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Abstract

Investigation of the post-impact fate of the ejecta clouds generated by the impact on as-
teroids is a crucial element to plan kinetic impactor missions and understanding planetary
formation mechanisms.
In particular, the Asteroid Impact and Deflection Assessment (AIDA) mission is a joint
effort between ESA and NASA to the near-Earth binary asteroid (65803) Didymos, whose
objective is to impact a first spacecraft (DART) on the smaller body of the binary in the
October 2022 and, with the following HERA mission in 2027, assessing the deflection as a
consequence of the kinetic impact. The mission is intended to offer insights into the Solar
System formation and into the deflection techniques to be employed to protect the Earth
from Potentially Hazardous Asteroids.
The purpose of this thesis is to assess the fate of the ejecta cloud around the binary system
due to the impact of DART, by investigating the energy level of the particles involved.
As the dynamics around asteroids is well known to be challenging due to the gravity field
generated by their irregular mass distribution, in this work are discussed different rep-
resentation of the gravity field, and the most suitable are selected to correctly simulate
the forces environment. Also, the Scaling Laws model used for the ejecta initialization is
presented and discussed.
The energy level study is conducted in the context of the Augmented Hill Problem, a par-
ticular three-body problem that considers a very small secondary and the Solar Radiation
Pressure effect on the motion. Such a model is extensively characterized in this work for
the Didymos system.
A set of particles with different diameters is generated, constraining their velocity accord-
ing to the Scaling Laws, such to focus on particles that are less likely to escape right after
the impact. After propagating the particles for 6 hours, their energy level is compared
with the one associated with the equilibrium point L2 of the Augmented Hill Problem,
with the purpose of investigating the particles’ fate.

Keywords: Binary Asteroid; Ejecta Dynamics; Gravitational Model; Asteroid Dynamics;
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Sommario

Effettuare indagini riguardo l’evoluzione delle nubi di particelle create a valle di un impatto
con asteroidi è un elemento cruciale per pianificare missioni che prevedono l’impatto di
una sonda con un corpo celeste e per comprendere i meccanismi di formazione planetaria.
In particolare, la missione Asteroid Impact and Deflection Assessment (AIDA) è una mis-
sione congiunta ESA/NASA diretta verso l’asteroide binario vicino alla Terra (65803)
Didymos, il cui obiettivo è quello di impattare un veicolo spaziale (DART) sul corpo più
piccolo del sistema binario nell’Ottobre del 2022 ed, in seguito, con la missione HERA
pianificata per il 2027, valutare la variazione orbitale subita dal corpo. La missione AIDA
si propone di investigare riguardo la formazione del Sistema Solare e le tecniche da imp-
iegare per proteggere la Terra da asteroidi potenzialmente pericolosi.
Scopo di questa tesi è valutare l’evoluzione della nube di ejecta nei pressi del sistema bina-
rio causata dall’impatto di DART, studiando il livello di energia delle particelle coinvolte.
Essendo nota la complessità della dinamica in prossimità di asteroidi a causa del campo
gravitazionale generato dalla loro irregolare distribuzione di massa, in questo lavoro ven-
gono discussi i problemi relativi alla diversa rappresentazione del campo gravitazionale,
selezionando i modelli più adatti a simulare correttamente le forze coivolte. Inoltre, viene
presentato e discusso il modello delle “Scaling Laws” utilizzato per l’inizializzazione delle
particelle.
Lo studio del livello energetico viene condotto nel contesto dell’Augmented Hill Problem,
un particolare problema ai tre corpi che considera un corpo secondario molto piccolo e
l’effetto della Pressione di Radiazione Solare sul moto. Tale modello è qui ampiamente
caratterizzato per il sistema Didymos.
In questo studio è generato un insieme di particelle con diametri differenti, vincolandone
la velocità secondo le già menzionate Scaling Laws, così da investigare particelle che hanno
meno probabilità di sfuggire la gravità del sistema binario appena dopo l’impatto.
Dopo aver propagato le particelle per 6 ore, il loro livello di energia è confrontato con
quello associato al punto di equilibrio L2 nel problema di Hill, allo scopo di indagare la
loro evoluzione nel tempo.

Parole chiave: Asteroidi binari, dinamica delle polveri, modelli gravitazionali, dinamica
intorno agli asteroidi,
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1| Introduction

The history of space exploration started a long time ago, when humankind was observing
the sky, being fascinated by the stars. As it is well known, the perseverance of these ob-
servations led to the discovery of the solar system, its planets, and of a plethora of small
objects with peculiar characteristics such as asteroids, comets and cosmic dusts. The im-
portance of studying these objects in detail by intercepting them with probes, realizing a
space laboratory and possibly returning back some samples, became clear and especially
feasible at the beginning of the 80’s, when several spacecrafts were aimed to intercept the
Halley Comet, creating the so-called “Halley armada”. [1]
An historical overview on the asteroids and comet missions performed since then is re-
ported in section 1.1, with a particular emphasis on the mission of interest for this thesis,
the Asteroid Impact and Deflection Assessment (AIDA) mission to binary asteroid 65803
Didymos [2].
Asteroids are typically small-sized, which implies the exertion of small gravitational forces.
Therefore, objects orbiting such celestial bodies are severely affected even by small per-
turbations. The dynamical environment is in turn challenging to study for operating and
designing space missions. Due to the reasons stated above, the design and study of these
missions is a flourishing area, and expected to become increasingly prominent in the com-
ing years.
The motivation beyond this thesis is related to a specific field of asteroid mission design
that include an impactor: the assessment of the dynamical evolution of ejecta particles.
Such a motion is considered of interest because, apart from the information that can offer
about the emitting body’s characteristics, it can give insights on the processes that gave
birth to our solar system.
Although several studies about the ejecta fate have been performed in the past years, [3, 4]
including some with a focus on the AIDA mission [5, 6], the purpose of this thesis is to
evaluate their evolution from the assessment of their energy level (i.e. Jacobi constant) in
the context of the Augmented Hill Problem.
The rationale behind this work and an overview of its contents are reported respectively
in section 1.2 and section 1.3.
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1.1. Historical review

Since the early 80’s an international effort have been posed to inquire from a close distance
minor bodies of the solar system, such as comets and asteroids.
Some missions, after the accomplishment of their primary objective, were therefore redi-
rected towards minor bodies. It’s the case of the International Cometary Explorer (ICE)
mission (NASA/ESA), first mission to fly past a comet, targeting the 21P/Giacobini-
Zinner [7] and Vega 1 and 2 (USSR), intercepting the Halley Comet [8]. The latter
mission and others paved the way for Giotto (ESA), the first deep space mission from the
European Space Agency, achieving a 600 km flyby with the Halley Comet in 1986. [9]
The beginning of the 90’s saw instead the first human made object flying past an asteroid,
with the Galileo probe (ESA) intercepting 951 Gaspra and 243 Ida on its way to Jupiter.
[10] The very first mission to target an asteroid (433 Eros) was indeed Near Earth Asteroid
Rendezvous (NEAR) Shoemaker (NASA), whose spacecraft became the first human-made
object to orbit a minor body in February 2000. [11]
In the following years efforts were put towards landing and/or return of samples from
deep space. That was the case of Japan Aerospace eXploration Agency (JAXA)’s mis-
sion Hayabusa, capable of returning samples from the asteroid 25143 Itokawa in 2005
[12], Stardust (NASA), that returned to Earth samples of the coma of comet 81-P Wild
in January 2006 [13] and Rosetta (ESA) , first spacecraft to orbit a cometary nucleus
(67P/ Churyumov-Gerasimenko) and to visit the surface through a lander, in 2014 [14].
Remarkable sample return missions towards Near-Earth Asteroids (NEAs) performed in
more recent years are Hayabusa 2 (JAXA) to asteroid 162173 Ryugu, that successfully
returned samples to Earth in 2020 [15] and OSIRIS-REx (NASA) that touched down as-
teroid 101955 Bennu in the same year and is expected to return samples in 2023 [16].
Several exploration and sample return missions to minor bodies are ongoing or planned in
the coming years, such as Lucy (NASA), launched at the end of 2021 to explore Trojan
asteroids [17], Zheng He (CNSA) a sample return mission to asteroid 69219 Kamo'oalewa
scheduled for launch in 2024 [18] and Destiny+ (JAXA) a technology demonstration mis-
sion to collect dust from the active asteroid 3200 Phaethon in 2028. [19]

1.1.1. Binary NEAs: a planetary defense opportunity

As seen, in the last decades, due to their large accessibility to spacecrafts, NEAs have
become the target of several deep space missions. NEAs are a sub-category of the so-
called Near-Earth objects (NEOs), classified with respect to their semi-major axis (a),
perihelion distance (q), aphelion distance (Q) and absolute magnitude (H) (see Table 1.1
for details). NEOs are defined as “all small Solar System bodies with orbits around the
Sun that lie partly between 0.983 and 1.3 AU away from the Sun”. [20] In particular,
NEAs are asteroids with a perihelion distance less than 1.3 AU and an aphelion distance
of approximately 1 AU. At the time being, their population is estimated to be of more
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than 28500 unities.
If their Minimum Orbit Intersection Distance (MOID) with the Earth overcomes a cer-
tain threshold, these asteroids are considered as Potentially Hazardous Asteroids (PHAs),
meaning that they are large enough to cause significant regional damage in the event of
impact.

Group Definition Description

NECs q<1.3 au
P<200 years Near-Earth Comets

NEAs q<1.3 au Near-Earth Asteroids

Atiras a<1.0 au
Q<0.983 au

NEAs whose orbits are contained entirely with the orbit of the Earth
(named after asteroid 163693 Atira).

Atens a<1.0 au
Q>0.983 au

Earth-crossing NEAs with semi-major axes smaller than Earth’s
(named after asteroid 2062 Aten).

Apollos a>1.0 au
q<1.017 au

Earth-crossing NEAs with semi-major axes larger than Earth’s
(named after asteroid 1862 Apollo).

Amors a>1.0 au
1.017<q<1.3 au

Earth-approaching NEAs with orbits exterior to Earth’s but interior to Mars’
(named after asteroid 1221 Amor).

PHAs MOID<=0.05 au
H<=22.0 Potentially Hazardous Asteroids

Table 1.1: Near-Earth Objects classification. NEAs are divided into four groups (Atiras, Atens,
Apollos, Amor) based on their semi-major axis (a), perihelion distance (q), aphelion distance (Q)
and Absolute Magnitude(H).

