes care of both
precision and execution speed.

The formal definition is indeed very similar to the one previously defined to model
the cost of casting:

min[...+ kcost−op−float · Icost · (xa−float) + ...]

Such addend must be repeated for every possible different data type, i.e. for fixed
point, for single precision floating point and for double precision floating point. Icost
has the same meaning as before, while kcost−op−float is the cost of the single instruc-
tion in the desired precision.

Each cost is enabled only if its type is selected as the operand type. This part of
the cost is called Exc. An estimated cost for each operation can be inferred using a
benchmark, as explained before.

5.3.4 Useful iebw propagation inside code regions

While the discussed model is formally correct, there is still a problem to be solved.
In fact, the model is not aware of precision propagation inside the program. Let us
suppose we have registers a, b, and the operation op. To gain precision, a and b could
be recasted to a higher precision type, and then processed through op. Unfortunately,
this will not help to increase precision, as the operation of casting the variables to
the original type does not cancel the error introduced by the previous cast.

In other word a variable does not gain precision by the use of a cast of itself,
but can gain precision only if other operations on which it depends are changed to
use an higher precision data type too. This phenomenon needs to be appropriately
modeled.

In details, we introduce a variable in the model which keeps track of the useful
iebw assigned to each variable and/or register. This variable can be interpreted as
the number of figures that are meaningful in a specific variable.

For example, let us consider a variable a, with range [1, 10] stored as a fixed point
with iebw iebwa = 6 that is used in the operation sum(a, 1). Considering that the
operation is a sum, performing it as a double precision floating point instruction does
not increase the iebw of the result. In fact, even considering the precision of the
constant infinite (iebw = ∞), converting a to a double precision floating point will

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 52

not restore the lost precision due to previous operations and castings.
For each program variable, beside the already declared model variable, we define

a new integer unrestricted variable, xiebw which represents the useful iebw— which
is different from the iebw computed before, which represented the maximum iebw

achievable by the data type. This variable will replace the various elements in the
objective function linked to the iebw and therefore will be maximized to let the
program have the maximum iebw (and therefore precision) possible.

This variable should be limited. In particular the useful iebw cannot exceed the
static iebw, computed starting from the range, as it would be impossible to store
the exceeding digits. To model this, a constraint for every data type is needed. In
detail:

xa−iebw ≤ xa−n +M · (1− xa−fix)

xa−iebw ≤ iebwfloat(a) +M · (1− xa−float)
xa−iebw ≤ iebwdouble(a) +M · (1− xa−double)

If no specific data type is selected (xa−datatype = 0) M is summed to the left-
hand side, a large number, in order to disable the constraint. As only one type
variable can be active at any time, at most one of the above constraints will be
active simultaneously at the same time.

As each mathematical operation may introduce different modifications to the
iebw, in the following sections we describe how it is propagated for several relevant
operations.

Addition and subtraction iebw propagation in the sum is trivial. The result is
not allowed to have greater useful iebw than the operands. So, for example, if the
iebw of the variable a is iebwa and there is the following computation:

c = sum(a, b)

c cannot have a iebw greater than the input variables, similarly to the absolute error
propagation, i.e.

iebwc ≤ iebwa

iebwc ≤ iebwb

This property can be exploited both with addition and subtraction in order to
build a model that takes into account the precision of the computation correctly.

Product When computing the iebw resulting from a product operation, the com-
putation becomes more complex. During the multiplication c = mul(a, b), the worst
case scenario is when both factors are considered with the minimum possible num-

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 53

ber in the range. In this case, to represent the first figure in the result that may be
erroneous, at least iebwa + iebwb binary fractional digits are needed. Therefore,
representing the result with more digits is, in general, not useful. Hence, we can
compute the maximum useful iebw of the computation to:

iebwc ≤ iebwa + iebwb

If information about the range of the variables is known, the iebw can be
tightened to a more realistic value. Indeed, when representing the smallest value,
some bits on the left of the LSB can be different from zero. In this way they can
carry over the error to a different digit, therefore amplifying it. In order to compute
the new iebw the following equation can be used:

iebwc ≤ iebwa + iebwb −min(bita, bitb) (5.11)

where bita and bitb contains the number of digits needed to represent the minimum
allowed value using an unrestricted fixed point with such an iebw, i.e. the position
of the most significant non-zero bit. This number can be computed as

bita = int_bita + iebwa

where int_bita is the number of integer digits needed to represent the minimum
value in a (known at compile time) and can be less than zero if some digits after the
point are left to zero while representing the number (e.g. less than zero).

As min(bita, bitb) is not a linear operator and cannot appear as a constraint in a
linear problem, Equation 5.11 can be translated into the following constraints:

iebwc ≤ iebwa + iebwb − bita +M · y1
iebwc ≤ iebwa + iebwb − bitb +M · y2

y1 + y2 = 1

where yi is a binary variable, constrained in yi ∈ [0, 1]. In this way, only one of the
two constraint will be active at any time, and, because iebwc will be maximized,
only the less restrictive one.

Division The division can be reduced to a multiplication, when done in the real
number set. In fact, a/b can be expressed as a · (1/b). As the problem of iebw

propagation in multiplication has already been tackled, the following discussion will
focus on the iebw computation for 1/b.

Assuming that the iebw of b is already known, for the computation of 1/b, 1

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 54

can be assumed as a fixed point number with unlimited fractional digits. Therefore,
when computing the division with the highest number that can be contained in b,
the unit number is “moved” to the right at least by as many place as the number of
bits needed to contain the integer part of b. Then, from here, the last digit that can
be known is on the right of this digit of an amount equal to the iebw of b. Here the
iebw must be computed on the worst case scenario that is on the maximum number
that can be contained in b.

Hence, the total iebw of 1/b is

iebwinverse = int_bitsb + int_bitsb + iebwb

Phi nodes In a program, a phi node is usually faced when dealing with loops and
conditional statements. A phi nodes signals that the contents of a variable may come
from different places, and thus the variable may behave in different ways depending
on the control flow trace followed at runtime.

For what concerns our analysis and model generation, the propagation of the
variable with the greatest iebw must be taken into account. This is, in fact, the
worst case scenario, thus it is a conservative modeling choice.

Therefore the resulting iebw in a phi node is:

iebwphi = max(iebwa, iebwb)

A problem arises when, in the list of values, a constant appears. In this case
the constant is not processed. In fact it is impossible to evaluate the eventual iebw

generated by a constant in a precise way, while considering the full range iebw may
give a too pessimistic prediction.

Moreover, as the program is scanned top to bottom, some values for the phi
nodes may not be available at the time of visit, as they could be computed in a basic
block that is yet to be visited. This generates a dependency loop between the phi
node result and the values themselves. To overcome the dependency loop, the iebw

variables are preallocated when a phi node is encountered. When the actual value is
then reached, the correct variable is assigned to the previous computation and the
dependency loop is closed.

Load/Store node When loading and storing into memory locations, it is import-
ant to deduce, in some way, the iebw of the last instruction that performed a write
at that memory address. In fact, the precision of a value stored in a variable does
not only depend on the variable itself, but also on the results of previous operations,
which in general are unknown. Therefore, the model construction takes advantage

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 55

of the llvm MemorySSA [44] analysis which can be used to get the set of opera-
tions that could have written an area of memory before a particular load. More in
detail, the goal of MemorySSA is to define a set of may-def instruction, or instruc-
tion that can write the memory just before the current use. Looking at this set,
the MemoryPhi instructions can be synthesized, which contain the complete set of
memory writers. These nodes are equivalent to Phi Nodes and can be processed in
the same way.

Non-linear operations When considering non linear operation, it become more
complex to propagate the iebw through the computation. Therefore we find an
approximation to propagate the iebw while still using linear operations.

In general, the behavior a function near a given point can be approximated by
the following formula

f(x0 + dx) ≈ f(x0) + f ′(x0)dx

From there it follows that:

∆f = f(x0 + dx)− f(x0) ≈ f(x0) + f ′(x0)dx− f(x0) = f ′(x0)dx (5.12)

This formula, that is a first order Taylor series, can be used to compute the
minimum error bound produced by a function as follows. Given the incoming iebw,
we want to know the iebw that allows to represent correctly the resulting number
without committing more error than it is already present in the input.

Let us consider dx as equal to the equivalent error associated with the iebw, or
— in other words — the maximum uncertainty associated with that variable:

dx = 2−iebw/2

The error on the output can be then computed using the Equation 5.12, and
therefore becomes:

∆f = f ′(x0)dx = f ′(x0) · 2−iebw/2

Reinterpreting this results in terms of iebw,

iebwresult = − log2(
∣∣f ′(x0)∣∣ · 2−iebw/2) = − log2

∣∣f ′(x0)∣∣− log2(2
−iebw/2)

Hence
iebwresult = − log2

∣∣f ′(x0)∣∣+ (iebw + 1)− 1

CHAPTER 5. ILP FOR MIXED PRECISION TUNING 56

The iebw variation introduced by the non linear function can be seen as

∆iebw = − log2
∣∣f ′(x0)∣∣

From the previous equation it is clear that to evaluate the iebw we need to
establish a value for x0. To keep the analysis conservative, the worst-case iebw

should be picked, therefore x0 should be a point where a variation on the input
produces the smallest variation on the output:

x0 = max
x∈[a,b]

∆iebw = max
x∈[a,b]

− log2
∣∣f ′(x)

∣∣
where [a, b] is the range of possible inputs to the function.

It is important to note that if the function has a minimum (or maximum) in the
range considered, ∆iebw will be infinite. This may happen in functions like sin and
cos.

5.3.5 The objective function

As only a single target function may be the subject of optimization, all the costs
must be put together, in order to create a single expression.

As all the costs have to be minimized, we can simply sum Cc, Ec and Exc. Despite
being distinct errors, there is a trade off between them: the lower the selected data
type’s iebw, the more the intermediate results will be precise, but the final program
will have a lot of costs in terms of execution time. On the other hand, a very
homogeneous mix will lead to reduced execution times, but the precision will be
reduced in some operations.

Therefore we need three parameters that signal which minimization to prioritize.
In particular we call these parameters W1,W2,W3. The final formulation will be:

min[W1 · Cc +W3 · Exc +W2 · Ec]

As the values of Cc, Exc, and Ec are in general uncorrelated and on different
scale, to obtain comparable results with the same parameters when compiling dif-
ferent programs and for different architectures, the costs are normalized to always
be between 0 and 1. A normalization factor is therefore introduced, which is equal
to the maximum possible value for each of the three component. The value can be
computed during the creation of the model. Therefore the complete formula becomes:

min

[
W1 ·

Cc

Nc
+W3 ·

Exc
NEx

+W2 ·
Ec

Ne

]

Chapter 6

Experimental evaluation

We tested the proposed analyses and transformations, and theirs implementations
to understand their performance. The testing scenarios have been chosen as similar
as the intended common use.

