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Sommario

Il 31 dicembre 2019 le autorità sanitarie cinesi comunicano all’Organizzazione Mon-
diale della Sanità la diffusione nella città di Wuhan di una malattia che causa crisi
respiratorie acute dal carattere fortemente infettivo. Inizia cos̀ı a diffondersi il virus
SARS-CoV-2, artefice della pandemia da COVID-19, la più grande crisi sanitaria mon-
diale dell’ultimo secolo. Sul finire del 2020, la pandemia, che aveva già causato 1.8
milioni di morti nel mondo, subisce una svolta decisiva attraverso l’approvazione di
vaccini sviluppati appositamente per il COVID-19.

In questa tesi viene presentato ed implementato uno strumento matematicamente
sofisticato e computazionalmente efficiente in grado di risolvere problemi di Controllo
Ottimo per la distribuzione di vaccini per il COVID-19. Dapprima viene formulato
un nuovo modello epidemico adattato per catturare alcune delle peculiarità della dif-
fusione progressiva della malattia e della campagna vaccinale: il modello SEIHRDVW,
sviluppato congiuntamente con il gruppo di ricerca EpiMox del Laboratorio di Mod-
ellistica e Calcolo Scientifico (MOX) del Politecnico di Milano. Vengono definite due
diverse tipologie di problemi di Controllo Ottimo governati da sistemi di Equazioni
Differenziali Ordinarie in cui le variabili di controllo sono le somministrazioni quo-
tidiane di prime e seconde dosi vaccinali. Pertanto è possibile proporre idealmente
delle linee guida concrete per la pianificazione della campagna vaccinale ottimale per
la minimizzazione del numero di morti o la quantità di persone infettate in un tempo
fissato. Per la risoluzione numerica dei problemi di Controllo Ottimo viene introdotto
un algoritmo innovativo, cioè il Metodo del Gradiente Proiettato Multiplo, in grado
di restituire le distribuzioni ottimali di vaccini che soddisfino vincoli precedentemente
definiti, imposti da fattori farmacologici e dalla disponibilità di dosi. I problemi di
Controllo Ottimo vengono risolti inquadrando il problema sia in scenari artificiosi (i
cui parametri rappresentano situazioni idealizzate), sia nello scenario quasi-realistico
della Lombardia nel 2021.

Per la risoluzione dei problemi di controllo ottimo, è stato implementato un solutore
in python3, sfruttando la differenziazione automatica e la compilazione just-in-time

definite nella libreria jax.
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Abstract

On the 31st December 2019, Chinese health authorities notified the World Health
Organisation of the spread of a disease in the city of Wuhan that causes acute respira-
tory crises of a highly infectious nature. Thus, the SARS-CoV-2 virus, the causative
agent of the COVID-19 pandemic, begins to spread resulting in the most devastating
global health crisis of the last century. In December 2020, the pandemic, which already
caused 1.8 million deaths worldwide, takes a decisive turn with the approval of vaccines
developed specifically for COVID-19.

In this thesis, a mathematically sophisticated and computationally efficient tool
for solving Optimal Control problems for the distribution of COVID-19 vaccines is
presented and implemented. First, we formulate a new epidemic model adapted to
capture some of the peculiarities of the progressive evolution of the disease and of the
vaccination campaign: the SEIHRDVW model, developed jointly with the EpiMox re-
search group of the Laboratory of Mathematical Modelling and Scientific Computing
(MOX) at Politecnico di Milano. We introduce two different types of Optimal Control
problems governed by systems of Ordinary Differential Equations where the control
variables are the daily administrations of first and second vaccine doses. Therefore, it
is possible to ideally propose concrete guidelines for planning the optimal vaccination
campaign for minimising the number of deaths or the amount of people infected in a
fixed time. For computing the numerical solution of Optimal Control problems, we de-
velop an innovative algorithm, namely the Multi-Projected Gradient Method, which is
able to return the optimal distributions of vaccines that satisfy previously defined con-
straints imposed by pharmacological factors and dose availabilities. Optimal control
problems are solved by framing the problem both in artificial scenarios (where param-
eters represent idealised situations) and in the semi-realistic scenario of Lombardy in
2021.

To cope with Optimal Control problems, we implemented a solver in python3 ex-
ploiting the automatic differentiation and the just-in-time compilation provided in
the jax library.
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zie perché questo lavoro non porta solamente alla chiusura di un percorso, ma ad una
nuova strada che umilmente mi appresto ad intraprendere, e che certamente non avrei
valutato senza i suoi preziosi consigli. Ringrazio con la stessa riconoscenza i professori
Nicola Parolini, Luca Dede’ e Alfio Quarteroni, e tutto il gruppo di ricerca di EpiMox.
Grazie per i numerosissimi stimoli, per i confronti nelle tavole rotonde virtuali in cui
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in fondo ci somigliamo più di quello che pensiamo. Ringrazio per i miei nonni, perché
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stupirmi.
Grazie per Gian Marco, perché sceglie di esserci. Sempre.
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Chapter 1

Introduction

The term Epidemiology merges the greek prefix Epi, meaning upon, with Demos, people,
and Logos, standing for reason, study. It is literally the study of infections that involve
human population. Among the other epidemic events originated by different biological
viruses or bacteria, pandemic events are those sanitarian emergencies which are caused
by abnormal spreads of infectious viruses or bacteria strains [84]. The word pandemic
has Greek roots too and literally means all people, meaning that the epidemic disease
spreads worldwide. During the last centuries many epidemic events have ravaged the
world, for instance the Athens plague (Typhoid fever) in 430 B.C., Smallpox Antonine
plague 165-180 in Italy, the Black Death which spread worldwide during the 14th
century, the Third Plague Pandemic started in China in the 19th century or the current
pandemic due to SARS-CoV-2 virus.

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) epi-centered
in Wuhan in the Chinese province of Hubei and then rapidly spread worldwide as a
consequence of the extremely connected society we are living in. Coronaviruses are
a group of enveloped, single-stranded RNA-viruses that have a wide-ranged tropism,
and are able to cause devastating diseases [32]. The three most notable coronaviruses
which affected human population are SARS-CoV-1 in 2001, MERS-CoV in 2012, both
causing epidemic events, and SARS-CoV-2 in 2019, the causative agent of the current
coronavirus disease (COVID-19) pandemic. According to the WHO dashboard1, as
of June 2021 1.78e8 people have been infected by the virus, and 3.9e6 of them died.
Structural components of the virus include the membrane, envelope, nucleocapsid and
Spike proteins. The entry of SARS-CoV-2 into host cells depends on two different
factors:

1. binding of the viral Spike proteins to cellular receptors;

2. Spike proteins priming by the host cell protease.

Figure 1.1 displays schematically SARS-CoV-2 structure and how it interacts with host
cells. Patients affected by SARS-CoV-2 present different clinical symptomps including

1https:// covid19.who.int/
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Figure 1.1: Schematic structure of SARS-CoV-2 virus. A) Spike protein struc-
ture; B) interaction between SARS-CoV-2 and host cells. Source: [41].

fatigue, fever, cough, loss of smell and tasting and headache. Almost 30% of them
reported gastrointestinal symptomps such as diarrhea, nausea, and stomach pain [90].
A study based on 254 chinese patients [122] assesses that the most common compli-
cations were pneumonia (82.3%), arrhythmia (0.06%) and shock (0.03%). In patients
recovered for COVID-19 infections the most prevalent comorbidities are age, obesity,
hypertension, diabetes mellitus, heart diseases and lung diseases [23]. Multiple surveil-
lance methods have been used to monitor the spread of SARS-CoV-2. The nasophar-
ynx and nasal swabs PCR tests have been the dominant form of testing. Despite the
prompt development of vaccines and the numerous ongoing clinical trials about other
therapeutics, the SARS-CoV-2 infection is still a large public health concern.

In recent years, epidemiology has started integrating mathematics, sociology, man-
agement science, complexity science, and computer science. The resulting cross of
multiple disciplines has led to the development of mathematical and computational
approaches to epidemic modeling, such as mathematical modelling. Mathematical
predictions through epidemic models can open the way to the optimal application of
control strategies and prevention treatments which basically contribute in eradicating
the epidemic, even though they cannot be overexploited. Indeed, since vaccinations
supply and medical interventions are often limited due to apriori economical and polit-
ical constraints, they could not be sufficient and effective enough for facing outbreaks
on their own. Besides, politically imposed restrictions which help in preventing the
spread of the disease can have negative repercussions on the social, economic and
psychological point of view if they are overextended [105]. Some works are devoted
to provide a mathematical response for optimal implementation of both medical and
non-pharmaceutical interventions during epidemic events. For instance, [8] provides an
analysis of optimal scenarios for treatments and educational campaign strategies with
the objective of minimizing infectious individuals during a fixed timeframe. In [42]
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vaccinations are used for controlling the total amount of infected individuals solving
a mathematical Optimal Control problem based on a SIR model (see Section 2.2.1).
An Optimal treatment strategy for the administration of antiretroviral drug (Reverse
Transcriptase Inhibitors) in HIV-positive individuals is investigated in [69]. Effects
and optimal strategies for medical treatments and quarantine have been investigating
in [51], taking into account for multiple strains of the disease itself.

With this work, we aim at contributing to the Italian panorama of epidemic mod-
elling for the SARS-CoV-2 by introducing an original vaccination-oriented model and
proposing an innovative optimization algorithm specifically developed for coping with
the complex problem of vaccine distribution. In particular:

� We introduced vaccination compartments in an already-estabilished epidemic
model (private communication Luca Dede’), the SEIHRD, which has been de-
veloped by the EpiMox research group at MOX Laboratory of Politecnico di Mi-
lano. Particular attention has been devoted to the relationship between classes
of vaccinated with first and second dose (indeed we consider two-shots vaccines)
and to the role of vaccine administrations to recovered individuals. Thus, we
set up a model completely conceived with the Italian vaccination program for
SARS-CoV-2;

� We formulated Optimal Control Problems to achieve the eradication of the pan-
demic and the minimization of deceased due to the infection using vaccinations
as control variables. For this purpose we had to express mathematically the
constraints imposed on vaccine administrations due to temporal minimum and
maximum elapsing time among consecutive doses and to their availability;

� We proposed and implemented a novel optimization algorithm for dealing with
the formulated multi-constrained optimization problems: the Multi-Projected
Gradient Descent (MultiPGD). We solved Optimal Control problems through the
MultiPGD in artificial scenarios to ideally provide policy makers with qualitative
guidelines for an optimal vaccination campaign, and in the semi-realistic scenario
of Lombardy in 2021.
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Outline

The thesis is organized in two parts:

Part 1. Epidemic Models, Optimal Control and Numerical Methods.

� Chapter 2 shortly reviews some of the Epidemic Models that are present in the
state of the art;

� Chapter 3 is devoted to provide instrumental results of Optimal Control theory;

� Chapter 4 introduces a new epidemic model, named SEIHRDVW model, incorpo-
rating the vaccination process and formulates Optimal Control problems to deal
with the optimal vaccination campaign;

� Chapter 5 illustrates numerical details about the implemented algorithm for solv-
ing Optimal Control problems;

Part 2. Numerical Results.

� Chapter 6 collects and discusses computational results related to artificial scenar-
ios with the goal of underlining qualitative key-features of optimal vaccination
campaigns;

� Chapter 7 collects and discusses numerical results related to a more realistic
scenario where we employ some realistic parameters to frame the simulation in
Lombardy and to account for realistic vaccines for fighting SARS-CoV-2.

The final chapter (Chapter 8) draws concluding remarks and includes possible future
developments of this work.
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Chapter 2

Epidemic models

Mathematical modeling in epidemiology is concerned with describing the spread of
diseases and their effect on people. In order to cope with infectious spread due to
communicable diseases, a wide area of the mathematical community developed different
mathematical models able to catch peculiar dynamics of the disease of concern. This
chapter is entirely devoted to the overview of some of the most adopted models for
describing different diseases.

We first recall some mathematical basics of Continuous Dynamical Systems and Bi-
furcation theory in Section 2.1. In Section 2.2 we discuss three fundamental archetypes
of Compartmental Epidemic Models, pointing out how to model medical and social in-
terventions. Section 2.3 is devoted to a short presentation of possible PDE-based
epidemic models. Finally, in Section 2.4 we present a short review of the state of the
art concerning mathematical epidemic models applied to SARS-CoV-2 infection, with
a specific focus on the SUIHTER model [89].

2.1 Continuous Dynamical Systems

In this section some fundamental definitions and results of Dynamical Systems Theory
are introduced in accordance with [53], [28] and [37].

Definition 1. Let X be a set and (T,+) an abelian group with identity element e. A
dynamical system on X is a map η : T ×X → X such that

∀x ∈ X : η(e, x) = x,

∀s, t ∈ T,∀x ∈ X : η(s, η(t, x)) = η(s+ t, x).
(2.1)

A dynamical system on T = Z or N is called discrete; a dynamical system with T = R
or R+ is called continuous.

The function t 7→ η(t, x) is called trajectory or orbit through x.
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Definition 2. An x̄ ∈ X such that

∀t1, t2 ∈ T : η(t1, x̄) = η(t2, x̄) (2.2)

is called equilibrium point for the dynamical system η.

Taking t1 = t, generic time, and t2 = e, if x̄ is an equilibrium point the following
holds

η(t, x̄) = x̄ ∀t ∈ T, (2.3)

meaning that the trajectory starting from an equilibrium point is represented by the
starting position itself. Assuming now an algebraic structure for the space X, namely
assuming that X is a vector or a difference space (i.e. a space where the displacement
between two distinct points can be defined), we can introduce differential calculus in
the dynamical systems framework. Indeed,

d

dt
η(t, x) = η̇(t, x) = lim

ε→0

η(t+ ε, x)− η(t, x)

ε
= lim

ε→0

η(ε, η(t, x))− η(t, x)

ε
(2.4)

is correctly defined. We notice that the above quotient is a function exclusively of
η(t, x) and therefore

η̇(t, x) = F (η(t, x)). (2.5)

Hence, the evolution of dynamical systems obeys to autonomous differential equations.
In the case of vectorial variables, we verify that multidimensional dynamical systems
are associated with autonomous systems of differential equations. At the same time,
even the converse is true. Indeed, if a function t 7→ u(t) on a topological vector space
X solves the following Cauchy problem{

u̇(t) = F (u(t)),

u(0) = x,
(2.6)

with t ∈ R, then the function (t, x) 7→ u(t) = η(t, x) is a dynamical system on T and X
according to Definition 1. The first condition is trivial to verify, since η(0, x) = u(0) =
x. For the second, fix s ∈ R and define vs : t 7→ u(t+ s). Since vs(t) evolves according
to the following differential system,{

v̇s(t) = F (vs(t)),

vs(0) = u(s),
(2.7)

then vs(t) = u(t+ s) = η(t+ s, x), and contemporarily,

η(t+ s, x) = vs(t) = η(t, u(s)) = η(t, η(s, x)),

which is exactly the second condition.

Identifying equilibria means finding those points corresponding to stationary tra-
jectories constituted by a single point. However, it is not always true that starting
close to the equilibrium position, the trajectory will remain close to the point.
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Definition 3. Let X be a topological space and let Ix the set of all neighbourhoods of
point x ∈ X. An equilibrium position x̄ of a dynamical system is said to be stable if

∀V ∈ Ix̄ ∃U ∈ Ix̄ s.t. ∀x ∈ U ⇒ η(t, x) ∈ V ∀t ≥ 0,

otherwise it is said to be unstable.

Stability is a very tough property to check if η(t, x) is not explicitly defined, or if
X is a generic topological space. In the following we restrict ourselves to X = Rn and
T = R, i.e. the case of ordinary differential equation.

Theorem 1. Assume there exists a unique solution t 7→ u(t) of (2.6) ∀t ∈ R. Let x̄
be an equilibrium position of the system and set

A =

(
∂F

∂u

)∣∣∣∣
x̄

,

the Jacobian of F computed at the equilibrium. If all eigenvalues associated to A have
strictly negative real part, then x̄ is stable. If at least one eigenvalue has strictly positive
real part, then x̄ is unstable.

This theorem is known in literature as the Linearization Method (for further details
refer to [53]). In the neutral case where at least one eigenvalue is purely immaginary
there may be stability as well as instability. For those cases where Linearization fails,
a sufficient condition is provided by the concept of Ljapunov function [17].

Definition 4. Let η be a dynamical system on X = Rn having x̄ as equilibrium point
and let W : X → R a continuous function having a strict minimum in x̄. W is said
to be a Ljapunov function relative to x̄ if there exists a neighbourhood Z of x̄ such
that

∀x ∈ Z, ∀t1, t2 ≥ 0 : t1 < t2 ⇒ W (η(t2, x)) ≤ W (η(t1, x)).

This is equivalent to say that W has a strict minimum in x̄ and the function
t 7→ W (η(t, x)) is nonincreasing.

Theorem 2. If a dynamical system on X = Rn, continuous in time, has an equilibrium
point x̄ which admits a Ljapunov function relative to it, then it is stable.

Ljapunov functions are in general not intuitive to find. If Theorem 2 is verified,
Ljapunov functions often carry on important information on the system, especially
when they are constant on trajectories. An example of Ljapunov function is the total
mechanical energy in conservative holonomic systems.

The notion of stability does not include information about asymptotic behaviours
of orbits, i.e. does not take into account any possible dissipative effects. For this
purpose, we introduce the concept of attractivity.
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Definition 5. Let η be a dynamical system on X having x̄ as equilibrium point. x̄ is
said to be attractive if there exists a neighbourhood U of x̄ such that

∀x ∈ U : lim
t→+∞

η(t, x) = x̄.

If X is simply a metric space, a set Y ⊆ X is attractive if the same holds starting from
a point x where dist(η(t, x), Y ) ≤ ε, with dist(x, Y ) = infy∈Y d(x, y).

Definition 6. Let η be a dynamical system on X having x̄ as equilibrium point. If x̄
is stable and attractive, then it is said to be asymptotically stable.

Attractivity does not imply stability. In Appendix A there is an example of a dy-
namical system which equilibrium is attractive but not stable. Asymptotic stability can
be shown both via Linearization Method or through a more strict Ljapunov theorem.

Theorem 3. Let t 7→ u(t) be a solution of (2.6) and suppose that it exists ∀t ∈ R. Let
x̄ an equilibrium position of the system and set

A =

(
∂F

∂u

)∣∣∣∣
x̄

.

If all eigenvalues associated to A have strictly negative real part, then x̄ is asymptotically
stable.

Definition 7. Let η be a dynamical system on X = Rn having x̄ as equilibrium point
and let W : X → R a continuous function having a strict minimum in x̄. W is said
to be a strict Ljapunov function relative to x̄ if there exists a neighbourhood Z of
x̄ such that

∀x ∈ Z, x 6= x̄⇒ ∀t1, t2 ≥ 0 : t1 < t2 ⇒ W (η(t2, x)) < W (η(t1, x)),

∀x ∈ Z : (∀t1, t2 ≥ 0 W (η(t1, x)) = W (η(t2, x))⇒ x = x̄.

This definition implies that W is always strictly decreasing on trajectories except
for the equilibrium point.

Theorem 4. If a dynamical system on X = Rn which is continuous in time has
an equilibrium point x̄ admitting a strict Ljapunov function relative to it, then it is
asymptotically stable.
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2.1.1 Bifurcation theory

Definition 8. Let X be a set and γ : R → X a curve. Let F be a partition1 of X. A
value k0 ∈ R for which γ(k) ∈ G for k > k0 and γ(k) ∈ F for k < k0 with F 6= G is
called bifurcation value, and the element γ(k0) bifurcation point.

The idea behind this definition is that crossing k0 the function γ(k) changes its
behaviour. The parameter k is the quantity depending on which we want to investigate
how the bifurcation function γ changes. The same definition can be extended to cases
where the function γ depends on more than one parameter (i.e. γ : Rn → X).

Equilibria of dynamical systems can exhibit different stability properties (or can
change in number) depending on different values of some parameters. An example of
bifurcation function is the one counting the number of equilibria of a specified dynam-
ical system. In this case, we draw the bifurcation diagram which is a visual qualitative
representation of equilibria of the dynamical system by varying the parameter k on
which γ depends. The convention we are going to use is to represent stable equilibria
as continuous lines, and unstable ones as dashed lines.

Generally, the bifurcation diagram is constituted by union of curves in a space of the
same dimension of the dimension of k. Assuming the evolutive function is sufficient
regular on the bifurcation parameters, the curves intersect each other in potential
bifurcation points. According to the purpose of this thesis, we categorize three main
types of bifurcation points (see Figure 2.1):

� Saddle-node bifurcation. It is defined when a curve folds up on itself;

� Transcritical bifurcation. It is defined when two curves, which are locally
graphs of functions, intersects each other;

� Pitchfork bifurcation. It is defined when two curves intersect each other and
at least one folds up on itself.

Figure 2.1: Bifurcation diagrams representing three different bifurcation points.
Source: [53].

1A partition of X is a family F of subsets of X such that ∅ /∈ F , F
⋂
G = ∅ for every F,G ∈ F

and
⋃

F∈F F = X.
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2.2 Compartmental Epidemic Models

In 1927 William O. Kermack and Anderson G. McKendrick published their first work
about epidemic models from the Laboratory of Royal College of Physicians in Edin-
burgh [64]. They introduced the SIR model that is considered as the cornerstone of
modern mathematical epidemiology since it is the first compartmental model describ-
ing the spread of infectious diseases among susceptibles for human-to-human contact.
The authors themselves subsequently pusblished adjournments of their theory (in 1932
[65] and 1933 [66]) in order to model epidemic events persistent in time.

Three are the main archetypes of compartmental deterministic models for the
spread of infectious diseases by direct person-to-person contact, the SIR, SIS and SEIR

models (see Figure 2.2). They can describe different diseases with different biological
characteristics, and moreover they constitute the bases for the development of more
complex models. Those kinds of epidemic models have been applied to a wide range
of diseases, for instance measles [7], rubella [5], whooping cough [1], polyiomelites [19],
chickenpox [31], mumps [45], fever [43] and HIV (see, e.g., [104], [72] and [50]).

In the following subsections we propose a short overview of some of the most com-
mon compartmental models for epidemic events, and we investigate qualitative be-
haviours of the solutions.

Figure 2.2: Schematic representation of SIR, SIS and SEIR models.

2.2.1 SIR model

The SIR model (Figure 2.2.a) is a compartmental model which assumes to subdivide
population in three main disjoint average classes. The susceptible class (S) is consti-
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tuted by individuals who can contract the infection. Instead, the infectious class (I) is
composed by ill individuals who are responsible for the epidemic spread. When infected
individuals have recovered from the illness, they end up in the removed class (R). The
SIR model is based on some restrictive assumptions which cannot be circumvented:

� infected individuals are also infectious;

� it assumes to describe properly epidemic outbreaks and not time-persistent epi-
demics;

� the population is homogeneously mixed, hence each involved parameter is an
average quantity;

� it neglects migratory phenomena, births and deaths (also called vital dynamics)
and assumes to be extremely localized in time and space. The total population
per-time remains constant, i.e

S(t) + I(t) +R(t) = N ; (2.8)

� it assumes to deal with viruses that grant immunity after the illness stage, and
so reinfection is not allowed;

� the disease is not fatal;

� when a susceptible individual is infected there is instantaneous manifestation of
symptoms. Incubation time is not considered.

The SIR model can be formulated as a system of Ordinary Differential Equations
(ODEs) as follows: 

Ṡ = − β
N
S I, ∀t ∈ (0;T ]

İ =
β

N
S I − γI, ∀t ∈ (0;T ]

Ṙ = γI, ∀t ∈ (0;T ]

(2.9)

where β ([ 1
T

]) is the daily contact or transmission rate, namely the parameter averaging
the number of adequate contacts per infective per day. Adequate contacts are the in-
teractions among infectives and susceptibles which successfully outcome in infections.
The factor β

N
SI models the interaction between S and I and it is called the incidence,

interpretable as a mass action law. The incidence makes the model nonlinear. The
parameter β, which is often mantained constant or varied seasonally, changes accord-
ing to the so called NPIs (Non-Pharmaceutical Interventions). All policies aiming at
restricting contacts, e.g. social distancing measures, result in altering its value (β de-
creases if restrictions become stricter). The parameter γ is dimensionally the inverse
of a time [ 1

T
] and represents the removal rate from the infective class by recovery. It

can be thought as the inverse of the recovery time.
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Manipulating algebraically Equation (2.8), we recover the following relationship
between the three compartments:

S(t) + I(t) +R(t) = N ⇒ R(t) = N − S(t)− I(t). (2.10)

Then, the system of equation (2.9) can be reduced to a system of two independent
equations, 

Ṡ = − β
N
S I, ∀t ∈ (0;T ],

İ =
β

N
S I − γI, ∀t ∈ (0;T ].

(2.11)

Equilibrium states for the system are (S̄, 0) for any S̄. The Jacobian matrix associated
with the system (2.11) is −

β

N
I − β

N
S

β

N
I

β

N
S − γ

 , (2.12)

and it is a range-1 matrix when it is computed at the equilibrium point. Hence,
Linearization Method for the qualitative assessment of equilibria’s stability fails.

The first equation in (2.11) entails the monotone-decreasing character of the sus-
ceptibles, since Ṡ is always negative. The variable R(t) is always increasing, since
Ṙ(t) = γI ≥ 0. On the other hand, the infectious state can display both growing
or decaying behaviour at the initial time, depending on a suitably-defined parameter
known in literature as the basic reproduction number R0.
Indeed, if

0 >
β

N
S0 − α >

β

N
S(t)− α, (2.13)

the infective curve is decreasing for each time and always positive. If instead

β

N
S0 − α > 0, (2.14)

infected class grows at least in a small right neighbourhood of the initial time, achieving
a maximum value. The non-dimensional parameterR0, accounting for the mean of new
infected individuals caused by one infectious, is defined as

R0 =
βS0

γN
(2.15)

for the SIR model. Mathematically, R0 plays the role of a threshold parameter for the
dynamics of the ODE-system and it is related to equilibria’s stability. In particular,

� R0 < 1 means strictly decaying behaviour: the epidemic does not outbreak;

� R0 > 1 implies infected start to grow: the infectious peak is reached, thus the
epidemic outbreaks.
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We can prove that SIR model always entails a complete eradication of the disease
(i.e. I(t) vanishes in the limit as t→∞) starting from whatever initial conditions and
with fixed model parameters. Indeed, Equations (2.11) yield:

d

dt
(S + I)(t) = −γI ⇒ S(t) + I(t) = S0 + I0 − γ

∫ T

0

I(τ)dτ. (2.16)

Defining y(t) =
∫ t

0
I(τ)dτ, İ(t) = y′(t), y(0) = 0, (2.16) becomes

y′(t) + γ y(t) = S0 + I0 − S(t) ≤ S0 + I0 ⇒

⇒ e−γt
d

dt
(y(t)eγt) ≤ S0 + I0 ⇒

⇒ d

dt
(y(t)eγt) ≤ (S0 + I0)eγt ⇒

⇒ y(t) eγt − y(0) ≤ (S0 + I0)
eγt − 1

γ
⇒

⇒
∫ ∞

0

I(τ)dτ ≤
∫ t

0

I(τ)dτ = y(t) ≤ S0 + I0

γ
− S0 + I0

γ
e−γt ≤ S0 + I0

γ
. (2.17)

Since y(t) is bounded independently on t and

İ(t) = −γI(t) +
β

N
S(t)I(t) ≤ β

N
S(t)I(t) ≤ βN, (2.18)

we apply Theorem in Appendix B, and deduce that

lim
t→∞

I(t) = 0. (2.19)

All previous computations are valid if it is possible to verify that I(t) is defined ∀t ∈
[0;T ]. For this purpose, we define the following change of variable:

τ =

∫ t

0

I(s)ds. (2.20)

Since I(t) is always positive, τ ′(t) = I(t) ≥ 0 and the change of variable is invertible.
Hence,

dτ = I(t)dt ⇒ d

dτ
=

1

I

d

dt
, (2.21)

and the ODEs system (2.11) can be rewritten as follows
dS

dτ
= − β

N
S,

dI

dτ
=

β

N
S − γ,

(2.22)
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which is a linear system and its solution is always defined.
Finally, we can integrate the system in order to get an explicit solution for the SIR

case. Indeed,

Ṡ = − β
N
S I ⇒ log

(
S

S0

)
= − β

N

∫ t

0

I(s)ds =
(2.16)

β

N γ
(N − S − I). (2.23)

The relationship among infectives and susceptibles is

I = N − S −N γ

β
log

(
S

S0

)
. (2.24)

Substituting (2.24) in the first equation of (2.11) and integrating the resulting equation
we recover an explicit solution for S(t), I(t) and R(t).

2.2.2 SIS model

SIR model is suitable for diseases that confer immunity after infection has happened.
This is not always the case: for instance cold, influenza and even SARS-CoV-2 do not
grant immunity after recovering from the infection. The possibility of some diseases
to confer immunity or not is strictly related to the antibodies (proteins that our body
produces automatically to respond to the infection). Antibodies coat invading cells
and, in the best case, prevent invaders from hijacking cells and replicating. Level of
antibodies rapidly decreases when the infection is passed. Reinfections occur if the
disease has developed resistance and has genetically changed (this is the case of the
outcome of variants) or antibodies level is too low to fight against a new contact with
pathogenon agents.

The SIS model tries to catch this peculiarity by deleting the removed class and
allowing susceptible individuals to return to S class after the infection. In Figure
2.2.b the schematic flowchart for the SIS model is showed. The system of equations
governing SIS is the following:

Ṡ = − β
N
S I + γI, ∀t ∈ (0;T ],

İ =
β

N
S I − γI, ∀t ∈ (0;T ].

(2.25)

This model can be reduced to a one-equation dynamical system. Indeed,

Ṡ + İ = 0 ⇒ S + I = S0 + I0 = N ⇒ (2.26)

İ =
β

N
(N − I) I − γI =

(
β − βI

N
− γ
)
I. (2.27)

Particularly, the continuous dynamical system associated with (2.27) is a nonlinear
dynamical system, also known as the logistic system where the evolutive dynamics is
a parabolic function.
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Two distinct equilibria can be found by solving İ = 0. Indeed,(
β − βI

N
− γ
)
I = 0⇒ Ī1 = 0 ∨ Ī2 =

(β − γ)N

β
. (2.28)

The nontrivial equilibrium Ī2 can be rewritten as

Ī2 =

(
1− 1

R0

)
N, (2.29)

after defining the basic reproduction number for the SIS model as

R0 =
β

γ
. (2.30)

Depending on the threshold value R0 = 1, equilibria have different stability properties:

� R0 > 1 means Ī2 > 0 is asymptotically stable, Ī1 = 0 is unstable;

� R0 < 1 means Ī2 < 0 is unstable, Ī1 = 0 is asymptotically stable.

Figure 2.3: Bifurcation diagram for the SIS model.

For this system, the bifurcation diagram based on stability of the equilibria is drawn
in Figure 2.3. We vary R0 on the x-axis and plot qualitatively the equilibrium points
with blue curves. In the pink region (I(t) < 0) equilibria are not admissible. We
notice the onset of a transcritical bifurcation point whether R0 = 1. Actually, if
R0 < 1 the system admits one equilibrium (Ī2 is negative, hence not admissible) which
is asymptotically stable (Ī1). When R0 > 1, Ī2 is asymptotically stable and therefore
infectious do not vanish but every solution collapses to a stable point with non-zero
infected individuals. In this case the disease will not be extincted.
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2.2.3 Vital dynamics

Models introduced in the previous sections cannot describe situations extended over
long periods of time. According to [55] a disease is called endemic if it is persistent
for more than almost 10 years. When endemic diseases are concerned, births and
deaths not caused by the infections have to be included in the model (the so-called
vital dynamics).

One possible linear correction to model (2.9) is the following [81]:
Ṡ = − β

N
S I + Λ− µS, ∀t ∈ (0;T ],

İ =
β

N
S I − γI − µI, ∀t ∈ (0;T ],

Ṙ = γI − µR, ∀t ∈ (0;T ],

(2.31)

where Λ represents the amount of daily births and µ the average death rate. We assume
that Λ is constant in time, even if this is not completely realistic. Indeed, births strictly
depend on different factors (e.g. availability of resources, age of the individuals, sex-
class ripartitions) that often vary in time. The parameter µ can be interpreted as the
inverse of the medium living time of the species involved. Increasing the death rate µ
can be seen as a reduction on the average life expectancy. Notice that deaths ruled by
µ are completely uncorrelated to the disease development: we are under the hypothesis
that the disease is not letal.

The two equilibria corresponding to system (2.31) are (Λ
µ
, 0, 0), called disease-free

equilibrium, and (γ+µ
β
N, Λ−µS̄

γ+µ
, γ
µ
Ī), endemic equilibrium.

