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Abstract

The aim of this work is to provide a simple and immediate tool that evaluates the

interaction between the lining and the rock that constitute tunnels under different

conditions. An analytical model is presented, which assumes that the tunnel is an

axisymmetric cavity whose state of stress is generated during the excavation phase

and successively altered due to the exposure to fire.

Firstly, the effects of the excavation phase are observed in terms of stress and con-

vergence of the tunnel. To do this, the Convergence Confinement Method allows to

determine the equilibrium condition between the rock mass and concrete ring and

to establish the effects of their interaction and of installation of a certain type of

lining. The promptness of the method is such that it becomes a practical effective

tool, that can be easily implemented in the preliminary design phase.

Subsequently, the problem of fires in tunnel is analysed: these events are capable

of inducing serious consequences on the structure, in particular due to the narrow

spaces that facilitate the fast increase in temperatures and the spread of smoke.

The fire induced thermal variation in the lining and surrounding rock may be taken

by empirical data or calculated by means of analytical or numerical models. In this

work, a finite element analysis with COMSOL Multiphysics has been performed

to evaluate the temperature variation induced by a standard fire for different time

steps.

The effects of this thermal variation are analysed in terms of stresses and displace-

ments. To this aim, a multi-layer model is implemented, based on the subdivision

of the domains in many different layers. The results show that the consequences

are not negligible, especially in terms of radial displacement and hoop stresses.

The present model allows to take into account the interaction between rock and

lining and considers the non uniform effects of high temperatures on the support.

In particular, concrete that is subjected to fire gradually loses compressive strength

and stiffness, becoming a more ductile material.

In addition, the possibility of having spalling of the lining is evaluated. The results

x
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show that, due to the high hoop stresses that are generated inside the material,

parts of the intrados may detach.
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Sommario

L’obiettivo del presente è lavoro è quello di fornire uno strumento semplice ed im-

mediato che studi in diverse condizioni l’interazione tra l’anello di rivestimento e

la roccia che costituiscono una galleria. Sono riportati dei modelli di tipo analitico

che si basano sull’ipotesi di assialsimmetria del problema e che trattano due di-

verse condizioni: la fase di scavo e l’esposizione del tunnel a fuoco.

In primo luogo, si osservano gli effetti della fase di scavo in termini di stato di

sforzo e convergenza della galleria. Per fare questo, il metodo della Curva Carat-

teristica (anche detto Convergence Confinement Method) permette di determinare

l’equilibrio tra roccia e anello di calcestruzzo e di stabilire a priori quale sarà

l’effetto dello scavo e dell’installazione di un determinato tipo di rivestimento.

L’immediatezza del metodo è tale da diventare uno strumento efficace che può

essere facilmente utilizzato in una prima fase di progettazione.

Successivamente si affronta il problema legato agli incendi in galleria: si tratta di

una problematica frequente e in grado di creare gravi effetti sulla galleria stessa, in

particolare a causa degli spazi ristretti che facilitano l’aumento delle temperature,

la propagazione del fumo e tutti gli effetti che ne derivano. Tramite un’analisi

agli elementi finiti sfruttando il software COMSOL Multiphysics si ricava la curva

di temperatura indotta da un incendio standard per diversi step temporali e a

diverse profondità. Nella fase di riscaldamento l’intradosso è caratterizzato da alti

picchi di temperatura, successivamente si osserva una migrazione deli picchi verso

gli strati più esterni, fino a raggiungere lo strato roccioso. Si considera nell’analisi

anche la fase di raffreddamento.

Gli effetti di tale variazione termica sono analizzati in termini di sforzi e sposta-

menti. A tal fine si presenta un nuovo modello analitico in grado di valutare lo

stato di sollecitazione e spostamento radiale al variare della temperatura e del

tempo: il rivestimento arriva ad avere un consistente spostamento radiale ed è

sede di un grande stato di sforzo, in particolare di tipo tangenziale.

Questo modello consente di tenere conto dell’interazione tra ammasso roccioso

xii
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e rivestimento e considera gli effetti delle alte temperature sul rivestimento. In

particolare, il calcestruzzo sottoposto a fuoco perde resistenza a compressione e

rigidezza, diventando cos̀ı un materiale più duttile. Questa caratteristica gli per-

mette di essere sottoposto a minor compressione.

Inoltre, si valuta la possibilità che si verifichi spalling nel rivestimento, ovvero che

delle parti di materiale si stacchino all’intradosso a causa delle elevate pressioni a

cui sono sottoposte.

xiii



Introduction

The safety of a tunnel is challenged when dealing with fire. Due to the high ve-

locities that are frequently reached by vehicles and to the abundant quantities of

fuel that are present, fires can develop easily. Moreover, it can take several hours

to cease fire, since the small space available makes it difficult to control it. The

spreading of smoke inside the tunnel increases the complexity for the operation

and can also be the cause of many casualties.

As reported in Table 1, with an average of almost one case per year in the recent

period, the fire in tunnels is actually a recurring problem. This is why it is impor-

tant to describe the phenomenon by way of analytical or numerical models, with

the objective of predicting what could happen and how to deal with it in order to

limit the damages.

Date Name Country Length Duration Max. Temperature

11 1996 Channel Tunnel France-England 53850 m 7 hrs 1000°C
03 1999 Mont-Blanc Tunnel France-Italy 11600 m 53 hrs 1000°C
05 1999 Tauern Austria 8371 m 14 hrs 1200°C
07 2000 Rotsethhorn Norway 1200 m - -

08 2001 Gleinalm Austria 8300 m 37 min -

10 2001 Gotthard Switzerland 16300 m 24 hrs 1200°C
11 2003 Fløyfjell Norway 3100 m - -

06 2005 Frejus Italy-France 12895 m 6 hrs 1200°C

Table 1: The most recent episodes of fire in tunnels. [Piarc, 2014]

The maximum values of temperature that can be reached are far higher than the

ones for an ordinary fire in a building. Moreover, a fire in tunnel may last some

minutes but it may also need more than one day to be ceased.

The fire in Mont Blanc Tunnel (Figures 1 and 2) occurred on 24th March 1999,

caused by a truck which transported flour and margarine, that suddenly caught

1
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Figure 1: Effects of fire in Mont Blanc Tunnel, on March 1999. [Wallis, 2001]

fire. Since smoke spread very quickly, it became very difficult for the firefighters

to act: after 37 minutes only, smoke arrived at the entrance of the French side of

the tunnel, which is 6 kilometers from the position of the truck.

Furthermore, the electric wiring was melted, so there was no more lighting of the

tunnel and the lack of Oxygen made vehicles engines not able to work anymore.

This disaster ended after 53 hours, leaving 39 casualties and 14 injured people.

The tunnel was reopened after three years.

Generally, tunnels subjected to fire do not collapse, however there are two main

aspects to be considered: first, the lining subjected to high temperatures loses its

strength and stiffness; second, the high temperature may induce a phenomenon of

spalling of the lining’s concrete: in some cases, this problem can involve several

centimeters of lining, reaching values up to 25 centimeters.

Besides the lining, the surrounding rock experiences a remarkable change in its

state of stress that should be properly taken into account when describing the

problem.

Because of the recurrence of this phenomenon and of the serious damage that it

may cause both in terms of social and economic loss, it is fundamental to have

a practical and immediate tool that is able to describe the problem taking into

account the various aspects that influence it.

In the present work, an analytical model is used to calculate the state of stress

2
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Figure 2: A shell of a truck after the fire. Mont Blanc, March 1999 [Wallis, 2001]

that develops in the concrete lining and in the surrounding rock during and after

a standard fire. The tunnel is assumed to be deep and circular, the concrete lining

is constituted of ordinary concrete with linear elastic behaviour, while the rock is

assumed to be elastic or perfectly-plastic. Due to the geometry of the problem,

the model is axisymmetric and cylindrical coordinates are adopted.

The aim is to describe the effects of excavation on rock and the interaction between

soil and lining as soon as it is installed. Then, the problem of fire in tunnels is

analysed by calculating the thermal variation and the mechanical effects that alter

the state of stress of both the lining and the rock. The model takes into account

the decrease in the stiffness of concrete that is subjected to very high temperatures

and the possibility of having spalling at the intrados.

Since the concrete ring is not uniformly heated by fire, the hypothesis of axial

symmetry is a simplification of the model. Moreover, the hypothesis of elastic

behaviour of concrete may represent a limit of the present model, since the effects

of fire may be non-linear.

The State of the Art about the interaction between rock and concrete lining during

the realization of the tunnel and about the effects of fire are reported in Chapter

1. Chapter 2 deals with the analytical solutions of the Convergence-Confinement

3
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Method, which simulates the excavation process; followed by the description of

the multi-layer cylinder model in Chapter 3. The final results of the model are

reported in Chapter 4, together with a brief discussion on the practical meaning

of the obtained results.
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Chapter 1

State of the Art

1.1 Tunnel excavation

Rock excavation is being performed from the past for different purposes, such as

to extract materials or to create transportation and communication paths and

shelter spaces. Many applications and new techniques have improved throughout

the years with the objective of assisting the design and the construction processes,

in particular the modelling of the stress state variations induced by the excavation,

and the consequent strain state.

However, there are still several aspects that need to be examined. For instance, a

precise geological mapping of the rock mass is seldom available and this can result

in inappropriate blasting that could cause instability.

Depending on the strength of the rock that is involved in the excavation process,

suitable means of support or reinforcement are thus needed. When dealing with

moderate or high strength, it is sufficient to adopt reinforcement measures such as

bolts or cables. However, in the majority of cases a support is installed: shotcrete,

concrete linings or steel sets, in particular when dealing with soft materials.

The support has the function of carrying the load of the surrounding rock and

avoids the possibility of having an excessive convergence of the rock towards the

centre of the tunnel. In fact, when the excavation face is approaching, the rock

experiences inward radial displacement due to the stress release that involves an

extended region ahead of the tunnel excavation face. The region that is influenced

by the excavation of the tunnel starts at about half diameter ahead of the advancing

face and covers about one and one half diameters behind the face (Figure 1.1).

The Convergence Confinement Method (CCM) has been conceived with the aim

of establishing the pressure that will be sustained by the lining depending on its
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1.1. TUNNEL EXCAVATION

Figure 1.1: Inward radial convergence during tunnel excavation [Hoek, 2000]

mechanical characteristics and on the surrounding rock for a circular excavation of

given diameter and at a given depth. Many solutions of this procedure have been

discussed through the years, for various mechanical behaviours of the rock and

mixtures of concrete. Amongst them, in [Carranza-Torres and Fairhurst, 2000] a

practical application of the method is presented for rock that satisfies the Hoek-

Brown failure criterion. In [Kolymbas, 2008] the same problem is solved by using

the cohesive and non-cohesive Mohr-Coulomb criterion.

A comparison between the performances of good, average and poor quality rocks

is presented in [Alejano et al., 2009].

Regarding the installation of the support, [Carranza-Torres et al., 2013] study the

effects of a delayed installation: in the first step the analysis is mainly focused on

the state of stress that develops in absence of lining, while in the second one the

effects of its installation are evaluated.

The paper [Oreste, 2003b] has the objective of reading a more precise interpretation

of the behaviour of the support by taking into account the variability with time

of strength and stiffness of concrete or shotcrete, and thus the variability of the

factor of safety against the lining’s failure as well.

Although some simplifying assumptions are required, CCM has proved to be an

effective procedure and this is why it will be used in the present work as well.
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1.2 Fire in tunnels

1.2.1 Fire curves

A fire curve is a time-temperature curve that describes the evolution of the fire,

depending on the origin and the space where it develops. Different design fire

scenarios can be used to predict and evaluate the effects on fire and they can be

either based on experimental data or calculated using deterministic methods.

In the case of tunnels, high temperatures can be reached very fast because of the

restricted space available. The peak temperature is often reached within some

minutes and after a plateau the temperatures start decreasing during the cooling

phase. Both the heating and the cooling phases are relevant when dealing with

tunnels, whereas in the case of building fire safety design the cooling phase is usu-

ally neglected.

Depending on the fire scenario, a specific design curve could be more appropriate

than another, this is why the International Organisation of Standardisation pro-

poses a methodology for the selection of design fire scenarios and design fires for

any built environment including buildings, structures or transportation vehicles.

One of the most commonly used fire curve is the Standard fire curve ISO834 (Fig-

ure 1.2), which has been suggested by The European Standard [Eurocode2, 2005].

The temperature increases with time following a logarithmic law:

θg = T0 + 345 · log10(8t+ 1) (1.1)

where T0 [°C] is the initial temperature, t [min] refers to time and θg [°C] is the

medium temperature attained.

Figure 1.2: Fire curve ISO834 with T0 = 20◦C
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1.2. FIRE IN TUNNELS

Figure 1.3: Hydrocarbon Fire Curve with T0 = 20◦C

ISO834 is a standard curve which has been created for cellulosic as burning mate-

rials and it is characterised by a slow variation of temperature: the peak value is

reached after three hours.

For fires that develop in tunnels, combustion of liquids such as fuel or petroleum

are recurrent and high temperatures can be reached very quickly: this is the rea-

son why the Hydrocarbon Fire Curve (Figure 1.3) has been created as a valid

alternative to ISO834. In this curve, due to the presence of Hydrocarbons, the

maximum temperature 1100°C is reached after about 30 minutes. In this case, the

time-temperature equation is:

θg = T0 + 1080 · (1− 0.325 · e−0.167t − 0.675 · e−2.5t) (1.2)

The RWS curve (Figure 1.4) was developed by the Rijkswaterstaat, Ministry of

Figure 1.4: RWS Fire Curve

Transport in the Netherlands and it is representative of fire scenarios in enclosed
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areas, such as in a tunnel. It is based on the assumption that in a worst case

scenario, a 50 m³ fuel, oil or petrol tanker fire with a fire load of 300MW could

occur, lasting up to 120 minutes. The RWS curve was based on the results of

testing carried out by TNO in the Netherlands in 1979. The correctness of the

RWS fire curve as a design fire curve for road tunnels was reconfirmed in the Full

Scale Tests in the Runehamar tunnel in Norway. [Promat-Tunnel]

The main problem about these fire curves is that none of them take into account

the cooling phase, which is as much important as the heating one, as it will be

shown later on.

Finally, the RABT Fire Curve was developed in Germany and presents two differ-

ent curves, depending on the vehicles that are involved: cars or trains. Here only

the case of road tunnels is be presented (Figure 1.5). The peak temperature is

1200° and it is reached within five minutes, it is constant for 25 minutes and then

it decreases in the cooling phase until it reaches the initial value. Thus, this is the

only fire curve that takes into account the cooling phase.

In Table 1.1 all the main characteristics of each curve are reported in order to be

Figure 1.5: RABT fire curve for cars.

easily compared. In Figure (1.6) they are all represented in the same graph.

name Tmax[°C] time to reach Tmax [min] cooling phase

ISO834 1200 180 no

Hydrocarbon 1100 30 no

RWS 1350 60 no

RABT-ZTV-cars 1200 5 yes

Table 1.1: Main characteristics of standard fire curves
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1.2. FIRE IN TUNNELS

Figure 1.6: Comparison between different fire curves

In the article [Ingason, 2009] a different design fire curve in terms of heat re-

lease rate (HRR) and time is proposed. The HRR represents how fast energy is

released and depends on geometry, type of fuels that are involved in the fire event

and on the ventilation system (if present). The maximum heat release rate may

be taken from a design table. For example, a design table can be found in World

Road Association (PIARC) committee on road tunnels devoted to Fire and Smoke

Control [PIARC, 1999] or in the National Fire Protection Association standard

for road tunnels, [NFPA, 2008].

