POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Development and enhancement of an IMU-based system for real-time

monitoring of astronauts training

LAUREA MAGISTRALE IN BIOMEDICAL ENGINEERING - BIOTECHNOLOGIES FOR ELECTRONICS (BTE)

Author: FEDERICA CAMARDA
Advisor: PRorF. GIANCARLO FERRIGNO
Co-advisor: FRANCESCO JAMAL SHEIBAN

Academic year: 2021-2022

1. Introduction

This thesis is part of a research project funded
by the Italian Space Agency (ASI) called MARS-
PRE (Biological and functional MARkers for
PREcision astronomical bio-medicine), aimed at
investigating the effects of microgravity (i.e, the
absence of gravity) on the human body through
the analysis of biological markers.

As worldwide space agencies are now plan-
ning long-duration missions (LDM) to the Moon
and Mars, it became fundamental to thoroughly
investigate the physiological effects that the mi-
crogravity, the space radiations exposure and
the acceleration forces can cause to the hu-
man body for the safety of the astronauts in-
volved. Indeed, it has been observed that the
aforementioned factors lead to a decondition-
ing of multiple physiological systems (such as
musculoskeletal, cardiovascular, respiratory and
visual), which might actually not fully recover
once back to the Earth. Furthermore, long
missions can increase the risk of carcinogenesis
or/and degenerative diseases, due to the link be-
tween the effects of the harsh external stimuli
exposure and the individual genomic map.

Regarding the musculoskeletal system in par-
ticular, it has been observed that microgravity

induces a decrease in bone density 1% per month
approximately due to mineral loss, a value close
to the one of elderly men and women on Earth,
suggesting a possible risk of the body to be un-
able to properly repair a fracture during space
flights [3]. Further, it has also been shown
that the absence of gravity favors muscle atro-
phy, with reported lower limb muscles mass de-
creases of 35-40% of their intial value after a
period of 90-180 days [1|. Therefore, the cur-
rent project deals with the need to design and
develop proper countermeasures against these
physiological changes to allow astronauts to
carry out future LDMs without permanent dam-
age to their organism, as well as to prevent the
emergence of critical situations in a context lack-
ing appropriate facilities for medical support.

2. State of the Art and aims

In order to prevent the deconditioning of
the musculoskeletal systems, precise counter-
measures (deriving from a combination of physi-
cal exercises, diet and sometimes pharmacologi-
cal therapy, such as the use of bisphosphonates)
have been designed to be adopted not only dur-
ing mission time, but also before and after the
flight.

Astronauts aboard the ISS devote 2.5 hours 6
days a week to physical exercise, performing
both aerobic and resistive trainings.

Specific devices have been planned for in-
flight training programs for astronauts, such as
the Advance Resistive Exercise Device (ARED),
the T2 treadmill and the Vibration Isolation and
Stabilization Cycle Ergometer (CEVIS). The in-
stallation of the ARED on the ISS only took
place in 2008; the device is designed to simu-
late free weight exercise providing constant re-
sistance to movements through a bar coupled
to two vacuum cylinders. When a subject lifts
the bar on its shoulders, the vacuum inside the
cylinders opposes to the movement of the pis-
ton inside them, thus creating concentric resis-
tance. Conversely, when the bar is lowered, the
resistance to the vacuum creates eccentric re-
sistance [4]. The ARED features an adjustable
load from 0 to over 2,675 N, providing concen-
tric resistance up to 272 kg and constant force
over the entire range of motion. Thanks to these
features, ARED allows to reduce loss of strength
in the thigh muscles, going from a range of -9 /
-20% (pre-ARED) to a range of -4 / -15% (|6])
and an improvements in the BMD values of the
pelvis and hip.

