
Executive Summary of the Thesis

Trajectory optimization for collaborative robotics applications

Laurea Magistrale in Automation and Control Engineering - Ingegneria Industriale

Author: Roberto La Commare

Advisor: Prof. Andrea Maria Zanchettin

Co-advisor: Prof. Paolo Rocco Ing. Niccolò Lucci

Academic year: 2020-2021

1. Introduction
Today, the field of collaborative robotics is un-
dergoing considerable development. A growing
demand for new installations has gone hand in
hand with an increasing focus on safety and com-
fort of the operator that works with the cobot.
Considering the distinctive features of cobots
compared to ordinary robots, they are expected
to lead the way to mass customization, decrease
space requirements, increase product quality,
production efficiency, and improve working con-
ditions for humans, both safety and ergonomics
aspects

2. Thesis purpose
The purpose of the thesis is to develop an ef-
fective and repeatable method to optimize the
trajectory of a cobot before its deployment in a
work cell, thus without the need of additional
sensors in the final setup. The trajectory must
be optimized with respect to execution time and
operator safety, avoiding any obstacles in the
path.
This is linked to the idea of virtual commission-
ing, i.e. the development of the entire work cell
in simulation before it is developed in industry.
For this reason, in order to acquire the operator’s
movement data, it is not possible to physically

go on site and take measurements. Therefore, in
line with the digital industry 4.0, it is necessary
to reproduce the work cell with the help of vir-
tual reality, making an operator wear the device
in a controlled environment and acquire the mo-
tion data. Finally the cobot trajectory can be
optimized, taking into account the motion data
collected.

3. Optimization Algorithm
The optimization algorithm uses simulations
outsourced to an ad-hoc program: RoboDK [1].
It is a powerful simulator for industrial robots.
It has an extensive library of robot arms from
over 40 different robot manufacturers, making it
possible to simulate any robot controller.
The optimization algorithm run on MATLAB
and by calling a Python function it is possible
to run a simulation via RoboDK API.
The general idea is to optimize a pick and place
task, being one of the most versatile and com-
mon functions we can find in robotics. The start
and end configurations of the task depends on
the position of the robot in the working area so
they are not modifiable. The trajectory will be
optimized by modifying an intermediate point
as it is depicted in Figure 1. The optimization
will look for the intermediate configuration that

1

Executive summary Roberto La Commare

results in the shortest task time, in other words
the cost function is the working time and the
optimization variable is an intermediate config-
uration.
The cost function takes into account the distance
between the robot and the operator and the en-
vironmental obstacles. In total the optimization
will look for three balancing objectives: mini-
mize time, maximize safety and avoid obstacles.

Figure 1: Visualization of the simulated cobot
trajectory, along with the start and end fixed
configuration and the middle one, which is the
decision variable of the optimization.

3.1. Cost function
The cost function is the core of the optimization
algorithm. Depending on how this function is
defined it will determine where the robot’s tra-
jectory will converge.
Once the sequence of configurations q taken by
the robot has been simulated, the positions of
each link are found by solving the direct kine-
matic problem. At this point it is possible to
calculate the segment-to segment distance [2] be-
tween robot and obstacles.
In order to keep the robot-path away from the
obstacle a method similar to artificial potential
was used. A penalty in the cost function is added
if any of the robot link are close to any obsta-
cle below a threshold. This penalty is inversely
proportional to the distance.
If the robot gets too close to an obstacle, the
cost will increase rapidly, making the trajectory
converge to a safer distance

3.2. Velocity management
The speeds of the movements are defined accord-
ing to the operator’s distance. Essentially the

closer the robot gets to the human the slower
the robot can go. To improve the capability and
the overall result the trajectory is discretized in
n concatenated moves, each of which can take a
different speed. Inside the simulation algorithm
the minimum distance between the person and
the robot links is computed once for each trajec-
tory sub-segment i = 1, 2, ..., n. This distance
is then used to define the speed of each sub-
segment.
The maximum speed will be proportional to the
distance according the following equation

vimax =
1

TB
kdimin (1)

where vimax[mm/s] is the maximum velocity of
the ith sub-segment. The value of dimin[mm] is
the minimum distance calculated between the
robot configurations in the ith sub-segment and
the human. The time TB[s] is computed from
the sum of the reaction time of the controller
and braking time of the robot, it is generally pro-
vided by the robot manufacturer. This kind of
reasoning is generated by the speed Separation
Monitoring Algorithm suggested by the ISO-TS-
15066 [3] with a main difference: the ISO stan-
dard requires the presence of sensors in the field
that measure the actual distance of the opera-
tor from the base of the robot in real time. In
our scenario instead there is only a probabilistic
study: there is no certainty that the person is
not in proximity of the cobot, but only a high
probability. An unintentional collision is more
probable with respect to the SSM. For this rea-
son the safety scaling factor k < 1 is added to
make a possible accident more acceptable, re-
ducing the velocity with respect to the SSM ap-
proach.
The safety scaling factor k must be chosen both
on the basis of the reliability of the movements
of the person and the level of risk and damage
that can cause an unintentional contact.

4. Data acquisition: Virtual
Reality and Kinect sensor

In this Section we are going to analyse the data
acquisition process, which has the goal of obtain-
ing the operator’s occupancy area in the work-
place in the form of a point-cloud.
Since one of the aims of the thesis is to prove the
concept of virtual commissioning, the real plant

2

Executive summary Roberto La Commare

was not used (since it is hypothetically not yet
in place) but virtual reality was implemented.
This type of approach has multiple benefits:

• it allows a preliminary study of the tasks
the operators movement before the actual
implementation of the cell;

• it does not require stopping or slowing down
industry production, which is always eco-
nomically problematic;

• it can be performed in any given location,
and requires only the operator and two de-
vices (a virtual reality visor and a depth
camera).

An executable Android application was devel-
oped using Unity [4]. The procedure involves
drawing the scene of the industry as if it were a
video game, inserting the machinery and other
necessary 3D elements. Then an Android ap-
plication is generated from Unity and directly
loaded into the Facebook Oculus Quest2 [5] via
USB-C cable. This allowed the operator to sim-
ulate a complete working scene without being
restricted by a cable.
A human-tracking device was required to record

Figure 2: Kinect acquisition output and Matlab
representation of the operator

the data on the movement of the worker. The
Kinect [6] is a device developed by Microsoft®
for motion detection. This device integrates an
RGB camera with infrared projectors and de-
tectors that allow to acquire a depth map of the
environment. Then, through the random for-
est algorithm already integrated into the Kinect
SDK, the recognition of gestures and the detec-

tion of the body skeleton is carried out. We
are interested in: head, shoulders, elbows, hands
and torso (Figure 2).
Once this phase was completed and the cloud-
point of the operator’s positions were obtained
at one-second intervals, it was possible to start
the optimization algorithms.

5. Experimental analysis
5.1. Human model in the optimiza-

tion algorithm
Three different methods to interpret the human
occupancy in the workspace and thus the opti-
mization algorithm has been tested. Depending
on the method of calculation of the distances,
three distinct methods have been developed:
• static human volumetric sweep (Figure

3), where the algorithm considers all the po-
sitions the operator takes during the entire
operation;

• dynamic human model (Figure 4),
where the algorithm considers only the dis-
tance between the robot and the operator at
the pose that depends on the given instant;

• time window human model (Figure 5),
where the algorithm considers a window of
positions at each considered instant.

Figure 3: In each point of the robot trajectory
the algorithm will consider all the operator’s po-
sitions.

5.2. Experiment with cobot and op-
erator

The experiments were carried out to verify in
real life the quality of the trajectories generated
by the three algorithms.
The challenge of this experiment is to faithfully
represent the behaviour of an operator in the
workplace. In reality, the worker cannot perform

3

Executive summary Roberto La Commare

Figure 4: At each segment of the cobot’s trajec-
tory, the algorithm computes the distance be-
tween the robot and the operator’s position at
that second. When the operator is far the robot
will move at a higher velocity.

Figure 5: At each segment of the cobot’s tra-
jectory, the algorithm calculates the minimum
distance between the robot and three operator
positions: at that second, one second before and
one second after.

all the tasks precisely at the same time, but de-
pending on various factors such as fatigue, bore-
dom, etc., his speed may vary. Trying to repro-
duce this variability, the experiment was carried
out with different operator executions.
In order to understand and quantify the im-
provement of the three algorithms a basic tra-
jectory was needed. This trajectory provides a
benchmark against which the algorithms can be
compared. This trajectory is the simplest way
to get the robot to move from the starting point
to the ending point. For programming this oper-
ation the servo-assist training method was used.
The speed was maintained at 20deg/s, i.e. the
default speed set on the cobot. This trajectory
will be named "Base".
In order to compare these 4 trajectories (Base,
Algorithm1, Algorithm2, Algorithm3) a stan-
dard index must be defined.

The first one will be the cycle time, so the total
time in between the opening and the closing of
the press.
The second index is the energy transferred in a
transient contact with the operator’s shoulder.
The last comparing index is the velocity vari-
ance admitted by the algorithm, i.e. how much
the operator can vary its task time without
colliding with the cobot.

5.3. Cycle time
Considering the operator at a standard speed,
we will have the following cycle times:

Method Trajectory Time Cycle Time
Base 54s 68s

Alg1 45s 60s

Alg2 27.1s 52s

Alg3 34.7s 52s

Table 1: Comparison between Trajectory times
and cycle times, i.e. from opening until closing
the press

Those cycle times are directly taken from the
experiments. The base trajectory and the first
algorithm are particularly slow, so the operator
has to wait for the robot to finish its task. This
will increase the cycle time and add downtime
to the process. This is to be always avoided.
The second and third algorithms have the same
cycle time because when the operator returns
he can directly start the press without waiting
any longer. So in this comparison index the
second and third algorithms are equally well
performing.