As of February 2022, about the 12.5% of the NEAs population is known to represent a
threat to Earth. [21]
Since 1993, when the Galileo spacecraft imaged the asteroid moon Dactyl while performing
a flyby near its bigger companion 243 Ida [22], binary asteroids started gaining interest
in the scientific community. In the last few decades, many multiple asteroid systems were
discovered [23] (see Table 1.3) and it is currently estimated that about 16% of NEAs are
binaries. [24] As of February 2022, there are 459 minor planets with companion for a total
of 479 known companions, including triple, quadruple and other systems. A list of the
number of objects divided per location in the solar system [25] is reported in Table 1.2

# of Systems Orbital class

80 Near-Earth objects
31 Mars-crossing asteroids
193 Main-belt asteroids
6 Jupiter trojans
2 Centaurs
114 Trans-Neptunian objects

Table 1.2: Number of minor planets with companions (not only binaries) per Solar System region

The threat represented by these asteroids have inspired space missions aimed to defend
our planet in several ways.
It is the case of NEOWISE, a NASA infrared-wavelength astronomical space telescope
currently identifying and characterizing the population of NEOs [26], the Asteroid Redirect
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System Primary Secondary

Designation Class D (km) s/p YOD D (km) RT (h) YOD D (km) RT (h) as (km) Ps (h)

1862 Apollo APO 1.55 0.052 1932 1.55 3.065 2005 0.08 – 3.75 27.36
1866 Sisyphus APO 8.48 0.1 1972 8.44 2.3909 1985 0.84 – 19 27.12
3671 Dionysus AMO 1.46 0.2 1984 1.43 2.705 1997 0.29 – 3.4 27.744
5143 Heracles APO 3.65 0.167 1991 3.6 2.706 2011 0.6 – 4 15.5
5381 Sekhmet ATE 1.04 0.3 1991 1 2.7 2003 0.3 10 1.54 12.5
7088 Ishtar AMO 1.51 0.42 1992 1.39 2.679 2006 0.33 – 2.8 20.6496
15745 Yuliya AMO 1.2 0.46+ 1991 0.61+ 3.2495 2018 0.28+ – – 11.735
65803 Didymos AMO 0.77 0.22 1996 0.75 2.259 2003 0.17 – 1.18 11.8992
66391 Moshup ATE 1.39 0.341 1999 1.317 2.7645 2001 0.451 17.4 2.548 17.4216
69230 Hermes APO 0.81 0.9 1937 0.6 13.894 2003 0.54 13.892 1.1 13.8936
163693 Atira ATI 4.9 0.21 2003 4.8 2.9745 2017 1 – 6 15.504

Table 1.3: List of some NEAs with companions. Class is the abbreviation of Amor, Apollo, Atira
and Athens. D is the diameter in km, s/p is the secondary-to-primary ratio. YOD is the year of
discovery. RT is the rotation time in hours, as and Ps are respectively the semi-major axis (km)
and the revolution period of the secondary (hours). [25]

Mission (ARM), aimed to collect a massive boulder from a NEA, now cancelled [27, 28]
or the NEA Scout, a solar-sail propelled CubeSat to be deployed during the Artemis I
mission to inquire about NEAs features. [29]
A good opportunity to set up a planetary defense mission in scale has been found in
binary asteroids. Asteroid Impact and Deflection Assessment (AIDA) mission, a joint
effort between ESA and NASA is in fact aimed to assess the deflection of the secondary
of the binary system (65803) Didymos as a consequence of a kinetic impact. [2] The
AIDA mission architecture includes two spacecraft, designed independently by ESA and
NASA. The European contribution is called Asteroid Impact Mission (AIM) (now HERA),
while the US one Double Asteroid Redirection Test (DART). [30] The latter, launched in
November 2021, is expected to impact the smaller body of the Didymos binary (“Didymos
B” or “Didymoon”) in October 2022, releasing a CubeSat (LiciaCUBE) [31] to take images
of the event and leave the system shortly. The HERA spacecraft is scheduled to depart
in 2024 to reach the binary system in 2027 and investigate the impact effects. [32] It
will release two small satellites: Juventas, a 6U CubeSat responsible of observing the
moon of the system from a few km, while operating fully autonomously using the Hera
mothercraft as a proxy [33] and Milani, another 6U CubeSat aimed to map the binary
bodies and determine the composition of the ejecta created after the impact [34] .

1.2. Motivation and research question

The ejecta generated from small bodies is a consequence of processes that activate and
modify the surface of the bodies themselves. Such cloud of particles can represent an
hazard for missions coming after the release of material.
Especially, in the context of the AIDA mission, the presence of a second spacecraft aimed
to the asteroid and of CubeSats in support of the main mission, makes necessary a precise
assessment of the ejecta fate about Didymos.
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The objective of this thesis is to infer on the evolution of the ejecta particles generated by
the impact of DART on the smaller body of the binary asteroid system (65803) Didymos
using a high fidelity model, and by evaluating their energy level, using a different approach
from the studies carried on up to date.
Given all the previous considerations, the main question this thesis wants to answer is:

How will the ejecta produced from the DART impact evolve?

This main research question is broken into three objectives of study as follows:

What is the dynamical environment for a third body orbiting in proximity of
the Didymos system?

This implies studying the dynamical environment around the binary asteroid in a high
fidelity model to examine the forces acting on the third body and the order of magnitude
of the perturbations. The comparison of different strategies for the design of the irregular
gravity field is performed to find the optimum for the analysis.

Which is the best model to simulate the particles ejection following the
impact of DART?

The ejecta modelling state of the art is reported and detailed. The quantities of interest
for this study are computed by means of the appropriate model.

What is the post-impact ejecta fate with respect to their energy level in the
context of the Augmented Hill Problem?

This task is accomplished by propagating the particles generated through the Scaling Laws
for a certain time after the impact, and then comparing their energy level with a reference
value (the L2 equilibrium point energy) in the context of the Augmented Hill Problem.

1.3. Thesis overview

This work is divided in three main chapters. The first one (chapter 2) is intended to offer
detailed information about the theoretical background needed. It contains explanation
of the main gravitational models for small bodies, a description of the Augmented Hill
Problem and the analytic condition for a particle to be bounded to an asteroid in the same
context. Moreover, in the same chapter are characterized the so-called “Scaling Laws”, to
serve as a model for the ejecta particles initialization.
In chapter 3, are instead described the dynamical models employed along with the reference
frames involved. A model of the Didymos system in the context of the Augmented Hill
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Problem is also discussed, and at the end of the chapter the process of ejecta initialization
is reported.
In chapter 4 are reported all the details regarding the simulation along with the results
retrieved and, finally, in chapter 5 the outcomes of this work are summarized, offering
perspectives on the potential future developments. Notice that a verification of all the
models employed in this work is reported in Appendix A.
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2| Theoretical Background

Modeling the dynamics around binaries is a very challenging task, as several effects have
to be taken into account: mutual rotation of the bodies around each other, rotational
motion, shapes and relevant perturbations. In this work is also considered the formulation
of a peculiar three-body problem, namely Augmented Hill Problem, to retrieve the energy
level that will lead to the final considerations. Additionally, a proper model for the ejecta
generation is adopted to accurately simulate their size and initial conditions.
In this section is reported all the theoretical framework used to build up the models
adopted. Available formulations for the gravity of small bodies are included in section 2.1,
an overview on the Augmented Hill problem can be found in section 2.2 and finally, a
description of the model adopted for the impact (i.e. the ejecta generation) is described in
section 2.3. For the sake of completeness, the validation of the models used in this work
is reported in Appendix A.

2.1. Small bodies gravitational models

Main dynamical models for the gravity field around small bodies are: Triaxial Ellipsoid,
Spherical Harmonics Expansion, Polyhedral gravity field and Mass concentration (Mascon)
model. [35]
Advantages and disadvantages of each method are summarized in Table 2.1.

Gravity Model Pros Cons

Triaxial Ellipsoid - Simple to implement
- Good first approx.

Spherical Harmonics
Expansion

- Approaches exact gravity as the order increases
- Low computational cost
- Poorly affected by the level of accuracy
- Useful for long simulations model

- Variable model complexity
- Valid only outside of the Brillouin’s sphere

Mascons
- Depends on the masses’ distribution strategy
- Can deal with any shape and density variation
- Provides gravity values inside the Brillouin sphere

- High computational cost
- Constant density hypothesis

Polyhedral
- Can deal with any shape (homogeneous)
- Gravity field preserved up to the body’s surface
- Laplacian to check the position wrt body

- High computational cost
- Density must be constant

Table 2.1: Pros and cons of the main gravity field models around small bodies

In the following subsections an overview on each of the mentioned models is reported to
justify the choices made in this work.
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2.1.1. Triaxial Ellipsoid

The Triaxial Ellipsoid constitutes a good (first) approximation for objects with one major
elongated axis (and constant density). [36]

Fig. 2.1: Schematic of a triaxial ellipsoid shape

Considering an object with a > b > c (see Figure 2.1), the formula to compute the
potential for is Equation 2.1.1:

U =
Gρ2πabc√
a2 − c2

{[
1− x2

a2 − b2
+

y2

a2 − b2

]
F (ωκ, k)+

+

[
x2

a2 − b2
−

(
a2 − c2

)
y2

(a2 − b2) (b2 − c2)
+

z2

b2 − c2

]
E (ωκ, k)+

+

[
c2 + κ

b2 − c2
y2 − b2 + κ

b2 − c2
z2
] √

a2 − c2√
(a2 + κ) (b2 + κ) (c2 + κ)

} (2.1.1)

Where κ is the highest root of the equation:

x2

a2 + κ
+

y2

b2 + κ
+

z2

c2 + κ
= 1 (2.1.2)

And also,

k =
a2 − b2

a2 − c2
; sin(ωk) =

√
a2 − c2

a2 + κ
(2.1.3)

F, E are Legendre’s integrals respectively of the first and second kind, that have expression:

F (ωκ, k) =

∫ ωκ

0

dφ√
1− k2 sin2(φ)

E (ωκ, k) =

∫ ωκ

0

√
1− k2 sin2(φ)dφ

(2.1.4)

(2.1.5)
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2.1.2. Spherical Harmonics Expansion

The exterior/interior gravity field expression is one of spherical harmonic expansions of
the gravity field, which is obtained by solving Laplace’s equation by separation of variables
[37]. In fact, the separation of variables yield two solutions for Laplace’s equation: internal
and external.
The most widely used gravitational potential expression is the exterior gravity field in
Equation 2.1.6:

U e =
GM∗

R∗
e

∞∑
n=0

n∑
m=0

(
R∗

e

r

)n+1

Pnm(sinϕ)

[
cos(mλ)

sin(mλ)

][
Ce
nm

Se
nm

]
(2.1.6)

where U is the potential, e super/subscript denote the exterior quantity, G is the gravita-
tional constant, M∗ is the reference mass (nominally the total mass of the body), R∗ is
the reference radius (nominally the radius of the Brillouin sphere), r is the spacecraft po-
sition, Pnm is the associated Legendre function of degree n and order m, Cnm and Snm are
spherical harmonic coefficients, λ is longitude, and ϕ is latitude in the body-fixed frame.
This exterior gravity field, as described in detail by [38], is generally valid only outside
the circumscribing sphere of an asteroid, hence the name “exterior gravity field”. Such
sphere is also called the Brillouin sphere, within which all mass elements of the asteroid
reside [39]. Thus, for general body shapes, the exterior gravity field does not model the
dynamical environment within the Brillouin sphere, which poses a problem when perform-
ing proximity operations around asteroids. The exterior gravity field expression is one of
spherical harmonic expansions of the gravity field, which is obtained by solving Laplace’s
equation by separation of variables as mentioned above. In fact, the separation of variables
yield two solutions for Laplace’s equation, the other type of which is referred to as the
interior gravity field Equation 2.1.7:

U i =
GM∗

R∗
e

∞∑
n=0

n∑
m=0

(
r

R∗
i

)n

Pnm(sinϕ)

[
cos(mλ)

sin(mλ)

][
Ci
nm

Si
nm

]
(2.1.7)