If N = 1 (i.e. all state variables are percentages on the total population) and Λ = µ
the following theorem can be proven [55]:

Theorem 5. Define R0 = β
γ+µ

and let R0 ≤ 1. Then the triangle

T = {(S, I)|S ≥ 0, I ≥ 0, S + I ≤ 1}

is an asymptotic stability region for the disease-free equilibrium. On the other hand, if
R0 > 1 then

T − {(S, 0)|0 ≤ S ≤ 1}

is an asymptotically stable region for the endemic equilibrium.

Even in this case the basic reproduction number acts like a bifurcation parameter
for the stability properties of the two equilibria, as claimed by the previous theorem.
Indeed, if the reproduction number is less than one than the disease dies out since one
infective replaces himself with less than one new infective. Instead, if R0 is bigger than
one it is possible to have an epidemic outbreak with solutions tending to the endemic
equilibrium.
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2.2.4 SEIR and SEIRD models

In this section the last paradigmatic epidemic models are shortly presented, namely
SEIR [76] and SEIRD [81] models. SEIR is constituted by four averaged classes where
S represents the class of susceptibles, R the removed one, E the class of infected but
not infectious individuals and I the class of individuals contemporarily infectious and
infected. The resulting system of ODEs is:

Ṡ = − β
N
S I + Λ− µS, ∀t ∈ (0;T ],

Ė =
β

N
S I − (α + µ)E, ∀t ∈ (0;T ],

İ = αE − (γ + µ)I, ∀t ∈ (0;T ],

Ṙ = γI − µR, ∀t ∈ (0;T ],

(2.32)

where γ (which is dimensionally [ 1
T

]) represents the recovery rate, whereas α (which is
also dimensionally the inverse of a time) can be physically interpreted as the inverse
of the average incubation time that strictly depends on the nature of the disease.
Imposing vanishing derivative in (2.32), we recover the equilibria of the associated
continuous dynamical system:

0 = − β
N
S I + Λ− µS,

0 =
β

N
S I − (α + µ)E,

0 = αE − (γ + µ)I,

0 = γI − µR.

(2.33)

The equilibrium with infectious extinction is (Λ
µ
, 0, 0, 0). The endemic equilibrium (i.e.

the one with non-vanishing infectious) can be deduced solving the third equation in E,

E =
γ + µ

α
I, (2.34)

and, susbstituting it in the second equation of (2.33) yields

S =
(µ+ γ)(µ+ α)N

βα
. (2.35)

From the first equation of (2.33), we get

I =
ΛN

βS
− µN

β
=

Λα

(µ+ γ)(µ+ α)
− µN

β
=
µN

β
(R0 − 1), (2.36)
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where R0 is defined as follows

R0 =
Λ

N

αβ

µ(µ+ γ)(µ+ α)
. (2.37)

The reproduction number is overall positive, and it is zero when the trasmission rate
β is zero. The factor Λβ

µ(µ+γ)
can be seen as the number of secondary cases produced

by one infectious individual during its lifespan as infectious, whilst α
α+µ

is the fraction
of exposed individuals that encompasses the exposed period and becomes actually
infectious. Applying Linearization Method to the Jacobian computed at the endemic
equilibrium, and via the Hurwitz criterium for assessing signs of eigenvalues [81], the
following proposition can be proven [55]:

Proposition 1. Assume R0 > 1. Then the endemic equilibrium previously defined is
locally asymptotically stable.

The SEIRD model is a modification of SEIR model and it is employed in those cases
where the virus can lead to death. It is worth noticing that introducing the com-
partment of deaths is particularly helpful during the calibration stage for parameters
involved in epidemic models. Indeed, the number of deaths is typically less affected
by uncertainty than the other compartments, since recognizing deaths caused by the
disease is easier than detecting all people with ongoing disease. The model (excluding
vital dynamics) reads as follows:

Ṡ = − β
N
S I, ∀t ∈ (0;T ],

Ė =
β

N
S I − αE, ∀t ∈ (0;T ],

İ = αE − γI, ∀t ∈ (0;T ],

Ṙ = (1− f)γI, ∀t ∈ (0;T ],

Ḋ = fγI, ∀t ∈ (0;T ].

(2.38)

Class D counts the amount of deads due to the disease. The parameter f is instead
the fatality rate, and depends on the specific disease.

2.2.5 Compartmental models including medical and social in-
terventions

Complex epidemic situations are commonly faced through the implementation of po-
litical and social interventions or through medical treatments as well. In endemic
situations it is more probable that time will be sufficient to develop ad hoc effective
medical interventions, such as vaccines. Tipically, social and medical interventions
come at different prices, i.e. they have social or economic costs that policy makers or
sanitarian competencies have to take into account.
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Medical and social interventions involve three main aspects:

1. Quarantine or lockdowns at different levels (often referred to as NPIs, Non-
Pharmaceutical Interventions);

2. Vaccinations;

3. Treatments.

Quarantine. When diseases spread, a possible containment intervention is to impose
prior restrictions on circulation, limiting contacts among people. Etimologically, the
term Quarantine derives from seventeenth-century Venetian quarantena, standing for
forty days of strict isolation imposed during the outbreak of Venice-plague in 1630.
Isolation is commonly applied to those individuals who have had contacts with infec-
tives and so who could foster the spread of the disease.
Define the class of quarantined/isolated individuals as Q and the Active population
A(t) = N − Q(t) = S(t) + I(t) + R(t) as in [39]. A possible compartmental model
including quarantine is the following:

Ṡ = −β
A
S I, ∀t ∈ (0;T ],

İ =
β

A
S I − (γ + η)I, ∀t ∈ (0;T ],

Q̇ = ηI − κQ, ∀t ∈ (0;T ],

Ṙ = γI + κQ, ∀t ∈ (0;T ],

(2.39)

where η is called isolation rate ([ 1
T

]) and it is strictly linked to monitorning policies
that are implemented (i.e. to the level of testing). The parameter κ instead ([ 1

T
]) is the

inverse of the average time that people spend in the quarantined state. Incrementing
NPIs level, for example introducing local or global lockdowns, can also be modelled
through an adequate decreasing of the contact rate β.

Vaccination. Vaccination is the administration of weakened or dead antigenic ma-
terial in order to develop automatic immunitary response in individuals’ body. In
this way it is possible to achieve partial or complete immunity without recurring to
infections. Generally, there are two different ways for modelling vaccinations.

One possible choice is to define a proportion p of initial susceptibles that are directly
moved into the recovered class, whereas the remaining (1 − p) fraction flows in S.
The fraction p is the percentage of vaccination administered. This first method is
implemented when all vaccinations happen at the beginning of the simulation and it
prescribes information about necessary levels of vaccinations for eradicating the disease.

The other way, which we are more accustomed to (see, e.g., [46], [106], [100], [78])
and which corresponds to daily vaccine administrations, is to subtract continuously a
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part of vaccinated people from the S class. Each subtracted fraction of susceptible
individuals populate a new class (commonly called V ), where immunized individuals
end up: 

Ṡ = − β
N
S I − µSS, ∀t ∈ (0;T ],

İ =
β

N
S I − γI, ∀t ∈ (0;T ],

Ṙ = γI, ∀t ∈ (0;T ],

Q̇ = µSS; ∀t ∈ (0;T ].

(2.40)

This is the strategy we adopted in the SEIHRDVW model described in Chapter 4 for
formulating Optimal Control Problems.

Medical treatments. An infectious disease’s treatment refers to the care given to
decrease morbidity and death. Medications that alleviate symptoms and aid the im-
mune system in fighting the disease are common examples. Treatments can be directly
englobed in the SEIR model (2.32) through the introduction of a specific new stage,
which is commonly identified by letter T . Define p as the probability of successful
treatment, and q as the probability of failure, such as p + q = 1. The following SEIT

model has been introduced for modelling tubercolosis in [38]:

Ṡ = −β1

N
S I + Λ− µS, ∀t ∈ (0;T ],

Ė =
β1

N
S I +

β2

N
T I − (α + r1 + µ)E + pr2I, ∀t ∈ (0;T ],

İ = αE − (r2 + µ)I, ∀t ∈ (0;T ],

Ṫ = r1E + qr2I −
β2

N
T I − µT, ∀t ∈ (0;T ],

(2.41)

where r1 is the treatment rate of exposed individuals, r2 the same rate for infectious
individuals. They are differentiated since care treatments are often proportional to the
progress of the disease.

2.2.6 Techniques for computing the basic reproduction num-
ber

Previous models represent baselines for more complex flowcharts, with more compart-
ments and transitions. As far as model’s dimension grows it is important to develop
adequate tools in order to compute some dimensionless parameters as the basic repro-
duction number R0 and its time-dependant homologous Rt to support the analysis of
the results. Two methods for computing R0 are dealt in this section following [81].

The reproduction number must respect the following properties:
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� be nonnegative for nonnegative parameters;

� be zero when trasmission spread is null;

� be interpretable as the number of secondary infections.

Jacobian approach Mathematically, the parameter R0 gives a threshold condition
for assessing the outbreak of the pandemic and the stability of the disease-free equi-
librium. Imposing conditions for stability of the non-endemic equilibrium leads to a
possible definition of the reproduction number.

As we have seen in Section 2.1, Linearization Method provides a sufficient stability
condition through the analysis of the eigenvalues. In particular the Jacobian of the
system can be computed at the disease-free equilibrium, and the eigenvalues’ real part
has to be strictly negative whenever equilibrium is stable. Imposing the aforementioned
conditions in order to recover inequalities on the parameters leads to the definition of
the basic reproduction number: this method is known in literature as the Jacobian
approach. In the two-dimensional case, this requirement follows from the conditions
TrJ < 0 and DetJ > 0, which represent respectively the sum and the product of the
two eigenvalues of a 2×2 matrix. In higher dimensional cases, if it is possible to recover
a 2×2-form of the Jacobian, the same inequalities can be applied. If this is not possible,
the characteristic polynomial associated to the Jacobian has degree higher than 3 and
the previous inequalities do not hold anymore. Necessary and sufficient conditions
regarding signs of the eigenvalues are given by the Routh-Hurwitz criterion, stated
in the following theorem [33]:

Theorem 6. Consider the nth-degree polynomial with real constant coefficients

P (λ) = λn + a1λ
n−1 + ...+ an−1λ+ an.

Define n Hurwitz matrices in the following way:

H1 =
[
a1

]
H2 =

[
a1 1
a3 a2

]
H3 =

a1 1 0
a3 a2 a1

a5 a4 a3


and

Hn =



a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
a7 a6 a5 a4 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . an


where aj = 0 if j > n. All roots of the polynomial P (λ) are negative or have negative
real part if and only if the determinants of all Hurwitz matrices are positive:

DetHj > 0, j = . . . , n.
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The Jacobian approach provides practical implications if all conditions coming out
from Hurwitz criterium can be reduced to one single inequality. This is not always the
case, especially in models combining host heterogeneities, e.g. when susceptibles can
be differentiated on the base of different demographic characteristic or on the base of
different inclinations with respect to the disease as in multi-age models.

Next Generation Matrix approach The basic reproduction numberR0 is referred
to the possibility of giving birth to new infected individuals. In this sense the onset
of an epidemic outbreak can be qualified as a demographic process with consecutive
generations of infected. If the sizes of subsequent generations grow, the offspring of an
epidemic occur. Hence, R0 is then the characterizing factor per generation that corre-
sponds to a potential infected growth. For demographic processes that are categorized
in discrete compartments, a common approach is to define a matrix for relating infected
individuals in temporary consecutive generations. This matrix known as Next Genera-
tion Matrix, NGM, was firstly introduced by Diekmann and Heersterbeek in 1990 [35]
and its spectral radius is the parameter R0. We consider the Van de Driessche and
Watmough approach [113] as a possible method to assemble the NGM.

More precisely, we divide compartments in two main groups, infected and nonin-
fected, depending on whether they are constituted by infected or healthy individuals.
Assume that there are n ∈ N infected compartments and m ∈ N healthy classes so
that the entire amounts of compartments is m + n. Let x ∈ Rn and y ∈ Rm be the
vectors of variables of infected and healthy compartments. Then, proceed with the
following steps:

1. Arrange the equations so that the first n components correspond to infected
compartments. Thus, the system can be rewritten as

x′i = fi(x, y), i = 1, . . . , n,

y′j = gj(x, y), j = 1, . . . ,m;
(2.42)

2. Split the right-hand side in the infected equations as

x′i = Fi(x, y)− Vi(x, y), i = 1, . . . , n

y′j = gj(x, y), j = 1, . . . ,m,
(2.43)

with Fi(x, y) representing the rate of appearance of new infections in i and Vi(x, y)
the remaining flows. This decomposition is not unique, and it has to satisfy some
properties:

� Fi(0, y) = 0 and Vi(0, y) = 0 for y ≥ 0, i = 1, . . . , n, so that all new infections
are secondary infections from the infected host and there is no immigration
of susceptibles into the disease compartments;

� Fi(x, y) ≥ 0 for all x, y ≥ 0;
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� Vi(x, y) ≤ 0 whenever xi = 0 for i = 1, . . . , n;

�

∑n
i=1 Vi(x, y) ≥ 0 for all x, y ≥ 0, meaning that the total outflow of all

infected is positive.

3. Assume the disease free system

y′ = g(0, y) (2.44)

has a unique disease-free equilibrium (0, y0) and determine it.

4. Define the matrices F and V as

Fij =

[
∂Fi
∂xj

(0, y0)

]
,

Vij =

[
∂Vi
∂xj

(0, y0)

]
.

(2.45)

Those matrices arise from the linearization of the system around the equilibrium
point.

5. The next-generation matrix is defined as

K = FV −1,

and
R0 = ρ(FV −1).

Moreover, it can be shown that if R0 < 1 than the disease-free equilibrium is asymp-
totically stable.

2.3 Other epidemic models

Epidemic models are not always ruled by ODE-based dynamical systems. For instance,
all the previous compartmental models rely on the hypotheses of spatial homogeneity
and on neglecting age dependancy. In most cases those two factors come up and
influence the dynamics or can be of paramount importance in order to get non-trivial
and realistic predictions on the epidemics. In these cases, PDE-based models arise
and have to be investigated within a proper mathematical framework. In the next
subsections two PDE-based models are synthetically presented.
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2.3.1 Spatial models with diffusion

In order to embody the spatial dependancy reaction-diffusion equations, which are
second order partial differential equations, are widely adopted in modelling processes.
In [22] an example of a diffusion-reaction model for one-dimensional spatial epidemic
spread is introduced. Spatial heterogeneity is embodied in ODE-based models by
adding diffusion terms to the standard time-dependant formulations. For example,
consider an SI model with second order nonlinear trasmission, i.e.

S ′ = − β
N
SI,

I ′ =
β

N
SI.

(2.46)

Assume susceptibles and infected are homogeneously spatially distributed, S = S(x, t)
and I = I(x, t), with x ∈ R. By adding diffusion to model (2.46) a parabolic system
of PDE arises:

∂S

∂t
= − β

N
S(x, t)I(x, t) +D

∂2S

∂x2
,

∂I

∂t
=

β

N
S(x, t)I(x, t) +D

∂2I

∂x2
,

(2.47)

where D is the diffusion constant. After defining the total population as N(x, t) =
S(x, t) + I(x, t), we verify that N(x, t) satifies a random diffusion equation as follows:

∂N

∂t
= D

∂2N

∂x2
. (2.48)

When PDE-based models are introduced two types of conditions have to be pre-
scribed in order to guarantee well-posedness of the problem:

1. Initial Conditions (IC). They give the complete spatial distribution of all
variables at the initial time. They also have to be prescribed in ODE-based
Cauchy problems.

2. Boundary conditions (BC). They are conditions of different kind which are
imposed at the borders of the spatial domain for each time. We can impose
different types of BC:

� Dirichlet-like if at the two boundaries time-depending distributions are
fixed (if the domain is one-dimensional and finite, otherwise a trace operator
on the domain has to be defined);

� Neumann-like if ∂V
∂x

is fixed at the boundaries;

27



� Robin-like when a linear combination of the values and the fluxes of the
unknown function is prescribed at the boundaries (α1

∂V
∂x

+ α2V ).

Neumann and Robin boundary conditions are burdensome to be determined. For
instance coming back to epidemic models and considering a monodimensional
domain, for both conditions one needs to extimate entering and exiting people,
hence a demanding monitoring policy has to be taken into account. Moreover,
Robin conditions are even tougher to be dealt since we need to monitor con-
temporarily individuals belonging to each compartment at the boundary and the
fluxes across the borders at each time. Homogeneous Neumann conditions cor-
respond to the case of closed and non-accessible domains. Homogeneous Robin
conditions correspond to the case of proportionality between individuals at the
boundary and the balance of the fluxes across borders of the domain (the so-called
Hook effect).

2.3.2 Age-structured model

Age-dependance is a fundamental factor for those models referring to diseases that
behave differently with different age-classes, similarly to COVID-19. In this respect,
the ISS (Istituto Superiore di Sanità) in its report on 21st April 20212 extimates that
almost 1.1% of deceased individuals due to SARS-CoV-2 in Italy is under 50 and that
the medium age of deceased is about 75 (Figure 2.4).

Figure 2.4: Barplot of deceased individuals for SARS-CoV-2 infection in Italy
split in age-classes. Source: ISS Report, 21st Aprile 2021.

In the sequel we briefly describe a possible age-structured compartmental model
[62]. Define s(t, a), i(t, a) and r(t, a) as the number of susceptibles, infectious and

2https://www.epicentro.iss.it/coronavirus/sars-cov-2-decessi-italia
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removed individuals at time t with age a, respectively. Then, the following holds

s(t+ ε, a+ ε) = s(t, a)−
[
µ(a) +

∫ +∞

0

k(t, a, ζ)i(t, ζ)dζ

]
s(t, a)ε, (2.49)

namely, the amount of susceptibles at time t+ ε whose age is a+ ε are those who were
susceptibles at time t of age a, minus the deceased ones during the time-interval of
length ε (i.e. the factor µ(a)s(t, a)ε ) and those who have been infected in the interval
(t; t + ε). The incidence term (

∫ +∞
0

k(t, a, ζ)i(t, ζ)dζ s(t, a)ε) takes into account for
interactions among s(t, a) with infected of all ages through the continuous function of
three variables k(t, a, ζ), to be properly prescribed.

Considering (2.49), dividing both members by ε and taking the limit as ε→ 0, we
obtain

∂s

∂a
(t, a) +

∂s

∂t
(t, a) = −µ(a)s(t, a)− s(t, a)

∫ +∞

0

k(t, a, ζ)i(t, ζ)dζ. (2.50)

With the same proceedings, we obtain the PDEs governing the evolution of i(t, a) and
r(t, a):

∂i

∂a
(t, a) +

∂i

∂t
(t, a) = −µ(a)i(t, a) + s(t, a)

∫ +∞

0

k(t, a, ζ)i(t, ζ)dζ − α i(t, a),

∂r

∂a
(t, a) +

∂i

∂t
(t, a) = −µ(a)r(t, a) + α i(t, a),

(2.51)

where α is the so-called recovery parameter.
Define n(t, a) = s(t, a) + i(t, a) + r(t, a) as the number of individuals of age a at

time t. Summing Equations (2.50) and (2.51), we can verify that

∂n

∂t
(t, a) +

∂n

∂a
(t, a) = −µ(a)n(t, a), (2.52)

which is known in literature as the Von Foerster’s equation, a classical equation for
age-structured models in population dynamics [52].

Eventually, PDE-based models need initial conditions (e.g. s(0, a)) and birth distri-
bution for each time (e.g. s(t, 0)) which is not often known since it is strictly dependant
on the populosity of the classes themselves. To overcome this issue, it is possible to
define s(t, 0) =

∫ +∞
0

βs(ζ)s(t, ζ)dζ where βs(a) represents the birth rate distribution for
individuals of age a, which can be deduced avaraging available historical data. Notice
that in the definition of births evolution the unknown itself is present.

29



2.4 Epidemic models for SARS-CoV-2 pandemic

Many epidemic models dealing with SARS-CoV-2 pandemic have been developed dur-
ing the last two years. Some of the recent studies differ in findings and results mainly
because they strictly depend on the assumptions made and on the quality of data upon
which models are calibrated. In the context of SARS-CoV-2 pandemic, the calibration
process is exacerbated by the lack of detection of infectious individuals, who often are
asymptomatical infectious. Testing reporting delays and poor detection affect validity
of the output of mathematical models.

A key-issue we need to take into account in the context of COVID-19 is the choice
of the epidemic model. Indeed, simple models often provide less valid forecasts since
they do not capture human mixting patterns and other characteristics of infectious
diffusion. On the other hand, complex models may create the illusion of realism even
when they miss key-aspects of the biology of the phenomenon, making it harder to
spot crucial omissions. For instance, they are more sensitive to changes in parametric
assumptions than simpler models.

Predictive models for COVID-19 are not reliable in large areas, because they aggre-
gate and average heterogenous subepidemics in local areas. Moreover, averaged-classes
compartmental models do not take into account for individual factors, such as comor-
bidities or age, which influence the risk of severe disease from COVID-19.

Referring to the actual state of the art, some models have tried to keep it tight on
standard compartmental models (see, e.g., [24], [99], [49], [54], [20], [26], [30], [2] and
[109]). Some others have tried to be fully consistent with available data in different
countries (see, e.g., [96], [47], [120], [40], [111] and [71]). Other models have incorpo-
rated the geospatial dependancy and some others the randomness on parameters that
always depend on testing policies, economic investments and other factors, formulat-
ing new peculiar PDE-based models (see, e.g., [115], [79] and [11], which distinguishes
among scenarios in which diffusion is prominent or not, leading to new hyperbolic and
parabolic models).

Some works have focused on the possibility of building new descriptors along with
R0 parameter which can be more robust in the prevision of epidemic peaks (see, e.g.,
[80] and [12]). Finally, some studies have successfully used Artificial Intelligence, specif-
ically Machine Learning Algorithms such as Neural Networks, in order to forecast
COVID-19 diffusion and to develop completely data-driven approaches (see, e.g., [60],
[93], [70], [85], [3] and [87]). In particular, in [93] an Artificial Neural Network has
been implemented through the use of Johns Hopkins dashboard data for predicting the
future reachability of COVID-19 across India.

Let us synthetize some peculiarities of paramount importance for catching the com-
plex phenomenon of the spread of the disease, especially in Italy:

� monitoring and testing policies are often unable to prevent the existence of unde-
tected asymptomatic individuals which are the main responsible for the epidemic
spread;
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� the spread of the disease is persistent in time. Other epidemics, e.g. the plague of
Eyam in 1665-1666 [118], were confined in time and space and so the hypotheses
for applying standard models (such as the SIR) are consistent. This is not our
case;

� SARS-CoV-2 can cause severe effects which eventually lead to death, and a con-
siderable amount of infected individuals needs to be hospitalized, sometimes re-
curring to ICUs (Intensive Care Units). ICUs have been over strain during pre-
vious waves characterizing the pandemic, and so it is important to contain the
spread in order to minimize their application;

� infection response differs heterogeneously depending on the infected age and co-
morbidities. Multi-age models are able to catch this difference among classes
even though their formulation is computationally demanding (see, e.g., [67] and
[121]);

� if one considers global scenarios at national levels, one neglects subepidemics
which actually rule the phenomenon. On the other hand, if confined areas are
considered, entering and outing fluxes have to be properly modeled.

2.4.1 SUIHTER model

In this section it is briefly described the SUIHTER model [89] proposed in January 2021
by the Laboratory of Mathematical Modelling and Scientific Computing (MOX) of
Politecnico di Milano which tries to overcome some of the already mentioned limitations
through a model completely conceived with Italian data available from the Italian
department of Protezione Civile [91]. As it has just been said, one of the major limits
of COVID-19 models is the difficulty in taking into account for undetected individuals,
which are virtually impossible to catch. This model provides specific classes in order
to extimate the amount of undetected individuals circulating in the area of interest.

The SUITHER formulation reads as follows:

Ṡ(t) = −S(t)
βUU(t) + βII(t) + βHH(t)

N

U̇(t) = S(t)
βUU(t) + βII(t) + βHH(t)

N
− (δ + ρU)U(t)

İ(t) = δU(t)− (ρI + ωI + γI)I(t) + θHH(t)

Ḣ(t) = ωII(t)− (ρH + ωH + θH + γH)H(t) + θTT (t)

Ṫ (t) = ωHH(t)− (θT + γT )T (t)

Ė(t) = γII(t) + γHH(t) + γTT (t)

Ṙ(t) = ρUU(t) + ρII(t) + ρHH(t)

(2.53)
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where the compartmental letters stand for

� S: susceptible individuals;

� U : undetected (symptomatic or not) individuals;

� I: infected individuals isolated at home;

� H: hospitalized individuals;

� T : threatened individuals hosted in ICUs;

� E: extinct/deceased individuals;

� R: recovered individuals.

The total population amounts at N = S + U + I + H + T + E + R. This model is
described by 14 parameters which can be interpreted as follows:

� βU , βI , βH are the transmission rates due to contacts among the referring class
and susceptible individuals;

� ωI denotes the rate at which individuals develop clinically relevant symptomps;

� ωH the rate at which hospitalized individuals develop life-threatening symptomps;

� θT , θH are the improval rates of conditions from T and H class respectively;

� δ is the probability rate of detection;

� ρU , ρI and ρH are the recovery rates for each class;

� γI , γH and γT are the mortality rates.

For this model, R0 can be computed through the method of the Next Generation
Matrix, yielding

R0 =
βU
r1

+
δ

r1

(
βI(r3r4 − θTωH) + βHωIr4

r2r3r4 − r4θHωI − r2θTωH

)
, (2.54)

where r1 = δ + ρU , r2 = ρI + ωI + γI , r3 = ρH + ωH + θH + γH , and r4 = θT + γT .
The European COVID-19 Forecast Hub3 collects previsions made by mathematical

models for COVID-19 implemented worldwide and provides rankings about their ac-
curacy in predicting the evolution of the pandemic compared to data. In the week of
3rd to 9th May, SUIHTER was the best at predicting daily deaths and awarded second
at predicting new infections in Italy. In the week of 10th to 16th May, SUIHTER ranked
first in predicting the evolution of both compartments (daily deaths and new positives).

3https://covid19forecasthub.eu/
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Chapter 3

Optimal Control for ODE systems

This chapter is devoted to a short description of basic elements of Optimal Control
theory for ODE-based systems of equations. Designing control logic that commands
dynamical systems for obtaining desired outputs is a common feature in different fields,
such as decision making in economic or social processes, or trajectories’ controls for
mechanical systems. One typical example of optimal control problem is the Brachis-
tocrone problem, which aims at determining the fastest curve connecting two distinct
points in the two dimensional plane (Figure 3.1).

Optimal control theory is the mathematical theory displaying how to act on some
forcing variables in order to maximize or minimize some quantitative measures of per-
formances. Main references for this chapter are represented by [107], [18], [68] and [98].
In order to formulate a feasible control problem, two issues have to be investigated:

� Existence and Uniqueness of the solution. Mathematical problems dealing with
dynamical systems are defined Well-posed problems according to Hadamard if
they admit one and only one solution, with continuous dependance of the solution
from data. Therefore, we have to assure that the optimal control problem is well-
posed, as well as each ODE system that will consequently arise in the formulation.
In the case of systems of Ordinary Differential Equations we refer to Lyapunov
theory for existence and uniqueness of local and global solutions in [16]. We
refer to [112] for a theoretical dissertation about existence and uniqueness of the
optimal control solution;

� Necessary and Sufficient conditions for Optimality. Once the solution has been
recovered, we need some criteria for assessing optimality of the solution.

In Section 3.1 we define the mathematical formulation of an optimal control problem
governed by ODEs. Section 3.2 provides a short introduction to Calculus of Variations
applied to control theory. Section 3.3 deals with the Pontryagin Maximum principle,
which provides a practical mathematical tool to solve optimal control problems. Fi-
nally, in Section 3.4 we apply Pontryagin’s theory to the calibration problem of a SEIR

model.
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Figure 3.1: Three possible curves of the Brachistocrone problem. Among all
curves in R2 starting from A and ending at B, the solution is the curve which is
crossed in the smallest timeframe.

3.1 Problem formulation and definitions

Define n ∈ N the number of states and x1(t), . . . , xn(t) ∈ R the set of state variables
of the process, i.e the set of all variables which evolve during the timeframe of interest
[0;Tf ]. Define x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn the vector collecting all states at
time t. Define m ∈ N the number of process controls and u1(t), . . . , um(t) ∈ R the set
of controls, i.e forcing variables that can be varied in order to get different solutions of
the state problem. Define u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ Rm the vector of controls
at time t.

The state problem is defined as the dynamical system associated with the following
system of Ordinary Differential Equations,

ẋ(t) = F (x,u, t) ∀t ∈ (0;Tf ], (3.1)

where F (x,u, t) represents the evolution law of the system. In order to consider a
well-posed differential problem initial conditions have to be provided, i.e

x(0) = x0 ∈ Rn. (3.2)

Define Xad as the space of admissible state variables, and Uad as the space of admissible
controls. Such spaces are determined in order to fulfill constraints of different nature.
For instance, one thinks of box-constrained variables, i.e

0 ≤ x(t) ≤M,∀t ∈ (0;Tf ], (3.3)

or
0 ≤ u(t) ≤ C, ∀t ∈ (0;Tf ]. (3.4)

When costraints have to be considered, the optimal control problem is said to be a
Constrained Optimal Control Problem, while it is an Unconstrained Optimal Control
Problem if controls and states can be freely chosen in the Rd respective dimensional
space. The optimal control problem can be formulated as follows:
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Optimal Control Problem. Let u ∈ Uad, x ∈ Xad and F (x,u, t) the dynamical
evolution of the state problem. Find u∗ ∈ Uad, optimal control, which causes

ẋ(t) = F (x,u, t) ∀t ∈ (0;Tf ]

to follow a trajectory x∗ ∈ Xad that minimizes the following performance measure
(or cost functional)

J = h(x(Tf ), Tf ) +

∫ Tf

0

g(x(t),u(t), t) dt. (3.5)

In the general framework the cost functional is constituted by final-time controls,
ruled by function h : R×R→ R, and an integral component, which takes into account
for measures during the whole interval of concern, ruled by function g : R×R×R→ R,
also known as Lagrangian Function.

Designing a proper performance measure is not at all an easy subject to deal with.
Indeed, the designer has in mind behaviours which have to be satisfied when optimal
performances are reached and that have to be translated into mathematical expressions
depending on state variables and controls. Moreover, its expression must be regular
enough in order to guarantee conditions for existence and uniqueness of the solution.
Once a suitable performance measure has been selected, the next task is to determine
a way for minimizing this criterion. In [107] two methods are investigated in order
to achieve the minimization goal: the Dynamic Programming procedure that
leads to a functional equation that is amenable to solution through the use of digital
calculators; a variational approach based on Pontryagin principle. In this thesis, we
have extensively used the second approach that leads to derive theoretical conditions
for assessing optimality of the solution.

3.2 Basic elements of Calculus of Variations

In order to state the Pontryagin maximum principle, we recall some basic concepts
from Calculus of Variations.

Let J : Ω → R a functional. We need to introduce some quantities that are
necessary to identify extremal points of J .

Definition 9. Let f and f + δf functions in Ω. Then, the increment ∆J of J is

∆J = J(f + δf)− J(f), (3.6)

depending on both f and δf . Instead, δf is called variation of f .

The variation of a functional plays the same role in determining extrema of func-
tionals as the differential does to find maxima and minima points for functions. Indeed,
the increment of a function f : Rn → R can be decomposed in the following way,

∆f(x,∆x) = df(x,∆x) + g(x,∆x) · ‖∆x‖, (3.7)
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where df is a linear function of the increment ∆x. If

lim
‖∆x‖→0

g(x,∆x) = 0,

f is said to be differentiable at x, and df is the differential of f in x. From the definition
of df it is possible to develop a rule for the differential of a differentiable function of n
variables, i.e

df =
∂f

∂q1

∆q1 +
∂f

∂q2

∆q2 + . . .+
∂f

∂qn
∆qn. (3.8)

In the same way calculus defines differentials for functions, we define the variation of
a functional J in the following way:

Definition 10. The increment ∆J of a functional J can be rewritten as

∆J(f, δf) = δJ(f, δf) + g(f, δf) · ‖δf‖, (3.9)

where δJ is linear in δf . If
lim
‖δf‖→0

g(f, δf) = 0,

the functional J is said to be differentiable on f and δJ is the variation of J
computed at the function f .

Hence, δJ represents the linear approximation of the difference in the functional
caused by two sufficiently close functions, namely if the two curves (or functions) are
close enough the variation is a good approximation of the increment.

We introduce the definition of extrema for cost functionals and the Fundamental
Theorem of the Calculus of Variations, which gives a necessary condition for functions
in order to be extremal points (analogous to Fermat Theorem for functions).

Definition 11. A functional J : Ω→ R has f ∗ as relative minimum if

∃ε > 0 | ∀ f ∈ Ω, ‖f − f ∗‖ < ε⇒ ∆J = J(f)− J(f ∗) ≥ 0, (3.10)

it has f ∗ as relative maximum if

∃ε > 0 | ∀ f ∈ Ω, ‖f − f ∗‖ < ε⇒ ∆J = J(f)− J(f ∗) ≤ 0. (3.11)

If ε can be chosen arbitrarily large, the extremum is said to be global or absolute.

