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Abstract

In this Thesis, we address Inverse Uncertainty Quantification problems related to partial dif-

ferential equations (PDEs). These problems are very challenging from a numerical point of

view since classical approaches require to numerically approximate multiple times a PDE to

infer input parameters and their distributions.

To solve this issue, we rely on Physics-Informed Neural Networks (PINN), a novel tech-

nique in Scientific computing which combines a data-driven approach with the knowledge

of physics-based models. In particular, we adopt a variant of PINN called Bayesian Physics-

Informed Neural Network (B-PINN), which approximates the posterior distribution of the

unknown parameters starting from some prior knowledge. From the resulting distribution,

the uncertainty on the parameters estimates is quantified using suitable reliability intervals.

We focus on the Laplace equation to validate our method, and on the (nonlinear) Eikonal

equation to address a challenging problem in cardiac electrophysiology: the reconstruction

of the activation times’ pattern in the cardiac tissue from noisy sparse measurements. We

compare B-PINNs using different sampling methodologies varying both the number of data

and the noise level.

The final application consists of estimating the posterior distribution of both the activation

times and the conduction velocities (from which we extract the mean and the standard devia-

tion) by using noisy data coming from sparse surface measurements. In this respect, we carry

out some experiments relying on synthetic datasets in simple domains and we assess the ac-

curacy of the implemented B-PINN technique and its computational performances. Also,

new techniques like Active Sampling and Transfer Learning in subdomains are applied to

improve accuracy in the activation time reconstruction and to speed up the training process.
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Sommario

In questa tesi abbiamo affrontato problemi inversi di quantificazione dell’incertezza gover-

nati da equazioni alle derivate parziali. Questi problemi sono molto dispendiosi da un punto

di vista numerico, dal momento che gli approcci classici richiedono di risolvere una PDE

molte volte per trovare i parametri di input.

Per risolvere questi problemi, abbiamo utilizzato una nuova metodologia recentemente in-

trodotta nel calcolo scientifico, le reti neurali fisicamente informate (PINN), che uniscono un

approccio guidato dai dati con la conoscenza di un modello fisico. In particolare, abbiamo

utilizzato una variante dei PINN in un contesto Bayesiano, le reti neurali Bayesiane fisica-

mente informate (B-PINN). Partendo da una conoscenza a priori dei parametri, si costruisce

una distribuzione a posteriori e si quantifica la variabilità delle stime usando intervalli di

credibilità.

Ci siamo concentrati in particolare sull’equazione di Laplace, per validare la nostra metodolo-

gia, e sull’equazione Eikonale (non lineare), che è stata invece usata per risolvere un difficile

problema nell’elettrofisiologia cardiaca: la ricostruzione della mappa di attivazione nel tes-

suto cardiaco partendo da misurazioni sparse e affette da errore.

Abbiamo comparato il metodo B-PINNs usando diversi metodi di sampling variando sia il

numero di dati che il livello di errore. Il nostro obiettivo finale è quello di stimare la dis-

tribuzione a posteriori sia dei tempi di attivazione che delle velocità di conduzione (dai quali

calcoliamo media e deviazione standard) usando dati sparsi e affetti da rumore ottenuti a

partire da mappe di attivazione cardiaca.

A questo proposito, abbiamo condotto diversi esperimenti usando dataset sintetici in domini

semplici e verificando l’accuratezza delle metodologie implementate e le loro performance

computazionali. Oltre a questo, nuove tecniche come Active Learning e Transfer Learning

sono state applicate in questo campo per migliorare l’accuratezza e velocizzare la fase di

training.
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Chapter 1

Introduction

In this Thesis we aim at solving Inverse Uncertainty Quantification (UQ) problems gov-

erned by partial differential equation (PDE) using a recently proposed methodology, called

Bayesian Physics-Informed Neural Networks (B-PINNs), with special emphasis on the Eikonal

equation for cardiac electrophysiology, that can be used to describe the activation times of

the cardiac tissue. In the next sections of this introduction, we show how we can define this

Inverse problem in Cardiac Electrophysiology and why it is important.

1.1 Inverse Uncertainty Quantification Problem

Inverse Uncertainty Quantification (from now on, Inverse UQ) problems involve the need of

estimating input parameters of a given PDE giving some (sparse, noisy) measurements of

the solution. These parameters can be, e.g., physical coefficients or geometrical parameters.

These problems are very challenging from a numerical point of view, since with a classical

approaches multiple solutions of the forward PDE problem are required when relying on

usual sampling-based approaches, thus implying huge computational times and resources

[2].

In this Thesis we are going to analyze a method to solve Inverse UQ problems for a generic

(stationary, either linear or nonlinear) PDE, with a particular focus on cardiac applications,

without implying the need of multiple solutions of the forward PDE model.

1.1.1 Inverse Problem

Let us start from a rigorous mathematical description of a generic Inverse UQ problem and

classical methods to solve it [3],[4],[5].

Given Ω a bounded and regular domain and a differential operator N (·;θθθ) : Rd→R, where



d = 1,2,3 denotes the spatial dimension, depending on a set of unknown parameters θθθ ∈Θ⊂
RJ , J ≥ 1 ∈ N, we can find a suitable function u(x) : Ω ⊂ Rd → R satisfying the following

abstract PDE problem:

N (u(x;θθθ)) = 0, x ∈Ω,

u(x;θθθ) = BC(x), x ∈ ∂Ω,
(1.1)

where BC(x) is the boundary condition on ∂Ω. The inverse problem consists in finding the

parameters θθθ given some (noisy) measurements of the PDE solution u(x) : {ui}n
i=1 in some

given locations {xi}n
i=1 ⊂Ω. Inverse problems are usually ill-posed and strongly dependent

on the measurements of the solution: multiple solutions of θθθ can be found and measurement

noise could lead to unstable solutions [6].

In the standard approach, this problem can be formulated as a minimization problem over

the parameter space for the mismatch between measurements of {ui}n
i=1 and {u(xi; θ̂θθ)}n

i=1,

solution of (1.1) solving the forward model with a particular choice of parameter input vector

θ̂θθ . After we have defined a suitable mismatch metric between the solutions, that depends on

the choice of θθθ , for instance a mean quadratic loss :

L (θθθ) =
1
n

n

∑
i=1

(u(xi;θθθ)−ui)
2, (1.2)

we look for θθθ
∗ such that:

θθθ
∗ = argmin

θθθ∈Θ

L (θθθ). (1.3)

In order to find the best approximation θθθ
∗, we generate M samples from the parameter

space Θ and look for the one that minimize the loss. This approach has two limitations, as

explained before: first, we need to solve the forward model for every samples in {θ̂θθ i}M
i=1⊂Θ

we have generated from the parameter space in order to compute the solution. This implies

to solve numerically a PDE multiple times, with a huge consumption of computational times

and resources. The second issue is related with the noisy measurements: since only a point

estimate of the true parameter vector θθθ is found with this approach, we cannot take into

account the propagation of the noise on the measurements on that estimation.

In this thesis we tackle both these issues using a new methodologies called Bayesian Physics-

Informed Neural Networks [7]. Concerning the latter problem, a Bayesian approach (recalled

in the next section) will be considered, whereas we will rely on a novel technique involving

Neural Networks, Physics-Informed Neural Networks (PINNs) [8], to avoid the multiple

solution of the given PDE system.
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1.1.2 Bayesian Inverse UQ

Given θθθ ∈ Θ ⊂ RJ , input parameter vector, we define the forward problem as follows: find

u(x) : Ω⊂ Rd → R solution of the following PDE:

N (u(x);θθθ) = 0, x ∈Ω,

u(x;θθθ) = BC(x), x ∈ ∂Ω.
(1.4)

The solution u(x) depends on the parameters θθθ . We can define this relation as:

u(x) = f (x,θθθ), (1.5)

for a suitable function f (x,θθθ) : Ω⊂ Rd×Θ→ R. In an Inverse UQ problem we start from

n (noisy) measurements of the solution, namely unoisy = {ui}n
i=1, in some sparse locations

{xi}n
i=1 ⊂Ω to estimate the Probability Density Function (PDF) of the model parameters θθθ .

The measurements could be affected by noise (as for instance in a real applications, where

measurements are acquired from sensors). A reasonable assumption is that we have a white

noise, comes from a Normal distribution, and it is independent from every measurements:

ui = f (xi,θθθ)+ εi, εi ∼N (0,σ2) ∀i = 1, . . . ,n, (1.6)

where σ2 is the noise variance.

Given this model for the noise measurements, and after collecting the set of measurements

unoisy = {ui}n
i=1, the problem of estimating input parameters θθθ can be formulated in a

Bayesian framework: find the posterior PDF of θθθ conditioned to the measurements unoisy.

To compute the posterior distribution of θθθ we recall the Bayes Theorem:

P(θθθ |unoisy) =
p(unoisy|θθθ)P(θθθ)

P(unoisy)
, (1.7)

where we have to define the likelihood of unoisy conditioned to θθθ , p(unoisy|θθθ), which encodes

the probability that the measurements comes from a model with θθθ as parameters, the prior

distribution of θθθ , P(θθθ), which is our prior knowledge of the parameters, and the denomi-

nator P(unoisy). The latter, that involves the computation of a multidimensional integral on

Θ⊂ RJ , is equal to:

P(unoisy) =
∫

θθθ∈Θ

p(unoisy|θθθ)P(θθθ)d(θθθ), (1.8)

and plays the role of a normalizing constant in the equation (1.7). This integral could be

intractable from a computational point of view, and since it is just a normalizing constant, its

evaluation can be avoided.



The likelihood function of our measurements unoisy conditioned on θθθ could be easily com-

puted from the noise model we have defined in (1.6):

P(unoisy|{xi}n
i=1,θθθ)∼N ({ f (xi,θθθ)}n

i=1,Σ) (1.9)

where Σ = σ2I with the same σ2 defined for noise model.

For the prior distribution of the parameters θθθ we have to select a distribution. For instance,

imagine to know that these parameters follow a Normal distribution with zero mean and a

variance γ2:

P(θθθ)∼N (000,Γ), (1.10)

where Γ= γ2I. This is a "non informative" prior [9], since we are providing a vague informa-

tion for the parameters. Sometimes we can provide a more informative prior distributions for

the parameters, driven by some physical knowledge or previous experiment, to have better

results.

1.1.3 MCMC and estimators

The computation of the posterior PDF of θθθ from the Bayes theorem could be intractable in

a case where J > 1 or in a non-Gaussian models. This fact also makes the evaluation of a

point estimators, as the maximum a posteriori estimator (MAP):

θθθ MAP = argmax
θθθ

P(θθθ |unoisy), (1.11)

or the conditional mean (CM):

θθθCM = E[θθθ |unoisy] =
∫

θθθ∈Θ

θθθP(θθθ |unoisy)d(θθθ), (1.12)

computationally intensive.

For the sake of Uncertainty Quantification, we also need to assess the variability of the pos-

terior, for instance evaluating the conditioned standard deviation or building suitable confi-

dence region.

When the parameter dimension J is really big, also a direct computation of the previous

estimators could lead to intractable integrals: suitable sampling methods as Markov Chain

Monte Carlo (MCMC) techniques are required to efficiently sample from the posterior dis-

tribution without exactly knowing it. MCMC methods explore the posterior distribution of

θθθ and collect a set of samples {θ̂θθ i}M
i=1 that approximates the posterior PDF.

In this thesis two different sampling methods are employed: a MCMC method called Hamil-

tonian Monte Carlo (HMC) and Stein Variational Gradient Descent (SVGD). Both these
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methods allow us to sample from posterior distribution of our parameters θθθ without directly

computing it.

After collecting a set of samples {θ̂θθ i}M
i=1 we have an approximation of the posterior PDF, and

we can also compute numerically the previous estimators. The evaluation of MAP estimator

now becomes:

θθθ
∗
MAP ≈ arg max

θ̂θθ i, i=1,...,M
P(θ̂θθ i|unoisy), (1.13)

while the conditional mean estimator:

θθθ
∗
CM ≈

1
M

M

∑
i=1

θ̂θθ i. (1.14)

All these methods require multiple computations of forward PDE model: at every iteration of

a MCMC, u(x; θ̂θθ) = f (x, θ̂θθ) is computed in order to evaluate the likelihood function. Since

u(x; θ̂θθ) is the solution of (1.1) with a fixed parameters θ̂θθ , we compute a solution of a PDE

multiple times, with a consumption of time and computational resources. In order to avoid a

multiple solve of the PDE model (1.1), in this thesis we replace the numerical approximation

of PDEs came out with classical methods (such as the finite element method) with Physics-

Informed Neural Networks, which are Neural Networks involving a PDE constraint that are

able to approximate the problem solution without having to recomputing it (but just updating

the parameters in the NN).

1.2 Cardiac Electrophysiology

In this Thesis we will focus on a particular PDE model, called Eikonal Equation. This model

could be used to describe, among a lot of different physical phenomena [10],[11],[12], also

the propagation of electrical signal in the heart. In this context, we can imagine to solve an

Inverse Problem starting from activation times measurements on the surface of the heart and

reconstruct the physical parameters, that are the conduction velocities in every area of the

heart tissue.

This might be of key importance to help clinicians to find low conduction velocities regions,

that are usually related to electrical disorders. In the following sections we will go through

a brief presentation of Cardiovascular diseases and present the Inverse problem of Cardiac

Electrophysiology.

1.2.1 Arrhythmias

Cardiovascular diseases (CVDs) are a group of diseases of both heart and blood vessels.

According to World Health Organization (WHO), these types of disease are the number



1 cause of death globally. In 2016, 17.9 million people died from CVDs, more than any

other cause. Among these deaths, 85% are caused by heart attack and stroke. Cardiac

Electrophysiology is the science that study the electrical activity in heart. In this thesis we

will go through a specific subset of all Cardiovascular diseases, that are the ones related with

Cardiac Electrophysiology diseases. Cardiac Electrophysiology focuses on the electrical

activity of the heart, which triggers the cardiac contraction and so the movement of blood

inside and between them. The diseases related to the disordered propagation of electrical

signals in the heart are cardiac arrhythmias. With Arrhythmias we refers to any change

from the normal sequence of electrical impulses. There are different types of them, like for

instance Atrial Fibrillation, Ventricular Fibrillation, Tachycardia and Brachycardia.

To treat these types of problems, invasive methods like Radiofrequency catheter ablation

(RFCA) could be needed. These procedures work directly on the surface tissue of the heart,

using radiofrequency energy to burn some small parts of the tissue that cause irregular heart

beat or any other problems.

The goal is to identify where to ablate, i.e. to find the region that cause the irregular heart

beat. For this reason, before the RFCA procedure, the clinicians perform a map of cardiac

activation times, to understand better how the electrical signal spreads in the heart and where

it shows some improper behaviours.

3D electroanatomic mapping systems [13] are used to collect this data on the surface and

construct the map. Our method might support the construction of accurate activation maps,

with an Uncertainty Quantification, as explained in the following section.