This interior gravity field converges interior to the Brillouin sphere and outside of the
body. The convergence region of the interior gravity field is up to a point on the surface
where the interior Brillouin sphere makes a contact, as shown in Figure 2.2
It is therefore apparent that a major drawback of the interior gravity field is that many
of them are necessary to map out the entire space of the gravity field around the body
(i.e., total mapping). This problem becomes more critical when is required to map out the
gravity field in a severely concave region, which is a prominent feature of contact binaries.
In contrast, the interior gravity field is shown to be accurate for regional mapping where
the surface is smooth.
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Fig. 2.2: Schematic of the external and internal Brillouin sphere for a generic shaped asteroid

2.1.3. Polyhedral Gravity Field

The polyhedral gravity field (i.e., the shape model gravity field [40, 41]) consists in mod-
eling the asteroid as a constant-density polyhedron. By polyhedron it is meant a three-
dimensional solid body whose surface consists of planar faces meeting along straight edges
or at isolated points called vertices. Exactly two faces meet at each edge. Three or more
edges and a like number of faces meet at each vertex. As the vertex coordinates of a
polyhedron alone are insufficient to describe it, the connective topology must also be de-
scribed - edges connect which vertex pairs and bound which face pairs (see Figure 2.3 and
Figure 2.4)

Fig. 2.3: Each polyhedron face has its own
Cartesian coordinate system oriented so that k is
aligned with the face’s normal vector n̂f . Vector
rf extends from the field point to any point in

the face plane. Courtesy of [41]

Fig. 2.4: Schematic of two faces with a common
edge and their respective normal. Courtesy of

[41]

The polyhedron shape approach is based on the concept that any body of arbitrary shape
can be approximated with a polyhedron having a variable number of triangular faces (see
Figure 2.5). Exploiting the analytic form of the gravitational potential of a homogeneous
polyhedron with such faces, it is possible to evaluate the field generated by any irregularly-
shaped body by collecting all elementary contributions together.

The closed-form analytical expression of the exterior gravitational influence of a constant-
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Fig. 2.5: Asteroid Psyche polyhedral model. Courtesy of [42]

density polyhedron guarantees that the gravity field is exact in any portion of space for
the given shape and density. Notwithstanding all these positive features, this method
is markedly expensive in terms of the computational cost, as the entire surface must be
summed over to achieve one single force value, and certainly this cost increases with the
resolution of the shape discretization. [43]
After some mathematical manipulations of the potential U, well described in [40], one
arrives to the following expressions that model the polyhedron gravitation.

U =
1

2
Gσ

∑
e∈ edges

re ·Ee • re · Le −
1

2
Gσ

∑
f∈ faces

rf · Ff • rf · ωf (2.1.8)

∇U = −Gσ
∑

e∈ edges

Ee • re · Le +Gσ
∑

f∈ faces

Ff • rf · ωf (2.1.9)

∇∇U = Gσ
∑

e∈ edges

Ee · Le −Gσ
∑

f∈ faces

Ff · ωf (2.1.10)

∇2U = −Gσ
∑

f∈ faces

ωf (2.1.11)

Symbols G and σ represent the gravitational constant and the polyhedron’s constant
density. Suffixes e and f indicate edge and face, respectively. Each polyhedron face has
an outward-pointing face normal vector n̂f and face dyad Ff = n̂f n̂f . Each edge of each
face has an outward-pointing edge normal vector fife perpendicular to both n̂f and the
edge. For the edge connecting vertices 1 and 2 shared by faces A and B, the edge dyad is
E12 = n̂An̂A

12 + n̂Bn̂B
21 , with other Es defined similarly. ri represents the vector from the

variable field-point location to polyhedron vertex Pi, and let ri = ∥ri∥ be its length. For
the polyhedron edge connecting vertices Pi and Pj of constant length eij , the dimensionless
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per-edge factor Le is:

Le ≡
∫
e

1

r
ds =

∫ Pj

Pi

1

r
ds = ln

ri + rj + eij
ri + rj − eij

(2.1.12)

For a triangular face f bounded by vertices Pi,Pj ,Pk the dimensionless per-face factor ωf

is expressed by:

ωf =

∫∫
triangle

∆z

r3
dS = 2arctan

ri • rj × rk
rirjrk + ri (rj • rk) + rj (rk • ri) + rk (ri • rj)

(2.1.13)

Using these definitions, the gravitational potential, attraction, gravity gradient matrix,
and Laplacian of a constant density polyhedron are expressed intrinsically, in closed form
as above.

2.1.4. Mascon Model

The mascons approach is surprisingly simple from a conceptual point of view because it
uses several point masses to reproduce the body’s mass distribution. The resulting gravity
field depends on the number of employed masses, and on how they are distributed. While,
the mass of the total body is always preserved, there exist different methods to distribute
the point masses in the body’s domain. Classical strategies employ an evenly spaced grid
and are referred to as gridded mascons approaches.
The gravitational potential of the whole body, making use of Nm mascons, is:

U = G

Nm∑
i=1

mi

ri
(2.1.14)

where mi and ri are, respectively, the mass value and the distance from each point mass.
The previous equation converges to the true gravitational field for Nm −→ ∞.
In [43] the point masses are also distributed according to an optimization process and the
obtained results are presented and then compared with those related to the polyhedron
approach and mascon gridded version.

From the comparison, it emerged that the polyhedron approach, especially if the rep-
resentation of the body is particularly accurate, produces superlative results, but it is
computationally expensive. The fidelity of the field is only limited by the accuracy of the
shape representation; moreover, the Laplacian of the potential is immediately available to
determine if a field point is outside or inside the body. The required time to evaluate the
field is linearly increasing with the number of polyhedron’s faces, while the errors of the
model decrease with the square root of the same quantity. Having this information, an



2| Theoretical Background 13

Fig. 2.6: Gridded mascons model applied to 216 Kleopatra. Courtesy of [43]

acceptable level of accuracy and computational effort can be established according to the
current needs.
The mascons approach is markedly faster and produces good results if the field point is far
enough from the surface of the body. In general, it produces poor results if it is applied to
elongated bodies. The optimized version of this technique improves the performances of
the standard version up to its theoretical limit: the error decreases by one order of mag-
nitude for an increase of three orders of magnitude in the number of mascons. However,
over a certain number of point masses, the optimization process is not effective anymore
and the gridded mascons approach is sufficient to have an acceptable result.
The conclusion of [43] is that the most efficient and effective gravity model is a combina-
tion of both approaches. The resulting optimum Lo-Fi technique uses a polyhedron with
a moderate number of faces to compute the field close to the surface of the body, and
the optimized mascons with a reasonable number of masses when the distance from the
centre of mass is large enough. The switch between the two models happens at a distance
where the gap between the two techniques is extremely limited, in a way to maintain the
continuity of the field.

2.2. Augmented Hill Problem

Firstly introduced by George Hill to study the motion in the vicinity of the Moon in 1878,
the Hill Problem [44] represents a particular case of the Circular Restricted Three-Boby
Problem (CR3BP). [45] It describes the scenario where the motion is in the neighborhood
of the secondary body and the mass of the latter is much smaller than the one of the
primary. The classical formulation, although employed in previous works and widely
explored [46, 47], does not account for one of the major perturbations involved in the
considered system: the Solar Radiation Pressure (SRP). [3] The evolution of the Hill
problem, taking in account a radiating primary, is also known as Photogravitational Hill
Problem or Augmented Hill Problem (AHP). [48]
Assuming an asteroid rotating around the Sun with period Ta, it can be considered the
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rotating reference system - namely the Hill frame - centered in the center of mass of the
asteroid (or the barycenter of the binary in our case), given by x̂Hill (anti-solar direction),
ẑHill (asteroid angular momentum) and ŷHill to complete the orthogonal frame. In this
case the Equations of Motion (Equation 2.2) normalized using as unit of length [l] =

(µ/ω2)1/3 and unit of time [t] = 1/ω, where µ is the asteroid gravitational parameter and
ω = 2π/Ta read [46]:

ẍ− 2ẏ = − x

r3
+ 3x+ β

ÿ + 2ẋ = − y

r3

z̈ = − z

r3
− z

(2.2.1)

(2.2.2)

(2.2.3)

where r =
√

x2 + y2 + z2 and β is the non-dimensional SRP acceleration. The approx-
imation to the vicinity of the asteroid, or secondary body, means we include the Sun’s
third-body effect in the dynamics instead of the absolute gravitational attraction felt by
the particle from the Sun [46].
The SRP is assumed to be constant and acting along the Sun-asteroid direction. The non-
dimensional SRP acceleration, β, is then obtained by normalizing the traditional SRP
acceleration, aSRP , for a cannonball model [49], i.e., with a constant exposed area and
attitude, which yields Equation 2.2.4:

β =
aSRP

[l]/[t]2
=

(1 + CR)P0

m/Aµ1/3µ
2/3
S

(2.2.4)

where CR is the reflectivity coefficient or albedo, P0 ≈ 1.02 × 1017 kgm s−2 is the solar
constant, m/A is the mass-to-area ratio, and µS is the gravitational parameter of the Sun.
Still following [46], the system of Equation 2.2 admits an energy integral (Equation 2.2.5)
known as the Jacobi constant C:


C = 2Ũ − V 2 = 3x2 + 2βx+

2

r
− z2 −

(
ẋ2 + ẏ2 + ż2

)
Ũ =

3

2
x2 + βx+

1

r
− z2

2

V =
√
(ẋ2 + ẏ2 + ż2)

(2.2.5)

where Ũ and V represent, respectively, the effective potential and kinetic energies of the
system. Since V cannot be negative, it follows that

V 2 = 2Ũ − C ≥ 0
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which translates into the region of accessible motion of a particle (condition 2Ũ ≥ V ). The
boundaries of these regions are called Zero Velocity Curves (ZVC) and can give important
insights on the motion of particles in Three-Body environment. [50]
Unlike the five equilibrium conditions (Lagrangian points) associated with the CR3BP, it
is easy to derive - setting the left-hand side of Equation 2.2 to zero - that the classical Hill
Problem (β = 0) admits two equilibrium points, located at:

x = ±
(
1

3

)1/3

While for β values different from zero, the the Lagrangian points are found by choosing
the real roots of the polynomials:

3x3 + βx2 ± 1 = 0

AHP has been widely characterized in terms of equilibrium points and exploiting their
orbit families both for low [48] and high [51] values of SRP.
In this work the AHP is employed to perform analyses about the displacement along
preferred orbits of the ejecta after a certain period following the impact of DART with
Didymoon. The characteristics of the AHP model used in this work are specialized in
chapter 3 to avoid repetitions.