Many astronauts, however, continue to lose
more than 20% of muscle strength due indistinc-
tive countermeasures [5]. Constant monitoring
of exercise execution is also required to let as-
tronauts train correctly and effectively. How-
ever, due to the long distance from the Earth, a
mission to Mars potentially entails transmission
delays from 6 to over 40 minutes [2]|, thus being
prohibitive for real-time telemonitoring. Hence
the aim of this research project was to develop
and enhance an IMU-based system (SpaceSens),
based on a previous work, to provide a real-
time feedback to users about the goodness of the
physical exercises being executed. In particular:

e an application was developed in order to
acquire, process and visualize the human
motion signals recorded through six iner-
tial sensors, collecting data of linear accel-
eration, angular velocity and magnetic field
(only for test purposes!) along the three
axes;

Data acquired from magnetometers were not in-
cluded in the later implementation of the classifier, be-
cause there is no need to simulate the microgravity con-
dition.

e a customized machine learning classifier was
implemented to classify resistive exercise
carried out by different subjects.

3. Materials and Methods

Although the hardware and the firmware
parts of the setup are beyond the scope of the
current project, an overview of the principal
components and their internal characteristics is
deemed necessary.

The motion tracking system had the require-
ments to be small, light, with low energy con-
sumption, so its hardware has been implemented
using a magnetic-inertial sensor, a microcon-
troller, a Bluetooth communication system and
an integrated power supply. The magnetic-
inertial sensor used is the SparkFun MPU-9250
IMU Breakout, which comprises InvenSense lat-
est 9-axis MEMS sensor, featuring an MPU-
6500 chip (containing a 3-axis accelerometer and
gyroscope) and an AKS8963 chip (that instead
contains a 3-axis magnetometer). The micro-
controller used is an Arduino Pro Mini 328 -
3.3V /8MHz, due to its very small footprint that
fits well the needs and requests of the project.
Regarding the Bluetooth module, HC-05 SPP
(Serial Port Protocol) module was chosen, not
only because of its compact size, but also to
allow a greater operating distance range com-
pared to other modules and provide continuous
data transmission. Finally, a 750mAh 3.7V 30C
Li-Po battery (i.e., a lithium polymer battery)
powers all the components aforementioned.

The SpaceSens firmware, instead, is com-
posed by the set of instructions loaded into the
microcontroller in order to read data from the
sensors and send it to a processing unit (i.e., a
computer) via Bluetooth. It was implemented
using the Arduino IDE (Integrated Design En-
vironment) software and written in C and C ++
languages. The firmware contains serial commu-
nication and sensors calibration functions. The
serial communication is responsible for send-
ing the data to a Python-based graphical user
interface (GUI) allowing to display, store and
elaborate the quantities read by the different
MPU-9250 sensors; the data streamed through
these firmware instructions are composed both
by a percentage number (representing the sen-
sors’ battery level) and the measured quantities,
encoded in packets of 3 and 28 bytes respec-

tively.

The accelerometer and gyroscope calibration, in-
stead, is carried out entirely on the firmware side
when turning on the sensors and placing them
on a plane, with the z-axis facing upwards. Dur-
ing the initial calibration phase, the firmware
records the sensors’ biases (comparing the quan-
tities read in this configuration to their ideal,
fixed values) and stores the offsets to be removed
before sending the data through the serial chan-
nel during the data streaming phase.

The main contribution of the present work
regards the application implementing the GUI
to let the user control the sensors, followed by a
phase of data acquisition and processing aimed
at creating the classifier that will be inserted into
the GUI for real-time feedback to astronauts.

GUI implementation Concerning the soft-
ware, two architectural patterns were exploited
to facilitate readability, streamline and ease of
code maintenance: the Model-View-Controller
(MVC) and the Publisher-Subscriber pattern.

The first pattern is deeply used to implement
graphical applications, and its main role is to
allow developers to separate the program’s logic
from the implementation of the actual interface.
The MVC consists of three software classes: a
Model, a View and a Controller class - hence,
its name.

" /-

Update

Notify
Apdate

Figure 1: Representation of the Model-View-
Controller Design Pattern.