Besides the maximum HRR value, the curve is described by a fire growth rate,

that is generally linear, quadratic or exponential. When dealing with tunnels, the

cooling phase should be considered as well. Thus, to have a complete design curve,

it is necessary to use different mathematical expressions for different time periods

(i.e. the heating phase and the cooling one).

Ingason presents a new, single exponential design fire curve as function of two pa-

rameters: the maximum HRR and the total calorific value Etot, plus the parameter

n, which is an arbitrary value. The equation is:

Q̇(t) = Q̇maxnr(1− e−kt)n−1e−kt t > 0 (1.3)

where Q̇(t) represents the heat release rate, Q̇max is the maximum HRR, n is the

retard index, r is the amplitude, k is the time width:

k =
Q̇max

Etot
r (1.4)

r =

(
1− 1

n

)1−n

(1.5)
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Given these parameters, the time to reach the maximum HRR is defined as:

tmax =
lnn

k
(1.6)

It is difficult to associate n to a physical factor, but the article proposes empirical

relations to set it as function of Emax, Q̇max and tmax.

Since Equation (1.3) creates a design fire curve without keeping constant the max-

imum value (i.e. there is not a plateau in correpondence of the peak HRR), it

is possible to get a new equation by summing two exponential. In this way, an

exponential curve with a plateau-shaped maximum period is derived:

Q̇(t) = Q̇max

(
n1r1(1− e−k1t)n1−1e−k1t + n2r2(1− e−k2t)n2−1e−k2t

)
(1.7)

where:

n2 = 7.1715n0.60766
1 − 4.4009 (1.8)

Depending on the value of n, several curves may be obtained, as shown in Figure

(1.7). As the retard index n increases, the plateau is reached more slowly. The

curves HRR-time are relevant when considering the possibility of having spalling

during a fire event. In fact, this kind of damage depends on the velocity of heat

release.

These design curves are fundamental to evaluate or predict all the thermal and

non-thermal effects on the structure that is subjected to fire. Thus, when per-

forming fire safety analysis, particular attention must be paid to choose the more

realistic fire curve.

1.2.2 Thermal and mechanical models

After evaluating the kind of curve which best describes the fire event, the reaction

of the structure is studied by considering its geometry and the properties of mate-

rials that both the concrete ring and the rock are composed of. The temperature

variation inside the lining strictly depends on the insulation properties of concrete

and on the characteristics of the tunnel, such as geometry and the presence of

ventilation. It can be evaluated both by empirical data or by using programs that

simulate the thermal transfer problem. Then, it is possible to estimate the state

of stress that develops and consequently the strains and displacements.

In the case study of [Caner et al., 2005] a 300 mm thick unreinforced concrete

lining is subjected to a fire. The compressive strength of concrete at 28 days is 28

MPa and moisture constitutes about 2% of its weight. Due to the presence of fire,
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1.2. FIRE IN TUNNELS

Figure 1.7: Design fire curves for Q̇max=30 MW, Etot=144 GJ and different retard indexes

(n1 = 1.5, n1 = 5 and n1 = 10

)

the intrados of the lining reaches T=1100°C and it is supposed to maintain this

temperature during the simulation (Hydrocarbon fire curve is used, Figure 1.3). A

simulation is done using the program RADTherm to solve a transient heat transfer

analysis, using the temperature-dependent thermal conductivity and specific heat

values in ACI216R-89 [ACI, 2001]. Depending on the temperature attained on the

concrete ring, the parameters of the material are changed manually.

Finally, the results of the heat transfer analysis two hours after the fire event are

compared with the temperature profiles given by ACI 216R-89 for standard fires

(Figure 1.8), demonstrating compliance with the experimental data.

The aim of [LoMonte et al., 2019] is to compare two different solutions of the

problem of fire resistance: a cast-in-situ lining and a pre-cast segmental lining.

The former is 0.9 m thick and is constituted by ordinary concrete (fck = 28MPa);

the latter is less thick (0.32 meters) and is composed of seven segments made of

polypropylene fibre concrete (fck = 50MPa). Both structures undergo thermal

variation due to the presence of fire and the cooling phase is analysed as well.

According to EN 1991-1-2 the heating phase is described by the Standard Curve

ISO834 (Figure 1.2) followed by a linear cooling phase which lasts about 270 min-

utes. (Figure 1.9) The thermal problem and the consequent mechanical effects are
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Figure 1.8: Validation of heat transfer analysis in [Caner et al., 2005] using data from [ACI,

2001]. The data represent the temperature reached in the concrete lining two hours after the

blasting of fire in the tunnel, depending on its radius r.

modelled by means of Finite Element Modelling.

The temperature profile inside the concrete ring in both the solutions (Figure

1.10) shows that there are not many differences in the two cases. Moreover, the

fire cooling phase must be properly taken into account when studying this kind

of problems: in fact, the peak temperature inside the sheath is observed after the

heating phase (Figure 1.11).

Looking at the results attained by [LoMonte et al., 2019] in Figure (1.10), it is

shown that regardless of the geometry of the ring and of the mechanical charac-

teristics that are considered, the concrete has relevant insulation properties. This

is why the surrounding rock is subjected to a slight variation of temperature even

when the thickness of the lining is very small. However, the mechanical model has

to consider that the thermal expansion of the lining modifies the state of stress of

the rock, too.

After developing the thermal model, a structural model is necessary to study the

consequences of such a high temperature variation. Generally, current models are

aimed at identifying the structural bearing capacity of the lining [Caner et al.,

2005] or its factor of safety [Pichler et al., 2005]. These models should consider

several aspects concerning fire in tunnels, in particular:

• fire curve: duration of the fire, temperature at the peak. It is possible to use

experimental curves or analytical ones from literature.

• mix design of concrete: it can be constituted by different components that
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Figure 1.9: Standard Fire curve according to EN 1991-1-2

Figure 1.10: Thermal profiles for different fire duration
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Figure 1.11: Temperature inside the sheath during heating and cooling phases

have distinct reactions in presence of fire.

• effects of high temperature on concrete: in presence of high temperatures, the

mechanical properties describing the material deteriorate. Concrete experi-

ences softening, due to physicochemical changes in the cement paste and in

the aggregates and thermal incompatibility between the aggregates and the

cement paste. [Larsson, 2006]

Explosive spalling could also occur. When the temperature rises, the water in-

side the concrete tends to evaporate generating additional expansive pressure

inside the concrete, which finally spalls.

• interaction lining-soil: it is generally modeled by assuming the soil as a set

of elastic springs that react to radial or circumferential compression.

The literature agrees on the almost null probability of collapse of the tunnel, ex-

cept from the cases of really long (i.e. in the order of days) exposure to high

temperatures.

Regarding the structural behaviour of tunnels in presence of fire, [Bamonte et al.,

2016] assess the performance of shotcrete using different mixes. The obtained re-

sults show that the shotcrete behaviour in compression is rather similar to that of

ordinary concrete, while its thermal diffusivity is definitely lower at any temper-

ature (150-800). The performance of shotcrete is compared with that by normal-

strength concrete (NSC), considering a tunnel subjected to Standard Fire ISO834.
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1.2. FIRE IN TUNNELS

Figure 1.12: Hoop stress migration along the radius of the lining, according to finite-element

analysis. [Bamonte et al., 2016]

The results show that the two materials behave similarly and that at the begin-

ning the intrados of the lining is characterised by high values of compressive hoop

stress because of thermal variation, while this trend tends to shift with time in the

direction of the extrados (Figure 1.12).

The starting point of the present work is [Aliberti and Miglietta, 2014], where

both analytical and finite element models are presented. The authors state that

the presence of rock can be considered as a rigid constraint regardless the type of

material and that it reacts to the expansion of the lining as a spring. Additionally,

the simulations agree on confirming that the behaviour of concrete is in any case

elastic.

The majority of studies that have treated this kind of problem are mainly focused

on the behaviour of the concrete lining, while the surrounding ground is usually

considered as an infinite elastic medium whose response is well represented by a

set of elastic springs. However, a more precise approach would take into consider-

ation the interaction between concrete and rock. Moreover, as the concrete spalls

the lining becomes thinner and thinner, thus the possibility of thermal variation

of the rock and the consequent change in its state of stress should be taken into

consideration.
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1.2.3 Effects of high temperatures on concrete

The exposure of concrete to fire can generate irreversible damage to the material.

In particular, high temperatures can lead to:

• spalling of the lining: the stress state generated by high temperature in the

concrete layers induce them to spall. This phenomenon depends on the max-

imum temperature that is reached and on heat release rate (HRR);

• degradation of the mechanical properties of concrete. Above temperatures of

550-600°C the material has lost enough strength so as not to be structurally

useful [Khoury, 2000]. In particular, concrete looses its strength and its stiff-

ness. This means that the Young’s Modulus describing the stress-strain curves

reduces with temperature.

Spalling

Spalling represents the most common failure that is produced by fire on concrete

(Figure 1.13). The high temperatures that are reached during a fire make pore

pressure rise due to the evaporating water, moreover the heated surface is com-

pressed due to a thermal gradient in the cross section and cracks form because of

the different thermal expansion between aggregate and cement paste. As alrready

mentioned above, during a fire the material also loses its strength. When dealing

with reinforced concrete, the difference in thermal expansion between concrete and

steel rebars must be considered as well.

All these mechanisms may induce the spalling of concrete and are influenced by

many factors: heating rate (about 20-100°C/min during fires [Aliberti and Migli-

etta, 2014]), permeability of the material, pore saturation level, presence of rein-

forcement, and level of applied loading [Khoury, 2000]. Spallling can be subdivided

into five different categories, depending on the aforementioned mechanisms that

involve the phenomenon:

• violent spalling: concrete pieces are popped off quickly due to pore pres-

sure increase, thermal gradients and internal cracking. Pore pressure increase

depends on heating rate, moisture content, permeability, porosity and the

presence of polypropylene fibres [Promat-Tunnel]. Thermal gradient (Figure

1.15) is mainly influenced by heating rate, but it can also increase whenever

the concrete ring is very large, or in presence of presteressing and lateral

restraint.
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• progressive gradual spalling (sloughing off): it is mainly influenced by the

peak temperature, that determines the strength loss. Whenever concrete is

heated from below and the peak temperature is very high, the material has not

enough strength to carry its own weight, so some cracked pieces of concrete

fall due to gravity.

• corner spalling: it is caused by the different deformation of concrete and

reinforcement bars at high temperatures.

• explosive spalling: it is induced by the combination of pore pressure and

thermal gradient. At the front of heat penetration, a “moisture clog” (area

with high pore pressure) develops inside the concrete. Part of the moisture is

pushed further into the colder part of the concrete due to the pressure gradi-

ent at the back of the clog. If the heated surface is under compression due to a

thermal gradient the complete heated surface may be blown away with a loud

bang. This type of spalling is especially likely to occur on structural members

heated from more than one side, such as columns and beams. When moisture

clogs are advancing into the concrete from all heated sides, at some point in

time the moisture clogs will meet in the centre of the cross-section, giving a

sudden rise in pore pressure which may cause large parts of the cross-section

to explode. This type of spalling can also occur after a considerable dura-

tion of the fire if the concrete surface has been protected with an insulating

layer.[Promat-Tunnel]

• post-cooling spalling: it occurs after the fire is over, after cooling down or

maybe even during extinguishing, [Khoury, 2000]. This kind of spalling char-

acterises concrete with calcareous aggregates: as soon as CaO rehydrates, it

expands causing internal cracks and making concrete pieces fall.

In Figure 1.14 each type of spalling is described by the mechanisms that it involves.

As already mentioned, there are many factors that need to be evaluated in order

to correctly interpret the problem. It is thus very difficult to consider all these

aspects acting in a combined way when studying analytically the problem. Khoury

suggests to use an abacus, which represents a first simplified attempt to distinguish

the regions affected by spalling (Figure 1.16). In this abacus, moisture content and

applied stress are considered.

However, since the phenomenon is generated by a combination of factors, it is still

very difficult to identify a precise criterion which could establish whether there

is spalling or not. This is the reason why the literature proposes some spalling
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Figure 1.13: Fire spalling on an external concrete wall [McNamee, 2013]

Figure 1.14: Types of spalling and involved mechanisms. [Promat-Tunnel]
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Figure 1.15: Thermal stress induced by fire. The thermal conductivity of concrete is very low,

thus the exposure to high temperatures makes the internal part of the lining compressed, while

the cooler regions are characterised by tensile stresses. [Ma et al., 2015]

scenarios, that is studying the effects of spalling on the structure by assuming

different scenarios (i.e. different spalling depths), as in [Savov et al., 2005].

If the temperature has reached high values (in [Caner et al., 2005] when it goes

beyond 300°C), concrete is too damaged and thus it must be substituted by new

material as soon as the tunnel has cooled down enough. The new material should

be similar to the previous one in order not to create weak zones along the tunnel.

Figure 1.16: Simple scheme that can be used to consider the possibility of having spalling,

considering moisture content and applied stress [Khoury, 2000]
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Degradation of concrete properties

In [Eurocode2, 2005] the degradation of concrete with temperature θ is described

by some parameters that depend on the type of aggregate which constitutes the

material. Generally, concrete is described by its compressive strength, since it has

almost null resistance to tension (this contribution is usually given by steel rebars).

The parameters describing concrete samples are reported in the following table:

fck peak strength of cylindrical sample of concrete at T0

fc,θ peak strength at temperature θ

kc(Θ) reduction fator of peak strength with temperature. (fc,θ/fck)

εc1,Θ compressive strain at peak stress at temperature θ

εcu1,θ ultimate compressive strain at temperature θ

Table 1.2: Mechanical parameters describing concrete depending on temperature θ

These parameters are used to build the stress-strain curves at each temperature

(Figure 1.17). The peak is given by (εc1,θ, fc,θ), and as soon as ε 6 εc1,θ the trend

is non linear:

σ(θ) =
3εfc,θ

εc1,θ

[
2 +

(
ε

εc1,θ

)3] (1.9)

After the peak, it is possible to choose a linear or non-linear model. As temperature

rises, the strength decreases, and the material becomes more ductile. This results

in a shift of the peak towards the right (bigger values of strain) and downwards

(decrease of strength). In Figure (1.18) the variation of parameters with θ is shown.
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Figure 1.17: Stress-strain relation according to [Eurocode2, 2005]

Figure 1.18: Values for the main parameters of the stress-strain relationships of normal weight

concrete with siliceous or calcareous aggregates concrete at elevated temperatures. [Eurocode2,

2005]
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1.3 Thick-cylinder theory

To study analytically the stress-strains effects induced by fire on the lining the

thick-cylinder theory can be used to model the problem. The rise in temperature

due to fire is supposed to change with radius r, whereas there is no variation with

coordinate θ: therefore, the problem is assumed axisymmetric.

The internal part of the hollow cylinder is subjected to high temperatures induced

by the fire, while the external face is characterised by a low temperature variation

thanks to the insulation properties of concrete. Thus, the temperature of the hol-

low cylinder decreases with the radius.

In order to study the mechanical effects on the structure induced by the variation

of temperature, it is necessary to make a hypothesis on the temperature profile

inside the lining and the rock, alternatively, to use empirical data. Then, by as-

suming linear elastic behaviour of the material, the thermal stresses, strains and

displacements can be calculated.

The model of [Corradi Dell’Acqua, 2010] aims at investigating the effects of high

temperatures on the lining. The temperature inside the cylinder varies according

to a pre-established law. In this model, a logarithmic law and a polynomial one

are considered. In the first case the temperature varies with a slightly increasing

rate, while the polynomial temperature profile is characterised by a high rate for

the first centimeters and a lower one in the external part of the cylinder.