2.2.1. Capture condition in the AHP

The focus of this work is to evaluate the possibility that ejecta particles remain bounded
to the Didymos system. A method to assess the capture condition of an object to the
source of gravity field in the contest of the AHP, based on the evaluation of the Jacobi
constant in L2 has been described by Scheeres [46] and is reported here.
When considering the case in which the SRP direction rotates with the orbiting body
and the gravity source orbits the sun with a certain eccentricity, the equations of motion
should be modified accordingly, leading to formulas dependent on the eccentricity and true
anomaly of the asteroid. Such equations of motion admit a Jacobi integral which is not,
in general, a constant of integration - unless the asteroid is in a circular orbit around the
Sun (es = 0) - that reads [52]:

Γ = 2U(r)− (1 + escos f)[v
2 + z2] (2.2.6)

And whose differential with respect to the true anomaly can be expressed as follows:

Γ̇ = essin f [v2 + z2] (2.2.7)
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Therefore the quantity is only conserved for a circular orbit or for an equilibrium point
in the orbital plane. Therefore, considering the planar Zero Velocity Curves (z = 0), the
relationship becomes invariant with respect to the true anomaly and reads:

Γ = 2U(x, y, z = 0) (2.2.8)

To find the capture condition one should consider that the value of the Jacobi constant
at the equilibrium points (namely Γ∗) is constant, and in particular can be found approx-
imately as:

Γ∗
± ≈ 34/3 ± 2

(
1

3

)1/3

β − 1

9
β2 + ... β ≪ 1

Γ∗
+ ≈ 4

√
β β ≫ 1 & x∗ > 0

Γ∗
− ≈ −1

3
β2 β ≫ 1 & x∗ < 0

(2.2.9)

(2.2.10)

(2.2.11)

Combining the previous results shows that there is a simple sufficient criterion for the
capture of an object at a body: if the value of Γ for an object is always greater than Γ∗

+,
and the object is inside of the zero-velocity surface, then the spacecraft is definitely bound
to the body.
Since the value of Γ changes over time, the satisfaction of the criterion at one time does
not guarantee that it will be satisfied at some point in the future, so its use is somewhat
limited. This does fit well, however, with using the criterion for shorter time spans over
which this criterion provides useful results.

2.3. Cratering processes and ejecta fate modelling

Modelling the dynamics of particles about a minor body following an impact event is a
challenging task due to the strongly perturbed environment, mainly by the SRP. Many
studies have been carried on to assess the fate of ejecta around small bodies from an astro-
dynamics point of view around cometary nuclei [53], comets and asteroids with application
to the mission Deep Impact to comet 9P/Tempel [54] and asteroids (e.g. 4769 Castalia
[55], 162173 Ryugu [56, 57]).
The work from Scheeres [3] presents a comprehensive review about perturbations and
models to study the evolution of the ejecta in reduced gravity frameworks. In the same
work, a distinction per classes of the ejecta fate is reported (see Figure 2.7). In particular
the classes can be described as follows:

• Class I: immediate reimpact, prior to periapsis passage

• Class II: Ejecta does not reimpact at the first periapsis passage, but eventually
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reimpacts in the future

• Class III: Stable motion, ejecta is placed into a long-term stable orbit about the
asteroid

• Class IV: Eventual escape, ejecta has at least one periapsis passage by the asteroid
before it escapes

• Class V: Immediate escape, ejecta escapes from the asteroid prior to its first periapsis
passage

Fig. 2.7: The five classes of ejecta fate as defined in [3]

For the mission of interest for this work, specific studies have been performed up to date,
both regarding the orbital stability assessment and the fate of the ejecta. For instance,
Capannolo et al. [58] investigated families of bounded orbits in the close proximity of
Didymos using a novel continuation technique. Ferrari et al. [34] described the methodol-
ogy and design approach to find trajectories in the dayside of Didymos system to identify
optimal orbits for the Milani CubeSat.
Yu et al. [59, 60] simulated the full scale ejecta fate as a consequence of the DART impact
on Dimorphos, recording the history of the ejecta accretion and escape. The violent pe-
riod of the ejecta evolution was found to be short, and many of the smaller particles were
found to be swept out from the system due to SRP. However, large debris disposed on
polar orbits were found to be more persistent with respect to low-latitude orbits. Ferrari
et al. [6] studied the dynamics of ejecta fragments using GRAINS, a N-body Discrete
Element Method (DEM) code, accounting for the translational and rotational dynamics
of each ejecta fragment (non-spherical rigid-body) plus the interactions between them and
with the environment. As a result, they found that higher density structures are more
likely to be formed within the ejecta cone with consequences on the long-term fate. Rossi
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et al. [61] performed moreover a sensitivity analysis with respect to the system parameters
for the dynamics of the ejecta.
Aside from the dynamical environment considered, an important role in the assessment of
particles’ fate is played by the crater and impact modelling. In 1977 Donald E. Maxwell
was one of the first researchers trying to offer analytical insights of the cratering process-
ing the context of the combined studies of impact and explosion cratering physics. [62]
He developed a simple model to describe the flow field of the target material, in order to
predict the evolution of the crater and the ejecta. This model has become known in the
literature under the name of Maxwell Z-model.
Indeed, the most widely employed semi-empirical laws to extrapolate the results of impact
experiments at laboratory-scale to predict the outcome of planetary-scale event are the
crater and ejecta scaling relationships, especially the version developed by Holsapple and
Schmidt in 1987 [63], perfectioned in Housen and Holsapple [4]. Such relations, usually
referred to as Scaling Laws are described in this work in subsection 2.3.1.
In 2006 Wünnemann et al. [64] developed the iSALE shock physics code, a multi-material,
multi-rheology extension of the SALE (Simplified Arbitrary Lagrangian Eulerian) hy-
drocode [65] that was specifically designed for simulating impact processes. A 3D version
of the code was also developed in 2011. [66] Both versions have been used in a variety of
studies about space impacts [67], including some related to the DART mission [68, 69].
In 2021, Raducan et al. [68] investigated the effects of alternative projectile geometries on
the DART impact outcome using iSALE shock physics code in two and three-dimensions
to model vertical impacts of projectiles with a mass and speed equivalent to the nominal
DART impact, into porous basalt targets. The outcome was that the simple projectile
geometries investigated have minimal effects on the crater morphology.
In a work published at the beginning of 2022, Raducan et al. [69] set the basis for an
extension of the scaling laws to oblique impacts.

2.3.1. Scaling Laws

Many studies have been performed regarding the so-called Scaling Laws. The outcomes
of this semi-empirical models are correlations between the impactor and target properties
and the transient crater relevant quantities, such as volume, radius, distribution of ejecta
mass and velocity related to the radial distance from the impact point.
In this section is presented the formulation from [4], to be employed in this work. This
model is intended for basic hypervelocity impacts on airless bodies, for which the impact
is normal and the target material is a flat and homogeneous half infinite space. Moreover,
the relations are derived by approximating the impact as a point source.
The relevant quantities that determine the outcome of a cratering events are divided into
those related to the impactor and those related to the target. The impactor is assumed to
be spherical with radius a, velocity U and density δ. The target is instead defined by its
density ρ and a measure of the strength Y. If necessary, the viscosity of the target material
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η, can be added, but for most planetary soils it can be easily discarded [70]. Moreover
the body force field that affects the environment has to be considered and, being the most
typical case the target gravitational field, it will be considered as a constant magnitude
scalar g, directed downward. Figure 2.8 shows the schematics of the impact problem.

Fig. 2.8: Schematic of the impact problem as analyzed in [4]

The formulation of the final transient crater can thus be considered as follows:

V = f(a, U, δ, ρ, Y, g) (2.3.1)

By looking at the correlation one finds that 7 quantities containing 3 dimensions are
involved. The 3 dimensions are length [L], mass [M] and time [T]. Consequently applying
the Buckingham π Theorem, the free parameters in 2.10 are reduced to 4 adimensional
groups.

ρV

4/3πa3
= f

(
ga

U2
,

Y

ρU2
,
ρ

δ

)

πV = f (π2, π3, π4)

(2.3.2)

(2.3.3)

Each group has a precise meaning. Specifically:

• πV = ρV/
(
4/3πa3

)
(also known as π1) is the so-called Cratering Efficiency, i.e. the

ratio between the mass occupying the crater before the impact and the mass of the
projectile

• π2 = ga/U2 is the inverse of the Froude Number, representing the ratio among
lithostatic pressure at a depth equal to one impactor radius and the induced dynamic
pressure on the target.



2| Theoretical Background 20

• π3 = Y/ρU2 determines the balance between the crustal material strength and the
same dynamic pressure

• π4 = ρ/δ relates the impactor and target densities. This very last group is typically
dropped out of the function, since it is material dependent and can be easily defined
by experiments and included in proportional constants, leading to Equation 2.3.4.

πV = f

(
ga

U2
,

Y

ρU2

)
(2.3.4)

At this point it is straightforward to look at and compare the two terms related to π2 and
π3, i.e. lithostatic pressure ρga and material strength Y . The preponderance of one term
upon the other defines two distinct regimes of cratering.

• If ρga ≫ Y the gravity regime or gravity-dominated cratering is considered;

• If Y ≫ ρga the strength regime or strength-dominated cratering is considered.

In either case, the group related to the lower parameter can be discarded, leading to:πV = f
(
ga/U2

)
, for gravity regime

πV = f
(
Y/ρU2

)
, for strength regime

In the real impact problem, the source of the perturbation is a finite dimensional body, the
impactor. The actual properties of the impactor (a, δ and U) affect the solution only locally
in the neighbourhood of the impact point and only at the beginning of the phenomenon. So
for a radial distance from the impact point x > a and for a time t ≫ a/U the source of the
perturbation can be assumed to be zero-dimensional and the time of energy deposition
infinitesimal. The simplification leads to a point source problem. [63] A point source
problem is the limit of a problem where the initial time and size scales go to zero, while
the extent of the perturbation goes to infinity by however keeping a certain parameter
constant. This parameter, for the impact problem, is called Coupling Parameter and its
definition is given by:

C = aUµδv

And the point source approximation is explicated in the following limit.

lim
a→0

aUµδv = C

The density scaling exponent ν is often assumed to be independent of material properties,
with a value of about 0.4. On the other hand, the velocity scaling exponent µ depends on
the target material properties and takes values between the theoretical limits of 1/3 if the
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coupling parameter scales with the momentum of the impactor, and 2/3 if the coupling
parameter scales with the impact energy.
Starting from these considerations, one can derive the following quantities :

• Crater volume

• Crater radius

• Ejecta velocity

• Ejecta mass and formation time

As this is a quite detailed topic, hereby are reported only the expression used in this
work, as derived in 2012 by Holsapple and Housen [71]. Details on the derivation of such
quantities can be found in [72]. Equation 2.3.5 represents the scaled radius of the crater,
where H2 is a constant. Equation 2.3.6 and Equation 2.3.7 represents the distribution of
the ejection mass M and ejection speed v as functions of the radial distance x from the
crater center. Also in this case additional constants n1 and n2 are present. Finally, in
Equation 2.3.8 is found the number of regolith grains, where Nr is the reference number
of the measured grains, while dl and du determine the lower and upper limits of the full
size range, respectively. All the constants are reported in the proper section dedicated to
the ejecta generation in the context of this work (section 3.3).