Theorem 7. (Fundamental Theorem of Calculus of Variations) Assume f is
a function in Ω, domain of the functional of interest J . Assume J is a differentiable
functional in f and suppose that functions in Ω are not constrained by any boundaries.
If f ∗ is an extremal of J , then δJ(f ∗, δf) = 0 for all admissible δf .

For the proof, which can be easily recovered by contradiction, a possible reference
is [68].
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3.3 Pontryagin maximum principle

In this section we derive optimality conditions for the solution of an optimal control
problem.

Consider the state problem (3.1). Assume that h is a differentiable function, and
that admissible states and controls are not bounded. Then, integrating by parts,

h(x(Tf ), Tf ) =

∫ Tf

0

d

dt
[h(x(t), t)] dt+ h(x0, 0), (3.12)

and, substituting (3.12) in the performance measure, one obtains

J =

∫ Tf

0

{
g(x(t),u(t), t) +

d

dt
[h(x(t), t)]

}
dt+ h(x0, 0). (3.13)

The second addendum of the right-hand side is neglected since it is determined by
initial conditions. Using the chain rule, (3.13) becomes

J =

∫ Tf

0

{
g(x(t),u(t), t) +

[
∂h

∂x
(x(t), t)

]T
˙x(t) +

∂h

∂t
(x(t), t)

}
dt. (3.14)

To include the state problem in the cost functional, we define the augmented cost
functional introducing a vector function p : R→ Rn ∈ Pad, known as vector of Lagrange
multipliers. Its value at the solution represents the rate of change in the maximal value
of the objective function when the constraint is relaxed.

Hence,

Ja =

∫ Tf

0

{
g(x(t),u(t), t) +

[
∂h

∂x
(x(t), t)

]T
˙x(t) +

∂h

∂t
(x(t), t) +

+ p(t)T [F (x,u, t)− ẋ(t)]

}
dt.

(3.15)

The integrand of the augmented cost functional can be defined in the following way,

ga(x, ẋ,u,p, t) = g(x(t),u(t), t) +

[
∂h

∂x
(x(t), t)

]T
˙x(t) +

∂h

∂t
(x(t), t) +

+ p(t)T [F (x,u, t)− ẋ(t)].

(3.16)

Introduce the variations δx, δẋ, δu, δp and set to zero the variation of the augmented
cost functional δJa. Employing to the Fundamental Theorem of Calculus of Variations,
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(Theorem 7), yields

δJa(u
∗) = 0 =

[
∂ga
∂ẋ

(x∗(Tf ), ẋ
∗(Tf ),u

∗(Tf ), Tf )

]T
δxf

+

[
ga(x

∗(Tf ), ẋ
∗(Tf ),u

∗(Tf ), Tf )

−
[
∂ga
∂ẋ

(x∗(Tf ), ẋ
∗(Tf ),u

∗(Tf ), Tf )

]T
ẋ∗(Tf )

]
δTf

+

∫ Tf

0

{[[
∂ga
∂x

(x∗(t), ẋ∗(t),u∗(t), t)

]T

− d

dt

[
∂ga
∂ẋ

(x∗(t), ẋ∗(t),u∗(t), t)

]T]
δx(t)

+

[
∂ga
∂u

(x∗(t), ẋ∗(t),u∗(t), t)

]T
δu(t)

+

[
∂ga
∂p

(x∗(t), ẋ∗(t),u∗(t), t)

]T
δp(t)

}
dt.

(3.17)

At this point we proceed isolating all terms involving the function h, and, applying
integration by parts and the state problem. Then we reduce the principle to a set of
2n first order differential equations. For further details we refer to [107].

We introduce the so-called Hamiltonian function, defined as follows

H(x,u,p, t) = g(x(t),u(t), t) + pT (t)[F (x,u, t)]. (3.18)

Therefore, the necessary optimality conditions can be rewritten for H as

ẋ∗(t) =
∂H
∂p

(ẋ∗(t),u∗(t),p∗(t), t),

ṗ∗(t) = −∂H
∂x

(ẋ∗(t),u∗(t),p∗(t), t),

∂H
∂u

(ẋ∗(t),u∗(t),p∗(t), t) = 0,

(3.19)

∀t ∈ (0;Tf ]. Initial Conditions for the state problem are apriori prescribed. For
the costate problem, or multipliers evolution, the following final time conditions are
imposed:

p∗(Tf ) =
∂h

∂x
(Tf ). (3.20)
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The set of equations (3.19) which corresponds to a set of necessary conditions for
optimality is known in literature as Pontryagin Maximum Principle. This is the set
of equations that is solved for determining states and controls in the implemented
algorithm further specified in Chapter 5.

It is possible to formulate sufficient conditions for triplets of states, multipliers and
controls for granting optimality of the solution [98]:

Theorem 8. Let J be concave with respect to x, u and let one among the following
conditions hold:

� Lagrangian g concave in x, u and p∗ ≥ 0;

� Lagrangian g convex in x, u and p∗ ≤ 0;

� Lagrangian g linear in x;

Then u∗ and x∗ are the optimal control and the optimal trajectory respectively.

For a detailed proof see [98].

3.4 An example: calibration of the SEIR model

As in [108], the Classical Inverse Problem (CIP) can be built in order to estimate
parameters of ODE systems. The CIP can be formulated as follows:

Optimal Control Problem.

arg min
θ∈P

‖u(θ)− uobs‖ (3.21)

subject to
u̇ = F (u, θ) (3.22)

where θ is the parameter to calibrate, uobs is the observation of the solution u of the
differential problem.

The CIP is an optimal control problem where the cost functional measures adher-
ence of the solution to data in a suitably-defined norm. Let us introduce the CIP for
the transmission rate β of the SEIR model. More precisely, consider the cost functional,

J(β) =
1

2

∫ T

0

{(S(β)− Sobs)2 + (E(β)− Eobs)2 + (I(β)− Iobs)2 + β2} dt+

+ (S(T, β)− Sobs)2 + (E(T, β)− Eobs)2 + (I(T, β)− Iobs)2,

(3.23)

with the parameter β belonging to the space of parameters P (assume for instance the
space of continuous functions in the interval [0;T ]). Sobs, Eobs and Iobs represent inter-

polations of sampled data, for instance polynomial interpolations. The term
∫ T

0
β2 dt
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is a regularization term that is often introduced in optimal control problems, which
helps in convergence and stability, mantaining under control the value of the parameter
itself. The other quadratic terms measure the distance between the solution variables
and the interpolation of data during the whole timeframe and at the final time.

Let us write down the complete formulation of the CIP applied to SEIR:

Optimal Control Problem.
arg min
β∈P

J(β)

subject to the state problem

Ṡ = − β
N
S I, ∀t ∈ (0;T ],

Ė =
β

N
S I − αE, ∀t ∈ (0;T ],

İ = αE − γI, ∀t ∈ (0;T ],

R = N − I − E − S, ∀t ∈ (0;T ],

(3.24)

with initial condition for each state variable (S0, E0, I0, R0).

Since the recovered variable can be easily deduced algebraically by the other un-
knowns, from now on it will be neglected. We cope with the derivation of the optimal
control conditions in two ways:

1. The Hamiltonian function introduced in the previous section can be defined and
we can directly apply Pontryagin Maximum principle. Hence, defining the vector

of Lagrange multipliers p(t) =

[
p1(t)
p2(t)
p3(t)

]
and the Hamiltonian function as

H(S,E, I,p, β) =
1

2
((S − Sobs)2 + (E − Eobs)2 + (I − Iobs)2 + β2)+

+ p(t)T


− β
N
S I

β
N
S I − αE

αE − γI

+ (S(T, β)− Sobs)2+

+ (E(T, β)− Eobs)2 + (I(T, β)− Iobs)2,

(3.25)

then solving conditions (3.19), one gets control and state variables. Finally,
the functional derivative of the cost functional, also known as Euler-Lagrange
derivative or Fréchet derivative, with respect to β is :

δJ

δβ
= H,β|S∗,E∗,I∗,p∗1,p

∗
2,p

∗
3

= β − p∗1
N
S(β)I(β) +

p∗2
N
S(β)I(β). (3.26)
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The steepest descending direction along the cost functional is

vmax(t) = −
(
−p1

N
S(β∗)I(β∗) +

p2

N
S(β∗)I(β∗) + β∗

)
, (3.27)

opposite to the gradient. This is the direction to compute at each step of de-
scending algorithms in order to minimize the cost functional.

2. Another possible way is the variational procedure suggested in [98].

We detail the second strategy in the following computations.

Define the vector of Lagrange multipliers p(t) =

[
p1(t)
p2(t)
p3(t)

]
and rewrite the cost func-

tional including the state costraints in the following way:

J(β) =
1

2

∫ T

0

{(S(β)− Sobs)2 + (E(β)− Eobs)2 + (I(β)− Iobs)2 + β2+

+ p(t)T

 − β
N
S I − Ṡ

β
N
S I − αE − Ė
αE − γI − İ

} dt+

+ (S(T, β)− Sobs)2 + (E(T, β)− Eobs)2 + (I(T, β)− Iobs)2.

(3.28)

Integrating by parts yields∫ T

0

p1(t)Ṡ(t, β) dt = p1(T )S(T, β)− p1(0)S0 −
∫ T

0

ṗ1(t)S(t) dt,

∫ T

0

p2(t)Ė(t, β) dt = p2(T )E(T, β)− p2(0)E0 −
∫ T

0

ṗ2(t)E(t) dt,∫ T

0

p3(t)İ(t, β) dt = p3(T )I(T, β)− p3(0)I0 −
∫ T

0

ṗ3(t)I(t) dt.

Consider now β∗(t) as the unknown optimal value of the optimal control problem, and
define β(t) = β∗(t) + hv(t) another parameter belonging to P obtained increasing β∗

of step h, small enough for β(t) to remain in P, along the fixed direction v(t).
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Introduce the function Φ(h) which evaluates the cost functional at distance h from
the unknown optimum β∗ along v(t), i.e.

Φ(h) =

∫ T

0

{
1

2
(S(β∗ + hv)− Sobs)2 +

1

2
(E(β∗ + hv)− Eobs)2 +

1

2
(I(β ∗+hv)− Iobs)2+

+
1

2
(β∗ + hv)2 + ṗ1S(β∗ + hv)− p1

(
β∗

N
S(β∗ + hv)I(β∗ + hv)+

+
hv

N
S(β∗ + hv)I(β∗ + hv)

)
+ṗ2E(β∗ + hv)+

− p2

(
−β

∗

N
S(β∗ + hv)I(β∗ + hv)− hv

N
S(β∗ + hv)I(β∗ + hv)+

+ αE(β∗ + hv)

)
+ṗ3I(β∗ + hv)− p3(γI(β∗ + hv)− αE(β∗ + hv))

}
dt+

+ (S(T, β)− Sobs)2 − p1(T )S(T, β∗ + hv) + (E(T, β)− Eobs)2+

− p2(T )E(T, β∗ + hv) + (I(T, β)− Iobs)2 − p3(T )I(T, β∗ + hv)+

+ p1(0)S0 + p2(0)E0 + p3(0)I0 = J(β∗ + hv).

(3.29)

Consider its derivative with respect to h,

Φ′(h) =

∫ T

0

{
(S(β∗ + hv)− Sobs)

∂S

∂h
+ (E(β∗ + hv)− Eobs)

∂E

∂h
+ (I(β∗ + hv)− Iobs)

∂I

∂h
+

+ (β∗ + hv)v + ṗ1
∂S

∂h
− p1

β∗

N

∂S

∂h
I(β∗ + hv)− p1

β∗

N

∂I

∂h
S(β∗ + hv)+

− p1
v

N
S(β)I(β)− p1

hv

N

(
∂S

∂h
I(β∗ + hv) +

∂I

∂h
S(β∗ + hv)

)
+

+ ṗ2
∂E

∂h
− p2α

∂E

∂h
+ p2

β∗

N

∂S

∂h
I(β∗ + hv) + p2

β∗

N

∂I

∂h
S(β∗ + hv)+

+ p2
v

N
S(β∗)I(β∗) + p2

hv

N

(
∂S

∂h
I(β∗ + hv) +

∂I

∂h
S(β∗ + hv)

)
+

+ ṗ3
∂I

∂h
− γp3

∂I

∂h
+ αp3

∂E

∂h

}
dt+ (2(S(T, β∗ + hv)− Sobs)− p1(T ))

∂S

∂h
+

+ (2(E(T, β∗ + hv)− Eobs)− p2(T ))
∂E

∂h
+ (2(I(T, β∗ + hv)− Iobs)+

− p3(T ))
∂I

∂h
,

(3.30)

and compute it at h = 0 (β(t) = β∗).
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In order to have a stationary point we impose Φ′(0) = 0:

Φ′(0) =

∫ T

0

{
(S(β∗)− Sobs)

∂S

∂h
+ (E(β∗)− Eobs)

∂E

∂h
+ (I(β∗)− Iobs)

∂I

∂h
+ β∗v+

+ ṗ1
∂S

∂h
− p1

β∗

N

∂S

∂h
I(β∗)− p1

β∗

N

∂I

∂h
S(β∗)− p1

v

N
S(β∗)I(β∗) + ṗ2

∂E

∂h
+

− p2α
∂E

∂h
+ p2

β∗

N

∂S

∂h
I(β∗) + p2

β∗

N

∂I

∂h
S(β∗) + p2

v

N
S(β∗)I(β∗) + ṗ3

∂I

∂h
+

− γp3
∂I

∂h
+ αp3

∂E

∂h

}
dt+ (2(S(T, β∗)− Sobs)− p1(T ))

∂S

∂h
+

+ (2(E(T, β∗)− Eobs)− p2(T ))
∂E

∂h
+

+ (2(I(T, β∗)− Iobs)− p3(T ))
∂I

∂h
.

(3.31)

Collecting all terms multiplied by ∂S
∂h
, ∂E
∂h

and ∂I
∂h

respectively, we choose the multipliers
in order to neglect those terms. Therefore, we obtain the following ODE systems of
backward problems: ṗ∗1 = p∗1

β∗

N
I − p∗2

β∗

N
I − (S − Sobs)

p∗1(T ) = 2(S(T, β∗)− Sobs){
ṗ∗2 = αp∗2 − αp∗3 − (E − Eobs)
p∗2(T ) = 2(E(T, β∗)− Eobs)ṗ∗3 = γp∗3 + p∗1

β∗

N
S − p∗2

β∗

N
S − (I − Iobs)

p∗3(T ) = 2(I(T, β∗)− Iobs).

(3.32)

In this way,

Φ′(0) =

∫ T

0

[
v

(
−p
∗
1

N
S(β∗)I(β∗) +

p∗2
N
S(β∗)I(β∗) + β∗

)]
dt. (3.33)

From the abitrariness of the descending direction v(t), we obtain the last necessary
condition:

β∗ =
p∗1
N
S(β∗)I(β∗)− p∗2

N
S(β∗)I(β∗), (3.34)

implying that
Φ′(0) = 0. (3.35)
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Chapter 4

Vaccination and Optimal Control

Examining the state of the art, many models integrate vaccination through the in-
troduction of compartments which take into account for vaccinated individuals (see,
e.g., [77], [56], [75], [58], [103]). Based on their knowledge, we aim at formulating an
epidemic model for the epidemic context of SARS-CoV-2 in Italy. This is a challenging
setting to work on, since we have to deal with many vaccines, most of them requiring
two administrations with different efficacy properties, which have to fulfill constraints
regarding elapsing time between administrations and which have to take into account
for personal clinical history. Policy makers have to arrange the vaccination campaign
in order to take into account for fragilities, comorbidities and different ages of the
individuals and trying to relieve social and economical pressure imposed by lockdown
restrictions. Some works have focused on developing sophisticated models for coping
with the aforementioned issues, for instance [83], [29], [82], [61], [57], [74], [102].

This chapter is devoted to the introduction of two new vaccination-oriented epi-
demic models and to the corresponding formulation of Optimal Control problems. The
two models try to incorporate the features of the vaccination campaign started in De-
cember 2020/January 2021 against COVID-19 pandemic in most countries around the
world. They have been built in order to capture key-characteristics of the disease it-
self (e.g. the re-infection possibility, different stages of the infective path, a delayed
fatality function which takes into account for the average days from the infection to
death), as well as key-features typical of the vaccines adopted against SARS-CoV-
2 (e.g. two-shots vaccine cycle, efficacy against transmissibility and efficacy against
severe disease).

Section 4.1 introduces the aforementioned mathematical compartmental models,
underlining consistency of these models with the Italian pandemic scenario. In Section
4.2 we formulate two optimal control problems we will solve numerically in the next
chapters.
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4.1 SEIHRDVW models

For the purpose of this thesis, we are interested in describing the dynamics of SARS-
CoV-2 infection, as well as studying possible vaccination policies and their contribution
to eradicate the pandemic. To this end, we consider the SEIHRDW model in two vari-
ants. This novel model was developed starting from the SEIHRD model formulated by
EpiMox research group at MOX (Luca Dede’ private communication) and integrating
two specific compartments accounting for vaccinated individuals with one (V ) or two
doses (W ). Thus, we obtain a new epidemic model which is completely conceived with
Italian vaccination program as well as the progressive evolution of COVID-19 infec-
tion represented by classes E, I and H. We present two different versions of the same
model.

4.1.1 SEIHRDVW model: version 1

Figure 4.1: Flowchart of the SEIHRDVW model, version 1.
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The first version of the SEIHRDVW reads as follows:

Ṡ = −βSI
N
− ρSS + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− ρRR

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ ρSS + ρRR− µV V − ρV V

Ẇ = ρV V

(4.1)

with

f(S, V ) = f̄
S(t− 15) + θσV (t− 15)

S(t− 15) + σV (t− 15)
. (4.2)

Each compartment stands for one average population class involved in the infection
process:

� S: the susceptibles class is constituted by individuals which have no protection
against the virus. By a medical point of view, no antibodies have been developed
by people in this class;

� E: when contacts with infectious individuals cause an infection, people enter
in the exposed class, where after an incubation time is passed individuals are
infectious too;

� I: both detected and undetected infectious individuals belong to this class. Peo-
ple in this class could be both symptomatic and asymptomatic;

� H : after a transient period in E and I classes, infectious individuals can be still
infected, but they are no more infectious. In this case they belong to the H
class, where H stands for healing. We assume that no deaths neither recoverings
happen without passing in the healing class;

� R: people healed from the disease belong to the recovered class. We assume that
people in this class have developed at least a threshold level of antibodies against
the infection. From this class, after a certain amount of time immunisation could
run out (still object of study) and therefore individuals can return to the S class;
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� D: it stands for deceased individuals. This class counts deceased individuals due
to the infection;

� V : we assume to consider a two-shots vaccine with certain effectiveness properties
after the first administration, that can help in preventing severe effects leading to
death and/or in the transmission spread. Indeed, the majority of authorized vac-
cines in Italy (except for the Jannsen vaccine) are based on two administrations
in order to complete the vaccination cycle. This is the case of the mRNA-based
vaccines Moderna and BioNTech/Pfizer, but even for the adenovirus-based vac-
cine developed by AstraZeneca. Two shots are necessary for these vaccines since
they work by exposing the body to different parts of the virus, hence more doses
imply better possibilities for the immune system to counter-attack a future in-
fection. Vaccines create memory cells (T-cells) that are prepared to respond
immediately to future infections.

When vaccine doses are administered to recovered or susceptibles individuals they
are moved to the V class. If the vaccine does not guarantee perfect immunisation,
people in V can be infected through adequate contacts with infectious individuals;

� W : this class comprises all individuals who completed the vaccination cycle.
We assume that perfect immunisation is granted after the administration of the
second dose, which is often called booster shot since it responds to an already
estabilished exposure. This class is a kind of black hole absorbing class similarly to
the deceased class, meaning that once individuals are in W there is no possibility
of contracting the infection.

We clarify the physical and biological meaning of the parameters involved in (4.1).
Notice that, for extimating an accurate Confidence Interval for each parameter, a
calibration problem similar to the one introduced in Section 3.4 is required for each
parameter. We do not deal with this issue but we approximately infer the values of
the parameter from studies and articles which have been already approved (see, e.g.,
[94], [114], [44], [6]).

� β: transmission rate (refer to Section 2.2.1), depending on NPIs and transmissi-
bility of the disease itself;

� α: it is dimensionally the inverse of a time and corresponds to the inverse of the
average incubation time of the disease (medium time spent by individuals in this
class);

� γ: healing rate, namely rate at which people become healing from infectious class
(inverse of the medium time spent in class I);

� ω: healed rate, inverse of the medium time spent in class H;
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� f̄ : fatality constant, which is the rate of fatality extimated without vaccines
support. It can be extimated using statistics providing medium deaths over total
infectious individuals;

� σ: vaccine effectiveness on transmissibility, which reduces the transmission rate
among contacts between I and V individuals, ranging from 0 to 1;

� θ: vaccine effectiveness on mortality, reduces mortality of vaccinated individuals,
ranging from 0 to 1;

� ρR: vaccination rate of recovered individuals, imposed by vaccination policies;

� ρS: vaccination rate of susceptibles individuals, imposed by vaccination policies;

� ρV : vaccination rate of administrations of second doses, imposed by vaccination
policies;

� µR: inverse of the time lapse when recovered coverage is effective;

� µV : inverse of the lapse when vaccine’s coverage is effective.

Equation (4.2) represents the fatility function that has been considered in our models.
It is proportional to the fatality rate through a ratio depending on the populosity of
compartments that could become infected, i.e. S and V . Vaccine effectiveness θ acts
reducing the numerator of the ratio, hence the fatality function. This function has
shown more adherence to realistic situations if state variables are evaluated at (t−15),
where 15 days is the medium time to flow from susceptible’s class to deceased one.
For this model, we can derive the reproduction number Rt applying the Method of the
Next Generation Matrix, previously introduced. We obtain:

Rt =
β

γ

(S(t) + σV (t))

N
. (4.3)
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4.1.2 SEIHRDVW model: version 2

Figure 4.2: Flowchart of the SEIHRDVW model, version 2.

We introduce a modified version of the SEIHRDVW model. The fundamental difference
with respect to the previously-presented model consists in the vaccination policy for
recovered individuals. Recent studies (e.g. [48]) assess that recovered individuals
which have previously contracted the virus have more chance to develop very high
antibodies’ level in order to fight against possible infections. This is not surprising:
indeed, even the first dose of a two-dose vaccination cycle has the goal of creating a
first contact with virus cells, whilst the second administration is responsible for the
actual immunisation. Hence, the first effect is skipped in individuals which have just
encountered the disease. The mild change in the model reflects in the number of
administrations necessary to recovered individuals to be completely immunized: after
the first administration, recovered individuals gain direct immunity, without passing
through the V class.
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The SEIHRDVW2 model reads as follows:

Ṡ = −βSI
N
− ρSS + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− ρRR

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ ρSS − µV V − ρV V

Ẇ = ρV V + ρRR

(4.4)

with fatality function defined as

f(S, V ) = f̄
S(t− 15) + θσV (t− 15)

S(t− 15) + σV (t− 15)
. (4.5)

Similarly to SEIHRDVW1 model, we compute the reproduction number through the Next
Generation Matrix approach. We obtain:

Rt =
β

γ

(S(t) + σV (t))

N
. (4.6)

4.2 Optimal Control Problems (OCP)

With the aim of finding optimal vaccination policies, we are going to define optimal
control problems for both models SEIHRDVW1 and SEIHRDVW2 as well as the different cost
functionals that will be used in next chapters. The control variables are the amount of
first and second doses adminstered to susceptibles and recovered individuals. Indeed,
vaccination acts in the ODEs in three terms which are subtracted in the evolution of
S, R and V variables, i.e.

1. ρSS, takes into account for daily first doses administered to susceptibles;

2. ρRR, takes into account for daily first doses adminstered to recovered;

3. ρV V , is the number of daily second doses administrations.

Some works dealing with optimal vaccination policies for epidemic models use as control
variables the vaccination rates ρ∗ (see, e.g., [119], [59], [117]). We use a different
approach by defining the control variables in the following way:
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1. U1(t) = ρSS(t), with U1(t) ≥ 0;

2. U2(t) = ρRR(t), with U2(t) ≥ 0;

3. U3(t) = ρV V (t), with U3(t) ≥ 0.

In this way each control variable represents the daily amount of doses administered. We
deal with two different constrained formulation, one assuming that the total amount of
doses per day is fixed, the other assuming to have a fixed weekly amount of doses and
a maximum adminstration capacity per day. To summarize, we would like to answer
to the following questions:

Is it better to have more individuals with a partial coverage given by one single ad-
ministration or to take as much people as possible to complete immunity in a specified
timeframe? Does the optimal vaccination policy change when different performance
measures are applied?

4.2.1 Cost functionals

We overview three different cost functionals that have been employed in Chapters 6 and
7. These three cost functionals have been chosen since they represent different aspects
that stakeholders such as policy makers would want to control during pandemic events.

�

∫ Tf

0
I(t)2 dt: taking into account for this cost functional means to monitor over

the whole simulation timeframe the level of infected. The minimum achievable
is I(t) = 0 over the whole time, even though there is strict dependance on initial
conditions. If R0 ≥ 1 infected will always have an increasing behaviour at the
beginning, reaching a positive peak of infectious.

�

∫ Tf

0
I(t)2 + Ė(t)2 dt: this cost functional takes into account for variations of

slopes in the exposed curve together with populosity of the infected class. Actu-
ally, the Ė-component has no explicit interpretation on its own, since the min-
imum solution achievable is a constant solution for the exposed variable which
could also assest to an high positive value. On the other hand this component
coupled with the above cost functional lead us to monitor contemporarily infected
values and variations of the exposed curve, obtaining a more stable and robust
solution.

� D(Tf)2: minimizing deceased individuals at the end of the simulation time is
the third considered cost functional. Since deceased curve is always increasing,
one should obtain similar optimal policy with respect to the case of minimization
of J =

∫ Tf
0
D(t)2 dt.
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4.2.2 Control Formulations with SEIHRDVW models as State Prob-
lems

In this section we are going to formulate optimal control problems. The first tries to
answer to the following question:

Assume to have a fixed daily amount of doses to administer. What is the optimal
ripartition of doses among first doses for susceptibles and recovered and second doses?

The corresponding optimal control problem is formulated as follows:

Optimal Control Problem 1.

arg min
U1, U2, U3

J(S, E, I, H, R, D, V, W ) (4.7)

under the state evolution (SEIHRDVW1 model)

Ṡ = −βSI
N
− U1 + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− U2

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ U1 + U2 − U3 − µV V

Ẇ = U3,

(4.8)

or (SEIHRDVW2 model) 

Ṡ = −βSI
N
− U1 + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− U2

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ U1 − U3 − µV V

Ẇ = U2 + U3.

(4.9)
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Control variables have to fulfill the following external constraints:

� U1, U2, U3 ∈ [0;Ub], where Ub is the upper bound of administrations per day that
can also vary in time;

� U1(t)+U2(t)+U3(t) ≤ Ub ∀ t ∈ (0;T ], meaning that the sum of all administrations
cannot overcome a maximum daily value;

� U1(t) ≤ S(t), ∀ t ∈ (0;T ], namely we cannot administer more first doses to
susceptibles than the number of susceptibles itself;

� U2(t) ≤ R(t), ∀ t ∈ (0;T ], namely we cannot administer more first doses to
recovered than the number of recovered itself;

� U3(t) ≤ V (t), ∀ t ∈ (0;T ], i.e we cannot administer second doses to individuals
who have not received the first administration;

�

∫ t
0
U3(τ) dτ ≥

∫ t−tmax

0
U1(τ) + U2(τ) dτ ∀t ≥ tmax (respectively

∫ t
0
U3(τ) dτ ≥∫ t−tmax

0
U1(τ) dτ ∀t ≥ tmax for the SEIHRDVW2 model), meaning that second doses

must be at least greater than the first doses administered tmax days before (tmax
is indeed the maximum elapsing time between first and second doses administra-
tions);

�

∫ t
0
U3(τ) dτ ≤

∫ t−tmin

0
U1(τ) + U2(τ) dτ ∀t ≥ tmin (respectively

∫ t
0
U3(τ) dτ ≤∫ t−tmin

0
U1(τ) dτ ∀t ≥ tmin for the SEIHRDVW2 model), meaning that second doses

must not be greater than the first doses administered tmin days before (tmin is the
minimum elapsing time between first and second doses administrations).

The second optimization problem to formulate is the mathematical translation of the
following question:

Assume to have a fixed weekly amount of doses to administer and a maximum ad-
ministration capacity per day. What is the optimal ripartition of doses among first
doses for susceptibles and recovered and second doses?
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The optimization problem reads as follows:

Optimal Control Problem 2.

arg min
U1, U2, U3

J(S, E, I, H, R, D, V, W ) (4.10)

under the state evolution (SEIHRDVW1 model)

Ṡ = −βSI
N
− U1 + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− U2

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ U1 + U2 − U3 − µV V

Ẇ = U3,

(4.11)

or (SEIHRDVW2 model) 

Ṡ = −βSI
N
− U1 + µRR + µV V

Ė = β
(S + σV )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V ))ωH − µRR− U2

Ḋ = f(S, V )ωH

V̇ = −βσV I
N

+ U1 − U3 − µV V

Ẇ = U2 + U3.

(4.12)

Control variables have to fulfill the following external constraints:

�

∫ Tj+1

Tj
U1+U2+U3 dt ≤ NDosesDeliveredPerWeek, where Tj = 7j where j = 0, . . . ,Mweeks

number of weeks;

� U1(t) + U2(t) + U3(t) ≤ C, where C stands for the maximum administration
capacity per day, which can depend on medical staff availability, administration
centers and other capabilities constraints;
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� U1(t) ≤ S(t), ∀ t ∈ (0;T ], namely we cannot administer more first doses to
susceptibles than the number of susceptibles itself;

� U2(t) ≤ R(t), ∀ t ∈ (0;T ], namely we cannot administer more first doses to
recovered than the number of recovered itself;

� U3(t) ≤ V (t), ∀ t ∈ (0;T ], i.e we cannot administer second doses to individuals
who have not received the first administration;

�

∫ t
0
U3(τ) dτ ≥

∫ t−tmax

0
U1(τ) + U2(τ) dτ ∀t ≥ tmax (respectively

∫ t
0
U3(τ) dτ ≥∫ t−tmax

0
U1(τ) dτ ∀t ≥ tmax for the SEIHRDVW2 model), meaning that second doses

must be at least greater than the first doses administered tmax days before (tmax
is indeed the maximum elapsing time between first and second doses administra-
tions);

�

∫ t
0
U3(τ) dτ ≤

∫ t−tmin

0
U1(τ) + U2(τ) dτ ∀t ≥ tmin (respectively

∫ t
0
U3(τ) dτ ≤∫ t−tmin

0
U1(τ) dτ ∀t ≥ tmin for the SEIHRDVW2 model), meaning that second doses

must not be greater than the first doses administered tmin days before (tmin is the
minimum elapsing time between first and second doses administrations).

Solutions of both Problems 1 and 2 are the vaccination policies minimizing the perfor-
mance measure J .
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Chapter 5

Numerical methods

Introduce the following abstract optimization problem:

arg min
x

f(x) subject to ẋ = A(x) and x ∈ C, (5.1)

where f is a convex and smooth cost functional, A(x) is the differential system ruling
evolution of the vectorial variable x and C is a convex set subset of Rn. In order to
face numerically Problem (5.1), we state a Meta-Algorithm which addresses the main
issues to cope with during the optimization process:

Algorithm 1 Optimization Meta-Algorithm

Input: Initial guess for control variables.
1. Solve ODE systems associated with state problem and costate problem (multipliers).
2. Apply iteratively an optimization method for dealing with constrained optimization
problems. This stage ends with proper stopping criteria.
Output: State variables and control variables at the numerical optimum.

This chapter details the Meta-Algorithm through the description of numerical meth-
ods employed at each step.

Section 5.1 shortly reviews Runge-Kutta Methods we use for solving ODE systems
of equations. Section 5.2 introduces the Projected Gradient Descent method, the Multi-
Projection Algorithm and projection operators we need for assembling the optimisation
method. In Section 5.3 we define the complete numerical formulation of optimization
problems defined in Chapter 4 and we present the adopted Multi-Projected Gradient
Descent optimization algorithm.

5.1 Runge-Kutta 4 method for ODE systems

The ODE-system solver that we used in this work implements the Runge-Kutta method
of order 4 that we shortly review. Refer to [95] for more details.
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Define the following ODEs problem,

u̇(t) = F (t,u), ∀t ∈ (0;T ]. (5.2)

Define a time discretization {tn}n≤N∈N and un ≈ u(tn), n ≤ N ∈ N, approximations
of the unknown function at grid points. These values are the unknowns of Runge-Kutta
methods (RK), which mantain the structure of one-step methods increasing accuracy
at the price of getting more functional evaluations at each timestep, and losing linearity
properties.