Once the thermal profile has been established, by assuming linear elastic behaviour

of concrete ring it is possible to calculate the stress state. The rock is considered

as a set of elastic springs that reacts to the radial expansion of the concrete ring.

The thermal variation induces the cylinder to expand in the outward direction, so

that the surrounding soil is subjected to pressure generated by the expansion of

concrete. On the other hand, the concrete ring is subjected to external pressure,

which represents the contribution of the soil that reacts to the movement of the

ring. This contribution can be calculated as the stiffness of the springs multiplied

by the radial displacement of the ring. Thus, the soil represents a rigid constraint,

which is not affected by temperature variation.

To have a better insight of the model, section 3.1 reports the equations and the

results obtained for our specific case study.

Instead of assuming a continuous body, it is possible to discretize the support in

sub-layers, each one characterised by its specific properties and thermal load. This

idea was first presented in [Vedeld and Sollund, 2013] for a two-layer cylinder and

later in [Vedeld and Sollund, 2014] the same authors have published a model for a
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multi-layered cylinder. These models were published on the International Journal

of Pressure Vessels and Piping, and they have been developed to analyse the be-

haviour of pressurized multi-layer pipelines used for the distribution of hot fluids.

To solve the model, plane strain condition or generalized plane condition (i.e. axial

strain is constant in each layer) are assumed.

Layer i is defined by its internal radius ri−1 and to its external radius ri. Each

layer is described by its Young Modulus Ei, Poisson’s Ratio νi, thermal variation

∆Ti and coefficient of thermal dilation αi. Then, the model requires as input data

the external pressure pext at the external radius and the internal pressure pint at

the intrados (Figure 1.19).

The equations of the model are reported in section 3.2. Assuming a multi-layer

model permits to discretize not only the concrete lining, but also the surrounding

rock as part of a larger body. In this way, the rock is no more considered as an

external constraint, but it is part of the geometry, that can be subjected to a

temperature variation, too.

Moreover, the multi-layer model permits to take into account a not homogeneous

body, where each layer is characterised by its own mechanical and thermal prop-

erties and may be associated to a discrete value of thermal variation instead of

a value from an analytical profile of temperature. Assuming continuity of radial

stress and displacement at the interface between layers, this model provides an

important analytical tool to compute the stress and strain fields with distance r,

that can be used for many applications.
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Figure 1.19: Multi-layer cylinder. [Vedeld and Sollund, 2014]
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Chapter 2

The Convergence-Confinement

Method

When performing a tunnel excavation, the initial state of stress of the rock is com-

pletely altered and it becomes necessary to study its variation in order to design

the necessary support. As the face of the tunnel advances the surrounding rock

experiences a reduction of stress and progressively tends to converge to the centre

of the tunnel, until it reaches stability.

By using the Convergence-Confinement method it is possible to estimate the load

which must be carried by a support that is installed behind the face of a tunnel.

During excavation the rock close to the face is characterised by a particular con-

dition which is described by the face effect. It means that the support which is

installed just behind the face will not have to carry the entire load of the rock,

since a part of it will be still carried by the ground mass ahead of the excavation

face.

When the face is far enough from the support, the entire load of the rock must be

supported by the concrete ring. The objective of the Convergence-Confinement

Method is to evaluate the stress acting on the support from the time of its in-

stallation until the face effect has disappeared. Figure (2.1) shows a cylindrical

tunnel of radius a where the support is installed at a distance L to the face. The

rock in section A-A’ represented in (2.1b) is characterised by an elastic region and

depending on the stresses that develop in the rock there could be a plastic region

as well. Looking at the figure, pi represents the pressure of the support on the

rock, while ur is the radial displacement of the soil, which tends to converge to the

centre of the tunnel. In (2.1c) the same cross-section is shown, but focused on the

support. Its thickness is tc and it is subjected to the pressure of rock, called ps.
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CHAPTER 2. THE CONVERGENCE-CONFINEMENT METHOD

In order to correctly study the problem, some hypothesis must be set up:

Figure 2.1: a) Representation of the cylindrical tunnel of radius a, with installed support until

section A-A’ and face at distance L from the concrete ring b) Cross-section of the rock at A-A’c)

Cross-section of the support at A-A’[Carranza-Torres and Fairhurst, 2000]

• cylindrical coordinates (r, θ, z) are adopted;

• the tunnel is deep and circular, with constant radius a;

• the initial state of stress in the rock p0 is isotropic and constant;

• the problem is axisymmetric and plain strain conditions are adopted (εz = 0);

• the medium is continuous, homogeneous and isotropic;

• the behaviour of the rock is elastic or perfectly-plastic;

• the behaviour of the concrete lining is elastic.
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The state of stress of the rock in section A-A’ changes during the excavation

process. In particular, there are three main phases to be considered (Figure 2.2):

1. at time t=t0, the support is installed. In this case, it will have to carry a

null pressure, because the rock carries its load and it still has to converge.

The stress release occurred for t < t0 has induced a convergence before the

construction of the support. The support will bear only pressures developing

afterwards.

2. when t0 < t < tD the support is more and more loaded and ps increases while

the excavation face advances.

3. at time t = tD the face of the tunnel is far enough from section A-A’ and the

rock has reached its final convergence uDr . The equilibrium between rock and

lining is finally reached and the support has to carry the final loading pDs .

Figure 2.2: Loading of the support at section A-A’ related to the principal stages of excavation

The procedure proposed by the Convergence-Confinement Method consists of rep-

resenting graphically the behaviours of the rock and the support from the time

of installation until equilibrium between the two is reached. This is realised by

evaluating three curves:

• Longitudinal Deformation Profile (LDP), which shows the development of the
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face effect along the tunnel in terms of rock convergence at different distances

from the face;

• Ground Reaction Curve (GRC), which represents the behaviour of the rock

during excavation in terms of radial convergence ur and radial stress p at

radius a;

• Lining Characteristic Curve (LCC), which is representative of the behaviour

of the concrete support in terms of radial convergence ur and radial stress p

from the moment of its installation on.

The three curves are reported in Figure (2.3).

Figure 2.3: Representation of LDP (Longitudinal Deformation Profile), GRC (Ground Reaction

Curve) and LCC (Lining Characteristic Curve)

The LDP shows clearly that the rock is influenced by the closeness of the exca-
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2.1. GROUND REACTION CURVE

vation face and consequently the convergence rate is low. Far behind the face,

the convergence of the rock has reached the value uMr , which is the final value

of displacement; while far ahead the convergence is null, since the rock is still

undisturbed. Between these two boundary conditions, the rock moves towards the

centre of the tunnel following the trend shown in the figure.

Looking at the LDP graph, point I and F are representative respectively of the

support installation and of the face. Again, it is possible to notice that before

installing the lining the rock has already moved towards the centre of the tunnel.

The GRC can be subdivided into two parts: when the radial pressure is close to p0

the rock has a linear elastic behaviour, but as σr decreases, a plastic region around

the tunnel develops. Finally, the LCC is built assuming linear elastic behaviour of

the concrete. Point K in the graph represents section A-A’ shown in Figure (2.2),

where the support is installed, and it corresponds with convergence u0: it means

that for u < u0 the rock is free to converge, while from point K on the support

interacts with the soil.

Point D represents the equilibrium between the two curves. Generally, when de-

signing a tunnel it is important to fix a limit value of convergence for the support,

then if the stiffness of concrete is known it is possible to calculate which is the

minimum convergence u0 and consequently to know when to install the support

during excavation. Further details on the analytical origin of GRC and LCC are

reported in the following sections.

2.1 Ground Reaction Curve

The Ground Reaction Curve represents the behaviour of the rock during the ex-

cavation phase. The initial state of stress of the rock is p0, which is assumed to be

constant and isotropic.

When the state of the rock is altered, it is necessary to study the problem referring

to some basic assumptions: first of all, the equilibrium must be satisfied. Equation

(2.1) guarantees that the state of stress is locally equilibrated in the medium. Its

demonstration is reported in Appendix A.

∂σr
∂r

+
σr − σθ

r
= 0 (2.1)

Secondarily, the compatibility requires the following relations between strains and

displacements:

εr =
∂ur
∂r

(2.2)
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εθ =
ur
r

(2.3)

which can also be expressed using the following formula:

εr − εθ
r

=
∂εθ
∂r

(2.4)

Finally, the Hooke relations for linear elastic media:

εr =
δσr
E
− ν

E
(δσθ + δσz)

εθ =
δσθ
E
− ν

E
(δσr + δσz)

εz =
δσz
E
− ν

E
(δσθ + δσr)

(2.5)

Since the problem is axisymmetric and plain strain conditions are adopted, εz = 0.

Consequently, the stress along the axial coordinate is:

δσz = ν(δσr + δσθ) (2.6)

On the basis of these relations it is possible to build the GRC. In the following

paragraphs a brief analytical study of the curve is presented.

2.1.1 Elastic behaviour of the rock

When the stress variation induced by excavation is within a limited value, the rock

behaviour is elastic (Figure 2.3). In this condition it can be demonstrated that:

σr + σθ = c (2.7)

as reported in Appendix B.

By imposing this hypothesis into the equilibrium equation (2.1), the following

expression is obtained:

r
∂σr
∂r

= c− 2σr (2.8)

Then, if the two members are integrated:∫
dσr

c− 2σr
=

∫
1

r
dr (2.9)

The solution of the integral is:

c− 2σr =
k

r2
(2.10)
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Once the expression of σr is obtained, it is possible to get the circumferential stress

as well by introducing the hypothesis (2.7):
σr =

c

2
− k

2r2

σθ =
c

2
+

k

2r2

(2.11)

In order to find the values of constants c and k, two boundary conditions are

imposed: {
σr = p if r = a

σr = p0 if r →∞
(2.12)

Finally, the state of stress in elastic rock is:

σr = p0 −
(p0 − p)
r2/a2

σθ = p0 +
(p0 − p)
r2/a2

σz = 2νp0

(2.13)

The stress variation induced by the excavation may be expressed as:
δσr = σr − p0

δσθ = σθ − p0

(2.14)

By combining equations (2.13) and (2.14):
δσr = −p0 − p

r2/a2

δσθ =
p0 − p
r2/a2

(2.15)

Once the stress path has been defined, the relation between the radial stress p and

the elastic convergence of the tunnel u can be obtained by simple calculations.

Hooke equations (2.5) for elastic media as function of the stress variation induced
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by excavation may be rewritten as:
εr =

1 + ν

E

[
(1− ν)δσr − νδσθ

]
εθ =

1 + ν

E

[
(1− ν)δσθ − νδσr

]
εz = 0

(2.16)

The equations of the stress variation (2.14) can be introduced in the Hooke equa-

tion for εθ:

εθ =
1 + ν

E

(p0 − p)
r2/a2

(2.17)

Compatibility between strains and displacements (Equation 2.4) is imposed, in

order to calculate the radial convergence of the tunnel:

u(r) = εθ · r =
1 + ν

E

(p0 − p)
r

a2 (2.18)

This equation establishes that during the excavation of the tunnel the stresses

reduce, while the tunnel experiences inward radial convergence. When considering

r = a, i.e. at the tunnel radius, the elastic convergence as function of the excavation

process is:

u = (p0 − p)
(1 + ν)

E
a (2.19)

When the behaviour of the rock is linear elastic the relationship between its con-

vergence u and pressure p is linear. In particular, when p = p0 there is no displace-

ment, since the rock is at its undisturbed status, while the convergence reaches its

maximum value uel at p = 0, when the face effect has disappeared. Thus, the final

convergence of the tunnel can be easily found by imposing p = 0:

uel = p0
(1 + ν)

E
a

The linear relationship between u and p is shown in Figure (2.4).

2.1.2 Elasto-plastic behaviour of the rock

As the excavation process proceeds, the radial stresses in the rock tend to decrease,

while the hoop stresses increase. At some point, the behaviour of soil is no more

elastic and a plastic region forms: in this zone the convergence u is no more
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2.1. GROUND REACTION CURVE

Figure 2.4: GRC for elastic rock

described by the elastic law that have been previously reported in Equation 2.19.

The plastic region forms as soon as the stress components fulfill the Mohr Coulomb

criterion. The associated flow rule is chosen and in order to find the expression

for GRC, two additional mechanical parameters of the rock are required: the

friction angle φ and coesion c. The function of plasticity is the envelope of the

Mohr circles which represent failure states of stress. Figure (2.5) shows the Mohr

Coulomb plastic function, assuming compression stresses as negative, while tension

has positive sign.

The failure surface is defined as:

F (σ) = σrKp − σθ − 2c
√
Kp = 0 (2.20)

where Kp =
1 + sinφ

1− sinφ
.

When F (σ) < 0 the rock behaves elastically, while compliance with condition

F (σ) = 0 guarantees the rock to have a plastic behaviour.

This criterion is typically used when dealing with soils or rocks. Alternatively, in

the case of soils in undrained conditions, Tresca flow rule can be used.

The trends of the stresses that develop in the plastic region are not the same as

the ones in the elastic zone. They can be found by combining the equilibrium (2.1)

and the plasticity condition (2.20):

r
∂σr
∂r

= σr(Kp − 1)− 2c
√
Kp (2.21)

34



CHAPTER 2. THE CONVERGENCE-CONFINEMENT METHOD

Figure 2.5: Mohr-Coulomb plastic function

which can be solved introducing the integral:

1

Kp − 1

∫
(Kp − 1)

(Kp − 1)σr − 2c
√
Kp

dσr =

∫
1

r
dr (2.22)

The solution is:

σr =
DrKp−1 + 2c

√
Kp

Kp − 1
(2.23)

Constant D is evaluated assuming that on the boundary excavation surface (r = a)

the radial stress σr = p:

p =
DaKp−1 + 2c

√
Kp

Kp − 1
(2.24)

Finally, constant D is:

D =
(Kp − 1)p− 2c

√
Kp

aKp−1
(2.25)
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The final expressions of plastic radial and tangential stresses are:
σr =

(
r

a

)Kp−1

(p− F ) + F

σθ = Kp

(
r

a

)Kp−1

(p− F ) + F

(2.26)

where F =
2c
√
Kp

Kp − 1
.

For sake of simplicity, the trends of stresses as function of the radius r are reported

in the following systems of equations:

σr =



(
r

a

)Kp−1

(p− F ) + F if a < r < rpl

p0 −
p0 − ppl
r2

rpl2

if r > rpl
(2.27)

σθ =


Kp

(
r

a

)Kp−1

(p− F ) + F if a < r < rpl

p0 +
p0 − ppl

r2

rpl2

if r > rpl

(2.28)

The interface between the elastic and the plastic regions coincides with the plastic

radius rpl, where the radial stress is ppl. This value is easily obtained by imposing

that the stress calculated in the elastic regime (2.13) fulfill the plasticity condition

(2.20):

ppl = 2
p0 + c

√
Kp

Kp + 1
(2.29)

While the plastic radius can be calculated by imposing that the plastic radial stress

σr for r = rpl is equal to ppl:

2
p0 + c

√
Kp

Kp + 1
=

(
rpl
a

)Kp−1

(p− F ) + F (2.30)
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The final expression of plastic radius is:

rpl = a

[
2

p0 − F
(p− F )(Kp + 1)

] 1
Kp−1

(2.31)

In order to build the Ground Reaction Curve, the next step is to calculate the

total inward convergence. It can be done using the flow rule for plastic materials,

that in the associated case is:

ε̇ = λ̇
∂F

∂σ
(2.32)

and using the Mohr-Coulomb plasticity function (2.20). The expression of radial

plastic convergence that is used in the present work comes from [Hoek, 2000]:

upl = a
1 + ν

E

[
2(1− ν)(p0 − ppl)

(
rpl
a

)2

− (1− 2ν)(p0 − p)
]

(2.33)

As soon as a plastic region forms in the rock, the total inward convergence in-

creases: in fact, as shown in Figure (2.6), by following a linear trend the maximum

convergence uel would have been lower than the final value uep.