5.4. Transient collision
To define this index, which is correlated with
safety, the energy dissipated due to transient
contact is considered. This value is usually cal-
culated as part of the Power Force Limiting
strategy. This criterion was used because there
are no distance sensors as required by the SSM,
therefore this task is subject to the PFL regula-
tion (ISO-TS-5066 [3]), as contact could occur.
The index is calculated from the formula:

E =
1

2
µv2rel (2)

4

Executive summary Roberto La Commare

where vrel is the relative velocity between the
end effector and the operator’s shoulder when he
is standing in front of the press, k is the elastic
constant of the body part, µ is the reduced mass
of the two-body system. Finally, it was possible
to produce the graphs shown in Figure 6
It can be observed that the worst case is repre-
sented by the values:

Method Maximum impact energy
Base 0.091J
Algorithm1 0.856J
Algorithm2 1.14 J
Algorithm3 1.068J

Table 2: Maximum energy transmitted in the
worst case scenario from the cobot to the oper-
ator shoulder in a transient collision

Clearly, the first algorithm, which is the most
conservative one, has low energy along with an
equally low speed. On the other hand, Algo-
rithms 2 and 3, have a higher energy transmis-
sion due to the faster movements. However, this
increase in danger is necessary in order to have
reasonable execution times. In all cases, even
if the operator were to find himself close to the
robot at the moment of maximum energy ex-
change, this would represent an acceptable risk
according to the FPL criterion. Indeed all the
4 trajectories are well below the ISO threshold
of pain Eshoulder = 1.46 J calculated using the
pressure limit associated with the shoulder joint
(Table A.2 of the ISO-TS-15066 [3]) in a 1 cen-
timeter square area.

5 10 15 20 25 30

T [s]

0

0.2

0.4

0.6

0.8

1

E
 [
J
]

Energy transferred in a transient impact with the shoulder joint

Algorithm 1

Algorithm 2

Algorithm 3

BaseX 1.9

Y 0.8558

X 4.8

Y 1.068

X 11.4

Y 1.14

X 7

Y 0.0911

Figure 6: Visualization of the energy that can
be transmitted in a transient contact between
cobot and operator’s shoulder. Note: the Base
graph is truncated.

Figure 7: Time frame of the moment when the
operator has finished the first task and is moving
away from the press. It can be observed the
cobot to be nearer the collaborative space in the
second algorithm.

5.5. Velocity variance
The last index considers the synchrony of move-
ments, i.e. what is the speed variation that the
operator can have before coming into contact
with the cobot. Allowing a greater variance is
preferred since it results in a more versatile tra-
jectory that can perform well at a range of op-
erator speeds.
For this index it is worthwhile to examine what
is the maximum permissible decrease in speed.
This is because if the operator slows down too
much, the cobot could enter the press while the
operator is still finishing the task.
In order to validate this index, it is useful to
study slowed-down experiments (Figure 7).
The comparison is made between only the sec-
ond and third algorithms, as the first and base
algorithms have already proved to be irrelevant
due to excessive slow motion.

Method Maximum speed variance
Algorithm2 27%

Algorithm3 42%

Table 3: Maximum speed variance admitted be-
fore the Human and robot presence overlap in
front of the press

From the experiment it can be seen that the
case of the 20% speed reduction is very close
to the limit of Algorithm 2. If we study this al-
gebraically we can see that the precise limit is
27%, while for Algorithm 3 is 42 %.
This index reveals the main feature of the third
algorithm. In fact, by taking into account a

5

Executive summary Roberto La Commare

window of values of the operator’s positions, it
is able to better accommodate possible changes
with respect to standard movements. Also, dur-
ing the experiments it was found that this algo-
rithm is slightly less aggressive than the second
one, giving in some ways a more comfortable
feeling to the operator.

6. Conclusions
In conclusion, the static human volumetric
sweep algorithm (Algorithm 1) is certainly the
most conservative and the safest out of the three,
but its overall execution time does not allow
it to be considered as a solution applicable in
the real world. The second algorithm, with the
dynamic human model, is the best performing
algorithm from the point of view of trajectory
time. However, it has a low variance of the
allowed operator’s speed, i.e. it only synchro-
nizes well with the human if his/her speed does
not deviate too much from the starting acquisi-
tion. This results in a higher risk of collision if
the operator does not always work at the same
speed. Combining this higher probability with
higher impact energy than the other algorithms
(although only slightly), the lower safety of the
solution becomes evident. Finally, the third al-
gorithm, the time window human model, which
combines the dynamic approach of the second al-
gorithm with the more conservative approach of
the first one, manages to achieve satisfactory re-
sults. In particular, the overall trajectory time is
well matched to the cycle times of the process in
consideration. Indeed, the improved speed vari-
ability allows for improved collaboration with
the operator.

References
[1] “Simulate robot applications with robodk.”

[Online]. Available: https://robodk.com/

[2] D. S. G. Algorithms, “Minimum
distance between two line seg-
ments in 3d.” [Online]. Available:
https://www.it-swarm.it/it/algorithm/
calcolo-della-distanza-piu-breve-tra-due-/
linee-segmenti-di-linea-3d/957789635/

[3] O. for Standardization: Switzerland, “Iso
13849-1:2015 safety of machinery – safety re-
lated parts of control systems – part 1: Gen-
eral principles for design,” 2015.

[4] “Unity (motore grafico),” Sep 2021. [Online].
Available: https://unity.com/

[5] “Controllers and hand tracking - oculus
quest2,” 2021. [Online]. Available: https:
//support.oculus.com/290147772643252

[6] “Kinect,” Oct 2021. [Online]. Avail-
able: https://developer.microsoft.com/it-it/
windows/kinect/

6

https://robodk.com/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-/ linee-segmenti-di-linea-3d/957789635/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-/ linee-segmenti-di-linea-3d/957789635/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-/ linee-segmenti-di-linea-3d/957789635/
https://unity.com/
https://support.oculus.com/290147772643252
https://support.oculus.com/290147772643252
https://developer.microsoft.com/it-it/windows/kinect/
https://developer.microsoft.com/it-it/windows/kinect/

POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Trajectory optimization for collaborative
robotics applications

Supervisor: Prof. Andrea Maria Zanchettin

Co-supervisors: Prof. Paolo Rocco

Ing. Niccolò Lucci

Master Thesis dissertation of:

Roberto La Commare

Id: 939831

Academic year 2020-2021

II

Contents

Abstract 1

1 Introduction 5

1.1 Collaborative robotics . 5

1.2 Thesis purpose . 7

1.3 Thesis achievements . 7

1.4 Thesis structure . 8

2 Background knowledge: Programming, Simulation and ISO-TS 15066 9

2.1 Current methods for programming cobots in industry 9

2.1.1 Servo-Assist Training . 10

2.1.2 Teach pendant . 11

2.1.3 Programming by coding . 11

2.2 Simulation & Virtual Commissioning 12

2.2.1 Human and Robot Simulator 12

2.3 Safety requirements . 14

3 State of the art 19

3.1 State of the art of obstacle avoidance 19

3.2 State of the art of Trajectory optimization 22

3.3 State of the art Safety algorithm . 25

4 Optimization Algorithm 27

4.1 Robot simulation environment . 27

4.2 The Optimization Algorithm . 28

IV CONTENTS

4.2.1 Structure . 29

4.2.2 Computing derivative . 33

4.2.3 Cost function . 34

4.2.4 Velocity management . 39

4.2.5 Complete overview . 42

5 Human model in the optimization algorithm 43

5.1 Industrial Process: task presentation 43

5.2 Static human volumetric sweep . 45

5.3 Dynamic human model . 47

5.4 Time-window human model . 49

5.5 Warm starting the complete trajectory optimization 50

6 Data acquisition: Virtual Reality and Kinect sensor 53

6.1 Virtual Reality . 53

6.2 Environment setup and data acquisition 56

7 Experimental Results 59

7.1 Initialization . 59

7.2 Optimization result . 60

7.2.1 Static human volumetric sweep 60

7.2.2 Dynamic human model . 63

7.2.3 Time-window human model 66

7.3 Experiment with cobot and operator 69

7.3.1 Cycle time . 70

7.3.2 Transient collision . 70

7.3.3 Velocity variance . 73

8 Conclusions 79

8.1 Possible Improvements . 81

Bibliography 83

List of Figures

1.1 Examples of collaborative robots 5

1.2 In order to partially automate jobs, it is possible to segment exist-

ing jobs into easy to automate activities and value-added activities

. 6

2.1 Cobots programming methods . 10

2.2 Cobot FRANKA EMIKA moved by an operator through the pres-

sure of a dedicated button . 10

2.3 Teach pendant from ABB . 11

2.4 Human simulation from VisualComponents 13

2.5 Human simulation from Delmia Dassault Systèmes 13

2.6 Human simulation from Siemens Tecnomatix 14

2.7 Performance Level Rating according to ISO 13849-1: 2015 15

2.8 Speed Separation Monitoring approach, when the operator is in

Zone 3 the max velocity of the robot is v3, when he is in Zone 2 the

max velocity is v2 and in Zone 1 the robot stops 17

2.9 Step function vs continuous function for the robot max velocity in

the Speed Separation Monitoring approach 17

2.10 Human model as mass-spring system 18

4.1 Visualization of the simulated cobot trajectory, along with the start

and end fixed configuration and the middle one, that is the deci-

sion variable of the optimization. 29

VI LIST OF FIGURES

4.2 2-dimensional example where are visualized the decision variable

xk, the search direction pk, the step length tk and the next iteration

xk+1 . 31

4.3 Visualization of the actual improvement vs the predicted linear

improvement . 33

4.4 Visualization of central and forward derivative approximation in x0 34

4.5 Visualization of the configuration the robot will pass through dur-

ing the trajectory . 35

4.6 Bi-dimensional example of the segment-distance algorithm in case

of one-limit distance . 37

4.7 Bi-dimensional example of the segment-distance algorithm in case

of two-limit distance . 37

4.8 Human and cobot approximation using cylinders 37

4.9 Distance between two cylinders with a hemispherical base 38

4.10 Visualization of some distances calculated between three robot

joints and the lower left arm of the operator. Notice that the radius

of the cylinders are not the real offset used (Fig:4.8). 38

4.11 Trajectory of a pick and place divided in n segment 39

4.12 Representation of the subdivision of the trajectory into n sub-

segments, but keeping the path unchanged 40

4.13 With reference to the Chapter 2 the diagram show the different

path taken by SSM with sensor and SSM probabilistic but more

conservative: in the first one the collision is very unlikely to hap-

pen, but in case of collision it is more dangerous and difficult to

avoid, in the second path the collision is more probable but it is

less dangerous and easy to avoid thanks to the lower velocity of

the robot . 41

5.1 Workflow of the operator, the cobot and the press. Definition of ts

and te as the pick and place operation start time and end time. . . 44

LIST OF FIGURES VII

5.2 In each point of the robot trajectory the algorithm will consider all

the operator’s positions. 45

5.3 Visualization of the distance between robot and operator as con-

centric volumes: the closer the robot, the slower it must go 46

5.4 At each segment of the cobot’s trajectory, the algorithm computes

the distance between the robot and the operator’s position at that

second. When the operator is far the robot will move at a higher

velocity. 47

5.5 At each segment of the cobot’s trajectory, the algorithm calculates

the minimum distance between the robot and three operator posi-

tions: at that second, one second before and one second after. . . . 49

5.6 Visualization of the time window sliding and considering different

operator configurations . 50

6.1 Devices used in the data acquisition process 54

6.2 3D representation of the press, the cobot and the operator 55

6.3 Unity editor with the current working cell and press 56

6.4 Actual screenshot of what the operator is seeing when wearing the

visor. 57

6.5 Kinect acquisition output and Matlab representation of the operator 58

7.1 Visualization of the warm starting procedure 60

7.2 Two different view of the path of the first algorithm, Static human

volumetric sweep . 61

7.3 Cost sequence for the first algorithm: initialization at 29.2s and

optimum at 22.5s . 61

7.4 Norm of the end effector velocity mm/s during the first algorithm

trajectory . 62

7.5 Four different view of the robot path and the operator position con-

sidered, Dynamic human model. 64

7.6 Norm of the end effector velocity mm/s during the second algo-

rithm trajectory . 64

VIII LIST OF FIGURES

7.7 Cost sequences for the second method 65

7.8 Four different view of the robot path and the operator position con-

sidered, Time-window human model. 67

7.9 Norm of the end effector velocity mm/s during the third algorithm

trajectory . 67

7.10 Cost sequences for the third method 68

7.11 Visualization of the energy that can be transmitted in a transient

contact between cobot and operator’s shoulder. Note: the Base

graph is truncated. 72

7.12 Visualization of the collaborative area, its center is inside the press. 74

7.13 Time frame of the moment when the operator has finished the first

task and is moving away from the press. It can be observed the

cobot to be nearer the collaborative space in the second algorithm. 74

7.14 This graph visualises the movements of the operator at different

speeds and of the robot according to the Algorithm 2. The distance

is calculated from the centre of the collaborative area. When a

plot goes below the dashed line it has to be considered inside the

collaborative area. If both cobot and operator are inside the area at

the same time there is a risk of collision. 75

7.15 This graph visualises the movements of the operator at different

speeds and of the robot according to the Algorithm 3. The distance

is calculated from the centre of the collaborative area. When a

plot goes below the dashed line it has to be considered inside the

collaborative area. If both cobot and operator are inside the area at

the same time there is a risk of collision. 76

List of Tables

4.1 Main notation and definitions pertaining to the optimization

problem. 30

7.1 Comparison between Trajectory times and cycle times, i.e. from

opening until closing the press . 70

7.2 Maximum energy transmitted in the worst case scenario from the

cobot to the operator shoulder in a transient collision 73

7.3 Maximum speed variance admitted before the Human and robot

presence overlap in front of the press 77

X LIST OF TABLES

Abstract

Today, the field of collaborative robotics is undergoing considerable develop-

ment. A growing demand for new installations has gone hand in hand with an

increasing focus on safety and comfort of the operator that works with the cobot.

This thesis aims at developing an effective and repeatable method for offline op-

timization of a cobot’s trajectory before its actual deployment in a work cell. The

trajectory is optimized with respect to its execution time and the safety of the

operator but also avoiding any obstacles in the path. The data on the position

of the operator are collected beforehand in an acquisition phase with the help

of a virtual reality device. This is linked to the idea of virtual commissioning,

i.e. the development of the entire work cell in simulation before it is deployed

in industry. Three different methods were developed to set the robot’s speed as a

function of distance from the operator. Finally, performance indexes and experi-

ments with the coexistence of an operator and a collaborative robot were used to

compare and analyse the results obtained.

2 Abstract

Sommario

Il settore della robotica collaborativa sta vivendo un considerevole sviluppo. Una

crescente domanda di nuove installazioni è andata di pari passo con una cres-

cente attenzione alla sicurezza e al comfort dell’operatore che lavora con il cobot.

Questa tesi mira a sviluppare un metodo efficace e ripetibile per l’ottimizzazione

offline della traiettoria di un cobot prima del suo effettivo impiego in una cella

di lavoro. La traiettoria viene ottimizzata rispetto al tempo di esecuzione e alla

sicurezza dell’operatore, cercando allo stesso tempo di evitare eventuali ostacoli

nel percorso. I dati sulla posizione dell’operatore sono stati raccolti in anticipo

avvalendosi della realtà virtuale. Tutto ciò si collega all’idea di virtual commis-

sioning, vale a dire lo sviluppo dell’intera cella di lavoro in simulazione prima

dell’effettiva implementazione.

Sono stati sviluppati tre metodi diversi per impostare la velocità del cobot in fun-

zione della distanza dall’operatore.

Infine, sono state eseguite delle prove sperimentali che vedevano la compresenza

del cobot insieme all’operatore. I dati rilevati, insieme a degli indici apposi-

tamente definiti, sono stati utilizzati per confrontare e analizzare i risultati ot-

tenuti.

4 Sommario

Chapter 1

Introduction

1.1 Collaborative robotics

A cobot (a term derived from collaborative robot) is a robot designed to work side

by side with humans in the same workspace without the need for a safety cage

surrounding it.

These robots are characterized by low inertia, low payload capabilities and

the absence of trap points (i.e. points that can trap body parts) (ISO-TS 15066)[1].

Moreover they are made only by rounded edges padded with soft material that

can absorb part of the energy of a possible impact.

(a) Serie A from Doosan Robotics (b) Yumi from ABB

Figure 1.1: Examples of collaborative robots

Today, Collaborative Robotics is the fastest growing segment of industrial

robotics, making great advances in the interaction between workforce and ma-

6 Introduction

chines. Collaborative automation has shown, especially in the pandemic phase,

all its potential as a game changer and its ability to support business productivity

even in an extremely difficult time for industry and manufacturing in particular.

For SMEs, the adoption of collaborative robotic arms is meant for keeping lines

running even in conditions of staff shortage, guaranteeing social distancing and

ensuring a continuous production flow without excessive entry costs and with-

out the implementation and programming difficulties associated with traditional

industrial robotics.

Considering the distinctive features of cobots compared to ordinary robots,

they are expected to lead the way to mass customization, decrease space require-

ments, increase product quality, production efficiency, and improve working con-

ditions for humans, both safety and ergonomics aspects [2].

The implementation of cobots allows operators to be relieved of the most un-

comfortable, repetitive tasks while optimising the contribution that operators can

make when employed in higher value-added tasks [3]. This concept was also

highlighted by a recent McKinsey study. In fact, while less than 5 percent of jobs

can be fully automated, as many as 60 percent have at least 30 percent of the

operations that can be automated with current technologies, such as cobots [4].

Figure 1.2.

Figure 1.2: In order to partially automate jobs, it is possible to segment existing

jobs into easy to automate activities and value-added activities

1.2 Thesis purpose 7

1.2 Thesis purpose

The purpose of this thesis is to develop an effective and repeatable method to op-

timize the trajectory of a cobot before its deployment in a work cell, thus without

the need for additional sensors in the final setup. The trajectory must be opti-

mized with respect to execution time and operator safety, avoiding any obstacles

in the path. This is linked to the idea of virtual commissioning, i.e. the devel-

opment of the entire work cell in simulation before it is developed in industry.

For this reason, in order to acquire the operator’s movement data, it is not pos-

sible to physically go on site and take measurements. Therefore, in line with the

digital industry 4.0, it is necessary to reproduce the work cell with the help of

virtual reality, making an operator wear the device in a controlled environment

and acquire the motion data. Then the cobot trajectory is optimised, taking into

account the motion data collected.

1.3 Thesis achievements

In this thesis the following objectives have been achieved:

• programming of a work cell on a Virtual Reality device;

• simulation and data acquisition on the most likely movements of an ope-

rator in the work cell through a Microsoft Kinect sensor;

• development of an optimization algorithm with simulation outsourced to

an ad-hoc program (RoboDK);

• improvement in the execution time of a cobot compared to a manually de-

signed path;

• test the results of co-working between one operator and a cobot Doosan

A-series 0509 in three different operating strategies.