Assuming the time sequence is equally spaced and fixing h = tn+1 − tn, the more
general form of a RK method is the following,

un+1 = un + hG(tn,un, h;F ), n ≥ 0, (5.3)

where G is the increment function defined as

G(tn,un, h;F ) =
s∑
i=1

biKi,

Ki = F (tn + cih,un + h
s∑
j=1

aijKj), i = 1, . . . , s.

(5.4)

Values of the coefficients {aij}, {bi} and {ci} completely define the RK method and are
collected in the so-called Butcher array [95]. The number of stages of the Runge-Kutta
methods is s. If aij are null when j ≥ i, with i ≤ s, thenKi can be explicitly computed
in terms of Kj with j < i, and therefore the method is explicit.

Define the local truncation error τn+1(h) at node tn+1 as

hτn+1(h) = yn+1 − yn − hG(tn,yn, h;F ), (5.5)

with y(t) exact solution of (5.2). RK method is said to be consistent if

τ(h) = max
n
|τn+1(h)| → 0 if h→ 0. (5.6)

In [73] it is proved that this happens if and only if

s∑
i=1

bi = 1. (5.7)

The method is said to be convergent of order p if τ(h) = O(hp) if h → 0. As for
convergence, since RK are one-step methods, consistency implies stability, and, in turn,
convergence. It is possible to prove that if the local truncation error τn(h) = O(hp) for
any n, then also convergence order is p [95]. The following theorem can be deduced:

Theorem 9. The order of an s-stage explicit RK method cannot be greater than s.
Also, RK methods with order s do not exist if s ≥ 5.

60



Runge-Kutta method of order 4 which will be further adopted reads as follows:

Algorithm 2 Runge-Kutta 4

Input: Initial condition u0 = u(0).
For n = 0, . . . , N − 1, compute K1, K2, K3 and K4:

K1 = F n,

K2 = F

(
tn +

h

2
,un +

h

2
K1

)
K3 = F

(
tn +

h

2
,un +

h

2
K2

)
K4 = F (tn+1,un + hK3)

The approximated solution at each point is computed as follows:

un+1 = un +
h

6
(K1 + 2K2 + 2K3 +K4)

5.2 Optimization procedure: Projected Gradient

Descent (PGD) and Multi-Projection Algorithm

We define a descending algorithm (Projected Gradient Descent Algorithm) and pro-
jection operators for dealing with constraints introduced in OC Problems 1 and 2.
Moreover, we need a Multi-Projection Algorithm to assure that multiple constraints
are fulfilled contemporarily.

5.2.1 Projected Gradient Descent Algorithm

We introduce the Projected Gradient Descent Algorithm in the simpler context of the
minimization of function f : Rn → R on a constrained set C, namely neglecting state
evolution ruled by ODEs.

PGD starts from a given initial guess x(0), and updates for k = 1, . . . , Nmaxit by
first performing typical gradient descent step, and then projecting back the solution to
the constraint set C. The algorithm is formalized as follows:
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Figure 5.1: Projected Gradient Descent step in R3. The constrained set C is
represented by the rectangular parallelepiped. Source: [86].

Algorithm 3 Projected Gradient Descent

Input: Initial guess x(0).
For k = 1, . . . , Nmaxit and while err > tol, compute

x(k) = PC(x(k−1) − tk∇f(x(k−1))), (5.8)

with PC projecting operator on C, and tk adaptable step.

Output: x(K), coordinate which minimizes the cost functional satisfying the constraint
(K = Nmaxit if the stopping criterium fails at each iteration).

The algorithm stops whether the maximum number of iterations is achieved or a
stopping criterium is satisfied, i.e. we compute a suitably-defined error at each iteration
and we compare its value with a specified tolerance. Most of the times, a plausible
measure of the error is the magnitude of the gradient of the function itself.

A special case of proximal gradient, motivated by local quadratic approximation of
convex function f is

x(k) = PC

({
arg min

y
∇f(x(k−1))T (y − x(k−1)) +

1

2t
‖y − x(k−1)‖2

2

})
. (5.9)

Note that Algorithm 3 depends strictly on the choice and performances of the projection
operator that is implemented. The Frank-Wolfe method [14] is an alternative way to
deal with this kind of problems overcoming the definition of the projection operator.
PGD algorithm is a local optimization method, as well as the Gradient descent method,
hence we achieve local, rarely global, optima. The following Theorem derived in [63]
infers on convergence properties of this method:
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Theorem 10. If f is convex, PGD algorithm with constant stepsize α satisfies the
following extimate

f

(
1

K + 1

K∑
k=0

x(k)

)
−f ∗ ≤ ‖x

(0) − x∗‖2
2

2α(K + 1)
+

α

2(K + 1)

K∑
k=0

‖∇f(x(k))‖2
2, (5.10)

where f ∗ is the cost functional evaluation at local optimum, x∗ is the minimizer, α is
the constant stepsize, K the total number of performed iterations.

The term 1
K+1

∑K
k=0 x

(k) is the average of a sequence of iterations after K iterations.
Hence, defining it as x̄, equation (5.10) can be seen as

f̄ − f ∗ ≤ ‖x
(0) − x∗‖2

2

2α(K + 1)
+H, (5.11)

whereH is a positive constant. Convergence rate is likeO( 1
K

), as long as
∑K

k=0 ‖∇f(x(k))‖2
2

does not grow or increases slower than K.
If the cost functional is a Lipschitz function, convergence is of the order O( 1√

K
) as

stated in the following theorem:

Theorem 11. Let f be a Lipschitz function. For the point x̄K = 1
K+1

∑K
k=0 x

(k), and

constant stepsize α = ‖x(0)−x∗‖
L
√
K+1

, we have

f(x̄K)− f ∗ ≤ L‖x(0) − x∗‖√
K + 1

(5.12)

Proof. Put x̄K and α into Theorem 10 directly and note that ‖∇f‖ ≤ L.

This is obviously a theoretical and not practical theorem, since the stepsize required
implies knowing directly the minimum of the control problem.

5.2.2 Projection Operators

Consider Optimal Control Problems 1 and 2 for the two already introduced SEIHRDVW

versions. As we have previously noted, Uad, space of admissible constraints, is not
unbounded; therefore, PGD scheme in (5.8) need suitable projection operators, on
which performances will depend strictly. Two different kinds of constraints arise during
the discretization process:

1. Box-like constraints: U∗ ≤ Ub and U∗ ≥ Lb;

2. Linear constraints on the simplex:
∑k

j=0 Uj ≤ Ub or
∑k

j=0 Uj ≥ Lb.
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The second kind of constraint arises from the discretization in time of integral con-
straints. We detail the projection operators for both cases:

1. Box-like projectors can be directly implemented by their definition. Indeed, as-
sume to have a constraint as follows,

Lb ≤ U∗ ≤ Ub, (5.13)

a possible nonlinear projector is defined as Ub if U∗ ≥ Ub, Lb if U∗ ≤ Lb, U∗ otherwise.
In a compact way,

Pbl(U∗) = max(min(U∗, Ub), Lb). (5.14)

2. The problem of computing linear projections can be seen as a Euclidean projection
problem onto the positive simplex

∑k
j=0 Uj ≤ Ub, Uj ≥ 0, j = 1, . . . ,m.

Define β a vector in Rk that we aim at projecting in βi ≥ 0, ∀i ≤ k and βT1 ≤ z,
with z > 0. We propose a method due to Shalev-Shwartz and Singer [101] based on
sorting each of the βi parameters to recover the projection on the simplex. The method
takes O(k log(k)) iterations due to sorting procedure..

The algorithm is schematized below:

Algorithm 4 Euclidean projection Algorithm

Input: β ∈ Rk, a scalar upperbound z > 0
Sort β into µ: µ1 ≥ µ2 ≥ . . . ≥ µk
Find ρ = max{m ∈ [k] : µm − π(m) > 0}
Output: β where β∗m = [βm − π(ρ)]+ ∀m ∈ N, m ≤ k

The complexity can be reduced to expected O(k) time while maintaining exactness
of the solution by using a randomized pivot algorithm. We refer to [13] for more details
about the implementation of linear constraints.

5.2.3 Multi-Projection Algorithm

Suppose we have two convex sets Uad1 and Uad2 which are constituted by controls
satisfying different constraints. Assume x is the feasible control which we want to
project on C

⋂
D, namely we come up with a solution which satisfies contemporarily

the two distinct constraints.
Suppose C and D are closed convex sets in Rn, and let PC and PD projection

operators on the two sets respectively. In [15], an alternating projection algorithm is
introduced, and its convergence properties are proved.
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Algorithm 5 Multi-Projection Algorithm

Input: Initial guess x0 ∈ C.
Compute alternated projections in the following way:

yk = PD(xk), xk+1 = PC(yk), k = 0, 1, . . . , Nmaxit − 1.

Output: xNmaxit
, projected solution.

Will the sequence of {xk}k∈N converge to the projection in the intersection of the two
sets?

A general result shown in [27] is that, if C
⋂
D 6= ∅, the sequence converges to the

projection x∗ ∈ C
⋂
D (see Figure 5.2). This is not assured in a finite number of step,

therefore it has to be checked manually. When the two sets do not intersect it can be
proven that

xk → x∗, yk → y∗, ‖x∗ − y∗‖ = dist(C,D). (5.15)

In other words the algorithm produces a pair of points that have minimum distance
among the two sets (see Figure 5.3).
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Figure 5.2: Subsequent steps of the Multi-Projection Algorithm when C
⋂
D 6= ∅.

Source: [15].

Figure 5.3: Subsequent steps of the Multi-Projection Algorithm when C and D
are disjoint sets. Source: [15].
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5.3 Numerical formulation and MultiPGD

Let us revise the Meta-Algorithm 1 introduced at the beginning of this chapter, de-
tailing the numerical implementation of each step through the numerical methods pre-
sented in Sections 5.1 and 5.2:

1. Propose an initial guess of controls at each timestep

U1
(0) = U0

1 , U2
(0) = U0

2 , U3
(0) = U0

3 . (5.16)

Define Initial Conditions for the state problem and the cost functional J to min-
imize. Set the tolerance (tol), step-length (λ) and the maximum number of
iterations (N) for the PGD Algorithm, and the maximum number of iterations
for the Multi-Projection Algorithm (M).

2. Assembling Projected Gradient Descent Method with the Multi-Projection Algo-
rithm, we introduce and apply the following Multi-Projected Gradient Descent
(MultiPGD).
For k = 1, . . . , N :

2a. Solve the state problem given U1
(k−1), U2

(k−1), U3
(k−1) through the Runge-

Kutta 4 method, namely

x(k) = SEIHRDVWmodel(U1
(k−1), U2

(k−1), U3
(k−1)). (5.17)

2b. Solve the costate (or multipliers problem) given x(k), U1
(k−1), U2

(k−1), U3
(k−1)

through RK4, namely

p(k) = −∂H
∂x

(x(k), U1
(k−1), U2

(k−1), U3
(k−1)). (5.18)

2c. Define the three operators P1, P2, P3 projecting control variables on the
constraints imposed by maximum daily administrations, maximum elapsing
time among doses and minimum elapsing time among doses respectively (OC
Problem 1 case). The same has to be defined when dealing with OC Problem
2 substituting the constraint on maximum daily administrations with the
one related to weekly delivered doses and the one imposing maximum daily
capacity. We introduce

U (·) = [U1
(·), U2

(·), U3
(·)]T .

2c.1. Define

r = U (k−1) − λ∂H
∂U

(x(k),p(k), U1
(k−1), U2

(k−1), U3
(k−1));
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2c.2. Apply the Multi-Projection Algorithm.
For s = 0, . . . ,M − 1 and fixing d0 = r, compute the following quanti-
ties:

f s = P1(ds), gs = P2(f s), ds+1 = P3(gs).

2c.3
U (k) = dM ,

and assign each component of U (k) to the respective components of
U1

(k), U2
(k), U3

(k).

2d. Stopping criterium: compute the following incremental quotient,

|J(x(k))− J(x(k−1))|
|J(x(k−1))|

. (5.19)

If this quantity almost vanishes, Pontryagin principle assures that local min-
imum is achieved.
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Part II

Numerical Results



The second part is devoted to presenting and discussing numerical results obtained
solving Optimal Control problems defined in Chapter 4. Our goal is to underline key-
features of optimal vaccination policies in both artificial and in more realistic scenarios.
The results are organized in two chapters:

� Chapter 6 sets the simulations in artificial scenarios. From this set of simulations
we aim at extracting qualitative guidelines to implement optimal vaccination
campaigns;

� Chapter 7 collects results framed in more realistic scenarios, i.e. extracting
values for vaccine effectivenesses or the transmission rate function from actual
available data referred to Lombardy in 2021.

We solve optimization problems choosing the SEIHRDVW2 model as state problem, in
accordance to the real vaccination policy adopted by Italian Regional Governments.
Indeed, from recent scientific studies, recovered individuals have shown higher anti-
body levels after one single administration than completed vaccinated susceptibles.
Therefore, in the Italian 67th Rapporto COVID [34], the Health Ministry suggested
to administer one dose to individuals who had contracted the virus during the prece-
dent 3-6 months, no administration whether the infection has happened in less than
three months. Moreover, an Italian study carried out by Infectious Diseases and Mi-
crobiology Department of IRCCS Sacro Cuore Don Calabria [48] underlined that the
later first dose is administered to recovered individuals the higher is their antibodies
response. Notice that each result section is independent from the others.

Details about implementation

The code implementing the complete Meta-Algorithm (Algorithm 1) is written in
python3. This programming language is particularly suited for optimization prob-
lems, since it is actually optimized for Machine Learning algorithms which require ad
hoc optimization methods (for example SDG, GD or Momentum variant).

In particular, we used jax library which implements automatic differentiation, nec-
essary for computing derivatives of the Hamiltonian function. Furthermore, the pro-
vided just-in-time compilation of functions (jax.jit) has led to cut computational
times off. We exploited pandas library in order to extract averaged quantities from
data available by the Italian department of Protezione Civile ([91] and [92]).

In Appendix C one can find two codes we implemented for both formulations of the
optimization problems (OC Problem 1 and 2).
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Chapter 6

Artificial scenarios

From this set of simulations we aim at extracting qualitative guidelines to implement
optimal vaccination campaigns in different situations (choosing the SEIHRDVW2 model
as state problem).

Having in mind the goals of Chapter 7, in this Chapter we set parameters and
initial conditions ideally assuming to be framed in Lombardy on the 1st January 2021,
considered as the initial simulation day. More precisely, in Table 6.1 we find the initial
conditions that have been set for the solution of the state problem. They correspond
to feasible initial conditions extracted by data available from Italian department of
Protezione Civile [91] with uncertainty mainly due to monitoring policy. In Table 6.2
we find values of model parameters that have been fixed for the simulations. These
parameters come from biological studies of COVID-19 disease. Lastly, we set the step
of the Runge-Kutta 4 method at dt = 1 day and the maximum number of iterations
for the Multi-Projection Algorithm at k = 30. Other numerical parameters adopted
for specific simulations are specified in the following sections.

Notice that simulations have been run setting the timeframe heterogeneously, al-
though always a multiple of seven to allow the interpretation in terms of weeks.

S(0) E(0) I(0) H(0) R(0) D(0) V(0) W(0)
9.62e6 2.5e4 5.5e4 5.05e4 4.01e5 2.52e4 1.78e3 0

Table 6.1: Initial Conditions (IC) for SEIHRDVW model. They have been deduced
setting the problem on the 1st January 2021 in Lombardy.

The rest of the Chapter is structured as follows: in Section 6.1 we compare two
optimal vaccination problems obtained minimizing infectious during the whole time-
frame and the number of deceased at the final time, respectively; Section 6.2 collects
results about optimization of parametrized UK and US-like vaccination policies; Sec-
tion 6.3 aims at underlining differences in optimal vaccination policies when different
social restrictions are introduced; finally, in Section 6.4 we compare optimal vaccination
strategies imagining to deal with virus variants.
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Parameter Physical meaning Value
α Inverse of the incubation time 0.182
γ Infectious rate 0.211
f̄ Fatality rate 2.794e-3
µR Susceptible – Recovered passing rate 4.76e-3
µV Susceptible – Vaccinated passing rate 4.76e-3
ω Healing rate 0.0690
σ Fraction of vaccine-effectiveness on infection trasmission 0.25
θ Fraction of vaccine-effectiveness on mortality 0.15
tmin Minimum elapsing time among consecutive doses 21
tmax Maximum elapsing time among consecutive doses 42

Table 6.2: Table of parameters for model SEIHRDVW for the SARS-CoV-2 case in
Lombardy (extimated through available data recovered in Italy during the second
pandemic wave in early October 2020).

6.1 Comparison between optimal strategies for min-

imizing deaths and infectious individuals

We compare optimal vaccination policies considering two different cost functionals
defined as follows:

� Case 1: J1 =
∫ Tf

0
I(τ)2 dτ ;

� Case 2: J2 = D(Tf )
2.

6.1.1 Methods and parameters

The results that are illustrated in the following subsection are obtained through the
solution of Optimal Control Problem 1 formulated in Chapter 4. The control variables
are the daily amount of first doses to susceptibles and recovered, and the amount of
second doses. We fix the tolerance of the PGD algorithm at 1e− 6 and the maximum
number of achievable iterations at 100. The step of PGD is fixed at 1e− 1. The trans-
missibility rate β is mantained fixed at 0.267121. Maximum vaccination supply during
the period of simulation is 10000 administrations per day. We simulate a timeframe of
280 days (namely 40 weeks). The approximation of neglecting inner and outer fluxes
of people coming from different regions is implied.

1This is a plausible value for Lombardy in the period 01-02-2021/01-03-2021 (corresponding to the
yellow level of social restrictions) for the considered model. We derived this value inverting Rt index
definition for the SEIHRDVW, which was fit by data available from the Italian Department of Protezione
Civile [91]. We recovered Rt values on the EpiMox dashboard (https://www.epimox.polimi.it/),
which collects regional and national data and makes epidemic prevision of the italian scenario through
the SUIHTER model.
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6.1.2 Results

Figure 6.1: Evolution of infectious individuals and deceased obtained minimizing
J1 (infected individuals during the total timeframe, left figures) or minimizing J2

(deaths at the final time, right figures).

Figure 6.1 refers to the evolution of infectious individuals and deceased cases for the
two cost functionals (respectively, left figures refer to minimization of infected cases,
right figures refer to the minimization of deceased). Both cases reach 100 iterations
without achieving the desired tolerance.

As one expects, the curve of infectious in Case 1 reaches lower values with respect
to Case 2, whereas the converse is true for the curve representing deceased. For the
Case 1, we reach the infectious peak amounting at almost 70000 individuals on the
86th day of simulation. In Case 2, the infectious peak is delayed to the 90th day
and amounts at almost 79000 infectious. After the infectious peak, both curves are
monotonically decreasing. We note that, administering 10000 daily doses, the epidemic
is not completely eradicated after 280 days from the beginning of the vaccination
campaign. Deceased assest at 32500 in Case 1, 32000 in Case 2.

In Figure 6.2 we focus on the ripartition of doses for the three control variables,
namely U1 first doses administered to susceptibles, U2 doses administered to recovered,
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U3 daily administered second doses. Since the maximum value of administrations
per day is mantained constant, these pictures are interpretable as daily percentage-
ripartitions among the three different controls.

Figure 6.2: Output controls obtained minimizing infected individuals during the
total timeframe (left figures) or minimizing deaths at the final time (right figures).

For what concerns Case 1, political authorities in charge of managing the vaccina-
tion campaign can interpret results in Figure 6.2 as the suggestion that, in order to
minimize the infectious curve in a fixed timeframe, the optimal strategy is to alternate
between first and second doses for susceptible individuals over a typical period of about
42 days, and then consistently vaccinate individuals who recovered from the virus.

The vaccination strategy is different when one wants to minimize deceased at the
final time. After the first 20 days where second doses administrations are not allowed,
30% of daily total doses is administered as first doses to susceptibles and another 30% to
recovered. The remaining 40% is constituted by second doses. The former distribution
of doses is valid during the period 20-150 days, following which second doses decrease
up to 15% and first doses administered to susceptibles and recovered increase up to
42.5%.

Although with the second vaccination strategy more individuals are infected, less
individuals decease due to the infection. We explain this in light of the different vacci-
nation policies for the two different cost functionals. Indeed, the amount of people who
completed the vaccination cycle is 1.75e6 with the second vaccination strategy, almost
1.4e6 with the first (see Figure 6.3). We conclude that solutions which aim at vaccinat-
ing completely more individuals are more effective for minimizing deceased individuals
in the long period, whereas providing more individuals with a partial coverage is a
preferred solution when we aim at minimizing infectious individuals (i.e. stopping the
transmission cycle).
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Figure 6.3: Completed vaccinated evolutions minimizing infected individuals dur-
ing the total timeframe (left figure) or minimizing deaths at the final time (right
figure).

6.2 Optimization of paradigmatic vaccination poli-

cies

This section deals with the analysis of paradigmatic scenarios deducible from vacci-
nation policies actually implemented in the United Kingdom (UK) and in the United
States of America (USA). Our goal is to express approximations of the vaccination poli-
cies through parametric functions and then to optimize the solutions of the SEIHRDVW2
model with imposed vaccinations by varying the parameters themselves.

Among the other countries in the list of those which have administered more doses
with respect to the population until June 2021, UK and USA implemented vaccination
strategies that can be effortless parametrized. Note that, in this section, no optimal
control problem is solved, and so no PGD algorithm is needed. Indeed, we analyze
solutions of direct problems with the SEIHRDVW2, and we measure performances of
each simulation through the evaluation of four different quantities.

6.2.1 Methods and parameters

We solve the direct problem corresponding to Model 4.4 through the Runge-Kutta
4 method. The final time of simulation is fixed at 140 days, i.e. 20 weeks. We
impose the daily amount of first and second doses following parametric functions which
approximate vaccination policies of the two countries. Moreover, first doses are split
among recovered and susceptibles following the proportion 1

4
and 3

4
. Every day 10000

vaccine doses are administered. The transmission rate β is fixed at 0.2612 as in the
previous case, making this analysis an artificial non-realistic scenario.
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6.2.2 Results

UK-like strategy

Figure 6.4: Percentage of administrations of first (above figure) and second doses
(below figure) in UK from 11th January 2021. Data source: [97]

Vaccination program started in UK on the 8th of December 2020, when an elder british
woman became the first person in the world to receive a clinically authorised vac-
cine for COVID-19. At the time of writing, UK has authorized six different vaccines
developed with different approaches: the Oxford (ChAdOx1 nCoV-19) and Janssen
(Ad26.COV2.S) vaccines, made from a genetically engineered virus; a vaccine devel-
oped by BioNTech/Pfizer (BNT162b1), which uses a novel approach of injecting part
of the virus’ mRNA; a vaccine created by Valneva (VLA2001), which uses an inac-
tive version of the virus; a vaccine created by Novavax (NVX-CoV2373) and one un-
der development by GlaxoSmithKline/Sanofi Pasteur, both using protein adjuvants to
stimulate an immune response.

In Figure 6.4 we represent the percentage of first and second doses administered in
UK starting from the 11th January for 133 days, recovered from data available at [97].
We note that, for almost 80 days from the starting date, primarily first doses have been
adminstered, delaying consistent second doses administrations.

From the actual percentages of distribution of doses, we extract a parametrized
function for the percentage of first doses administrations in a time interval of 140 days:

f1,T (t) =

{
1, if t ∈ [nT ; (n+ 1)T ) forn = 0, 2, 4, . . .

0, otherwise.
(6.1)

Percentage of adminstered second doses is defined as a piecewise constant function in
counter-phase with respect to first doses administrations:

f2,T (t) =

{
1, if t ∈ [mT ; (m+ 1)T ) form = 1, 3, 5, . . .

0, otherwise.
(6.2)

Figures 6.5 and 6.6 depict three cases of the family of functions representing first and
second doses percentages depending on T .
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The question we want to face is the following:

What is the optimal frequency (and so the optimal period) for strategies all-in/all-out
like this for different cost functionals?

(a) T = 20 (b) T = 30 (c) T = 42

Figure 6.5: First doses percentage extrapolated from UK policy as a piecewise
constant function with alternated values 0 and 1. The period of the three figures
is T = 20, 30 and 42 days respectively.

(a) T = 20 (b) T = 30 (c) T = 42

Figure 6.6: Second doses percentage extrapolated from UK policy as a piecewise
constant function with alternated values 0 and 1. The period of the three figures
is T = 20, 30 and 42 days respectively.

We consider the period of the vaccination strategy (T ) as the control parameter for
an optimization problem with fixed daily administrations according to (6.1) and (6.2):

Optimal Control Problem.
min
T∈N

J,

with state problem (4.4), where U1(t) = Ub p f1,T (t), U2(t) = Ub (1 − p) f1,T (t) and
U3(t) = Ub f2,T (t), where p is the fractional ripartition of first doses among susceptibles
and recovered individuals and Ub is the total daily amount of available vaccine jabs.

J is the performance measure we choose to minimize. Notice that we are working in
the scenario with constant daily amount of doses. If we admit that the same quantity
varies on time we could obtain different results.

We solve the direct problem corresponding to SEIHRDVW2 model in a time interval of
140 days, letting T , called jumping period, vary in [20, 42]. For all T ∈ [20, 42] and T ∈
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N the vaccination strategy matches constraint imposed by maximum and minimum
elapsing time between doses for vaccines with properties analogous to Pfizer/BioNTech.
We evaluate four quantities for each simulation:

� J = D(Tf )
2, referred to as Deaths ;

� J =
∫ Tf

0
Ė(t)2dt, referred to as Exposed ;

� J =
∫ Tf

0
İ(t)2dt, referred to as Infected ;

� J =
∫ Tf

0
Rt(t)

2dt, referred to as Rt.

Figure 6.7 depicts their normalized values with respect to the frequency T on the x-axis.

Figure 6.7: Normalized values of each performance measure for the UK-like vac-
cination strategy. The typical period T is the independent coordinate x.

For quantities named Deaths, Infected and Rt, increasing typical period of the
strategy from 20 to 42 leads to their relative reduction. This fact assures that, among
the possible scenarios, and remembering that the maximum elapsing time for doses of
AstraZeneca vaccine (which is the most adopted vaccine in the UK) is almost 80 days,
the strategy implemented in Great Britain (Figure 6.4) is optimal.

Fluctuations appear evidently in the blue and in the green curves. The former
implies that Rt has local minima at T ' 25, 35 and local maxima at T ' 30, 40.
Instead, the blue curve, corresponding to the Exposed variation, is not a monotone
decreasing function. This is not a concerning result since this quantity has no physical
interpretation on its own, but it has to be strictly related to the yellow curve which
monotonely decreases as T increases.
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US-like strategy

Figure 6.8: Percentage of administrations of first and second doses in USA from
17th December 2020. Data source: [97]

On December 14th, mass vaccination program started in Queens, USA, prior autho-
rization on the 10th of December by the FDA (federal agency Food and Drug Ad-
ministration) of the Pfizer/BioNTech vaccine (BNT162b1). On the 17th of December
also the Moderna vaccine (mRNA-1283) has started being administered. Finally, the
one dose vaccine produced by Johnson & Johnson (Ad26.COV2.S) has been autho-
rized, even though its administrations were suspended on April 14th after evidence of
correlations with blood clotting episodes. Starting from March 2021 some states of
USA have opened to all adults the possibility to book their vaccination (e.g. Alaska,
Mississippi, Ohio, Connecticut, Arizona, Texas and Georgia), due to the great amount
of doses available in the country. Indeed, at the end of June almost 54% of Americans
have received at least one vaccine doses, and 46% of them is completely immunized.

In Figure 6.8 it is represented the percentage of first and second doses on the
total amount of administered doses per day in the US for 154 days starting from the
beginning of the campaign. Notice that, neglecting local minima and fluctuations, after
almost 20 days from the beginning of the campaign first doses follow a linear descent
behaviour up to 50% of administered doses.

As in the UK case, a question can come to our minds:

Is it possible to delay the beginning time of consistent administrations of second doses?
Would it be a better solution in terms of deaths and infectious spread?

In order to answer these questions, we build the parametric approximations of per-
centages of first and second doses administrations:

f1,T =

{
1, for t ∈ [0;T ],

1− 0.5 t−T
140−T for t ∈ (T ;Tf ];

(6.3)
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f2,T =

{
0, for t ∈ [0;T ],

0.5 t−T
140−T for t ∈ (T ;Tf ].

(6.4)

The parameter on which ripartitions of doses depend is T ∈ [20, 42] (T ∈ N), where T
indicates the day at which second doses administration starts. In Figures 6.9 and 6.10
we provide three functions belonging to the family of first and second doses adminis-
trations with three specific values of the parameter T .

(a) T = 20 (b) T = 30 (c) T = 42

Figure 6.9: First doses percentage extrapolated from US policy as a constant
function at 1 (100%) during the first 20 days that linearly decreases to 0.5 (50%).
The descending behaviour starts at T = 20, 30 and 42 days from the beginning of
the simulation respectively.

(a) T = 20 (b) T = 30 (c) T = 42

Figure 6.10: Second doses percentage extrapolated from US policy as a constant
function at 0 (0%) during the first 20 days that linearly increases to 0.5 (50%).
The ascending behaviour starts at T = 20, 30 and 42 days from the beginning of
the simulation respectively.

The problem we aim to solve is the following optimization problem, where the
control variable is the time T at which second doses administrations begin:

Optimal Control Problem.
min
T∈N

J,

with state problem (4.4), where U1(t) = pUb f1,T , U2(t) = (1 − p)Ub f1,T and U3(t) =
Ub f2,T ; p is the fractional ripartition of first doses among susceptibles and recovered
individuals and Ub is the total daily amount of available vaccine jabs.
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The following simulations solve the direct problem associated with vaccinations
prescribed by Functions (6.3) and (6.4) for 140 days. As for the UK-like case, the
same four quantities have been evaluated for different T . Figure 6.11 represents their
normalized values with respect to the frequency T on the x-axis.

Figure 6.11: Normalized values of each performance measure for the US-like
vaccination strategy. The typical period T is the independent coordinate x.

As one deduces by Figure 6.11, in order to minimize deceased, Rt and the whole
infected curve, the optimal strategy is to delay as much as possible the beginning of
second dose administrations. On the other hand, evaluation of the exposed cost func-
tion shows a parabolic behaviour, with minimum achieved at nearly 31 days. However,
reduction in percentage of the four cases is at most of the order of 0.5% for the infec-
tious case (' 7e4 infected), and 0.1% in terms of deaths (' 2000 deaths with respect
to the highest case).

6.2.3 Conclusions

This section aimed at comparing scenarios coming from actual vaccination policies
implemented in UK and USA in order to get information about possible improvements
in the vaccination campaign.

The optimal strategy, suggested to policy makers who plan to propose UK-like or
US-like vaccination campaigns, is to delay the beginning of administrations of second
doses as much as possible. In the former scenarios, mantaining an high rate of people
who received a partial coverage by the vaccination (belonging to V compartment)
performs better in terms of deceased and infectious performance measures.
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6.3 Optimal Control strategies varying NPI levels

This section is devoted to the analysis of optimal solutions which are obtained with
different transmission rates (β). In particular three cases with different constant β are
considered for the minimization of infectious. They have been extracted for SEIHRDVW2
model by available data for Lombardy Region with three different levels of NPIs (Non-
Pharmaceutical Interventions) implemented. These different levels correspond to po-
litical restrictions on the names of Red area, Orange area and Yellow Area.

6.3.1 Methods and parameters setting

We present some results inferred by solving OC Problem 1. The PGD method stops
when the tolerance 1e−6 is reached or a maximum number of iterations (100) has been
successfully completed. The step of the same method is fixed at 1e − 1. We fix the
total amount of daily administrations at 10000. Initial conditions for the state problem
are set as in Table 6.1, and other parameters involved in the model are set as in Table
6.2.

We shortly explain the way we recovered plausible values for the transmission rates
corresponding to different levels of NPIs. From EpiMox dashboard [88], which is based
on data available by the Italian department of Protezione Civile [91], one obtains
fitted values for regional Rt index (actually, we consider the R∗t index extimated in
the dashboard as explained in [9]). Then, β is computed inverting Rt-definition in the
following way:

Rt =
β

γ

(S(t) + σV (t))

N
⇒ β =

R∗t γ N
S(t) + σV (t)

. (6.5)

We average the values of R∗t , S(t) and V (t) assumed from 10 to 15 days after the
entrance into force of restrictions indicated by the color, and then apply Equation
(6.5).

The three transmission rates used for the different scenarios are (see Figure 6.12):

� β = 0.19872, Red Area;

� β = 0.23225, Orange Area;

� β = 0.26172, Yellow Area.

Simulations have been run for Tf = 210 days.
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Figure 6.12: Different transmission rates corresponding to Yellow, Orange and
Red regional restrictions.