As the solution is based on taffo, each test has been edited to insert the required
annotations. The correct toolchain for every target architecture was also setup,most
importantly for embedded systems.

Finally, all tests have been run on the selected targets, in order to collect data
about the runtime behavior of the tuned programs, comprising the execution time
and the error that was introduced.

In this section we will present the results obtained such benchmarks, together
with the steps we followed in order to setup the test environment.

6.1 Experimental setup

In this section we outline the environment in which the experiments were conducted,
with respect to four different variables involving our proposal. First, we describe how
the target hardware was profiled ahead-of-time in order to collect the architecture-
specific data required by the model. Then, we enter into detail regarding the bench-
marks which were chosen, and the software implementation of our solution. Finally,
the hardware used for the tests is outlined.

6.1.1 Ahead-of-time profiling

Before running any test, each platform must be instrumented, to understand how
much each conversion will impact the final tuned program. The specific benchmark
used to profile each architecture is a customized version of time_arit [39]. It works
by allocating a memory buffer and then executing the same operation in a loop,

CHAPTER 6. EXPERIMENTAL EVALUATION 58

Instruction Stm32 Raspberry Intel AMD

add_fix 1.2 1.3 1.1 1.3
add_float 2.3 1.8 1.0 1.3
add_double 2.7 2.2 1.4 2.6
sub_fix 1.2 1.3 1.1 1.3
sub_float 2.3 1.8 1.0 1.3
sub_double 2.7 2.2 1.4 2.6
mul_fix 1.6 2.0 1.4 2.6
mul_float 2.6 3.3 1.8 4.4
mul_double 4.0 4.1 1.6 4.6
div_fix 5.3 3.5 4.0 15.1
div_float 5.6 4.1 2.0 6.2
div_double 18.3 5.7 2.2 6.6
rem_fix 1.4 2.2 1.6 9.5
rem_float 27.0 15.2 54.0 13.6
rem_double 152.3 92.2 387.1 74.3
cast_fix_float 7.6 5.3 3.1 7.4
cast_fix_double 20.9 6.8 3.4 8.4
cast_float_fix 4.3 4.5 2.9 5.4
cast_float_double 1.6 1 1.2 1.7
cast_double_fix 5.6 5.5 2.7 6.1
cast_double_float 1.8 5.9 1.2 1.6
cast_fix_fix 1 1.1 1 1

Table 6.1: Results of elementary operation benchmarks on the architectures used
during the experiments. Each time may be composed by the sum of multiple meas-
urements.

for each data type over the whole buffer, in order to minimize the impact of the
caching system. The run is repeated multiple times, recording the CPU time used
by each execution and the median value across all times is returned. The CPU
time is measured using the clock_gettime POSIX API, called with the parameter
CLOCK_PROCESS_CPUTIME_ID. The benchmark must run on the target machine in
order to acquire the correct parameters; however this process must be performed
only once regardless of the number of compilations.

In Table 6.1 we summarized the parameters obtained from the test architectures.
Each table of the row contains the weight for every elementary mathematical instruc-
tion and possible cast between data types. Each weight has been normalized with
respect to the quickest operation. The instructions rem_float and rem_double have
very high costs because they involve a call to the mathematical library function, as
these operations usually are not implemented as hardware instructions.

CHAPTER 6. EXPERIMENTAL EVALUATION 59

6.1.2 Benchmark setup

The benchmark used to verify the quality of the proposed taffo extension is the
Polibench [60] test suite version 4.2.1. This benchmark suite is a set of different
programs written in C containing different kernels used in various scientific research
application. For example, some of the algorithm implemented are used to manipulate
multimedia resources (such as the fdtd-2d Fourier transform, the deriche filter and so
on), others are used in linear algebra computations, found in different fields, (3mm
for matrix multiplication, gramschmidt for matrix decomposition, etc.) and data
mining fields (covariance and correlation).

The test are written in the simplest possible way in order to to enable the verific-
ation of experimental research compilers and source code analyses. It is also possible
to tune the amount of memory to allocate for each single test, in order to be able
to test multiple target, even the most memory constrained ones, such as embedded
systems.

The kernels have been altered to include the correct annotation required by
taffo.

The initial data type selected was the maximum precision floating point type
supported by all the hardware targets, the double data type. This version is used as
a baseline for evaluating the error in the output of the optimized versions.

6.1.3 Software setup

The host machine, that is, the machine that will compile the program for the target,
requires the installation of the llvm toolchain, in particular version 8.0.1, on which
taffo is based. While the tests have been performed with a debug llvm build, it
is advised to use a release version, because of the compilation speed improvements
it enables.

taffo should also be present on the host machine, and compiled against the
correct llvm version in use.

When compiling for different architectures than the host machine, it is required
that the host system also has available the sysroot and/or a toolchain for the target.
Due to the use of the Miosix [58] kernel as a platform to run the test on the embedded
target, its toolchain was also downloaded on the host system.

Finally, the host system must also have a working python3 [52] installation,
including the library ortools [22]. During the tests we used python version 3.8.5 and
ortools version 7.6.7691. This is the only external dependency added to taffo by
the solution proposed. In detail, python and the mentioned library are necessary to
solve the linear optimization problem generated by the new version of dta. Python

CHAPTER 6. EXPERIMENTAL EVALUATION 60

Parameter Type Behavior

mixedmode boolean Whether to enable or not the new
dta algorithm. If false, the old
algorithm is used instead.

costmodelfilename string The name of the model file for op-
eration timing, generated by the
profiling.

mixedtuningiebw decimal number The weight to give to the program
precision when solving the model.

mixedtuningtime decimal number The weight to give to the program
execution speed when solving the
model.

mixedtuningcastingtime decimal number The weight to give to the new
cast introduced by mixed preci-
sion when solving the model.

mixeddoubleenabled boolean Whether to allow or not the in-
clusion of double operations in the
final model. If false, some opera-
tion may still be done in double
precision (e.g. where required by
external functions).

Table 6.2: List of all the possible parameters of the new dta

can be installed via the distribution’s package manager, while the library can be
obtained through pip [49], the Python package installer.

Since a taffo compilation is composed of several steps which are performed in
a particular order, an helper script has been written to automatically execute each
llvm pass in the correct order and with the correct parameters. The dta step has
been changed and more parameters, listed in Table 6.2, have been introduced to
allow a fine tuning of the underlying solver. The parameters mixedtuningtime and
mixedtuningcastingtime have the same meaning in the model, as they are correlated
with the execution time of the final generated program. Thus, they should always
be equal.

CHAPTER 6. EXPERIMENTAL EVALUATION 61

Name Architecture Processor Clock speed Memory FPU

Stm32 ARMv7-M CortexM3 120 MHz 2 MB no
Raspberry ARMv6 ARM11 800 MHz 512 MB yes

AMD x86_64 AMD Opteron 2.6 GHz 218 GB yes
Intel x86_64 Core2 2.6 GHz 4 GB yes

Table 6.3: Hardware specifications for each platform used.

6.1.4 Hardware setup

The tests have been run on different architecture. The main characteristics of each
platform are summarized in Table 6.3.

As each architecture needs a specific setup in order to be tested, they are discussed
distinctly.

Stm32

The STM3220G-EVAL is an evaluation board equipped with a 120 MHz CortexM3
ARM processor. It also features 1 MB of Flash, 128 kB of internal RAM and addi-
tionally 2 MB of SRAM, together with a series of different peripherals, such as the
Serial interface, an LCD and a MicroSD reader.

The board can be used bare metal or with the help of an operating system. All
the tests were run by relying on the Miosix real time operating system, as it offers
a complete hardware abstraction layer and allows to execute the benchmarks with
minimal modifications. The benchmarks were cross compiled and linked from an
host system using llvm together with the GCC toolchain provided by Miosix. The
board was programmed before every test with the help of the Olimex ARM-USB-
OCD JTAG [46] debugger tool. All the output was collected using the on board
serial port.

To collect the kernel running time, the program was instrumented using the
special debug register CYCCNT. When enabled, this 32 bit register increments by
one on each cycle of the processor clock, except when in debug mode [2]. When
it overflows, it simply wraps back to zero; on the board used, this event happens
approximately every 35 seconds, which is a sufficiently long time to run the kernel
of the benchmark.

Raspberry

The Raspberry Pi Model B Rev 2 is a single board computer featuring a BCM2835
ARMv6 processor supporting single precision floating point hardware instructions,
running at 800 MHz (overclocked). It also features 512 MB of RAM, a small part

CHAPTER 6. EXPERIMENTAL EVALUATION 62

of which is reserved to the graphical processor. Despite being often compared to a
complete desktop system, from the performance point of view it is more similar to
an embedded system. The system was running a minimal installation of Arch Linux
for ARM [1] updated to the 5.4 kernel revision.

Due to its limited computational power, all tests were cross compiled from an host
system, with llvm and the official cross compiler toolchain offered by the Raspberry
Foundation [50]. All the tests were then uploaded to the Raspberry and executed.
The profiling was made using the POSIX clock_gettime API. To make the results
reproducible, the load of the board was reduced to the minimum and the CPU
governor was set to performance.

AMD

This server is a NUMA node with four AMD Opteron 8435 CPUs, based on the K10
microarchitecture, running at 2.6 GHz and with a total of 128 GB DDR2 RAM. It
has been selected for the tests as its architecture is similar to those used in high-
performance computing. The operating system is Linux Ubuntu server 18.04.

The compilation was made on the server, using the release version of llvm 8
available in the package manager.

The profiling was made in the same way as the Raspberry. No other services or
superfluous processes were running on the server during the benchmarks, to better
estimate the kernel running time.

Intel

A personal computer featuring a Core 2 dual-core processor running at 2.6 GHz,
with 4 GB of RAM. The operating system installed is a recent release of Arch Linux,
running the 5.4 kernel version. It has been selected to evaluate the performance of
taffo in a general personal computer architecture.

The compilation was made on the computer itself. The evaluation of the speedup
was made using the same API used for AMD and Raspberry. The load of the PC was
reduced to the minimum and the CPU governor was set to performance to prevent
variable frequency adjustments from affecting test results.

6.1.5 Model parameters

Each kernel has been tested on the destination platform in different configuration
settings. The parameters passed to the solver are summarized in Table 6.4. As the
parameters regulating the importance given to the execution time and the cast time
are always equal, only one has been reported.