8 Introduction

1.4 Thesis structure

The rest of this thesis is organized as follows. In Chapter 2 is given a Background

knowledge about the cobot programming, the Virtual Commissioning by cobot

plus human simulation and the safety standards that should be followed. In

Chapter 3 it is proposed the state of the art about obstacle avoidance and trajec-

tory optimization. The main Optimization Algorithm is presented and analyzed

in Chapter 4, where will be also introduced the velocity management. In Chapter

5 three resolution approaches are exposed, one using a static human volumetric

sweep, one considering a dynamic human model and a third that is the combi-

nation of the precedents. To obtain those models it has been used a Microsoft

Kinect sensor and a Virtual Reality device; this data acquisition process is shown

in Chapter 6. Finally, the analysis of the experimental result analysis and the

conclusions are presented in Chapter 7 and Chapter 8, respectively.

Chapter 2

Background knowledge:

Programming, Simulation and

ISO-TS 15066

To understand how the proposed optimization method fits into today’s industrial

scenario it is necessary to make a quick excursus. In particular, we will briefly

see which programming methods exist for cobots and their advantages and dis-

advantages, what is virtual commissioning and what can currently be done in the

field of robotics. Finally will be discussed the standards to follow and the safety

limits that must be respected.

2.1 Current methods for programming cobots in in-

dustry

The computer system that controls the manipulator must be programmed to

teach the robot the particular sequence of movements and other actions that have

to be performed to accomplish the task.

There are several methods to program a cobot in industry: Servo-Assist Training,

by means of a Teach pendant or trough programming. (Figure 2.1)

10 Background knowledge: Programming, Simulation and ISO-TS 15066

Figure 2.1: Cobots programming methods

2.1.1 Servo-Assist Training

One of the simplest methods for programming a cobot is the teach-by-showing

method. The operator, by pressing a dedicated button and holding firmly the

end-effector, can move the cobot to the desired position (Figure2.2). The cobot

will follow the movements of the operator thanks to admittance or impedance

control, facilitating the movement through the active use of servos. Once the

desired configurations are reached, the checkpoints can be saved and simple rou-

tines can be created. This method has the advantage of being easy to use but it

can perform only very simple tasks.

Figure 2.2: Cobot FRANKA EMIKA moved by an operator through the pressure

of a dedicated button

2.1 Current methods for programming cobots in industry 11

2.1.2 Teach pendant

Another on-site programming can be performed using the Teach pendant (an

example is provided Figure 2.3). It is a device connected to the controller of the

robot that can be used directly to move the individual joints through a joystick

or a touch-screen. Once the desired configurations are reached, it is possible

to create tasks by specifying the type of motion (linear, arc of circumference,

following joints, etc.). This method allows more actions to be taken rather than

just using hand guiding and still has the advantage of having an immediate idea

of the spatiality of the operation. On the other hand, it is not possible to carry

out safety checks and it is not possible to connect speed control algorithms.

Figure 2.3: Teach pendant from ABB

2.1.3 Programming by coding

The offline method involves the use of a programming language that is very simi-

lar to a computer programming language. On top of many of the capabilities of a

computer programming language (i.e. data processing, computations, communi-

cation with other computing devices, and decision making), the robot language

also includes statements specifically designed for robot control. These capabili-

ties include motion control, used to move the manipulator to a defined position in

12 Background knowledge: Programming, Simulation and ISO-TS 15066

space, and input/output, used to interact with other devices as the end-effector.

The result of this method is a code ready to be run that can be loaded in the robot’s

controller. The advantage of this method is that it enables full functionality of the

robot, the management of any kind of safety algorithm and the simulation. On

the other hand, it is clearly the slowest method and the only one which requires

programming skills, [5].

2.2 Simulation & Virtual Commissioning

Virtual Commissioning is the practice of reproducing virtually the physical be-

havior of a machine or plant through a software simulation. The final goal of the

emulation is to test all the designed elements and related automations, allowing

to test the software development in order to remove system errors before imple-

menting the new components and the whole manufacturing process. Because

of the cost of commissioning new manufacturing facilities and production lines,

applying simulation methods to manufacturing can yield significant benefits. Si-

mulation helps achieve the best in industry in many ways. It reduces wasted time

and resources and increases efficiency. It also helps to increase productivity and

revenues. The simulation also plays a significant role in job safety [6] . It allows

you to evaluate plant costs, overall efficiency and the ergonomics of workstations

before actually starting up the plant. The only disadvantage is that this process

requires additional time and resources for designing it on the specific tool [7].

2.2.1 Human and Robot Simulator

Recently the most advanced simulation tools have begun to give the possibility

to integrate one or more operators in the simulation of the plant. Digital human

modeling (DHM) is a key technology for addressing human factors during the

production planning stages. The use of DHM, from initial concept development

through all stages of the product engineering process, promises more comfort-

able and safer workplaces [8]. Some of these Simulation tool, together with their

feature, are presented below.

2.2 Simulation & Virtual Commissioning 13

• Visual Components 3D manufacturing simulation software [9] can simulate

both industrial process and human activity such as loading a machine, pick

and place, component assembling. (Figure 2.4)

Figure 2.4: Human simulation from VisualComponents

• Delmia Dassault Systèmes [10] enable to simulate tasks, analyse the pos-

ture, estimate working time and translate the content of the action orders

directly in written form. (Figure 2.5)

Figure 2.5: Human simulation from Delmia Dassault Systèmes

• Siemens Tecnomatix Plant Simulator [11] in addition to the possibility of

simulating large complex plants allows to add a human model called ’Jack’.

14 Background knowledge: Programming, Simulation and ISO-TS 15066

This makes it possible to verify the size of the spaces that the operator can

occupy, if collisions with robots might occur and the right timing of the op-

eration, but also to analyse the ergonomics of the worker’s positions. (Fig-

ure 2.6)

Figure 2.6: Human simulation from Siemens Tecnomatix

• ABB RobotStudio [12] is also providing a Virtual Human that is treated as

a Robot: you can position a Human inside of a Station, program it with the

RAPID code and create simple simulations of Humans and Robots.

One of the most common applications of production line simulation is the

feasibility check, that is the simulation of movements already set up in order to

verify that there will not be any collisions and the spaces of maneuver are ade-

quate. In case of collisions between cobot and operator, the path can be changed

manually and simulated again. What cannot be done with the tools on the mar-

ket is to automate this process, which is done manually through trial and error,

and make the result optimized.

2.3 Safety requirements

Each time a new robot is installed and a new task is designed a hazard identifi-

cation must be performed. This procedure is part of the risk assessment, which

2.3 Safety requirements 15

is the identification, evaluation and estimation of the levels of risk involved in

a situation. This process must consider the following factors: end-effector and

workpiece hazards (including lack of ergonomic design, sharp edges, heaviness),

robot motion characteristics (e.g. load, speed, force, torque, momentum, power),

a determination as to whether contact would be transient (i.e operator body part

is not clamped) or quasi-static (body part is clamped) and the parts of the ope-

rator’s body that could be affected. After carrying out the risk identification, it is

necessary to classify the risk. In one of the simplest classifications, the risk goes

from negligible, low, medium, high and very high. (ISO 13849-1: 2015 [13])

Figure 2.7: Performance Level Rating according to ISO 13849-1: 2015

S: Severity of injury

• S1: Slight (normal reversible injury)

• S2: Serious (normally irreversible injury or death)

F: Frequency and/or exposure to hazard

• F1: Seldom to less often and/or exposure time is short

16 Background knowledge: Programming, Simulation and ISO-TS 15066

• F2: Frequent to continuous and/or exposure time is long

P: Possibility of avoiding hazard or limiting harm

• P1: Possible under specific conditions

• P2: Scarcely possible

In case the risk is not low or negligible it requires a risk reduction process i.e.

slow down the robot or activating further safety functions or even rethinking the

entire task.

There are four types of collaborative applications presented in the ISO-TS

15066 [1] standard:

• safety monitored stops, the robot stops if the operator enters the collabora-

tive area;

• hand guiding, the operator guide manually the robot (Section 2.1.1);

• speed and separation monitoring, the robot speed depends on the operator’s

distance, below a safety distance it stops;

• power and force limiting, the maximum speed of the robot is limited, in this

way, in case of contact, the robot can transmit a limited amount of energy.

The two most commonly used speed algorithms for collaborative robots are

Speed separation monitoring (SSM) and Power and force liming (PFL). SSM can

be useful in those situations where the robot and operator share the same work-

space but there is no simultaneous work (Figure 2.8). Depending on the relative

velocity between robot and human, and the stopping time of the robot it can

be computed the safe separation distance. If the human is below this distance

the robot should slow down or stop. The stopping time TB is composed of a

contribution due to sensor reaction time and uncertainty, the controller reaction

time and the time needed by the braking system to actually stop the robot motion.

This criterion can be used to calculate the optimal robot velocity to assign in order

2.3 Safety requirements 17

to have a safe motion based on the human position Dhum-cob(t). If we consider for

simplicity a constant speed for the human (1.6m/s from ISO [1]) since the other

parameters such as braking time are constant then it is possible to define this

approximate equation:

vmax(t) =
1
TB
Dhum-cob(t) (2.1)

where vmax(t) is the maximum velocity that the cobot cannot exceed to be in safety

state. This function can be considered piece-wise or continuous depending on the

type of sensors used (Figure 2.9).

Figure 2.8: Speed Separation Monitoring approach, when the operator is in Zone

3 the max velocity of the robot is v3, when he is in Zone 2 the max velocity is v2

and in Zone 1 the robot stops

Figure 2.9: Step function vs continuous function for the robot max velocity in the

Speed Separation Monitoring approach

When the operator has to cooperate with the cobot, so in a true collaborative

18 Background knowledge: Programming, Simulation and ISO-TS 15066

operation, the Power and Force limiting is necessary. In a collaborative situation,

contacts can occur either voluntarily as part of the work task or involuntarily.

In order to analyze the safety of this event, it is useful to introduce the concept

of dissipated energy. Each part of the body can absorb up to a limited amount of

energy before producing pain in the subject. Therefore, we need to study the task

and verify which parts of the body can be affected. It is necessary to investigate

if a possible contact can be considered quasi-static. This type of collision occurs

when the robot clamps or block a human part. To model the quasi-static impact

it can be used the spring-mass model of the man.