R
( ρ

m

)1/3
= H2

(ρ
δ

)(1−3v)/3
(

Y

ρU2

)−µ/2

M(< x) = m
3k

4π

ρ

δ

[(x
a

)3
− n3

1

]
, n1a ≤ x ≤ n2R

v = UC1

[x
a

(ρ
δ

)v]− 1
µ

(
1− x

n2R

)p

, n1a ≤ x ≤ n2R

N(> d) = Nrd
−2.8, d1 ≤ d ≤ du

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)
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3| Dynamical Model

The motion around small bodies usually differs in a significant manner from Keplerian
motion because of their irregular and small gravity field. This implies a strong influence
of the perturbations (such as the SRP) on the trajectory. The case of binary system makes
moreover even difficult to correctly simulate the environment, due to the presence of an
additional gravity field. It is therefore mandatory to set up a reliable model of the ambient
such to achieve a good level of fidelity and compliantly design the mission.
In the context of this work, the aim is to evaluate if the ejecta could be bounded to the
system in the Augmented Hill Problem. With this purpose, in this chapter is presented
the environment of the binary system Didymos focusing on the solution adopted for the
gravity field simulation and the related reference systems (section 3.1). In section 3.2 is
specialized the dynamical setting employed, introducing the equations of motion and the
link with the Augmented Hill Problem and finally in section 3.3 is described the cratering
process and the generation of the initial conditions for the ejecta.

3.1. A model of (65803) Didymos

(65803) Didymos is an Apollo asteroid discovered on April 11, 1996 by Spacewatch at Kitt
Peak. Its binary nature was discovered with photometric and radar observations obtained
shortly after its close approach to Earth (at a minimum distance of 0.048 AU) during the
period November 20–24, 2003 [73].
A radar reconstruction of the system is depicted in Figure 3.1.

Fig. 3.1: Shape reconstruction of the Didymos system. Image of public domain, Naidu et al.,
AIDA Workshop 2016
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The known parameters of Didymos are summarized in Tables 3.1 and 3.2. Note that the
only dynamical parameters directly measured by the observations are the orbital period
of the secondary around the primary, their orbital separation, the rotation period of the
primary and the size ratio of secondary to primary. All other quantities (e.g. system’s
mass etc) are derived from these measured parameters. Detailed explanation can be found
in [74], from which the majority of the data are taken if not explicitly specified otherwise.

Binary Orbit Solution of Didymos

Nominal Orbital Pole λ = 270°, β = −87° [75]
Diameter ratio DS/DP 0.21 ± 0.01
Secondary orbital period Porb 11.920 h +0.004 - 0.006 h
Secondary orbital eccentricity < 0.03
Secondary orbital inclination 0°

Table 3.1: The binary orbit solution of Didymos

Several studies have addressed the binary relative dynamics between the primary (Didy-
mos) and the secondary (Dimorphos) in recent years. [77, 78] This work is instead focused
on modeling the motion of dust and therefore the motion of the two bodies is prescribed
and not solved analytically. In particular, the data furnished by the up-to-date kernels
for the HERA mission study have been employed. [79] The ephemeris of Didymos with
respect to the solar system barycenter were available for the impact time, while for the
position of Dimorphos have been used the ephemeris times available from kernels making
sure to reproduce the correct initial condition for the propagation (see chapter 4).
Moreover, the following assumptions have been made based on the current knowledge of
the binary system:

• the spin vector of Didymos is aligned to the angular momentum of Dimorphos around
the primary

• the secondary is tidally-locked to the primary: its spin period is syncronized with
his revolution period around Didymos

• the two bodies have the same equatorial plane, and their pole has ecliptic coordinates
λ = 270 and β = −87 degrees, as retrieved from up-to-date Hera mission kernels
[79]. The binary motion is therefore retrograde with respect to its barycenter.

The problem under study involves two shapes with well inferred or known characteristics,
as summarized in Table 3.1. For what concerns the primary of the Didymos system, a
polyhedral model is available from radar measurement and is presented in [80]. More-
over, the secondary, as per radar observations, could be assimilated to a triaxial ellipsoid.
Therefore, given the above mentioned analyses and considering the scope of this work, the
gravity of Didymos has been modeled by means of a constant density polyhedron and the
force field created by Dimorphos through a triaxial ellipsoid model with semiaxes α, β, γ

equal to 103, 77 and 66 m respectively. A model of the two bodies are reported in figure



3| Dynamical Model 24

Didymos dynamical and physical properties

Heliocentric semi-major axis (1.6444327821± 9.8× 10−9) AU
Heliocentric eccentricity 0.383752501± 7.7× 10−9

Heliocentric inclination (ecliptic) (3.4076499± 2.4× 10−6) deg
Primary rotation period (2.2600± 0.0001) h
Distance between component COMs (1.18 +0.04/-0.02) km
Mean diameter of the primary DP 0.780 km ± 10%
Mean diameter of the secondary DS (0.163 ± 0.018) km
Secondary (shape) elongation aS/bS
and bS/cS (assumed)

1.3 ± 0.2
>1 (assumed: 1.2)

Bulk density of P and S 2170 kgm−3 ± 350%
Total system mass 5.55 ± 0.42 × 1011 kg
Mean absolute magnitude (whole system) 18.16 ± 0.04
Geometric albedo (H) 0.15 ± 0.04

Table 3.2: Known dynamical and physical properties of the binary asteroid Didymos [76]

Figure 3.2. The validation of the gravity field generated by each of the models is reported
in Appendix A.

(a) Polyhedral shape of Didymos as derived from
radar observations

(b) Triaxial ellipsoid model of Dimorphos. Semiaxes
of 103, 77 and 69 meters.

Fig. 3.2: Didymos system primary (left) and secondary (right) shapes

3.1.1. Reference Frames

For what concerns the reference frames employed for describing the motion, in this work it
has been adopted the same setup from Ferrari et al. [81]. With a major difference related
to the presence of an additional reference system, namely Hill reference frame, whose
characteristics have already been defined in section 2.2 and are reported again below. The
reference systems are summarized as follows:

• A quasi-inertial reference frame centered in the baricenter of the Didymos sys-
tem, namely D-ECLIPJ2000, whose axes are inertially fixed and parallel to the
ECLIPJ2000 reference frame
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• A body-fixed reference frame for Didymos, computed by retrieving data from the
related ESA kernel

• A body-fixed reference frame for Dimorphos, whose x-axis points toward the system
barycenter, z-axis has the same direction of the binary system pole and y-axis is
defined accordingly

• A Hill frame, centered in the barycenter of the binary, given by x̂Hill (anti-solar
direction), ẑHill (asteroid heliocentric angular momentum) and ŷHill to complete
the orthogonal frame.

A schematic of all the reference systems is reported in Figure 3.3.

Fig. 3.3: Reference frames adopted and orbital plane of Dimorphos. The x,y and z axis of each
frame are respectively dotted, dashed and fully colored. Notice that the D-ECLIPJ2000 is shown
out of the system for the sake of clarity, but should be considered as centered in the Didymos

system barycenter

3.2. Dynamical setting

In this section are presented the “inertial ” and “Hill ” frameworks, respectively. The first
is the system in which the propagation of the ejecta particles occur, while the latter will be
used for practical considerations with respect to the energy level of the particles, leading
to the results of this study.
The accelerations in the proximity of the binary as computed in [81] with the same setup
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of this work, are reported in Figure 3.4. In the next subsections, the relevant forces acting
on an ejecta particles are characterized for both contexts.

Fig. 3.4: Main accelerations in the proximity of Didymos binary system. Ranges between
minimum and maximum values in the interval 01-Jan-2027 and 01-Jan-2028 are shown as

shadowed region. Courtesy of [81].

3.2.1. Inertial framework

The motion of particles in the vicinity of the binary can be described through the general
equation of motion (Equation 3.2.1):

r̈ = aD1 + aD2 + a3bS + aSRP (3.2.1)

In particular:

• aD1 is the acceleration due to the gravity of Didymos

• aD2 is the acceleration due to the gravity of Dimorphos

• a3bS is the acceleration due to the Sun, considered as a perturbing third body

• aSRP is the acceleration due to the solar radiation pressure

The aD1 has been computed through the gravitational potential of a constant density poly-
hedron [41] (Equation 3.2.2) as explained in section 2.1. Here the formulas are repeated
in order to specify the transformation adopted between the reference frames.
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ǎD1 = Gρ

 ∑
f∈ faces

Ff · řfωf −
∑

e∈ edges

Ee · řeLe

 (3.2.2)

Terms of this equation are already specified in a previous chapter, however it is of interest
highlighting that řf and ře are vectors from the field point to face f and edge e, respectively
and are expressed in the asteroid body reference frame. The conversion from the body
system to the D-ECLIPJ2000 is operated by mapping the rotation of the asteroid with
respect to the inertial frame through a matrix R1 and summing up the distance of the
primary from the barycenter of the system, (namely d1) as follows:

aD1 = R1 ǎD1

rf = R1 řf + d1

re = R1 ře + d1

(3.2.3)

(3.2.4)

(3.2.5)

The same applies to Dimorphos, which has been modelled as a triaxial ellipsoid. As
computation involves clearly the position of the point with respect to the body fixed
reference frame, also here a rototranslation is required as follows:

aD2 = R2 ǎD2

rell = R2 řell + d2

(3.2.6)

(3.2.7)

Where R2 maps the rotation of the body reference frame with respect to D-ECLIPJ2000,
rell is the vector to the point of the field and d2 is the distance of the secondary from the
barycenter of the system. Notice that the matrices R1 and R2 are time-varying.
The third-body effect of the Sun (a3bS ) is expressed in the Didymos barycenter, which
in turn orbits the Sun. That is, a3bS models the Keplerian gravity gradient between the
barycenter of Didymos system and the field point:

a3bS = (µS + µD)
rD−S

∥rD−S∥3
− µS

rC−S

∥rC−S∥3
(3.2.8)

where µS = GmS and µD = G (mD1 +mD2) are the gravitational constants of the Sun and
Didymos system, respectively, rD−S and rC−S are the position vectors of Didymos system
barycenter and the field point with respect to the Sun, in the D-ECLIPJ2000 reference
frame.
The relative position between Didymos system barycenter and the Sun is retrieved at
each epoch from the ephemerides data. Note that in our case µD << µS , and thus
Equation 3.2.8 can be simplified to:
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a3bS ≃ µS

(
rD−S

∥rD−S∥3
− rC−S

∥rC−S∥3

)
(3.2.9)

The last contribution of Equation 3.2.1 is due to Solar Radiation Pressure (SRP). This
contribution is computed using a SRP cannonball model [82]:

aSRP =
P0

c

(
DAU

∥rC−S∥

)2 CrA

M
r̂C−S (3.2.10)

where P0

(
1367 W/m2

)
is the solar flux at 1AU, c is the speed of light

(
2.998× 108

m/s), DAU is the Sun-Earth distance
(
1AU = 1.495× 1011m

)
, Cr is the reflectivity co-

efficient of the ejecta particle, A is its equivalent surface area, and M is its mass.
As seen, all the computation are done in the D-ECLIPJ2000 reference frame. Since the
heliocentric inclination of Didymos is negligible (see Table 3.1), the particle trajectory as
seen from the Hill reference frame,can be computed by means of a single rotation around
the ecliptic north pole, being the x-axis of the Hill frame aligned with the sun-barycenter
direction.