CHAPTER 6. EXPERIMENTAL EVALUATION 63

Mode iebw Time

Quick 1 1000
Imprecise 20 80
Medium 50 50
Precise 1000 1

Table 6.4: Model parameters chosen for each configuration.

6.1.6 Evaluation metrics

To evaluate the performance of the proposed analyses and transformations, each
benchmark has been instrumented to collect both the execution time and the results
of the processing. We built an helper script to collect these parameters. In details,
we computed for each benchmark the following information.

Speedup

The speedup represents how fast the new version generated by the optimization is
with respect to the original version. It is expressed in form of a percentage; positive
values represent a version that is quicker than the old one while a negative value
represents a slowdown. A value of zero means that the kernel time has not changed
between the two versions.

Formally, the speedup can be expressed as

S% =

(
torig
ttaffo

− 1

)
· 100

where torig and ttaffo represent respectively the execution time of the original ker-
nel version and the optimized one, in seconds or others units of measure directly
proportional to the execution time.

Output precision

As a way to quantify the precision of the error, the mean percentage error (MPE)
has been used as the metric of output quality. The MPE is defined as

Empe =
100%

n

n∑
i

∣∣∣∣oorig,i − otaffo,i

oorig,i

∣∣∣∣
where oorig,i and otaffo,i are the output of the original program and the tuned version
respectively, and n represents the total number of elements found in the output.

CHAPTER 6. EXPERIMENTAL EVALUATION 64

Metrics of the solution of the model

Besides the speed and the error, we also collected some metrics about the solution
of the model. In particular, after every compilation, we collected the number of in-
structions converted into a specific output type. These values can give an estimation
of the final precision mix. In addition, the compilation time has been profiled, both
when using the old taffo algorithm and when using newly proposed solution.

6.2 Result analysis

In this section we present the results obtained processing the data generated from
the benchmark.

6.2.1 Speedup

In Tables A.1, A.2, A.3, A.4 and in Figures 6.1, 6.2, 6.3, 6.4 we show the speedup
achieved by the kernels on the various target platforms. The label Fix denotes the
same kernel compiled with the precedent taffo algorithm, which is capable of using
only fixed point types as the final conversion data type.

Referring to the charts in Figure 6.1, it is possible to note that, apart from
a restricted number of outliers, the algorithm generates multiple versions of the
same kernel with an increasing speedup in relation to the more weight given to the
execution time by the model parameters. In particular, speedup of over 800% where
achieved by using the proposed algorithm.

In the Quick mode, the new linear-programming-based model was able to find
a type assignment that produced faster programs than the original type allocation
algorithm did. We believe that this happens because the new algorithm has a global
view of the program being optimized, whilst the old algorithm was a peephole op-
timization. In particular, these speedups are produced by a more homogeneous fixed
point assignment, requiring a lesser amount of casts in the final program to perform
the computation.

The near to zero speedup found for the majority of the Precise versions on all
the target architectures is generally produced by the inability of the model to find
better type assignments to the variables, while when keeping the precision at the
maximum. Even if this was achievable, the costs introduced by the casts would be
too high and they would not allow any speedup. Therefore the model leaves all the
variables as they are.

On the Raspberry target, no large speedup were achievable with the exploitation
of mixed precision. In facts, all the versions are as time consuming as the original

CHAPTER 6. EXPERIMENTAL EVALUATION 65

double version, or as the fixed point version. The principal cause of this phenomenon
is that the platform only supports to only single precision floating point operations,
while the double precision is not hardware assisted, and therefore mixing single and
double precision operation does not cause a speedup, contrary to the result on the
Stm32 platform. The slowdown that can be seen on some Precise kernel versions is
originated from the fact that the conversion back end is not perfect and sometimes
generates redundant code.

Different results are obtained, instead, on targets Intel and AMD. On the Intel
platform, it is possible to note that in the majority of kernels where the original
taffo algorithm did produce a slower version then the original one, the new proposed
analysis instead did find some opportunity to speed up the execution time. Moreover,
if it could not find any faster version, it produced a version with similar execution
times.

The slowdown outliers are probably generated by the platform complexities not
modelled in the solution. For example, it is not feasible to model the superscalar
architecture found on the Core 2 processor using a simple linear model cost. In these
cases, the original code is faster due to a different allocation of the resources in the
processor, or by the exploitation of different SIMD-style instructions to increase the
data throughput when using specific data types.

The same reasoning applies to the results obtained on the AMD architecture.
While the model is overall able to find more performant alternatives where the ori-
ginal dta algorithm was not effective, sometimes it produces slower code, and the
execution time of the final kernels does not monotonically follow the execution time
parameters.

6.2.2 Error

In Figures 6.5, 6.6, 6.7 and 6.8 and Tables B.1, B.2, B.3 and B.4 we present the error
computed as previously described.

When recompiling the same kernel with a lower requirement in terms of precision,
the precision of the optimized version goes indeed down. The last column (Fix) is
shown as a reference to compare the results with the precedent algorithm. Sometimes
the error in the Quick column may be worse than the result in the column Fix. This
is due to the use of different fixed point formats in the final mix.

There are some peculiarities in the table. First of all, in some kernels the error
stays equal to zero. The analysis of such kernels showed that, in the case of heat-3d
the error is always zero because the computation converges to the same values even for
reduced precision kernels, while for nussinov and floyd-warshall the output of the
computation is not a numeric value but a classification. Despite the approximation

CHAPTER 6. EXPERIMENTAL EVALUATION 66

0.25 0.50 1.00 2.00 3.00 4.00 5.00 10.00
Speedup

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
QUICK
FIX

Figure 6.1: Stm32 speedup chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 67

0.25 0.50 1.00 2.00 3.00 4.00 5.00
Speedup

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

seidel-2d

symm

syr2k

syrk

trisolv

trmm

floyd-warshall

nussinov

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

Figure 6.2: Raspberry speedup chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 68

0.25 0.50 1.00 2.00 3.00 4.00 5.00
Speedup

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

nussinov

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

floyd-warshall

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

Figure 6.3: Intel speedup chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 69

0.25 0.50 1.00 2.00 3.00 4.00 5.00
Speedup

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

Figure 6.4: AMD speedup chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 70

introduced in the computation, the values are still assigned to the correct label.
Therefore the total error computed is 0.

Finally, some columns contain a lot of zeros, in particular the left most ones.
This is mainly because the algorithm did not find assignment with better execution
time than the original one. Therefore the output kernel still uses the same data
type, thus producing the same error as the original, especially on architecture with
full floating point support.

The test gramschmidt represents an exception, as all the versions produced shows
error of above 100%. The algorithm, in fact, is very susceptible to noise. As the
precision tuning process introduces a lot of such noise by switching to less precise
variables, the test present high error in output data. Moreover, the model is not able
to handle correctly this case because of the use of nonlinear operation (square root)
and divisions inside the computational kernel.

CHAPTER 6. EXPERIMENTAL EVALUATION 71

0.01 0.10 0.50 1.00
Error

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
QUICK
FIX

0

0

0

0

0

2.45e-06

9.77e-02

0

9.81e-05

0

6.80e-05

0

0

0

0

0

0

0

0

0

2.51e-06

0

0

0

0

0

0

0

0

0

1.97e-06

1.98e-06

2.20e-05

2.32e-07

1.67e-06

2.45e-06

9.77e-02

3.31e-06

1.23e-04

1.00e-06

9.31e-05

5.28e-05

0

9.70e-02

6.61e-07

1.23e-06

1.06e+02

0

1.54e-07

2.52e-05

2.51e-06

9.04e-03

4.78e-07

0

3.95e-06

3.31e-07

1.87e-06

1.84e-06

5.71e-06

1.52e-06

5.36e-03

2.16e-01

2.10e-04

1.41e-03

7.59e-05

4.54e-02

4.93e-01

9.94e-06

7.49e-02

1.16e-05

5.30e-03

1.09e-03

0

1.01e-01

1.37e-04

1.03e-04

1.75e+02

0

2.16e-04

3.83e-03

1.79e-04

1.53e-03

5.56e-05

0

1.30e-02

1.16e-02

2.90e-05

2.33e-01

4.24e-04

1.76e-04

5.39e-03

2.57e-01

2.07e-04

1.40e-03

6.09e-05

4.55e-02

1.92e-01

4.93e-02

8.17e-03

1.36e-05

5.30e-03

1.10e-03

0

1.01e-01

1.83e-03

6.98e-05

1.01e+02

0

2.16e-04

4.62e-03

1.72e-04

1.17e-03

5.34e-05

0

1.30e-02

1.19e-02

2.88e-05

2.33e-01

2.02e-04

1.35e-04

Figure 6.5: Stm32 error chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 72

0.01 0.10 0.50 1.00
Error

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

0

0

0

0

0

0

1.74e-03

0

1.01e-04

0

2.61e-03

0

0

0

0

0

1.21e+02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.39e-08

0

0

1.74e-03

1.01e-06

7.94e-02

0

2.61e-03

0

0

0

0

0

1.21e+02

0

0

0

0

0

0

0

0

0

0

0

0

0

3.29e-03

2.20e-01

3.51e-02

1.46e-03

3.61e-05

7.76e-04

3.36e-03

2.94e-05

7.94e-02

2.00e-05

1.06e+01

3.02e-04

0

1.20e-01

1.13e-04

1.13e-04

1.24e+02

0

2.16e-04

9.74e-04

8.34e-04

2.43e-02

9.47e-05

0

7.37e-03

1.78e-02

6.54e-05

2.71e-01

8.97e-03

1.81e-04

3.29e-03

2.20e-01

3.51e-02

1.34e-03

4.28e-05

9.54e-04

5.25e-03

2.94e-05

7.94e-02

1.89e-05

1.06e+01

3.02e-04

0

1.20e-01

1.07e-04

1.22e-04

1.16e+02

0

2.16e-04

9.74e-04

9.11e-04

2.43e-02

1.01e-04

0

7.37e-03

1.78e-02

6.01e-05

2.71e-01

8.97e-03

1.76e-04

3.28e-03

2.20e-01

2.94e-02

1.36e-03

7.15e-05

8.39e-02

2.81e-01

1.40e-03

8.04e-03

1.59e-05

1.06e+01

5.62e-01

0

1.20e-01

2.27e-04

7.99e-05

6.73e+03

0

2.16e-04

9.41e-04

1.85e-05

2.42e-02

7.82e-05

0

7.37e-03

1.78e-02

5.74e-05

2.71e-01

1.90e-04

1.47e-04

Figure 6.6: Raspberry error chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 73