1.2.2 Inverse Problem in Cardiac Electrophysiology

Clinical procedures for the treatment of electrical disorder phenomena usually relies on a

few sparse noisy data of electro-anatomic activation maps, recorded on the cardiac surface

using electrodes. These data are processed with deterministic interpolation methods to create

an anatomical activation times map of the whole cardiac surface. From this measures, we

are interested to compute the conductivity velocity properties of the tissue, to identify slow

conduction areas that can be possibly related to arrhythmias.

To obtain these conduction velocity maps, we have to rely on the activation times map, using

data usually affected by noise, due to the complicated measurement process. In addition

to this, the classical methods developed so far do not take into account the physics behind

the phenomena, that is a propagation of electric signal in an anisotropic medium. This is a

standard data-driven approach, that usually works well when we have a lot of data, which

requires a long acquisition time.
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Looking at the physical modeling approach, the first model we can use to describe the elec-

trical activity in heart is the so-called Bidomain model [14],[5]. To reduce the complexity of

the former, the Monodomain model [15] was proposed. A further reduction can be done by

using the Eikonal equation [16]. In this thesis we will use the latter.

The forward model consists of the Eikonal equation, providing the activation time in the do-

main, and receiving as input the conductivity tensor. On the other hand, the inverse problem

- much harder to be solved - aims at reconstructing, starting from a set of measured acti-

vation times, the anisotropic conductivity tensor. As shown in the previous Section, we are

interested not only to reconstruct a best approximation of the conduction velocities, but also

in their posterior PDFs. In this application we obtain a measure of fidelity, i.e. how much we

can trust our findings.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2 we introduce the main building blocks

of the framework we are using: Neural Networks, Bayesian Neural Networks and Physics-

Informed Neural Networks.

In Chapter 3 we detail the methods we are going to use, namely Bayesian Physics-Informed

Neural Networks. We deeply explain the Bayesian Model, and present the algorithms used:

Hamiltonian Monte Carlo and Stein Variational Gradient Descent. We introduce also an Ac-

tive Learning sampler, to compute the next location where we have to take a measurement

in order to reduce the Uncertainty, and a new algorithm that uses Transfer Learning in sub-

domains, to obtain accurate results in a smaller parts of the domain without having to retrain

our network.

In Chapter 4 we present some numerical experiments using the Laplace equation; in partic-

ular we validate our results against the true posterior distribution in a case where this latter

can be computed in a closed form.

Chapter 5 introduces first the Cardiac application of this methods, based on Eikonal model.

Then we propose some numerical experiments for both isotropic and anisotropic models,

using different geometries. We then test our Active Learning sampler and Transfer Learning

model.

Finally, our conclusions and future developments are reported in Chapter 6.





Chapter 2

Physics-Informed Neural Networks

2.1 Neural Networks

An Artificial Neural Network (ANN) is a computing system that reproduces in theory how

a biological neural network works in our brain. The Perceptron [17] is one of the first and

simple Neural Network and can be seen as the basic brick to build more complex Neural

Network architectures, in the same way as our brain is build by a complex network of a very

big number of single neurons.

The ingredients to build a Perceptron are the following ones:

• x ∈ Rn input vector;

• W ∈ Rn weights vector;

• b ∈ R scalar bias;

• σ : R→ R activation function;

• ŷ ∈ R output.

Then, the relation that maps input into the output is defined as:

ŷ = σ (a) = σ
(
WT x+b

)
= σ

(
n

∑
i=1

(wixi)+b

)
. (2.1)

Since the activation function can be a non-linear function, the Perceptron maps the input

onto the output in a non-linear way. The natural extension is the so-called Feed Forward

Neural Network (FFNN), where we use neurons organized in layers (one for the Single

Layer FFNN or more in Deep FFNN), and every output of a layer becomes the input of the

following layer, in a cascade from the initial layer to the last one.
9



Figure 2.1: Example of Perceptron Architecture

Figure 2.2: Example of a FFNN Architecture

We present in the following an example of FFNN. Given n the input vector dimension and d

output vector dimension, we define L as the number of hidden layers of our FFNN. For every

hidden layer i = 1, . . . ,L we define the number of neurons in each layer as li. In figure 2.2 an

example of Feed Forward NN with 2 hidden layers, l1 = 4 and l2 = 3, n = 3 and d = 2.

For every layer (i = 1, . . . ,(L+1), we consider also the output layer) we define a weights

matrix W(i) ∈ Rli−1×li for the passage between the layer (i-1) to the layer (i) (where l0 =

n input dimension, lL+1 = d output dimension), a bias vector b(i) ∈ Rli and an activation

function σ (i)
(

z(i)
)

: Rli→Rli . The input-output equation for a FFNN then reads as follows:
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z(1) =σ
(1)
(

W(1)x+b(1)
)
,

z(2) =σ
(2)
(

W(2)z(1)+b(2)
)
,

. . .

z(L) =σ
(L)
(

W(L)z(L−1)+b(L)
)
,

ŷ =σ
(L+1)

(
W(L+1)z(L)+b(L+1)

)
.

(2.2)

In the following, to indicate the computation of the prediction vector ŷ using the input

vector x (called Forward Propagation in a NN), we will use the following notation:

ŷ(x) = NN(x), (2.3)

where with NN(·) we consider all the passages in (2.2). Suppose now to have a dataset

of couples D = {xi,yi}N
i=1, where the vector xi is the vector of the features, while yi is the

vector of the (real) outputs. For each {xi}N
i=1, we use our FFNN to compute a prediction of

the output y, namely {ŷ(xi)}N
i=1, computed as:

ŷ(xi) = NN(xi), i = 1, . . . ,N. (2.4)

The final aim is to make the predictions {ŷ(xi)}N
i=1 sufficiently close to to the real outputs

{yi}N
i=1. To this goal we define a loss that measures the distance between ŷ and y, which

enable to define a measure of discrepancy that can be used to find the parameters in the

network (all the matrices W and bias vectors b for every layer) in order to minimize this loss.

Let θθθ be all the parameters in our network, namely θθθ = {WWW (1),bbb(1), . . . ,WWW (L+1),bbb(L+1)},
where L is the number of hidden layers. We define the classical Mean Square Error (MSE)

as follows:

L (θθθ) =
1
N

N

∑
i=1
‖yθθθ (xi)−yi‖2

2, (2.5)

where with yθθθ (xi) we indicate the output prediction on the input vector xi using the NN with

parameters θθθ (previously indicated with ŷ(xi), but now we want to highlight the dependence

from the parameters θθθ ), namely:

yθθθ (xi) = NNθθθ (xi), i = 1, . . . ,N. (2.6)

The training procedure consists in updating the parameters in order to minimize L (θθθ)

using the Back-Propagation method [18], to compute the gradients of L (θθθ) with respect to

θθθ . After having collected the gradients (as shown in figure 2.3) we use an optimizer to itera-

tively update the parameters, i.e. the Gradient Descent [19]. The algorithm works as follows:
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Error
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y1 y2
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Hidden layers

PredictionsInputs
Layer

Figure 2.3: Forward pass and Back propagation

Algorithm 1: Gradient Descent

Initialization: Initialize θθθ
0 using a NN initializer, choose a number of total epochs

E and a learning rate ε;

for epochs e=1,. . . ,E do
Compute yθθθ

e−1
(xi) = NNθθθ

e−1
(xi), i = 1, . . . ,N;

Compute L (θθθ e−1) using (2.5);

Compute ∇θθθL (θθθ)|
θθθ=θθθ

e−1 using Back-Propagation;

Update θθθ
e← θθθ

e−1− ε∇θθθL (θθθ)|
θθθ=θθθ

e−1 ;

end

where ε is a parameter that measure the step size (also called learning rate) and ∇θθθL (θθθ) is

the gradients of the loss with respect to θθθ computed through Back-Propagation.

We have to repeat these steps (forward pass to compute the predictions, than compute the

loss for all the couples in the dataset DDD, then back propagation and updating parameters) for

a fixed number of epochs (iterations) E in our algorithm, or until a convergence condition

properly defined, with the final aim to find an approximation of the best parameters value θθθ
∗

in its paramater space Θ:

θθθ
∗ = argmin

θθθ∈Θ

L (θθθ). (2.7)
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2.2 Bayesian Neural Network

When we are dealing with data, affected by noise, we are interested also in estimating how

likely our model outcomes are, by estimating the uncertainty on the prediction. This process

is called Uncertainty Quantification (UQ) of our results. We need to compute the posterior

distribution of our estimates (and parameters θθθ ), that provides us a bigger and complete in-

formation on the output.

However, neural network cannot provide any uncertainty estimation on its outputs, just a pre-

diction. Several methods were proposed to provide an interval prediction also in NNs, such

as a drop-out methods [20],[21]. However, a straightforward way to perform UQ in neural

network is to use a Bayesian approach: Bayesian Neural Networks (BNNs) provide a natural

extension of the NN framework, where we provide a prior distribution for every parameters

in the network θθθ , and update these distribution with the knowledge of data using Bayes’s

rule, computing then the posterior distribution of θθθ . For each input now we can compute a

distribution of the output, not only a point estimate which has its own uncertainty in terms

of variance and standard deviation.

Even more than in the previous Bayesian setting, due to the huge dimension of the NN pa-

rameter set, computing directly a posterior distribution is impossible, since it involves some

integral computations; for this reason we can use a Markov Chain Monte Carlo (MCMC)

method to directly sample from the posterior distribution.

Hence, Bayesian Neural Networks compute the posterior PDF of their network parameters

θθθ , not only the best approximation θθθ
∗ that satisfies (2.7). According to the Bayes Rule, the

posterior distribution of θθθ depend on the likelihood functions of our data DDD = {xxxi,yyyi}N
i=1 and

prior distribution over θθθ :

P(θθθ |D)∼ P(D|θθθ)P(θθθ). (2.8)

In (2.8) we update our prior beliefs on θθθ , that are the prior distribution P(θθθ), with the

likelihood of the data D we have, conditioning to the value of θθθ , that is P(D|θθθ). A classical

choice for the prior distribution for θθθ could be:

P(θθθ)∼N (000,I). (2.9)

For the likelihood we have to first introduce the prediction of the BNN with parameters θθθ

on the features of the dataset DDD, namely the set {xi}N
i=1. We define these predictions through

the BNN as shown before for the NN in (2.6). We define the set of these predictions as

DDDθθθ = {xi,yθθθ (xi)}N
i=1. Going back to the model, we can still use for the likelihood a Normal

distribution over our model prediction DDDθθθ , namely:

P(DDD|θθθ)∼N (DDDθθθ ,σ2
DI), (2.10)
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Figure 2.4: Bayesian Neural Network update

with σD > 0 fixed standard deviation. (In the previous equation we should have written DDD[2]

and DDDθθθ [2] since the likelihood is just on the y, that is the second column in the datasets, but

we keep them without the [2] index for notation simplicity).

Figure 2.4 shows a simple scheme of how we compute the posterior distribution of our pa-

rameters θθθ in a BNN.

Relying on a MCMC method, such as the Hamiltonian Monte Carlo, or variational in-

ference methods such as the Stein Variational Gradient Descent, we can collect a set of M

samples from the posterior distribution of our parameters θθθ , namely:

{θθθ i}M
i=1, θθθ i ∼P(θθθ |D) i = 1, . . . ,M, (2.11)

which directly approximate the posterior distribution of θθθ . We can compute some estimators

such as the sample mean and the sample variance, as:

µ(θθθ |D)≈ 1
M

M

∑
i=1

θθθ i, (2.12)

var(θθθ |D)≈ 1
M

M

∑
i=1

(θθθ i−µ(θθθ |D))2 . (2.13)

This set of samples {θθθ i}M
i=1 can be also used to compute the posterior predictive distribution

of our model yyyθ (x) = NNθθθ (xxx). For instance, we can compute the posterior predictive mean
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((a)) Full view in domain (0,1) ((b)) Zoom in portion (0,0.3)

Figure 2.5: Aleatoric and Epistemic UQ in a simple regression task

and variance of yyy giving a location xxx∗ as [22]:

EP(θθθ |D) [yyy|x∗,D]≈ 1
M

M

∑
i=1

yyyθθθ i(xxx∗), (2.14)

VarP(θθθ |D) [yyy|x∗,D]≈ 1
M

M

∑
i=1

(
yyyθθθ i(xxx∗)−EP(θθθ |D) [yyy|x∗,D]

)2
+σ

2
D, (2.15)

where yyyθθθ i(xxx∗) is the prediction of our network with parameters θθθ i, namely yyyθθθ i(xxx∗)=NNθθθ i(xxx∗).

As shown by in the formula (2.15) the posterior predictive variance can be naturally divided

in two different parts: the first part is called "Epistemic" uncertainty, while the second is

called "Aleatoric" uncertainty. The former is determined by the variability among our pre-

dictions, in terms of samples generated with our MCMC algorithm, while the latter is more

closely related to the noise of data we have.

To visualize and explain better the difference between these two parts, let analyze a simple

regression problem in which the function to find is:

T (x) = sin(10x), f or x ∈ [0,1], (2.16)

given a dataset D composed by 100 noisy evaluations grouped in the intervals [0.1,0.3] and

[0.7,0.9] only. In figure 2.5 the differences between the two types of uncertainties can be

highlighted. The Epistemic UQ bounds is strictly dependent on the distance among the

points groups: if we are far from the exact points, the uncertainty is bigger and also the

bound is larger, while in proximity of the data clouds (and also inside them) the uncertainty

is very low.

The Aleatoric uncertainty in these models is determined by the variance parameter in the

likelihood [22], σD, that in this example constant along all the domain.



2.3 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) are a new powerful method introduced by Raissi,

Karniadiakis and Perdikaris in [8] to solve both forward and inverse problems related with

PDEs using neural networks. The idea behind PINNs is to create a bridge between data-

driven and physics based modeling, encapsulating some knowledge of the system equations

in the loss function to be minimized during the training stage.

Data-driven modeling and machine learning have experienced a big growth in popularity in

the last few years, and Neural Networks are one of the main characters. Thanks to their uni-

versal function approximators property [23], their use in Scientific Computing has became

massive, especially when "big data" are easily available. However, when the cost of data

acquisition is bigger, neural networks fail to give good results in a "small data" regime. This

is the case, e.g, of living system, where we need some invasive procedure to get the data

from the patient.

On the other hand, physics-driven modeling is the classical way to study phenomena in real

world through PDEs that well describes the physical behaviour of the system. In this case,

we do not need any data acquisition, but the result rely on the knowledge of fundamental

ingredients of PDE, like boundary conditions and initial conditions.

It seems natural to require a method that can use both our physical knowledge of the phenom-

ena and both the few data that we have; PINN are neural networks that are trained to solve

supervised learning tasks while respecting any given law of physics described by general

nonlinear partial differential equations.