In this project’s specific implementation, the
Model class contains all the streaming data

sent from the microcontroller to the serial
port of the computer, the View contains all
the graphic components of the interface to be
displayed on the computer’s screen, and the
Controller collects user inputs from the View
and communicates them to the Model, which in
turn updates the data visualized by the View
itself.

The second architectural pattern, the
Publisher-Subscriber, is a widely used mes-
saging pattern in which a class (Publisher) is
responsible to update messages in a common
channel from which specific classes (Sub-
scribers) pick up notifications about the topic
they are subscribed to. As for SpaceSens
implementation, each serial port involved in the
firmware communication doubles as a Publisher
that notifies its Subscriber whenever a new
packet of data is received from the sensor’s
Thus, the Subscriber class
stores a data structure of the packets received
(and continuously updated) by the Publisher,
and the data contained in this structure can
be either visualized or saved in a file for offline
analyses.

To favor code readability, the implementa-
tion has been divided into four Python scripts
linked to each other. One of them manages the
creation of the application’s main window, one
is responsible for post-processing data acquired
during the exercise execution, one stores all the
instruction related to the graphical interface
(implementing the MVC pattern) and finally,
the last one is responsible for the serial com-
munication (based on the Publisher-Subscriber

pattern).

l

microcontroller.

Message D

Figure 2: Publisher-Subscriber Design Pattern
scheme.

As the software was required to read and store
data from six different IMUs simultaneously, its
implementation entailed the use of the multi-
processing Python module to allow different in-
stances of the program (running sequentially) to
be executed in parallel. Python processes are
functions dispatched from within a script to be
executed in separate set of activities: as pro-
cesses do not have a shared memory, their use
within the SpaceSens application required the
implementation of a process Manager and Proxy
class, in order to allow the interaction with and
data retrieval from the different processes mem-
ory.

An important step is then the magnetome-
ter calibration, which allows on the user request
through the GUI to calculate the bias and scale
values caused by distortions of the involved sen-
sors in order to send them to the microcon-
trollers to be used for the gravity removal from
the acceleration signal.

The user interface has been designed in or-
der to be easy-to-use, so every element is shown
in one main page with a clear layout that de-
creases the learning curve of the program; the
user-friendliness is also enforced with the imple-
mentation of pop-up windows that communicate
the outcome of user interactions involving ele-
ments outside of the application (i.e., file sav-
ing), that would otherwise be hidden.

Classifier The aforementioned application
was tested in a real-life scenario and used to col-
lect data from different subject to develop a cus-
tom machine learning classifier to be then em-
bedded into the new application.

The data were acquired in early 2022 at the
Giuriati Sport Center (Politecnico di Milano)
from 9 different subjects (4 females and 5 males),
with distinct weights and heights. Each subject
performed 10 repetitions for the three types of
exercises (normal squat, wide squat and dead-
lift), both correctly and with the most frequent
types of errors: 5 for squats and wide squats
(knee over toes, valgus knees, rounded back,
raised heels, shallow squat) and 3 for the dead-
lift (rounded back, hyperextended back, bar over
the shoulders). The 6 IMU sensors were placed
in the mid-legs, mid-thighs, sternum and pelvis.
The data collected were then processed to ex-
tract the gravity-free acceleration and angular

velocity signals. These quantities were subse-
quently filtered with a low-pass Butterworth fil-
ter and divided into individual repetitions of
the exercises, by means of a search algorithm
of peaks and valleys of the recorded signals.
Then, a total of 2250 characteristics (6 sensors
x 375 characteristics for each sensor) were cal-
culated from the signals in both time and fre-
quency domains (such as mean, standard devia-
tion, interquartile range, entropy). After a data
augmentation process through the addition of
Gaussian noise with variable mean and variance,
with subsequent outliers removal, the most rep-
resentative features were extracted and used to
train and test a multi-layer perceptron (MLP)
for multi-class classification.

4. Results and Conclusions

The program described in the previous sec-
tion successfully allowed to collect data from
the different subject throughout the data ac-
quisition session, lasting a full working day. As
its software components have been designed fol-
lowing the object-oriented programming (OOP)
paradigm, the Python-based application shows
significant improvements in terms of both timing
and architecture compared to the software appli-
cation implemented within the previous work,
designed as a state machine.