Figure 2.10: Human model as mass-spring system

where the energy absorbed by the operator is

E =
F2

2K
(2.2)

with K the elastic constant of the body part involved and F the force that is com-

pressing the spring. If the body part is soft, like the abdomen, the elastic constant

will be lower (10 N/mm according to Table A.3 of ISO/TS 15066 [1]) compared

to other parts such as the lower leg (60N/mm). Hence we can approximate the

energy of the robot as

E =
1
2
mRv

2
R (2.3)

where mR, vR are the effective mass and velocity of the robot. Finally we can

match the energies and get the following limit

1
2
mRv

2
R =

F2

2K

vmaxR ≤ F
max

√
K

√
m−1
R

(2.4)

the value Fmax is the maximum force allowed on a given body part, those values

are found in the ISO/TS 15066 [1]. While vmaxR according to PFL is the maximum

speed at which a robot can be set for the task being considered.

Chapter 3

State of the art

The problem we want to address in this work falls within the large set of mo-

tion planning problems. Motion planning is a computational problem where the

objective is to find a sequence of valid configurations to make the robot move

from an initial configuration to a final one. There are many ways of solving the

problem in an automatic way, depending also on the time constraints imposed,

i.e. whether the computation is to be done in real-time, involving the occurrence

of events that significantly modify the robot’s environment, or offline, where ob-

stacles (even mobile ones) are known a priori. In our particular problem, we are

dealing with offline optimization, so the algorithm computation time will not be

as crucial as in the online case.

3.1 State of the art of obstacle avoidance

Path planning is particularly interesting when it involves obstacle avoidance.

The most frequently used methods for solving this type of problem can be

divided into three types: Grid-based search, sampling-based algorithm and

Artificial Potential Fields. The sampling-based algorithms can be further divided

into probabilistic road-map (PRM) and rapidly-exploring random tree (RRT).

Grid-based approaches divide the space of configurations (which in a 6DoF

robot manipulator is R
6) with a grid, placing a configuration at each grid node.

20 State of the art

The robot can move towards adjacent grid points, i.e. by varying one or more

joint angles, as long as the line between them does not pass through an obstacle.

This approach discretizes the set of actions that the robot can perform. After this

grid definition a search algorithm is used to find a path from the node that corre-

sponds to the start configuration to the endpoint.

In order to be able to divide space with a grid, it is necessary to set a resolution,

i.e. a minimum distance between two points. Grid definition and subsequent

route finding is faster with coarser grids, but has some disadvantages: the end

result will not be very smooth and it will not be possible to find paths through

narrow parts. Furthermore, as the grid resolution improves, the number of points

on the grid increases exponentially with the size of the configuration space, mak-

ing the problem more difficult to solve (this is also known as "curse of dimension-

ality").

K. Kaltsoukalas and S. Makris [14] try to solve some of these problems by reduc-

ing the large search space by applying a set of parameters. In particular, two

sub-grids are created, one with the joints that mainly influence the movement of

the robot in the workspace (position of the end-effector) and another grid with

the joints that mainly influence the orientation of the end-effector. D. Šišlák[15]

focuses his work on the search algorithm, with the goal to find the best grid-based

path more rapidly. D. Ferguson [16] focused on the post-processing aspect, trying

to smooth out the grid-based trajectory by means of interpolation.

A more efficient method for partitioning the space of configurations is the

probabilistic road-map, introduced by Kavraki [17]. Also in this method, a two-

stage procedure is used: a learning phase and a query phase. In the learning

phase, a probabilistic roadmap is created and stored as a graph whose points

correspond to collision-free configurations and whose edges represent feasible

paths between them. In the query phase, any start and finish configuration of the

robot is linked to two nodes in the road-map; the road-map is then searched for

a route that joins these two nodes. Since this first study, much further research

has been carried out, also considering real-time mobile obstacles [18].

3.1 State of the art of obstacle avoidance 21

A similar approach is Rapidly-Exploring Random Trees, which has the advan-

tage of requiring only one of the two phases of the previous approach [19].

The configuration space is also used in this method. It creates two structures of

branching configurations in the form of a tree beginning in the start and end con-

figuration. At each point in the tree the algorithm finds a random configuration

using a uniform probabilistic distribution, then a neighbouring configuration is

searched in the direction of the previous one. If the entire trajectory between the

tree and the new configuration is free of obstacles the tree is increased. In more

recent study this algorithm has been improved in the memory needed to store

the tree [20] or in the search for paths in restricted environments [21].

These types of sampling-based motion planners have the advantage of be-

ing probabilistically complete and are computationally efficient. However, these

planners often require a post-processing step to smooth and shorten the calcu-

lated trajectories. It must also be considered that some computational effort is

spent on sampling and linking nodes in portions of the configuration space that

may not be useful for the task.

These limitations lead to the need to introduce the concept of optimization.

The objective is to obtain a trajectory represented as a sequence of states in the

space of configurations in order to optimize a given goal.

There are two main fields in which optimization can be used in robot motion

planning. First, it can be as a post-processing of the three methods seen so far. In

particular, it can be used to smooth and shorten the calculated trajectories. How-

ever, this usually can not provide enough flexibility in the generation of collision-

free trajectories in presence of obstacles, since if the initial trajectory was close to

an obstacle, the optimized trajectory could pass through it. [22]

Secondly, the optimization technique can be used to calculate locally optimal and

collision-free trajectories from random trajectory initialization.

One type of path planning with obstacle avoidance that fits well with the opti-

mization concept is the artificial potential [23]. In this article Khatib has provided

a method of path planning using the artificial potential approach. One substan-

22 State of the art

tial difference is that the approach works directly in the task space instead of in

the joint configuration space. The obstacles are associated with a repelling po-

tential and the target with an attractive potential. Those potentials can be either

parabolic or conical. The motion to the next configuration of the path will go to-

wards the direction of the artificial field, like an electrical charge. After this first

implementation of the Artificial potential many more article have been written

analyzing different strategies. R. Volpe [24] has generated different potentials

depending on the joint under consideration, allowing the end effector to move

towards an object of interest while all other joints try to keep as far away as pos-

sible. Similarly, Wang [25] solved the problem in a similar way except that he

used an iper-redundant manipulator. A method conceptually similar to this one

is used in this thesis, regarding the management of obstacle avoidance.

3.2 State of the art of Trajectory optimization

A more detailed overview of the types of optimization that have been used to

date is given in this section.

Trajectory optimization is a technique for calculating the optimal path and dy-

namics for a robot in order to perform a given task. It is a relatively straight-

forward process. First it is needed to define a cost or merit function and the

equations or simulations that govern the process under study. Then, using an

iterative algorithm, starting from an initialization, it tries to move the decision

variables to positions that produce the lowest cost function, i.e. a minimum.

Since no universal analytical solution can be found for non-linear problems, a

variety of numerical approaches have been developed for trajectory optimiza-

tion. In most numerical approaches, the continuous-time problem is first con-

verted into a discretized optimization problem through a procedure called tran-

scription, i.e. instead of considering a trajectory composed of infinite points and

states, a sampling is done [26]. The optimization problem then can be solved by

a generic optimization solver. In numerical methods for trajectory optimization,

two sections play the core role: discretization and optimization.

3.2 State of the art of Trajectory optimization 23

The problem can therefore be categorized in terms of discretization, i.e. the

definition of the trajectory and the decision variables. Here we will analyse some

of these different approaches.

In this paper [22] the used algorithm is a sequential convex optimization. It

is an efficient way to optimize a problem with a non-convex cost function. As far

as the definition of decision variables is concerned, the authors propose a vector

of dimension T ×K , where T is the number of time-steps and K is the number of

degrees of freedom. This method divides the continuous problem into a series of

equal time steps. It does not take into account speeds or accelerations but only

the obstacle avoidance as a function of the penalty cost and constraints.

In this study, [27] the trajectory is divided into a number of configurations

equally spaced in time. These nodes are joined together using cubic spline

interpolation. The optimization variables are then the position of the spline

nodes and the total time of the operation T. The objective is to minimize the time

together with the mean torque of the joint.

Here [28] Wang, C. et al. try to minimize the execution time of the trajectory.

The first procedure is to run a simplified algorithm in which the decision vari-

ables are the points of the trajectory joined linearly to form an open polyhedron.

After that another trajectory is generated with a B-spline between each of the

points of the polyhedron. The B-splines will be handled by additional decision

variables called virtual points. Unlike normal splines, the trajectory of B-spline

does not pass through these virtual points but only through the beginning and

the end.

The trajectory is not provided in analytical form but requires multiple evalua-

tions that must be included in the trajectory optimization algorithm. A similar

method was used by Jiangyu Lan et al [29], but the order of the B-spline was

increased at 7, making the trajectory even smoother.

24 State of the art

In this study [30] the problem of path and trajectory are taken into account

simultaneously. This paper looks for a method to minimize the cycle time in

conjunction with a parameter for smoothing the dynamics, i.e. minimizing the

square of the jerk. The trajectory is discretized as {x(Ti), i = 0, . . .N } where x is a

configuration of 6 joint angles and {Ti , i = 0, . . .N } are called knots and N is the

number of knots. The interesting thing is that these knots are not equispaced

in time, as in other methods, but instead are arranged in such a way that at the

ends they become denser, and in the middle they are more sparse. This method

of dividing knots is called Chebyshev-Lobatto and has many useful properties.

Some of these are the incredible fidelity of approximation to practically any

curve, avoiding the oscillatory phenomena that occur in the case of high order

global polynomial interpolation, they are integrable and derivable by means of a

static matrix, which makes the numerous derivations necessary for each iteration

extremely simple.