2.3.1 Physics-Informed Neural Network

Let us consider a generic stationary, nonlinear PDE, under the (abstract) form:

N [u(x);λλλ (x)] = 0, x ∈Ω,

u(x) = BC(x), x ∈ ∂Ω,
(2.17)

where u = u(x) is the solution, N is a non-linear differential operator, λλλ = λλλ (x) is a para-

metric field, Ω is the domain and ∂Ω is its boundary (where we have chosen to use just

Dirichlet boundary conditions for simplicity). Thanks to PINNs, we can solve both forward

problems, whose final goal is to find the solution u(x) given λλλ (x), and inverse problems,

whose goal is to reconstruct λλλ (x) from a set of (noisy) measurements of u. In this work we

will focus on this latter class of problems.

In the forward problem, we aim at finding the solution u(x) that is coherent with the PDE
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Figure 2.6: Physics-Informed Neural Network: forward problem scheme

defined in (2.17) using Neural Networks. In this case we have a dataset of boundary condi-

tion (BC) measurements (we do not need to know the analytical form of the boundary data

BC, like in the classical formulation of PDEs), and we know all the coefficients that describe

the PDE (in this case λλλ (x) is fixed and known), that means we know the operator N (·). In

Figure 2.6 we report a sketch of how PINNs work in this case: after computing the prediction

uθθθ (x) = NNθθθ (x) as forward pass of our NN, as shown before in 2.6, Automatic Differenti-

ation [24] is employed to compute exact partial derivatives (taking advantage of the input-

output relationship, that is the neural network itself), and the loss of PDE constraints (2.17).

Automatic differentiation in neural networks is a powerful method to compute derivatives:

we can compute the exact derivative of the output given the input, instead of a numerical ap-

proximation as in common numerical differentiation (e.g., finite difference). This is possible

because in a NN the relation that goes from outputs to inputs is made by the composition of

an activation function and a linear combination using weight matrices and bias vectors, as

shown in (2.2): we can compute the true derivative of all these steps (if we suppose to know

the activation function derivative). More details on Automatic Differentiation can be found

in Appendix A.

We consider two datasets:

• R ∈Rnr×(d+1): collocations points (dimension = nr), that are points inside the domain

Ω and where we impose the validity of PDE; for these points we don’t know the actual

value of u(x), we know only that the PDE must holds, so we impose that the residual

is zero in every points; R is a dataset composed by couples (xr,0), ∀r = 1, . . . ,nr (the

zero in second position is just to indicate that, if we use the true solution u(x), the

residual of the PDE equation must be zero);

• B ∈ Rnb×(d+1): boundary points (dimension = nb), that are the points on the bound-



ary ∂Ω and where we know the values of u; B is a dataset composed by couples =

(xb,BC(xb)), ∀b = 1, . . . ,nb.

The final goal is that the NN will map the an input vector x in the NN output (with parame-

ters θθθ ) uθθθ (x) that is a good approximation of the PDE solution u(x), solution of the forward

problem (2.17). The key passage with PINNs is that, beyond the fact that we use the bound-

ary conditions in B to enforce that uθθθ will be close to the solution u in the boundary points,

we are requiring the NN to solve the PDE in all collocation points in R: inside the domain

Ω, where we do not have any measurements of the real solution u, the only constraint that

drives the prediction uθθθ (x) close to the PDE solution u(x) is the PDE constraint itself.

For every point x in R and B we compute the relative prediction of the solution u with our

NN (parameters θθθ ), namely uθθθ (x) with a forward pass in the network (as shown in (2.6));

then, just for the collocation points, we also need all the derivatives (with Automatic Differ-

entiation) to compute the PDE constraint that we want to minimize, namely the operator N

residual:

Rθθθ (xr) = N
[
uθθθ (xr);λλλ (xr)

]
, xr ∈ RRR. (2.18)

Finally, the loss (where θθθ , as before, represent all the parameters in our network) can be

defined as:

L (θθθ) =
1
nr

nr

∑
r=1
||Rθθθ (xr)||2 +

1
nb

nb

∑
b=1
||uθθθ (xb)−BC(xb))||2. (2.19)

By minimizing the loss function (2.19), the NN will update his parameters θθθ in order to

approximate the true solution u(x) with its prediction uθθθ (x), since it has to satisfy the PDE

inside the domain and the boundary conditions. We recall that, differently from the second

term in the loss where we are requiring that the prediction of u in boundary points uθθθ (xb)

should be close to the real boundary value BC(xb), the first term is requiring that the operator

N applied to uθθθ (xr) in all the collocation points must be close to zero. This is true because,

if in the end the prediction with NN uθθθ (x) is equal to the real solution u(x), the operator N

applied to it must be zero, as shown in (2.17).

2.3.2 PINNs for the Inverse Problem

So far we have sketched the idea exploited by PINNs in order to approximate the PDE solu-

tion, given its parameters λλλ (x) and the boundary conditions.

When dealing with the inverse problem, we suppose to know some sparse and noisy mea-

surements of the solution u(x) and we want to reconstruct the parametric field λλλ = λλλ (x), as

well as the solution u(x) of the PDE.

To identify the unknown field λλλ (x), we rely on an additional dataset D ∈ Rnd×(d+1) of nd
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Figure 2.7: Physics-Informed Neural Network: inverse problem scheme

measurements of u, DDD = {xd,ud}nd
d=1.

After a forward pass in the network, we collect the prediction of u(x) and λλλ (x) as outputs of

the NN, namely uθθθ (x) = NNθθθ
u (x) and λλλ

θθθ (x) = NNθθθ

λλλ
(x) (extending the notation presented

in (2.6)), and then we use the automatic differentiation to compute the derivatives required,

such as ∂u
∂x and ∂u

∂y . After computing the derivatives forming the operator N for each collo-

cation points, we end up with the same physics-informed neural network loss as before, but

now including both the data-driven loss and physics-driven loss. We compute the prediction

for the residual Rθθθ on the collocation points as shown before, but now using also the predic-

tion for λλλ : Rθθθ (xr) = N
[
uθθθ (xr);λλλ

θθθ (xr)
]
, r = 1, . . . ,nr.

After we have introduced two additional weights αdata and αpde, we can define our loss as:

L (θθθ)=αdata
1
nd

nd

∑
d=1
‖uθθθ (xd)−ud‖2+αpde

(
1
nr

nr

∑
r=1
‖Rθθθ (xr)‖2 +

1
nb

nb

∑
b=1
||uθθθ (xb)−BC(xb))||2

)
.

(2.20)

Solving the PDE and matching the measured data can then be done at the same time, by

minimizing the loss function, using a suitable numerical optimization procedure (such as

Gradient Descent or the Adam optimizer), to find an approximation of θθθ
∗:

θθθ
∗ = argmin

θθθ

L (θθθ). (2.21)

After having selected the best approximation θθθ
∗, we compute our final prediction for both

solution the u(x) and λλλ (x) as a simple forward pass in our network, obtaining uθθθ
∗
(x) and

λλλ
θθθ
∗
(x), respectively.

Figure 2.7 shows the scheme related to the solution of an inverse problem with PINNs, that is

similar to the one reported in figure 2.6, with in addition the output λλλ (in the figure considered

as scalar field for simplicity) for the NN and a data similarity part in the loss computation.

We want to highlight the importance of the physical knowledge in this example: using just

the datasets DDD = {xd,ud}nd
d=1 and BBB = {xb,BC(xb)}nb

b=1 we could compute an approximation



of u inside the domain Ω using a simple Neural Network. In this case a NN would find a

classic interpolation between the measurements of u we have and the boundary conditions.

After having collected this classic interpolation uinterp(x), in a second stage, we could infer

the values of λλλ (x) using the PDE constraint (2.17). The main advantage of PINNs is that we

use the collocation points in RRR to enforce the validity of the PDE model (2.17). In this way

our prediction uθθθ (x) is not a simple interpolation between the measurements of u we have in

DDD and BBB, but this is also solution of the PDE: uθθθ (x) and λλλ
θθθ (x) are now computed using the

data we have DDD and BBB but also solving the (2.17).



Chapter 3

Bayesian Physics-Informed Neural
Networks

As Neural Networks, also Physics-Informed Neural Networks can be extended within a

Bayesian framework, leading to the so-called Bayesian Physics-Informed Neural Networks

(B-PINNs) [7]. This is achieved by using a Bayesian Neural Network instead of a Neural

Network. B-PINNs compute the posterior distribution of the network parameters θθθ condi-

tioning to the available datasets, in this case measurements of the PDE solutions included in

DDD and collocation points RRR where we enforce the PDE constraint, as explained in the previ-

ous Chapter. As for BNNs, we rely on the Bayes theorem, defining a prior distribution for θθθ

and a likelihood functions for both measurements in DDD and collocation points in RRR.

To sample from the posterior, we wil finally use MCMC methods, since its analytical com-

putation could be intractable.

3.1 Model

In this section we define the Bayesian model underlying B-PINN; in particular, we specify

likelihood functions on our data and the prior distribution of our parameters (all the network

weights θθθ , and optionally also the variances in the likelihoods, if we consider them as pa-

rameters). Then we show how to derive the posterior distribution.

In the following we consider the same PDE model described in the previous Chapter in

(2.17), namely:

N [u(x);λλλ (x)] = 0, x ∈Ω,

u(x) = BC(x), x ∈ ∂Ω.
(3.1)
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3.1.1 Datasets and Likelihood functions

In the training phase of the B-PINN, we use a small dataset of noisy evaluations of the PDE

solution. Let us denote this dataset as a matrix D of nd exact sparse measurements u and their

relative locations x, D = {xi,ui}nd
i=1 , that will be used to partially reconstruct the solution

(for notation simplicity we do not consider the previously introduced dataset BBB of boundary

conditions. We can always consider it as part of the dataset DDD of measurements, where we

choose some locations on the boundary).

For the sake of testing, we assume that D is given by measurements of the exact solution

D∗ plus a white noise, that can be described as a normally distributed error εεε of mean 0 and

standard deviation σ (noise level):

ui = u∗(xi)+ ε(i), where ε(i)∼N (0,σ2), i = 1, . . . ,nd. (3.2)

Denoting by:

Dθθθ = {xi,uθθθ (xi)}nd
i=1 (3.3)

the approximation through the NN with parameters θθθ (as shown in (2.6)) of the noisy data

D, we set a likelihood distribution of:

P(D|θθθ ,σD)∼N (Dθθθ ,ΣD) (3.4)

where ΣD = σ2
DI, and σD can be a fixed value or an hyperparameter.

In addition to the dataset D, we know that the underlying relation between the solution u(x)
and parameters λλλ (x) is given by the PDE equation we are going to solve. Let us introduce

a dataset of nr collocation points, selected in the spatial domain, where we impose that the

NN must fulfill the PDE constraint. Hence, we denote the evaluation of the residual of the

equation as a dataset R = {xr,0}nr
r=1 of nr collocation points, where we force the NN to

satisfy the PDE constraint (the zeros in the second position, as explained in the previous

Chapter, indicate that using the true PDE solution the residual is equal to zero). We can

compute the residual of collocation points with the NN, Rθθθ , starting from uθ (x) and λλλ
θθθ (x)

and using the operator N of the PDE as:

Rθθθ = {xr,N (uθθθ (xr);λλλ
θθθ (xr))}nr

r=1. (3.5)

As previously explained, the goal is to make RRRθθθ (considering of course just the second col-

umn, namely N (uθθθ (xr);λλλ
θθθ (xr)) close to RRR (that, considering here the second column, is a

vector of zeros): we want that our approximation with the NN of u and λλλ , namely uθθθ and

λλλ
θθθ , satisfy (or, at least, be very close to satisfy) the PDE equation 3.1, hence the residual

should be close to zero.
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Going back to the Bayesian model, we can suppose also in this case a Normal likelihood of

the dataset R over our prediction RRRθθθ with an additive error:

P(R|θθθ ,σR)∼N (Rθθθ ,ΣR) (3.6)

where ΣR = σ2
RI, and also in this case σR can be fixed or treated as a further parameter.

3.1.2 Prior distributions

Let θθθ ∈ RJ be the vector of all the weights of our NN. We define a prior distribution for

every entry θ j, j = 1, . . . ,J of the vector θθθ . Since we do not have any hint on the distribution

of these parameters (except that they should be initialized near zero to prevent instabilities

[25]), we use a Normal distribution, with zero mean and fixed variance Γ = γ2I:

P(θ j)∼ N(0,γ2), ∀ j = 1, . . . ,J, (3.7)

or a T-student distribution, with zero mean and n fixed parameter:

P(θ j)∼ StudentT (n), ∀ j = 1, . . . ,J. (3.8)

If we consider the variances of likelihoods σ2
D and σ2

R as hyperparameters, we also need to

define a prior for them. In this case, we have some prior knowledge on these parameters:

• the prior P(σ2
D) on σ2

D employed knowledge on the measurements error, for instance

the specific error of the sensor. In a synthetic experiment, where we add a noise ε to

our measurements in the dataset DDD as seen before in (3.2), a reasonable choice is to

give a prior to σ2
D centered in a value close to the variance σ2 of ε;

• the prior P(σ2
R) on σ2

R could be seen as a way to measure the preliminary knowledge

of the physical model. If we believe that our PDE explain well the physical phenomena

we are interested in, we should set a prior for σ2
R that takes small values.

As priors we can use an Inverse Gamma with fixed parameters for both:

P(σ2
D)∼ Inv−Gamma(α1,β1), (3.9)

P(σ2
R)∼ Inv−Gamma(α2,β2), (3.10)

where we choose α1 = α2 = 2, while β1 and β2 encode our uncertainties on both the data we

have collected and the equation behind the physical problem, as explained before.



3.1.3 Posterior distributions

Let us finally compute the posterior distribution of our parameters (θθθ , as well as σD and

σR if we choose to consider them as hyperparameters) using the exact noisy dataset D and

the residual on the collocation points R, and employing the likelihoods and priors defined

before. We can compute the posterior distribution for θθθ , σD and σR simply following the

Bayes Rule, under the hypothesis of independence between σD and σR:

P (θθθ ,σD,σR|D,R) ∝ P (D|θθθ ,σD)P (R|θθθ ,σR)P (θθθ)P (σD)P (σR) (3.11)

This is the posterior distribution of the network parameters θθθ . After computing it, we can

also compute posterior predictive distributions for both the PDE solution u(x) and the para-

metric field λλλ (x). Given an input position x∗, the posterior predictive distributions for both

u(x∗) and λλλ (x∗) are:

P(u∗|x∗,D,R) =
∫

θθθ ,σD

P(u∗|uθθθ (x∗),θθθ ,σD)P(θθθ ,σD|D,R)dθθθdσD,

P(λλλ ∗|x∗,D,R) =
∫

θθθ ,σR

P(λλλ ∗|λλλ θθθ (x∗),θθθ ,σR)P(θθθ ,σR|D,R)dθθθdσR,
(3.12)

where:
P(u∗|uθθθ (x∗),θθθ ,σD)∼N (uθθθ (x∗),σ2

D),

P(λλλ ∗|λλλ θθθ (x∗),θθθ ,σR)∼N (λλλ θθθ (x∗),σ2
RI).