The main visible advantages are the swift-
ness of the sensors connection, the reduction of
the code base dimension and improved readabil-
ity and scalability of the code thanks to the two
architectural patterns used. Moreover, the use
of pop-up windows and many different widgets
greatly improved the user experience (UX), pro-
moting the interaction and interest of the users
towards the application.

Swiftness of sensors connection Using the
previous application, whenever the program was
unable to establish an immediate connection be-
tween an IMU-based device and its computer
virtual port, the user had to wait the end of the
sensors search loop over the remaining ports (as
registered by the computer’s operative system)
for the application to start over and try to re-
connect to missing sensors.

The application developed in this project avoids
such problem, as it allows a targeted recognition
of the ports. Each available device is visible in

a list within the main page with its name, so to
be connected on demand only when necessary
for data acquisition. The color of the label dis-
playing the names in the devices list is set to
gray by default. When the pairing between the
computer and the device is successful, the color
of its text label turns white, notifying the user
that the device is ready to be used. Additionally,
the presence of real time plots in the right part
of the window allows a quick peek on the state
of the connection: when the plots related to the
connected sensor are empty, the serial connec-
tion has most probably encountered some hick-
ups and the user can press the button again to
connect that particular device and possibly close
the faulty plot tab using a specific button.

Use of architectural patterns As stated be-
fore, another great advantage of the new soft-
ware implementation is the use of the architec-
tural patterns. While in this work a custom
Publisher-Subscriber parallel pattern allows to
continuously stream data from the different mi-
crocontrollers to the PC, the previous applica-
tion made use of Python multiprocessing’s mod-
ule built-in Pipes classes. As the name sug-
gest, a Pipe is a process that allows bidirec-
tional (read/write) flow of data. However, due
to its high-level implementation, it required a
fixed syntax so that every time there was the
need to visualize data (i.e., draw real-time plots)
or perform actions requiring access to the mea-
sured data (such as the magnetometer calibra-
tion), one of the two ends of a new pipe had to
be defined and activated, resulting in a burden-
ing of the computational power required by the
application.

Classifier Concerning the development of the
classifier, the Multi-Layer Perceptron was able
to classify squat executions into six error classes,
with an accuracy of 97.6% on the training and
98.6% on the test data.

best estimator ‘

’hidden layer size’: (650, 40)
‘activation’: ’'relu’

‘solver’: ’adam’

"alpha’: 1e-07

‘'momentum’: 0.8

'learning rate’: 'constant’

Table 1: Table reporting the hyperparameters of
the best estimator.

Cco
KOT -
KV -

RB -

True class

RH -

SH-

CO KOT KV RB RH SH
Predicted class

Figure 3: Confusion matriz of observations in-
cluded in the test set of one specific subject.

This result was obtained through a data aug-
mentation process which was suggested by the
limited size of the dataset, consisting of only
60 observations (derived from the 10 repetitions
performed for each type of squat). Indeed, the
classifier used on the starting dataset performed
a stable accuracy of 100% both on the train and
on the test sets, an unrealistic result. For ex-
ample, if we consider that the positioning of the
IMUs in a subsequent training session could vary
(even slightly), the prediction on the correctness
of the squat could be wrong. Data augmentation
helps reduce overfitting when training a model,
making it more robust to the transformations.
The data augmentation was achieved through a
cloning of the starting dataset contaminated by
Gaussian noise with variable mean and variance.
In this context, different mean and variance val-
ues were examined, in order to give the right
variability to the data and find the right trade-
off between overfitting and underfitting of the
model.