Figure 2.6: Ground reaction curve for elasto-plastic behaviour
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2.2 Lining Characteristic Curve

The Lining Characteristic Curve represents the behaviour of the concrete ring

which is subjected to the pressure of rock, by assuming that it behaves linearly

and elastically. In order to correctly represent it, it is necessary to introduce some

geometrical and mechanical parameters:

• Young’s Modulus Econ;

• Poisson coefficient νcon;

• stiffness of the support kcon;

• thickness of the support t;

While Econ, νcon and t are given, the stiffness must be calculated. In the present

work, it is defined as:

kcon =
Econ

1 + νcon

a2 − (a− t)2

a[(a− t)2 + a2(1− 2νcon)]
(2.34)

This formula has been obtained following the procedure of [Oreste, 2003a], that

will be briefly presented in the following paragraphs.

The radial and the hoop stress may be expressed as functions of the strains

from Hooke relations in (2.5):
σr =

E

(1 + ν)(1− 2ν)

(
(1− ν)εr + νεθ

)
σθ =

E

(1 + ν)(1− 2ν)

(
(1− ν)εθ + νεr

) (2.35)

Then, equilibrium is imposed by Equation (2.1), obtaining:

1

r

E

(1 + ν)(1− 2ν)

(
(1−2ν)εr−(1−2ν)εθ

)
= − ∂

∂r

[ E

(1 + ν)(1− 2ν)

(
(1−ν)εr+νεθ

)]
(2.36)

Which then becomes:

(1− 2ν)
εr − εθ
r

= − ∂

∂r

(
(1− ν)εr + νεθ

)
(2.37)
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It is then necessary to impose compatibility between strains and displacements,

by substituting (2.4) and then introducing the expressions of strains in (2.2) and

(2.3):

(1− 2ν)
d

dr

(
u

r

)
= − d

dr

(
(1− ν)

du

dr
+ ν

u

r

)
(2.38)

The resulting equation is an ordinary differential one:

d2u

dr2
+

1

r

du

dr
− u

r2
= 0 (2.39)

The solution of the differential equation is the following:

u = Ar +
B

r
(2.40)

Where A and B are constants to be determined. This equation represents the radial

displacement of a generic hollow cylinder, which may be subjected to thermal load

or to pressure. By combining equations (2.2), (2.3) and (2.40):
εr = A− B

r2

εθ = A+
B

r2

(2.41)

Hooke equations may be expressed as follows:{
σθ = Cεθ +Dεr

σr = Cεr +Dεθ
(2.42)

where C =
Econ(1− νcon)

(1− 2νcon)(1 + νcon)
and D =

Econνcon
(1− 2νcon)(1 + νcon)

.

It is then possible to express Hooke relations as functions of strains defined in

(2.41): 
σθ = C

[
A+

B

r2

]
+D

[
A− B

r2

]
σr = C

[
A− B

r2

]
+D

[
A+

B

r2

] (2.43)
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Finally, the problem can be solved by imposing two boundary conditions:{
ua = (u− uin,con) if r=a

σr = 0 if r=a-t
(2.44)

The first condition establishes that the convergence at the extrados of the support

must be equal to the convergence of the rock from the instant of the support

installation (thus excluding the displacement of the rock before the installation of

the support); the second one imposes that there is no radial pressure acting on

the intrados of the support. By inserting the first boundary condition in equation

(2.40) the expression of constant B is:

B = a[(u− uin,con)− Aa] (2.45)

The second boundary condition is imposed by introducing it in (2.43):

C

[
A− B

(a− t)2

]
+D

[
A+

B

(a− t)2

]
= 0 (2.46)

Then, equation (2.45) is substituted in (2.46):

C

[
A− a[(u− uin,con)− aA]

(a− t)2

]
+D

[
A+

a[(u− uin,con)− aA]

(a− t)2

]
= 0 (2.47)

Finally, the expressions of constant A and constant B are:
A = (u− uin,con)

a(1− 2νcon)

(a− t)2 + a2(1− 2νcon)

B = (u− uin,con)
a(a− t)2

(a− t)2 + a2(1− 2νcon)

(2.48)

Constants A and B can be substituted in equations (2.43), in order to find the

correct expression of the radial stress.

σr = (u− uin,con)
Econa[r2 − (a− t)2]

(1 + νcon)[(a− t)2 + a2(1− sνcon)]r2
(2.49)

Equations (2.48) can be rewritten as:
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
A =

p

kcon

a(1− 2νcon)

(a− t)2 + a2(1− 2νcon)

B =
p

kcon

a(a− t)2

(a− t)2 + a2(1− 2νcon)

(2.50)

The expressions for constants A and B can be substituted in equations (2.2) and

(2.3), in order to calculate σθ in correspondence of the intrados (i.e. for r = a− t):

σθ =
p

kcon

2Econa

(1 + νcon)[(a− t)2 + a2(1− 2νcon]
(2.51)

Writing Equation (2.49) with reference to radius r = a, where a radial stress σr = p

is applied:

p = (u− uin,con)
Econ[a2 − (a− t)2]

(1 + νcon)[(a− t)2 + a2(1− sνcon)]a

= (u− uin,con)kcon

(2.52)

allows to introduce the stiffness of the lining as the constant ratio between the

radial stress and the convergence, as in Equation (2.34).

The final step to correctly represent the LCC is the calculation of pmax, which

is the maximum value of pressure that can be carried by the lining before its

yielding. It is calculated following the procedure of [Oreste, 2003a], assuming that

σθ,max = fck, i.e. that the maximum circumferential stress is equal to the uniaxial

compression strength of concrete.

Substituting the expression of kcon and imposing σθ,max = fck, the final value for

pmax is:

pmax =
fck
2

[
1− (a− t)2

a2

]
(2.53)

2.3 Interpretation of the results

The Convergence-Confinement Method allows to describe the effects of excavation

by analysing the behaviour of the lining and the rock mass simultaneously. The

analytical equations in section 2.1 and section 2.2 are a simple way to determine
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Figure 2.7: The convergence–confinement method. Key: p: internal tunnel pressure; u: radial

displacement of the wall (positive towards the tunnel axis); p0: in situ hydrostatic stress; peq:

pressure acting on the support structure; pmax: pressure that induces the plastic failure of the

structure (support capacity); k: support stiffness [force/length3]; uin displacement of the wall

before support installation; ueq: displacement at equilibrium; uel: displacement of the wall on

reaching the elastic limit in the support; umax: displacement of the wall on collapse of the support;

and A: equilibrium point of the tunnel-support system.[Oreste, 2003a]

the stress state that develops both in the lining and in the rock while performing

tunnel excavation. The intersection between the GRC and the LCC represents the

equilibrium point and gives information about the final convergence of the tunnel

and the radial stress that characterises both domains (Figure 2.7).

The final convergence towards the centre of the tunnel is represented by point

A in the figure, but the rock and the lining are characterised by different values

of displacement: in fact, the lining is usually installed some instants after the

excavation, when the rock has already converged of uin. Thus, the convergence of

the lining is equal to ueq − uin.

In the case of deep tunnels the undisturbed rock is initially subjected to quite

high values of pressure, this is why it is suggested to let the pressure decrease

naturally, without installing the lining for the first instants after excavation. This

means that the initial convergence for deep tunnels uin,deep is higher than the

initial convergence for shallow tunnels uin,shallow. Moreover, in deep tunnels it is
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(a) Deep tunnels
(b) Shallow tunnels

Figure 2.8: Different LCCs for the realization of deep and shallow tunnels.

preferable to use a type of lining which is constituted of a not too rigid concrete

(Figure 2.8a). In this way, the radial pressure can greatly reduce, at the cost of

having a high value of convergence.

2.4 Case study

In this section the Convergence-Confinement Method is applied to a reference tun-

nel. The same problem is considered in this section, to study the excavation effects

and in Sections 3 and 4, to study the fire induced effects. The main geometrical

and mechanical characteristics of the rock and the concrete support are reported

respectively in Table 2.1 and Table 2.2.

radius a m 4

depth H m 300

weight γ kN/m3 25

Young modulus E kPa 1 · 106

Poisson’s ratio ν / 0.25

friction angle φ ° 30

cohesion c kPa 200

Table 2.1: Geometrical and mechanical parameters of the rock surrounding the tunnel at T=20°

The undisturbed rock (far enough from the tunnel) is characterised by a com-

pressive isotropic state of stress p0 = −7500 kPa. For the given geometry, it is
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thickness tc m 0.3

Young Modulus Econ kPa 1.8 ·107

Poisson’s ratio νcon / 0.3

uniaxial compression strength fck kPa 31000

Table 2.2: Geometrical and mechanical parameters of the concrete ring at T=20°C

Figure 2.9: Cylindrical coordinates are adopted in the model. Tensile stresses are positive.

convenient to adopt a cylindrical system of coordinates (Figure 2.9) where z is the

axis of the tunnel, r is its radius and θ is the angle between the r-axis and the

position vector. Since the tunnel is assumed to be very long, the problems will be

solved in plane strain conditions.

When dealing with deep tunnels, the undisturbed condition is generally charac-

terised by high values of p0 and it is suggested to let the free convergence of the

tunnel develop, so that the support structure will be required to carry a not exces-

sive load p. Considering the LCC (Figure 2.8) this means that point A is located

towards the right part of the curve.

To correctly design the structure, the first step is to set the maximum convergence

of the concrete lining: in this case, umax = 0.1m.

Given the characteristics of the materials, the stiffness kcon may be calculated

by using Eq. (2.34), resulting in kcon = 398 MPa/m. The initial convergence,

which is the value of radial displacement of the rock before installing the lining, is

calculated as:

uin = umax −
p

kcon
= 0.0987m (2.54)

where p indicates the radial pressure at the equilibrium (i.e. point A in Figure

2.7), which is equal to 506.85kPa. Thus, the installation of the lining is done after

a substantial displacement of the rock (Figure 2.10). The yielding of the LCC can
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be calculated using Eq. (2.53), resulting at p = −2237.81 kPa.

In these conditions, a plastic region forms from the intrados r = 4 m until

Figure 2.10: Representation of the Ground Reaction Curve and Lining Characteristic Curve

and determination of the equilibrium point (u,p) which guarantees a maximum convergence of

0.1 meter.

r = rpl = 7.91m.

In the present work the associated Mohr-Coulomb plasticity function has been

chosen. The solution presented in Appendix C for non-associated behaviour could

be used as an alternative to the present model.

Figure 2.11 shows the state of stress inside the rock, both in the plastic and elastic

zones. Due to the process of excavation, the rock mass is no more characterised

by high compressive stresses, but it experiences a stress release. Both the radial

and the hoop stresses increase while approaching the elastic zone.

The plastic radius marks the passage to the elastic zone, and continuity of stresses

is guaranteed. In this region, the radial stress increases and the circumferential

decreases, but they both tend to p0, which is the undisturbed isotropic state of

stress.
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Figure 2.11: State of stress with p=-506.85 kPa, u=0.1m and p0=-7500 kPa
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Chapter 3

Fires in tunnel: analytical models

As soon as the fire ignites, the lining is subjected to a considerable variation of

temperature that induces its radial expansion towards the rock. At the same time,

the concrete ring provides thermal insulation so that the rock does not experience

a substantial rise in temperature. However, the initial state of stress is modified

by the presence of fire and consequently the equilibrium between rock and support

is perturbed, resulting in a new mechanical interaction problem to be solved.

In particular, due to the radial expansion of the support, the rock is subjected

to an additional radial compressive stress, which could lead to a stress path back

to the elastic region, as suggested in [Amberg, 2011]. In this paper a tunnel is

re-compressed after excavation. The additional contribution in radial compression

may be due to different factors, especially if a rigid lining is placed. It generally

occurs because of swelling or creep, but it may also be caused by external factors,

such as an increasing of the support pressure as the collapse of an adjacent tunnel

section or the excavation of a new tunnel near an existing one.

In this case, the additional pressure is given by the expansion of the lining. The

representation of the state of stress of the ground in the Mohr-Coulomb graph

shows that the Mohr circle is no more tangent to the failure envelope and thus the

behaviour of the rock is elastic once again (Figure 3.1).

Due to this assumption, the models that have been conceived to solve the problem

of fire in tunnels are based on a stress path back to the elastic field.

To investigate the fire induced effects on the lining, the thick-cylinder theory is

adopted, considering a hollow cylinder that is subjected to thermal variation and

also constrained by the presence of the surrounding rock. In this section two an-

alytical models are presented: all the geometrical and mechanical data that are

considered refer to the case study in section (2.4).
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The first model describes the behaviour of a hollow cylinder subjected to thermal

load or to internal and external pressure [Corradi Dell’Acqua, 2010]. In the Master

Thesis of [Aliberti and Miglietta, 2014] the two authors have used it to describe

the effects of thermal and mechanical load on the concrete ring. It represents a

first attempt to solve the problems related to the presence of fire. The support

is considered as a single, homogeneous ring, while the soil is composed of a set of

elastic springs that react to the expansion of the concrete lining subjected to fire

(i.e. Winkler’s Theory). It is possible to make this assumption since the problem

is axisymmetric, thus the springs react only in the radial direction.

As a second approach, the multi-layer model of [Vedeld and Sollund, 2014] pre-

sented in section 1.3 will be discussed. This model is used as a starting point of the

present work, with the objective of setting up an analytical tool which considers

the interaction between the rock and the concrete lining in presence of thermal

variation. In fact, the support is constituted of several layers, each one described

by its own properties and, above all, each one is associated with a different thermal

variation, which depends on the thermal conductivity of the material.

Moreover, this model allows to take into account the damage induced by fire on

the support, specifically on its mechanical properties. This leads to an additional

change in the stress state of the lining.

In this model, after evaluating the state of stress, it will be proved that the rock

returns to the elastic field, while the lining reaches a plastic condition and experi-

ences degradation.

3.1 Axysimmetric cylinder in plain strain condition

This model is based on the approach described by [Corradi Dell’Acqua, 2010]. The

support of the tunnel is represented by a cylinder of internal radius a and external

radius b, subjected to an internal pressure p, an external one q and to a variation

of temperature ∆T (r) uniformly distributed at the intrados. In order to solve the

problem, these hypotheses must be satisfied:

1. linear elastic behaviour of the soil;

2. very deep tunnel (t << H, where H is the vertical distance from the centre

of the tunnel to the ground surface);

3. horizontal-to-vertical stress ratio K0 = 1, which means that σ′V = σ′H . This

assumption refers to an ideal deep tunnel and the problem becomes axisym-

metric;
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Figure 3.1: A. State of stress of the tunnel after excavation; B. effect of an internal radial

pressure; C. subsequent increasing of the radial pressure. [Amberg, 2011]
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4. the temperature does not depend on the anomaly θ

Figure (3.2) shows a simple scheme of the problem. The objective is to find the

Figure 3.2: External pressure acting on the lining and variation of temperature ∆T

state of stress in the concrete ring, which is influenced by both the variation of

temperature and by the presence of the surrounding rock. In fact, when subjected

to high temperatures, the support tends to expand radially, causing the reaction

of the rock. Thus, the external pressure q represents the pressure of rock, which

influences the state of stress in the concrete ring by giving an additional contribu-

tion called σq. Since the problem is elastic, the superposition principle allows to

sum it to the thermal effect, so that:

σ = σq + σ∆T (3.1)

In this model the geostatic pressure is neglected, since the objective is to evaluate

the effect of fire. However, it could be easily added to the state of stress as a

constant.