In a similar way, Luo et al. [31] used Lagrange interpolation to discretize the

trajectory. More specifically they used the Chebyshev points and create a trajec-

tory by interpolating them with the Lagrange method. This was done to find an

energy optimal trajectory.

In all these studies, the kinematics and dynamics of the manipulator were

calculated numerically using equations that require specific data on the inertia

matrices of each robot joint, which is often difficult to find. To overcome this

problem, a simulator is used in this work that actually emulates the real move-

ment of the robot together with the operations of the robot controller. This will

allow us to focus more on the concept of obstacle avoidance and speed manage-

ment in relation to an operator position, thus leaving the burden of simulation to

an external tool.

As far as the discretization of the trajectory is concerned, the functions of the

simulator were used directly. In particular, the trajectory is defined using two

move commands for each path between the two trajectory ends. Therefore the

decision variables are one intermediate configuration for each passage from start

3.3 State of the art Safety algorithm 25

to end configuration and vice versa. With regard to the dynamics, i.e. the speed

management, a denser discretization was made, dividing the trajectory into n

(with n > 20) sub-trajectories with an assigned maximum speed.

3.3 State of the art Safety algorithm

Regarding security monitoring, the literature has focused on the online problem.

This first study [32], focused on the definition of a control algorithm that limits

the speed of the industrial robot using the concept of SSM. An infrared camera

determines the real-time position of the operator, defining a series of features

such as the position of the head, elbows and hands, thus approximating the ope-

rator to a set of spheres and cylinders. Then an algorithm would calculate the

minimum point-to-point distance to the robot. If the distance decreased below a

threshold, a scaling factor δ was imposed to reduce the speed of the robot. The

speed was reduced so that the distance to the operator was sufficient for the robot

to brake safely. In particular, at δ = 1 the robot moves at nominal speed along the

predefined path, at lower δ the speed is reduced proportionally, if δ becomes 0

the robot stops completely.

In subsequent paper [33], the definition of the human was considerably im-

proved. The operator has been described as a bi-cycle mobile vehicle for walking

movements, while for the upper body the operator was approximated to a torso

with two arms consisting of a series of joints. Based on the speed of the person, it

was possible to define a volume of future possible configurations. By using this

volume as the model against which calculate the distance to the robot, safety was

improved, since a basic prediction of the possible configurations was also taken

into account.

In [34], the definition of the constraints on the distance between the link and the

obstacle was improved. In general, this made the constraints less conservative,

reducing the robot’s cycle time considerably without jeopardizing SSM. Another

study [35] adds the PFL algorithm, which is specific to the world of collaborative

robotics, to previous works. The aim is that when the cobot comes too close to

26 State of the art

humans, instead of stopping completely as required by the SSM, the cobot will

simply go to the speed that PFL indicates as safe for contact.

What these online algorithms cannot do is to change the nominal path depend-

ing on the operator’s position. This is due to various issues, from the complexity

required to the risk of running into other obstacles in the workspace. In fact, it

is always recommended to test offline the paths to be executed. This thesis can

actually make a contribution in this context. Optimizing the offline route once

before the actual deployment of the robot can bring even greater benefits when

applying online algorithms. This is because the robot with an optimized path

will be on average at a greater distance from the operator than a non-optimized

path, thus limiting the need of speed reduction in the online algorithm.

Chapter 4

Optimization Algorithm

In this Chapter the algorithm used for optimization of the cobot’s trajectory will

be presented. The optimization algorithm uses simulations outsourced to an ad-

hoc program: RoboDK [36], which also is described in the following sections.

4.1 Robot simulation environment

RoboDK is a powerful simulator for industrial robots. It has an extensive library

of industrial robot arms and tools from over 40 different robot manufacturers,

making it possible to simulate any robot controller.

RoboDK has grown rapidly since it was founded and is now used by companies

of all sizes, from startups to the largest corporations in the world. [37]

In this thesis RoboDK simulation is performed using the Python API. The

RoboDK API for Python includes all the offline programming features of the Ro-

boDK simulator and allows to implement automated applications for a wide va-

riety of robots and mechanisms.

In order to simulate the robot’s trajectory efficiently it has been used an API that

receives as input the points (6 angle joint configuration) of a trajectory and the re-

quired velocities (one for each moves). The Python function then creates a robot

program by cycling the input configurations: the list of commands is composed

with joint moves or linear moves and with the set of maximum speed.

When all the configurations and moves have been added, the function asks for

28 Optimization Algorithm

an analysis of the newly created program, this will return the values of the joints

angles, the actual speeds and accelerations of the joints and the cartesian posi-

tion of the end effector. At the beginning of a new simulation the old program is

deleted. In this way, in a fraction of a second all the data that may be useful to

know for an optimization are obtained.

The truly remarkable aspect is that this function is independent from the

chosen robot: if you want to change the brand of cobot you just need to load on

the RoboDK GUI a new robot and the program will work immediately after. In

addition, since the simulation includes not only the kinematics of the robot but

also the behaviour of the controller, we can be sure that once the program has

been loaded into the real robot it will perform exactly the same movements.

The main optimization program will be executed on MATLAB® because of its

ease of use and simplicity in the management of matrix data. Furthermore, all

the standard Python library content can be called from MATLAB®, as any other

third-party or user-created modules. In this way it is possible to outsource the

simulation of the cobot to RoboDK via Python function.

4.2 The Optimization Algorithm

The general idea is to optimize a pick and place task, being one of the most ver-

satile and common functions we can find in robotics. The start and end config-

urations of the task depends on the position of the robot in the working area so

they are not modifiable. The trajectory will be optimized by modifying an inter-

mediate point as it is depicted in Figure 4.1.

The optimization will then look for the intermediate configuration that results

in the shortest task time, in other words the cost function is the working time

and the optimization variable is an intermediate configuration. The cost func-

tion takes into account the distance between the robot and the operator (Chapter

6) and the environmental obstacles. In total the optimization will look for three

balancing objectives: minimize time, maximize safety and avoid obstacles.

4.2 The Optimization Algorithm 29

Figure 4.1: Visualization of the simulated cobot trajectory, along with the start

and end fixed configuration and the middle one, that is the decision variable of

the optimization.

4.2.1 Structure

The algorithm that has been implemented is an unconstrained continuous non-

linear problem solver with line search method. In a previous draft it had been added

the upper and lower constraints of the joint, making the problem a constrained

one, but these limits were never reached, making the constraints superfluous.

Therefore in a second draft they have been removed to accelerate the algorithm,

considering that in case of wrong angles the simulation would stop anyway. Now

the main notations are presented and the structure of the algorithm explained.

− Algorithm inputs: cost function f (x), initial guess x0 ∈ R12 (2 times 6 joint

angles, one for the outward and one for the return of the pick and place).

− Parameters: termination tolerances TOL∇, TOLx, T OLf ∈ (0,1), maximum

number of iterations Nmax ∈N.

− Algorithm:

1. Compute the derivative of the cost function∇xf
(
xk

)
(see the following sub-

section 4.2.2);

30 Optimization Algorithm

Decision variables x ∈Rn

Initialization value x0 ∈Rn

Cost function f : Rn→R

Global minimizer x∗ : f (x) ≥ f (x∗) ∀x ∈Rn

Global minimum f (x∗) : x∗ is a global minimizer

Local minimizer x∗ : ∃ a neighborhoodN of x∗ such that f (x) ≥ f (x∗) ∀x ∈ N

Local minimum f (x∗) : x∗ is a local minimizer

Line search direction pk

Table 4.1: Main notation and definitions pertaining to the optimization problem.

2. Compute a line search direction pk using Broyden–Fletcher–Goldfarb–Shanno

(BFGS)[38] algorithm: pk = −
(
Hk

)−1
∇xf

(
xk

)
, where H0 = I and iterating

Hk as a sub-routine. This method use only the gradient evaluation of

the cost function and it is able to approximate the Hessian matrix Hk,

improving it with each iteration. This vector pk is the descent direction, i.e.

the direction where the cost function decrease more rapidly (Figure4.2)

3. Carry out the line search algorithm (see below) to compute the step length

t, then compute the next iteration xk+1= xk + tpk. Figure 4.2

4. Update the relative changes of optimization variables and cost function

∆xk =

∥∥∥xk+1 − xk
∥∥∥∥∥∥xk∥∥∥ and ∆f k =

∣∣∣∣f (
xk+1

)
− f

(
xk

)∣∣∣∣∣∣∣∣f (
xk

)∣∣∣∣ (4.1)

5. Check if the directional derivative is too small
∣∣∣∣∇xf (

xk+1
)T
pk

∣∣∣∣ ≤ TOL∇,

check if the relative changes of optimization variables and cost function

are negligible ∆xk ≤ TOLx or ∆f k ≤ TOLf , check if the maximum number

of iteration are reached k ≥ Nmax. If any of the above conditions are true

the algorithm will finish. This means either x∗ = xk+1 is a possible local

minimizer (and f (x∗) a minimum) or the algorithm has ended prematurely.

6. Set k = k + 1 and go to 1.

4.2 The Optimization Algorithm 31

Figure 4.2: 2-dimensional example where are visualized the decision variable xk,

the search direction pk, the step length tk and the next iteration xk+1

One of the most important sub routines is the line search algorithm: it returns

the length of the step to be taken in the direction of the descending gradient of

the cost function to calculate the next decision variable iteration xk+1 = xk + tpk.

The optimal solution would be to perform a minimisation algorithm to search for

the step t that returns the minimum cost along the search direction pk:

tk = argmin
t
f
(
xk + tpk

)
(4.2)

This approach is not feasible as it would require a minimisation within each iter-

ation of the main algorithm.