The test accuracy value of 98.6% is the result

of a data augmentation with two different types
of Gaussian noise with mean 0.5 and -0.5 and
higher standard deviations of 10 (arbitrary mea-
suring units). The reason for using two noises
with non-zero averages is due precisely to the
possible variations that a new acquisition ses-
sion could cause. It was preferred to allow some
variability to the data which, however, did not
affect the average of the starting data. Although
theoretically the value of the variance may seem
high when compared to the actual values of the
different time series, it empirically proved to pre-
vent overfitting. This could be at least partially
explained by a low probability of extracting val-
ues close to the tail of the bell (and therefore too
high).

Nonetheless, different strategies were also in-
vestigated to perform data augmentation and
subsequent MLP training. Among these, the
most promising approach involved computing
the pairwise difference between each row of the
original dataset resulting in a new dataset with
59 rows. For each column of this new dataset,
mean and standard deviation were subsequently
extracted and used as the coefficients of the noise
generation function (see Figure 4). Despite it
showed lower accuracy values than the ones pro-
vided by the previous solution (ranging from 88
to 90%), it can still be considered a valid alter-
native.

feature_0 | feature_1 | feature_2

B 005 1245 T 24365 diff 0 diff 1 diff 2
1 0.02 10.05 | 34552 0 0.03 2.39° | =101.87
2 0.06 753 | 246.43 1 0,04, s 2.0
feature_0 | feature_1 | feature_2

0 0.05 1244 | 24365

1 0.02 1005 | 34552

2 0.06 753 24643

3 243.65 + RandomNoise (meang 2, stdgif 2)

7Yy _

0.05 + RandomNoise (meangi o, stddif o) 12.44 + RandomNoise (meangiff 1, stdditt_1)

Figure 4: Methodology explanation concerning
the noise addition related to the mean and vari-
ance of each feature of the new dataset given by
the pairwise difference between each row of the
original one.

A removal of the outliers and the subdivision
into train and test set were then performed.

Finally, although the present work greatly im-
proved the usability of the SpaceSens system,
there are still some improvements that could be

done: first, an emergency shutdown mechanism
would help to prevent the risk of battery dam-
ages when almost empty (as typical of lithium
polymer batteries).

Then, a custom classifier for both wide-stance
squat and deadlift could be implemented allow-
ing the application to monitor the execution of
the exercises more precisely and thus allowing
the astronauts to acquire data for the algorithm
directly in-flight or in the pre-flight phase on the
ISS.

References

[1] Gian C. Demontis, Marco M. Germani, En-
rico G. Caiani, Ivana Barravecchia, Clau-
dio Passino, and Debora Angeloni. Hu-
man pathophysiological adaptations to the
space environment. Frontiers in Physiology,
8(AUG):1-17, 2017.

[2] Tamas Haidegger and Zoltan Benyo. Surgi-
cal robotic support for long duration space
missions. Acta Astronautica, 63(7-10):996—
1005, 2008.

[3] Laurie J. Abadie, Charles W. Lloyd, Mark
J. Shelhamer, NASA Human Research Pro-
gram. Gravity, Who Needs I[t? NASA Stud-
ies Your Body in Space. pages 1-4, 2015.

[4] James A. Loehr, Stuart M.C. Lee, Kirk L.
English, Jean Sibonga, Scott M. Smith,
Barry A. Spiering, and R. Donald Ha-
gan. Musculoskeletal adaptations to training
with the advanced resistive exercise device.

Medicine and Science in Sports and Exercise,
43(1):146-156, 2011.

[5] Maria Stokes, Tobias Weber, Euro-
pean Space Agency, Nick Caplan, and
Lieven Danneels. Post - mission Ex-
ercise (Reconditioning)’ Topical Team
FINAL REPORT Recommendations for
Future Post-mission Neuro-musculoskeletal

Reconditioning Research and Practice.
(June):1-96, 2016.

[6] Kunihiko Tanaka, Naoki Nishimura, and Ya-
suaki Kawai. Adaptation to microgravity,
deconditioning, and countermeasures. Jour-
nal of Physiological Sciences, 67(2):271-281,
2017.

	Introduction
	State of the Art and aims
	Materials and Methods
	Results and Conclusions