0.01 0.10 0.50 1.00
Error

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

0

0

0

0

0

0

1.74e-03

0

1.01e-04

0

2.61e-03

0

0

0

0

0

1.21e+02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.74e-03

0

1.01e-04

0

2.61e-03

0

0

0

0

0

1.21e+02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.39e-08

0

0

1.74e-03

0

9.97e-05

0

2.61e-03

0

0

0

0

0

1.21e+02

0

0

1.41e-04

0

0

0

0

4.75e-06

0

0

0

0

0

0

1.73e-05

2.20e-03

2.52e-05

0

3.15e-06

1.75e-03

3.19e-05

1.29e-04

8.41e-06

9.92e-03

1.65e-04

0

0

2.15e-05

1.14e-05

1.21e+02

0

3.28e-04

1.41e-04

8.34e-04

2.43e-02

1.77e-05

0

4.75e-06

0

0

0

0

0

3.28e-03

2.20e-01

2.94e-02

1.36e-03

7.15e-05

8.39e-02

2.81e-01

1.40e-03

8.04e-03

1.59e-05

1.06e+01

1.26e+02

0

1.20e-01

2.27e-04

7.99e-05

6.73e+03

0

2.16e-04

9.41e-04

1.85e-05

2.42e-02

7.82e-05

0

7.37e-03

1.78e-02

5.74e-05

2.71e-01

1.90e-04

1.47e-04

Figure 6.7: Intel error chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 74

0.01 0.10 0.50 1.00
Error

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

PRECISE
MEDIUM
IMPRECISE
QUICK
FIX

0

0

0

0

0

3.15e-06

1.74e-03

0

1.01e-04

0

2.64e-03

0

0

0

0

0

0

0

0

0

3.16e-06

4.37e-05

0

0

0

0

0

0

0

0

0

0

0

3.39e-08

0

3.15e-06

1.74e-03

0

1.10e-04

0

2.64e-03

0

0

0

0

0

1.21e+02

0

0

0

3.16e-06

3.71e-03

0

0

0

0

0

0

0

0

0

1.72e-05

2.77e-03

3.39e-08

0

8.36e-04

1.75e-03

3.17e-05

1.29e-04

0

9.92e-03

1.65e-04

0

1.20e-01

0

1.12e-05

1.21e+02

0

3.28e-04

1.41e-04

8.34e-04

2.43e-02

0

0

4.75e-06

1.78e-02

0

0

0

0

1.67e-05

1.73e-05

2.20e-03

2.52e-05

1.97e-05

8.36e-04

1.75e-03

3.19e-05

1.29e-04

8.41e-06

9.92e-03

1.65e-04

0

1.20e-01

2.15e-05

1.14e-05

1.21e+02

0

3.28e-04

1.41e-04

8.34e-04

2.43e-02

1.77e-05

0

4.75e-06

1.78e-02

9.57e-06

9.81e-06

9.15e-03

1.17e-05

3.28e-03

2.20e-01

2.94e-02

1.36e-03

7.15e-05

8.39e-02

2.81e-01

1.40e-03

8.04e-03

1.59e-05

1.06e+01

1.26e+02

0

1.20e-01

2.27e-04

7.99e-05

6.73e+03

0

2.16e-04

9.41e-04

1.85e-05

2.42e-02

7.82e-05

0

7.37e-03

1.78e-02

5.74e-05

2.71e-01

1.90e-04

1.47e-04

Figure 6.8: AMD error chart.

CHAPTER 6. EXPERIMENTAL EVALUATION 75

Target Time Error
Permissive Strict Permissive Strict

STM32 96.7 83.3 100.0 96.7
Raspberry 96.7 90.0 100.0 83.3
Core2 93.3 76.7 100.0 100.0
AMD 100.0 80.0 96.7 93.3

Table 6.5: Correctly handled test cases for each platform.

6.2.3 Summary of compilation results

In Table 6.5 we report a summary of the results, as an aggregate metric meant to
reflect whether the model was successful or not in achieving the required goals with
respect to precision and execution time.

The aggregate metric is the percentage of tests that behave correctly to changes
in the speed and precision parameters of the model. A test behaves correctly with
respect to speed if increasing the speed parameter also determines a reduction of the
execution time. In the same way, test behaves correctly with respect to the error if
increasing the precision also determines a reduction of the error. In the Permissive
column, we show the percentage of tests that behave correctly only considering the
Precise and Quick versions. For example, if the Quick version is faster than the
Precise version, it behaves correctly with respect to speed. In the Strict column, we
show the percentage of tests that behave correctly in all possible combinations of
versions.

On all the architectures, the model behaves correctly in the great majority of the
cases, showing that speed and precision have been controlled as expected in more
than 75% of the benchmarks.

Similarly, with respect to the error, the model generates correct results in more
than the 80% of the benchmarks.

6.2.4 Precision mix

In Table 6.6 we show the instruction mix for the Stm32 target architecture, the one
that produced the most heterogeneous mixes. The instruction mix measure, as a
percentage, how many instruction have been converted to a specific data type, when
processed by the model. The instructions are reported as a percentage on the total
amount of convertible instructions.

These metrics are obtained directly from output of the model solver.
The analysis of the data shows that when requesting increased precision in the

final program, most of the instructions are left as double precision floating point.

CHAPTER 6. EXPERIMENTAL EVALUATION 76

Kernel Precise Medium Quick
Fix Float Double Fix Float Double Fix Float Double

2mm 0 0 100 0 24.6 75.4 70.8 27.7 1.5
3mm 0 2.5 97.5 0 22.8 77.2 82.3 16.5 1.3
adi 0 2.6 97.4 0 14.7 85.3 58.0 39.8 2.2
atax 0 2.3 97.7 0 22.7 77.3 79.5 18.2 2.3
bicg 0 2.0 98.0 0 25.5 74.5 68.6 29.4 2.0
cholesky 0 5.1 94.9 0 11.5 88.5 30.8 65.4 3.8
corr 0 3.8 96.2 0 32.7 67.3 26.0 69.2 4.8
covariance 0 1.7 98.3 0 18.3 81.7 8.3 90 1.7
deriche 0 0 100 7.0 3.5 89.5 76.7 23.3 0
doitgen 0 2.5 97.5 0 22.5 77.5 50 50 0
durbin 0 6.4 93.6 0 12.8 87.2 95.7 4.3 0
fdtd-2d 0 0 100 0 9.2 90.8 100 0 0
floyd-warshall 0 2.7 97.3 8.1 91.9 0 97.3 2.7 0
gemm 0 8.3 91.7 11.1 47.2 41.7 83.3 8.3 8.3
gemmver 0 0 100 0 28 72 71 27 2
gesummv 0 1.7 98.3 0 22.0 78.0 96.6 1.7 1.7
gramschmidt 0 4.7 95.3 0 10.6 89.4 16.5 77.6 5.9
heat-3d 0 0 100 0 2.9 97.1 100 0 0
jacobi-1d 0 10.5 89.5 10.5 15.8 73.7 100 0 0
jacobi-2d 0 2.9 97.1 0 14.5 85.5 100 0 0
lu 0 5.6 94.4 0 12.7 87.3 33.8 64.8 1.4
ludcmp 0 3.5 96.5 0 15.0 85.0 35.4 62.8 1.8
mvt 0 0 100 0 35.1 64.9 61.4 38.6 0
nussinov 6.2 0 93.8 9.2 0 90.8 98.5 0 1.5
seidel-2d 0 0 100 0 3.8 96.2 100 0 0
symm 0 1.5 98.5 0 19.4 80.6 98.5 1.5 0
syr2k 0 0 100 0 23.5 76.5 100 0 0
syrk 0 0 100 0 22.9 77.1 100 0 0
trisolv 0 2.6 97.4 0 15.4 84.6 12.8 87.2 0
trmm 0 2.6 97.4 0 23.1 76.9 97.4 2.6 0

Table 6.6: Instruction mix of the versions for the Stm32 platform. The values are in
percentage.

When requesting less precise programs, double precision floating point instructions
are mixed with less precise counterparts, like single precision floating point and fixed
point instructions.

6.2.5 Compilation times

The compilation times has also been collected for a specific set of tests, in particular
for the AMD version. From this data, the compilation slowdown has been computed
with respect to using a release version of llvm. These results are reported in Table
C.1 and visible in Figure 6.9.

In the table, the first two columns represent the compilation time with the pre-
cedent algorithm and with the new algorithm for mixed precision, respectively. The

CHAPTER 6. EXPERIMENTAL EVALUATION 77

0 1 2 3 4
Slowdown

2mm

3mm

adi

atax

bicg

cholesky

corr

covariance

deriche

doitgen

durbin

fdtd-2d

floyd-warshall

gemm

gemmver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d

lu

ludcmp

mvt

nussinov

seidel-2d

symm

syr2k

syrk

trisolv

trmm

Slowdown

Figure 6.9: Compilation time slowdown for each kernel.

CHAPTER 6. EXPERIMENTAL EVALUATION 78

compilation time of the new algorithm is a geometric mean across the four configur-
ation tested.

Finally, in the last column, the slowdown is presented in the form of a ratio
between the times. More precisely, the last column is computed as:

Rslowdown =
tnew
told

The greatest slowdown achieved was for test symm, where the compilation process
lasted about thrice the time the original algorithm did, whereas the slowest kernel
to compile in absolute terms was heat-3d which took about 6 seconds.

This table is important in order to understand the applicability of the method-
ology proposed. In fact, due to the exploitation of an integer linear programming
solver, whose complexity is in the order of O(2n) — where n is the number of re-
gisters and variables allocated in the programs — the compilation time may increase
dramatically on larger programs.

Nevertheless, the constants involved are very small and therefore no excess-
ive penalty is introduced during the compilation step for this type of benchmark.
Moreover, the code for the new algorithm still contains a great number of debugging
statement which partially contribute to the slowdown.

6.2.6 Number of tests

The exploitation of this new analysis method to optimize computational kernels does
not give any guarantee on the error of the output or on execution time improvements,
but generates different versions of the program with partial guarantees on the mono-
tonicity of the results with relation to the input parameters. Nevertheless, it is
possible to note that the number of possible versions that the model generates are
limited. Small variation on the input parameters do not produce changes in the
output of the model. This remarkably reduces the possible search space generated
from the input parameters, limiting the number of kernels that are required to be
executes for performing a correctness check.