The first step is to evaluate the stiffness of the elastic soil: this is done adopting

the beam theory of Winkler foundation, so considering the soil to be constituted

of many springs of constant kr. It is simply calculated as:

kr =
p

ur(a)
(3.2)

considering that the rock is a very thick cylinder of internal radius a and external

radius b → ∞ that is subjected to internal pressure p (see Figure 3.3). It is

sufficient to apply a fictitious p and calculate the subsequent radial displacement

to find the stiffness. Given the characteristics of the tunnel in section 2.4, the

stiffness of the rock is kr = 0.198N/mm3.
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Figure 3.3: Rock system subjected to internal pressure p induced by the expansion of the concrete

lining

Secondly, the temperature variation in the concrete ring must be set: ∆T (a) at

the intrados and ∆T (b) at the extrados. The effect of temperature can be found by

imposing linear elastic constitutive laws (2.16) and simply adding a term related

to the variation of temperature:
εr =

1 + ν

E
[(1− ν)σr − νσθ + (1− ν)Θ]

εθ =
1 + ν

E
[(1− ν)σθ − νσr + (1− ν)Θ]

(3.3)

where Θ(r) =
E

1− ν
· α ·∆T (r).

The thermally induced stress inside the lining along the radius is represented by

function Θ and several distinct trends can be chosen to represent the response

of a certain material to temperature variations. Here, two different choices are

compared:

• polynomial quadratic distribution:

Θ(r) = Θb −
Θb −Θa

(b/a− 1)2
· (b/a− r/a)2 (3.4)

• logarithmic distribution:

Θ(r) = Θa − (Θa −Θb) ·
ln(r/a)

ln(b/a)
(3.5)
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Where Θa and Θb are the values of Θ in correspondence of the internal and external

radius. Considering the tunnel in Paragraph (2.4) and imposing ∆T (a) =900°C
and ∆T (b) =50°C, the two curves are shown in Figure (3.4).

Figure 3.4: Polynomial and Logarithmic distributions of Θ(r) in the concrete ring

Once the temperature variation in the concrete ring has been set, the mechanical

problem can be easily solved using the following equations:

• radial stress:

σr = −pa
2

r2
− 1

r2

∫ r

a

rΘ(r)dr +K

(
1− a2

r2

)
(3.6)

• hoop stress:

σθ = p
a2

r2
+

1

r2

∫ r

a

rΘ(r)dr −Θ(r) +K

(
1 +

a2

r2

)
(3.7)

• radial displacement:

sr(r) = a
1 + ν

E

[
a

r

(
p+

1

a2

∫ r

a

rΘ(r)dr +K

)
+
r

a
K(1− 2ν)

]
(3.8)

where

K =
1

b2 − r2

[
−qb2 + pa2 +

∫ b

a

rΘ(r)dr

]
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Figure 3.5: Radial stress σr [MPa] due to temperature variation ∆T

In the first step only the effects of the temperature variation are shown (Figures

3.5, 3.6 and 3.7). The results of the two models are in agreement about the state

of stress that is generated inside the concrete ring.

The radial stress is null at the intrados and at the extrados of the concrete

ring, while it reaches its maximum value of compression (i.e. negative value) in

correspondence of the medium thickness. Regarding circumferential stress, the

internal part of the support is compressed, while the external one is characterised

by tensile stress.

The support tends to expand radially, reaching the maximum value of displacement

of about 17 mm for the quadratic model and about 10 mm for the logarithmic one.

After evaluating the state of stress caused by high temperatures, the pressure q

exerted by the soil on the lining is calculated. The two values of radial displacement

(one for each temperature distribution) are used to calculate the two values of

additional pressure (Table 3.1).

logarithmic quadratic

q[MPa] 1.93 3.37

Table 3.1: External pressure q acting on the extrados b of the concrete ring

The effect of the external pressure results in an increase in compressive radial
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Figure 3.6: Circumferential stress σθ [MPa] due to temperature variation ∆T

Figure 3.7: Radial displacement induced by the variation of temperature. Negative values

indicate displacement towards the centre of the tunnel, while positive ones represent movement

in the direction of the extrados.
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Figure 3.8: Radial stress in the concrete lining generated by external pressure q

stress, especially at r = b (Figure 3.8) where σr is equal in modulus to the values

of q reported in Table (3.1). Moreover, the loading by the soil gives an additional

contribution to hoop stresses in terms of compression that remains almost constant

along the radius of the concrete ring (Figure 3.9). As one could expect, the radial

displacement generated by the surrounding rock has negative values, which means

that the additional pressure makes the lining move towards the centre of the tunnel

(Figure 3.10).

The superposition principle allows the sum of the two contributions, as already

seen in equation (3.1), although the interaction effect would require an iterative

procedure on the value of displacement ur. The final state of stress is shown

in Figures (3.11) and (3.12), while the final radial displacement of the lining are

displayed in Figure (3.13). The results show that the circumferential stresses in the

external part of the lining has lower tensile stresses if the pressure of soil is taken

into account. The internal 20 cm of lining are compressed, while the remaining 10

cm are still characterised by tensile hoop stress.The radial stress grows as well in

compression (i.e. negative values), reaching the maximum value in correspondence

of the extrados.

For the sake of simplicity, the results have been reported in the same graph,

by using both the quadratic and the logarithmic model. The contribution of the

initial state of stress p∗ due to the excavation process is also taken into account in

the analysis by summing it to the temperature induced stress state. It represents
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Figure 3.9: Circumferential stress in the concrete lining generated by external pressure q

Figure 3.10: Radial displacement of the lining induced by the pressure of the external rock q.

Negative values indicate movement towards the centre of the tunnel.
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Figure 3.11: Radial Stresses in the concrete lining induced by ∆T and by the external pressure

q.

Figure 3.12: Hoop Stresses in the concrete lining induced by ∆T and by the external pressure

q.
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Figure 3.13: Final radial displacement of the lining. Positive values indicate movement in the

direction of the rock.

the starting point of the analysis, when the extrados of the support is substantially

compressed (Figures 3.14, 3.15 and 3.16). However, it may be noticed that the

geostatic stress state is not as relevant as the fire induced one, in fact it only gives

a small contribution in compression.

The quadratic model is more severe than the logarithmic one: the final values both

of radial and circumferential stresses are higher than in the other model. It can

also be demonstrated by looking at the final values of radial displacement at the

intrados. This model represent a first attempt to solve the mechanical problem

that is induced by fire. However, even though it leads to realistic values, it is still

(a) Logarithmic model (b) Quadratic model

Figure 3.14: Radial stress 1) caused by a variation of temperature; 2) considering ∆T and the

pressure of soil; 3) final state of stress (considering the geostatic pressure p∗ as well)
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(a) Logarithmic model (b) Quadratic model

Figure 3.15: Circumferential stress 1) caused by a variation of temperature; 2) considering ∆T

and the pressure of soil; 3) final state of stress (considering the geostatic pressure p∗ as well)

(a) Logarithmic model (b) Quadratic model

Figure 3.16: Radial displacement 1) caused by a variation of temperature; 2) considering ∆T

and the pressure of soil; 3) final state of stress (considering the geostatic pressure p∗ as well)
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an approximation of the case of study. In particular:

1. the system is considered homogeneous, while the lining system may consist

of layers of different mechanical and thermal properties.

2. the variation of temperature is theoretical and there is no possibility to use

experimental data, unless an analytical curve is created by interpolation.

3. the interaction between rock and lining is not considered, since the two sys-

tems are analysed separately. In fact, the solution would require an iterative

procedure since the pressure q exerted by the rock depends on the magnitude

of the radial expansion ur(b) of the lining, and at the same time the radial

expansion depends on the pressure exerted by the rock.

3.2 Multi-layer cylinder model

3.2.1 Hypotheses and analytical description

The Convergence Confinement Method allows to analyse the behaviour of the rock

and the support simultaneously, considering the problem as interaction. As soon

as the temperatures rise due to fire the lining tends to expand, but the presence

of the rock limits this movement. At the same time, the state of stress of the rock

is perturbed by the expansion of the lining. This is why it is important to solve

the fire problem by considering interaction between the two domains.

In this section a new model is presented: it was first developed by Vedeld and

Sollund in [Vedeld and Sollund, 2014] with the objective of evaluating the state of

stress that is produced inside multi-layer pipes where hot fluids are flowing. Thanks

to the similarity in geometry the model can be used to solve the problem of fire

inside tunnels. The cylinder can be subdivided into many layers that discretize

the concrete ring and the rock, each one characterised by its own geometrical,

mechanical and thermal properties.

To be more precise, each layer i is delimited by its internal and external radius ri−1

and ri and is characterised by thermal variation ∆Ti, thermal expansion coefficient

αi, Poisson’s ratio νi and Young Modulus Ei. The interaction between each layer

is described by the contact pressure qi which is transmitted by layer i to i+ 1 and

viceversa. It represents the interface pressure, that is equal to p0 for r = r0 and

to pext for r = rn.

The main hypotheses of the model are:

60



CHAPTER 3. FIRES IN TUNNEL: ANALYTICAL MODELS

1. The materials in the cylinder layers are assumed to be linearly elastic, homo-

geneous and isotropic.

2. Initial stresses and strains are disregarded (geostatic pressure is not con-

sidered, since there is equilibrium between rock and support before the fire

starts).

3. Small displacements are assumed. Changes in geometry due to any loading

are disregarded.

4. Each layer is subjected to a uniform temperature.

5. Perpendicularity of sections to the cylinder axis is maintained after deforma-

tion. If a section is plane and perpendicular to the axis, it remains so.

6. It is assumed that material gaps or overlapping cannot be generated in the

cross-section.

The problem is in generalized plane strain conditions, so it is assumed that constant

deformations occur along the axis of the tunnel z. As a consequence, all the layers

are characterised by the same value of axial strain εz = constant. It is possible

to estimate this value by making some assumptions: first of all, the cylinder is

restrained at z = 0, while it can move axially at the other end, at z = L. As

shown in Figure (3.17) in the reference point RP an axial spring of stiffness K is

positioned and an axial load N is applied. Equilibrium in the axial direction is

guaranteed by adding a term that represents the axial stress integrated over the

cross-section of each layer, as shown in the following formula:

n∑
i=1

(σz,iAi) = −K · uz(L) +N (3.9)

where the cross-sectional Area of each layer is Ai = πti(2ri − ti) and ti is the

thickness of the i-th layer. Regarding the axial displacement uz, since strains in

this directions are constant in each layer i, it is possible to claim that:

duz
dz

= C ⇒ uz = Cz
z

L
(3.10)

where Cz indicates the axial displacement in z = L, while for z = 0 no displace-

ment is established. Moreover, due to the axial symmetry of the problem, there is

no hoop displacement in all layers.

The analytical solution is based again on the equilibrium relation (2.1), on Hooke
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Figure 3.17: Axial Load N and spring at the reference point for z = L. Translational constraints

in z = 0 (single arrows) and rotational constraints indicated by double arrows.

equations for elastic media (2.5) and on compatibility between strains and dis-

placements (2.4). The temperature variation causes an additional contribution to

the state of stress and thus a thermal term is added to Hooke equations:

σr,iσθ,i
σz,i

 = Êi

1− νi νi νi
νi 1− νi νi
νi νi 1− νi




dur,i
dr
− αi∆Ti

ur,i
r
− αi∆Ti

duz
dz
− αi∆Ti

 (3.11)

where:

Êi =
Ei

(1− 2νi)(1 + νi)
(3.12)

The Equation for radial convergence (2.40) can be expressed as:

ur,i = λi
Ai
r

+ βiCir (3.13)

where:

λi = − 1

Êi(1− 2νi)
, βi =

1

Êi
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The displacement field is thus described by:
ur,i = λi

Ai
r

+ βiCir

uθ,i = 0

uz,i = uz = Cz
z

L
= εzz

(3.14)

Combining Eq. (3.11) and Eq. (3.13), the state of stress can be expressed as:

σr,iσθ,i
σz,i

 =


Ai
r2

+ Ci − µi

−Ai
r2

+ Ci − µi

2νiCi + Êi(1− νi)εz − ϕi

 (3.15)

where:

ϕi = Êiαi∆Ti(1 + νi), εz =
Cz
L
, µi = ϕi − Êiνiεz

In order to solve the problem, the only unknowns are coefficients Ai, Ci and the

axial strain εz.

The first step is to impose the continuity of radial stresses and displacement at

the interface between layers: σr,i(ri) = σr,i+1(ri)

ur,i(ri) = ur,i+1(ri)
(3.16)

These boundary conditions are applied to the expressions of radial displacement

and radial stresses, obtaining the following equations:
Ai
r2
i

+ Ci − Êiαi∆Ti(1 + νi) =
Ai+1

r2
i

+ Ci+1 − Êi+1αi+1∆Ti+1(1 + νi+1)

λi
Ai
ri

+ βiCiri = λi+1
Ai+1

ri
+ βi+1Ci+1ri

(3.17)

Then, it is possible to evaluate the expressions for coefficients Ai+1 and Ci+1 as

functions of Ai and Ci:

Ai+1 = Ai

(
λi − βi+1

λi+1 − βi+1

)
+ Cir

2
i

(
βi − βi+1

λi+1 − βi+1

)
− βi+1r

2
i (ϕi+1 − ϕi)

λi+1 − βi+1

(3.18)
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Ci+1 =
Ai
r2
i

(
λi+1 − λi
λi+1 − βi+1

)
+Ci

(
λi+1 − βi
λi+1 − βi+1

)
+ (ϕi+1−ϕi)

(
λi+1

λi+1 − βi+1

)
(3.19)

In the next step, it is necessary to impose that the radial stress at radius ri equals

the contact pressure qi, by taking into account that the boundary surfaces are

subjected to known values q0 and qn. In this way the state of stress can be related

to the internal and external loads acting on the cylinder.

σr,i(ri−1) = −qi−1 ⇒
Ai
r2
i−1

+ Ci − ϕi = −qi−1 (3.20)

σr,i+1(ri+1) = −qi+1 ⇒
Ai+1

r2
i+1

+ Ci+1 − ϕi+1 = −qi+1 (3.21)

By combining Eq.(3.18) and (3.19) with the above expressions, coefficients Ai and

Ci can be expressed as function of the contact pressure:

Ai
r2
i

= γi
Tiqi−1 − qi+1(λi+1 − βi+1)− ϕi(βi+1γi+1 − λi+1)− Tiϕi − ϕi+1βi+1(1− γi+1)

Si − Ti
(3.22)

Ci =
−Siqi−1 + qi+1(λi+1 − βi+1) + ϕi(βi+1γi+1 − λi+1) + Siϕi + ϕi+1βi+1(1− γi+1)

Si − Ti
(3.23)

where:

Si = (λi − βi+1)γi+1γi + (λi+1 − λi)γi
Ti = λi+1 − βi + (βi − βi+1)γi+1

γi+1 =
r2
i

r2
i+1

Considering Equation (3.21) in the generic form for index i, it becomes:

σr,i(ri) = −qi ⇒
Ai
r2
i

+ Ci − ϕi = −qi (3.24)

Then, coefficients Ai and Ci can be inserted into the equation to get the expression

for qi+1.

qi+1 =
(Si − γiTi)qi−1 − (Si − Ti)qi + (1− γi+1)(1− γi)(ϕiβi − ϕi+1βi+1)

(1− γi)(λi+1 − βi+1)
(3.25)
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Finally,the expressions of the two coefficients can be simplified by combining the

above expression with Eq. (3.22) and Eq. (3.23):

Ai
r2
i

=
γi(qi − qi−1)

1− γi
(3.26)

Ci =
γi(qi−1 − qi)

1− γi
+ ϕi (3.27)

The last step consists in determining qi at each radius depending only on the

external and internal pressures, which are the only known contact pressures. In

the model these terms are obtained using the following recurrence relation:

qi =
ai
an
qn +

(
ci −

cn
an
ai

)
q0 +

(
di −

dn
an
ai

)
q0εz (3.28)

where:

a0 = 0, a1 = 1, c0 = 1, c1 = 0, d0 = d1 = 0 (3.29)

and:

ai+1 =
(Si − γiTi)ai−1 − (Si − Ti)ai

(1− γi)(λi+1 − βi+1)
(3.30)

ci+1 =
(Si − γiTi)ci−1 − (Si − Ti)ci

(1− γi)(λi+1 − βi+1)
+

(1− γi+1)(ϕiβi − ϕi+1βi+1)

q0(λi+1 − βi+1)
(3.31)

di+1 =
(Si − γiTi)di−1 − (Si − Ti)di

(1− γi)(λi+1 − βi+1)
+

(1− γi+1)(νi − νi+1)

q0(λi+1 − βi+1)
(3.32)

These formulas have been demonstrated by mathematical induction in [Vedeld and

Sollund, 2014], and they can be easily implemented in.