(3.13)

As before, we use Markov Chain Monte Carlo methods to sample from this posterior distri-

bution. In this framework, using a MCMC method, we can collect a set of M samples of our

parameters:

{θθθ m,σDm,σRm}M
m=1, θθθ m,σDm,σRm ∼P (θθθ ,σD,σR|D,R) , m = 1, . . . ,M, (3.14)

and also then the posterior predictive distribution as:

P(u∗|x∗,D,R)≈ 1
M

M

∑
m=1

P(u∗|uθθθ m(x∗),θθθ m,σDm,σRm),

P(λλλ ∗|x∗,D,R)≈ 1
M

M

∑
m=1

P(λλλ ∗|λλλ θθθ m(x∗),θθθ m,σDm,σRm).

(3.15)

3.2 Methods

In all the algorithms that follow, we need to compute the log posterior probability that can

be easily derived from the posterior distribution written above:
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L(θθθ) = log(Posterior) =log(P (DDD|θθθ ,σD))+ log(P (RRR|θθθ ,σR))+

log(P (θθθ ,σD,σR))
(3.16)

where:

log(p(DDD|θθθ ,σD)) ∝

(
− 1

2σD2

nd

∑
d=1

(Dθθθ (xd)−Dd)
2 +

nd

2
log
(

1
σD2

))
(3.17)

and

log(p(RRR|θθθ ,σR)) ∝

(
− 1

2σR2

nr

∑
r=1

(Rθθθ (xr)−0)2 +
nr

2
log
(

1
σR2

))
. (3.18)

We can also weight the three components of this log posterior (3.16) (log likelihood of mea-

surements data, log likelihood of PDE constraint and log priors) using three different param-

eters αdata,αpde,αprior > 0, ending up with a modified log posterior:

L(θθθ) =αdatalog(P (DDD|θθθ ,σD))+αpdelog(P (RRR|θθθ ,σR))+

αpriorlog(P (θθθ ,σD,σR)) .
(3.19)

The final goal of our methods will be the sampling from this distribution and the evaluation

of all the statistics of the outputs.

3.2.1 Hamiltonian Monte Carlo

The first method that we have implemented is a classical MCMC method, the Hamiltonian

Monte Carlo (HMC) method [26].

The idea behind HMC is to generate samples following an Hamiltonian dynamics, in contrast

to previous and simpler MCMC methods, like Metropolis-Hastings [27], where we gener-

ate samples randomly from a proposal distribution. In high dimensional cases, the idea of

following this specific dynamics instead of random sampling will make HMC much more

efficient than Metropolis-Hastings.

Consider the log posterior distribution defined in (3.19) (we consider as parameters only θθθ

for simplicity). We define the potential U(θθθ) as the opposite of log posterior, namely:

U(θθθ) =−L(θθθ). (3.20)

HMC method introduce an auxiliary momentum variable r to mimic the Hamiltonian dy-

namic, building the following Hamiltonian system:

H(θθθ ,r) =U(θθθ)+
1
2

rT M−1r (3.21)



where M is an additional mass matrix that can be set, for simplicity, equal to the identity

times a fixed positive constant. We end up with a joint distribution of θθθ and r, under the

form:

π(θθθ ,r)∼ exp(−H(θθθ ,r)), (3.22)

from which we can sample different values of θθθ discarding r, that belong to the following

dynamical system:

dθθθ =M−1rdt

dr =−∇U(θθθ)dt.
(3.23)

We numerically approximate (3.23) using a "leap frog" method [28], leading to the fol-

lowing time-step for each iteration k from 1 to a fixed L (length of trajectory) with a step-size

dt (length of every step):


rtk = rtk−

dt
2

∇U(θθθ tk)

θθθ tk+1 = θθθ tk +dtM−1rtk

rtk+1 = rtk−
dt
2

∇U(θθθ tk+1).

(3.24)

Considering θθθ = (θθθ ,σD,σR) for simplicity, if they are trainable too, and choosing M = I as

the identity, the HMC algorithm works as follows [7]:
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Algorithm 2: Hamiltonian Monte Carlo
Initialization: Initialize θθθ

t0 , fix the number of iterations N, the number of samples

M to collect (after burn-in), the number of leap-frog steps L and the step size dt;

for k in 1,. . . ,N do
Sample rtk−1 ∼N (0,I);
Set (θθθ 0,r0) = (θθθ tk−1,rtk−1);

for i in 0,. . . ,(L-1) do
ri = ri− dt

2 ∇U(θθθ i) ;

θθθ i+1 = θθθ iii +dtri ;

ri+1 = ri− dt
2 ∇U(θθθ i+1);

end
Sample p∼Uni f orm(0,1);

Compute α = min(1, exp(H(θθθ L,rL)−H(θθθ tk−1,rtk−1)));

if p≥ α then
θθθ

tk = θθθ LLL;

else
θθθ

tk = θθθ
tk−1;

end

end
Collect the last M samples: {θθθ ti}N

i=N−M+1.

We remark that, while sampling the parameters θθθ
ti with the HMC method, at the same

time we are also train our NN to approximate both u(x) and λλλ (x): we can expect that at the

first iteration, that is when θθθ = θθθ
t0 , our approximations of u(x) and λλλ (x) through the NN

of parameters θθθ
t0 , uθθθ

t0 (x) and λλλ
θθθ

t0
(x), are very far from the true solutions. Advancing in

the algorithm, the following samples of θθθ would provide some better approximation of both

u(x) and λλλ (x) (this is also the reason why we discard the first N-M samples we generate: we

expect that these samples do not come from the posterior distribution of θθθ ).

The training stage of the NN is hidden inside algorithm 2. At every iteration k we compute

∇U(θθθ), that means:

1. we first compute the prediction of both u and λλλ using the NN with parameters θθθ
tk−1 in

all the locations we need, that are:

• uθθθ
tk−1 (xd), d = 1, . . . ,nd;

• uθθθ
tk−1 (xr), r = 1, . . . ,nr;



• λλλ
θθθ

tk−1
(xd), r = 1, . . . ,nr;

2. we then compute DDDθθθ
tk−1 and RRRθθθ

tk−1 using (3.3) and (3.5) (taking advantage of Auto-

matic Differentiation for the computation of Rθθθ
tk−1 );

3. we compute log
(

p
(

DDD|θθθ θθθ
tk−1

,σθθθ
tk−1

D

))
and log

(
p
(

RRR|θθθ θθθ
tk−1

,σθθθ
tk−1

R

))
using (3.17)

and (3.18) in order to collect U(θθθ tk−1) =−L(θθθ tk−1);

4. finally we compute ∇U(θθθ) employing the Back Propagation for NN.

Every time we update θθθ , we are also changing the parameters in the NN used to compute the

approximation of u and λλλ .

Parameters choice of HMC

One of the big challenges in HMC is the choice of its hyper-parameters [29], namely dt, L

and M. These parameters are strictly related to the Hamiltonian dynamics, and inadequate

choices might compromise all the useful properties of Hamiltonian and ultimately lead to

wrong results.

There is not a simple rule to choose them, but we have to manually fine tune in order to

achieve accurate results by maintaining an high acceptance/rejection rate α . Let start from

dt and L, that are strictly related one to each other. L is the number of steps we do in a single

iteration, while dt is the step size. An intuitive choice would be to impose a relation between

them, for instance fixing the total distance K:

K = L dt. (3.25)

Hence, if we take a bigger step size dt, we need a smaller number of steps L, because we

want to maintain fixed the distance the Hamiltonian walks. Moreover we do not know a-

priori how long our dynamics should be, since K is another parameter we have to choose by

fine-tuning. For this reason, the relation (3.25) does not provide any real constraint between

dt and L but just a new parametrization. There is also an issue related with efficiency when

tuning these parameters: the bigger L, the bigger the required computational time. Walking

a lot of steps with a very small step size is computationally more expensive than doing just

a few steps with a bigger step size. The ideal choice would be the one that minimizes L, but

still with a good accuracy and high acceptance/rejection rate.

We also have to take into account the choice of batch size when selecting L: if we want to

implement a mini-batch training, in the algorithm we loop over L steps but also on nbatch =
nr

nbatchsize
, so that we perform overall a total of Lnbatch steps.
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Another important choice is how to set the mass matrix M: setting M = I is usually the

simplest choice, however it might lead to very poor results and need some more complicated

guess. The first modification, still very simple, could be a scaling of the form:

M = η
2I (3.26)

for a parameter η > 0 large enough. This new mass matrix acts as a regularization for the

problem, with η properly selected.

More complicated mass matrix can be proposed, for instance knowing in advance how the

posterior distribution would be (in analytical cases). The procedure is explained for instance

in [30], where the authors make use of both covariance matrices of prior and likelihood

distribution. Imagine to know also the relationship between the input x and the output y:

y=Gx, and called Cp the prior covariance and Cl the likelihood covariance, we can compute

the mass matrix M as:

M = GT C−1
l G+C−1

p . (3.27)

However, there is no simple and universal way to set all these parameters, so that most of

them need to be tuned with a trial and error process, like in other machine learning algo-

rithms.

Some modifications to the classical HMC algorithm make these choices easier. One of them

is the famous NUTS (No U-Turn Sampler) method [31], that dinamically selects the best

step length L. The idea behind it is to avoid the Hamiltonian to turn back to states already

explored, so that it stops the random walk when we are starting to go in the opposite direc-

tion. NUTS thus only require to set dt and M.

3.2.2 Stein Variational Gradient Descent

Since the sampling from the posterior with standard MCMC methods can become sometimes

infeasible, we also employ the Stein Variational Gradient Descent algorithm (SVGD) [32]

with a finite number of neural networks (called “particles"), for example N=30, that will

approximate the posterior distribution (of course the larger N, the better the approximation,

however, implying a growing computational time).

The idea behind SVGD algorithm is to iteratively transport a finite number of particles to-

ward the target distribution, with the goal of minime the Kullback-Leibler divergence [33]

between the particles and the distribution itself. The SVGD algorithm works as follows, as

shown in [34]:



Algorithm 3: Stein Variational Gradient Descent

Initialization: Initialize N neural networks weights θθθ
iii, σ i

D and σ i
R, i = 1, . . . ,N, set

the number of epochs E and the step size ε;

for epoch e=1,. . . ,E do
Compute the log posterior L(θθθ i) ∀i = 1 . . . ,N ;

Compute the gradients ∇
θθθ

iL(θθθ i) by back-propagation ;

Compute

φ(θθθ i) =
1
N

N

∑
j=1

[
k(θθθ i,θθθ j)∇

θθθ
iL(θθθ i)+∇

θθθ
ik(θθθ i,θθθ j)

]
∀i = 1 . . . ,N; (3.28)

Update θθθ
i = θθθ

i + εφ(θθθ i) or use a Stochastic Gradient Descent method,

∀i = 1, . . . ,N;

Update σ i
D and σ i

R (simply through back-propagation or use the same SVGD

passages as for θθθ ), ∀i = 1, . . . ,N;

end

where k(xi,x j) is the Radial Basis Function (RBF) kernel [35], namely:

k(xi,x j) = exp(−1
h
‖xi− x j‖2)

for a constant bandwidth h > 0.

The key passage in this method is provided by equation (3.28), where we modify the gradi-

ents of θθθ
i, i = 1, . . . ,N to approximate the posterior distribution. In particular, the first term

of the sum drives the particles towards the high probability areas of L(ttthhheeetttaaa) by following a

smoothed gradient direction, which is the weighted sum of the gradients of all the particles

weighted by the kernel function k(xi,x j); the second terms (gradients of k) acts as a repulsive

force that prevents all particles to collapse to a single point, namely the MAP of the posterior

distribution.

As we have said before, the critical choice in SVGD is the number of particles we are going

to use. A very small number N of particles will result in a fast computation but yielding

worse results in terms of posterior approximation. On the contrary, a larger values of N will

result in a bigger ability to approximate the posterior distribution, however implying a bigger

cost in terms of computational time (in this case we need also a RAM with enough memory

to store a high number of neural networks at the same time).

As explained before for the HMC method, also with SVGD we are training the NN simul-

taneously to the algorithm. Every time we update the parameters θθθ
i, i = 1, . . . ,N, we are
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updating also the N neural networks we use to approximate the solutions.

3.3 Active Learning

When dealing with a small dataset, it is important that data are sampled at significant loca-

tions to train a good model. In a situation where acquiring new data has a big cost, knowing

where to find a new observations a priori plays a key role. Active Learning methods are

algorithms that guide the data selection process. In Bayesian Neural Network this can be

done by adding an observation where the posterior predictive distribution over our outputs

has a bigger variability. In our case, when solving an Inverse UQ problem for a PDE, we will

add a new measurement u(xnew) of the PDE solution at a position xnew where the posterior

predictive standard deviation is bigger. The standard deviation of the posterior distribution

of the PDE solution u evaluated at the nr collocation points, using M samples of θθθ trained

with B-PINN, {θθθ m}M
m=1, is:

std(uθθθ (xr)) =

√
1
M

M

∑
m=1
‖uθθθ m(xr)−E

[
uθθθ (xr)

]
‖2

2 ∀r = 1, . . . ,nr, (3.29)

where E
[
uθθθ (xr)

]
= 1

M ∑
M
m=1(u

θθθ m(xr)) at every collocation points.

The idea of Active Learning in this setting is the following: starting from a small set of PDE

solution measurements [u]ex
0 = {ud}nd

d=1, add K new measurements at those locations of max-

imum uncertainty. We end up with this active sampling technique:

Algorithm 4: Active sampler B-PINN
Data: Measurements: [u]ex

0 = {ud}nd
d=1

Collocation points: {xxxr}, r = 1, . . . ,nr.

Algorithm: Active Sampling for Inverse UQ problems with B-PINN;

Train a B-PINN with measurements [u]ex
0 ;

for k = 1, . . . ,K do
compute std(uθθθ (xr)) for every xxxr, r = 1, . . . ,nr, using (3.29);

[u]ex
k = [u]ex

k−1∪{ur∗, r∗ = argmaxr=1,...,nr std(uθθθ (xr))};
train a B-PINN with measurements [u]ex

k ;



3.4 Transfer Learning in subdomains

There are some situations where measurements are all concentrated in a small portion of the

domain. This is the case for instance when we use a grid of sensors, like in the case where

observations mimic data acquires through a catheter of a Cardiac Activation mapping system

(see Chapter 5).

In these cases, we can expect a good accuracy of our solutions in those portion of the domain

where we have a lot of measurements, and worse results in all the other portions of Ω. Some

new grids of measurements are required also in the other areas to improve results in all the

domain.

After collecting this new set of measurements, we can avoid to train from scratch our B-

PINN, relying on Transfer Learning approaches. In the following sections we explain our

methods that apply Transfer Learning concepts in subdomains of Ω.