6.3.2 Results

In this section, we assume the minimization of infectious individuals during the whole
time-interval as cost functional (i.e.

∫ Tf
0
I(t)2 dt). We focus the attention on the daily

distribution of first and second doses (see Figure 6.13) and on the absolute values
reached by the cost functional in the three cases (see Table 6.3).

Figure 6.13: First (recovered and susceptibles) and second doses percentages
compared at different levels of restrictions.

NPI level β Cost functional
1 0.26172 6.60e11
2 0.23225 1.62e11
3 0.19872 5.40e10

Table 6.3: Evaluation of the cost functional
∫ Tf

0 I(t)2 dt at different levels of
restrictions.
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Percentage of first doses shows mild periodicity in the yellow case as we have previ-
ously observed in Section 6.1.2, that tends to disappear as β decreases. Indeed, as long
as β decreases, oscillations decrease and the solutions tend to stabilize. Furthermore,
in the long period (days 150-210) both first and second administrations tend to sta-
bilize to 50% of total available doses for the orange and red curves. During the same
period we notice the progressive accomodation of the orange curve (β = 0.23225) on
the red curve (β = 0.19872). Table 6.3 assures the expected reduction in terms of cost
functional when the transmission rate decreases.

Comparing these results with Section 6.1.2, we conclude that as β decreases optimal
vaccination policy for minimizing infectious tends to take the shape of the solution of
the same problem optimizing deceased at final time.

6.4 Impact of virus variants on optimal strategies

When pandemic events occur, if the recession period of the virus is not as short as
expected, it is possible that multiple variants, also called strains, spread and in some
cases become dominant and replace the existing strain. This is the case of the α variant
which has replaced the first strain of the SARS-CoV-2 during October 2020, or the case
of the δ and κ variants which are more transmissible and fatal than α one. Indeed ISS
confirmed that on the 4th September 2021 in Italy the δ-variant accounts for 99.7% of
infections. Variants are caused by mutations, i.e. changes in the DNA or RNA sequence
of the microorganism. During RNA or DNA replication phases, errors can occur, and
viruses can change rapidly their genetic sequence in order to have higher probabilities
of surviving, developing different antigenic characteristics for evading human defensive
response of the immune system [36].

The crucial question is,

How policy makers have to adapt vaccination campaign when variants spread?

In order to explore a possible mathematical answer to this question, we focus our
attention on simplified situations dealing with:

1. variants which can be more transmissible (Section 6.4.2);

2. variants which can change vaccine effectiveness on preventing transmissibility
(Section 6.4.3);

3. variants which alter vaccine effectiveness on reducing the mortality factor (Section
6.4.3).

6.4.1 Methods and parameters

Each of the following sections collects graphical outputs of solutions obtained via opti-
mization of the OC Problem 2 with SEIHRDVW2 as state problem. PGD parameters are
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set as follows: tolerance 1e− 6, maximum number of iterations 100, step 1e− 2. The
number of weekly delivered doses NDosesDeliveredPerWeek is fixed at 3850002. Instead,
C, the maximum daily administration capacity, is fixed at 1400003. Initial conditions
are the same proposed in Table 6.1. All parameters, except for σ and θ which are
changed in the simulations related to vaccine effectiveness, are the same of Table 6.2.
We simulate the optimal control problem for 147 days, i.e. 21 weeks.

6.4.2 Impact of transmissibility

We consider two different transmission rates, β1 = 0.26172 representing the standard
virus transmission rate and β2 = 0.42587, obtained setting β2 = 1.6β1. In this way, the
strain associated with β2 is almost 60% more transmissible than the base strain β1

4.

Case 1

We consider the following cost functional to optimize:∫ Tf

0

I(t)2 dt.

Figures 6.14-6.18 represent evolution of all states, with special focus on the infected
classes and total deaths for both transmission rates. From a quantitative point of view,
in the case with β2 it is natural to obtain higher numbers of exposed and consequently
infected and healing individuals. Almost 40 days after the beginning of the simulation,
exposed and infected peaks are reached with the first transmission rate, whereas for the
variant case peaks occur on the 50th day of simulation. Maximum values of infected
classes achieved in the second case are more than 8 times those caused by the standard
strain. With a variant that is 1.6 times more transmissible, maximum number of
coexisting infectious is about 4e5.

2385000 is a compatible value with the average number of doses delivered per week in Lombardy
up to June 2021.

3This value is the maximum number of doses administered in Lombardy during the same period.
4We choose 60% according to [21], where it is claimed that δ-variant is 60% more transmissible

than the α one.
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Figure 6.14: States evolution minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).

Figure 6.15: Exposed evolution minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).
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Figure 6.16: Infectious evolution minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).

Figure 6.17: Healing evolution minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).
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Figure 6.18: Deceased evolution minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).

Figures 6.19 and 6.20 represent the two distinct optimal vaccination policies. We
first note that the optimal solutions do not include days without administrations, but
rather, both solutions tend to stabilize the daily total administrations value at almost
55000, which is the daily average value of 385000 delivered doses per week, without
collecting stocks. In the left part of the figures we observe solutions related to β1, and
we conclude that vaccination priority is given to susceptibles. First and second doses
to susceptibles are administered equally during the whole timeframe except for the
first 20 days of simulation. Recovered individuals are neglected during the timeframe
of interest, probably since they are advantaged with respect to complete immunity.

We observe a different optimal vaccination policy with the variant strain in the right
side of the same figures. Indeed, nearly after 100 simulation-days the three controls are
approximately administered equally, meaning 33% of total administration are made for
each control. Beginning administrations to recovered causes susceptibles curve to slow
down its course towards zero.

Figure 6.19: Control variables minimizing J =
∫ Tf

0 I(t)2 dt for β1 strain (left
figure) and β2 strain (right figure).
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Figure 6.20: Comparison of histograms representing daily percentages of doses
minimizing J =

∫ Tf
0 I(t)2 dt for β1 strain (left figure) and β2 strain (right figure).

Figure 6.21 represents Rt indexes computed for the two scenarios. As one expects,
Rt index is higher in the right case (≈ 2 at the beginning) with respect to the left,
but near Tf it is lower than in the left case (≈ 0.30). This is obvious noting that Rt is
proportional to V (t) and S(t), and that close to Tf this second term - which is predom-
inant - is lower in the second case than in the first since more people have been infected.

We conclude that more transmissible variants impact the vaccination strategy ad-
vancing administrations to recovered, in order to create a relevant barrier of immune
individuals against the virus.

Figure 6.21: Rt comparison between optimal solutions for both β1 (left figure)

and β2 (right figure) virus strains. Cost functional:
∫ Tf

0 I(t)2 dt.
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Case 2

We perform simulations of the optimal control problem with a complete cost functional,
i.e. ∫ Tf

0

I(t)2 + C1Ė(t)2 dt+ C2D(Tf )
2,

with C1 = 1e4 and C2 = 1e3. Figures 6.22-6.26 are the graphical evolutions of all
states involved in the problem, with a special zoom on the infectious classes and on
deceased. Deceased level seems to be higher for the β2 case (≈ 40000 deaths) with
respect to Case 1. Indeed, convergence minimum is not reached, implying that D(Tf )
component is not completely minimized.

At time Tf = 147, susceptibles in the β2 case are lower than in β1 simulation,
even though the final value is higher than the respective value for Case 1 optimization.
Another visible difference in the evolution of states is represented by the recovered
variable, which vanishes at nearly 90 days from the beginning in the standard strain
case, and it is lower than in Case 1 simulation.

Figure 6.22: States evolution minimizing J =
∫ Tf

0 I(t)2 +C1Ė(t)2 dt+C2D(Tf )2

for β1 strain (left figure) and β2 strain (right figure).
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Figure 6.23: Exposed evolution minimizing J =
∫ Tf

0 I(t)2+C1Ė(t)2 dt+C2D(Tf )2

for β1 strain (left figure) and β2 strain (right figure).

Figure 6.24: Infectious evolution minimizing J =
∫ Tf

0 I(t)2 + C1Ė(t)2 dt +
C2D(Tf )2 for β1 strain (left figure) and β2 strain (right figure).
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Figure 6.25: Healing evolution minimizing J =
∫ Tf

0 I(t)2+C1Ė(t)2 dt+C2D(Tf )2

for β1 strain (left figure) and β2 strain (right figure).

Figure 6.26: Deceased evolution minimizing J =
∫ Tf

0 I(t)2 + C1Ė(t)2 dt +
C2D(Tf )2 for β1 strain (left figure) and β2 strain (right figure).

Figures 6.27 and 6.28 refer to vaccination summary and doses administered per-
centages in this scenario. For the left case we notice that, after 20 days of exclusive
vaccinations of susceptibles, and their subsequent immunisation, recovered adminis-
trations start taking place until all recovered have been immunised. Contemporarily
first and second doses to susceptibles are administered in equal percentages. Admin-
istrations per day are quite constant up to 5.5e4, and there are not days without
administrations.

The right case is different from the left one. Indeed, after the first 50 days, when
only first and second doses to susceptibles are provided equally, the solution starts
vaccinations for the recovered class exclusively until the 125th day when the three
controls start to equilibrate to 33% ripartition each. The day when administrations to
recovered start coincides with the day when infected peak occurs.
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Figure 6.27: Control variables minimizing J =
∫ Tf

0 I(t)2 +C1Ė(t)2 dt+C2D(Tf )2

for β1 strain (left figure) and β2 strain (right figure).

Figure 6.28: Comparison of histograms representing daily percentages of doses
minimizing J =

∫ Tf
0 I(t)2 + C1Ė(t)2 dt + C2D(Tf )2 for β1 strain (left figure) and

β2 strain (right figure).

Figure 6.29 represents the evolution of the reproducing number for each of the two
simulations dealt in this case. Rt tends to stabilize to 0.55 for the right case, while its
left counterpart approaches 0.65 approximately.

We conclude that a fundamental role is played again by the amount of admin-
istrations to recovered individuals (which is the U2 control variable). Its value rises in
worse scenarios, in order to achieve in advance a sort of herd immunity. Note that this
is possible beacause the virus is more transmissible, and therefore more people have
been infected and then recovered.
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Figure 6.29: Rt comparison between optimal solutions for both β1 (left figure) and

β2 (right figure) virus strains. Cost functional:
∫ Tf

0 I(t)2 +C1Ė(t)2 dt+C2D(Tf )2.

6.4.3 Vaccine effectiveness

Vaccines that have been authorized by the EMA (European Medicine Agency) and
AIFA (Agenzia Italiana del Farmaco) have a double impact on the epidemic. Indeed,
they can help in reducing transmissibility of the virus and/or they can abate severe
disease which often leads to death. In the proposed mathematical model, these two
physical circumstances are both englobed through the definition of two parameters,
respectively σ and θ (see Models (4.1) and (4.4)).

The question is:

How does the vaccination campaign have to be modified in order to reduce already-
defined performance measures when variants acting on vaccine effectiveness occur?

Indeed, we interpret the following results in order to have guidelines for policy
makers for planning an optimal vaccination campaign when virus is modified by mu-
tations and can interact with vaccines reducing their effectiveness. Notice that we
assume that vaccine effectiveness is constant over time, while it is proved that vac-
cines do not provide individuals with an istantaneous coverage, and their effectiveness
increases when time grows. Moreover, we consider an ideal vaccine which guarantees
complete immunity when the cycle is completed5.

Transmission rate β is fixed during the whole simulation time at 0.26172. We deal
with OC Problem 2, with NDosesDeliveredPerWeek = 385000 and C = 140000, maximum
daily administration capability.

5This is not actually true for vaccines against SARS-CoV-2, which do not assure immunity after
the cycle is completed (i.e. σW = 0 and θW = 0, considering the model introduced in Section 7.2).
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Variants affecting vaccine effectiveness on transmissibility (σ)

We set vaccine effectiveness on mortality (θ) at 0.15. Three different values of σ are
considered, σ = 0.40, 0.25, 0.10, meaning that vaccine effectivenesses in preventing the
spread after one single administration are 60%, 75% and 90% respectively.

Figure 6.30 represents percentage ripartitions of the three controls optimizing the cost
functional ∫ Tf

0

I(t)2 dt.

From these results, we note changes on doses administered to recovered individuals.

(a) σ = 0.40 (b) σ = 0.25

(c) σ = 0.10

Figure 6.30: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when σ = 0.40, 0.25, 0.10 respectively.
Cost functional:

∫ Tf
0 I(t)2 dt.

Indeed, during the first 20 days of simulation, administrations to recovered disappear
when vaccine effectiveness increases. Instead, in the solution related to 90% of vaccine
effectiveness, recovered administrations start 60 days after the beginning. In all three
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cases, first and second doses administrations to susceptibles stabilize at 50% each in
the long term.

The second cost functional that we consider is the one which takes under control
not only the infectious curve but also variations in the exposed curve, i.e.∫ Tf

0

I(t)2 + C1Ė(t)2 dt.

Figure 6.31 represents doses ripartitions with the three different levels of vaccine effec-
tiveness.

(a) σ = 0.40 (b) σ = 0.25

(c) σ = 0.10

Figure 6.31: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when σ = 0.40, 0.25, 0.10 respectively.
Cost functional:

∫ Tf
0 I(t)2 + C1Ė(t)2 dt.

In this case, we recognize a trend in the recovered doses administrations when vaccine
effectiveness increases and this is merely due to the exposed component. Indeed, the
higher vaccine effectiveness the lower is the level of recovered administrations, control
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variable U3, during the timeframe 60-80 days from the beginning of the simulation
time. After this transient period all solutions tend to equilibrate to an half-and-half
ripartition of administrations of first and second doses to susceptibles.

The last scenario we consider is the one related to optimization of the cost functional
taking into account for total deaths during the process, namely

D(Tf )
2.

(a) σ = 0.40 (b) σ = 0.25

(c) σ = 0.10

Figure 6.32: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when σ = 0.40, 0.25, 0.10 respectively.
Cost functional: D(Tf )2.

From Figure 6.32 it emerges that in the period 20-147 days first and second doses
administrations to susceptibles assest to an half-and-half ripartition of daily available
doses independently on σ. Even the control variable related to administrations to re-
covered individuals is almost independent by variations on the parameter σ, and this
control only acts during the first 20 days of administration, where no second doses are
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allowed to be administered.

Analyzing the three scenarios with different cost functionals we note that the com-
ponent related to variations of slopes of the exposed curve is the most influenced by
variations of vaccine effectiveness in reducing transmissibility. As σ decreases vaccina-
tion policy changes increasing administrations to susceptibles and reducing adminis-
trations to recovered individuals.

Variants affecting vaccine effectiveness on mortality (θ)

The following results are collected setting all parameters as in Table 6.2 apart from
θ. This parameter, which is related to vaccine effectiveness in preventing severe ef-
fects which can lead to death, is varied in three different situations, namely θ =
0.40, 0.30, 0.15 meaning that vaccines reduce the possibility of fatal effects of 60%,
70% and 85% respectively.

Figure 6.33 represents percentage allocation of control varibales for solutions of
the optimal control problem when the cost functional is∫ Tf

0

I(t)2 dt.

We deduce that in this case the solution is not dependant on variations of the parameter
θ. This is not surprising since the parameter θ enters in the model in the fatality
function

f(S, V ) = f̄
S(t− 15) + σθV (t− 15)

S(t− 15) + σV (t− 15)
,

which regulates fluxes from the healing class to deceased and recovered. These classes
do not have direct influence on I class. From the recovered class it is possible to
be re-infected, even though the µR parameter - which represents the possibility that
antibodies run out after a certain time from infection - is very small (Table 6.1).
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(a) θ = 0.40 (b) θ = 0.30

(c) σ = 0.15

Figure 6.33: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when θ = 0.40, 0.30, 0.15 respectively.
Cost functional:

∫ Tf
0 I(t)2 dt

From Figure 6.34 we draw the same conclusions herebefore. The solutions repre-
sented in the picture are obtained via optimization of the following cost functional∫ Tf

0

I(t)2 + C1Ė(t)2 dt,

where C1 is 1e4. Although θ has been varied as explained before, we do not observe
variation in the doses ripartitions among the three cases. Indeed, neither I either E
classes are directly influenced by parameter θ itself.
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(a) θ = 0.40 (b) θ = 0.30

(c) σ = 0.15

Figure 6.34: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when θ = 0.40, 0.30, 0.15 respectively.
Cost functional:

∫ Tf
0 I(t)2 + C1Ė(t)2 dt.

Finally, we are left to the case where the cost functional to optimize is directly
related to total deaths at the final simulation time, namely

D(Tf )
2.

For this case, one expects variations in the solutions for the three cases, since, as it
was previously noted, θ is directly involved in the fatality function. Actually, the mild
change that is observed among the three cases is represented by the variable accounting
for administrations to recovered, which is reduced from 50% to 30-35% during the first
20 days of simulation with θ = 0.15.

We conclude that the optimal strategy seems to be independent on the value of
vaccine effectiveness on mortality for each of the considered cost functions.
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(a) θ = 0.40 (b) θ = 0.30

(c) σ = 0.15

Figure 6.35: Comparison of histograms representing percentages of administra-
tions to susceptibles and recovered when θ = 0.40, 0.30, 0.15 respectively.
Cost functional: D(Tf )2.
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Chapter 7

Semi-Realistic scenarios

This chapter includes results coming from quasi-realistic situations, deducing some
parameters from the actual scenario of Lombardy in 2021.

The chapter is structured is constituted by two sections: Section 7.1 deals with
optimal vaccination policies setting the problem in Lombardy, and using real data for
the transmission rate and daily vaccinations. In Section 7.2 we propose a modified
version of the SEIHRDVW2 model that integrates the possibility of incomplete immunity
after completing the vaccination cycle. The modified model is employed to compare
results obtained assuming BioNTech/Pfizer and AstraZeneca vaccines.

7.1 Optimal vaccination policy with realistic amount

of doses and transmission rate

In the previous chapter we mantained at a constant average value the transmission
rate (β) as well as the total number of daily administrations (fixed at 10000, which
is lower than the actual mean of daily administrations in Lombardy in January-May
2021, amounting at almost 60000). In Figure 7.1 we report the actual values of total
administrations per day and the daily values of the transmission rate in a timeframe of
length 147 days from 01-01-2021 in Lombardy. We extracted these functions starting
from available data from the Italian department of Protezione Civile ([92],[91]). For
the transmission rate we applied the same procedure introduced in Section 6.3.

Next results collect and discuss the solutions of different Optimal Control problems
with different cost functionals setting total daily administrations and daily transmis-
sion rate as in Figure 7.1. In this way we aim at contributing to underline possible
improvements in the vaccination campaign implemented in Lombardy. Notice that
this comparison is not completely fair since Lombardy’s policy makers have designed
vaccination campaign basing the vaccination order in the way that fragile categories
and age-advanced categories should be immunized with absolute priority. Instead, our
model concerns average compartments, and therefore we do not take into account any
social status or age ripartition of individuals. However, our purpose is to extract from
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these results some instructions about the optimal average ripartition of first and second
doses administrations.

Figure 7.1: Daily vaccine available doses (left figure) and transmission rate (right
figure) in Lombardy in the timeframe of 147 days starting on the 1st January 2021.

We highlight that, surely, implementing optimal vaccination campaign leads to
remarkable differences in terms of saved deceased with respect to the case without
vaccinations, as seen from Figure 7.2.

Figure 7.2: Simulated evolution of deceased individuals with optimal vaccination
strategy (left) and without employing vaccines (right).

The following results cannot be straightforwardly compared with the real evolution
of deceased and infectious for the case of Lombardy in the same period, mainly due to
the low parameter accuracy. On the other hand, we obtain solutions where infectives
and deceased have comparable orders of magnitude with real data.
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7.1.1 Methods and parameters

All parameters associated with SEIHRDVW2 model have been set following Tables 6.1
and 6.2. Parameters of the PGD method are set as in Chapter 6, i.e tolerance at
1e − 6, step at 1e − 1 and maximum iterations at 100. We deal with OC Problem 1
formulation, apart from Case 4 where we compare solutions for both OC Problems 1
and 2. The main differences from previous simulations are represented by the number
of administrations per day and the transmission rate, set as in Figure 7.1.

7.1.2 Results

Case 1

We present the solution of the Optimal Control Problem 1 choosing the following cost
functional: ∫ Tf

0

I(t)2 dt.

The algorithm stops after the maximum number of iterations is reached and returns
2.46e11 as the value of the functional. The amount of infected individuals at the end
of the optimization process is about 40890.

In Figure 7.3 we observe the evolution of all variables involved, i.e S,E, I,H,R,D, V
and W . Figure 7.4 shows the percentage ripartitions of first, second doses and doses
administered to recovered. A suitable interpolation obtained through the Least Square
method with polynomials of order 6 is shown in the same figures. Figure 7.5 com-
pares first and second doses actually administered in Lombardy with those obtained
with the optimal solution. Figures 7.6 and 7.7 represent the computed Rt index and
deceased evolution for the optimal strategy versus the solution of the direct problem
of SEIHRDVW2 imposing the implemented vaccination campaign in the same period in
Lombardy and β as in Figure 7.1. From this point onward, we refer to this last strategy
as Direct Problem in Lombardy, acronym DPL. For the DPL we set the proportion of
first doses adminstered to suceptibles and recovered at 3

4
and 1

4
respectively.

Case 1: Comments Maximum value of exposed individuals is greater than 60000
and it is reached at nearly 80 days from the beginning of the vaccination campaign.
The highest value of infectious that is reached during the 147 days is 55000. Deceased
variable is, as expected, a monotone increasing curve, which reaches its maximum of
28000 deaths. The increment of new deaths during the simulation timeframe is 3000.
Solving the DPL nearly 30000 deaths are reached in the period of interest. Hence,
optimal solution makes a reduction of 7% in terms of deaths with respect to the DPL.

The most relevant difference in the administration of doses with the implemented
vaccination campaign is the delay in the start of the administrations of second doses
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and this fact is completely in agreement with results coming from Section 6.2. Ac-
tually, this period corresponds to the complete immunisation of healthcare workers.
Administrations of second doses tends to settle at a constant value of more than 15000
doses per day. We note that as well as β increases (days 20-60), second doses admin-
istrations increase. In time intervals where β decreases (days 60-100), the percentage
of first doses administrations increases.

For what concerns the reproduction number Rt, we notice a similar trend in terms
of growth and decaying phases for both the optimal strategy and the DPL. However,
as expected the optimal policy improves the index itself especially in the last days of
the simulation, where the index reaches 1.1 peak value for the optimal policy, 1.6 for
the solution of the DPL.

108



Figure 7.3: Evolution of each state of the SEIHRDVW2 model. Case:
∫ Tf

0 I(t)2 dt.
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Figure 7.4: Percentages of first, second doses and doses administered to recovered
individuals, overlapped with Least Square interpolation of order 6.
Case:

∫ Tf
0 I(t)2 dt.

Figure 7.5: First and second doses comparison between actual ripartitions in
Lombardy and optimal solution. In the first dose we also consider doses adminis-
tered to recovered. Case:

∫ Tf
0 I(t)2 dt.
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Figure 7.6: Rt comparison between the optimal solution (left figure) and DPL

(right figure). Case:
∫ Tf

0 I(t)2 dt.

Figure 7.7: Deceased comparison between the optimal solution (left figure) and

DPL (right figure). Case:
∫ Tf

0 I(t)2 dt.

Case 2

We present results obtained via optimization of the cost functional

J =

∫ Tf

0

I(t)2 + C1Ė(t)2 dt,

where the Ė component is a regularization term. We set C1 at 1e4 to have compa-
rable orders of magnitude between the two addenda. The cost functional achieves its
minimum value (1.80e12) at iteration 100, without reaching the desired tolerance. In
Figure 7.8 we report the evolution of the single compartments. We note that, except
for the last 20 days, the recovered curve is always increasing. This means that ad-
ministrations to recovered individuals are quite low until 120 days from the beginning
of the campaign. Figure 7.9 shows percentage ripartitions of first doses, second doses
and doses administered to recovered, together with a Least Square (LS ) approxima-
tion with polynomials of order 6. Figure 7.10 compares first and second doses actually
administered in Lombardy with the optimal solution. Figure 7.11 shows Rt indexes for
the optimal strategy and the DPL. Moreover, for both cases we report the evolution
of the deceased variable in Figure 7.12.
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Case 2: Comments The main difference between the dashed (actual policy) and
the continuous curve (optimal policy) in Figure 7.10 is the delay in second doses ad-
ministrations until the 42nd day as in the case with minimization of the infectious
curve. Furthermore, administrations of second doses are higher than in the previous
case: the component of the cost functional related to variations in the exposed curve
tends to completely immunize more people with respect to the previous case (Case 1).

We note that exposed curve in Figure 7.8 is flatter than the same picture in Figure
7.3. This is related to the presence of the Ė component which reinforces stabilization of
the infected-classes curves. The level of deceased reached in this case is similar to the
former one amounting at almost 28500. As for Case 1, we achieve better perfomances
in terms of deceased individuals with respect to the DPL (see Figure 7.12). The
Ė-component stabilizes the exposed curve even though the infectious curve achieves
higher values in the midterm period in this Case with respect to the previous one. This
is only an apparent contradiction: cost functionals having a more complex structure
need more iterations in order to display valuable enhancements.

Doses ripartitions in Figure 7.10 follow qualitatively the behaviour of the imple-
mented campaign in Lombardy, except for the delay in the administrations of second
doses we have previously underlined in Case 1. Even in this case when β increases
second doses administrations increase, first doses decrease. Similarly to the previous
case, Rt index is higher in the DPL than in the optimal strategy, especially in the long
term where the maximum achieved value is 1.1 for the optimal policy, 1.6 for the direct
problem.

We note unnatural peaks in the behaviour of Rt, in the vaccination ripartition
among doses and consequently in the evolution of the recovered variable at the end of
the simulation time. Actually, evolution of the transmission rate β undergoes a deep
discontinuity during the last 10 days of simulation, causing variations on each of the
aforementioned quantities.
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Figure 7.8: Evolution of each state of the SEIHRDVW2 model.
Case: J =

∫ Tf
0 I(t)2 + C1Ė(t)2 dt.
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Figure 7.9: Percentages of first, second doses and doses administered to recovered
individuals, together with Least Square interpolation of order 6. Case:

∫ Tf
0 I(t)2 +

C1Ė(t)2 dt.

Figure 7.10: First and second doses comparison between actual ripartitions in
Lombardy and optimal solution. In the first dose we also consider doses adminis-
tered to recovered. Case:

∫ Tf
0 I(t)2 + C1Ė(t)2 dt.
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Figure 7.11: Rt comparison between the optimal solution (left figure) and DPL

(right figure). Case:
∫ Tf

0 I(t)2 + C1Ė(t)2 dt.

Figure 7.12: Deceased comparison between the optimal solution (left figure) and

DPL (right figure). Case:
∫ Tf

0 I(t)2 + C1Ė(t)2 dt.

Case 3

We consider as third case the minimization of deceased individuals at the final time,
namely

J = D(Tf )
2.

Simulation stops after 93 iterations, reaching the desired tolerance, and the final value
of the cost functional is 8.30e8, corresponding to almost 28800 deads.

In Figure 7.13 we introduce the evolution of each state variable involved in the
SEIHRDVW model. The curve associated with recovered individuals is mildly increasing
until the 120th day of simulation, when it rapidly decreases. We verify that, during the
last period, a significant amount of recovered has been vaccinated. Figure 7.14 shows
percentages of first, second doses and doses administered to recovered, together with the
Least Square approximation with polynomials of order 6. Figure 7.15 compares actual
administrations in Lombardy with first and second doses ripartition of the optimal
solution. Figure 7.16 represents Rt index of the optimal solution versus the same
index relative to the DPL. Figure 7.17 compares deceased evolution for the same two
cases.
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Case 3: Comments The distribution of first doses to recovered people is higher
than in the previous cases standing at around 40% during the intermediate period. It
implies a reduction in administered second doses with respect to the actual policy, see
Figure 7.15, and an almost flat and then decreasing behaviour of the curve of recovered,
see Figure 7.13.

The class of those vaccinated with the first dose is less fluctuating than in the
previous case, and has a deep-sloped increasing during the last 27 days of simulation.
Deceased people at the final time seem to be in line with previous results. Actually, we
obtain a greater amount of deceased individuals in this case with respect to the ones
previously analyzed.

After the inital transient stages of the vaccination campaign, doses ripartition
reaches equilibrium for both three components: indeed, first doses to susceptibles sta-
bilize at around 35-40%, first doses to recovered at 35-40%, and second doses at 20-30%
until the 120th day of simulation (note that daily administrations are not constant).
We remark that first doses administrations reach higher values than the actual policy
implemented in Lombardy within the same period.

Vaccinations to recovered stop on the 120th day of simulation, with almost 1.5e6
individuals belonging to this compartment. On the same day, the basic reproduc-
tion number Rt is decaying under the threshold value 1, and completely vaccinated
individuals exceed 2e6 individuals.

In this scenario, during the last simulation days exposed and infectious curves reach
higher values than in the cases with other cost functionals.
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Figure 7.13: Evolution of each state of the SEIHRDVW2 model. Case: J = D(Tf )2.
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Figure 7.14: Percentages of first, second doses and doses administered to recov-
ered individuals, overlapped with Least Square interpolation of order 6.
Case: D(Tf )2.

Figure 7.15: First and second doses comparison between actual ripartitions in
Lombardy and optimal solution. In the first dose we also consider doses adminis-
tered to recovered. Case: D(Tf )2.
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Figure 7.16: Rt comparison between the optimal solution (left figure) and DPL
(right figure). Case: D(Tf )2.

Figure 7.17: Deceased comparison between the optimal solution (left figure) and
DPL (right figure). Case: D(Tf )2.

Case 4

This paragraph deals with optimization of the more complex scenario where cost func-
tional is constituted by a linear combination of all possible components which have
been previously analyzed case by case, namely

J =

∫ Tf

0

I(t)2 + C1Ė(t)2dt+ C2D
2(Tf ),

where constants C1 and C2 have been fixed at 1e4 and 1e3 respectively. In this way
we have compatibility among orders of magnitude of every addendum of the cost func-
tional.
We aim at comparing solutions coming from Optimal Control Problem 1 and 2, mean-
ing that we optimize the aforementioned cost functional fixing the daily amount of
administrations or the weekly amount of administrations. For recovering a feasible
amount of weekly delivered doses to administer, we extract from data available by the
Italian department of Protezione Civile [92] the amount of daily delivered doses in
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Lombardy in the period of interest, and then we sum these values for weeks1. In the
case corresponding to OC Problem 2, we fix the maximum administration capacity C
at 140000, corresponding to the actual highest value of administrations in Lombardy
until June 2021. If some doses are delivered but not administered in a certain week, the
algorithm considers the exceeding quantity as stocks for the following week. Figures
7.18-7.22 represent states evolutions, doses distributions and Rt indexes for the two
cases.

Case 4: Comments Solutions related to the case of optimization of OC Problem 1
are qualitatively and quantitatively similar to those of Case 2 (

∫ Tf
0
I(t)2 +C1Ė(t)2dt),

meaning that with 100 iterations and tolerance fixed at 1e − 6, it is not possible to
achieve better performances than those obtained in Case 2. Hence, the final time
functional term related to deaths does not play any role in the minimization process
with this parameters setting.

The simulation referring to Problem 2 returns different solutions with respect to the
other cases. At first, from the state analysis we observe that at final time suceptibles
are higher than the other case (respectively almost 6 and 5 millions). Even the curve
representing individuals which have been completely immunized (violet curve) is higher
than in the other case. Less people have been infected in the second case with respect
to the first one. Even the infected peak is lower when we consider OC Problem 2,
namely 53000 infectives versus 55000 of OC Problem 1. Deceased individuals reach
instead almost the same value in both simulations.

In Figure 7.20, we compare doses distribution percentages among the two cases.
We notice that, in the second case, the average ripartition of doses is half-and-half
between first and second administrations to susceptibles. Furthermore, the optimal
solution accounts for days (depicted in red) where no doses are administered since
available doses in the same week have already run out. From Figure 7.21 we deduce
that second doses administrations are by far bigger in the second case than the same
administrations in the first case, meaning that OC Problem 2 intents to completely
immunize as many people as possible.

In conclusion, Rt indexes are comparable without evident differences between the
two cases.

1We remark that during 140 days starting from 01-01-2021 not all delivered doses in Lombardy have
been administered, e.g. on 17th of June 2021 90.9% of total delivered doses have been adminstered.
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Figure 7.18: Evolution of each state of the SEIHRDVW2 model (OC Problem 1).

Case: J =
∫ Tf

0 I(t)2 + C1Ė(t)2dt+ C2D
2(Tf ).
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Figure 7.19: Evolution of each state of the SEIHRDVW2 model (OC Problem 2).

Case: J =
∫ Tf

0 I(t)2 + C1Ė(t)2dt+ C2D
2(Tf ).
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Figure 7.20: Comparison of histograms representing daily percentages of doses
in the case of OC Problem 1 (left figure) and OC Problem 2 (right figure). In the
left figure, days colored in red stand for days without administrations.
Case:

∫ Tf
0 I(t)2 + C1Ė(t)2dt+ C2D

2(Tf ).