The expression of the contact pressure qi (Eq. 3.28) can be subdivided into two

main terms: one related to the contribution of external and internal pressures and

of the thermal loading, the other to the axial deformation:

qi = q0
i + ζiεz (3.33)
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where:

ζi =

(
di −

dn
an
ai

)
q0 (3.34)

q0
i =

ai
an
qn +

(
ci −

cn
an
ai

)
q0 (3.35)

The axial deformation can be calculated starting from the equilibrium equation

3.9 which in the present study becomes:
n∑
i=1

= σz,iπ(r2
i − r2

i−1) = N −KLεz (3.36)

By inserting the equation of axial stress reported in Eq.(3.15), the equilibrium can

be expressed by:

π
n∑
i=1

r2
i (1− γi)

{
2νi

1

1− γi
(γiq

0
i−1 − q0

i )− (1− 2νi)ϕi+

+

[
Ei + 2νi

1

1− γi
(γiζi−1 − ζi)

]
εz

}
= N −KLεz (3.37)

Finally, the constant axial strain can be calculated as:

εz =
N + π

∑n
i=1 r

2
i [(1− 2νi)(1− γi)ϕi − 2νi(γiq

0
i−1 − q0

i )]

KL+ π
∑n

i=1 r
2
i [Ei(1− γi) + 2νi(γiζi−1 − ζi)]

(3.38)

The external pressure pn is null since rn is far enough and the conditions of the

rock are undisturbed.

Concerning the internal pressure p0, the literature suggests that in close environ-

ments such as passive houses there is a substantial increase in pressure due to

the rise in temperature generated by fire. In [Bekish, 2018] it is claimed that

in certain conditions it is even impossible to open the door because of the high

overpressures that have been generated. In [Janardhan and Hostikka, 2017] a fire

pool is positioned in an apartment, reaching T=300°C. The values of overpressure

from numerical analysis and experimental data range between 100 and 1650 Pa,

strongly depending on leakage and also on ventilation systems in the house.

In the case of deep tunnels the rise in pressure does not attain considerable values

since there are openings, however the variation of temperature may induce a small

increase in internal pressure due to the presence of gases at high temperatures. In

this model it is imposed p0 = 0.5 kPa. In any case, there is a low sensitivity of

the results with respect to limited values of internal pressure.
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3.2.2 Numerical implementation

In order to solve the thermo-mechanical problem, the multi-layer model may be

easily implemented using an electronic spreadsheet, where both the concrete lining

and the surrounding rock are discretized in layers.

The choice of the thickness of each layer mainly depends on the thermal gradient

that develops: the concrete lining should be subdivided into many thin layers, be-

cause it is characterised by high gradients of temperature. On the other hand, the

rock may be subdivided into thin layers in its internal region, where it is subjected

to high gradients, while in its external part it may be subdivided into thicker lay-

ers.

After setting up the problem, using an electronic spreadsheet the fire induced

stress state in each layer can be calculated by following the analytical procedure

explained in Paragraph 3.2.1. It may be used not only in plain strain conditions,

but also in generalized plain stress conditions.

This kind of model permits to consider the interaction between the lining and the

rock. They are simply modelled as adjacent layers and their interface is charac-

terised by continuity in radial stresses and displacements.

The numerical implementation of the method requires that each instant is evalu-

ated separately, since the temperature profile characterises a specific time instant.

To refine the analysis, more spreadsheets should be used to discretize the analysis

in time.

Even though it is based on some simplifying assumptions, this model can be easily

implemented and gives realistic results very fast. This is why it represents a very

good alternative to finite element models, which require much more time to be

solved. The immediacy and simplicity of the method make it a very useful tool to

be used for a preliminary design of a tunnel and to evaluate its fire performance.

3.2.3 Validation of multi-layer model

The multi-layer model provides the possibility to study the response to fire of a not

homogeneous medium. This means that damage caused by fire on the mechanical

properties of concrete may be taken into account by imposing different mechan-

ical and thermal parameters in each layer. However, if the system is considered

homogeneous, the solution of the model should reproduce that of the analytical

model proposed in section 3.1, where the concrete ring is described by a single,

homogeneous layer, except for the approximation introduced by the discretization,

that should be negligible if sufficiently refined.
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Figure 3.18: Validation of the multi-layer model. Radial displacement of the concrete ring

when subjected to pint = 1000 kPa and pext = 500 kPa

In this section, the multi-layer model is validated using as a reference the ana-

lytical model of [Corradi Dell’Acqua, 2010]. To this aim, the same logarithmic

distribution of temperature is imposed in the two analyses, while the geometry

and the material properties are those of section 2.4. The accuracy of the model is

checked in two different cases:

• the concrete ring is subjected to internal and external pressures only;

• the concrete ring is heated in a non-uniform way, following a logarithmic

distribution of temperature.

In the first case, the support is subjected to an internal pressure of 1000 kPa and

an external pressure of 500 kPa. The effects of such loads are reported in Figures

3.18, 3.19, 3.20 and 3.21.

The hollow cylinder expands radially because of the high internal pressure,

reaching the maximum displacement in correspondence of the intrados, of about

1.19 mm. The radial stress is characterised by a linear variation between the

two boundary conditions (i.e. pint and pext) and the concrete ring is radially

compressed. Hoop stresses are positive, so the material tends to expand in the

circumferential direction due to the contribution by the internal pressure in the

radial direction. Finally, the stress state in the axial direction is constant.

The results of the two models are in agreement on the response of the system when
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Figure 3.19: Validation of the multi-layer model. Radial stress in the concrete ring when

subjected to pint = 1000 kPa and pext = 500 kPa

Figure 3.20: Validation of the multi-layer model. Hoop stress in the concrete ring when sub-

jected to pint = 1000 kPa and pext = 500 kPa
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Figure 3.21: Validation of the multi-layer model. Axial stress in the concrete ring when sub-

jected to pint = 1000 kPa and pext = 500 kPa

subjected to pressure, thus the multi-layer model is validated.

In the second case, considering the initial temperature of the lining of 20°C, the

support is assumed to be non-uniformly heated, following a logarithmic function

for the temperature. The hollow cylinder is heated at the intrados, where it raches

a temperature of 1000°C. Due to the high thermal insulation of concrete, the ex-

trados is characterised by a thermal variation of 180°C, reaching 200°C.

The stress state calculated using the two models is reported in Figures 3.22, 3.23,

3.24 and 3.25.

In this case, the results of the models agree except from a slight difference in

the radial stresses, where a difference of 7% is found at the position of maximum

stress (r=3.45 m). For σθ, σz and ur the maximum discrepancies between the

continuous and the discretized model are respectively 1.7%, 0.54% and 0.03%. It

is worth remarking that the stress state is mainly governed by the circumferential

stresses values, since they are two orders of magnitude bigger than those in the

radial direction.

Concerning convergence, the graph shows that a rise in temperature could cause

a substantial displacement of the lining, reaching values up to 2.75 cm.

If the concrete lining is subjected to both pressure and thermal load, the stress

state may be simply calculated by imposing the superposition principle, i.e. by

summing the two contributions of temperature and pressure.
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Figure 3.22: Validation of the multi-layer model. Radial displacement of the concrete ring

when subjected to thermal load.

Figure 3.23: Validation of the multi-layer model. Radial stress in the concrete ring when

subjected to thermal load.
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Figure 3.24: Validation of the multi-layer model. Hoop stress in the concrete ring when sub-

jected to thermal load.

Figure 3.25: Validation of the multi-layer model. Axial stress in the concrete ring when sub-

jected to thermal load.
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3.3 Degradation of concrete

3.3.1 Strength and stiffness

Since the concrete lining is subjected to very high temperatures, the effects of fire

on the material cannot be neglected. Thus, it is necessary to find a way to consider

degradation when calculating the state of stress in the multi-layer model.

The Standards suggests to take into account these effects by choosing different

stress-strain curves describing the material, each one characterised by its peak

strength and strain as functions of temperature.

However, in the present work a slight different procedure is adopted: since each

layer of the model is described by its Young’s Modulus, the aim is to get an

expression of E depending on temperature θ, so that each layer can be assigned with

a temperature-dependent Young’s Modulus. This can be accomplished starting

from the data that are reported in the normative (Table 1.18): these values can

be interpolated using non linear equations. Coefficient kcθ represents the ratio

between the strength at the initial conditions and the strength at temperature θ

and can be interpolated with a cubic function:

kcθ = 1.77 · 10−9 · θ3 − 2.958 · 10−6 · θ2 + 0.0002 · θ + 1.0048 (3.39)

The curve is reported in Figure (3.26). It well fits the tabulated values with a

maximum discrepancy of 18.6% (800°C), even though there is a small discrepancy

in correspondence of 1200°C. This discrepancy is trivial, since this value of tem-

perature is not frequently reached.

The graph shows that at about 550°C the peak strength is half the initial value,

whereas from 1000°C on the concrete loses almost all its strength.

Coefficient kcθ will be then multiplied by the concrete compressive strength fck in

order to get the maximum stress at temperature θ.

The literature suggests to adopt a compressive strength value at initial conditions

ranging between 25 and 35 MPa: [Caner et al., 2005] uses fck = 28 MPa at 28

days, the same value is adopted in [LoMonte et al., 2019], while [Savov et al.,

2005] chooses a compressive strength of 30 MPa in its case study. In this work,

the concrete is associated with an initial compressive strength fck of 31 MPa.

Coefficient εc1,θ (Figure 3.27) is the value of strain in correspondence of the peak

strength. It grows up to 600°C following an exponential trend, then it remains
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Figure 3.26: Decrease of characteristic strength of concrete with temperature. Interpolation of

kcθ values taken from [Eurocode2, 2005]

stable at 0.025:

εc1,θ =

0.0025 · exp0.0037·θ for θ < 600

0.025 for θ ≥ 600
(3.40)

The peak deformation grows for temperatures that are lower than 600°C, revealing

a growing ductility of the material with temperature. Above this threshold, the

strain remains constant: thus, the material is expected to reach its peak strength

keeping the same value of deformation.

The ultimate compressive strain εcu1,θ (Figure 3.28) follows a linear trend:

εcu1,θ = 2.5 · 10−5 · θ + 0.0199 (3.41)

Once these data have been interpolated, it is possible to build the stress-strain

curves at any temperature (Figure 3.29). To this aim, the non-linear trend sug-

gested by [Eurocode2, 2005] has been chosen for the pre-peak values (Eq. 1.9),

while a linear trend is adopted for the post-peak.

For values of θ up to 600°C the peak migrates in rightward direction, revealing an

increase in ductility of the material and thus a decrease of the Young’s Modulus

with temperature. The peak stress diminishes as well and for very high values of

temperature the concrete loses the majority of its strength.

The Young’s Modulus is defined as the tangent at each point of the curve for a

specific temperature. However, in this work a simplified approach is assumed: for
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Figure 3.27: Deformation at peak strength for concrete at different temperatures. Interpolation

of data taken by [Eurocode2, 2005]

Figure 3.28: Ultimate compressive deformation of concrete. Interpolation of data taken by

[Eurocode2, 2005]

.
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Figure 3.29: Stress-strain curves at different temperatures.

the pre-peak curve, the secant value of stiffness is considered:

E(θ) =
fcθ,0.5
εc1θ,0.5

(3.42)

The values of E of each stress-strain curve can be interpolated using a decreasing

function, in this case an exponential decay is adopted:

E = −2.519 · 10−5 · θ3 + 0.0662 · θ2 − 58.528 · θ + 17811 (3.43)

This function (Figure 3.30) well approximates the stiffness reduction of concrete,

considering the maximum difference from the secant values of about 733 MPa in

correspondence of 500°C. This error is due to the fact that the peak strain values

(Figure 3.27) are described by a piecewise function.

This equation allows one to associate each layer of the support with a temperature-

dependant Young’s Modulus. The inner layers, which are subjected to a very high

rise in temperature, experience a strong decrease in stiffness and strength, while

the external layers of the lining are characterised by a value of E very close to the

initial one (i.e. 18 GPa).

The reduction of stiffness with temperature has been investigated in the literature

too, revealing very different behaviours depending on the type of aggregate that

constitutes the sample. A review of experimental data can be found in [Rilem

Technical Committee, 2004].
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Figure 3.30: Exponential decay of Young’s Modulus E with temperature θ.

Since the exponential decay shown above is typical for silicate aggregates, the

curve can be compared with experimental data which refer to similar types of con-

crete. For example, Figure (3.31) reports the results of [Marechal, 1970], where

different mixes have been tested. If compared to our analytical graph, the curves

have similar trends.

The fire induced damage can be considered as reversible or irreversible: in the

former case, once the lining has cooled down, its mechanical properties are the

undisturbed ones. Instead, if the phenomenon is assumed irreversible, the prop-

erties describing concrete depend on the maximum temperature that has been

reached in the layer, thus at the end of the fire the material has lost most of its

strength and stiffness.

Another way to assess the condition of the tunnel after a fire is to consider the

residual properties of concrete. The residual properties refer to the experimental

data that are found in a fire test after the sample has returned to the environ-

mental temperature. To this aim, the review of [Phan and Carino, 1998] has been

used. In Figure (3.32) the reduction of E with respect to the initial value at 20°C
is reported, for unstressed samples. It may be noticed that the concrete lining

of a tunnel would be better represented by a stressed test. However, due to the

scarcity of data, the unstressed residual response is taken into account.

In this work, only the case of Normal Strength Concrete (NSC) is considered.

These results show that after the sample has cooled down, the material regains a

77



3.3. DEGRADATION OF CONCRETE

Figure 3.31: Comparison between the analytical curve for Young’s Modulus reduction and

experimental results of [Marechal, 1970] for θ < 400°C.

Figure 3.32: Modulus of Elasticity-Temperature Relationships from Unstressed Residual-

Strength Test Results. [Phan and Carino, 1998]
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Figure 3.33: Residual and hot Young’s Modulus. Data from [Phan and Carino, 1998]and

[Marechal, 1970].

small part of its initial stiffness. Figure (3.33) reports both the hot ad residual ex-

perimental curves. As shown in the graph, the interpolation curve is in agreement

with the experimental data, in particular with the lower bound.

3.3.2 Friction angle and cohesion

Concrete may be associated to many combinations of friction angle and cohesion

depending on its composition. In [Oztekin et al., 2016] experimental tests on NSC

have been conducted, resulting in the determination of cohesion between 5 and 13

MPa, while friction angle ranges between 27° and 34°. In this work, for uniaxial

compression strength fck = 31 MPa, the model has been tested considering the

following properties:

• friction angle φ = 32°

• cohesion c = 8.62 MPa

When dealing with high temperatures, cohesion and friction angle cannot re-

main to the values of the initial conditions, since the strength of concrete is influ-
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enced by temperature. In this work, they are assumed to proportionally reduce

with the strength of concrete.