3.4.1 Transfer Learning

Transfer Learning (TL) is a Machine Learning method that uses previous knowledge to solve

a problem, trying to get better results than starting the training from scratch [1],[36]. In our

case, we can use the knowledge gained with a previous set of measurements. To be effective,

we need a proper way to share the knowledge: in Neural Networks this is usually done by

sharing weights parameters. There are two different ways to use a Pre-Trained Network [37]

in Transfer Learning:

• using the previous weights as initial guess for our Neural Network and train for a few

epochs;

• fix the first layers with the previous weights and train only the last few layers.

In this work we use the first approach. Some new approaches specifically set for Bayesian

Networks are presented in [38], however they have not been considered here.

There are three types of performance improvement we can expect applying a Transfer Learn-

ing approach, as shown in Figure 3.1:

• higher start;

• higher slope;

• higher asymptote.



CHAPTER 3. BAYESIAN PHYSICS-INFORMED NEURAL NETWORKS 33

Figure 3.1: Transfer Learning: three types of performance improvement [1]

We could expect to find at least one of them, but sometimes all the three improvements

are found at the same time. For the purpose of our algorithm, presented in the next section,

we look for higher start and a higher slope in the first epochs: this will make possible to

repeat the same faster training on some small portions of the domain and still get accurate

results with just few epochs.

3.4.2 Domain decomposition and TL

Assume that the domain Ω is split into K subdomains: Ωi, i = 1, . . . ,K. For each subdo-

main we have a dataset Ri of collocation points and Di of noisy measurements. For instance,

in the cardiac application we are going to describe later on, we can imagine that every Di is

a grid of measurements of a multi electrode catheter at a single location. The idea behind

this domain decomposition strategy is simple: after a full training on the first subdomain Ω1,

where we train our B-PINN with its datasets D1 and R1, we can apply the Transfer Learning

approach to all the other subdomains. Figure 3.2 shows the process on a 2D domain:

• first, we train our B-PINN with N epochs on Ω1;

• then, we reuse the final parameters vector θθθ Ω1 as initial guess (instead of a random

guess like Glorot or He initializer [39]) for every Ωi, i = 2, . . . ,K, using just a fraction

of the total epochs N, such as N
10 .

Getting a good and accurate result with just N
10 epochs will be very challenging for this

task, but the performance boost we get from Transfer Learning will help the convergence. If

this process is accurate enough, we can save a lot of computational time and resources, since

the most of time is spent on Ω1, while in the other subdomains we spend just 10% of it.
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Full training: N epochs Fine tuning: N/10 epochs1 2
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Figure 3.2: Transfer Learning in subdomains algorithm on a 2D domain example



Chapter 4

Numerical Validation

We present here some initial numerical results to validate Bayesian PINNs for the solution of

Inverse UQ problems. In this chapter we focus on a linear Elliptic problem, since its linearity

enables the calculation of solution of the Inverse UQ problem in a closed form. In a first

experiment we reconstruct a single scalar parameter: in this case, using Normal distributions,

we are able to compute the real posterior distribution by hand and then assess our method.

In a second experiment, we reconstruct all the right-hand side f (x) of a monodimensional

Poisson problem and check the posterior distribution on both the PDE solution u(x) and the

datum f (x).

4.1 Parametric 1D Poisson problem, single parameter

We firstly consider an Inverse UQ problem involving a single scalar parameter of a PDE.

The parameter v ∈ R is on the right hand side of a one-dimensional Poisson problem, of the

form: 
−∂ 2u(x)

∂x2 =v f (x), x ∈Ω = (0,8),

u(0) =v,

u(8) =vcos(8).

(4.1)

Given f (x) = cos(x), the parametric solution of the previous equation is u(x) = vcos(x), with

v ∈ R. In this Inverse UQ problem we suppose to know nd noisy measurements of the so-

lution {ud}nd
d=1 in the locations {xd}nd

d=1 and we want to compute the posterior PDF of the

parameter v.

Recasting this problem in the Bayesian framework, we suppose to have a dataset DDD =

{xd,ud}nd
d=1 of measurements, perturbed by a gaussian noise:

ud = vcos(xd)+ εd, εd ∼N (0,σ2), d = 1, . . . ,nd, (4.2)
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for a fixed σ2. In addition to DDD we also have the dataset of collocation points RRR = {xr,0}nr
r=1

where we enforce the validity of the PDE (4.1).

The choices for Likelihood functions for DDD and RRR and prior distributions for the neural net-

work weights θθθ are the ones described in the previous chapter:

• Likelihood for DDD: P(DDD|θθθ)∼N (DDDθθθ ,σ2
DI),

• Likelihood for RRR: P(RRR|θθθ)∼N (RRRθθθ ,σ2
RI),

• Prior for θθθ : P(θθθ)∼N (000,γ2I),

where σD = σ is the same as in (4.2), σR represent our uncertainty on the PDE equation (in

this experiment we have set σR = σD) and γ large enough (for instance γ = 1).

The only difference here is that our parametric field λ (x) now is a scalar parameter λ (x) =

v > 0; for this reason it is added to the hyperparameters.

We have to define also a prior distribution for v. We also use for the prior of v a Normal

distribution, in order to make the computation of the actual posterior easy. Give a mean v0

and variance σ2
0 , the prior distribution for v is:

P(v)∼N (v0,σ
2
0 ), (4.3)

where we select in particular v0 = 0 and σ0 = 1. We conduct an experiment varying the num-

ber of measurements of the solution (10 and 100) and the noise level (σ = 0.01,0.02,0.05).

The analysis of the posterior distributions of v in all four cases, approximated by our method

using B-PINN (both with HMC and SVGD), are compared against the true posterior distri-

bution in a classical Inverse UQ problem, computed in the next section.

4.1.1 True posterior of v

In this case, using Normal distributions for both likelihood and prior, and thanks to the

linearity of the input-to-observation map, we can compute in a closed form the true posterior

distribution. Instead of having another datset RRR where enforcing the validity of PDE (4.2),

suppose to know the solution map F : R×R→ R, defined as:

u(x;v) = F (x,v) = vcos(x). (4.4)

We then define the likelihood for the dataset DDD conditioned to v as:

P(DDD|v) ∝

nd

∏
d=1

 1√
2πσ2

D

exp
(
−(ud− vcos(xd))

2

2σ2
D

) . (4.5)
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We need to define a prior distribution for the parameter v, so that applying the Bayes Rule,

we can finally compute the posterior distribution as:

P(v|DDD) ∝ P(DDD|v)P(v), (4.6)

that in this case is equal to:

P(v|DDD) ∝

 1√
2πσ2

D

nd
nd

∏
d=1

exp
(
−(ud− vcos(xd))

2

2σ2
D

) 1√
2πσ2

0

exp
(
−(v0− v)2

2σ2
0

)
.

(4.7)

Since the posterior is a product of Normal distributions, it is Normal too:

P(v|DDD)∼N (vpost ,σ
2
post), (4.8)

with mean vpost and variance σ2
post , defined by the following equations:

vpost =
∑

nd
d=1(ud cos(xd))σ

2
0 + v0σ2

D

∑
nd
d=1(cos2(xd))σ

2
0 +σ2

D

σ
2
post =

σ2
0 σ2

D

∑
nd
d=1(cos2(xd))σ

2
0 +σ2

D
.

(4.9)

Appendix B shows the details for the computation of the formulas above.

4.1.2 Results

We run six different experiments, with different number of measurements (10 or 100) and

different noise level on them (0.01, 0.02 and 0.05). True posterior means and variances

are computed with the two formulas (4.9) defined above. Both HMC and SVGD have been

tested: we used for both methods a NN architecture of 2 Hidden layers with 50 neurons each.

As activation function in the NN we have used for all the layers a Swish activation function

(we use this particular activation function in all the experiments of this thesis). HMC runs for

N=3000 iterations, with a length of trajectory L=100. We collect the last M=2500 samples.

It takes approximately 2 sec for iteration, resulting in approximately 6000 sec in total. On

the other hand, for SVGD we use n=30 neural networks (“particles") and 10000 epochs, that

takes 3000 sec in total.

In Figure 4.1 we plot the true posterior distribution of v in the case with 100 data, noise level

= 0.02, against the posterior distribution predicted with the HMC method and the SVGD

(where we can see the n=30 particles positions drawn in blue in the lower part of the figure).

Numerical results are shown in table 4.1, where we show the mean and standard deviation for

all the cases. Both the methods approximate the mean of the true posterior distribution with



n. data noise True (µ,σ ) HMC (µ,σ ) SVGD (µ,σ )

10 0.01 (1.0008, 4.186e-3) (0.9999, 2.819e-3) (0.9974, 9.685e-3)

10 0.02 (1.0015, 8.371e-3) (1.0092, 1.083e-2) (0.9933, 1.966e-2)

10 0.05 (1.0036, 2.092e-2) (1.0147, 8.472e-3) (0.9735, 4.908e-2)

100 0.01 (0.9995, 1.349e-3) (0.9997, 1.229e-3) (0.9998, 2.362e-3)

100 0.02 (0.9990, 2.699e-3) (1.0011, 3.057e-3) (0.9998, 4.654e-3)

100 0.05 (0.9976, 6.748e-3) (1.0014, 3.443e-3) (0.9994, 1.170e-2)

Table 4.1: 1D Poisson Parametric experiment, mean and standard deviation, n.data 10,100 and noise

0.01,0.02,0.05. Comparison between HMC and SVGD against true result
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Figure 4.1: Posterior distributions for v with 100 data, 0.02 noise, 1D Poisson parametric experiment.

Comparison between HMC and SVGD against true result

a maximum error of 0.03, while only HMC is able to approximate well also the posterior

standard deviation.

SVGD tends to overestimate the variance: out of 30 particles, some of them are very far

from the real distribution. For this reason, the distribution constructed with these samples

has always a bigger variance respect to the true one. This problem could be fixed using

additional particles, but this will increase the computational cost and times, making useless

this methods that approximate a distribution with just few of them.

To compare the distribution, we can use the Kullback-Leibler divergence [33], which is a

measure of difference between two distributions. Given two distributions q : X → R+,

p : X → R+ on the same Probability space, the Kullback-Leibler divergence of p given q
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is:

DKL (p||q) =
∫

x∈X
p(x) log2

(
p(x)
q(x)

)
dx. (4.10)

A lower KL divergence means a lower distance between the two distributions: this type

of measure can be seen as a measure of information loss between the proposed (p) and the

target (q) distribution. The results shown in table 4.2 confirm our beliefs: HMC provides

always a lower KL divergence compared to SVGD.

n. data noise DKL HMC DKL SVGD

10 0.01 0.1452 1.6675

10 0.02 0.5024 1.8838

10 0.05 0.6259 2.4378

100 0.01 0.0191 0.4974

100 0.02 0.3195 0.4857

100 0.05 0.4628 0.4899

Table 4.2: 1D Poisson Parametric experiment, KL Divergence results

4.2 Parametric 1D Poisson problem, parametric field

In this second example, we consider the whole right hand side as our parametric field λ (x) =

f (x): 
−∂ 2u(x)

∂x2 = f (x), x ∈Ω = (0,8)

u(0) =1,

u(8) =cos(8).

(4.11)

Also in this case we use the solution u(x) = cos(x), when f (x) = cos(x). To compute the

posterior distribution of f (x) we generate the samples {θθθ m}M
m=1 from the posterior distribu-

tion of the network parameters θθθ . We collect M samples from the posterior of f (x), indicated

with { f θθθ m(x)}M
m=1 for every x in our domain, where each f θθθ m(x) is simply the prediction of

our network in x using the parameters θθθ m.

4.2.1 Results

To measure the accuracy of our method in the reconstruction of the parametric field f (x), and

also of the whole solution u(x), we compare the sample means of the M predictions (using



the M sampled parameters {θθθ m}M
m=1) and the analytical solutions, utrue(x) and f true(x). We

define the sample means as:

E
[
uθθθ (x)

]
=

1
M

M

∑
m=1

(uθθθ m(x)),

E
[

f θθθ (x)
]
=

1
M

M

∑
m=1

( f θθθ m(x)).

(4.12)

We use an euclidean relative error to assess the accuracy of our prediction in reconstruct the

analytical solution, defined as:

l2
rel err(u

θθθ ) =
||E
[
uθθθ
]
−utrue||22

||utrue||22
=

∑
ndom
i=1 (E

[
uθθθ (xi)

]
−utrue(xi))

2

∑
ndom
i=1 (utrue(xi))2

l2
rel err( f θθθ ) =

||E
[

f θθθ
]
− f true||22

|| f true||22
=

∑
ndom
i=1 (E

[
f θθθ (xi)

]
− f true(xi))

2

∑
ndom
i=1 ( f true(xi))2

(4.13)

using all the points in our domain (dimension of ndom), while for the sake of UQ we first

compute (numerically) the standard deviation on every input xi, i = 1, . . . ,ndom of our pre-

dictions:

std(uθθθ (xi)) =

√
1
M

M

∑
m=1

(uθθθ m(xi)−E
[
uθθθ (xi)

]
)2 ∀i = 1, . . . ,ndom,

std( f θθθ (xi)) =

√
1
M

M

∑
m=1

( f θθθ m(xi)−E
[

f θθθ (xi)
]
)2 ∀i = 1, . . . ,ndom.

(4.14)

We then compute the standard deviation of the prediction of both u and f, averaged all over

the domain and the maximum standard deviation in all the domain:

ST mean(uθθθ ) =
1

ndom

ndom

∑
i=1

std(uθθθ (xi))

ST max(uθθθ ) = max
i=1,...,ndom

std(uθθθ (xi))

ST mean( f θθθ ) =
1

ndom

ndom

∑
i=1

std( f θθθ (xi))

ST max( f θθθ ) = max
i=1,...,ndom

std( f θθθ (xi)).

(4.15)

The results, using both HMC and SVGD, are shown in Tables 4.3 and 4.4. The tests are

performed varying the number of exact data (10 and 100) and the noise level on them (0.01,

0.05 and 0.10). Also in this case SVGD can reach a good approximation in a smaller amount

of time with respect to HMC, namely 400 sec vs 2000 sec in this setting.