Figure 7.21: First and second doses comparison between actual ripartitions in
Lombardy and optimal solution for both formulations of OC Problem 1 (left fig-
ures) and OC Problem 2 (right figures). In the first dose we also consider doses

administered to recovered. Case:
∫ Tf

0 I(t)2 + C1Ė(t)2dt+ C2D
2(Tf ).
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Figure 7.22: Rt comparison between OC Problem 1 (left figure) and OC Problem

2 (right figure). Cost functional:
∫ Tf

0 I(t)2 + C1Ė(t)2dt+ C2D
2(Tf ).
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7.2 Optimal strategies for two vaccines against SARS-

CoV-2

In this section, we aim at investigating optimal vaccination policies obtained taking
into account for vaccine parameters, i.e. vaccine effectivenesses and tmin, tmax elapsing
times among doses, compatible with two vaccines for SARS-CoV-2 disease: the Comir-
naty (BNT162b2), produced by the pharmaceutical firm BioNTech/Pfizer, and the
Vaxzevria (ChAdOx1-S), developed jointly by Oxford University and AstraZeneca.

Many studies, most of which published on the scientific journal The Lancet2, are
devoted to explore peculiar efficacy properties of these authorized vaccines. Since
neither of the two guarantee complete immunity after the cycle is completed, the
SEIHRDVW2 model has to be modified as follows:

Ṡ = −βSI
N
− U1 + µRR + µV V

Ė = β
(S + σV + σWW )I

N
− αE

İ = αE − γI

Ḣ = γI − ωH

Ṙ = (1− f(S, V,W ))ωH − µRR− U2

Ḋ = f(S, V,W )ωH

V̇ = −βσV I
N

+ U1 − U3 − µV V

Ẇ = U2 + U3 − β
σWWI

N
,

(7.1)

where the fatality function reads as

f(S, V,W ) = f̄
S(t− 15) + θσV (t− 15) + θWσWW (t− 15)

S(t− 15) + σV (t− 15) + σWW (t− 15)
.

Through the introduction of parameters σW and θW , representing vaccine efficacies
for transmission and mortality after the second dose, the model is closer to the real
behaviour of the adopted vaccines. However, a multivaccine model contempling all
vaccines that have actually been authorized by EMA would perform better for the
purpose of simulating the complete realistic scenario.

We solve Optimal Control Problem 2 for both vaccines. PGD parameters are set
as follows: tolerance 1e − 6, maximum number of iterations 100, step 1e − 2. We

2https://www.thelancet.com/coronavirus
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fix NDosesDeliveredPerWeek at 385000, the maximum daily administration capacity C at
140000 and the transmission rate β at 0.26172 as in Chapter 6. We refer to Table 6.1
for the Initial Conditions of the state problem. Except for vaccine efficacies, we fix
other parameters as in Table 6.2.

7.2.1 Comirnaty (BioNTech/Pfizer)

We assume to deal with BioNTech/Pfizer vaccine. This vaccine is mRNA-based, i.e
it contains messenger RNA (mRNA) molecules that have inside of them the building
blocks for the SARS-CoV-2 Spike proteins. In the vaccine, the mRNA molecules are
placed in a microscopic lipid vescicle, a bubble that protects the mRNA from being
lost and destroyed by the immune system’s defences as a foreign component, so that
it can enter cells. Once the vaccine has been injected, the mRNA is absorbed into
the cytoplasm of the cells and triggers the synthesis of Spike proteins. Their presence
thus stimulates the immune system’s production of specific antibodies. Vaccination
also activates T-cells that prepare the immune system to respond to further exposure
to the SARS-CoV-2 virus.

We fix tmin = 21 days, tmax = 42 days and vaccine effectivenesses as in Table 7.1.
Those values have been extracted from [110] and [25], clinical trials conducted in order
to get evidence about vaccine’s efficacy.

Parameter Value
σ 0.20
θ 0.074
σW 0.10
θW 0.06

Table 7.1: Effectivenesses of the BioNTech/Pfizer vaccine after one and two ad-
ministrations.

We solve the optimization Problem 2 with two different cost functionals:

� J1 =
∫ Tf

0
I(t)2 dt (left figures);

� J2 = D(Tf )
2 (right figures).

Figure 7.23 represents time evolution of each state variable involved. Notable differ-
ences of the two solutions are represented by the evolution of variables V and W which
are associated with the vaccinated individuals.
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Figure 7.23: State variables evolution of the OC solutions for the BioNTech/Pfizer

vaccine, obtained optimizing J1 =
∫ Tf

0 I(t)2 dt (left figure) and J2 = D(Tf )2 (right
figure).

Figures 7.24 and 7.25 represent the evolution of partially and completely vaccinated
individuals respectively. Left strategy does not assume to administer doses to recovered
during the first 20 days from the beginning, while this is not true for the second
strategy. Variable V (t) is qualitatively similar in the two cases, but quantitatively
distinct among the two. Indeed, minimizing infectious individuals imply to mantain
in the V -class almost 1e6 individuals, while minimizing deaths almost the half (6e5).
The opposite occur with variable W (t), which reaches higher values for the right case
(4e6) than for the left case (3.5e6) in the same timeframe.

We intuitively deduce that completed vaccinated, that are associated with better
vaccine effectivenesses (σW < σ and θW < θ), are preferred to one-dose-vaccinated
individuals for minimizing deaths, even though this implies that less people receive
partial coverage through a single administration (in agreement with Section 6.1).

Figure 7.24: Evolution of single-dose vaccinated individuals with the BioN-
Tech/Pfizer vaccine, obtained optimizing J1 =

∫ Tf
0 I(t)2 dt (left figure) and J2 =

D(Tf )2 (right figure).
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Figure 7.25: Evolution of completely vaccinated individuals with the BioN-
Tech/Pfizer vaccine, obtained optimizing J1 =

∫ Tf
0 I(t)2 dt (left figure) and J2 =

D(Tf )2 (right figure).

Figure 7.26 depicts the evolution of each of the three control variables. Apart from
the initial 20 days of simulation, first and second doses administrations to suscepti-
bles equilibrate to an half-and-half ripartition for almost all times. Instead, recovered
individuals are vaccinated during the first 20 days of simulations just in the second
strategy. The first strategy starts irregular vaccinations to recovered during the last 20
days of simulation. We obtain oscillations in the total amount of administered doses in
both cases, which were not present in simulations with the standard SEIHRDVW2 model.

Figure 7.26: Control variables evolution obtained optimizing J1 =
∫ Tf

0 I(t)2 dt
(left figure) and J2 = D(Tf )2 (right figure). We consider the BioNTech/Pfizer
vaccine.
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7.2.2 Vaxzevria (AstraZeneca)

This section is devoted to the analysis of the results of simulations run with parameters
compatible with AstraZeneca vaccine. This vaccine is composed of a chimpanzee aden-
ovirus unable to replicate (ChAdOx1 - Chimpanzee Adenovirus Oxford 1) and modified
to carry the genetic information to produce the Spike protein of the SARS-CoV-2 virus.

We set vaccine-related parameters as follows: tmin = 21, tmax = 84 and vaccine
efficacies as in Table 7.2. For the calibration of those parameters, we refer to [6] and
[116].

Parameter Value
σ 0.33
θ 0.24
σW 0.25
θW 0.18

Table 7.2: Effectivenesses of the AstraZeneca vaccine after one and two adminis-
trations.

We simulate the problem with two different cost functionals, as in the BioNTech/P-
fizer case:

� J1 =
∫ Tf

0
I(t)2 dt (left figures);

� J2 = D(Tf )
2 (right figures).

Figures 7.27-7.29 show time evolutions of all states with a particular focus on classes
regarding the vaccination process (V (t), W (t) respectively).

In both left and right cases, susceptibles decrease to almost 5e6, whilst completed
cycle vaccinated individuals achieve almost 4e6. As we observe in Figure 7.28, V (t)
has a growing trend during the first 20 days from the beginning of the simulation. On
the 20th day, second doses administrations to susceptibles start and V (t) decreases
reaching different values in the two cases (respectively 1e6 and 5.5e5 for left and right
case).

Completed vaccinated people have a growing trend from the 20th to 147th day in
both cases. While for the infectious case recovered individuals have not been vaccinated
during the first period, this is not true for the other case (Figure 7.29).
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Figure 7.27: State variables evolution of the OC solutions for the AstraZeneca
vaccine, obtained optimizing J1 =

∫ Tf
0 I(t)2 dt (left figure) and J2 = D(Tf )2 (right

figure).

Figure 7.28: Evolution of single-dose vaccinated individuals with the AstraZeneca
vaccine, obtained optimizing J1 =

∫ Tf
0 I(t)2 dt (left figure) and J2 = D(Tf )2 (right

figure).
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Figure 7.29: Evolution of completely vaccinated individuals with the AstraZeneca
vaccine, obtained optimizing J1 =

∫ Tf
0 I(t)2 dt (left figure) and J2 = D(Tf )2 (right

figure).

Figure 7.30 represents the evolution of each control variable for the two optimal
solutions. We interpret these results in the following way: during the first 20 days, when
infectious classes are not at their highest levels, the strategy minimizing deaths tries
to create as much immunized people as possible, distributing half doses to recovered
and half doses to susceptibles. For minimizing infectious, in the same period doses are
administered exclusively to susceptibles. Then, both solutions agree in administering
equally first and second doses to susceptibles, which are the most fragile individuals in
the infectious process, delaying immunisation of recovered.

Finally, oscillations of first and second doses, that are present from the beginning
of the simulation in the left case and from the 90th day in the right case, imply that
the number of total daily administered doses is not constant. This is an unexpected
result in a scenario where parameters have been set to constants. Indeed, oscillations
are probably caused by the lack of convergence of the minimization algorithm, which
has not reached the desired tolerance.
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Figure 7.30: Control variables evolution obtained optimizing J =
∫ Tf

0 I(t)2 dt
(left figure) and J = D(Tf )2 (right figure). We consider the AstraZeneca vaccine.

Although we considered two vaccines with different values of effectivenesses, we
do not outline any significant discrepancies in the optimal vaccination strategies for
Comirnaty and Vaxzevria vaccines: both solutions of OC Problem 2 minimizing J1

assest to an equal ripartition of first and second doses, and a similar strategy, apart
from the first 20 days of simulation, is optimal to minimize J2, in agreement with
Section 6.4.3.
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Chapter 8

Conclusions

With the aim of contributing to the panorama of mathematical modeling for the cur-
rent pandemic in Italy, in this work we investigated the numerical modelling of the
optimal vaccination campaign for the SARS-CoV-2 epidemic disease minimizing the
infectious spread or the number of deaths caused by the infection itself. We formulated
a new compartmental epidemic model, named SEIHRDVW, incorporating the vaccination
dynamics. We proposed and solved two different Optimal Control problems, based on
the knowledge of available daily or weekly vaccines supply. We implemented an in-
novative optimisation algorithm, the Multi-Projected Gradient Descent, which returns
the optimal vaccination campaign satisfying constraints imposed by pharmacological
factors and availability of doses.

For our purposes, we ran several numerical experiments testing the model both in
artificial and semi-realistic scenarios. In particular the semi-realistic scenario is related
to the vaccination campaign in Lombardy beginning on the 1st January 2021. We
considered the impact on the optimal vaccination policy of:

a. Social Restrictions. We determined plausible values for three different levels
of social restrictions and solved optimal control problems for minimizing the
infectious spread. We obtained that the optimal vaccination strategy assests
to precise percentage ripartition among doses when restrictions become more
prohibitive;

b. Variants. We underlined adjustments in the optimal vaccination strategy when
more transmissible virus strains come out. In this case a fundamental role is
played by administrations to recovered, that increase in the optimal solution
with respect to the one referred to the base strain. We also accounted for variants
affecting vaccine effectivenesses, without noting any evident discrepancy among
optimal policies in each case of study;

c. Time-dependant transmission rate and vaccinations supply. From on-
line available data for Lombardy region, we extracted approximations of the daily
doses administrations, weekly delivered doses and a time-variable transmission
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rate. We compared the optimal vaccination policy with the solution of the di-
rect SEIHRDVW problem setting daily administrations as in the real vaccination
campaign in Lombardy. The most relevant differences between the two solutions
consisted in the delay in the beginning of administrations of second doses, which
was a common feature of optimal solutions with different cost functionals. The
heterogeneity of daily administrations made us difficult to extrapolate a concrete
optimal vaccination strategy;

d. Two vaccines for protecting against COVID-19. We aimed at highlight-
ing differences and similarities between optimal vaccination policies assuming to
administer BioNTech/Pfizer and AstraZeneca vaccines. Actually, the solutions
of the two optimal control problems fixing the amount of weekly delivered doses
have shown no significant discrepancies with the chosen parameter setting.

Future Developments

The mathematical models and the algorithm we introduced in this dissertation are
definitely beneficial for orienting qualitatively optimal vaccination campaigns. At the
same time, they are useless for quantitative predictions without proceeding with the
following improvements, which can be objectives of future researches:

a. Calibration of the parameters. For running realistic simulations, we need
to extimate values of parameters and initial conditions with an high level of ac-
curacy. We can address the calibration problem through a Montecarlo Markov
Chain approach, as in [89], through bayesian statistics techniques. Another pos-
sibility is to solve the optimization Classical Inverse Problem (CIP), similar to the
one introduced in Section 3.4, for each of the parameters involved in SEIHRDVW.
Moreover, we can tackle the problem through the implementation of a Residual
Neural Network (ResNet). Indeed, ResNets have been recently investigated as
solutors of optimal control problems analogous to the CIP (see [10]);

b. Extension of the model. The SEIHRDVW model we considered is caged into
some hypotheses that can be relaxed in order to collect more realistic and prac-
ticable vaccination policies. Here we focus on three possible directions:

b1. with the purpose of capturing the variable response to infection by individ-
uals of different ages, a multi-age model can be formulated, increasing the
computational demand of each step of the Optimal Control algorithm;

b2. since inner and outer fluxes across the domain of interest were not contem-
plated in the previous model, we can expand the SEIHRDVW to a multi-city
formulation. For instance, the mobility component can be represented by
a directed graph having cities as vertices and arcs for ingoing or outgoing
travels, as in [4];
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b3. until September 2021 four different vaccines against SARS-CoV-2 have been
contemporarily administered in the Italian scenario. Hence, we can build a
multi-vaccine model as the one proposed in Figure 8.1.

Figure 8.1: Multi-vaccine model englobing homologous and heterologous vaccina-
tion policies for SARS-CoV-2. Legend: S, Susceptibiles; E, Exposed; I, Infected;
H, Healing; R, Recovered; D, Deceased; P1, Vaccinated with first dose BioN-
Tech/Pfizer; P2, Vaccinated with two doses of BioNTech/Pfizer; A1, Vaccinated
with first dose AstraZeneca; AA, Vaccinated with two doses of AstraZeneca; AP,
Vaccinated with first dose of AstraZeneca and second dose of BioNTech/Pfizer;
AM, Vaccinated with first dose of AstraZeneca and second dose of Moderna; J,
Vaccinated with monodose Johnson & Johnson vaccine; M1, Vaccinated with first
dose of Moderna dose 1; M2, Completely vaccinated with two doses of Moderna.
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Appendix A

Attractivity and stability: an
example

Consider X = R2 and the following system in polar coordinates{
ṙ = r(1− r),
θ̇ = r(1− cos θ).

(A.1)

One equilibrium point for the system is x̄ = (r = 1, θ = 0). In the case r(0) = 1, θ(0) =
θ0 6= 0 the solution is given by

θ(t) = π + 2 arctan(cot
θ0

2
+ t),

therefore whatever neighbourhood of x̄ we can choose, the orbit is not confined in it
even though, as θ(t) approaches 2π, it slows down towards the equilibrium point.

Besides, integrating the evolution of r(t) in the dynamical system we obtain,

r(t) =
r0e

t

1− r0 + r0et
,

which is bounded and tends to 1 as t → +∞ for any r0. Therefore, solutions tend
to the equilibrium point, even though, taken an arbitrary small neighbourhood U , the
solution with θ0 > 0 will not stay confined in the interval.
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Appendix B

Functions with bounded integral
and first derivative: Theorem

Theorem 12. Let f(t) : R+ → R+ a differentiable function such that:

1.
∫∞

0
f(t) dt <∞;

2. f ′(t) < k <∞ ∀ t ∈ R+.

Then,
lim
t→∞

f(t) = 0.

Proof. Assume by contradiction that f(t) 9 0. It implies that, fixing an arbitrary
ε > 0,

∃{tn}n∈N →∞, f(tn) > ε.

Hence, below the graph of f we can construct a sequence of triangles {Tn}n∈N centered
on each tn such that

area(Tn) ∝ 1

k2
,

independently on n. Then,∫ ∞
0

f(t) dt >
∞∑
n=0

area(Tn) ∝
∞∑
n=0

1

k2
=∞,

which contradicts hypothesis 1.
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Appendix C

Optimization Codes

We report below the python3 code related to the solution of Optimal Control Problem
1 (with SEIHRDVW2 model as state problem), where we fixed the daily amount of doses
to administer.

1 import jax

2 import os

3 os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir =/usr/lib/cuda"

4 os.environ["CUDA_HOME"]="/usr/lib/cuda"

5 import sys

6 import jax.numpy as jnp

7 import numpy as np

8 import matplotlib.pyplot as plt

9 import math

10 import pandas as pd

11

12 #SEIHRDVW evolution function

13 def SEIHRDVW(t, state , params , U1 , U2 , U3 , beta , state_15_0 ,

state_15_1):

14

15 # alpha: inverse of the incubation time

16 # gamma: infectous traspassing rate

17 # muR: re -infection rate from recovered class

18 # muV: re -infection rate from vaccinated class

19 # sigma: fraction of vaccine effectiveness on infection trasmission

20 # omega: hospedalizing rate

21 # theta: fraction for accounting for vaccine effectiveness on

effects reduction

22 # f: fatality rate

23 # state_15: contains S and V 15 days before

24

25 alpha , gamma , muR , muV , sigma , omega , theta , f= params

26

27 N = np.sum(state)

28 S = state [0]

29 E = state [1]

141



30 I = state [2]

31 H = state [3]

32 R = state [4]

33 D = state [5]

34 V = state [6]

35 W = state [7]

36

37 dSdt = - beta * S * I / N - U1 + muR * R + muV * V

38 dEdt = beta * (S + sigma * V) * I / N - alpha * E

39 dIdt = alpha * E - gamma * I

40 dHdt = gamma * I - omega * H

41 dRdt = (1.0 - f * (S + theta * sigma * V) / (S + sigma * V)) *

omega * H - muR * R - U2

42 dDdt = f * (state_15_0 + theta * sigma * state_15_1) / (state_15_0

+ sigma * state_15_1) * omega * H

43 dVdt = - sigma * beta * V * I / N + U1 - muV * V - U3

44 dWdt = U2 + U3

45

46 return jnp.array([dSdt , dEdt , dIdt , dHdt , dRdt , dDdt , dVdt , dWdt])

47

48

49 # Runge -Kutta 4 method for the state SEIHRDVW problem

50 def solve_rk4(fun , t_span , y0 , h, params , controls , states_15_start):

51 nsteps = int(( t_span [1]- t_span [0])/h)

52 y = np.zeros((len(y0),nsteps +1))

53 y[:,0] = y0

54 U1 , U2 , U3 , beta = control_at_time(controls , 0)

55

56 for i in range(nsteps):

57 t = int(t_span [0]+i*h)

58 U1_1 , U2_1 , U3_1 , beta_1 = control_at_time(controls , t+1)

59 y0 = y[:,i]

60

61 if i >= 15:

62

63 k1=fun(t , y0 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

64 k2=fun(t+0.5*h, y0+0.5*h*k1 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

65 k3=fun(t+0.5*h, y0+0.5*h*k2 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

66 k4=fun(t+ h, y0+ h*k3 , params , U1_1 , U2_1 , U3_1 ,

beta_1 , y[0,i-15], y[6, i -15])

67 y[:,i+1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

68

69 else:

70

71 k1=fun(t , y0 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])

72 k2=fun(t+0.5*h, y0+0.5*h*k1 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])
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73 k3=fun(t+0.5*h, y0+0.5*h*k2 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])

74 k4=fun(t+ h, y0+ h*k3 , params , U1_1 , U2_1 , U3_1 ,

beta_1 , states_15_start [0][i], states_15_start [1][i])

75 y[:,i+1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

76

77 U1 = U1_1

78 U2 = U2_1

79 U3 = U3_1

80 beta = beta_1

81

82 return y

83

84

85 # Function which returns tuple of controls and transmission rate at a

specified time

86 def control_at_time(controls , t):

87

88 if (isinstance(t,int)):

89 t1 = t

90 else:

91 t1 = t.astype(int)

92

93 return (controls [0][t1], controls [1][t1], controls [2][t1],

controls [3][t1])

94

95

96 # Runge -Kutta 4 method applied for the costate (multipliers) problem

97 def solve_rk4_H(fun , t_span , y0 , h, state , params , controls ,

multipliers , states_15_start):

98 nsteps = int(( t_span [1]- t_span [0])/h)

99 y = np.zeros((len(y0),nsteps +1))

100 y[:,nsteps] = y0

101 U1 , U2 , U3 , beta = control_at_time(controls , nsteps)

102

103 for i in range(nsteps):

104

105 t = t_span [0]+i*h

106

107 y0 = y[:,nsteps - i]

108 U1_1 , U2_1 , U3_1 , beta_1 = control_at_time(controls , nsteps -

i - 1)

109

110 if t >= 15:

111

112 k1=-fun(t , params , state[:, nsteps - i], U1 , U2 , U3

, beta , y0 , state[0, nsteps -i -15], state[6, nsteps - i

-15])

113 k2=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k1, state[0, nsteps -i -15], state[6, nsteps - i

-15])
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114 k3=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k2, state[0, nsteps -i -15], state[6, nsteps - i

-15])

115 k4=-fun(t+ h, params , state[:, nsteps - i - 1], U1_1 ,

U2_1 , U3_1 , beta_1 , y0+ h*k3 , state[0, nsteps -i -15], state

[6, nsteps - i -15])

116 y[:,nsteps - i - 1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

117

118 else:

119 k1=-fun(t , params , state[:, nsteps - i], U1 , U2 , U3

, beta , y0 , states_15_start [0][ int(t)], states_15_start

[1][ int(t)])

120 k2=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k1, states_15_start [0][ int(t)], states_15_start

[1][ int(t)])

121 k3=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k2, states_15_start [0][ int(t)], states_15_start

[1][ int(t)])

122 k4=-fun(t+ h, params , state[:, nsteps - i - 1], U1_1 ,

U2_1 , U3_1 , beta_1 , y0+ h*k3 , states_15_start [0][ int(t)],

states_15_start [1][ int(t)])

123 y[:,nsteps - i - 1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

124 U1 = U1_1

125 U2 = U2_1

126 U3 = U3_1

127 beta = beta_1

128

129 return y

130

131

132 # Definition of the Lagrangian function. Choose the Lagrangian to

optimize by switching on/off returns (lines 149 -152)

133 def Lagrangian(t, params , state , U1 , U2 , U3 , beta):

134

135 alpha , gamma , muR , muV , sigma , omega , theta , f= params

136

137 N = np.sum(state)

138

139 S = state [0]

140 E = state [1]

141 I = state [2]

142 H = state [3]

143 R = state [4]

144 D = state [5]

145 V = state [6]

146 W = state [7]

147

148

149 #return 0.0 #For DFinal only

150 #return I**2

151 #return (beta * (S + sigma * V) * I / N - alpha * E)**2 #E_dot
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152 return I**2 + 1e4 * (beta * (S + sigma * V) * I / N - alpha * E

)**2 #I_squared + E_dot

153

154

155 # Definition of Hamiltonian Function

156 def Hamiltonian(t, params , state , U1 , U2 , U3 , beta , multipliers ,

states_15_0 , states_15_1):

157

158 return Lagrangian(t, params , state , U1 , U2 , U3 , beta) + jnp.dot(

multipliers , SEIHRDVW(t, state , params , U1 , U2 , U3 , beta ,

states_15_0 , states_15_1))

159

160

161 # Function evaluating the cost functional to optimize

162 def cost_functional(params , state , controls , Tf):

163 E = state [1,:]

164 I = state [2,:]

165 D = state [5,:]

166

167 #cost_d = 1e3 * D[ -1]**2 # Dfinal + infectious

168 #cost_d = D[ -1]**2 # Dfinal only

169 cost_d = 0.0 # No final time control

170 cost_i = 0.0

171

172 for i in range(Tf + 1):

173 U1, U2, U3, beta = control_at_time(controls , i)

174 if i == 0 or i == Tf :

175 cost_i += Lagrangian(i, params , state[:,i], U1 , U2 , U3 ,

beta)/2

176 else:

177 cost_i += Lagrangian(i, params , state[:,i], U1 , U2 , U3 ,

beta)

178 cost = cost_i + cost_d

179

180 return cost

181

182

183 # Function plotting states evolution

184 def plot(state , path):

185 S = state [0]

186 E = state [1]

187 I = state [2]

188 H = state [3]

189 R = state [4]

190 D = state [5]

191 V = state [6]

192 W = state [7]

193

194 t = np.linspace(0, len(S), len(S))

195

196 Sp , = plt.plot(S,’b’, label = ’Susceptibles ’)
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197 Ep , = plt.plot(E,’y’, label = ’Exposed ’)

198 Ip , = plt.plot(I,’r’, label = ’Infectives ’)

199 Hp , = plt.plot(H, ’gold’, label = ’Healing ’)

200 Rp , = plt.plot(R,’g’, label = ’Recovered ’)

201 Dp , = plt.plot(D,’k’, label = ’Deads ’)

202 Vp , = plt.plot(V, ’c’, label = ’Vaccinated ’)

203 Wp , = plt.plot(W, ’m’, label = ’Completely Vaccinated ’)

204

205 plt.legend(handles = [Sp , Ep , Ip , Hp , Rp , Dp , Vp , Wp])

206 plt.title(’State evolution ’)

207 plt.savefig(path + "state.png")

208 plt.show()

209

210 S2p , = plt.plot(S, ’b’, label = ’Susceptibles ’)

211 plt.title(’Susceptibles ’)

212 plt.savefig(path + "susceptibles.png")

213 plt.show()

214

215 I2p , = plt.plot(I, ’r’, label = ’Infectives ’)

216 plt.title(’Infectives ’)

217 plt.savefig(path + "infectives.png")

218 plt.show()

219

220 E2p , = plt.plot(E, ’g’, label = ’Exposed ’)

221 plt.title(’Exposed ’)

222 plt.savefig(path + "exposed.png")

223 plt.show()

224

225 H2p , = plt.plot(H, ’c’, label = ’Healing ’)

226 plt.title(’Healing ’)

227 plt.savefig(path + "healing.png")

228 plt.show()

229

230 R2p , = plt.plot(R, ’g’, label = ’Recovered ’)

231 plt.title(’Recovered ’)

232 plt.savefig(path + "recovered.png")

233 plt.show()

234

235 D2p , = plt.plot(D, ’k’, label = ’Deceased ’)

236 plt.title(’Deceased ’)

237 plt.savefig(path + "deceased.png")

238 plt.show()

239

240 V2p , = plt.plot(V, ’c’, label = ’Vaccinated - first dose’)

241 plt.title(’Vaccinated - first dose’)

242 plt.savefig(path + "vaccinated_V.png")

243 plt.show()

244

245 W2p , = plt.plot(W, ’m’, label = ’Vaccinated - second dose’)

246 plt.title(’Vaccinated - completed cycle’)

247 plt.savefig(path + "vaccinated_W.png")
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248 plt.show()

249

250

251 # Function plotting multipliers evolution

252 def plot_multi(multipliers , path):

253 m_S = multipliers [0]

254 m_E = multipliers [1]

255 m_I = multipliers [2]

256 m_H = multipliers [3]

257 m_R = multipliers [4]

258 m_D = multipliers [5]

259 m_V = multipliers [6]

260 m_W = multipliers [7]

261

262 m_Sp , = plt.plot(m_S ,’b’, label = ’Susceptibles multiplier ’)

263 m_Ep , = plt.plot(m_E ,’y’, label = ’Exposed multiplier ’)

264 m_Ip , = plt.plot(m_I ,’r’, label = ’Infectives multiplier ’)

265 m_Hp , = plt.plot(m_H , ’gold’, label = ’Healing multiplier ’)

266 m_Rp , = plt.plot(m_R ,’g’, label = ’Removed multiplier ’)

267 m_Dp , = plt.plot(m_D ,’k’, label = ’Deads multiplier ’)

268 m_Vp , = plt.plot(m_V , ’c’, label = ’Vaccinated multiplier ’)

269 m_Wp , = plt.plot(m_W , ’m’, label = ’Completely Vaccinated

multiplier ’)

270

271 plt.legend(handles = [m_Sp , m_Ep , m_Ip , m_Hp , m_Rp , m_Dp , m_Vp ,

m_Wp])

272 plt.title(’Multipliers evolution ’)

273 plt.savefig(path + "multipliers.png" )

274 plt.show()

275

276

277 # Function plotting controls evolution

278 def plot_controls(controls , vax_history , path , prima_history ,

seconda_history):

279

280 U1 = controls [0]

281 U2 = controls [1]

282 U3 = controls [2]

283 beta = controls [3]

284

285 U1p , = plt.plot(U1 , label = ’First dose Susceptibles ’)

286 plt.title(’Prima dose Susceptibles ’)

287 plt.savefig(path + "prima_dose_S.png")

288 plt.show()

289

290 U2p , = plt.plot(U2 , label = ’First dose Recovered ’)

291 plt.title(’Prima dose Recovered ’)

292 plt.savefig(path + "prima_dose_R.png")

293 plt.show()

294

295 U3p , = plt.plot(U3 , label = ’Second doses’)
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296 secondaverap , = plt.plot(seconda_history , linestyle = ’dashed ’,

label = ’Second doses - LOM’)

297 plt.legend(handles = [U3p , secondaverap ])

298 plt.title(’Second doses’)

299 plt.savefig(path + "seconda_dose.png")

300 plt.show()

301

302 primadosep , = plt.plot(U1 + U2, label = ’First doses ’)

303 primadoseverap , = plt.plot(prima_history , linestyle = ’dashed ’,

label = ’First doses - LOM’)

304 plt.legend(handles = [primadosep , primadoseverap ])

305 plt.title(’First doses’)

306 plt.savefig(path + "prime_dosi_comp.png")

307 plt.show()

308

309 Usump , = plt.plot(U1 + U2 + U3 , label = ’Total vaccinations ’)

310 vax_histp , = plt.plot(vax_history , label = ’Real Vaccinations ’)

311 plt.legend(handles = [Usump , vax_histp ])

312 plt.title(’Total Vaccinations ’)

313 plt.savefig(path + "vax_tot.png")

314 plt.show()

315

316 betap , = plt.plot(beta , label = ’Beta’)

317 plt.title(’Beta’)

318 plt.savefig(path + "beta.png")

319 plt.show()

320

321 vaccination1Sp , = plt.plot(U1 , ’m’, label = ’First dose

Susceptibles ’)

322 vaccination1Rp , = plt.plot(U2 , ’y’, label = ’First dose Recovered

’)

323 vaccination2p , = plt.plot(U3 , ’g’, label = ’Second dose’)

324

325 plt.legend(handles = [vaccination1Sp , vaccination1Rp ,

vaccination2p ])

326 plt.title(’Vaccination summary ’)

327 plt.savefig(path + "vax_sum.png")

328 plt.show()

329

330

331 # Function plotting controls evolution without information about

ripartition of first and second doses

332 def plot_controls_2(controls , vax_history , path):

333

334 U1 = controls [0]

335 U2 = controls [1]

336 U3 = controls [2]

337 beta = controls [3]

338

339 U1p , = plt.plot(U1 , label = ’First dose Susceptibles ’)

340 plt.title(’First dose Susceptibles ’)
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341 plt.savefig(path + "prima_dose_S.png")

342 plt.show()

343

344 U2p , = plt.plot(U2 , label = ’First dose Recovered ’)

345 plt.title(’First dose Recovered ’)

346 plt.savefig(path + "dose_R.png")

347 plt.show()

348

349 U3p , = plt.plot(U3 , label = ’Second dose’)

350 plt.title(’Second dose’)

351 plt.savefig(path + "seconda_dose.png")

352 plt.show()

353

354 Usump , = plt.plot(U1 + U2 + U3 , label = ’Total vaccinations ’)

355 vax_histp , = plt.plot(vax_history , label = ’Real vaccinations ’)

356

357 plt.legend(handles = [Usump , vax_histp ])

358 plt.title(’Total vaccinations ’)

359 plt.savefig(path + "vax_tot.png")

360 plt.show()

361

362 betap , = plt.plot(beta , label = ’Transmission Rate’)

363 plt.title(’Transmission Rate’)