The same reduction factor is applied to both the coefficients. Failure occurs for

the following values:

fcθ [MPa] φ [°] c [MPa]

31 32 8.62

30 31.52 8.49

29 30.89 8.32

28 30.27 8.15

27 29.67 7.99

26 29.07 7.83

25 28.20 7.60

20 24.22 6.52

15 19.74 5.32

10 14.49 3.90

5 8.12 2.19

Table 3.2: Variation of friction angle and cohesion with strength.

The two parameters proportionally reduce by a multiplying factor Fr lower than

1, which decreases with progressive damage (Figure 3.34).

To have a continuous variation of cohesion and friction angle, an analytical re-

lation with the compression strength should be established, rather than a tabular

list of values. The friction angle and cohesion can be calculated as functions of

the strength fcθ at temperature θ using two quadratic functions (Figures 3.35 and

3.36):

φ = −0.0169 · f 2
cθ + 1.5297 · fcθ + 0.6312 (3.44)

c = −0.0046 · f 2
cθ + 0.4121 · fcθ + 0.17 (3.45)

The choice of applying the same reduction factor to both the parameters is the

simplest one and represents a first approach to deal with the problem. However,

different assumptions could be made: an example is to first reduce cohesion and to

start reducing the friction angle later. In fact, the literature suggests that as soon

as concrete is heated, the bounds between cement paste and aggregates tend to

break, resulting in a decrease in cohesion [Hager, 2013]. Given the high variability

of the mechanical response of concrete to high thermal loads, these parameters

should be chosen upon appropriate testing and calibration.
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Figure 3.34: Friction angle and cohesion reduction factor as function of concrete strength fcθ

Figure 3.35: Friction angle φ as function of compressive strength fcθ at temperature θ
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Figure 3.36: Cohesion c as function of compressive strength fcθ at temperature θ
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Chapter 4

Results and Discussion

4.1 Heat transfer analysis

The development of fire in a tunnel depends upon many variables, such as its

geometry or the presence of a ventilation system. As a consequence, various fire

scenarios may be chosen to predict the effects induced by fire on the structure.

The environmental temperature of the tunnel is fixed at T0 = 20°C for a hundred-

meter-deep tunnel. The value of T0 increases with depth and depends on the length

of the tunnel as well.

In this analysis, the tunnel is supposed to be subjected to standard fire ISO834,

followed by a cooling phase linear with time (Figure 4.1).

The multi-layer model allows to calculate the fire induced stress state by intro-

ducing a temperature field T (r) that in the previous section was represented by

analytical curves (quadratic or logarithmic). Otherwise, the temperature field can

Figure 4.1: Fire curve imposed as boundary condition at the intrados of the tunnel.
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(a) 3-dimensional view (b) x-y plane

Figure 4.2: Rock (gray) and concrete lining (blue) model in COMSOL Multiphysics

be the solution of a heat transfer analysis.

The heat transfer problem can be easily solved by implementing the Fourier equa-

tion of heat conduction in a finite element model or, alternatively, by analytically

solving the Fourier equation. In the present work, the software COMSOL Multi-

physics has been used to be provided with the temperature curves inside the 30-cm

thick concrete lining and in the surrounding rock. The geometry of the problem

(Figure 4.2) is composed of two domains: the concrete lining and the rock. To solve

the heat transfer problem, the default material properties for soil and concrete of

COMSOL are used. In particular, the thermal conductivity plays a fundamental

role when dealing with heat transfer problem. The default conductivity of soil λs
refers to [Mostafa, 1999]:

λs =


0.0747638 + 1.451056 · 10−4 · θ if 293< θ[◦C] <475

139.2152− 1.028413 · θ + 0.002851159 · θ2+

−3.513043 · 10−6 · θ3 + 1.623188 · 10−9 · θ4 if 475 < θ[◦C] < 525

(4.1)

Concrete is assigned with λc defined by [Morabito, 1989].It is defined between

253 < θ[◦C] < 363 as:

λc = 26.91105− 0.2477056 · θ + 8.606168 · 10−4 · θ2 + − 1.00482 · 10−6 · θ3 (4.2)

The effects of fire on the structure for the first ten hours are shown in the

contour plots of Figure (4.3) and plotted in the graph of Figure (4.4). During the

first two hours, heat is transferred only in concrete, while the rock remains at T0.

After two hours the rock starts being heated, reaching temperature values up to

370°C.
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(a) 30 min (b) 90 min

(c) 180 min (d) 420 min

(e) 600 min

Figure 4.3: Contour plots of the temperature at different time steps from the transient heat

transfer analysis.
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Figure 4.4: Temperature inside the concrete ring and the rock for different time steps.

Thus, the peak temperature is shifted with time towards the rock and at the same

time the peak value decreases. Looking at the results of the first ten hours, only

one meter of rock is subjected to heating, but the trend suggests that heat could

be transferred further in the following time steps. In fact, if a thicker rock ring is

analysed and a greater time lapse is considered in the analysis, it is possible to have

an idea of the time that is needed to completely cool down the tunnel. The results

show that the first ten meters of rock are affected by a temperature variation. After

about three days, the concrete lining returns to the initial temperature, while the

effects of fire tend to completely disappear in the rock after about ten days (Fig.

4.5).

At the interface between rock and lining there is a discontinuity in the temperature

gradient, due to the different thermal conductivities of the two materials.

Looking at the temperature variation with time at different positions (Figure 4.6),

it is possible to see once again that the concrete has very good insulation properties.

In fact, at the intrados (i.e. for r = 3.7m) the temperature is equal to the imposed

boundary condition, while for r = 3.8 m the delayed peak value is almost half

Tmax at the intrados. On the other hand, the rock has a higher value of thermal

conductivity: looking at the first meter of rock, the peak is shifted in time, but it

diminishes slowly (Figure 4.7).
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Figure 4.5: Effects of fire after one to ten days.

Figure 4.6: Temperature variation at different reference points in the lining (r=3.7 m - r=4

m) and in the rock (from r=4 m on).
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Figure 4.7: Temperature variation within time inside the rock.

4.2 Tunnel response under fire

The results of the heat transfer analysis can be used to evaluate the state of stress

and radial displacement that are generated by the presence of fire. These first

results refer to a purely elastic behaviour, therefore the cooling phase brings the

stress-strain state back to the initial condition.

The thermal problem and the mechanical one are coupled by defining the coeffi-

cient of thermal expansion α for both materials. In this work, the coefficients have

been taken by the literature and are reported in the following table:

domain name unit value

rock αr
1

◦C 10−5

concrete αc
1

◦C 9.26 · 10−6

Table 4.1: Thermal coefficients for rock and concrete

Based on the multi-layer model, the lining is subdivided into thirty one-centimeter

thick layers, where the inner radius is r0 = 3.7m and the external one is r = 4m.

The rock ring is composed of 174 layers of variable dimensions to form a 50-meter-

thick ring, from r = 4m to rn = 54m. The layers which lay close to the interface

are one-centimeter thick as well, but as the radius increases, the effects of temper-
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ature diminish and thus the external layers reach a thickness of 0.5 meters. Each

layer has been assigned with its mechanical and thermal properties and with the

average value ∆T (t) calculated over the layer’s width, from the thermal analysis

results at time t.

As already seen in the heat transfer results, ten days are needed to make the tun-

nel completely cool. Since the main mechanical effects on the structure develop

during the first ten hours, the stress state is analysed for this time lapse.

Looking at the radial displacement (Figures 4.8 and 4.9) for different time steps,

the maximum divergence is reached four hours after the beginning of fire (i.e. dur-

ing the cooling phase) and at the interface between rock and lining. The radial

displacement at this time step is of about 14.45 mm and a similar value is reached

five hours after the fire: this is due to the fact that concrete is thermally insulated

and it needs several hours to get cooler.

The peak displacement shifts with time: at first, the maximum divergence is

reached within the lining, whereas in the following time steps it reaches the rock

layers: for example, after 10 hours the peak displacement ur = 2.16mm is reached

at about r = 5.35m, which is 1.35 m far from the rock-lining interface.

The results show that null divergence is never reached and for great radius the

radial displacement asymptotically tends to zero: this is due to the choice of an

elastic model.

The lining and the first layers of rock are subjected to compressive radial stress,

which reaches its peak of about 3.6 MPa inside the concrete lining at T=3 hours

(Figure 4.10).

Then, for greater radius, the fire induced radial stress diminishes, resulting in

almost null radial stress about 25 meters away from the lining-rock interface.

Looking at Figure (4.11), the peak stress is reached within the very first layers

of concrete lining, but it shifts towards the rock at the following time steps.

Radial compression grows up to the third hour, but as soon as the fire is ceased,

it decreases. Ten hours after the fire, the stress state is completely different with

respect to the previous hours: the lining has cooled down, while the peak tem-

perature lays in the rock. This leads to the formation of a region characterised

by radial compression near the rock, whereas the most internal part of the lining

is subjected to radial tension. This stress gradient could induce the spalling of

the intrados of the lining, but to have a better analysis of the state of stress, the

circumferential stresses should be considered as well.

As soon as temperatures are very low, such as after 24 hours, the concrete ring is
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Figure 4.8: Radial displacement of concrete lining and rock.Positive values mean outward di-

rection.

Figure 4.9: Radial displacement of concrete lining.
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Figure 4.10: Radial stress in lining and rock.

not subjected anymore to radial stress.

The hoop stress state (Figures 4.12 and 4.13) involves the concrete lining and the

first meters of rock. As already seen in Section 1.2.3, during the first hours the

intrados is characterised by very high values of temperature, whereas the external

part of the lining is still at its initial condition, T0. This leads to the formation of

compressive hoop stress at the intrados and tensile ones externally.

As soon as all the lining is heated, the stress gradient diminishes (e.g. in 5h curve),

while after 10 hours the situation is reversed: the intrados has now completely

cooled, while the lining near the rock is still characterised by high temperature:

thus, for small radius the lining has tensile stresses, for larger ones it is compressed.

As already mentioned, it is important to remark that the stress gradient that forms

inside the lining is one of the main causes of spalling. Moreover, by comparing

radial stress and hoop stress, it should be noted that they differ of about two

orders of magnitude and so the stress deviator is very high. This information is

essential because it permits to make some important assumptions: in particular,

the deviator should be compared with the triaxial strength of concrete, but since

q = σθ − σr ' σθ, it is sufficient to compare the hoop stress with the uniaxial

compression strength.

Finally, the axial stress (Figures 4.14 and 4.15) reaches values that could be com-

parable to those of the circumferential stress (i.e. two orders of magnitude bigger

than radial stress). At the beginning, the inner part of the lining is axially com-
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4.2. TUNNEL RESPONSE UNDER FIRE

Figure 4.11: Radial stress state in the lining at different time steps.

pressed, while the external one is in slight tension. Then, in the cooling phase the

stress state tends to go back to the initial condition.

The main reason why the axial stress is so high is that the cylinder is assumed to

be constrained at one end, while at the other end there is a very stiff spring which

limits the axial expansion of the tunnel. In fact, the axial deformation εz is con-

stant in all the layers and it is in the order of 10−8. This limitation of movement

causes the rise in stress in this direction.

These results refer to an elastic model, thus the final condition returns to the ini-

tial one. However, to be closer to reality, the consequences of such high stresses

should be considered: in fact, even if the tunnel cools down, the fire induced stress

state could lead to irreversible damage.
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CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.12: Hoop stresses generated by the variation of temperature induced by fire.

Figure 4.13: Hoop stresses in the concrete lining.
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4.2. TUNNEL RESPONSE UNDER FIRE

Figure 4.14: Axial stress in the concrete lining and surrouding rock.

Figure 4.15: Axial stress in the concrete lining.
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4.3 Fire induced damage

The multi-layer model allows one to calculate the stress state that is generated in

the support of a tunnel and in the surrounding rock during and after a fire.

However, when a particular material is subjected to such high temperatures its

thermal and mechanical behaviour may substantially change, mainly because of

changes in its micro-structure and in the chemical bounds.

In this section the multi-layer model is slightly modified, with the aim of con-

sidering the main two fire induced effects on concrete: the material properties

degradation and the possibility of having spalling. The numerical code is conse-

quently adapted to permit the user to include one or two of these degradation

effects.

4.3.1 Degradation of concrete

In this section the fire-induced damage is introduced by means of concrete degra-

dation. In particular, as already mentioned in subsection 1.2.3 the material loses

its strength and stiffness with temperature.

The temperature-dependant strength reduction is described by coefficient kcθ in

Equation (3.39), while the Young’s Modulus reduction with θ is reported in Equa-

tion (3.43).

The dependence of these two parameters on temperature results in a not homo-

geneous distribution of stiffness in the concrete ring. As temperature rises, the

material loses its strength and becomes more ductile.

Thus, the results that are presented derive from a model that is constituted of

thirty layers of concrete, each one characterised by its average temperature, result-

ing from the purely thermal analysis, and by its temperature-dependent Young’s

Modulus.

The fire-induced effects can be introduced in two different ways: if the effects

on the concrete stiffness are considered reversible, it is sufficient to describe the

dependence of the Young’s Modulus on temperature, but as soon as the tunnel

cools down, the stiffness of the material returns to the initial value. In the other

case, the effects of high temperatures are considered irreversible: once the peak

temperature is reached, concrete is permanently damaged and its stiffness cannot

return to the pre-fire conditions. This assumption is put into practice by assigning
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4.3. FIRE INDUCED DAMAGE

Figure 4.16: Radial displacement of the concrete lining during the heating phase. The results

of the reversible and irreversible models are the same.

to each layer a stiffness which does not depend on the current temperature, but

on the peak temperature that has characterised the layer.

Since the temperature rises during the heating phase, the results of the two differ-

ent models are the same up to the third hour, while in the cooling phase the results

diverge. For instance, the inner layers of concrete depend upon the temperature

values at T=3 hours, whereas for greater radius the peak temperature may be

the one at four or five hours, since the temperature peak shifts with time. Figure

(4.16) shows the radial divergence during the heating phase, while Figure (4.17)

shows the stress state in the same period of time.

As already mentioned above, the results given by the models are the same. Be-

sides that, it may be noticed that in this case both the radial displacement and

the stress state are far lower than the one obtained neglecting fire induced dam-

age. The peak displacement reaches about 3.5 mm at T=3 hours and the radial,

hoop and axial stress diminish of about one order of magnitude. The reduction of

stiffness makes the material more ductile, this is why it is characterised by lower

values of stress.

During the cooling phase the results of the two models become different. The

real state of stress is estimated to lay between two boundary conditions: the re-

versible case and the irreversible one, if the material is more realistically assumed

to behave in an only partially reversible way ([Phan and Carino, 1998], [Rilem

Technical Committee, 2004], [Ma et al., 2015]). This is why the results of the two
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CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.17: Stress state in the concrete lining during the heating phase in the reversible and

irreversible models.

models are reported in the same graph.

For instance, Figure (4.18) shows the radial displacement 10 hours after the fire.

The reversible case represents the worst condition, since the material is supposed

to be more rigid with respect to the other case. The stress state (Figure 4.19) is

characterised by very different results: on one hand, the reversible model presents

a small radial tension at the intrados, balanced by compression getting closer to

the rock; the hoop stresses are positive (tension) where the lining is cool, while

they are negative (compression) where the temperatures are still high. Finally, the

lining is axially compressed, reaching values up to 20 MPa.