As it can be seen in the tables, the relative error on f is always quite large: looking at the

figures 4.2 and 4.3 (where we plot the analytical solutions for both u and f against the samples
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n. data noise l2 rel err (u,f) ST mean (u,f) ST max (u,f)

10 0.01 (0.035,0.233) (0.013,0.037) (0.085,0.135)

10 0.05 (0.152,0.387) (0.049,0.117) (0.158,0.583)

10 0.10 (0.409,0.564) (0.107,0.211) (0.325,0.988)

100 0.01 (0.020,0.201) (0.008,0.026) (0.022,0.112)

100 0.05 (0.031,0.240) (0.013,0.045) (0.035,0.294)

100 0.10 (0.053,0.232) (0.026,0.065) (0.067,0.349)

Table 4.3: 1D Poisson UQ analysis with HMC, n.data 10,100 and noise 0.01,0.05,0.10

n. data noise l2 rel err (u,f) ST mean (u,f) ST max (u,f)

10 0.01 (0.167,0.275) (0.026,0.076) (0.173,0.303)

10 0.05 (0.197,0.394) (0.022,0.064) (0.133,0.284)

10 0.10 (0.236,0.478) (0.025,0.066) (0.113,0.238)

100 0.01 (0.019,0.166) (0.012,0.055) (0.066,0.246)

100 0.05 (0.032,0.180) (0.012,0.056) (0.070,0.231)

100 0.10 (0.053,0.192) (0.012,0.055) (0.073,0.222)

Table 4.4: 1D Poisson UQ analysis with SVGD, n.data 10,100 and noise 0.01,0.05,0.10

we generate with HMC and SVGD), we can highlight that most of the distance between the

true field and our samples is on the right part of the domain, close to the boundary value

x = 8.

((a)) Posterior of u(x), with noisy data and

analytical solution

((b)) Posterior of f(x), with analytical solution

Figure 4.2: 1D Poisson experiment results with HMC, 10 exact data, noise level = 0.01



((a)) Posterior of u(x), with noisy data and

analytical solution

((b)) Posterior of f(x), with analytical solution

Figure 4.3: 1D Poisson experiment results with SVGD, 10 exact data, noise level = 0.01

Even if SVGD provides some better results in terms of relative error (5.11) for the para-

metric field f (x), we can see that the averaged and the maximum standard deviations only

depend on the number of data. This is not true in HMC, where the standard deviation in-

creases with the noise and decrease with more data, as expected. Looking at the two figures

4.2 and 4.3, where we have performed the same experiment with the same noisy data, we

notice that SVGD tends to explain mostly what in a BNN is called the Epistemic part of the

Uncertainty (see section 2.2 for more details). This means that our particles (30 NNs in this

setting) are all very close to the data points we have provided, while they spread out when

they are far from any exact measurement. This is true also in HMC, but the latter offers, in

addition to SVGD, the ability to explain better also the noise on the data. In table 4.3 we can

see that both ST mean and ST max (for both u and f ) increase with the noise level.

We can state that HMC provides better results than SVGD also in this second experiment,

however requiring at least 5 times the computational time of SVGD to produce such results.



Chapter 5

Application to cardiac electrophysiology

Heart contraction, responsible of blood dynamics, are triggered by an electrical signal, that

"activate" the cardiac muscle; this electrical activity is produced by the cardiac cells and in-

duced by different concentration of ionic species.

The electrical activity in heart has been extensively studied in the literature in the last decades,

and different models of increasing complexity were proposed: the Eikonal equation, the

Monodomain model and the Bidomain model [16],[15], [14].

In this thesis we focus on the former model, the Eikonal equation, considering different op-

tions. Then, we present some numerical tests related with the Inverse UQ problems using

BPINN, as well as some example of Active Sampling and Transfer Learning in subdomains

applied to the Eikonal model.

5.1 The Eikonal model

The Eikonal Equation is a simplified model for cardiac electrophysiology, which describes

the activation times, that is the times at which a depolarization front reaches a given point

in the heart tissue; in this case, the propagation of the electrical signal is modeled as a wave

in an anisotropic media. In the next subsection we are going to describe different Eikonal

models we can define.

5.1.1 The Anisotropic Eikonal equation

Given Ω ∈ Rd , d = 1,2,3, a compact domain, let us denote by T : Rd → R the activation

time and M : Rd→Rd×d conductivity tensor (symmetric and positive-definite). The Eikonal

equation reads as follows:

given the conductivity tensor M(x) and the localization of the sources {x̂i}NS
i=1, find T (x)
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such that 
√

∇T (x)T M(x)∇T (x) = 1 in Ω,

T (x̂i) = 0 ∀i = 1, . . . ,NS.
(5.1)

In the forward problem above, given the conductivity tensor M(x) and the localization

of the sources, we have to find the activation times map T (x). In the Inverse problem (which

is indeed our final goal) we are given the activation times map T (x) at some locations x j,

j = 1, . . . ,N (collected by sensors and potentially affected by noise) and the aim is to recon-

struct all the entries of the conductivity tensor M(x).
Accordingly to the form of the conductivity tensor (in dimension d > 1), we can distin-

guish two different forms of the Eikonal equation, the Anisotropic and the Isotropic one.

The conductivity tensor M(x), that has to be symmetric and positive-definite, represents the

anisotropy in conduction velocity in all the domain. We can define it using the cartesian

coordinates (x,y,z) or using local basis direction, namely, the fiber direction, tangent direc-

tion and normal direction (only in the case of three dimensional domains). Going from one

description to another is easy since it only requires a change of coordinates. In the first case

M(x) can be written as (for instance in dimension d = 3):

M(x) =


a(x,y,z) −d(x,y,z) −e(x,y,z)

−d(x,y,z) b(x,y,z) − f (x,y,z)

−e(x,y,z) − f (x,y,z) c(x,y,z)

 (5.2)

for some suitable functions a,b,c,d,e, f , while in the latter, using the local vector basis

a f (x), as(x) and an(x), denoting the basis of fiber direction, sheet direction and normal

direction at each point x ∈Ω, M(x) is defined as:

M(x) =V 2
f a f ⊗a f +V 2

s as⊗as +V 2
n an⊗an (5.3)

5.1.2 The Isotropic Eikonal equation

In the particular case where M(x) = v(x)2I, for a suitable function v : Rd → R, with d ≥ 2,

equation (5.1) becomes: 
‖∇T (x)‖= 1

v(x)
in Ω,

T (x̂i) = 0 ∀i = 1, . . . ,NS,

(5.4)

and is called Isotropic Eikonal equation, since the conduction velocity is the same along all

the directions.
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5.1.3 The Eikonal-Diffusion equation

A first different version of the previous equation is the Eikonal-Diffusion equation [40].

Compared to the classical Eikonal equation, this model features an additional diffusive term,

that makes the propagation speed influenced by the tissue surrounding the wavefront. The

Eikonal-Diffusion equation can be formulated as:
√

∇T (x)T M(x)∇T (x)− 1
c0

∇ · (M(x)∇T (x)) = 1 in Ω

T (x̂i) = 0 ∀i = 1, . . . ,NS

(5.5)

where we add the planar velocity c0 of the wave in the fiber direction to keep the equation

balanced from a measurement system point of view.

5.1.4 The Factored Eikonal equation

By defining the slowness as S(x) = 1
v(x) , the Isotropic Eikonal Equation (5.4) can be rewritten

as:

‖∇T (x)‖= S(x) in Ω. (5.6)

Factorizing both T (x) and S(x) as:

S(x) = S0(x)α(x),

T (x) = T0(x)τ(x),

such that:

‖∇T0(x)‖= S0(x) in Ω,

we recast the problem of finding T (x) fulfilling (5.6) into the following Factored Eikonal

equation [41], that is, to find τ(x) such that:T 2
0 (x)‖∇τ(x)‖2 +2T0(x)τ(x)∇T0(x) ·∇τx+

[
τ

2(x−α
2(x))

]
S2

0(x) = 0 in Ω

τ(x̂i) = 0 ∀i = 1, . . . ,NS.

(5.7)

Compared to the Isotropic Eikonal Equation (5.4), equation (5.6) shows some better numer-

ical properties, as we can put all the singularities in T (x) that could be present in T0(x),
while τ(x) remains a smooth function so that the accuracy of the forward solution, through

a numerical solver, can be further improved.

In the following numerical tests we will use the first two models, namely the Anisotropic

Eikonal equation and the Isotropic Eikonal equation.



5.2 Numerical Experiments with the Eikonal equation

In this section we test our methodologies by carrying out some numerical experiments the

with Eikonal Equation. All the following experiments are performed with the HMC method.

A numerical comparison with SVGD is described in section 5.2.6.

5.2.1 1D Isotropic Eikonal Equation

The first experiment deals with a 1D Eikonal equation in the Ω = (0,1) domain, with an

exponential behaviour of the activation times and a source located at x = 0. In this case the

analytical solution is:

T (x) =1− e−2x

v(x) =
1
2

e2x.
(5.8)

We can easily prove that with these choices for the activation time T(x) and the conduction

velocity v(x) we satisfy the Eikonal equation, that in this case is simply:∣∣∣∣∂T (x)
∂x

∣∣∣∣= 1
v(x)

. (5.9)

We collect a dataset DDD of measurements of the activation times T on nd randomly selected

locations (inside the domain Ω). We the perturb our nd measurements with an additive noise

ε , coming from a Gaussian distribution with zero mean and variance σ2 (where σ is the

noise level), as shown in the previous chapters, namely:

Td = T true(xd)+ εd, εd ∼ N(0,σ2), d = 1, . . . ,nd. (5.10)

We randomly select nr collocation points in the domain Ω where we enforce the Isotropic

Eikonal equation. Finally, we choose ndom points equispaced in Ω to evaluate the final re-

sults. The goal is to reconstruct the posterior distribution of the conduction velocity field

v(x), plus the whole solution T (x), using the nd noisy measurements of T collected in DDD.

We analyze this case varying just the number of data (nd) and the noise level (σ ). We con-

sider:

• architecture: 2 hidden layers, 50 neurons each;

• dataset: 1000 collocation points, 10, 20 or 40 measurements data, noise level σ =

0.01,0.05,0.1, no mini-batch training;

• σD = σR, both equal to the noise level σ ;
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Figure 5.1: Analytical solution of activation times T (x) (showing also 10 measurements without

noise) and conduction velocity (right) in the 1D Eikonal experiment.

• HMC with N=3000, M=2500, L=10 and dt=5 ·10−4.

For this experiment the computational times to generate all the N=3000 samples with HMC

is 3000 sec. In Figure 5.1, we report the analytical results used to generate the dataset

(where we considered 10 exact data for T). The noise level in this experiment is quite large

(in particular when σ = 0.10) compared to the range of T, that in this case goes from 0 to

0.86, with a mean close to 0.5. This means that we are adding to the activation times a noise

level of 2%, 10% and 20%, respectively.

We use the last M=2500 samples of parameters θθθ , generated with HMC, to compute the M

different predictions of T and v in all the domain points. We compute the euclidean relative

error between the sample mean predictions and the analytical solution, as:

l2
rel err(T

θθθ ) =
||E
[
T θθθ
]
−T true||22

||T true||22
=

∑
ndom
i=1 (E

[
T θθθ (xi)

]
−T true(xi))

2

∑
ndom
i=1 (T true(xi))2 ,

l2
rel err(v

θθθ ) =
||E
[
vθθθ
]
− vtrue||22

||vtrue||22
=

∑
ndom
i=1 (E

[
vθθθ (xi)

]
− vtrue(xi))

2

∑
ndom
i=1 (vtrue(xi))2 ,

(5.11)

where:

E
[
T θθθ (x)

]
=

1
M

M

∑
m=1

(T θθθ m(x)),

E
[
vθθθ (x)

]
=

1
M

M

∑
m=1

(vθθθ m(x)),

(5.12)

to assess the accuracy of the reconstruction of the analytical solution, while for the sake

of UQ (as already explained in the previous Chapter 4; we rewrite here the formulas) we

first compute (numerically) the standard deviation on every input xi, i = 1, . . . ,ndom of our



predictions:

std(T θθθ (xi)) =

√
1
M

M

∑
m=1

(T θθθ m(xi)−E
[
T θθθ (xi)

]
)2 ∀i = 1, . . . ,ndom,

std(vθθθ (xi)) =

√
1
M

M

∑
m=1

(vθθθ m(xi)−E
[
vθθθ (xi)

]
)2 ∀i = 1, . . . ,ndom.

(5.13)

We then compute the standard deviation of the prediction of both T and v, averaged all over

the domain and the maximum standard deviation in all the domain:

ST mean(T θθθ ) =
1

ndom

ndom

∑
i=1

std(T θθθ (xi))

ST max(T θθθ ) = max
i=1,...,ndom

std(T θθθ (xi))

ST mean(vθθθ ) =
1

ndom

ndom

∑
i=1

std(vθθθ (xi))

ST max(vθθθ ) = max
i=1,...,ndom

std(vθθθ (xi)).

(5.14)

Results are reported in table 5.1: the relative error decreases with a smaller noise and more

data (at least in the case of the reconstructed T, not always for v), while the uncertainty

increases with noise and decreases with more data.

nd noise level (σ ) l2 rel err (T,v) ST mean (T,v) ST max (T,v)

10 0.01 (0.019, 0.145) (0.006, 0.064) (0.026, 0.185)

10 0.05 (0.045, 0.120) (0.033, 0.323) (0.127, 0.864)

10 0.10 (0.095, 0.207) (0.055, 0.563) (0.148, 1.206)

20 0.01 (0.007, 0.067) (0.004, 0.065) (0.006, 0.208)

20 0.05 (0.026, 0.079) (0.019, 0.210) (0.044, 0.729)

20 0.10 (0.042, 0.083) (0.035, 0.323) (0.083, 0.916)

40 0.01 (0.005, 0.063) (0.002, 0.039) (0.006, 0.180)

40 0.05 (0.021, 0.102) (0.014, 0.181) (0.034, 0.573)

40 0.10 (0.039, 0.064) (0.027, 0.317) (0.060, 1.002)

Table 5.1: 1D Eikonal UQ analysis, n.data 10,20,40 and noise 0.01,0.05,0.10.

Analyzing deeper the results in table 5.1, we see that the l2 relative error for T directly

depend on data and noise, while the l2 relative error for v seems to depend more on the

number of data than on the noise level σ .

An interesting behaviour can be seen looking at ST mean, in all the nine experiments we have
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performed, for both T and v. It can be stated a behavior as the following:

ST mean(T θθθ ) =
1

ndom

ndom

∑
i=1

std(T θθθ (xi))≈ KT
σ
√

nd
,

ST mean(vθθθ ) =
1

ndom

ndom

∑
i=1

std(vθθθ (xi))≈ Kv
σ
√

nd
,

(5.15)

where KT ≈ 1.72 and Kv≈ 18 are constants computed through Least Squares approximation.