3.2.2. AHP formulation

Before introducing the formalism adopted for the AHP in the context of Didymos, some
consideration shall be done.
Firstly, the forumlation of the Augmented Hill Problem for Didymos in this work represents
an approximation of the real problem as it excludes the eccentricity of the heliocentric
orbit, which in turn has an effect on the position of the equilibrium points when the
true anomalies vary. [46] However, in this context the timescale analyzed is small if
compared with the orbital period of the Didymos system, thus the variation in the position
of the lagrangian points - more specifically of L2, as L1 loses its significance drifting away
from the body towards the Sun - has been neglected, relying on a classical Hill problem.
Nevertheless, as described in [46] and detailed in subsection 2.2.1, for the purpose of this
thesis is not necessary to switch to an elliptical description of the AHP, as the condition
for an object to be bound to the minor body can be expressed in the circular framework.
A second consideration is related to the potential employed in the AHP equations of
motion. In fact, the shape-based gravitational field of the two bodies could be employed.
However, here we only account for a point mass field, because up to a certain level of
approximation, the field is practically coincident with the one generated from a single
(equivalent) point mass. [81]
The adimensionalized equations of motion are reported here again as a reference:
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ẍ− 2ẏ = − x

r3
+ 3x+ β

ÿ + 2ẋ = − y

r3

z̈ = − z

r3
− z

(3.2.11)

(3.2.12)

(3.2.13)

where r =
√

x2 + y2 + z2 and β is the non-dimensional SRP acceleration. The SRP is
assumed to be constant and acting along the Sun-asteroid direction. The non-dimensional
SRP acceleration, β, is then obtained by normalizing the traditional SRP acceleration,
aSRP , for a cannonball model [49], i.e., with a constant exposed area and attitude, which
yields (Equation 3.2.14):

β =
aSRP

[l]/[t]2
=

(1 + CR)P0

m/Aµ1/3µ
2/3
S

(3.2.14)

where CR is the reflectivity coefficient or albedo, P0 ≈ 1.02 × 1017 kgm s−2 is the solar
constant, m/A is the mass-to-area ratio, and µS is the gravitational parameter of the Sun.
Considering a spherical particle of radius R, the mass-to-area ratio can be expressed as:

m/A =
4/3ρπR3

4πR2
=

2

3
ρπR (3.2.15)

The data used in the context of this problem are reported in table Table 3.3.

Mp[kg] Ms[kg] ρ [kg/m3] µ [km3/s2] Ta [days] CR

5.229× 1011 4.8633× 109 2170 3.5223× 10−8 770 0.50 [83]

Table 3.3: Didymos parameters for the Augmented Hill problem

As discussed in section 2.2 and verified in Appendix A, the Lagrangian points in the Hill
problem shift from their initial position based on the intensity of the acting SRP. The shift
in Lagrangian points for the Didymos system is shown in Figure 3.5. It can be noticed
how, starting from equal and opposite values (about 110 km), the L1 shifts to −∞ as the
adimensional SRP increases, losing of significance for our problem, which involves high
values of solar pressure. On the contrary, the L2 asymptotically approaches the body.

Moreover, the Zero Velocity curves of the problem are reported with respect to two different
values of β (Figure 3.6) clearly showing how, as the adimensional SRP rises, the L1 zone
becomes unaccessible to the motion.

To make apparent the relation between β and other parameters, such as the size of the
particle, (Table 3.4) summarizes the quantities of interest. It is worth to highlight that in
this thesis the particles of interest will be in the range 0.1 to 100 millimeters in diameter,
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Fig. 3.5: Position on the x-axis of the equilibrium points in the AHP for Didymos with respect to
the adimensional SRP
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Fig. 3.6: Zero velocity curves variation for adimensional SRP equal to zero (left) and thirty
(right)

which in turn corresponds to values of β starting approximately from 10 and beyond, as
it can be observed from the table.

3.3. Ejecta modelling

As seen, the Scaling Laws depend upon the materials considered for both the asteroid and
the projectile.
Here we assume that the material representative of Dimorphos is Sand/Fly Ash (SFA), a
high porosity and low strength material, in accordance to Cheng et al. [84] that retain it
may be a good analog for the surface of the secondary.
The assumed parameters for SFA are reported in Table 3.5 and are taken from Housen
and Housapple [4]. The gravity acceleration of Dimorphos at the impact site has been



3| Dynamical Model 31

β m/A d [mm] aSRP [m/s2] CL2 [-] xL2 [km]
0 - - 0 4.3267 109.59
1 1794.1 789.4912 1.4099e-09 5.6133 94.551
5 358.81 157.8982 7.0493e-09 9.4799 63.456
10 179.41 78.9491 1.4099e-08 12.936 47.857
30 59.802 26.3163 4.2296e-08 22.008 28.6
50 35.881 15.7898 7.0493e-08 28.344 22.259
100 17.941 7.8949 1.4099e-07 40.03 15.782
150 11.96 5.2632 2.1148e-07 49.01 12.895
200 8.9703 3.9474 2.8197e-07 56.584 11.171
250 7.1762 3.1579 3.5246e-07 63.258 9.9929
300 5.9802 2.6316 4.2296e-07 69.292 9.123
500 3.5881 1.5789 7.0493e-07 89.449 7.0678

Table 3.4: Relationship between non-dimensional SRP acceleration (β), mass-to-area ratio (m/A),
particle radius (R), dimensional SRP acceleration (aSRP ), Jacobi constant of the L2 point (C),
and position of the L2 point.

computed through the straightforward formula gdms = µdms/rimp where the numerator is
the gravity constant of Dimorphos and the distance of the impact site from the center of
Dimorphos is rimp ≈ 79 m.

Y [MPa] ρ [kg/m3] H2 µ C1 k p ν n1 n2 gdms [m/s2]

0.004 2170 0.4 0.46 0.55 0.3 0.3 0.4 1.2 1 5.2 ×10−5

Table 3.5: Scaling parameters for the target

The projectile considered in this work to simulate the DART spacecraft, has the following
properties: a mass Mp of 560 kg, an impact velocity U = 6580 m/s and an equivalent radius
(namely a) of 0.686 m. From the mass and the radius one can retrieve the projectile bulk
density (δ) using a simple inverse formula:

δ =
3Mp

4πa2
(3.3.1)

The parameters for the impactor are summarized in Table 3.6.

a [m] δ [kg/m3] U [m/s] Mp[kg]

0.686 [85] 1070 6580 [86] 560 [86]

Table 3.6: Scaling parameters for the impactor

Having all the needed parameters, the regime to be used for computing the initial con-
ditions based on the scaling laws reported in subsection 2.3.1 can be finally assessed. As
the material strength Y reported in Pa is much higher than the product ρ gdms a, it is
apparent that the cratering process is dominated by the target strength.
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3.3.1. Cratering process and particles size distribution

The outcome of a hypervelocity impact is strictly related to the material of the impacting
means and the conditions of the impact itself, such as the direction of the impact, the
temperature and many others.
Employing the scaling laws already described and here reported for the sake of clarity, the
crater radius can be computed, along with the mass of the ejecta based on the particle
size, the velocity distribution and the radial position of the particles in the crater. As
seen, the dimensional crater radius in strength regime can be computed as:

R = H2

(ρ
δ

)(1−3v)/3
(

Y

ρU2

)−µ/2( ρ

Mp

)−1/3

(3.3.2)

Which in the case of the DART impact and the data presented above, resulted to be 6.7949
meters.
Following [87], that studied the cumulative size-distribution of the granular material on
the surface of Itokawa, a power law matches a wide range of particle sizes. The log-log
slope is about -2.8 , which gives an estimate of the amount of cumulative number N of
regolith grains, as expressed in the following equation:

N(> d) = Nrd
−2.8

Nr =
9kMp

28π2δ
(

5
√
dmax − 5

√
dmin

) [(n2R

a

)3

− n3
1

] (3.3.3)

(3.3.4)

The number of particles within each size interval of interest [di−1, di] is obtained from:

Nr

(
d−2.8
i−1 − d−2.8

i

)
, i = 1, 2, . . . , w (3.3.5)

In Table 3.7 is reported the number of particles for three diameter ranges, namely [0.1 -
1] mm, [1 - 10] mm and [10 - 100] mm.

Size range [mm] Number of particles

10 - 100 4.2925e+12
1 - 10 6.8032e+09
0.1 - 1 1.0782e+07

Table 3.7: Number of particles within specified size ranges

As it can be noticed the number of generated particles is huge. In the analysis will be
considered a subset of these ranges. More details on this topic will be given later on.
Completing the scaling laws, whose verification is reported in Appendix A, the distribution
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of the ejection mass and speed as a function of the radial distance x are found according
to Equations 3.3.6 and 3.3.7:

M(< x) = m
3k

4π

ρ

δ

[(x
a

)3
− n3

1

]
n1a ≤ x ≤ n2R

v = UC1

[x
a

(ρ
δ

)v]− 1
µ

(
1− x

n2R

)p

n1a ≤ x ≤ n2R

(3.3.6)

(3.3.7)

The above formulas define a unique continuous distribution of the scaled ejected material,
and provide a mathematical description of the initial phase of the ejecta cloud. Therefore,
a discretization should be applied to define the size of each particle.
Particularly, here has been adopted the following discretization to generate a set of par-
ticles that follows the PSD ensuring mass conservation. It is based on a random number
generator and an inverse transformation of the distribution function as described in [60].
Having defined the ranges of interest as above, namely [d0− d1], Ns uniformly distributed
points are created within the interval, where Ns is the number of sample particles.

Fig. 3.7: Top: remapping of the ejecta radial position and diameter. Bottom: velocity and mass
distribution with respect to the radial position randomly generated and then reordered in ascending

values (dots) and remapped (crosses). All plots are over a 500 particle sample.
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Then, the following transformation (Equation 3.3.8) is used to remap the sample diameters
still following the power law. Notice that t is the exponent of the power law used to map
the particles distribution, in this case equal to 2.8.

d′ =

[
d− d0
d1 − d0

(
dt1 − dt0

)
+ dt0

]1/t
(3.3.8)

The same applies to the distances from the center of the crater x, i.e. the departure points
of the particles along the radius, as of Equation 3.3.9:

x′ =

[
x− x0
x1 − x0

(
x31 − x30

)
+ x30

]1/3
(3.3.9)

A visualization of the described parameters is reported in Figure 3.7 for a sample of 100
particles to show the trend. It is crucial to notice that initial and final values of the interval
are remapped into themselves. Also, it can be observed how the highest velocity reached
through the scaling laws is of 450 m/s, well beyond the escape velocity of the Didymos
system.

3.3.2. Ejecta Initialization

As discussed earlier, a reduction in the sample is needed, mainly for two reasons. The
first is related to the computational effort required to propagate the trajectories, and the
second, more important, is related to the scope of this work. In fact, the objective is to
study the fate of the ejecta that could possibly remain bounded to the binary system, i.e.
particles whose velocities lie within a certain interval. Such interval can be found based on
the analysis of [60] on the dependence of fate of the ejecta from the velocity distribution.
The important values to be noted are:

• the escape velocity from Dimorphos’ surface (assuming a single body) is 8.9 cm/s;

• the escape speed from the binary system at the Dimorphos distance (i.e. 1.18 km)
is about 24.4 cm/s;

• the orbital speed of Dimorphos around the primary of about 17.3 cm/s;

This means that:

• the ejecta with v ≪ 8.9 cm/s will be reaccreted by Dimorphos;

• the ejecta with v ≫ 60 cm/s will tend to escape unless accreted on the primary

• those with moderate values will have the opportunity to be trapped into temporary
orbits in the binary system and end up in various fates

Based on these consideration, the sample should be reduced such to fit the specified velocity
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range ve ∈ [8.9, 24] cm/s. This in turn translates in the definition of a critical radius, i.e.
after which the particles have the defined upper velocity or lower. In this case such radius
have been found to be 6.7191 m, very close to the crater edge. In Figure 3.8 is reported
the visualization of such limiting velocities.
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Fig. 3.8: Velocity bound of interest, the vertical red line represents the critical radius. Seeds set to
100000 for visualization purposes.