The line search algorithm instead use a iterative approach. It starts from a

user defined max step t̄, and then run an iterative sub-routine where at each

iteration i = 0,1,2, . . . the step length is reduced until the Armijo sufficient decrease

condition is satisfied:

f
(
xk + tipk

)
≤ f

(
xk

)
+ tic∇xf

(
xk

)T
pk (4.3)

where c ∈ (0,1) is a user-defined parameter. If this condition is met then the

32 Optimization Algorithm

improvement obtained in the cost function, f (xk + tipk) − f (xk), is at least a

fraction c of the improvement expected using the linear approximation. This

approximation is obtained by truncating to first order the Taylor expansion of

f (xk + tpk) computed at t = 0 (Figure 4.3).

The sub-routine works as follow:

− Inputs: cost function f (x), current iterate xk ∈Rn, cost value f
(
xk

)
, gradient

∇xf
(
xk

)
, line search direction pk ∈Rn.

− Parameters: maximum step length t̄, scalars β,c ∈ (0,1), maximum number

of iterations NLS,max.

− Algorithm:

Algorithm 1 Line Search Algorithm

t0 = t̄

i = 0

while f
(
xk + tipk

)
> f

(
xk

)
+ tic∇xf

(
xk

)T
pk and i < NLS,max do

ti+1 = βti . the next step is a fraction of the old one set

i = i + 1

end while

If this back-tracking line search sub-routine with Armijo condition is used

along with a quasi-Newton approach as BFGS it is theoretically guaranteed to

converge to a local (or global) minimum. [39]

Since the cost function is non-convex, there may be several local minima. This

is one of the major problems in the field of non-linear optimisation, and so far no

solution has been found.

What is commonly done is to reiterate the optimisation several times with differ-

ent initialization so as to compare the solutions and choose the best one, which

theoretically is not yet guaranteed to be an absolute minimum but at least heuris-

tically is actually better than a single attempt.

4.2 The Optimization Algorithm 33

Figure 4.3: Visualization of the actual improvement vs the predicted linear im-

provement

4.2.2 Computing derivative

Since the cost function is the result of a complex simulation it can not be de-

rived analytically. Among the many methods that exist to compute approximate

derivatives it was decided to use finite difference method. This category of meth-

ods is divided into Forward difference and Central difference. To calculate the

derivative of a function f (x) : Rn → R with forward finite difference it has to

compute separately each i = 1,2, ...n component. To accomplish this, consider a

vector p ∈Rn equal to zero except for the i-th entry, which is set to 1. Then

∇xf (x)Tp =
df (x)
dxi

≈
f (x+ ηp)− f (x)

η
(4.4)

where η is a very small positive number with respect to the function magnitude.

The number of function evaluation is one for each component and one for f (x),

for a total of n + 1. The expected accuracy of the gradient estimate of functions

with unit order of magnitude is of the order of 10−8 due to truncation error and

numerical round-off.

To improve the accuracy with respect to forward differences, one can use the

central finite difference. Then, the approximation of the i-th component of the

34 Optimization Algorithm

gradient is:

∇xf (x)Tp ≈
f (x+ ηp)− f (x− ηp)

2η
(4.5)

Its accuracy is of the order of 10−11. However, the number of function evalua-

tion for one gradient computation increases at each component it needs two of

them so 2n for the whole gradient. On the other hand, the larger computational

cost may be compensated by a lower number of iterations in the numerical opti-

mization algorithm, thanks to the better accuracy. Since the entire optimization

only needs to be performed once before the actual implementation, it is not time

sensitive, so accuracy is preferable to fewer calculations.

Figure 4.4: Visualization of central and forward derivative approximation in x0

4.2.3 Cost function

The cost function is the core of the optimization algorithm. Depending on how

this function is defined it will determine where the robot’s trajectory will con-

verge.

The function takes as input the configurations that define the pick and place.

The trajectory will pass by: start, middle 1 (forward), end; then coming back

4.2 The Optimization Algorithm 35

passing by: middle 2 (backward), start (Figure 4.5). The two middle configu-

ration can not be the same, since the optimum in one direction can be different

from the optimum in the other one. The start and end configurations are fixed,

while the two middle represent the 6 + 6 variables to optimize.

Figure 4.5: Visualization of the configuration the robot will pass through during

the trajectory

The trajectory is simulated using RoboDK. From this simulation, a list of suc-

cessive joint configurations sampled at 0.1s is extracted.

For the calculation of the distances between robot and obstacles the joint configu-

ration q is not enough, it is necessary the 3D position of each link with respect to

the base frame. So it is required to solve the direct kinematic problem. The direct

kinematic equation can be expressed through the homogeneous transformation

matrix of each link frame with respect to the base frame.

The Denavit-Hartenberg parameters of the robot are needed in order to define

a frame with respect to the preceding one. Following the Denavit-Hartenberg

convention [40] it is possible to define α,θ,d and consequently derive the for-

ward kinematic for a generic robot. Then the transformation matrix from a generic

frame i − 1 to the following one i is:

Ai−1
i (qi) =

cϑi −sϑicαi sϑi sαi aicϑi

sϑi cϑicαi −cϑi sαi aisϑi

0 sαi cαi di

0 0 0 1

(4.6)

where cαi and sθi are the abbreviation for cosαi and sinθi . It is possible to con-

struct a function that takes as input the Denavit-Hartenberg parameters of the

36 Optimization Algorithm

robot with the current configuration q and returns the position of each link’s

reference system with respect the base frame thanks to a concatenation of trans-

formations.

T0
1(q) = A0

1 (q1) (4.7)

T0
2(q) = A0

1 (q1)A1
2 (q2) (4.8)

T0
n(q) = A0

1 (q1)A1
2 (q2) . . .An−1

n (qn) (4.9)

At this point the distance between each segment of the robot and the obstacles

can be calculated. These obstacles are represented by 3D segments in the Matlab

space (as show Figure 4.10). In our use case the obstacles are the edge of the other

machines present in the scene. Since both the obstacle and the robot link are ap-

proximated as segments we need a function that calculates the distance between

two segments. The algorithm used is inspired by the one of Dan Sunday [41].

The algorithm takes as input the two segments defined by the pair of points l1 r1

and l2 r2.

Then it looks for the minimum distance between the two lines identified by the

segments. The closest points are d1 on line 1 and d2 on line 2.

Now it check if d1 is actually between l1 and r1.

If d1 falls beyond the limits of the segment’s endpoints then according to the side

where it falls the closest point is one of the endpoint d1 = l1 or d1 = r1.

At this point the distance from d1 to the second line is calculated. As before we

check if point d2 is inside segment 2, in that case the algorithm stops and the dis-

tance is d1d2 Figure 4.6, otherwise we find which end is closer and define d2 = l2

or d2 = r2 in this case the distance is between the closest end-points of the two

segments (Figure 4.7).

We can approximate each link of the robot as a cylinder with a hemispherical

base. The distance calculated is therefore between the central axis of the link

cylinder and the obstacle cylinder (Figure 4.9, 4.10). In order to find the ac-

tual distance then it is necessary to subtract an offset which represents the radial

thickness of a robot link. The same reasoning is applicable to the segment repre-

4.2 The Optimization Algorithm 37

Figure 4.6: Bi-dimensional example of the segment-distance algorithm in case of

one-limit distance

Figure 4.7: Bi-dimensional example of the segment-distance algorithm in case of

two-limit distance

senting the human body (Figure 4.8). These values are available on the standard

ISO 7250-1:2017 and on the cobot design tables.

Figure 4.8: Human and cobot approximation using cylinders

38 Optimization Algorithm

Figure 4.9: Distance between two cylinders with a hemispherical base

Figure 4.10: Visualization of some distances calculated between three robot joints

and the lower left arm of the operator. Notice that the radius of the cylinders are

not the real offset used (Fig:4.8).

4.2 The Optimization Algorithm 39

In order to keep the robot-path away from the obstacle and not pass through

it, a method similar to artificial potential was used. A penalty in the cost function

is added if any of the robot link are close to any obstacle below a threshold h. This

penalty is inversely proportional to the distance.

if dist_edge < h then

cost = cost + (h−dist_edge)

end if

This procedure is similar to the method of artificial potential with conic

shape: if the robot gets too close to an obstacle, the cost function will increase

rapidly, making the trajectory converge to a safer distance.

4.2.4 Velocity management

The trajectory, is defined by 4 major movements (start-middle1, middle1-end,

end-middle2, middle2-start). When the simulation is carried on it is possible

to define a velocity for each movement. In this setup the trajectory can change

velocity up to 4 times. To improve the capability and the overall result the trajec-

tory is further discretized. The result is a trajectory composed by n concatenated

moves: Figure 4.11 and Figure 4.12.

Figure 4.11: Trajectory of a pick and place divided in n segment

40 Optimization Algorithm

Figure 4.12: Representation of the subdivision of the trajectory into n sub-

segments, but keeping the path unchanged

Inside the simulation algorithm the minimum distance between the person

and the robot links is computed once for each trajectory sub-segment i = 1,2, ...,n.

This distance is then used to define the speed of each sub-segment.

The maximum speed will be proportional to the distance according the following

modified version of the Equation2.1

vimax =
1
TB
kdimin (4.10)

where vimax[mm/s] is the maximum velocity of the ith sub-segment.

The value of dimin[mm] is the minimum distance calculated between the robot

configurations in the ith sub-segment and the human. The time TB[s] is com-

puted from the sum of reaction time of controller and braking time of the robot,

it is generally provided by the robot manufacturer. This kind of reasoning

is generated by the speed separation monitoring algorithm suggested by the

ISO-TS-15066 with a main difference: the ISO standard requires the presence

of sensors in the field that measure the actual distance of the operator from the

base of the robot in real time. In our scenario instead there is only a probabilistic

4.2 The Optimization Algorithm 41

study: there is no certainty that the person is not in proximity of the cobot,

but only a high probability. An unintentional collision is more probable with

respect the SSM. For this reason the safety scaling factor k < 1 is added to make

a possible accident more acceptable, reducing the velocity with respect the SSM

approach. In Figure 4.13 it is shown how our algorithm is more conservative

than SSM. The safety scaling factor k must be chosen both on the basis of the

reliability of the movements of the person and the level of risk and damage that

can cause an unintentional contact.