On the other hand, the irreversible model is characterised by smaller stress vari-

ations: in the three graphs the lining is shown as entirely compressed, thus the

stress variations inside the material are more limited.
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4.3. FIRE INDUCED DAMAGE

Figure 4.18: Radial displacement 10 hours after the fire. Comparison between reversible and

irreversible case.

Figure 4.19: Stress state 10 hours after the fire. Comparison between reversible and irreversible

model.
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4.3.2 Spalling

Spalling represents the aspect of greatest concern when dealing with fire in tunnels.

As reported in section 1.2.3, it is caused by a combination of factors, thus it is

very hard to find a criterion which establishes whether concrete spalls or not.

In this work, spalling is expected to occur as soon as the material reaches failure

according to the Mohr-Coulomb criterion. Thus, this phenomenon depends on the

stress state that characterises each one-centimeter-thick layer of concrete and it

occurs when the stress state reaches a limit condition which makes the concrete

layer fail.

The Mohr-Coulomb criterion identifies the limit boundary between the admissible

and the not admissible stress states and it is defined as:

F (σ) = σrKp − σθ − 2c
√
Kp = 0 (4.3)

where Kp =
1 + sinφ

1− sinφ
, σr and σθ are respectively the minimum and the maximum

principle stresses.

Further details about the criterion are reported in subsection 2.1.2.

In absence of confined (triaxial) compression tests, and for a given value of uniaxial

compression strength (σr = 0, σθ = fck):

|fck| = 2c
√
Kp (4.4)

The first step is to evaluate the stress state in the lining at equilibrium with the

rock, in order to define the conditions of concrete before being subjected to fire.

This may be done using the multi-layer model: the hollow cylinder is composed

of concrete layers only, no temperature variation is imposed, but it is loaded by

external pressure given by the rock. The value of pext may be estimated from the

equilibrium point of the Convergence-Confinement Method (section 2.4) and, for

our case, it is p=506.85 kPa.

The radial and hoop stresses in the lining are reported in Figures (4.20) and (4.21).

Once the stress state of the lining is defined, using the Mohr-Coulomb criterion

each layer may be tested in order to know whether its state of stress is admissible

and the regime is elastic (F (σ) < 0). In this case, all layers are elastic.

When dealing with a fire event, each layer is associated with its strength fcθ,

which depends on temperature. Then, the friction angle and cohesion can be

calculated as function of the current strength, as shown in Paragraph (3.3.2). The
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4.3. FIRE INDUCED DAMAGE

Figure 4.20: Radial stress in the lining at equilibrium with the surrounding rock after tunnel

excavation.

Figure 4.21: Hoop stress in the lining at equilibrium with the surrounding rock after tunnel

excavation.

stress state induced by fire must be superimposed to the pre-existent state of stress,

which represents the equilibrium between rock and lining:

σr = σr0 + ∆σr (4.5)

σθ = σθ0 + ∆σθ (4.6)

The final state of stress is introduced in Equation (4.3), which establishes whether

the stress variation induced by fire eventually leads the material to a not admissible

stress condition. The not admissible condition is associated to the failure of the

layer.
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The phenomenon can be verified in three different cases:

1. in the simple multi-layer model, where concrete degradation with temperature

is not considered;

2. in the model with reversible damage, where the reduction of stiffness is re-

coverable;

3. in the model with irreversible damage, where concrete degradation is not

recoverable.

For the sake of simplicity, the following graphs report the possibility of having

spalling in the lining by associating to each layer the unit value if spalling occurs,

otherwise the null value is reported.

In the first case, failure is expected to occur for a long period of time and to

reach a depth of 22 cm. In particular, up to the 6th hour, the layers that are

involved in the spalling phenomenon tend to increase, reaching r = 3.92m (Figure

4.22). From the 7th hour on (Figure 4.23), the inner layers are no more subjected

to failure due to cooling and the consequent stress release, whereas the external

part of the intrados (i.e. from r = 3.76m) is characterised by failure.

These results show that the stress state that develops during and after a fire is

such that the material fails. In this case the model indicates the attainment of

a critical stress condition, that may load to failure, although not in the form of

spalling, that requires a free surface.

The reversible model takes into account the reduction of stiffness and strength

with temperature, leading to a lower stress state in all the layers. As soon as the

tunnel has cooled down, the Young’s Modulus describing concrete is brought back

to the initial one, because the damage is assumed reversible.

In this case, spalling is verified up to r = 3.79 m, so only the inner 9 centimeters

of concrete spall (Figure 4.24). In particular, the maximum depth is reached three

and four hours after the beginning of the fire, while from the 6th hour on, concrete

is no more involved in failure. This is due to the fact that the reduction of stiffness

makes the material more ductile, thus the stresses are lower than those calculated

in the previous model.

Finally, the irreversible model takes into account the concrete degradation with

temperature and assumes that its initial properties are not recoverable. In Figure

(4.25), spalling reaches 10 centimeters of depth during the 4th hour. In the follow-
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4.3. FIRE INDUCED DAMAGE

Figure 4.22: Spalling in the first 6 hours of simulation. The layers up to r = 3.92m spall.

Figure 4.23: Spalling after the 6th hour of simulation. The layers which lay close to the rock

fail.
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Figure 4.24: Spalling of the concrete lining according to the reversible model.

Figure 4.25: Spalling of the concrete lining according to the irreversible model.
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4.3. FIRE INDUCED DAMAGE

ing time steps the stress state is such that failure is no more occurring.

Even if they are introduced in a simplified way, these models take into account

both the fire induced effects: concrete degradation and spalling.

These results represent a first attempt to build a practical and immediate tool

that is able to predict the effects of fire on tunnels. The limits of the approach

lie in the assumption that the progressive failure does not change the temperature

field and the stress-strain distribution.

In fact, because of spalling the lining becomes progressively thinner. Thus, to

have a better comprehension of the phenomenon, the temperature profile should

be newly calculated at each time step as soon as spalling is verified. In this way,

the temperature profile would change depending on the thermal conductivity of

the material and on the depth that is reached by spalling.
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Conclusions

The present work has the objective of presenting a new analytical model, that

can be easily implemented and whose main advantages are the practicality and

the promptness. The model is able to evaluate the stress state that develops in

tunnels in two different situations: during their excavation and when subjected to

a standard fire.

The effects of rock excavation and support installation are investigated using the

Convergence-Confinement Method, which allows to calculate the alteration of the

stress state in the rock and to find the final equilibrium condition between the

concrete lining and the surrounding rock after the process.

The fire performance of the tunnel is analysed by means of a multi-layer model,

where both the concrete ring and surrounding rock are discretized in layers, each

one characterised by its own temperature variation, mechanical and thermal pa-

rameters. The model is limited to the elastic regime. The lining is expected to

diverge up to 14 mm four hours after the beginning of the fire and it is characterised

by compression both in the radial and circumferential directions. In particular,

the hoop stress reaches its maximum about 200 MPa at the intrados.

Since concrete is subjected to very high temperatures, its mechanical and thermal

properties change during the fire event. This is the reason why the fire induced

damage is introduced in the model, in terms of concrete degradation and possible

spalling.

The first effect is considered by using a temperature-dependent stiffness, that

comes from laboratory tests results on hot concrete samples, taken from the lit-

erature. Since concrete is a composite material, it is very difficult to assess its

general behaviour: thus, the concrete damage is assumed reversible in one model

and irreversible in another, constituting two boundaries of possible results. In

both cases, the lining is subjected to a lower stress state, due to the increase in its

ductility. The radial displacement decreases as well.

Spalling is introduced as soon as the stress state in the lining satisfies the Mohr-
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Coulomb failure criterion: the results show that the first centimeters of the intrados

are affected by this phenomenon.

As already mentioned, the model assumes that the behaviours of the concrete lin-

ing and the rock are elastic, this may be a simplification, even though damage is

introduced.

For a more accurate simulation, the load history undergone by the lining should

be repeated in the laboratory on concrete samples: it is firstly compressed by the

rock, then it is rapidly heated by fire and finally it cools down under sustained

stress. Performing ad hoc tests in the laboratory would provide a more precise

idea of the temperature effects on the stiffness of the material and, consequently,

of its behaviour.

To get these results, some assumptions have been made: concrete is considered

homogeneous, and the presence of reinforcement is neglected. To be more precise,

the effects of temperature on the interaction between steel reinforcement bars, ce-

ment paste and aggregates should be taken into account. In particular, spalling is

expected not to overcome the depth of the reinforcement bars.

Moreover, the Mohr-Coulomb criterion is based on friction angle and cohesion,

which characterise the material at normal conditions. In this case, being concrete

subjected to very high temperatures, the parameters are assumed to decrease

proportionally with temperature. A further step would consist in introducing

experimental-based data on the dependence of these coefficients on temperature.

The results of this work refer to a Normal Strength Concrete, composed of silicate

aggregates. Since concrete is a mixture of different components, it could behave

in many different ways, making it very difficult to assess its general behaviour.

To conclude, this model is extremely simple, immediate and suited for preliminary

assessment of the tunnel behaviour in case of fire, in this case representing a good

alternative to numerical simulations, which may last several hours. On the other

hand, the practicality of the present model is guaranteed at the cost of making

some simplifying assumptions.

In particular, the approach used to study the possibility of having spalling in the

model represents a first attempt to be improved. Further analyses on the pro-

gression and development in time of the phenomenon are required, especially by

updating the temperature field in the lining.
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Appendix A

Equilibrium equation in

cylindrical coordinates

Axisymmetric problems are usually solved using cylindrical coordinates. The in-

finitesimal volume has a particular geometry which is shown in Figure (A.1).

The equilibrium equations are obtained by imposing the equilibrium of the stresses

components in each direction at the material point, which can be subjected both

to volume forces and to stress.

Figure A.1: Representative volume element in cylindrical coordinates [Corigliano and Taliercio,

2005]

The equilibrium in the radial direction is:

− σr
(
r − dr

2

)
dθdz +

(
σr +

∂σr
∂r

dr
)(
r +

dr

2

)
dθdz+

− τθrdrdz +
(
τθr +

∂τθr
∂θ

dr
)
drdz − σθ

dθ

2
drdz −

(
σθ +

∂σθ
∂θ

dθ
)
drdz

dθ

2
+

− τzrrdθdr +
(
τzr +

∂τzr
∂z

dz
)
rdθdr + Frrdθdrdz = 0 (A.1)
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The equilibrium equation in circumferential direction θ is:

− σθdrdz +
(
σθ +

∂σθ
∂θ

dθ
)
drdz − τzθrdθdr +

(
τzθ +

∂τzθ
∂z

dz
)
rdθdr+

− τrθ
(
r − dr

2

)
dθdz +

(
τrθ +

∂τrθ
∂r

dr
)(
r +

dr

2

)
dθdz+

+ τθr
dθ

2
drdz +

(
τrθ +

∂τθr
∂θ

dθ
)dθ

2
drdz + Fθrdθdrdz = 0 (A.2)

And in the axial direction:

− σzrdθdr +
(
σz +

∂σz
∂z

dz
)
rdθdr − τθzdrdz +

(
τθz +

∂τθz
∂θ

dθ
)
drdz+

− τrz
(
r − dr

2

)
dθdz +

(
τrz +

∂τrz
∂r

dr
)(
r +

dr

2

)
dθdz + Fzrdθdzdr = 0 (A.3)

By simplifying these equations it is possible to obtain the final equilibrium equa-

tions in cylindrical coordinates:

∂σr
∂r

+
1

r

∂τθr
∂θ

+
∂τzr
∂z

+
σr − σθ

r
+ Fr = 0

∂τrθ
∂r

+
1

r

∂σθ
∂θ

+
∂τzθ
∂z

+
2τrθ
r

+ Fθ = 0

∂τrz
∂r

+
1

r

∂τθz
∂θ

+
∂σz
∂z

+
τrz
r

+ Fz = 0

(A.4)

These equations can be further simplified by making some assumptions. First, if

the problem has an axisymmetric geometry and there are no loads acting on the

circumferential direction all the cross sections of the cylinder have the same state

of stress. As a consequence, there is no dependence on coordinate θ: all the terms

that are derived in θ are null and the tangential stresses τzθ and τrθ are equally

null.

Secondly, if the problem is in plane strain conditions, there will be no axial defor-

mations and this results in τzr and τzθ equal to zero. Finally, if there are no Body

Forces the last term of each equation becomes null. If all these hypothesis hold

true, the only components of the stress tensor that are not null are σr, σθ and σz,

as function of the radial coordinate r. In this case, equation (A.4) becomes:

∂σr
∂r

+
σr − σθ

r
= 0 (A.5)
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State of stress in elastic field

When dealing with an elastic medium subjected to a volume force or pressure, the

stress state can be calculated by imposing equilibrium, compatibility and Hooke

equations. Hooke equations refer to linear elastic homogeneous media and express

the relation between stresses and strains:

εr =
σr
E
− ν

E
(σθ + σz)

εθ =
σθ
E
− ν

E
(σr + σz)

εz =
σz
E
− ν

E
(σθ + σr)

(B.1)

Compatibility between strains and displacement is imposed using the following

relation:
εr − εθ
r

=
∂εθ
∂r

(B.2)

Finally, equilibrium is imposed:

∂σr
∂r

+
σr − σθ

r
= 0 (B.3)

It is possible to demonstrate that in an elastic medium σr+σθ = constant through

the following simple calculations. By introducing Hooke relations (B.1) in the

compatibility (Eq. B.2), we obtain:

1

r

1 + ν

E

[(
σr(1−ν)−νσθ

)
−
(
σθ(1−ν)−νσr

)]
=

1 + ν

E

∂

∂r

[
(1−ν)σθ−νσr

]
(B.4)

which becomes:
σr − σθ

r
= (1− ν)

∂σθ
∂r
− ν ∂σr

∂r
(B.5)
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By introducing the equilibrium equation (B.3):

− ∂σr
∂r

= (1− ν)
∂σθ
∂r
− ν ∂σr

∂r
(B.6)

The equation finally becomes:

∂

∂r
(σθ + σr) = 0 (B.7)

It is thus demonstrated that the sum of radial and tangential stresses is constant.
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Appendix C

Convergence-Confinement

Method for soil

For sake of simplicity, when dealing with soil and rock it is often convenient to

use associated flow rules, where the plastic potential coincides with the plasticity

function. In this case, if Mohr-Coulomb plasticity function is adopted, the dila-

tancy angle ψ coincides with the friction angle φ.

However, the real experimentally observed soil dilatancy is overestimated when the

friction angle is assumed, therefore a non-associated flow rule would be preferred.

The radial convergence expression using non-associated flow rule can be found in

[Carranza-Torres and Fairhurst, 2000] and is the following:

upl = a
1 + ν

E

[
(1− 2ν)(F − p0) + (kp − νkp − ν)(p− F )+

+ (1− ν)(1− k2
p)

(p− F )

(kp + k′p)

(
1−

(
rpl
a

)kp+k
′
p
)]

(C.1)

where:

F =
2c
√
kp

kp − 1
(C.2)

and:

k
′

p =
1 + sinψ

1− sinψ
(C.3)

Considering the case study in Paragraph 2.4 and by introducing the dilatancy

angle ψ = 15°, the GRC changes with respect to the curve for associated flow rule.

In fact, reducing the dilatancy from ψ = φ = 30° (associated case) to ψ = 15°
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Figure C.1: Convergence-Confinement Method for dilatant (associated flow rule) and non-

dilatant (non-associated flow rule).

(non-associated case) leads to a higher radial convergence towards the centre of

the tunnel (Figure C.1). This is due to the fact that a dilatant material expands

while moving, thus generating additional compressive stresses that limit the inward

movement.
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