In order to show this property, we compiled a specific test (gesummv) with several
fine-grained variations of the parameter, as shown in Table D.1 and in Figures 6.10
and 6.11. The granularity of the parameter variations is in steps of 5. Chosen the
time parameter xtime, the iebw parameter is selected as 101− xtime.

The only changes in the program are present after test 7, 15, 16 and 17. The last
4 tests have the same data type assignments except for the fix point decimal places,
for a total of 4 fundamentally different programs.

It is clear that there is no need to finely tune the parameters to the model

CHAPTER 6. EXPERIMENTAL EVALUATION 79

because, at least on small programs, nothing change. More precisely, for all but a
small fraction of sets of possible parameters there are no variation in execution time,
error or number of instructions attributed to the data type. Therefore, we deem the
number of versions we chose to generate during the tests, for this type of kernels, as
sufficient to characterize the model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

Speedup

Figure 6.10: gesummv speedup.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

1e 6
Error

Figure 6.11: gesummv error.

Chapter 7

Conclusions

In this thesis, we presented a new technique to enable precision tuning via static
analysis and exploitation of integer linear programming. This technique has also
been implemented as an extension to a state of the art precision tuning framework,
taffo, which is based on the well known llvm compiler toolchain.

This work has been evaluated on a set of standard benchmarks, proving its ef-
fectiveness on a wide variety of workloads. The experimental campaign conducted
on the proposed implementation reports an overall positive feedback. This solu-
tion proved to be particularly well-suited for simple microarchitectures. The model
proposed handles successfully more than 75% of the benchmarks tested on every
platform with respect to execution time. The model precision goes up to 80% when
dealing with the error parameter.

On more complex architectures, the prediction results can be improved in accur-
acy. On such hardware, the compiler can apply disruptive optimizations – such as
automatic vectorization – which can easily invalidate the original model. More work
needs to be carried out to correctly predict these systems.

Nevertheless, we expect for this approach to pave the way to the use of static
analysis techniques in the precision tuning field. The vast application area of per-
formance modelling for precision tuning still needs to be investigated more before
this approach can be applied on a generic microarchitecture.

In practice, a better way to model complex architectures has still to be implemen-
ted, together with the support for the conversion of different mathematical functions.
Afterwards, the approach can be expanded to support more exotic data types, and
then adapted to custom hardware support.

Finally, this solution can also be combined with some other techniques like dy-
namic recompilation [10] to build different versions of the same kernel which auto-
matically adapt to different input properties.

Bibliography

[1] Arch Linux ARM. url: https://archlinuxarm.org/.

[2] ARM. ARMv7-M ArchitectureReference Manual. 2014. url: https://static.
docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf.

[3] Robert E Bixby. “A brief history of linear and mixed-integer programming
computation”. In: Documenta Math. 2012.

[4] Daniele Cattaneo, Antonio Di Bello, Stefano Cherubin, Federico Terraneo and
Giovanni Agosta. “Embedded Operating System Optimization through Float-
ing to Fixed Point Compiler Transformation”. In: 2018 21st Euromicro Con-
ference on Digital System Design (DSD). 2018, pp. 172–176.

[5] Daniele Cattaneo, Michele Chiari, Stefano Cherubin, Antonio Di Bello and Gio-
vanni Agosta. “Feedback-Driven Performance and Precision Tuning for Auto-
matic Fixed Point Exploitation”. In: Parallel Computing: Technology Trends,
Proceedings of the International Conference on Parallel Computing, PARCO
2019, Prague, Czech Republic, September 10-13, 2019. Ed. by Ian T. Foster,
Gerhard R. Joubert, Ludek Kucera, Wolfgang E. Nagel and Frans J. Peters.
Vol. 36. Advances in Parallel Computing. IOS Press, 2019, pp. 299–308. doi:
10.3233/APC200054. url: https://doi.org/10.3233/APC200054.

[6] Daniele Cattaneo, Antonio Di Di Bello, Michele Chiari, Stefano Cherubin and
Giovanni Agosta. “Fixed Point Exploitation via Compiler Analyses and Trans-
formations: POSTER”. In: Proceedings of the 16th ACM International Con-
ference on Computing Frontiers. CF ’19. Alghero, Italy: Association for Com-
puting Machinery, 2019, pp. 292–294. isbn: 9781450366854. doi: 10.1145/
3310273.3323424. url: https://doi.org/10.1145/3310273.3323424.

[7] Daniele Cattaneo, Michele Chiari, Gabriele Magnani, Nicola Fossati, Stefano
Cherubin and Giovanni Agosta. “FixM: Code Generation of Fixed Point Math-
ematical Functions”. In: Sustainable Computing: Informatics and Systems (2021).
(to appear). issn: 2210-5379.

81

https://archlinuxarm.org/
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://doi.org/10.3233/APC200054
https://doi.org/10.3233/APC200054
https://doi.org/10.1145/3310273.3323424
https://doi.org/10.1145/3310273.3323424
https://doi.org/10.1145/3310273.3323424

BIBLIOGRAPHY 82

[8] Stefano Cherubin. fixedpoint - Fixed Point C++ support for approximate com-
puting. 2018. url: https://github.com/skeru/fixedpoint.

[9] Stefano Cherubin and Giovanni Agosta. “Tools for Reduced Precision Compu-
tation: A Survey”. In: ACM Comput. Surv. 53.2 (Apr. 2020). issn: 0360-0300.
doi: 10.1145/3381039. url: https://doi.org/10.1145/3381039.

[10] Stefano Cherubin, Daniele Cattaneo, Michele Chiari and Giovanni Agosta.
“Dynamic Precision Autotuning with TAFFO”. In: ACM Trans. Archit. Code
Optim. 17.2 (May 2020). issn: 1544-3566. doi: 10.1145/3388785. url: https:
//doi.org/10.1145/3388785.

[11] Stefano Cherubin, Giovanni Agosta, Imane Lasri, Erven Rohou and Olivier
Sentieys. “Implications of Reduced-Precision Computations in HPC: Perform-
ance, Energy and Error”. In: International Conference on Parallel Computing
(ParCo). Bologna, Italy, Sept. 2017. url: https://hal.inria.fr/hal-
01633790.

[12] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello and
Giovanni Agosta. “TAFFO: Tuning assistant for floating to fixed point optim-
ization”. In: IEEE Embedded Systems Letters 12.1 (2019), pp. 5–8.

[13] J. N. Coleman, E. I. Chester, C. I. Softley and J. Kadlec. “Arithmetic on the
European logarithmic microprocessor”. In: IEEE Transactions on Computers
49.7 (2000), pp. 702–715.

[14] William Cook. “Markowitz and Manne+ Eastman+ Land and Doig= branch
and bound”. In: Optimization Stories (2012), pp. 227–238.

[15] G. Dantzig. Programming in a linear structure. U.S. Air Force Comptroller,
1948.

[16] Eva Darulova, Einar Horn and Saksham Sharma. “Sound Mixed-precision Op-
timization with Rewriting”. In: Proceedings of the 9th ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems. ICCPS ’18. Porto, Portugal,
2018, pp. 208–219. isbn: 978-1-5386-5301-2. doi: 10.1109/ICCPS.2018.00028.

[17] Eva Darulova and Viktor Kuncak. “Sound Compilation of Reals”. In: SIGPLAN
Not. 49.1 (Jan. 2014), pp. 235–248. issn: 0362-1340. doi: 10.1145/2578855.
2535874. url: https://doi.org/10.1145/2578855.2535874.

[18] Nicola Fossati, Daniele Cattaneo, Michele Chiari, Stefano Cherubin and Gio-
vanni Agosta. “Automated Precision Tuning in Activity Classification Systems:
A Case Study”. In: Proceedings of the 11th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-Core Architectures / 9th

https://github.com/skeru/fixedpoint
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://hal.inria.fr/hal-01633790
https://hal.inria.fr/hal-01633790
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1145/2578855.2535874
https://doi.org/10.1145/2578855.2535874
https://doi.org/10.1145/2578855.2535874

BIBLIOGRAPHY 83

Workshop on Design Tools and Architectures for Multicore Embedded Comput-
ing Platforms. PARMA-DITAM’2020. Bologna, Italy: Association for Comput-
ing Machinery, 2020. isbn: 9781450375450. doi: 10.1145/3381427.3381432.
url: https://doi.org/10.1145/3381427.3381432.

[19] Free Software Foundation. GMP. 2019. url: https://gmplib.org/.

[20] David Goldberg. “What Every Computer Scientist Should Know about Floating-
Point Arithmetic”. In: ACM Comput. Surv. 23.1 (Mar. 1991), pp. 5–48. issn:
0360-0300. doi: 10.1145/103162.103163. url: https://doi.org/10.1145/
103162.103163.

[21] Ralph Gomory. “Early Integer Programming”. In: Operations Research 50 (Feb.
2002), pp. 78–81. doi: 10.1287/opre.50.1.78.17793.

[22] Google.Google OR-Tools. url: https://developers.google.com/optimization.

[23] Thomas Gross. “Software implementation of floating-point arithmetic on a
reduced-instruction-set processor”. In: Journal of Parallel and Distributed Com-
puting 2.4 (1985), pp. 362–375. issn: 0743-7315. doi: https://doi.org/10.
1016/0743- 7315(85)90020- 6. url: http://www.sciencedirect.com/
science/article/pii/0743731585900206.

[24] R. Gu, P. Beata and M. Becchi. “Characterizing the Performance/Accuracy
Tradeoff of High-Precision Applications via Auto-tuning*”. In: 2019 IEEE In-
ternational Symposium on Workload Characterization (IISWC). 2019, pp. 268–
272.

[25] Hui Guo and Cindy Rubio-González. “Exploiting Community Structure for
Floating-Point Precision Tuning”. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018. Am-
sterdam, Netherlands: Association for Computing Machinery, 2018, pp. 333–
343. isbn: 9781450356992. doi: 10.1145/3213846.3213862. url: https:
//doi.org/10.1145/3213846.3213862.

[26] A. Hoffman, M. Mannos, D. Sokolowsky and N. Wiegmann. “Computational
Experience in Solving Linear Programs”. In: Journal of the Society for Indus-
trial and Applied Mathematics 1.1 (1953), pp. 17–33. issn: 03684245. url:
http://www.jstor.org/stable/2099061.