Once the sample has been reduced, it is needed to further manipulate the parameter given
by the Scaling Laws to set the initial conditions for the propagation of the ejecta. Before
proceeding, some considerations have to be made about the impact modeling and position
on the surface of Dimorphos.
In this work, according to the scaling laws employed, the impact has been considered
perpendicular to the local surface of the secondary. This implies a symmetry in the
impact outcome.
As for the angular distribution of the launching directions, hereby it has been adopted
a typical launching angle of 45° for all the sampled particles, which is a generic value
according to the assumptions on the momentum transfer in asteroid impacts. [71]

Taking in account that DART will target the leading edge of the secondary (i.e. on the
negative body y-axis of Dimorphos, as per our reference systems) to reduce its orbital
period, the investigation is focused on an hypothetical crater in the motion direction. It
has to be noticed that the current estimate of the impact point elevation is of 16.5 degrees.
Thus, the crater positioning represents a further assumption, nevertheless adopted in other
works.

To generate proper initial conditions according to our reduced set, we manipulate the
results of the scaling laws as follows.

• generate 36 equispaced points (every 10 deg) over 10 circles of radius x ∈ [6.7191, 6.7195]

located on the surface of Dimorphos. For each circle, this is done such to cover the



3| Dynamical Model 36

Fig. 3.9: Impact location (crater) considered in this work. Blue axes correspond to the body
reference frame of Dimorphos

ejecta cone completely

• retrieve the associated velocity versor, inclined by 45° outward from the crater center

• scale the velocity unit vector by the corresponding magnitude, coming from the
scaling laws velocity distribution

• perform the relevant transformations to retrieve the initial conditions for propagation
in the D-ECLIPJ2000 reference frame

In Figure 3.9 is shown an example of particles distribution, where the points are equispaced
of 30 deg for the sake of visualization. The origin of the vectors are the positions of the
impact points along the crater. It is assumed a conical and equally spaced distribution of
the particles in order to better characterize our results. As said, the particles have been
assigned velocities according to the scaling laws (see Figure 3.8).
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4| Simulation and Results

As stated, the objective of this thesis is to evaluate the condition for which the orbits of
the ejecta remain bounded to Didymos or are likely to escape. The simulation has been
conducted through MATLAB and implemented in compliance with the theoretical framework
expressed in the previous sections.
The initial time has been set to 4 October 2022 at 9:48:00, i.e. the DART impact time,
adopting the configuration of the system as estimated by Cheng et al. [85], shown in
Figure 4.1. It has to be noticed that no change in the orbit of Dimorphos is accounted for
after the impact in this simulation.

Fig. 4.1: Didymos system configuration at time 4 October 2022 09:48 UTC

INSERISCI PLOT ORBITA DIDYMOS

A set of particles have been initialized (see subsection 3.3.2) and propagated in the D-
ECLIPJ2000 reference frame by means of a built-in ode113 integrator. The propagation
time has been set to 6 hours, according to Yu et al. [59], that simulated the behaviour of
the ejecta cloud for 14 days concluding that orbiting particles are more likely to survive
within the first six hours from the impact, while after that time the majority is swept out
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from the system due to the SRP.
Three propagations have been made, assigning the same diameter to all the particles in
each simulation, in order to characterize the patterns that may arise. With this setup the
final simulation time was of about 4 hours.
As per the diameters, the three values reported in Table 4.1 have been chosen, based on
the results of Table 3.4 and on the practical consideration that small sized particles are
particularly prone to be swept out from the system (high β values).

D [mm] m/A β [-] CL2 [-] xL2 [km]

5 11.575 ∼ 155 49.819 12.686
10 23 ∼ 78 35.375 17.858
20 44.851 ∼ 40 25.373 24.84

Table 4.1: Simulated particles’ diameters and corresponding mass-to-area ratio, adimensional SRP
and Jacobi constant

Taking in account the values mentioned in subsection 3.3.2, the part The propagation
was set to stop in the case of two events: collision with the primary and escape from the
system. The latter condition corresponds to the particle crossing the Hill sphere of the
Didymos system, whose radius (∼ 157 km) can be computed as of Equation 4.0.1:

rhill = a (1− e)

(
mD

Msun

)1/3

(4.0.1)

Where a, e and mD are respectively the semi-major axis, the eccentricity and the total
mass of the binary system and Msun the mass of the Sun.

Fig. 4.2: Example of ejecta trajectories

An example of propagated trajectories is shown in Figure 4.2, in which the conical shape
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set in the context of this work is also noticeable. At the end of each particle’s trajectory,
the Jacobi constant is computed in the AHP framework, by converting the relevant pa-
rameters to the Hill reference frame.
Following the theoretical considerations reported in subsection 3.2.2, some conclusions
about the ejecta fate can be retrieved based on their energy level with respect to the
equilibrium point L2.
A first draft has been made regarding the fate of the particles in the simulation, classifying
the particles as “impacted”, “escaped” or “orbiting”. The outcome of the analysis is sum-
marized in Figure 4.3, where it is apparent that no particles escaped the system within
the 6 hours simulated time. This was however expected, since per our settings particles
with high velocities which are likely to escape in a very short time after the impact have
been excluded. It is noticeable how the proportion between the orbiting and impacted
particles remains the same. This is probably due to the low number of particles simulated
and the various constraints applied throughout this work.
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Fig. 4.3: Ejecta fate per diameter at the end of the simulated time

It is interesting to notice the time after which the impacts occur. In Figure 4.4 are shown
all the times at which impacts occur. It can be observed a clear trend related to the
launching direction of the particles, i.e. as the particles are launched “towards” Didymos,
their impact time is fairly short, with a minimum peak of 0.5 h. Two outstanding particles
belong to the d = 5 mm class, launched in a direction opposite to Didymos. It is really
likely that also other particles departing from the same radial distance will impact Didymos
soon, but their impact has not been covered by the simulation.

As stated, the major quantity of interest for this work is the Jacobi constant (i.e. the
energy level) of the particle at the end of the trajectory, which is used to “forecast” the
particles’ fate according to the following criteria:
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“+”, “o” and “x” represents, respectively, launch positions closer and closer to the crater rim.

• if Γ > ΓL2 and the particle is inside of the zero-velocity surface, then the particle is
definitely bound to the body;

• if Γ ≪ ΓL2 the particle is a good candidate for ejection from the system;

• if Γ ∼ ΓL2 nothing can be said about the fate, however it is likely that the particle
will stay in its orbit around the system for a certain amount of time and then ejected;
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Fig. 4.5: Particles energy level with respct to the treshold set by the Jacobi constant in L2.
Impacted particles are also highlighted

In Figure 4.5 is shown the outcome of the analysis on the overall sample, classifying the
number of particles with respect to their energy level, i.e. if they overcome or not the
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energy level set by the equilibrium point. It can be noticed that the totality of the non
impacted particles with a diameter of 20 mm has an energy value that is over the reference
value for that diameter, while the other two set of particles of 5 and 10 mm have respec-
tively the 15.5 % and 10% of the non-impacted set that does not overcome the threshold.
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Fig. 4.6: Initial position of the particles with respect to their energy level for d = 5 mm

Another interesting outcome to be noticed is the energy level of the particles with respect
to their initial position. Since the adopted initialization strategy provides an initial loca-
tion of the particles in the proximity of the crater rim, it has been considered useful to
visualize the aforementioned relationship by means of colored plots, one for each diameter
(Figures 4.6, 4.7 and 4.8).
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Fig. 4.9: Distance of each particle with diameter 5 mm at the end of the propagation. Red line
represents the distance of L2 from the barycenter of Didymos

The x-axis represents the angular location of the particles along the i-th radius (y-axis),
while the colored square represents, based on the color bar, the particles that impacted
Didymos, the ones that overcome and not the energy threshold. It does seem to exist a
correlation between the initial position of the particles (that in turn translates in velocity
magnitude of the particles) and the energy level of the particles themselves after 6 hours.
In fact, particles departing in the proximity of the crater’s rim are most likely to impact,
while the ones departing nearly and very far from it possess, respectively, higher and lower
energy with respect to the threshold associated with their diameter. It has to be noticed
that this trend is respected for particles with a diameter of 20 mm, however, as already
assessed in Figure 4.3 none of them is below the ΓL2 threshold at the end of the simulation.

At this point, to apply our criteria it would be useful to know if the particles are inside the
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ZVC. By means of a simple comparison, it turned out that the last position of each particle
of the sample is currently found inside the ZVC. In fact, the distance reached by each of
the particles belonging to a single diameter class is well below the distance of L2 from the
system barycenter. Specifically, in Figure 4.9 is shown the conditions of particles with the
smallest diameter as an example. Nevertheless, the other two diameters’ follow the same
trend, also taking into account that their equilibrium point distance is even higher (see
Table 4.1).
Considering this outcome, the abovementioned criterion can be freely applied to all the
particles. We decide here to proceed by approaching each diameter. As per the particles
having a diameter of 5 mm, plotting their Jacobi constant with respect to their location
on the body gives an useful insight, observing that there are quite a few particles in the
region surrounding the energy level of L2 (Figure 4.10).
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Fig. 4.10: Jacobi constant of particles with diameter 5 mm at the end of the propagation.
Horizontal line represents the value of the Jacobi constant in L2.

For what concern this diameter class, it can be therefore stated that there is a number of
particles that is likely-to-be ejected due to the fact that their energy level is fairly below
the L2 threshold. Another part of the sample has an undecided fate and is expected to be
ejected after a few orbits around Didymos. Finally, the majority of the sample is going
to remain bounded to the system, due to its high energy level, and after a few orbits
could be likely to impact the asteroid. Excluding the impacted particles, the outcomes
are summarized in Table 4.2.

Regarding the second diameter, i.e. 10 mm, there is a portion of the sample that presents
values of the Jacobi constant barely lower than the threshold (Figure 4.12), these particles
have therefore undecided fate, most likely they will orbit for some time before impacting
Didymos, while all the others are bounded to the system, according to the criteria defined
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Bounded LTE N/A

80% 10% 10%

Table 4.2: Likely to escape, bounded and unassessed fate particles percentage for d = 5 mm.
Impacted particles are excluded.
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Results are reported in Table 4.3.

Bounded LTE N/A

90% 0% 10%

Table 4.3: Likely to escape, bounded and unassessed fate particles percentage for d = 10 mm.
Impacted particles are excluded.