364 plt.savefig(path + "beta.png")

365 plt.show()

366

367 vaccination1Sp , = plt.plot(U1 , ’m’, label = ’First dose

Susceptibles ’)

368 vaccination1Rp , = plt.plot(U2 , ’y’, label = ’First dose Recovered

’)

369 vaccination2p , = plt.plot(U3 , ’g’, label = ’Second dose’)

370

371 plt.legend(handles = [vaccination1Sp , vaccination1Rp ,

vaccination2p ])

372 plt.title(’Vaccination summary ’)

373 plt.savefig(path + "vax_sum.png")

374 plt.show()

375

376

377 # Function plotting the reproduction number

378 def plot_Rt(state , controls , params , Tf , path):

379

380 S = state [0]

381 E = state [1]

382 I = state [2]

383 H = state [3]

384 R = state [4]

385 D = state [5]

386 V = state [6]

387 W = state [7]

388
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389 alpha , gamma , muR , muV , sigma , omega , theta , f= params

390

391 t = np.linspace(0, len(S), len(S))

392

393 N = 10103969

394 Rt = np.zeros(Tf+1)

395

396 gamma_2 = 1/9

397

398 for i in range(Tf+1):

399

400 Rt[i] = controls [3][i] / gamma * (S[i] + sigma * V[i]) / N

401

402 Rtp , = plt.plot(Rt , ’m’, label = ’Rt’)

403 plt.title(’Rt’)

404 plt.savefig(path + "Rt.png")

405 plt.show()

406 np.savetxt(path + ’Rt.csv’, Rt , delimiter = ’,’)

407

408

409 # Function plotting percentages of first , second doses and doses to

recovered

410 def plot_histogram(controls , z1 , Tf , path):

411 prima_dose_perc = (controls [0] ) / z1

412 dose_r_perc = controls [1] / z1

413 seconda_dose_perc = controls [2] / z1

414 prima_list = list(prima_dose_perc)

415 rec_list = list(dose_r_perc)

416 seconda_list = list(seconda_dose_perc)

417

418 t = list(range(Tf+1))

419

420 plt.bar(t, prima_list , color = ’m’, width = 0.25, edgecolor = ’m’

, label = ’Percentage - first doses’)

421 plt.bar(t, seconda_list , color = ’c’, width = 0.25, edgecolor = ’

c’, bottom = prima_dose_perc , label = ’Percentage - second doses ’)

422 plt.bar(t, rec_list , color = ’g’, width = 0.25, edgecolor = ’g’,

bottom = prima_dose_perc + seconda_dose_perc , label = ’Percentage

- recovered doses’)

423

424 plt.legend ([’Percentage of first doses’, ’Percentage of second

doses’, ’Percentage of doses to recovered ’])

425 plt.title(’Doses percentages ’)

426 plt.savefig(path + "hist.png")

427 plt.show()

428

429

430 # Checking validity of the constraint about maximum daily doses to

administer

431 def check1(U1 , U2 , U3 , U_ub): #CONSTRAINT 1

432 return (U1 + U2 + U3 <= U_ub)
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433

434 # Checking validity of the constraint about minimum elapsing time

among doses

435 def check2(U1_vec , U2_vec , U3_vec): #CONSTRAINT 2

436 return (np.sum(U3_vec) <= np.sum(U1_vec))

437

438 # Checking validity of the constraint about maximum elapsing time

among doses

439 def check3(U1_vec , U2_vec , U3_vec): #CONSTRAINT 3

440 return (np.sum(U3_vec) >= np.sum(U1_vec))

441

442

443 # Algorithm projecting vector v on the simplex \sum_{n=0}^{N} v_n = z

444 def projection_simplex_sort(v, z=1):

445

446 n_features = v.shape [0]

447 u = np.sort(v)[::-1]

448 cssv = np.cumsum(u) - z

449 ind = np.arange(n_features) + 1

450 cond = u - cssv / ind > 0

451

452 rho = ind[cond ][-1]

453 theta = cssv[cond ][-1] / float(rho)

454 w = np.maximum(v - theta , 0)

455 return w

456

457

458 # MULTI -PROJECTION ALGORITHM

459 def proj_complete(controls , z1 , state , Tf): #U1[0] U2[0] U3[0] fixed

460

461 k = 30 #maximum number of iterations of the MP Algorithm

462

463 # 1st projection on the simplex with z = z1[j]

464 for j in range(Tf + 1):

465 if j >= 19 :

466 vec = np.array([ controls [0][j], controls [1][j], controls

[2][j]])

467 vec = projection_simplex_sort(vec , z1[j])

468 controls [0][j] = max(min(vec[0], state[0,j-1]) ,0)

469 controls [1][j] = max(min(vec[1], state[4,j-1]) ,0)

470 controls [2][j] = max(min(vec[2], state[6,j-1]) ,0)

471

472 else:

473 controls [2][j] = 0.0

474 vec = np.array([ controls [0][j], controls [1][j]])

475 vec = projection_simplex_sort(vec , z1[j])

476 if j == 0 :

477 controls [0][j] = max(min(vec[0], state[0,j]) ,0)

478 controls [1][j] = max(min(vec[1], state[4,j]) ,0)

479 else:

480 controls [0][j] = max(min(vec[0], state[0,j-1]) ,0)
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481 controls [1][j] = max(min(vec[1], state[4,j-1]) ,0)

482

483 # MULTI -PROJECTION CYCLE

484 for i in range(0,k):

485

486 #STEP1: Projection on maximum elapsing time constraint

487 for j in range(Tf+1):

488 if ((j>=42) & (np.sum(controls [0][:j -42+1] ) - np.sum(

controls [2][:j+1]) > 0)):

489

490 vec2 = controls [2][:j+1]

491 vec2 = projection_simplex_sort(vec2 , np.sum(controls

[0][:j -42+1]))

492 controls [2][:j+1] = np.minimum(vec2 , z1[:j+1])

493 for s in range(j+1):

494 vec4 = np.array ([ controls [0][s], controls [1][s]])

495

496 if (z1[s] - controls [2][s] <= 0):

497 vec4 = np.zeros(len(vec4))

498 else:

499 vec4 = projection_simplex_sort(vec4 , max(z1[s

] - controls [2][s],0))

500 if s == 0 :

501 controls [0][s] = max(min(vec4[0], state[0,s])

,0)

502 controls [1][s] = max(min(vec4[1], state[4,s])

,0)

503 else:

504 controls [0][s] = max(min(vec4[0], state[0,s

-1]) ,0)

505 controls [1][s] = max(min(vec4[1], state[4,s

-1]) ,0)

506

507 #STEP2: Projection on maximum daily administrations

constraint

508 for j in range(Tf + 1):

509

510 if j >= 19 :

511 vec3 = np.array([ controls [0][j], controls [1][j],

controls [2][j]])

512 vec3 = projection_simplex_sort(vec3 , z1[j])

513 controls [0][j] = max(min(vec3[0], state[0,j-1]) ,0)

514 controls [1][j] = max(min(vec3[1], state[4,j-1]) ,0)

515 controls [2][j] = max(min(vec3[2], state[6,j-1]) ,0)

516

517

518 else:

519 controls [2][j] = 0.0

520 vec3 = np.array([ controls [0][j], controls [1][j]])

521 vec3 = projection_simplex_sort(vec3 , z1[j])

522 if j == 0 :
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523 controls [0][j] = max(min(vec3[0], state[0,j]) ,0)

524 controls [1][j] = max(min(vec3[1], state[4,j]) ,0)

525 else:

526 controls [0][j] = max(min(vec3[0], state[0,j-1])

,0)

527 controls [1][j] = max(min(vec3[1], state[4,j-1])

,0)

528

529 #STEP3: Projection on minimum elapsing time constraint

530 for j in range(Tf+1):

531 if ((j>=19) & (np.sum(controls [0][:j -19+1]) - np.sum(

controls [2][:j+1]) < 0)):

532 vec2 = controls [2][:j+1]

533 vec2 = projection_simplex_sort(vec2 , np.sum(controls

[0][:j -19+1]))

534 controls [2][:j+1] = np.minimum(vec2 , z1[:j+1])

535 for s in range(j+1):

536 vec4 = np.array ([ controls [0][s], controls [1][s]])

537

538 if (z1[s] - controls [2][s] <= 0):

539 vec4 = np.zeros(len(vec4))

540 else:

541 vec4 = projection_simplex_sort(vec4 , max(z1[s

] - controls [2][s],0))

542 if s == 0 :

543 controls [0][s] = max(min(vec4[0], state[0,s])

,0)

544 controls [1][s] = max(min(vec4[1], state[4,s])

,0)

545 else:

546 controls [0][s] = max(min(vec4[0], state[0,s

-1]) ,0)

547 controls [1][s] = max(min(vec4[1], state[4,s

-1]) ,0)

548

549 #STEP2bis: Projection on maximum daily administrations

constraint

550 for j in range(Tf + 1):

551

552 if j >= 19 :

553 vec3 = np.array([ controls [0][j], controls [1][j],

controls [2][j]])

554 vec3 = projection_simplex_sort(vec3 , z1[j])

555 controls [0][j] = max(min(vec3[0], state[0,j-1]) ,0)

556 controls [1][j] = max(min(vec3[1], state[4,j-1]) ,0)

557 controls [2][j] = max(min(vec3[2], state[6,j-1]) ,0)

558

559

560 else:

561 controls [2][j] = 0.0

562 vec3 = np.array([ controls [0][j], controls [1][j]])
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563 vec3 = projection_simplex_sort(vec3 , z1[j])

564 if j == 0 :

565 controls [0][j] = max(min(vec3[0], state[0,j]) ,0)

566 controls [1][j] = max(min(vec3[1], state[4,j]) ,0)

567 else:

568 controls [0][j] = max(min(vec3[0], state[0,j-1])

,0)

569 controls [1][j] = max(min(vec3[1], state[4,j-1])

,0)

570

571 return controls

572

573

574 def main(argv):

575 Tf = int(argv [0])

576

577 dt = 1

578 print(’Initializing ...’)

579 print(’

--------------------------------------------------------------’)

580

581 # alpha: inverse of the incubation time

582 # gamma: infectous spassing rate

583 # muR: re -infection rate from recovered class

584 # muV: re -infection rate from vaccinated class

585 # sigma: fraction of vaccine effectiveness on infection

trasmission

586 # omega: hospedalizing rate

587 # theta: fraction for accounting for vaccine effectiveness on

effects reduction

588 # f: fatality rate

589

590

591 #vax_history = np.array (75e3 * np.ones(Tf + 1))

592 #vaccine_dataframe = pd.read_csv(’vaccini_grouped_lombardia.csv ’,

sep =’,’)

593 #vax_history = vaccine_dataframe[’totale ’].to_numpy ()

594

595 #vax_history = np.array (50e3 * np.ones(Tf + 1))

596

597 #vax_history = np.array (35e3 * np.ones(Tf+1))

598 #vax_history [0:60] = 10e3 * np.ones (60)

599 #vax_history [60:101] = 25e3 * np.ones (41)

600

601 # Definition of daily amount of doses

602 vaccine_dataframe = pd.read_csv(’

vaccini_grouped_lom_ALL_29_maggio.csv’, sep =’,’)

603 vax_history = vaccine_dataframe[’totale ’]. to_numpy ()

604 prima_history = vaccine_dataframe[’prima_dose ’]. to_numpy ()

605 seconda_history = vaccine_dataframe[’seconda_dose ’]. to_numpy ()

606
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607

608 # Rt* computation

609 Infectives_dataframe = pd.read_csv(’Lombardia_infetti_147.csv’,

sep = ’,’)

610 Suscettibili_147 = Infectives_dataframe[’suscettibili ’]. to_numpy

()

611 Vaccinated_first_147 = Infectives_dataframe[’vaccinati_prima_dose

’]. to_numpy ()

612 Infectives_147 = Infectives_dataframe[’totale_positivi ’]. to_numpy

()

613 Deceased_147 = Infectives_dataframe[’deceduti ’]. to_numpy ()

614

615 gamma_2 = 1/9

616 logI=np.log(Infectives_147)

617 Rt=(logI [7:]- logI [:-7]) /7/ gamma_2 +1

618

619

620 # Parameters definition

621 params = [0.182 , 0.211, 4.76e-4, 4.76e-4, 0.25, 0.0690 , 0.15,

2.794e-3] # LOMBARDIA

622 N = 10103969

623

624

625 # \beta definition

626 beta = Rt * params [1] * N /( Suscettibili_147 [:-7] + params [4] *

Vaccinated_first_147 [:-7])

627

628

629 # History of Susceptibles and Vaccinationed with first dose 15

days before the beginning of the simulation (to use in the

SEIHRDVW computation)

630

631 states_15_start = list()

632

633 #susc_dataframe = pd.read_csv(’’, sep = ’,’)

634 #susc_15 = susc_dataframe.to_numpy ()

635 #states_15_start.append(susc_15)

636 #states_15_start.append (9620987 * np.ones (15))

637

638 states_15_start.append(np.array ([9651234 , 9648490 , 9646546 ,

9644751 , 9643801 , 9641523 , 9639370 , 9636714 , 9634086 , 9632480 ,

9632014 , 9631441 , 9630598 , 9628931 , 9624866]))

639 states_15_start.append(np.zeros (15))

640

641 states_15_start [1][ -1] = 714

642 states_15_start [1][ -2] = 114

643 states_15_start [1][ -3] = 104

644 states_15_start [1][ -4] = 107

645 states_15_start [1][ -5] = 717

646

647
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648 # INITIAL CONDITIONS

649 #IC = [57000000 , 10800 , 569896 , 1463111 , 74159 ,0 ,2000000 ,0]

650 #IC = [57000000 , 10800 , 569896 , 1463111 , 74159 ,0,4e5 ,0]

651 #IC = [48000000 , 10680 , 563479 , 28949 , 2933757 , 109847 , 10324127 ,

3237582] # 1st April 2021

652 IC = [9620987 , 2.5e4 , 5.5e4 , 50520, 4.01e5 , 25203, 1779, 0]

653 #IC = [48000000 , 10680 , 563479 , 28949 , 2933757 , 109847 , 0, 0]

654

655

656 # META ALGORITHM: STEP 1 -> Define initial Guess and parameters

657 # Define initial guess for vaccinations

658 controls = list()

659

660 #controls.append (25e3 * np.ones(Tf+1))

661 #controls.append (5e5 * np.ones(Tf+1))

662 #controls.append (25e3 * np.ones(Tf+1))

663 #controls.append (5e5 * np.ones(Tf+1))

664

665 controls.append(np.zeros(Tf+1))

666 controls.append(np.zeros(Tf+1))

667 controls.append(np.zeros(Tf+1))

668

669 #controls.append(np.zeros(Tf+1))

670 #controls.append (0.1007 * np.ones(int(Tf/7)+1))

671 #controls.append(np.array ([0.23225 , 0.23225 , 0.23225 , 0.23225 ,

0.23225 , 0.26315 , 0.26315 , 0.26315 , 0.26315 , 0.26172 , 0.26172 ,

0.26172 , 0.26172 , 0.26172 , 0.26172 , 0.19872]))

672 #controls.append (0.26172 * np.ones(int(Tf/7)+1))

673

674 #T_f = 147 only

675 #controls.append(np.array ([0.23225 , 0.23225 , 0.23225 , 0.23225 ,

0.23225 , 0.26315 , 0.26315 , 0.26315 , 0.26315 , 0.26172 , 0.26172 ,

0.26172 , 0.26172 , 0.26172 , 0.26172 , 0.19872 , 0.19872 , 0.19872 ,

0.19872 , 0.19872 , 0.19872 , 0.19872]))

676

677 controls.append(beta)

678

679

680 # Path for saving data and figures

681 path = "/home/giovanni/Desktop/OC_LOM/FINAL_LOM /15 _GIUGNO/

I_squared_2/"

682

683 # Maximum steps and tolerance for the PGD Algorithm

684 nsteps = 100 #100#20

685 tolerance = 1e-6

686

687 # Step length PGD Algorithm

688 #learning_rate_vax = 1e-5

689 learning_rate_vax = 1e-2

690 #learning_rate_vax = 1e-5

691
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692 ep = 1

693 err_min = tolerance + 1

694 err_old = 1e-7

695 state = np.zeros ((len(IC),Tf+1))

696 multipliers = np.zeros ((len(IC),Tf+1))

697

698 #vaccine_dataframe = pd.read_csv(’vaccini_grouped_lombardia.csv ’,

sep =’,’)

699 #vax_history = vaccine_dataframe[’totale ’].to_numpy ()

700

701 # Functions for gradients of the Hamiltonian

702 grad_x = jax.grad(Hamiltonian , 2)

703 grad_u1 = jax.grad(Hamiltonian , 3)

704 grad_u2 = jax.grad(Hamiltonian , 4)

705 grad_u3 = jax.grad(Hamiltonian , 5)

706

707 # Just in time compilation Gradients

708 grad_x_jit = jax.jit(grad_x)

709 grad_u1_jit = jax.jit(grad_u1)

710 grad_u2_jit = jax.jit(grad_u2)

711 grad_u3_jit = jax.jit(grad_u3)

712

713 sum_gradient = 0.0

714 sum_old = 1.0

715 history = list()

716

717 print(’Gradient Loop ...’)

718 print(’

--------------------------------------------------------------’)

719

720 while (ep <= nsteps and err_min > tolerance):

721

722 #Final time control only

723 #lambda_fin = [0 , 0, 0, 0, 0, state[5,Tf], 0,0] #1e3 *

724

725 lambda_fin = [0 , 0, 0, 0, 0, 0, 0,0]

726 sum_gradient = 0.0

727

728 # META ALGORITHM: STEP 2a -> Solution of the state problem

729 state = solve_rk4(SEIHRDVW , [0, Tf], IC, 1.0, params ,

controls , states_15_start)

730 print(’OK STATE ’)

731

732

733 # META ALGORITHM: STEP 2b -> Solution of the costate problem

734 multipliers = solve_rk4_H(grad_x_jit , [Tf, 0], lambda_fin ,

-1.0, state , params , controls , multipliers , states_15_start)

735 print(’OK MULTI ’)

736

737
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738 # META ALGORITHM: STEPS 2c -> Computation of the gradient ,

Gradient Descent step and Multi -Projection

739 for j in range(Tf+1):

740 U1, U2, U3, beta = control_at_time(controls , j)

741 grad_u1_vec = 0.0

742 grad_u2_vec = 0.0

743 grad_u3_vec = 0.0

744

745 # Computation of the gradients

746 if j >= 15:

747 grad_u1_vec = grad_u1_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

748 grad_u2_vec = grad_u2_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

749 grad_u3_vec = grad_u3_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

750 else:

751 grad_u1_vec = grad_u1_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

752 grad_u2_vec = grad_u2_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

753 grad_u3_vec = grad_u3_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

754

755

756 # Gradient Descent step

757 controls [0][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u1_vec #U1

758 controls [1][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u2_vec #U2

759 controls [2][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u3_vec #U3

760

761 sum_gradient += abs(grad_u1_vec) + abs(grad_u2_vec) + abs

(grad_u3_vec)

762

763 # Multi -Projection of the control variables

764 controls = proj_complete(controls , vax_history , state , Tf)

765

766

767 print(’OK GRAD’)

768 print(’Gradient: ’, sum_gradient)

769

770 # Saving cost functional values

771 history.append(cost_functional(params , state , controls , Tf))

772

773 print(’Cost Functional: ’, cost_functional(params , state ,

controls , Tf))
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774 print(’Iteration ’, ep, ’Done’)

775 print(’Error: ’,err_min)

776

777 # META ALGORITHM: STEP 2d -> Stopping criterium verification

778 err_min = abs(sum_old - sum_gradient)/abs(sum_old)

779 sum_old = sum_gradient

780

781 ep += 1

782

783 print(’First check: ’, ep <= nsteps)

784 print(’Second check: ’, err_min > tolerance)

785

786 print(’

--------------------------------------------------------------’)

787

788 print(’End Loop ...’)

789 print(’

--------------------------------------------------------------’)

790

791 #Checking constraints are fulfilled

792 for j in range(Tf+1):

793 if not check1(controls [0][j], controls [1][j], controls [2][j],

vax_history[j]):

794 print(’Check 1 fails at time’, j)

795 if j >= 19:

796 if not check2(controls [0][:j+1-19], controls [1][:j+1-19],

controls [2][:j+1]):

797 print(’Check 2 fails at time’, j)

798 if j >= 42:

799 if not check3(controls [0][:j+1-42], controls [1][:j+1-42],

controls [2][:j+1]):

800 print(’Check 3 fails at time’, j)

801

802

803 # Deleting days without imposed constraints

804 state_fin = state [:,:-42]

805 multipliers_fin = multipliers [:,:-42]

806 controls_fin = list()

807 controls_fin.append(controls [0][: -42])

808 controls_fin.append(controls [1][: -42])

809 controls_fin.append(controls [2][: -42])

810 controls_fin.append(controls [3][: -42])

811

812

813 # Plots

814

815 plot(state_fin , path)

816

817 plot_multi(multipliers_fin , path)

818
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819 plot_controls(controls_fin , vax_history , path , prima_history ,

seconda_history , Tf - 42)

820

821 plot_Rt(state_fin , controls_fin , params , Tf - 42, path)

822

823 plot_histogram(controls_fin , Tf - 42, path)

824

825 # Saving procedure

826 np.savetxt(path + ’state.csv’, state_fin , delimiter = ’,’)

827 np.savetxt(path + ’S.csv’, state_fin [0,:], delimiter = ’,’)

828 np.savetxt(path + ’E.csv’, state_fin [1,:], delimiter = ’,’)

829 np.savetxt(path + ’I.csv’, state_fin [2,:], delimiter = ’,’)

830 np.savetxt(path + ’H.csv’, state_fin [3,:], delimiter = ’,’)

831 np.savetxt(path + ’R.csv’, state_fin [4,:], delimiter = ’,’)

832 np.savetxt(path + ’D.csv’, state_fin [5,:], delimiter = ’,’)

833 np.savetxt(path + ’V.csv’, state_fin [6,:], delimiter = ’,’)

834 np.savetxt(path + ’W.csv’, state_fin [7,:], delimiter = ’,’)

835

836

837 np.savetxt(path + ’prima_dose_S.csv’, controls_fin [0], delimiter

= ’,’)

838 np.savetxt(path + ’dose_R.csv’, controls_fin [1], delimiter = ’,’)

839 np.savetxt(path + ’seconda_dose.csv’, controls_fin [2], delimiter

= ’,’)

840 np.savetxt(path + ’beta.csv’, controls_fin [3], delimiter = ’,’)

841

842 plt.loglog(history)

843 plt.title(’Cost history ’)

844 plt.savefig(path + "cost_hist.png")

845 plt.show()

846

847 return 0

848

849 if __name__ == "__main__":

850 main(sys.argv [1:])
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The following python3 code refers to the solution of Optimal Control Problem 2 (with
SEIHRDVW2 model as state problem), where we fixed the weekly amount of delivered
doses and the maximum daily administration capacity.

1 import jax

2 import os

3 os.environ["XLA_FLAGS"]="--xla_gpu_cuda_data_dir =/usr/lib/cuda"

4 os.environ["CUDA_HOME"]="/usr/lib/cuda"

5 import sys

6 import jax.numpy as jnp

7 import numpy as np

8 import matplotlib.pyplot as plt

9 import math

10 import pandas as pd

11

12 #SEIHRDVW evolution function

13 def SEIHRDVW(t, state , params , U1 , U2 , U3 , beta , state_15_0 ,

state_15_1):

14

15 # alpha: inverse of the incubation time

16 # gamma: infectIous spassing rate

17 # muR: re -infection rate from recovered class

18 # muV: re -infection rate from vaccinated class

19 # sigma: fraction of vaccine effectiveness on infection trasmission

20 # omega: hospedalizing rate

21 # theta: fraction for accounting for vaccine effectiveness on

effects reduction

22 # f: fatality rate

23 # state_15: contains S and V 15 days before

24

25 alpha , gamma , muR , muV , sigma , omega , theta , f= params

26

27 N = np.sum(state)

28 S = state [0]

29 E = state [1]

30 I = state [2]

31 H = state [3]

32 R = state [4]

33 D = state [5]

34 V = state [6]

35 W = state [7]

36

37 dSdt = - beta * S * I / N - U1 + muR * R + muV * V

38 dEdt = beta * (S + sigma * V) * I / N - alpha * E

39 dIdt = alpha * E - gamma * I

40 dHdt = gamma * I - omega * H

41 dRdt = (1.0 - f * (state_15_0 + theta * sigma * state_15_1) / (

state_15_0 + sigma * state_15_1)) * omega * H - muR * R - U2

42 dDdt = f * (state_15_0 + theta * sigma * state_15_1) / (state_15_0

+ sigma * state_15_1) * omega * H
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43 dVdt = - sigma * beta * V * I / N + U1 - muV * V - U3

44 dWdt = U2 + U3

45

46 return jnp.array([dSdt , dEdt , dIdt , dHdt , dRdt , dDdt , dVdt , dWdt])

47

48

49 # Runge -Kutta 4 method for the state SEIHRDVW problem

50 def solve_rk4(fun , t_span , y0 , h, params , controls , states_15_start):

51 nsteps = int(( t_span [1]- t_span [0])/h)

52 y = np.zeros((len(y0),nsteps +1))

53 y[:,0] = y0

54 U1 , U2 , U3 , beta = control_at_time(controls , 0)

55

56 for i in range(nsteps):

57 t = int(t_span [0]+i*h)

58 U1_1 , U2_1 , U3_1 , beta_1 = control_at_time(controls , t+1)

59 y0 = y[:,i]

60

61 if i >= 15:

62

63 k1=fun(t , y0 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

64 k2=fun(t+0.5*h, y0+0.5*h*k1 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

65 k3=fun(t+0.5*h, y0+0.5*h*k2 , params , U1 , U2 , U3 , beta , y

[0,i-15], y[6, i -15])

66 k4=fun(t+ h, y0+ h*k3 , params , U1_1 , U2_1 , U3_1 ,

beta_1 , y[0,i-15], y[6, i -15])

67 y[:,i+1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

68

69 else:

70

71 k1=fun(t , y0 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])

72 k2=fun(t+0.5*h, y0+0.5*h*k1 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])

73 k3=fun(t+0.5*h, y0+0.5*h*k2 , params , U1 , U2 , U3 , beta ,

states_15_start [0][i], states_15_start [1][i])

74 k4=fun(t+ h, y0+ h*k3 , params , U1_1 , U2_1 , U3_1 ,

beta_1 , states_15_start [0][i], states_15_start [1][i])

75 y[:,i+1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

76

77 U1 = U1_1

78 U2 = U2_1

79 U3 = U3_1

80 beta = beta_1

81

82 return y

83

84

85 # Function which returns tuple of controls and transmission rate at a
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specified time

86 def control_at_time(controls , t):

87

88 if (isinstance(t,int)):

89 t1 = t

90 else:

91 t1 = t.astype(int)

92

93 return (controls [0][t1], controls [1][t1], controls [2][t1],

controls [3][t1])

94

95

96 # Runge -Kutta 4 method applied for the costate (multipliers) problem

97 def solve_rk4_H(fun , t_span , y0 , h, state , params , controls ,

multipliers , states_15_start):

98 nsteps = int(( t_span [1]- t_span [0])/h)

99 y = np.zeros((len(y0),nsteps +1))

100 y[:,nsteps] = y0

101 U1 , U2 , U3 , beta = control_at_time(controls , nsteps)

102

103 for i in range(nsteps):

104

105 t = t_span [0]+i*h

106

107 y0 = y[:,nsteps - i]

108 U1_1 , U2_1 , U3_1 , beta_1 = control_at_time(controls , nsteps -

i - 1)

109

110 if t >= 15:

111

112 k1=-fun(t , params , state[:, nsteps - i], U1 , U2 , U3

, beta , y0 , state[0, nsteps -i -15], state[6, nsteps - i

-15])

113 k2=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k1, state[0, nsteps -i -15], state[6, nsteps - i

-15])

114 k3=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k2, state[0, nsteps -i -15], state[6, nsteps - i

-15])

115 k4=-fun(t+ h, params , state[:, nsteps - i - 1], U1_1 ,

U2_1 , U3_1 , beta_1 , y0+ h*k3 , state[0, nsteps -i -15], state

[6, nsteps - i -15])

116 y[:,nsteps - i - 1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

117

118 else:

119 k1=-fun(t , params , state[:, nsteps - i], U1 , U2 , U3

, beta , y0 , states_15_start [0][ int(t)], states_15_start

[1][ int(t)])

120 k2=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k1, states_15_start [0][ int(t)], states_15_start

[1][ int(t)])
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121 k3=-fun(t+0.5*h, params , state[:, nsteps - i], U1 , U2 ,

U3, beta , y0+0.5*h*k2, states_15_start [0][ int(t)], states_15_start

[1][ int(t)])

122 k4=-fun(t+ h, params , state[:, nsteps - i - 1], U1_1 ,

U2_1 , U3_1 , beta_1 , y0+ h*k3 , states_15_start [0][ int(t)],

states_15_start [1][ int(t)])

123 y[:,nsteps - i - 1] = y0 + h*(k1+2*(k2+k3)+k4)/6.0

124 U1 = U1_1

125 U2 = U2_1

126 U3 = U3_1

127 beta = beta_1

128

129 return y

130

131

132 # Definition of the Lagrangian function. Choose the Lagrangian to

optimize by switching on/off returns (lines 149 -152)

133 def Lagrangian(t, params , state , U1 , U2 , U3 , beta):

134

135 alpha , gamma , muR , muV , sigma , omega , theta , f= params

136

137 N = np.sum(state)

138

139 S = state [0]

140 E = state [1]

141 I = state [2]

142 H = state [3]

143 R = state [4]

144 D = state [5]

145 V = state [6]

146 W = state [7]

147

148

149 #return 0.0 #For DFinal only

150 #return I**2

151 #return (beta * (S + sigma * V) * I / N - alpha * E)**2 #E_dot

152 return I**2 + 1e4 * (beta * (S + sigma * V) * I / N - alpha * E

)**2 #I_squared + E_dot

153

154

155 # Definition of Hamiltonian Function

156 def Hamiltonian(t, params , state , U1 , U2 , U3 , beta , multipliers ,

states_15_0 , states_15_1):

157

158 return Lagrangian(t, params , state , U1 , U2 , U3 , beta) + jnp.dot(

multipliers , SEIHRDVW(t, state , params , U1 , U2 , U3 , beta ,

states_15_0 , states_15_1))

159

160

161 # Function evaluating the cost functional to optimize

162 def cost_functional(params , state , controls , Tf):
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163 E = state [1,:]

164 I = state [2,:]

165 D = state [5,:]

166

167 #cost_d = 1e3 * D[ -1]**2 # Dfinal + infectious

168 #cost_d = D[ -1]**2 # Dfinal only

169 cost_d = 0.0 # No final time control

170 cost_i = 0.0

171

172 for i in range(Tf + 1):

173 U1, U2, U3, Rt = control_at_time(controls , i)

174 if i == 0 or i == Tf :

175 cost_i += Lagrangian(i, params , state[:,i], U1 , U2 , U3 ,

Rt)/2

176 else:

177 cost_i += Lagrangian(i, params , state[:,i], U1 , U2 , U3 ,

Rt)

178 cost = cost_i + cost_d

179

180 return cost

181

182

183 # Function plotting states evolution

184 def plot(state , path):

185 S = state [0]

186 E = state [1]

187 I = state [2]

188 H = state [3]

189 R = state [4]

190 D = state [5]

191 V = state [6]

192 W = state [7]

193

194 t = np.linspace(0, len(S), len(S))

195

196 Sp , = plt.plot(S,’b’, label = ’Susceptibles ’)

197 Ep , = plt.plot(E,’y’, label = ’Exposed ’)

198 Ip , = plt.plot(I,’r’, label = ’Infectives ’)

199 Hp , = plt.plot(H, ’gold’, label = ’Healing ’)

200 Rp , = plt.plot(R,’g’, label = ’Recovered ’)

201 Dp , = plt.plot(D,’k’, label = ’Deads ’)

202 Vp , = plt.plot(V, ’c’, label = ’Vaccinated ’)

203 Wp , = plt.plot(W, ’m’, label = ’Completely Vaccinated ’)

204

205 plt.legend(handles = [Sp , Ep , Ip , Hp , Rp , Dp , Vp , Wp])

206 plt.title(’State evolution ’)

207 plt.savefig(path + "state.png")

208 plt.show()

209

210 S2p , = plt.plot(S, ’b’, label = ’Susceptibles ’)

211 plt.title(’Susceptibles ’)
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212 plt.savefig(path + "susceptibles.png")

213 plt.show()

214

215 I2p , = plt.plot(I, ’r’, label = ’Infectives ’)

216 plt.title(’Infectives ’)

217 plt.savefig(path + "infectives.png")

218 plt.show()

219

220 E2p , = plt.plot(E, ’g’, label = ’Exposed ’)

221 plt.title(’Exposed ’)