[27] IEEE Computer Society Standards Committee. Floating-Point Working group
of the Microprocessor Standards Subcommittee. “IEEE Standard for Binary
Floating-Point Arithmetic”. In: ANSI/IEEE Std 754-1985 (1985), pp. 1–14.
doi: 10.1109/IEEESTD.1985.82928.

https://doi.org/10.1145/3381427.3381432
https://doi.org/10.1145/3381427.3381432
https://gmplib.org/
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1287/opre.50.1.78.17793
https://developers.google.com/optimization
https://doi.org/https://doi.org/10.1016/0743-7315(85)90020-6
https://doi.org/https://doi.org/10.1016/0743-7315(85)90020-6
http://www.sciencedirect.com/science/article/pii/0743731585900206
http://www.sciencedirect.com/science/article/pii/0743731585900206
https://doi.org/10.1145/3213846.3213862
https://doi.org/10.1145/3213846.3213862
https://doi.org/10.1145/3213846.3213862
http://www.jstor.org/stable/2099061
https://doi.org/10.1109/IEEESTD.1985.82928

BIBLIOGRAPHY 84

[28] IEEE Computer Society Standards Committee. Floating-Point Working group
of the Microprocessor Standards Subcommittee. “IEEE Standard for Floating-
Point Arithmetic”. In: IEEE Std 754-2008 (Aug. 2008), pp. 1–70. doi: 10.
1109/IEEESTD.2008.4610935.

[29] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
Vol. 1. May 2018. Chap. 8.

[30] Fredrik Johansson. mpmath. 2019. url: http://mpmath.org/.

[31] Mioara Joldes, Jean-Michel Muller, Valentina Popescu and Warwick Tucker.
“CAMPARY: Cuda multiple precision arithmetic library and applications.”
English. In: Mathematical software – ICMS 2016. 5th international confer-
ence, Berlin, Germany, July 11–14, 2016. Proceedings. Cham: Springer, 2016,
pp. 232–240. isbn: 978-3-319-42431-6/pbk; 978-3-319-42432-3/ebook.

[32] N. Karmarkar. “A new polynomial-time algorithm for linear programming”. In:
Combinatorica 4.4 (Dec. 1984), pp. 373–395. issn: 1439-6912. doi: 10.1007/
BF02579150. url: https://doi.org/10.1007/BF02579150.

[33] Israel Koren. Computer arithmetic algorithms. CRC Press, 2018. isbn: 9781568811604.

[34] Ki-Il Kum, Jiyang Kang and Wonyong Sung. “AUTOSCALER for C: an op-
timizing floating-point to integer C program converter for fixed-point digital
signal processors”. In: IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing 47.9 (Sept. 2000), pp. 840–848. issn: 1057-7130.
doi: 10.1109/82.868453.

[35] Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski and Matthew
P. Legendre. “Automatically Adapting Programs for Mixed-Precision Floating-
Point Computation”. In: Proceedings of the 27th International ACM Confer-
ence on International Conference on Supercomputing. ICS ’13. Eugene, Ore-
gon, USA: Association for Computing Machinery, 2013, pp. 369–378. isbn:
9781450321303. doi: 10.1145/2464996.2465018. url: https://doi.org/10.
1145/2464996.2465018.

[36] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation”. In: International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[37] Hong Q. Le, J. A. Van Norstrand, B. W. Thompto, J. E. Moreira, D. Q.
Nguyen, D. Hrusecky, M. J. Genden and M. Kroener. “IBM POWER9 pro-
cessor core”. In: IBM Journal of Research and Development 62.4/5 (July 2018),
2:1–2:12. issn: 0018-8646. doi: 10.1147/JRD.2018.2854039.

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
http://mpmath.org/
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1109/82.868453
https://doi.org/10.1145/2464996.2465018
https://doi.org/10.1145/2464996.2465018
https://doi.org/10.1145/2464996.2465018
https://doi.org/10.1147/JRD.2018.2854039

BIBLIOGRAPHY 85

[38] C. E. Lemke. “The dual method of solving the linear programming problem”.
In: Naval Research Logistics Quarterly 1.1 (1954), pp. 36–47. doi: 10.1002/
nav.3800010107. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/nav.3800010107. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/nav.3800010107.

[39] Nicolas Limare. time-arit-mat benchmark tool. 2014. url: http://nicolas.
limare.net/pro/notes/2014/time_arit_math.tgz.

[40] LLVM feature list. url: https://llvm.org/Features.html.

[41] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi and Kim Hazelwood. “Pin: Build-
ing Customized Program Analysis Tools with Dynamic Instrumentation”. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’05. Chicago, IL, USA: Association
for Computing Machinery, 2005, pp. 190–200. isbn: 1595930566. doi: 10.1145/
1065010.1065034. url: https://doi.org/10.1145/1065010.1065034.

[42] Microchip. megaAVR Data Sheet. 2018. url: http://ww1.microchip.com/
downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-32%208%20-P-

DS-DS40002061A.pdf.

[43] David Monniaux. “The Pitfalls of Verifying Floating-point Computations”. In:
ACM Transactions on Programming Languages and Systems 30.3 (May 2008),
12:1–12:41. issn: 0164-0925. doi: 10.1145/1353445.1353446.

[44] Diego Novillo et al. “Memory SSA-a unified approach for sparsely representing
memory operations”. In: Proceedings of the GCC Developers’ Summit. Citeseer.
2007, pp. 97–110.

[45] Johan Nyström. Fixmath - Fixed Point Library. 2012. url: http://savannah.
nongnu.org/projects/fixmath/.

[46] Olimex ARM-USB-OCD JTAG debugger. url: https://www.olimex.com/
Products/ARM/JTAG/ARM-USB-OCD/.

[47] Christos H Papadimitriou. “On the complexity of integer programming”. In:
Journal of the ACM (JACM) 28.4 (1981), pp. 765–768.

[48] Antonio Pullini. “Design of Energy Efficient Microcontrollers”. PhD thesis.
ETH Zurich, 2019.

[49] PyPA. pip package installer for Python. url: https://pip.pypa.io.

[50] Raspberry Foundation cross-compile toolchain. url: https://www.raspberrypi.
org/documentation/linux/kernel/building.md.

https://doi.org/10.1002/nav.3800010107
https://doi.org/10.1002/nav.3800010107
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800010107
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800010107
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800010107
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800010107
http://nicolas.limare.net/pro/notes/2014/time_arit_math.tgz
http://nicolas.limare.net/pro/notes/2014/time_arit_math.tgz
https://llvm.org/Features.html
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-32%208%20-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-32%208%20-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-32%208%20-P-DS-DS40002061A.pdf
https://doi.org/10.1145/1353445.1353446
http://savannah.nongnu.org/projects/fixmath/
http://savannah.nongnu.org/projects/fixmath/
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD/
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD/
https://pip.pypa.io
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md

BIBLIOGRAPHY 86

[51] Fabrice Rastello. SSA-Based Compiler Design. 1st. Springer Publishing Com-
pany, Incorporated, 2016. isbn: 1441962018.

[52] Guido van Rossum. Python Programming Language. url: https : / / www .

python.org/about/.

[53] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu and David Hough.
“Precimonious: Tuning Assistant for Floating-Point Precision”. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. SC ’13. Denver, Colorado: Association for Computing
Machinery, 2013. isbn: 9781450323789. doi: 10.1145/2503210.2503296. url:
https://doi.org/10.1145/2503210.2503296.

[54] Cristina Silvano et al. “Autotuning and Adaptivity in Energy Efficient HPC
Systems: The ANTAREX Toolbox”. In: Proceedings of the 15th ACM Interna-
tional Conference on Computing Frontiers. CF ’18. Ischia, Italy: Association
for Computing Machinery, 2018, pp. 270–275. isbn: 9781450357616. doi: 10.
1145/3203217.3205338. url: https://doi.org/10.1145/3203217.3205338.

[55] Cristina Silvano et al. “The ANTAREX tool flow for monitoring and autotuning
energy efficient HPC systems”. In: 2017 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS). 2017,
pp. 308–316.

[56] Michael A Soderstrand, W Kenneth Jenkins, Graham A Jullien and Fred J
Taylor, eds. Residue Number System Arithmetic: Modern Applications in Di-
gital Signal Processing. IEEE Press, 1986. isbn: 087942205X.

[57] STMicroelectronic. STM32F205xx STM32F207xx Data Sheet. 2019. url: https:
//www.st.com/resource/en/datasheet/stm32f205rb.pdf.

[58] Federico Terraneo. Miosix embedded OS. 2008. url: https://miosix.org/.

[59] Vasek Chvatal. Linear Programming. 1983. Chap. 1.

[60] Tomofumi Yuki. Understanding PolyBench/C 3.2 kernels. 2014. url: https:
//web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

https://www.python.org/about/
https://www.python.org/about/
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/3203217.3205338
https://doi.org/10.1145/3203217.3205338
https://doi.org/10.1145/3203217.3205338
https://www.st.com/resource/en/datasheet/stm32f205rb.pdf
https://www.st.com/resource/en/datasheet/stm32f205rb.pdf
https://miosix.org/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

Appendix A

Speedup data

Kernel Precise Medium Quick Fix

2mm 4.57 16.31 140.83 355.19
3mm 3.25 16.51 177.56 333.96
adi 0.56 42.83 165.77 486.59
atax 5.21 73.23 231.65 393.16
bicg 6.38 72.84 147.45 411.41
cholesky 5.61 8.16 15.93 277.28
corr 60.09 11.99 2.26 195.19
covariance 2.77 17.18 79.22 327.81
deriche 0.05 4.02 120.20 174.87
doitgen 4.65 17.84 94.68 254.31
durbin 5.80 4.75 303.27 291.34
fdtd-2d 1.27 5.71 27.71 620.92
floyd-warshall 16.61 −22.16 344.05 282.14
gemm 4.59 −7.43 166.46 158.77
gemmver 7.30 36.51 133.73 399.61
gesummv 6.53 110.10 409.68 420.42
gramschmidt 0.93 1.00 0.91 3.88
heat-3d 1.56 1.98 859.51 823.81
jacobi-1d −0.62 1.63 636.33 594.91
jacobi-2d 1.76 5.16 758.23 725.43
lu 5.55 7.75 12.31 304.02
ludcmp 0.58 5.49 29.62 272.07
mvt 6.96 62.22 112.16 308.69
nussinov −5.52 −42.45 229.32 224.09
seidel-2d 2.40 40.09 583.43 588.03
symm 1.54 16.58 432.26 434.00
syr2k 2.10 16.76 576.94 579.82
syrk 3.97 23.06 385.04 400.06
trisolv 6.97 78.26 156.16 346.91
trmm 5.02 27.13 355.32 352.13

Table A.1: Speedup for Stm32 target platform. Results are shown in Figure 6.1.