This behaviour is reasonable since the standard deviation depends linearly on the noise level

and depends on 1√
nd

, as it is reasonable in posterior distribution. In Figure 5.2 and 5.3 two

cases of this analysis (20 data, noise 0.05 and 0.10): we show the analytical solution for both

T and v, defined in (5.8), and the noisy measurements for T , against the samples (in blue)

generated by the method. Also the sample mean (in yellow) with an interval of width equal to

the sample standard deviation (in black), defined in (5.12) and (5.13), is reported. As we can

see, even in the case where we have a considerable noise level, we are able to both reconstruct

the posterior distribution of the solution T (x) with just 20 data, but more important we are

able to reconstruct the posterior distribution of the conduction velocity v(x), as we can see

on the right of Figure 5.3, since the B-PINN actually solve the Isotropic Eikonal Equation

(5.4) in all the collocation points, in addition to use the noisy measurements of T . Figure 5.4

shows the behaviour of ST mean for both T and v, varying the noise level and the number of

data, and the formulas (5.15) using the selected values for KT and Kv.
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Figure 5.2: 1D Eikonal experiment, results with 20 exact data, noise level = 0.05

5.2.2 1D Isotropic Eikonal with σD and σR as hyperparameters

In all the previous experiments we fixed σD = σR = σ , where σ is the noise level. This is

reasonable since we are assuming the standard deviation parameter of our data likelihood



0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tiv

at
io

n 
Ti

m
es

Posterior Activation Times
Samples
Mean
Mean +/- std bound
True
Measurements

((a)) Activation times

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

Co
nd

uc
tio

n 
Ve

lo
cit

y

Posterior Conduction velocity
Samples
Mean
+/- std bound
True

((b)) Conduction velocity

Figure 5.3: 1D Eikonal experiment, results with 20 exact data, noise level = 0.10
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Figure 5.4: Behaviour of ST mean for T and v, varying noise level and n.data, and their approximation

using formulas (5.15), 1D Eikonal experiment

(σD) to be the same as the noise we are adding to our measurements (the noise level σ ), and

then we are considering the same value for σR. The choice of σR is done only for a practical

reason: a choice of σR� σD for instance leads our B-PINN to local minimum, since in the

log posterior the component of PDE residual likelihood is much bigger than the Data one.

But in principle we are free to choose the value of σR without considering the noise level σ ,

that represents our uncertainty on the PDE model.

The B-PINN could also estimate these two parameters if we do not fix them a priori. For

instance, we can specify a prior distribution on them, as shown in the previous chapter, and

compute the posterior distribution using the Bayes rule.

We perform two experiments (with the same setting as the previous 1D Isotropic Eikonal
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experiment 5.2.1) in which we assign to both σD and σR a prior distribution with mean 0.01,

as:
P(σ2

D)∼Inv−Gamma(2,10−4),

P(σ2
R)∼Inv−Gamma(2,10−4),

(5.16)

but we use for the noise level σ values of 0.05 in the first experiment and 0.10 in the second.

We can expect that the posterior distribution for σD will be close to the noise level value

σ , while σR should be independent of the noise level. Figures 5.5 and 5.6 confirm this: we

can see that the posterior distributions of σD (in red) includes the noise level σ values (blue

line) in both cases, while this is not true for the posterior σR (in yellow), since its posterior

distribution (in both the experiment) is centered in smaller values.
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Figure 5.5: Prior and Posterior of σD and σR for noise level = 0.05

5.2.3 2D Anisotropic Eikonal Equation

The second experiment deals with the 2D Anisotropic Eikonal equation (5.1) in Ω = (0,1)2,

with a source located at (x,y) = (0.5,0.5). The analytical solution in this case is:

T (x,y) =1− exp(−
√

2(x−0.5)2 +2(x−0.5)(y−0.5)+(y−0.5)2)

a(x,y) =
1

exp(−2
√

2(x−0.5)2 +2(x−0.5)(y−0.5)+(y−0.5)2)

b(x,y) =
2

exp(−2
√

2(x−0.5)2 +2(x−0.5)(y−0.5)+(y−0.5)2)

c(x,y) =
1

exp(−2
√

2(x−0.5)2 +2(x−0.5)(y−0.5)+(y−0.5)2)

(5.17)
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Figure 5.6: Prior and Posterior of σD and σR for noise level = 0.1
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Figure 5.7: Analytical result for T, a, b and c in 2D Anisotropic experiment

with the conduction velocity tensor, as shown in (5.2), given by:

M2(x) =

[
a(x,y) −c(x,y)

−c(x,y) b(x,y)

]
.

Figure 5.7 shows the plot of analytical solutions of T , a, b and c in (5.17).

Since here we are in an anisotropic case, we have to equip the algorithm also with a relation

between the entries of the matrix M, that in this case is:b(x,y) = 2a(x,y)

c(x,y) = a(x,y).
(5.18)

Here we work under the simplifying assumption of homogeneous coefficients. We im-

pose these constraints in a "weak" sense (instead of a "strong" sense that could be outputs

only a(x,y) and then compute b and c using the relations (5.18)), imposing the residual of

both the relations in our likelihood of residual (in addition to the PDE residual).
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Figures 5.8 and 5.9 show the results for T (x,y) and a(x,y) with 100 measurements data, ran-

domly selected inside the domain, affected by a noise level equal to 0.05. For each figure we

plot the true field (on the left), the sample mean with the M samples generate by the BPINN,

as defined in (5.12) (in the middle), and the sample standard deviations defined in (5.13) (on

the right). We can remark that the reconstruction of a(x,y) (and similarly for b(x,y) and

c(x,y)) is affected by the complexity of the anisotropic equation, in particular close to the

boundary and to the center of Ω: the anisotropic problem is more difficult than the isotropic

one because of the relations between the three components of M.

Figure 5.10 shows the results along the line y= x, in order to visualize all the samples against

the true fields. Table 5.2 displays the errors and uncertainty results (defined in Section 5.2.1)

for T (x,y) and a(x,y).

n. data noise l2 rel err (T,a) ST mean (T,a) ST max (T,a)

100 0.01 (0.013, 0.176) (0.008, 0.343) (0.076, 0.949)

100 0.05 (0.042, 0.221) (0.008, 0.449) (0.031, 4.029)

Table 5.2: 2D Anisotropic Eikonal UQ analysis, n.data 100 and noise 0.01,0.05.
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Figure 5.8: Activation times in 2D Anisotropic experiment, 100 data and 0.05 noise

5.2.4 Influence of Physics-Informed formulation on errors and uncer-
tainty in Activation Times

Knowing a physical model in these methods also works as a regularization technique in addi-

tion to the possibility of reconstructing the conduction velocities; indeed, it helps us to build

a reasonable activation map even if we rely on a very small dataset of noisy measurements

of activation times.
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Figure 5.9: a(x,y) in 2D Anisotropic experiment, 100 data and 0.05 noise
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Figure 5.10: Activation times and a(x,y) in 2D Anisotropic experiment along the axis y = x

To see this, we have tried to run our code without the “Physics-Informed" part, to estimate

just T, with a noisy and sparse dataset. We have performed the same training as in the 1D

example, with just 10 data, but this time we have set αpde = 0, so that our log posterior

is built only by two components: the log prior of theta and the log likelihood of activation

times data. The results in Figures 5.11, 5.12 and 5.13 show that knowing the physics behind

the phenomena also helps in reconstructing T substantially, since the physics informed cases

show always better results than the other ones (and the difference increases with noise level).

This means that, even if we are not interested in reconstructing the conduction velocities,

knowing the physics behind the phenomena from which we have collected the data is use-

ful and allow us to achieve better results: BPINNs in this example outperforms a simple

Bayesian Neural Network, that is performing a simple regression task with the activation

time measurements data.
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Figure 5.11: Comparison of the posterior of Activation times with 10 exact data, noise_lv = 0.01,

with Eikonal (left) and without Eikonal (right)
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Figure 5.12: Comparison of the posterior of Activation times with 10 exact data, noise_lv = 0.05,

with Eikonal (left) and without Eikonal (right)
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Figure 5.13: Comparison of the posterior of Activation times with 10 exact data, noise_lv = 0.10,

with Eikonal (left) and without Eikonal (right)

5.2.5 3D Isotropic Eikonal Equation

We have tested our methodologies also on a 3D Isotropic case, in a prolate geometry, for

which the Forward Problem was solved with the Pykonal library [42]. This prolate geometry

(see figure 5.14) represents an idealized ventricle.

We have initialized the forward problem by setting a local source at the apex of the prolate,

and providing a conduction velocity of 0.5 in the half below, 1.0 in the upper half. The

real activation times now range from 0 to more than 28. Here we consider a noise level of

1.0. We use 80’000 collocation points and 100, 400 and 800 measurements data, randomly

selected inside the domain. For this experiment we use a bigger network, indeed we use

an architecture of 5 hidden layers, 100 neurons each. In Figures 5.14 and 5.15 the results

(true, sample mean and sample standard deviation) with 400 data and noise level 1.0, while

in figures 5.16 and 5.17 with 800 data and same noise level are reported. We can clearly see

that we can achieve better results (especially in the reconstruction of the conduction velocity

v) with more data. In Figure 5.18 we display the relation between uncertainty (in terms

of standard deviation) in activation times and localization of exact data: we can appreciate

the fact that the uncertainty seems bigger in those portions of the domain where only few

measurements are selected. (All these 3D plots are made using the library Mayavi, https:

//docs.enthought.com/mayavi/mayavi/). Table 5.3 shows the results (relative error,

ST mean and ST max) for this 3D experiment.

https://docs.enthought.com/mayavi/mayavi/
https://docs.enthought.com/mayavi/mayavi/
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Figure 5.14: Activation times (True, mean BPINN and std) with 400 exact values in 3D Eikonal

experiment

Figure 5.15: Conduction velocity (True, mean BPINN and std) with 400 exact values in 3D Eikonal

experiment



Figure 5.16: Activation times (True, mean BPINN and std) with 800 exact values in 3D Eikonal

experiment

Figure 5.17: Conduction velocity (True, mean BPINN and std) with 800 exact values in 3D Eikonal

experiment
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n. data noise L2 rel err (T,v) ST mean (T,v) ST max (T,v)

100 1.0 (0.078, 0.480) (0.292, 0.063) (1.481, 0.223)

400 1.0 (0.030, 0.249) (0.110, 0.046) (0.475, 0.135)

800 1.0 (0.019, 0.159) (0.074, 0.035) (0.257, 0.123)

Table 5.3: 3D Eikonal UQ analysis, n.data 100,400,800 and noise 1.0.

Figure 5.18: Uncertainty (standard deviation) and exact data positions in Activation times in 3D

Eikonal experiment

5.2.6 Comparison with SVGD

Using the SVGD algorithm, we found good results in terms of errors in the reconstruction of

T and v (especially with a small noise), but weaker results in terms of Uncertainty Quantifi-

cation. We compare the findings of 1D-case, with 10 data, noise level 0.01 and 0.05, obtained

with the HMC method and with a similar setting employed with the SVGD method. We use

here 30 NNs to approximate the posterior: choosing this parameter is the most critical part

of the algorithm, since we must ensure a suitable trade-off between computational efficiency

and accuracy. In addition to this, having 30 NNs stored at the same time can cause a memory

allocation problem.

From the results in table 5.4, we can conclude that the SVGD method underestimates the

standard deviations more than HMC: this problem can be motivated by the small number of



Method n. data noise L2 (T,v) stdmean (T,v) stdmax (T,v)

HMC 10 0.01 (0.019,0.145) (0.006,0.064) (0.026,0.187)

HMC 10 0.05 (0.045,0.120) (0.033,0.323) (0.127,0.864)

SVGD 10 0.01 (0.034,0.066) (0.0021,0.021) (0.018,0.089)

SVGD 10 0.05 (0.0717,0.354) (0.0078,0.139) (0.055,0.489)

Table 5.4: 1D Isotropic Eikonal analysis, comparison between HMC and SVGD, n.data 10,20,40 and

noise 0.01,0.05,0.10

NNs, too few to compute effectively a numerical standard deviation. We could increase that

number but, as said before, we could also occur in problems of memory allocation, even if

using more NNs, we might increase computational time.

Also in this case, as shown in the previous example, the HMC method achieves better results

but taking a bigger time, since it requires twice the computational time of SVGD in this

example.

5.3 Active Sampling

In this section we test the Active Sampling method described in Section 3.3, to actively sam-

ple new data in order to minimize the uncertainty on the predicted value of T. We will show

that this method of adding new data outperforms both random sampling or uniform sampling

and proves to be useful when acquiring new data is very expensive or time-consuming.

5.3.1 1D Isotropic Eikonal Equation, Active Sampling with HMC

To test the Active Sampling algorithm, we run an 1D Eikonal experiment using the HMC

method with 5 data randomly selected, noise level of 0.05 and we use the Active Sampling

algorithm to iteratively sample other 4 points. The setting is the same as the previous 1D

UQ Eikonal experiment of Section 5.2.1, with the analytical solution (5.8). The initial data

positions are {0.185,0.541,0.872,0.732,0.806}. The Active Sampling algorithm iteratively

sample four new data: the first two are close to the left boundary, 0 and 0.001; the third,

0.269, falls in the biggest region without any data between 0.185 and 0.541; the last, 0.968,

is close to the right boundary.

As shown in Figures 5.19 and 5.20, the results with the new 4 sampled data improve

considerably: indeed, the variance on T seems to be almost constant along all the domain.

Also the ability to reconstruct V improves. The new data have been located in a suitable way:
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Figure 5.19: Activation times, before (left) and after (right) Active Sampling
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Figure 5.20: Conduction velocity, before (left) and after (right) Active Sampling
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Figure 5.21: Comparison result with 9 randomly sampled data
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Figure 5.22: Comparison result with 9 sampled data on a regular grid

the big variability of the predictions for T on the left part of the domain has required two new

points, x = 0 and x = 0.001. Then, the algorithm finds a big variability of the predictions

for T in the middle of the domain, where the distance from the other measurements was the

largest. Finally, we require also an evaluation on the right boundary.

To measure the effectiveness of the Active Sampling algorithm, we can compare these results

with experiments run by sampling 9 data sampled in a classical way, for instance randomly

or uniformly on the domain.

Figures 5.21 and 5.22 show the corresponding results: it seems clear that in these cases

we are getting a lower ability to reconstruct both the activation time and the conduction

velocity field. Using data acquired with Active Sampling yields more accurate solutions,

however requiring about 5 times the computational time of the other methods: every time

we add a new data we need to retrain the network. This can be useful in situations where the

main bottleneck is the cost of data acquisition, not time consumption.
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5.3.2 2D Isotropic Eikonal Equation, Active Sampling with SVGD

In this second example, we show the ability of Active Sampling on a 2D Eikonal experiment

to improve the identification task. The exact solutions of this example are shown in Figure

5.23 [43]. In this example we are going to use the SVGD method, that, as we have shown

Figure 5.23: Analytical solution of activation times (left) and conduction velocity (right) in 2D

Eikonal Active Sampling example

before, entails a bigger uncertainty on the regions with less data. We initially use 100 mea-

surements with a noise level of 0.01. We then add a single new sampled measurement in

the position of maximum uncertainty, using our Active Learning algorithm. The results are

shown in Figure 5.24, where we plot the posterior standard deviation on Activation Times

and the position of the measurements, before and after Active Sampling. The new added

point is able to remove the region of bigger uncertainty we had. After Active Sampling, with

just a single new measurement over the 100 data we already had, we end up with a more

homogeneous posterior standard deviation all over the domain.