222 plt.savefig(path + "exposed.png")

223 plt.show()

224

225 H2p , = plt.plot(H, ’c’, label = ’Healing ’)

226 plt.title(’Healing ’)

227 plt.savefig(path + "healing.png")

228 plt.show()

229

230 R2p , = plt.plot(R, ’g’, label = ’Recovered ’)

231 plt.title(’Recovered ’)

232 plt.savefig(path + "recovered.png")

233 plt.show()

234

235 D2p , = plt.plot(D, ’k’, label = ’Deceased ’)

236 plt.title(’Deceased ’)

237 plt.savefig(path + "deceased.png")

238 plt.show()

239

240 V2p , = plt.plot(V, ’c’, label = ’Vaccinated - first dose’)

241 plt.title(’Vaccinated - first dose’)

242 plt.savefig(path + "vaccinated_V.png")

243 plt.show()

244

245 W2p , = plt.plot(W, ’m’, label = ’Vaccinated - second dose’)

246 plt.title(’Vaccinated - completed cycle’)

247 plt.savefig(path + "vaccinated_W.png")

248 plt.show()

249

250

251 # Function plotting multipliers evolution

252 def plot_multi(multipliers , path):

253 m_S = multipliers [0]

254 m_E = multipliers [1]

255 m_I = multipliers [2]

256 m_H = multipliers [3]

257 m_R = multipliers [4]

258 m_D = multipliers [5]

259 m_V = multipliers [6]

260 m_W = multipliers [7]

261

262 m_Sp , = plt.plot(m_S ,’b’, label = ’Susceptibles multiplier ’)
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263 m_Ep , = plt.plot(m_E ,’y’, label = ’Exposed multiplier ’)

264 m_Ip , = plt.plot(m_I ,’r’, label = ’Infectives multiplier ’)

265 m_Hp , = plt.plot(m_H , ’gold’, label = ’Healing multiplier ’)

266 m_Rp , = plt.plot(m_R ,’g’, label = ’Removed multiplier ’)

267 m_Dp , = plt.plot(m_D ,’k’, label = ’Deads multiplier ’)

268 m_Vp , = plt.plot(m_V , ’c’, label = ’Vaccinated multiplier ’)

269 m_Wp , = plt.plot(m_W , ’m’, label = ’Completely Vaccinated

multiplier ’)

270

271 plt.legend(handles = [m_Sp , m_Ep , m_Ip , m_Hp , m_Rp , m_Dp , m_Vp ,

m_Wp])

272 plt.title(’Multipliers evolution ’)

273 plt.savefig(path + "multipliers.png" )

274 plt.show()

275

276

277 # Function plotting controls evolution

278 def plot_controls(controls , vax_history , consegne , path ,

prima_history , seconda_history , Tf):

279

280 U1 = controls [0]

281 U2 = controls [1]

282 U3 = controls [2]

283 beta = controls [3]

284

285 U1p , = plt.plot(U1 , label = ’First dose Susceptibles ’)

286 plt.title(’Prima dose Susceptibles ’)

287 plt.savefig(path + "prima_dose_S.png")

288 plt.show()

289

290 U2p , = plt.plot(U2 , label = ’First dose Recovered ’)

291 plt.title(’Prima dose Recovered ’)

292 plt.savefig(path + "prima_dose_R.png")

293 plt.show()

294

295 U3p , = plt.plot(U3 , label = ’Second dose - OUTPUT ’)

296 secondaverap , = plt.plot(seconda_history , linestyle = ’dashed ’,

label = ’Second dose - REAL’)

297 plt.legend(handles = [U3p , secondaverap ])

298 plt.title(’Second dose - Comparison ’)

299 plt.savefig(path + "seconda_dose.png")

300 plt.show()

301

302 primadosep , = plt.plot(U1 + U2, label = ’First dose - OUTPUT ’)

303 primadoseverap , = plt.plot(prima_history , linestyle = ’dashed ’,

label = ’First dose - REAL’)

304 plt.legend(handles = [primadosep , primadoseverap ])

305 plt.title(’First dose - Comparison ’)

306 plt.savefig(path + "prime_dosi_comp.png")

307 plt.show()

308
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309 Usump , = plt.plot(U1 + U2 + U3 , label = ’Total vaccinations ’)

310 vax_histp , = plt.plot(vax_history , label = ’Real Vaccinations ’)

311 plt.legend(handles = [Usump , vax_histp ])

312 plt.title(’Total Vaccinations ’)

313 plt.savefig(path + "vax_tot.png")

314 plt.show()

315

316 consegne_vec = np.zeros(Tf +1)

317 for i in range(len(consegne)):

318 consegne_vec [7*i] = consegne[i]

319 cumsumVaxp , = plt.plot(np.cumsum(U1 + U2 + U3), label = ’

Cumulative sum optimal vaccinations ’)

320 cumsumconsegnep , = plt.plot(np.cumsum(consegne_vec), label = ’

Cumulative sum delivered doses ’)

321 plt.legend(handles = [cumsumVaxp , cumsumconsegnep ])

322 plt.title(’Cumulative doses administrated ’)

323 plt.savefig(path + "cumulative_administration.png")

324 plt.show()

325

326 betap , = plt.plot(beta , label = ’Beta’)

327 plt.title(’Beta’)

328 plt.savefig(path + "beta.png")

329 plt.show()

330

331 vaccination1Sp , = plt.plot(U1 , ’m’, label = ’First dose

Susceptibles ’)

332 vaccination1Rp , = plt.plot(U2 , ’y’, label = ’First dose Recovered

’)

333 vaccination2p , = plt.plot(U3 , ’g’, label = ’Second dose’)

334

335 plt.legend(handles = [vaccination1Sp , vaccination1Rp ,

vaccination2p ])

336 plt.title(’Vaccination summary ’)

337 plt.savefig(path + "vax_sum.png")

338 plt.show()

339

340

341 # Function plotting controls evolution without information about

ripartition of first and second doses

342 def plot_controls_2(controls , vax_history , path):

343

344 U1 = controls [0]

345 U2 = controls [1]

346 U3 = controls [2]

347 beta = controls [3]

348

349 U1p , = plt.plot(U1 , label = ’First dose Susceptibles ’)

350 plt.title(’First dose Susceptibles ’)

351 plt.savefig(path + "prima_dose_S.png")

352 plt.show()

353
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354 U2p , = plt.plot(U2 , label = ’First dose Recovered ’)

355 plt.title(’First dose Recovered ’)

356 plt.savefig(path + "dose_R.png")

357 plt.show()

358

359 U3p , = plt.plot(U3 , label = ’Second dose’)

360 plt.title(’Second dose’)

361 plt.savefig(path + "seconda_dose.png")

362 plt.show()

363

364 Usump , = plt.plot(U1 + U2 + U3 , label = ’Total vaccinations ’)

365 vax_histp , = plt.plot(vax_history , label = ’Real vaccinations ’)

366

367 plt.legend(handles = [Usump , vax_histp ])

368 plt.title(’Total vaccinations ’)

369 plt.savefig(path + "vax_tot.png")

370 plt.show()

371

372 betap , = plt.plot(beta , label = ’Transmission Rate’)

373 plt.title(’Transmission Rate’)

374 plt.savefig(path + "beta.png")

375 plt.show()

376

377 vaccination1Sp , = plt.plot(U1 , ’m’, label = ’First dose

Susceptibles ’)

378 vaccination1Rp , = plt.plot(U2 , ’y’, label = ’First dose Recovered

’)

379 vaccination2p , = plt.plot(U3 , ’g’, label = ’Second dose’)

380

381 plt.legend(handles = [vaccination1Sp , vaccination1Rp ,

vaccination2p ])

382 plt.title(’Vaccination summary ’)

383 plt.savefig(path + "vax_sum.png")

384 plt.show()

385

386

387 # Function plotting the reproduction number

388 def plot_Rt(state , controls , params , Tf , path):

389

390 S = state [0]

391 E = state [1]

392 I = state [2]

393 H = state [3]

394 R = state [4]

395 D = state [5]

396 V = state [6]

397 W = state [7]

398

399 alpha , gamma , muR , muV , sigma , omega , theta , f= params

400

401 t = np.linspace(0, len(S), len(S))
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402

403 N = 10103969

404 Rt = np.zeros(Tf+1)

405

406 gamma_2 = 1/9

407

408 for i in range(Tf+1):

409

410 Rt[i] = controls [3][i] / gamma * (S[i] + sigma * V[i]) / N

411

412 Rtp , = plt.plot(Rt , ’m’, label = ’Rt’)

413 plt.title(’Rt’)

414 plt.savefig(path + "Rt.png")

415 plt.show()

416 np.savetxt(path + ’Rt.csv’, Rt , delimiter = ’,’)

417

418

419 # Function plotting percentages of first , second doses and doses to

recovered

420 def plot_histogram(controls , Tf , path):

421 z1 = controls [0] + controls [1] + controls [2]

422 zero_adm = np.zeros(Tf+1)

423 zero_adm[z1 == 0] = 1

424 prima_dose_perc = (controls [0] ) / z1

425 dose_r_perc = controls [1] / z1

426 seconda_dose_perc = controls [2] / z1

427 prima_list = list(prima_dose_perc)

428 rec_list = list(dose_r_perc)

429 seconda_list = list(seconda_dose_perc)

430

431 t = list(range(Tf+1))

432

433 plt.bar(t, prima_list , color = ’m’, width = 0.25, edgecolor = ’m’

, label = ’Percentage - first doses’)

434 plt.bar(t, seconda_list , color = ’c’, width = 0.25, edgecolor = ’

c’, bottom = prima_dose_perc , label = ’Percentage - second doses ’)

435 plt.bar(t, rec_list , color = ’g’, width = 0.25, edgecolor = ’g’,

bottom = prima_dose_perc + seconda_dose_perc , label = ’Percentage

- recovered doses’)

436 plt.bar(t, zero_adm , color = ’red’, width = 0.25, edgecolor = ’

red’)

437

438 plt.legend ([’Percentage of first doses’, ’Percentage of second

doses’, ’Percentage of doses to recovered ’])

439 plt.title(’Doses percentages ’)

440 plt.savefig(path + "hist.png")

441 plt.show()

442

443

444 # Checking validity of the constraint about maximum daily doses to

administer weekly
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445 def check1(U1_vec , U2_vec , U3_vec , U_ub): #CONSTRAINT 1

446 return (np.sum(U1_vec + U2_vec + U3_vec) <= U_ub)

447

448 # Checking validity of the constraint about minimum elapsing time

among doses

449 def check2(U1_vec , U2_vec , U3_vec): #CONSTRAINT 2

450 return (np.sum(U3_vec) <= np.sum(U1_vec))

451

452 # Checking validity of the constraint about maximum elapsing time

among doses

453 def check3(U1_vec , U2_vec , U3_vec): #CONSTRAINT 3

454 return (np.sum(U3_vec) >= np.sum(U1_vec))

455

456

457 # Algorithm projecting vector v on the simplex \sum_{n=0}^{N} v_n = z

458 def projection_simplex_sort(v, z=1):

459

460 n_features = v.shape [0]

461 u = np.sort(v)[::-1]

462

463 cssv = np.cumsum(u) - z

464 ind = np.arange(n_features) + 1

465

466 cond = u - cssv / ind > 0

467

468 rho = ind[cond ][-1]

469 theta = cssv[cond ][-1] / float(rho)

470 w = np.maximum(v - theta , 0)

471 return w

472

473

474 # MULTI -PROJECTION ALGORITHM

475 def proj_complete(controls , z1 , vax_max , state , Tf): #U1[0] U2[0] U3

[0] fixed

476

477 k = 30 #maximum number of iterations of the MP Algorithm

478

479 # 1st projection on the simplex with z = z1[j]

480 for j in range(int(Tf/7)):

481 if j > 2:

482 vec = np.concatenate (( controls [0][7*j:7*(j+1)], controls

[1][7*j:7*(j+1)], controls [0][7*j:7*(j+1)]))

483 vec = projection_simplex_sort(vec , z1[j])

484 for i in range (7*j, 7*(j+1)):

485 controls [0][i] = max(min(vec[i - 7*j], state[0, i-1])

, 0)

486 controls [1][i] = max(min(vec[i - 7*j +7], state[4, i

-1]), 0)

487 controls [2][i] = max(min(vec[i - 7*j +14], state[6, i

-1]), 0)

488 else:
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489 controls [2][7*j:7*(j+1)] = np.zeros (7)

490 vec = np.concatenate (( controls [0][7*j:7*(j+1)], controls

[1][7*j:7*(j+1)]))

491 vec = projection_simplex_sort(vec , z1[j])

492 for i in range (7*j, 7*(j+1)):

493 if (i > 0):

494 controls [0][i] = max(min(vec[i - 7*j], state[0, i

-1]), 0)

495 controls [1][i] = max(min(vec[i - 7*j +7], state

[4, i-1]), 0)

496 else:

497 controls [0][i] = max(min(vec[i - 7*j], state[0, i

]), 0)

498 controls [1][i] = max(min(vec[i - 7*j +7], state

[4, i]), 0)

499

500 # MULTI -PROJECTION CYCLE

501 for i in range(0,k):

502

503 #STEP1: Projection on maximum elapsing time constraint

504 for j in range(Tf+1):

505 if ((j>=42) & (np.sum(controls [0][:j -42+1] ) - np.sum(

controls [2][:j+1]) > 0)):

506 vec2 = controls [2][:j+1]

507 vec2 = projection_simplex_sort(vec2 , np.sum(controls

[0][:j -42+1]))

508 controls [2][:j+1] = np.minimum(vec2 , vax_max [:j+1])

509 for s in range(j+1):

510 vec4 = np.array ([ controls [0][s], controls [1][s]])

511

512 if (vax_max[s] - controls [2][s] <= 0):

513 vec4 = np.zeros(len(vec4))

514 else:

515 vec4 = projection_simplex_sort(vec4 , max(

vax_max[s] - controls [2][s],0))

516 if s == 0 :

517 controls [0][s] = max(min(vec4[0], state[0,s])

,0)

518 controls [1][s] = max(min(vec4[1], state[4,s])

,0)

519 else:

520 controls [0][s] = max(min(vec4[0], state[0,s

-1]) ,0)

521 controls [1][s] = max(min(vec4[1], state[4,s

-1]) ,0)

522

523 #STEP2: Projection on maximum weekly administrations

constraint and maximum daily capacity

524 for j in range(int(Tf/7)):

525 if j > 2:

526 vec = np.concatenate (( controls [0][7*j:7*(j+1)],
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controls [1][7*j:7*(j+1)], controls [0][7*j:7*(j+1)]))

527 vec = projection_simplex_sort(vec , z1[j])

528 for i in range (7*j, 7*(j+1)):

529 controls [0][i] = max(min(vec[i - 7*j], state[0, i

-1]), 0)

530 controls [1][i] = max(min(vec[i - 7*j +7], state

[4, i-1]), 0)

531 controls [2][i] = max(min(vec[i - 7*j +14], state

[6, i-1]), 0)

532 else:

533 controls [2][7*j:7*(j+1)] = np.zeros (7)

534 vec = np.concatenate (( controls [0][7*j:7*(j+1)],

controls [1][7*j:7*(j+1)]))

535 vec = projection_simplex_sort(vec , z1[j])

536 for d in range (7*j, 7*(j+1)):

537 if (d > 0):

538 controls [0][d] = max(min(vec[d - 7*j], state

[0, d-1]), 0)

539 controls [1][d] = max(min(vec[d - 7*j +7],

state[4, d-1]), 0)

540 else:

541 controls [0][d] = max(min(vec[d - 7*j], state

[0, d]), 0)

542 controls [1][d] = max(min(vec[d - 7*j +7],

state[4, d]), 0)

543

544 #STEP3: Projection on minimum elapsing time constraint

545 for j in range(Tf+1):

546 if ((j>=21) & (np.sum(controls [0][:j -21+1]) - np.sum(

controls [2][:j+1]) < 0)):

547

548 vec2 = controls [2][:j+1]

549 vec2 = projection_simplex_sort(vec2 , np.sum(controls

[0][:j -21+1]))

550 controls [2][:j+1] = np.minimum(vec2 , vax_max [:j+1])

551 for s in range(j+1):

552 vec4 = np.array ([ controls [0][s], controls [1][s]])

553

554 if (vax_max[s] - controls [2][s] <= 0):

555 vec4 = np.zeros(len(vec4))

556 else:

557 vec4 = projection_simplex_sort(vec4 , max(

vax_max[s] - controls [2][s],0))

558 if s == 0 :

559 controls [0][s] = max(min(vec4[0], state[0,s])

,0)

560 controls [1][s] = max(min(vec4[1], state[4,s])

,0)

561 else:

562 controls [0][s] = max(min(vec4[0], state[0,s

-1]) ,0)
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563 controls [1][s] = max(min(vec4[1], state[4,s

-1]) ,0)

564

565 #STEP2bis: Projection on maximum weekly administrations

constraint and maximum daily capacity

566 for j in range(int(Tf/7)):

567 if j > 2:

568 vec = np.concatenate (( controls [0][7*j:7*(j+1)],

controls [1][7*j:7*(j+1)], controls [0][7*j:7*(j+1)]))

569 vec = projection_simplex_sort(vec , z1[j])

570 for i in range (7*j, 7*(j+1)):

571 controls [0][i] = max(min(vec[i - 7*j], state[0, i

-1]), 0)

572 controls [1][i] = max(min(vec[i - 7*j +7], state

[4, i-1]), 0)

573 controls [2][i] = max(min(vec[i - 7*j +14], state

[6, i-1]), 0)

574 else:

575 controls [2][7*j:7*(j+1)] = np.zeros (7)

576 vec = np.concatenate (( controls [0][7*j:7*(j+1)],

controls [1][7*j:7*(j+1)]))

577 vec = projection_simplex_sort(vec , z1[j])

578 for d in range (7*j, 7*(j+1)):

579 if (d > 0):

580 controls [0][d] = max(min(vec[d - 7*j], state

[0, d-1]), 0)

581 controls [1][d] = max(min(vec[d - 7*j +7],

state[4, d-1]), 0)

582 else:

583 controls [0][d] = max(min(vec[d - 7*j], state

[0, d]), 0)

584 controls [1][d] = max(min(vec[d - 7*j +7],

state[4, d]), 0)

585

586 return controls

587

588

589 def main(argv):

590 Tf = int(argv [0])

591

592 dt = 1

593 print(’Initializing ...’)

594 print(’

--------------------------------------------------------------’)

595

596 # alpha: inverse of the incubation time

597 # gamma: infectous spassing rate

598 # muR: re -infection rate from recovered class

599 # muV: re -infection rate from vaccinated class

600 # sigma: fraction of vaccine effectiveness on infection

trasmission
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601 # omega: hospedalizing rate

602 # theta: fraction for accounting for vaccine effectiveness on

effects reduction

603 # f: fatality rate

604

605

606 #vax_history = np.array (75e3 * np.ones(Tf + 1))

607 #vaccine_dataframe = pd.read_csv(’vaccini_grouped_lombardia.csv ’,

sep =’,’)

608 #vax_history = vaccine_dataframe[’totale ’].to_numpy ()

609

610 #vax_history = np.array (50e3 * np.ones(Tf + 1))

611

612 #vax_history = np.array (35e3 * np.ones(Tf+1))

613 #vax_history [0:60] = 10e3 * np.ones (60)

614 #vax_history [60:101] = 25e3 * np.ones (41)

615

616 # Definition of daily amount of doses

617 vaccine_dataframe = pd.read_csv(’

vaccini_grouped_lom_ALL_29_maggio.csv’, sep =’,’)

618 vax_history = vaccine_dataframe[’totale ’]. to_numpy ()

619 prima_history = vaccine_dataframe[’prima_dose ’]. to_numpy ()

620 seconda_history = vaccine_dataframe[’seconda_dose ’]. to_numpy ()

621

622 #consegne_dataframe = pd.read_csv(’

vaccini_consegne_grouped_lom_ALL_29_maggio.csv ’, sep = ’,’)

623 #consegne_history = consegne_dataframe[’dosi_settimanali ’].

to_numpy ()[:21]

624

625 consegne_history = 385000 * np.ones (21 + 6)

626

627

628 # Rt* computation

629 Infectives_dataframe = pd.read_csv(’Lombardia_infetti_147.csv’,

sep = ’,’)

630 Suscettibili_147 = Infectives_dataframe[’suscettibili ’]. to_numpy

()

631 Vaccinated_first_147 = Infectives_dataframe[’vaccinati_prima_dose

’]. to_numpy ()

632 Infectives_147 = Infectives_dataframe[’totale_positivi ’]. to_numpy

()

633 Deceased_147 = Infectives_dataframe[’deceduti ’]. to_numpy ()

634

635 gamma_2 = 1/9

636 logI=np.log(Infectives_147)

637 Rt=(logI [7:]- logI [:-7]) /7/ gamma_2 +1

638

639 # Parameters setting

640

641 #params = [0.182 , 0.211 , 4.76e-4, 4.76e-4, 0.25, 0.0690 , 0.15,

2.794e-3] # LOMBARDIA
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642 #params = [0.182 , 0.211 , 4.76e-4, 4.76e-4, 0.40, 0.0690 , 0.15,

2.794e-3] # sigma = 0.40 -> vaccine effectiveness 0.6

643 #params = [0.182 , 0.211 , 4.76e-4, 4.76e-4, 0.10, 0.0690 , 0.15,

2.794e-3] # sigma = 0.10 -> vaccine effectiveness 0.9

644 #params = [0.182 , 0.211 , 4.76e-4, 4.76e-4, 0.25, 0.0690 , 0.30,

2.794e-3] # theta = 0.30 -> vaccine effectiveness 0.7

645 params = [0.182 , 0.211, 4.76e-4, 4.76e-4, 0.25, 0.0690 , 0.40,

2.794e-3] # theta = 0.40 -> vaccine effectiveness 0.6

646

647 N = 10103969

648

649 # \beta definition

650 beta_2 = Rt * params [1] * N /( Suscettibili_147 [:-7] + params [4] *

Vaccinated_first_147 [:-7])

651

652 beta = np.mean(beta_2) * np.ones(Tf+1)

653

654

655 # History of Susceptibles and Vaccinationed with first dose 15

days before the beginning of the simulation (to use in the

SEIHRDVW computation)

656

657 states_15_start = list()

658

659 #susc_dataframe = pd.read_csv(’’, sep = ’,’)

660 #susc_15 = susc_dataframe.to_numpy ()

661 #states_15_start.append(susc_15)

662 #states_15_start.append (9620987 * np.ones (15))

663

664 # Susceptible_history

665 states_15_start.append(np.array ([9651234 , 9648490 , 9646546 ,

9644751 , 9643801 , 9641523 , 9639370 , 9636714 , 9634086 , 9632480 ,

9632014 , 9631441 , 9630598 , 9628931 , 9624866]))

666 states_15_start.append(np.zeros (15))

667

668 states_15_start [1][ -1] = 714

669 states_15_start [1][ -2] = 114

670 states_15_start [1][ -3] = 104

671 states_15_start [1][ -4] = 107

672 states_15_start [1][ -5] = 717

673

674

675 # INITIAL CONDITIONS

676 #IC = [57000000 , 10800 , 569896 , 1463111 , 74159 ,0 ,2000000 ,0]

677 #IC = [57000000 , 10800 , 569896 , 1463111 , 74159 ,0,4e5 ,0]

678 #IC = [48000000 , 10680 , 563479 , 28949 , 2933757 , 109847 , 10324127 ,

3237582] # 1st APRIL 2021

679 IC = [9620987 , 2.5e4 , 5.5e4 , 50520, 4.01e5 , 25203, 1779, 0]

680 #IC = [48000000 , 10680 , 563479 , 28949 , 2933757 , 109847 , 0, 0]

681

682
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683

684 # META ALGORITHM: STEP 1 -> Define initial Guess and parameters

685 # Define initial guess for vaccinations

686 controls = list()

687 #controls.append (25e3 * np.ones(Tf+1))

688 #controls.append (5e5 * np.ones(Tf+1))

689 #controls.append (25e3 * np.ones(Tf+1))

690 #controls.append (5e5 * np.ones(Tf+1))

691

692 controls.append(np.zeros(Tf+1))

693 controls.append(np.zeros(Tf+1))

694 controls.append(np.zeros(Tf+1))

695

696 #controls.append(np.zeros(Tf+1))

697 #controls.append (0.1007 * np.ones(int(Tf/7)+1))

698 #controls.append(np.array ([0.23225 , 0.23225 , 0.23225 , 0.23225 ,

0.23225 , 0.26315 , 0.26315 , 0.26315 , 0.26315 , 0.26172 , 0.26172 ,

0.26172 , 0.26172 , 0.26172 , 0.26172 , 0.19872]))

699 #controls.append (0.26172 * np.ones(int(Tf/7)+1))

700

701 #T_f = 147 only

702 #controls.append(np.array ([0.23225 , 0.23225 , 0.23225 , 0.23225 ,

0.23225 , 0.26315 , 0.26315 , 0.26315 , 0.26315 , 0.26172 , 0.26172 ,

0.26172 , 0.26172 , 0.26172 , 0.26172 , 0.19872 , 0.19872 , 0.19872 ,

0.19872 , 0.19872 , 0.19872 , 0.19872]))

703

704 controls.append(beta)

705 # Path for saving data and figures

706 path = "/home/giovanni/Desktop/OC_LOM/confronto_varianti_vaccini/

beta_026617/theta /060/ I_squared_E_dot/"

707

708 # Maximum steps and tolerance for the PGD Algorithm

709 nsteps = 100 #20

710 tolerance = 1e-7

711

712 # Step length PGD Algorithm

713 #learning_rate_vax = 1e-5

714 learning_rate_vax = 1e-2

715 #learning_rate_vax = 1e-5

716

717 ep = 1

718 err_min = tolerance + 1

719 err_old = 1e-7

720 state = np.zeros ((len(IC),Tf+1))

721 multipliers = np.zeros ((len(IC),Tf+1))

722 vax_max = max(vax_history) * np.ones(Tf+1)

723

724 #vaccine_dataframe = pd.read_csv(’vaccini_grouped_lombardia.csv ’,

sep =’,’)

725 #vax_history = vaccine_dataframe[’totale ’].to_numpy ()

726
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727 # Function for gradients of the Hamiltonian

728 grad_x = jax.grad(Hamiltonian , 2)

729 grad_u1 = jax.grad(Hamiltonian , 3)

730 grad_u2 = jax.grad(Hamiltonian , 4)

731 grad_u3 = jax.grad(Hamiltonian , 5)

732

733 # Just in time compilation gradients

734 grad_x_jit = jax.jit(grad_x)

735 grad_u1_jit = jax.jit(grad_u1)

736 grad_u2_jit = jax.jit(grad_u2)

737 grad_u3_jit = jax.jit(grad_u3)

738

739 sum_gradient = 0.0

740 sum_old = 1.0

741 history = list()

742

743 print(’Gradient Loop ...’)

744 print(’

--------------------------------------------------------------’)

745

746 while (ep <= nsteps and err_min > tolerance):

747

748 #Final time control only

749 #lambda_fin = [0 , 0, 0, 0, 0, state[5,Tf], 0,0] #1e3 *

750

751 lambda_fin = [0 , 0, 0, 0, 0, 0, 0,0]

752 sum_gradient = 0.0

753

754 # META ALGORITHM: STEP 2a -> Solution of the state problem

755 state = solve_rk4(SEIHRDVW , [0, Tf], IC, 1.0, params ,

controls , states_15_start)

756 print(’OK STATE ’)

757

758

759 # META ALGORITHM: STEP 2b -> Solution of the costate problem

760 multipliers = solve_rk4_H(grad_x_jit , [Tf, 0], lambda_fin ,

-1.0, state , params , controls , multipliers , states_15_start)

761 print(’OK MULTI ’)

762

763

764 # META ALGORITHM: STEPS 2c -> Computation of the gradient ,

Gradient Descent step and Multi -Projection

765 for j in range(Tf+1):

766 U1, U2, U3, beta = control_at_time(controls , j)

767 grad_u1_vec = 0.0

768 grad_u2_vec = 0.0

769 grad_u3_vec = 0.0

770

771 # Computation of the gradients

772 if j >= 15:

773 grad_u1_vec = grad_u1_jit(j, params , state[:,j], U1,
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U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

774 grad_u2_vec = grad_u2_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

775 grad_u3_vec = grad_u3_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], state[0, j-15], state[6, j-15])

776 else:

777 grad_u1_vec = grad_u1_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

778 grad_u2_vec = grad_u2_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

779 grad_u3_vec = grad_u3_jit(j, params , state[:,j], U1,

U2, U3, beta , multipliers [:, j], states_15_start [0][j],

states_15_start [1][j])

780

781

782 # Gradient Descent step

783 controls [0][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u1_vec #U1

784 controls [1][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u2_vec #U2

785 controls [2][j] -= learning_rate_vax * (1 - ep / nsteps)

* grad_u3_vec #U3

786

787 sum_gradient += abs(grad_u1_vec) + abs(grad_u2_vec) + abs

(grad_u3_vec)

788

789

790 # Multi -Projection of the control variables

791 controls = proj_complete(controls , consegne_history , vax_max ,

state , Tf)

792

793

794 print(’OK GRAD’)

795 print(’Gradient: ’, sum_gradient)

796

797 # Saving cost functional values

798 history.append(cost_functional(params , state , controls , Tf))

799

800 print(’Cost Functional: ’, cost_functional(params , state ,

controls , Tf))

801 print(’Iteration ’, ep, ’Done’)

802 print(’Error: ’,err_min)

803

804

805 # META ALGORITHM: STEP 2d -> Stopping criterium verification

806 err_min = abs(sum_old - sum_gradient)/abs(sum_old)

807 sum_old = sum_gradient

808

809 ep += 1
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810

811 print(’First check: ’, ep <= nsteps)

812 print(’Second check: ’, err_min > tolerance)

813

814 print(’

--------------------------------------------------------------’)

815

816 print(’End Loop ...’)

817 print(’

--------------------------------------------------------------’)

818

819 #Checking constraints are fulfilled

820 for j in range(Tf+1):

821 if (j%7 == 0 and j<Tf):

822 if not check1(controls [0][j:j+7], controls [1][j:j+7],

controls [2][j:j+7], consegne_history[math.floor(j/7)]):

823 print(’Check 1 fails at week’, int(j/7) + 1)

824 if j >= 21:

825 if not check2(controls [0][:j+1-21], controls [1][:j+1-21],

controls [2][:j+1]):

826 print(’Check 2 fails at time’, j)

827

828 if j >= 42:

829 if not check3(controls [0][:j+1-42], controls [1][:j+1-42],

controls [2][:j+1]):

830 print(’Check 3 fails at time’, j)

831

832 # Deleting days without imposed constraints

833 state_fin = state [:,:-42]

834 multipliers_fin = multipliers [:,:-42]

835 controls_fin = list()

836 controls_fin.append(controls [0][: -42])

837 controls_fin.append(controls [1][: -42])

838 controls_fin.append(controls [2][: -42])

839 controls_fin.append(controls [3][: -42])

840

841

842 # Plots

843

844 plot(state_fin , path)

845

846 plot_multi(multipliers_fin , path)

847

848 plot_controls(controls_fin , vax_history , consegne_history [:21] ,

path , prima_history , seconda_history , Tf - 42)

849

850 plot_Rt(state_fin , controls_fin , params , Tf - 42, path)

851

852 plot_histogram(controls_fin , Tf - 42, path)

853

854 # Saving procedure
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855 np.savetxt(path + ’state.csv’, state_fin , delimiter = ’,’)

856 np.savetxt(path + ’S.csv’, state_fin [0,:], delimiter = ’,’)

857 np.savetxt(path + ’E.csv’, state_fin [1,:], delimiter = ’,’)

858 np.savetxt(path + ’I.csv’, state_fin [2,:], delimiter = ’,’)

859 np.savetxt(path + ’H.csv’, state_fin [3,:], delimiter = ’,’)

860 np.savetxt(path + ’R.csv’, state_fin [4,:], delimiter = ’,’)

861 np.savetxt(path + ’D.csv’, state_fin [5,:], delimiter = ’,’)

862 np.savetxt(path + ’V.csv’, state_fin [6,:], delimiter = ’,’)

863 np.savetxt(path + ’W.csv’, state_fin [7,:], delimiter = ’,’)

864

865

866 np.savetxt(path + ’prima_dose_S.csv’, controls_fin [0], delimiter

= ’,’)

867 np.savetxt(path + ’dose_R.csv’, controls_fin [1], delimiter = ’,’)

868 np.savetxt(path + ’seconda_dose.csv’, controls_fin [2], delimiter

= ’,’)

869 np.savetxt(path + ’beta.csv’, controls_fin [3], delimiter = ’,’)

870

871

872 plt.loglog(history)

873 plt.title(’Cost history ’)

874 plt.savefig(path + "cost_hist.png")

875 plt.show()

876

877 return 0

878

879 if __name__ == "__main__":

880 main(sys.argv [1:])
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