APPENDIX A. SPEEDUP DATA 88

Kernel Precise Medium Imprecise Quick Fix

2mm 0.02 −0.01 102.04 102.43 96.80
3mm −0.32 −0.30 53.06 53.12 94.96
adi 0.20 0.15 −55.74 −55.73 −67.41
atax 0.00 −0.17 42.48 43.26 90.61
bicg 0.53 0.62 24.20 21.91 87.09
cholesky −0.86 −1.00 62.77 62.63 78.44
corr 0.12 0.45 94.11 83.40 104.24
covariance 0.33 0.64 94.55 94.61 98.07
deriche −19.69 −22.43 61.05 60.00 62.99
doitgen −1.00 −1.31 42.59 42.92 68.66
durbin −0.64 0.44 21.75 21.57 16.09
fdtd-2d −1.56 −1.60 98.75 98.41 88.08
floyd-warshall −0.01 −0.00 130.60 130.59 101.91
gemm −0.13 −0.13 47.29 47.73 46.90
gemmver 0.07 0.24 61.09 61.49 75.37
gesummv −1.56 −1.14 48.76 64.50 60.69
gramschmidt 0.40 0.40 0.40 1.00 1.01
heat-3d 1.52 1.56 137.12 137.39 144.25
jacobi-1d −1.51 −1.39 61.31 62.94 44.96
jacobi-2d 0.12 0.15 92.04 92.38 80.04
lu −0.51 −0.81 71.65 71.47 88.47
ludcmp 0.24 0.48 74.84 74.65 88.70
mvt 0.76 1.07 83.74 83.89 83.75
nussinov −0.25 −17.79 150.11 150.22 150.12
seidel-2d 0.00 0.01 145.61 145.61 118.99
symm −0.10 0.00 121.24 118.45 112.91
syr2k −13.07 −13.14 140.88 140.64 140.52
syrk 0.48 0.43 110.56 111.69 112.05
trisolv 0.11 0.31 66.59 65.44 144.17
trmm 0.28 0.39 180.62 180.09 186.85

Table A.2: Speedup for Raspberry target platform. Results are shown in Figure 6.2.

APPENDIX A. SPEEDUP DATA 89

Kernel Precise Medium Imprecise Quick Fix

2mm 0.03 −4.24 −14.38 −20.12 −39.90
3mm −0.53 −1.65 0.09 4.09 −19.82
adi −0.57 0.09 0.72 19.90 −57.05
atax −0.94 3.52 −4.20 140.65 62.30
bicg −1.07 −3.48 −10.76 −16.79 100.92
cholesky −1.35 −0.48 2.20 −0.83 79.53
corr 3.98 6.52 5.57 87.61 18.05
covariance −0.98 −0.63 −0.56 72.04 11.32
deriche −35.68 −33.61 −14.91 30.88 45.13
doitgen 2.76 1.19 0.33 17.00 −24.32
durbin 21.64 29.27 22.59 28.65 −27.39
fdtd-2d −5.71 −0.79 −2.04 30.10 −14.53
floyd-warshall −1.72 12.60 15.78 13.94 −20.24
gemm 1.47 0.39 −1.16 1.44 −53.80
gemmver −12.69 0.06 3.32 166.75 63.72
gesummv 0.27 7.56 5.61 150.36 85.96
gramschmidt −43.73 −44.63 −44.51 −44.87 −32.87
heat-3d −1.44 −1.05 −1.99 96.69 95.82
jacobi-1d −14.13 −14.13 −12.14 −3.62 −48.96
jacobi-2d −1.28 −1.21 8.90 9.38 −35.52
lu −4.33 −3.76 0.13 213.89 64.26
ludcmp 1.80 4.36 5.36 258.26 88.70
mvt 2.31 −15.64 −4.81 155.01 121.46
nussinov 2.32 −16.81 10.61 13.40 111.47
seidel-2d −1.45 −2.08 24.26 23.33 53.22
symm 0.30 −0.43 −4.33 −2.83 5.61
syr2k 0.52 −2.01 −0.99 −2.31 −36.07
syrk −1.90 1.53 −2.15 −1.17 −40.01
trisolv −1.55 9.17 1.00 5.98 123.73
trmm −0.03 1.83 −0.88 0.31 −12.00

Table A.3: Speedup for Intel target platform. Results are shown in Figure 6.3.

APPENDIX A. SPEEDUP DATA 90

Kernel Precise Medium Imprecise Quick Fix

2mm −3.59 −2.26 −1.96 6.98 −6.32
3mm −0.68 −0.53 −9.14 −5.36 −9.32
adi 5.61 5.93 13.29 15.12 −71.57
atax 0.64 −0.27 −0.73 90.18 81.36
bicg −0.29 −1.32 −0.99 81.07 115.98
cholesky −0.17 −0.15 77.21 76.16 30.57
corr 2.07 1.75 −52.63 18.56 12.39
covariance −1.10 0.25 −54.46 14.66 −0.38
deriche −29.92 −32.69 55.75 72.75 100.99
doitgen 0.08 −0.57 −3.68 3.59 19.33
durbin −1.28 −1.28 20.21 20.21 −28.17
fdtd-2d 4.42 2.71 142.41 162.06 48.12
floyd-warshall 1.51 3.23 3.30 3.32 −30.06
gemm −4.43 −0.93 −55.39 −56.38 −55.42
gemmver 0.07 −1.76 −1.84 79.34 51.59
gesummv 31.20 26.72 29.09 169.99 162.91
gramschmidt −31.25 −32.12 −31.05 −6.70 −27.61
heat-3d −0.20 −0.24 26.09 23.24 18.94
jacobi-1d −6.93 −6.93 −5.05 −4.08 −41.61
jacobi-2d 0.33 −1.07 9.90 11.60 −34.28
lu −0.25 0.17 73.96 74.73 29.32
ludcmp 0.08 −0.01 39.11 70.93 34.02
mvt −1.15 1.96 1.26 75.74 117.30
nussinov −0.07 −44.83 −44.63 15.66 75.47
seidel-2d −27.12 −27.12 −17.11 −16.98 76.86
symm −2.16 −1.14 −2.17 2.68 −0.14
syr2k 3.21 3.51 1.35 −41.42 −22.52
syrk 5.14 0.63 4.57 60.28 −5.88
trisolv 0.42 1.40 2.48 133.06 140.03
trmm −0.77 −3.71 −0.51 16.54 −6.88

Table A.4: Speedup for AMD target platform. Results are shown in Figure 6.4.