About the third diameter considered, 20 mm, all the particles can be considered bounded
to the system, although some of them have values of L2 very close to the Jacobi of the L2
point. A similar configuration with respect to the previous diameter applies (Figure 4.12).
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5| Conclusions and future

developments

In this work, a novel approach has been adopted to assess the fate of ejecta particles
due to the impact of the DART spacecraft on the binary asteroid 65603 Didymos. This
method consists in comparing the energy level of the particles with the energy level of
the equilibrium point associated to that same particle in a special three-body problem,
namely the Augmented Hill Problem.
To accomplish the aforementioned, the dynamics about the asteroid has been studied and
appropriate models to simulate its gravity field have been adopted. Moreover, a description
of the Augmented Hill Problem has been provided, along with the model employed to
simulate the cratering and the ejecta generation.
The trajectory of 1080 particles of assigned diameters (respectively D1 = 5 mm, D2 = 10
mm and D3 = 20 mm) have been propagated for 6 hours to assess their fate. Results have
shown that for all the samples the percentage of impacted particles was the same, and
none of them escaped the system. About the 20% of all the samples impacted Didymos,
while the remaining orbiting particles fate was assessed by means of a criterion linked to
their energy level with respect to the equilibrium point L2 in the Augmented Hill Problem.
For the group D1, the 80% of the particles were assessed to remain bounded to the body,
while another 10% is likely to escape. The remaining fate can not be assessed. For what
concerns the group D2 and D3, a similar condition applies to both, given that the energy
level of a 10% of the orbiting particles was really close to the L2 energy level, and so their
fate in uncertain. In the D2 case, is more likely that such particles will be ejected from
the system after some time. In the D3 case, instead, the particle should remain bounded
to the body.
Future developments of this work are strictly linked to the approximation made. The
crater location could be shifted to the real (or at least the forecasted) one, to offer a
better overview on the evolution of the particles.
Moreover, to pursue the scope of this work, it has been neglected the relationship between
ejection velocity and diameter as derived by the scaling laws. This choice might be either
improved (e.g. by simulating more diameters) or discarded (adopting the diameters coming
from the scaling laws). A good suggestion could be adopting even smaller values of particles
as the sample here adopted might be improved by considering high β values as the position
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of the equilibrium point L2 approaches the body, i.e. the allowed dynamical space is
reduced, and therefore a refined assessment could be made.
Another consideration is linked to the energy level. Although the results reported in this
work represent a good benchmark, it has to be highlighted that the value of the Jacobi
constant should be computed along the orbit, as expressed in subsection 2.2.1.
Further improvements could include the computation of periodic orbits in the AHP to
assess the presence of manifolds that link the escaped particles to such trajectories.
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A| Verification and validation

In order to verify and validate the models developed for the work presented in this thesis,
a series of tests were performed. This chapter explores and presents said tests together
with the results.
The model developed in the context of this thesis can be seen as a combination of several
submodels:

• Polyhedron Model

• Triaxial Ellipsoid

• Augmented Hill Problem

• Scaling Laws

A.1. Polyhedron model

The polyhedron model employed is the version that can be found in the HERA Spice
Kernel Dataset from ESA. [79] This model, based on radar observations from the work of
Naidu et al. [80], is composed of 1000 vertices and corresponding 1996 faces. As widely
explained in section 2.1, the algorithm employed to simulate the gravity field is the one
from Werner and Scheeres [41].
To validate the algorithm, firstly a spherical shape has been employed, by exploiting the
MATLAB function icosphere, creating a 1280 faces polyhedron with the same mean
diameter of Didymos, i.e. 780 m. (see Figure A.1a).
Then a dummy circular path at 900 m altitude from the body has been sketched in order to
compare the gravity field derived by the algorithm with the field generated by a point mass.
To compute the latter, it has been employed the mass value for Didymos (5.2294 × 1011

kg). The comparison of the cartesian components associated to the point mass field and
polyhedron field for the sphere (Figure A.2a) shows almost identical qualitative results,
as expected. Particularly, infinitesimal oscillation are found for the y component of the
acceleration in the polyhedron model.

To make sure this was not a privileged condition and further validate the code, a grid of
points have been generated around the body and the potential has been assessed again
(Figure A.1b), this time plotting the error between each component (Figure A.2b). It can
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(a) Vector field associated with a dummy x-z plane
circular path around a spherical polyhedron with the
mean radius of Didymos A. Red arrows: polyhedral

field, blue arrows: point mass field.

(b) Vector field associated with a point grid
surrounding a spherical polyhedron with the mean
radius of Didymos A. Red arrows: polyhedral field,

blue arrows: point mass field.

Fig. A.1: Vector field representation for two different tests. Vectors are scaled of a 5× 106 factor.

be observed how the error remains in the order of 10−6.
Finally, to validate the code in the context of interest, the polyhedral model of Didymos
mentioned at the beginning of this paragraph (the same plotted in other parts of this
thesis and thus not shown here) was included in the code, computing the gravity field
for the same circular path of the spherical case. Once again, the results are reported in
Figure A.3. The order of magnitude of the error gives a final insight on the correctness of
the code.

A.2. Triaxial ellipsoid model

The shape adopted for Dimorphos corresponds to a triaxial ellipsoid with axes of 103, 77
and 69 meters respectively. To test the triaxial ellipsoid algorithm implemented, a simple
verification has been conducted by working with a nearly spherical shape (a = 103, b =
102 and c = 101) due to the validity of the model for a > b > c. So a dummy circular xy
path has been sketched and the potential has been computed both by making use of the
point mass formulation and the ellipsoid model. In this case the point mass formulation
reads:

a = −4

3
πGρabc

r

r3

The setup and the results are reported respectively in Figure A.4 and Figure A.5. It can
be observed that the error does not exceed 10−7, which serves as a confirmation for the
validity of the model.
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Fig. A.2: Comparison between polyhedral and point mass gravity fields
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Fig. A.3: Left column (right column): comparison (error) of the polyhedral and point mass
acceleration in terms of x,y,z components and magnitude using Didymos A polyhedral shape and a

circular xz path.

A.3. Augmented Hill Problem

The Augmented Hill Problem point mainly refers to the correctness of the propagated
trajectory, namely the solution of the ODEs associated to the problem making use of a
ode113 solver - adaptive step-size Runge-Kutta Dormand-Price integrator -. The relative
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Fig. A.4: Vector field associated with a dummy circular orbit around a nearly-spherical object
with size 103 - 102 - 101 m. Red arrows: ellipsoid field, blue arrows: point mass field.
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Fig. A.5: Left column (right column): comparison (error) of the ellipsoid (103,102,101) and point
mass acceleration in terms of x,y,z components

and absolute error tolerances are both set to 10−13, close to the minimum allowed by the
integrator. As mentioned in the body of this thesis, because the AHP model is time-
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invariant, it admits an energy integral, which is formally known as the Jacobi constant,
C. Therefore, in an ideal computation, the value of C must remain constant along any
trajectory in the AHP [45]. Due to numerical fluctuations however this number is always
different from zero, although remaining very close to it. To test the formulation of the
differential problem, we choose some known trajectories to be integrated and we check
the maximum deviation of the Jacobi constant from zero along the orbit. For the sake of
completeness, both orbits with and without SRP have been considered. Initial conditions
for such orbits have been taken from [57], therefore data provided for asteroid Ryugu
(Figure A.6) are used for the tests, unless specified otherwise.

Fig. A.6: Asteroid Ryugu data for the AHP

Before computing the orbits, to additionally check the correctness of the code, we com-
puted the variation of the equilibrium points location with respect to the adimensional
SRP value and compared the qualitative outcome with the result obtained in [57]. The
comparison is shown in Figure A.7. The same comparison was performed for the Zero
Velocity Curves of the problem for two different values of SRP. The outcome is shown in
figure Figure A.8.
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Fig. A.7: Equilibrium points location with respect to SRP, comparison of this work’s results (left)
and [57] (right) for the asteroid Ryugu

For what concerns the orbit integration and the maximum error on the Jacobi constant
(namely ∆Cmax), it has been found that errors by using the ode45 integrator were much
wider of the ones using the ode113 . In the first case, the results were not coincident with
the one obtained in [57], and since the qualitative plot of the orbit was found to be equal,
it is reasonable thinking that this discrepancy depends upon the machine used. Given
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Fig. A.8: ZVC as obtained in this validation (left) and from [57] (right) for different values of
adimensional SRP. In figure a and c the red and black crosses represent the equilibria points
location. It can be noticed how L1 shift towards the Sun as the radiation pressure increases

that, the computation of the maximum error on the Jacobi constant have been performed
using a ode113 integrator. The results are reported in Table A.1. It can be observed that
the error value never exceeds 10−10 that is considered a sufficient condition for the work
carried on in this thesis.

β Family ∆Cmax x0[−] z0[−] ẏ0[−] ż0[−] t[−]

0 a 1.4356516× 10−11 0.32125800 0 2.08969372 0 3.56886117
100 a 3.044320351× 10−11 0.07112700 0 3.63083747 0 0.17727777
0 g′ 8.0420115× 10−11 0.25546700 0 2.50181945 0 4.73721046

100 g′ 2.540367916× 10−10 0.06333400 0 4.18020864 0 0.18556618
0 terminator 1.19095844× 10−11 0.30433087 0.34000788 1.48923206 0 2.97697355

100 terminator 4.56878979× 10−12 0.08519857 0.04001235 1.39565598 0 0.18390886

Table A.1: Initial conditions as provided by [57]. The column of the error has been modified with
the values obtained in this work for each of the orbits. Values of initial y position and x velocity
are always null and therefore excluded from the table

To further validate the code, a qualitative comparison of the orbit plotted in [88] around
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Fig. A.9: Qualitative validation of the Hill problem code, integration of an orbit around Vesta with
parameters provided by [88]. Left column: integration of this work, right column: courtesy of [88]

Vesta has been made. In this case the Hill problem data have been changed accordingly,
modifying the gravity parameter and the solar radiation pressure value. The result of the
integration compared with the original work is reported in Figure A.9

A.4. Scaling Laws

The scaling laws as proposed by [59] have been reproduced here to assess the validity of
the implemented code for the initialization of the ejecta. Using the same parameters, it
has been retrieved that the total mass of the ejecta for the size ranges specified (from 0.1
to 100 mm) is in the same order of magnitude of that proposed by the authors of the
paper (see Table A.2).

D1 [m] D2 [m] Npart Npart (from [59])

0.01 0.1 3.4601× 107 3.44× 107

0.001 0.01 2.1832× 1010 2.17× 1010

0.0001 0.001 1.3775× 1013 1.37× 1013

Table A.2: Comparison between the number of particles obtained by Yu et al. and in this work for
the scaling laws
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Fig. A.10: Qualitative validation of the Scaling Laws for different materials. Images on the right
are from [85]

Another deeper verification has been made by reproducing some of the results from Cheng
et al. [85], that compared the outcome of the DART impact for different materials. Hereby,
employing the same parameters, it has been computed the radius of the crater and the
mass distribution vs the velocity for three different materials, i.e. Weakly Cemented
Basalt, Sand/Fly Ash and Sand. The comparison of the obtained crater radius is reported
in Table A.3.

It can be noticed a discrepancy between the crater radius in the SAND case: this should
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Material Estimated CR [m] CR from Cheng [m]

WCB 3.7718 3.77
SFA 7.0776 7.07

SAND 44.5254 45.12

Table A.3: Comparison between the crater radius estimated with the code employed in this thesis
and the results from [85]

be due to a different estimate of the surface gravity of Dimorphos (i.e. the g) that appears
in the expression for the radius, being an impact with sand usually gravity driven. A
qualitative yet significant confrontation of the plots for the mass distribution with respect
to the velocity from the same paper are reported in Figure A.10.
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