5.4 Transfer Learning in subdomains

In this section we test a new method to split the training stage in subdomains and taking

advantage of Transfer Learning, as described in Section 3.4, and we explain why this new

methodology can be useful for cardiac applications. We test this algorithm both on a 2D

and a 3D experiments. We start by highlighting that in a real clinical application, a grid of

electrodes is used to record activation times on heart chambers surfaces [44],[45]. A multi

electrode catheter is applied all over the surface in order to map the activation times in the

chamber. An example of multi electrode cathether and its use on a heart chamber is shown

in Figure 5.25. A multi electrode catheter has a grid of sensors (16 in the figure) and is able
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Figure 5.24: Posterior standard deviation for Activation times before (left) and after (right) a new

single data was added with Active Sampling

to measure the activation times in those locations in real time: step by step the electrode is

moved along the surface to map all the heart tissue. For this reason, the mapping procedure

at every step is accurate in that particular region (that coincides with the multi electrode

catheter area). The domain Ω is split in some smaller subdomains, which can be mapped

sequentially. Inspired by this fact, we have exploited the idea of subdomain splitting also

in our B-PINN procedure, ending up with a new algorithm, called "Patch B-PINN", which

takes advantage of both the domain splitting and the concept of Transfer Learning in a Neural

Network [36].

5.4.1 2D test

Let us start from a 2D Isotropic test case, in a domain Ω = (0,1)2, subdivided in 4 smaller

subdomains Ω1 = (0,0.5)× (0.5,1), Ω2 = (0.5,1)× (0.5,1), Ω3 = (0.5,1)× (0,0.5) and

Ω4 =(0,0.5)×(0,0.5). In this simple example all the subdomains have their own conduction

velocity, as shown in Figure 5.26, where we plot the true solution for this example.

For this test case, we employ a SVGD Bayesian PINN implementation with 15 particles

for simplicity. We set the number of epochs N equal to 100, so in the other subdomains

except the first we train just for 10 epochs. The number of collocation points and exact

measurements are 10000 and 100 respectively, divided in 25000 and 25 for each subdomain.

The experiment is carried out as follows: we first train all the 4 subdomains for N=100

epochs separately, for comparison purpose. Then we apply our Patch B-PINN algorithm:
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Figure 5.25: Multi electrode catheter used to measure activation times on heart tissues

after collecting θθθ 1, we use it as initial guess for θθθ i, i = {2,3,4} (parameters for NN in the

subdomains Ω2, Ω3 and Ω4) and train all the θθθ i separately for just 10 epochs. An additional

training with Transfer Learning and N=100 epochs in all the subdomains is done in order to

compare also the TL performance boost with a longer training. Results are compared with

the total loss, defined as a sum of the quadratic error on T on exact data (Di) and the quadratic

error on residuals (Ri) using the samples mean:

Tot. lossi =
1

ni
ex

ni
ex

∑
j=1
|E
[
T θθθ

i, j

]
−Ti, j|2 +

1
ni

coll

ni
coll

∑
l=1
|E
[
Rθθθ

i,l

]
−0|2, i = 2,3,4. (5.19)

Results are shown in Figures 5.27, 5.28 and 5.29.

For what concerns Ω2 and Ω4, 10 epochs with TL seems to be an acceptable training time:

in Ω2 Transfer Learning is so effective that with just 10 epochs we can get a lower loss than

with a full training, while in Ω4 with 10 epochs and TL we get the same result we would

obtain with about 40 epochs without TL. On the other hand, on Ω3 the transfer learning

efficacy is so low that with just 10 epochs we cannot see a big difference with respect to the

standard case. This problem could be caused by the particular form of activation times T in

Ω3 (lower right quadrant), as shown in Figure 5.26. Compared to the other subdomains, in

Ω3 we have the collision of two different wave fronts, that produces that particular shape of



Figure 5.26: Exact solution for activation times and conduction velocity in Ω, 2D Isotropic Eikonal

Patch BPINN example
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Figure 5.27: Log(Total loss) in Ω2 with and without Transfer Learning, 2D Isotropic Eikonal Patch

B-PINN example

T. This problem can be easily overcome redefining the activation maps in every subdomains,

for instance using always a source localization in the upper left vertex of the subdomain.

Finally we show that, considering all the 100 epochs, Transfer learning always provides a

performance boost. In particular, we found all the three types of performance improvement

defined in the previous section in Ω2 and Ω4, while only two (a better intercept and a better

slope) in Ω3.
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Figure 5.28: Log(Total loss) in Ω3 with and without Transfer Learning, 2D Isotropic Eikonal Patch

B-PINN example
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Figure 5.29: Log(Total loss) in Ω4 with and without Transfer Learning, 2D Isotropic Eikonal Patch

B-PINN example

5.4.2 3D test

As a final example of this methodology, we consider a 3D prolate geometry. Figure 5.30

shows the exact solutions for both activation times and conduction velocity in the domain

Ω, plus the division in subdomains. In this case we have a conduction velocity equal to

1 in all the domain, except for a low conduction velocity region (where v = 0.5 or 0.75,

respectively). This can represent a real clinical application, in which we are interested in

find low conduction areas.



Figure 5.30: Exact solution of activation times and conduction velocity in Ω, 3D Isotropic Eikonal

Patch B-PINN example

For this test, we have used a SVGD B-PINN implementation, employing just 5 NNs

with an architecture of 5 hidden layers, 100 neurons each. The full domain Ω is divided

in 8 subdomains, as shown in Figure 5.30. We first train each subdomain separately for

100 epochs. Then we select one of them (Ω1) and use it for Transfer Learning on the other

subdomains, trained for just 20 epochs this time. As Ω1 we have choose a subdomain where

v = 1 always.

We compute the Euclidean relative error (using the formulas (5.11)) for each subdomain for

both T and v, and we use the mean between the subdomains error to measure the total error.

With a full training we obtain a mean Euclidean relative error of 0.0167 for T, 0.190 for v;

while using the Transfer Learning with just 20 epochs we obtain a mean Euclidean rel. error

of 0.0198 for T and 0.204 for v.

As we can seen from the results above, with the Transfer Learning approach we have less

accurate results, but remarkable computational savings: with the full approach we are run

the training for a total of 800 epochs (100 epochs for each subdomain), with a computational

time of approximately 4000 sec; on the other hand, with the TL approach, we are training for

just a total of 240 epochs (100 epoch for the first subdomain, then just 20 for all the others),

1200 sec. This big speed up could justify a slightly less accurate results, especially during a

real clinical mapping of a patient.

In Figure 5.31 we compare the true conduction velocity against the mean BPINN results in

Ω3, that is the subdomain where we have most of the low conduction region. We can see
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Figure 5.31: Conduction velocity in Ω3, 3D Isotropic Patch BPINN example.

True (left), mean of BPINN with full training (center), mean of BPINN with Transfer Learning (right)

that both the approaches (Full training and Transfer Learning) recognize a lower conduction

velocity region in the lower left part of the domain, even if they are not able to completely

reconstruct the exact solution.





Chapter 6

Conclusions

In this thesis we have demonstrated the ability of Bayesian Physics-Informed Neural Net-

work to solve the Inverse UQ problems governed by stationary PDEs, by applying the

Physics-Informed Neural Networks (PINNs) paradigm in a Bayesian framework. In the

last few years, PINNs have been used to tackle several challenges in different scientific areas

with extremely promising results. Indeed, solving an Inverse UQ problem for PDEs is a chal-

lenging task from a computational standpoint, which can be effectively tackled by PINNs.

Despite an in-depth numerical analysis of PINNs in terms of convergence and accuracy is

still lacking, some preliminary results (see, e.g., [46]) might be helpful in order to assess a

priori the performance of a PINN method, at least in simplified contexts.

Bayesian PINNs (B-PINNs) represent an extremely recent extension of PINNs, for which

very few examples of applications, and no theoretical results, are available. The results

provided in Chapter 4 can be seen as one of the first attempts of validation of the B-PINN

technique, in the case of simple parametric Elliptic equations. Indeed, the possibility to com-

pare our results with the true posterior distribution, available in a closed form in the case of

a one-dimensional Elliptic PDE with measurements acquired on the solution, has allowed us

to validate these methods.

In Chapter 5 we have shown the capability of BPINNs to solve the Inverse UQ problems

related with the Eikonal equation in cardiac electrophysiology. We have addressed many test

cases of increasing complexity, ranging from one- to three-dimensional problems. In a one-

dimensional case, we have performed a comprehensive UQ analysis using the Hamiltonian

Monte Carlo method (HMC) to explore the posterior distribution of the parameters, showing

the impact of the number of measurements and the noise level on the obtained results. Then,

we have turned to a two-dimensional anisotropic Eikonal model, and to a three-dimensional
71



case set on a prolate geometry, that can be seen as a simple model of a ventricle geometry.

In all these cases, even if the HMC method provides better performances in terms of accu-

racy, it requires an expensive tuning stage to reach convergence; on the other hand, the Stein

Variational Gradient Descent (SVGD) method is more robust and faster, however featuring

possible memory allocation issues (when storing additional NNs at the same time), and pos-

sibly providing weaker results in terms of the estimated (conduction velocity) fields.

In Section 5.4, we have shown the effectiveness of Active Sampling in reducing uncertainty

and improving results adding just few new data. This algorithm can be very useful in all

those cases where we need to rely on small datasets, because of the high costs entailed by

the acquisition of new measurements. Finally, we have proposed a new method that takes ad-

vantage of Transfer Learning in those situations where we have grids of measurements. For

the cases considered, we have assumed to be able to collect activation times measurements

coming from a grid of sensors, as it happens when using cathethers for electrical mapping

in the clinical practice. After collecting a new grid of measurements, instead of retrain the

network from scratch, we use Transfer Learning to reach a substantial speed up during the

training stage, and improve the accuracy in the identified quantities since we focus on smaller

areas. As we have shown in Section 5.4, Transfer Learning can recognize small conduction

velocity areas in a three-dimensional geometry. To reach this goal, we have used just five

networks within the SVGD method, and only 100 epochs for the sake of computational time.

Using a bigger number of networks and more epochs could potentially yield even more accu-

rate results. We also highlight that Transfer Learning is more suitable in the case the SVGD

method, rather than the HMC method, is employed for sampling from the posterior distribu-

tion.

To conclude, we have shown that B-PINNs can greatly enhance the reconstruction of uncer-

tain quantities or fields from scattered measurements. Indeed, trying to estimate activation

times using neural network regression or interpolation without involving the physical model,

and then try to compute the conduction velocity, can lead to very poor results. On the other

hand, computing both quantities at the same time, as we can do using B-PINNs, and taking

advantage of the knowledge of a physical model for the quantities being observed, acts as a

goal-oriented regularization technique and greatly enhances results in terms of uncertainty

reduction.



Appendix A

Automatic Differentiation

By Automatic Differentiation (AD) [24] we indicate all the techniques to evaluate the deriva-

tive of a function by computer programs applying the chain rule. The basic idea behind these

methods is that a computer evaluates a function, providing an input, by a composition of

basic functions that use elementary arithmetic operations and elementary functions.

Since the forward pass from input to compute the output is a chain of basic operations, we

can compute derivatives using this chain backward, employing the chain rule for derivative,

knowing only the basic derivatives (derivative of the sum, product by a constant, polyno-

mials, exponential, trigonometric functions and so on). In this way, we can achieve better

results than every other approximate numerical differentiation formula, since here we are

computing the exact derivative.

These methods are widely used in every Machine Learning methods, and so also in Neural

Networks, mostly for computing back-propagation derivatives of parameters θθθ , in according

to loss functions being minimized. In this way, we can easily update the parameters θθθ af-

ter having collected ∇θθθL (θθθ) through automatic differentiation, using an optimizer like the

Gradient Descent method and Adam optimizer.

In addition to this classical use of Automatic Differentiation, in this thesis (as well as in

every work of the field "Scientific Machine Learning") we employ AD to compute deriva-

tives of output with respect to input data (collocation points), and not only with respect to

parameters. This allows us to compute for instance ∂T
∂x , ∂T

∂y and ∂T
∂ z , in order to have ∇T (x)

and compute the residual of the PDE (for instance the Eikonal Equation) representing the

physical model at hand.

Let us analyze more in detail how this works in our case. In order to keep everything simple,

suppose we are in the case of 1D isotropic Eikonal equation (see Section 5.2.1 for a detailed

introduction), with only 2 hidden layers, each of them having 5 neurons. Figure A.1 shows

the resulting architecture, where for completeness we have drawn also the bias vectors (in
73
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T

Figure A.1: Architecture in 1D isotropic Eikonal

yellow).

After our 1D input (that is simply the first neuron x), to map x in the first layer we use

weights matrix W(1) ∈ R1×5 and bias vector b(1) ∈ R5, the same in the second layer with

W(2) ∈ R5×5 and b(2) ∈ R5, and finally W(3) ∈ R5×2 and b(3) ∈ R2 to get outputs T and v.

The simple chain of computations that goes from input x to output (T,v) is therefore:

a(1) =W(1)x+b(1),

z(1) =σ
(1)(a(1)),

a(2) =W(2)z(1)+b(2),

z(2) =σ
(2)(a(2)),

a(3) =W(3)z(2)+b(3),

(T,v) =(a(3)1 ,a(3)2 ),

(A.1)

where σ (l) are our activation functions, that in this case are equal to the Swish activation

function

σ
(l)(x) = x sigmoid(x) =

x
1+ e−x ∀l = 1,2

and equal to identity function for l = 3 (since it is equal to identity we do not explicitly
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indicate it). Using the chain rule to compute the derivative is simple, indeed:

∂T
∂x

=
∂a(3)1

∂z(2)
∂z(2)

∂a(2)
∂a(2)

∂z(1)
∂z(1)

∂a(1)
∂a(1)

∂x
, (A.2)

and knowing the exact form of derivative of swish activation function:

∂σ(x) = σ(x)+ sigmoid(x)(1−σ(x))

we can compute the derivative of T with respect to x directly using the architecture of the

network.





Appendix B

True posterior distribution in 1D Elliptic
parametric computation

Let us now derive the formulas to compute vpost and σpost in (4.9).

We are in a 1D Elliptic parametric problem setting, and we know that the exact solution of the

equation (4.1) is u(x) = vcos(x). We have already shown that the posterior of v, conditioned

to the dataset of nd noisy measurements DDD, can be computed as:

P(v|DDD) ∝

 1√
2πσ2

D

nd
nd

∏
d=1

exp
(
−(ud− vcos(xd))

2

2σ2
D

) 1√
2πσ2

0

exp
(
−(v0− v)2

2σ2
0

)
.

We will now consider only the exponential for simplicity. The next steps are:
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Hence, we have proved that the posterior is still a Normal distribution:

P(v|DDD)∼N (vpost ,σ
2
post),
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of mean vpost and variance σ2
post , defined by the following equations:

vpost =
∑

nd
d=1(ud cos(xd))σ

2
0 + v0σ2

D

∑
nd
d=1(cos2(xd))σ

2
0 +σ2
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