Appendix B

Error data

Kernel Precise Medium Quick Fix

2mm 0 1.97× 10−6 5.36× 10−3 5.39× 10−3

3mm 0 1.98× 10−6 2.16× 10−1 2.57× 10−1

adi 0 2.20× 10−5 2.10× 10−4 2.07× 10−4

atax 0 2.32× 10−7 1.41× 10−3 1.40× 10−3

bicg 0 1.67× 10−6 7.59× 10−5 6.09× 10−5

cholesky 2.45× 10−6 2.45× 10−6 4.54× 10−2 4.55× 10−2

corr 9.77× 10−2 9.77× 10−2 4.93× 10−1 1.92× 10−1

covariance 0 3.31× 10−6 9.94× 10−6 4.93× 10−2

deriche 9.81× 10−5 1.23× 10−4 7.49× 10−2 8.17× 10−3

doitgen 0 1.00× 10−6 1.16× 10−5 1.36× 10−5

durbin 6.80× 10−5 9.31× 10−5 5.30× 10−3 5.30× 10−3

fdtd-2d 0 5.28× 10−5 1.09× 10−3 1.10× 10−3

floyd-warshall 0 0 0 0
gemm 0 9.70× 10−2 1.01× 10−1 1.01× 10−1

gemmver 0 6.61× 10−7 1.37× 10−4 1.83× 10−3

gesummv 0 1.23× 10−6 1.03× 10−4 6.98× 10−5

gramschmidt 0 1.06× 102 1.75× 102 1.01× 102

heat-3d 0 0 0 0
jacobi-1d 0 1.54× 10−7 2.16× 10−4 2.16× 10−4

jacobi-2d 0 2.52× 10−5 3.83× 10−3 4.62× 10−3

lu 2.51× 10−6 2.51× 10−6 1.79× 10−4 1.72× 10−4

ludcmp 0 9.04× 10−3 1.53× 10−3 1.17× 10−3

mvt 0 4.78× 10−7 5.56× 10−5 5.34× 10−5

nussinov 0 0 0 0
seidel-2d 0 3.95× 10−6 1.30× 10−2 1.30× 10−2

symm 0 3.31× 10−7 1.16× 10−2 1.19× 10−2

syr2k 0 1.87× 10−6 2.90× 10−5 2.88× 10−5

syrk 0 1.84× 10−6 2.33× 10−1 2.33× 10−1

trisolv 0 5.71× 10−6 4.24× 10−4 2.02× 10−4

trmm 0 1.52× 10−6 1.76× 10−4 1.35× 10−4

Table B.1: MPE for Stm32 target platform. Results are shown in Figure 6.5

APPENDIX B. ERROR DATA 92

Kernel Precise Medium Imprecise Quick Fix

2mm 0 0 3.29× 10−3 3.29× 10−3 3.28× 10−3

3mm 0 0 2.20× 10−1 2.20× 10−1 2.20× 10−1

adi 0 0 3.51× 10−2 3.51× 10−2 2.94× 10−2

atax 0 3.39× 10−8 1.46× 10−3 1.34× 10−3 1.36× 10−3

bicg 0 0 3.61× 10−5 4.28× 10−5 7.15× 10−5

cholesky 0 0 7.76× 10−4 9.54× 10−4 8.39× 10−2

corr 1.74× 10−3 1.74× 10−3 3.36× 10−3 5.25× 10−3 2.81× 10−1

covariance 0 1.01× 10−6 2.94× 10−5 2.94× 10−5 1.40× 10−3

deriche 1.01× 10−4 7.94× 10−2 7.94× 10−2 7.94× 10−2 8.04× 10−3

doitgen 0 0 2.00× 10−5 1.89× 10−5 1.59× 10−5

durbin 2.61× 10−3 2.61× 10−3 1.06× 101 1.06× 101 1.06× 101

fdtd-2d 0 0 3.02× 10−4 3.02× 10−4 5.62× 10−1

floyd-warshall 0 0 0 0 0
gemm 0 0 1.20× 10−1 1.20× 10−1 1.20× 10−1

gemmver 0 0 1.13× 10−4 1.07× 10−4 2.27× 10−4

gesummv 0 0 1.13× 10−4 1.22× 10−4 7.99× 10−5

gramschmidt 1.21× 102 1.21× 102 1.24× 102 1.16× 102 6.73× 103

heat-3d 0 0 0 0 0
jacobi-1d 0 0 2.16× 10−4 2.16× 10−4 2.16× 10−4

jacobi-2d 0 0 9.74× 10−4 9.74× 10−4 9.41× 10−4

lu 0 0 8.34× 10−4 9.11× 10−4 1.85× 10−5

ludcmp 0 0 2.43× 10−2 2.43× 10−2 2.42× 10−2

mvt 0 0 9.47× 10−5 1.01× 10−4 7.82× 10−5

nussinov 0 0 0 0 0
seidel-2d 0 0 7.37× 10−3 7.37× 10−3 7.37× 10−3

symm 0 0 1.78× 10−2 1.78× 10−2 1.78× 10−2

syr2k 0 0 6.54× 10−5 6.01× 10−5 5.74× 10−5

syrk 0 0 2.71× 10−1 2.71× 10−1 2.71× 10−1

trisolv 0 0 8.97× 10−3 8.97× 10−3 1.90× 10−4

trmm 0 0 1.81× 10−4 1.76× 10−4 1.47× 10−4

Table B.2: MPE for Raspberry target platform. Results are shown in Figure 6.6

APPENDIX B. ERROR DATA 93

Kernel Precise Medium Imprecise Quick Fix

2mm 0 0 0 0 3.28× 10−3

3mm 0 0 0 1.73× 10−5 2.20× 10−1

adi 0 0 0 2.20× 10−3 2.94× 10−2

atax 0 0 3.39× 10−8 2.52× 10−5 1.36× 10−3

bicg 0 0 0 0 7.15× 10−5

cholesky 0 0 0 3.15× 10−6 8.39× 10−2

corr 1.74× 10−3 1.74× 10−3 1.74× 10−3 1.75× 10−3 2.81× 10−1

covariance 0 0 0 3.19× 10−5 1.40× 10−3

deriche 1.01× 10−4 1.01× 10−4 9.97× 10−5 1.29× 10−4 8.04× 10−3

doitgen 0 0 0 8.41× 10−6 1.59× 10−5

durbin 2.61× 10−3 2.61× 10−3 2.61× 10−3 9.92× 10−3 1.06× 101

fdtd-2d 0 0 0 1.65× 10−4 1.26× 102

floyd-warshall 0 0 0 0 0
gemm 0 0 0 0 1.20× 10−1

gemmver 0 0 0 2.15× 10−5 2.27× 10−4

gesummv 0 0 0 1.14× 10−5 7.99× 10−5

gramschmidt 1.21× 102 1.21× 102 1.21× 102 1.21× 102 6.73× 103

heat-3d 0 0 0 0 0
jacobi-1d 0 0 0 3.28× 10−4 2.16× 10−4

jacobi-2d 0 0 1.41× 10−4 1.41× 10−4 9.41× 10−4

lu 0 0 0 8.34× 10−4 1.85× 10−5

ludcmp 0 0 0 2.43× 10−2 2.42× 10−2

mvt 0 0 0 1.77× 10−5 7.82× 10−5

nussinov 0 0 0 0 0
seidel-2d 0 0 4.75× 10−6 4.75× 10−6 7.37× 10−3

symm 0 0 0 0 1.78× 10−2

syr2k 0 0 0 0 5.74× 10−5

syrk 0 0 0 0 2.71× 10−1

trisolv 0 0 0 0 1.90× 10−4

trmm 0 0 0 0 1.47× 10−4

Table B.3: MPE for Intel target platform. Results are shown in Figure 6.7

APPENDIX B. ERROR DATA 94

Kernel Precise Medium Imprecise Quick Fix

2mm 0 0 0 1.67× 10−5 3.28× 10−3

3mm 0 0 1.72× 10−5 1.73× 10−5 2.20× 10−1

adi 0 0 2.77× 10−3 2.20× 10−3 2.94× 10−2

atax 0 3.39× 10−8 3.39× 10−8 2.52× 10−5 1.36× 10−3

bicg 0 0 0 1.97× 10−5 7.15× 10−5

cholesky 3.15× 10−6 3.15× 10−6 8.36× 10−4 8.36× 10−4 8.39× 10−2

corr 1.74× 10−3 1.74× 10−3 1.75× 10−3 1.75× 10−3 2.81× 10−1

covariance 0 0 3.17× 10−5 3.19× 10−5 1.40× 10−3

deriche 1.01× 10−4 1.10× 10−4 1.29× 10−4 1.29× 10−4 8.04× 10−3

doitgen 0 0 0 8.41× 10−6 1.59× 10−5

durbin 2.64× 10−3 2.64× 10−3 9.92× 10−3 9.92× 10−3 1.06× 101

fdtd-2d 0 0 1.65× 10−4 1.65× 10−4 1.26× 102

floyd-warshall 0 0 0 0 0
gemm 0 0 1.20× 10−1 1.20× 10−1 1.20× 10−1

gemmver 0 0 0 2.15× 10−5 2.27× 10−4

gesummv 0 0 1.12× 10−5 1.14× 10−5 7.99× 10−5

gramschmidt 1.21× 102 1.21× 102 1.21× 102 0 6.73× 103

heat-3d 0 0 0 0 0
jacobi-1d 0 0 3.28× 10−4 3.28× 10−4 2.16× 10−4

jacobi-2d 0 0 1.41× 10−4 1.41× 10−4 9.41× 10−4

lu 3.16× 10−6 3.16× 10−6 8.34× 10−4 8.34× 10−4 1.85× 10−5

ludcmp 4.37× 10−5 3.71× 10−3 2.43× 10−2 2.43× 10−2 2.42× 10−2

mvt 0 0 0 1.77× 10−5 7.82× 10−5

nussinov 0 0 0 0 0
seidel-2d 0 0 4.75× 10−6 4.75× 10−6 7.37× 10−3

symm 0 0 1.78× 10−2 1.78× 10−2 1.78× 10−2

syr2k 0 0 0 9.57× 10−6 5.74× 10−5

syrk 0 0 0 9.81× 10−6 2.71× 10−1

trisolv 0 0 0 9.15× 10−3 1.90× 10−4

trmm 0 0 0 1.17× 10−5 1.47× 10−4

Table B.4: MPE for AMD target platform. Results are shown in Figure 6.8

Appendix C

Compilation slowdown data

Kernel Original (s) New (s) Slowdown

2mm 0.86 1.59 1.85
3mm 1.09 2.00 1.84
adi 1.88 5.50 2.93
atax 0.51 0.91 1.80
bicg 0.53 0.94 1.79
cholesky 0.76 1.58 2.09
corr 0.72 1.77 2.46
covariance 0.58 1.15 1.98
deriche 0.92 2.20 2.38
doitgen 0.98 1.45 1.48
durbin 0.55 1.07 1.94
fdtd-2d 1.28 2.61 2.04
floyd-warshall 0.67 1.04 1.56
gemm 0.67 1.20 1.79
gemmver 0.66 2.09 3.17
gesummv 0.50 0.99 1.97
gramschmidt 0.82 1.75 2.14
heat-3d 2.52 5.95 2.36
jacobi-1d 0.47 0.87 1.86
jacobi-2d 0.77 1.59 2.07
lu 0.77 1.62 2.10
ludcmp 0.93 2.61 2.81
mvt 0.55 0.99 1.81
nussinov 0.64 1.75 2.76
seidel-2d 0.63 1.19 1.87
symm 0.67 2.16 3.25
syr2k 0.62 1.20 1.92
syrk 0.57 1.00 1.74
trisolv 0.48 0.79 1.65
trmm 0.55 0.92 1.67

Table C.1: Compilation time and slowdown for each kernel analyzed. These results
are shown in Figure 6.9. Times are reported in seconds.

Appendix D

gesummv data

N Config Results Mix
Time iebw Error Speedup Fix Float Double

1 1 100 0 0.07 0 1 58
2 6 95 0 0.07 0 1 58
3 11 90 0 0.07 0 1 58
4 16 85 0 0.07 0 1 58
5 21 80 0 0.07 0 1 58
6 26 75 0 0.07 0 1 58
7 31 70 0 0.07 0 1 58
8 36 65 1.23× 10−8 1.10 0 13 46
9 41 60 1.23× 10−8 1.10 0 13 46
10 46 55 1.23× 10−8 1.10 0 13 46
11 51 50 1.23× 10−8 1.10 0 13 46
12 56 45 1.23× 10−8 1.10 0 13 46
13 61 40 1.23× 10−8 1.10 0 13 46
14 66 35 4.10× 10−8 1.11 0 17 42
15 71 30 4.10× 10−8 1.11 0 17 42
16 76 25 3.42× 10−7 2.20 24 34 1
17 81 20 9.38× 10−7 4.20 57 1 1
18 86 15 1.03× 10−6 4.10 57 1 1
19 91 10 1.03× 10−6 4.10 57 1 1
20 96 5 9.40× 10−7 4.10 57 1 1

Table D.1: Data collected for test gesummv with small changes in the parameters.
These results are shown in Figures 6.10 and 6.11

	Introduction
	Basic notions
	Real number representations
	Integer representation
	Fixed point representation
	Floating point representation
	Arbitrary precision representations
	Other types of representations

	Errors in numeric representations
	Arithmetic Overflow
	Representation Mismatches
	Round off

	Linear Programming
	Problem formulation
	Discrete and Integer Linear Programming

	State of the Art
	Precision Tuning process
	Tuning Scope Investigation
	Requirement collection
	Code Manipulation
	Verification
	Type Casting Overhead Estimation

	Previous work about mixed precision
	CRAFT
	Precimonius
	HiFPTuner
	CAMPARY
	Daisy

	Compilation frameworks
	Structure of a Compiler
	Front-end
	Middle-end
	Back-end

	taffo
	Pass overview
	taffo strengths and limits

	ILP for Mixed Precision tuning
	Overview of the approach
	Instruction microbenchmarks
	New dta algorithm
	Enhanced Conversion

	Comparing heterogeneous data types: the IEBW
	The ulp
	The iebw metric
	The problem of fair comparison

	A cost model for mixed precision tuning
	Minimizing the number of type casts
	Minimizing the introduced error
	Optimizing execution time
	Useful iebw propagation inside code regions
	The objective function

	Experimental evaluation
	Experimental setup
	Ahead-of-time profiling
	Benchmark setup
	Software setup
	Hardware setup
	Model parameters
	Evaluation metrics

	Result analysis
	Speedup
	Error
	Summary of compilation results
	Precision mix
	Compilation times
	Number of tests

	Conclusions
	Speedup data
	Error data
	Compilation slowdown data
	gesummv data