The actual k to be used in the task must be computed during the risk assessment

according to the data provided by the robot manufacturer and the ISO standards.

In our experiment a value of k = 0.175 is considered.

Figure 4.13: With reference to the Chapter 2 the diagram show the different path

taken by SSM with sensor and SSM probabilistic but more conservative: in the

first one the collision is very unlikely to happen, but in case of collision it is more

dangerous and difficult to avoid, in the second path the collision is more probable

but it is less dangerous and easy to avoid thanks to the lower velocity of the robot

42 Optimization Algorithm

4.2.5 Complete overview

In order to give a complete overview of the algorithm, a block diagram was cre-

ated so the purpose and order of execution of the various processes are clearer.

Chapter 5

Human model in the optimization

algorithm

We will now present three different methods to interpret the human occupancy

in the workspace and thus the optimisation algorithm.

The operator positions in the workcell is modelled as a sequence of point-

cloud sampled at a constant sampling time. For each second we have 8 three-

dimensional points, representing head, shoulders, elbows, hands and torso

(Figure 6.5). The acquisition procedure will be explained in detail in the next

Chapter.

Before entering into the details of the different methods, the industrial process

under consideration will be presented.

5.1 Industrial Process: task presentation

This process is a facsimile of an actual process implemented in a boot industry.

The purpose of the process is to produce boot soles from rubber sheets. The

machinery present is a press and a cobot.

The operation steps are:

1. the operator approaches the press and extracts the soles from the mould,

removing any residue;

44 Human model in the optimization algorithm

2. the cobot sprays some anti-adhesive liquid on the empty moulds; in the

meantime, the operator moves the finished soles to a nearby workbench

and refines the shapes using a cutter;

3. the cobot places the plastic logos inside the moulds, which will be incorpo-

rated during the moulding process;

4. the operator returns to the press and inserts a rubber sheet inside the press;

5. the operator moves back in order to turn on the press.

Figure 5.1: Workflow of the operator, the cobot and the press. Definition of ts and

te as the pick and place operation start time and end time.

From this workflow it can be seen that there are two pick and place operations,

5.2 Static human volumetric sweep 45

one for placing the logo and one for spraying the release liquid. The last stages

of the cobot’s approach to the mould, positioning the logos, changing the end

effector and spraying are not discussed here, as they are predefined movements

carried out at very low speed. Instead of these activities the cobot will stand still

and wait for a period of time. What we are interested in optimising is instead the

trajectory that the cobot makes from the table where the logos and end effectors

are located to the press and back.

5.2 Static human volumetric sweep

Figure 5.2: In each point of the robot trajectory the algorithm will consider all

the operator’s positions.

With this approach we consider all the spheres and cylinders that constitute

the operator throughout a work cycle as a single volume. In a way this approach

returns a reachability domain of the operator, i.e. the space it can reach and

will probably occupy during the whole task. Since the operator moves around

and occupies different areas during his work, the result is a single volume from

which the algorithm calculates the distance.

It can be imagined as many men standing still in the path of the operator (Figure

5.2) with the algorithm looking for the shortest distance between the robot and

46 Human model in the optimization algorithm

all of them.

By optimizing we obtain a trajectory that will try to avoid any possible contact

with the operator, thus lowering the probability of an unwanted collision. More-

over the robot will slow down progressively when it approaches the area that can

be occupied by the operator. It can be visualized as an aura that starts from the

volume of each operator’s volume and goes to define a sequence of concentric

volumes in which the robot can move at different speeds. Differently from the

Figure 2.8 where the human moves in different zones and the robot must adjust

its speed, here the operator is consider still and the robot trajectory pass through

different zones:

Figure 5.3: Visualization of the distance between robot and operator as concentric

volumes: the closer the robot, the slower it must go

In the algorithm used, these robot speeds will not be discretized in zones, but

will follow a continuous function, as shown in Figure 2.9.

The optimization algorithm will therefore automatically choose the paths that

are furthest from the person, because they will allow a higher speed and there-

fore a shorter task time.

The advantages of this static human approach are multiple. The optimization

will consist of only one point for each pick and place: start and end will be con-

stant, while the intermediate configuration to be optimized are x ∈ R6 . This is

because having only obstacles and a static operator there is no reason why the

optimal path in one direction is not also optimal in the return.

Another advantage is that at any time the cobot moves it will follow the most pru-

dent trajectory and will slow down approaching the area occupied by the person

5.3 Dynamic human model 47

(even if the operator is far away).

In addition, the number of volumes considered can be reduced to the ones close

to the robot, as the ones far away do not influence the process in any way. This

reduces the computational effort to compute the distances.

Finally, the disadvantage is that having a very conservative movement does not

fully exploit the times when the person is actually very far from the cobot. This

is because this first algorithm does not take into account the temporality of move-

ment, but only spatiality.

For this reason a second approach has been studied

5.3 Dynamic human model

Figure 5.4: At each segment of the cobot’s trajectory, the algorithm computes the

distance between the robot and the operator’s position at that second. When the

operator is far the robot will move at a higher velocity.

If it is assumed that the task of the worker is repetitive and predictable with

respect to the measurable times of the machines present in the work cell then

one can exploit this assumption to further improve the performance of the cobot.

Instead of considering a swept volume where it is very likely to find the operator,

48 Human model in the optimization algorithm

the human can be considered as a moving obstacle that follows a known trajec-

tory.

It is useful to consider separately the movements the man makes in the time of

the first pick and place and those he makes in the second.

Unlike the static method, now it will be necessary to consider as variables to

be optimized both the intermediate point of inward and the backward movement

x ∈ R12. This is because during the time elapsed between one and the other the

person will have moved and therefore the optimal path will be different.

With this different modelization of the human, there will be a different procedure

for the distance calculations with respect to the first algorithm.

In order to know the distance between each part of the robot’s trajectory and the

man, it is first necessary to synchronise the times. We need to know what posi-

tion the person is standing when the robot performs the sub-segment i. Thus for

each sub-segment i = 1,2, ..n the time ti should be calculated. This time ti is the

absolute time from the beginning of the process (considered as the time of open-

ing the press) to the robot moving on the ith sub-segment. To calculate this value

consider ti = ts + tr where ts is the time elapsed from the opening of the press to

the start of the robot movement, while tr is the time elapsed from the start of the

robot movement to the start of the sub-segment undertaken. This time ti is then

rounded to the seconds. Each second corresponds to a different human configu-

ration. Now we have the cobot position at the i segment and the corresponding

human position. Finally, the distance between the robot at each configuration of

the ith sub-segment and the operator of time ti is calculated using the method

seen above [41]. The maximal allowed robot speed consistent with what we said

in the previous chapter is calculated as in the Equation 4.10.

The advantage of this method is that the robot will work faster when the ope-

rator is likely to be further away and slower when he is closer. This improves

performance and reduces the total task time.

One problem is that the operator will hardly follow exactly the same movements

and timing of the one taken in the data acquisition, so the data will be only ap-

proximated.

5.4 Time-window human model 49

5.4 Time-window human model

Figure 5.5: At each segment of the cobot’s trajectory, the algorithm calculates

the minimum distance between the robot and three operator positions: at that

second, one second before and one second after.

A third approach born from the merge of the two previous ones can mitigate

the disadvantages of both. Instead of considering one man at a time in the dis-

tance calculation and velocity definition, one can consider a sliding window of

time.

During each iteration of the velocity evaluation, the distance between the

robot configurations in an ith sub-segment and the operator is measured. In-

stead of considering the operator as unique volume of all reached positions as in

the first method, and instead of considering only the person of time ti as in the

second one, this third approach considers the configurations of the person at the

times ti −w, . . . , ti , . . . , ti +w as shown in Figure 5.6.

A reasonable window considering the robot’s timing is w = 1 (Figure 5.5).

This has the advantage of having a certain clearance in the movement of the

person, in fact there are 2w+1 seconds of window, so it is also taken into account

the possibility that the human moves a little slower or a little faster than the basic

measurement.

50 Human model in the optimization algorithm

Figure 5.6: Visualization of the time window sliding and considering different

operator configurations

At the same time, however, there is a dynamism that allows the cobot to work

faster when the operator is far away than when he is closer.

5.5 Warm starting the complete trajectory optimiza-

tion

The complete trajectory for the industrial task requires two pick and place. In the

first algorithm optimizing one pick and place corresponds to optimizing both,

since the conditions do not change (the full volume is always considered) the

optimum also remains unchanged. It is different for the second and third meth-

ods: depending on the time at which the pick and place should be started the

distances to the operator will be different. therefore it is necessary to separately

optimize both pick and places, defining the start time ts properly.

Since the second pick and place is actually conditioned by the end time of the

5.5 Warm starting the complete trajectory optimization 51

first one, it is appropriate to make a further collective optimisation of the pick

and place in sequence. This optimisation will have as its trajectory the sum of the

two activities:

start→middle1→ end→middle2→ start→middle3→ end→middle4→ start

in this case the optimization involves 6x4 values (middle1 middle2 middle3 mid-

dle4), so x ∈R24. This greatly lowers the efficiency of the algorithm and its ability

to arrive to a solution, in fact with a random initialization it is very likely that it

will not converge. For this reason it is better to use a technique called "warm

starting"[42]. This technique consists of first optimizing separately the two pick

and places and then initializing the overall problem with the results of the sin-

gle pick and place optimisations. The results of this collective optimization are

discussed in Chapter 7.

52 Human model in the optimization algorithm

Chapter 6

Data acquisition: Virtual Reality and

Kinect sensor

In this Chapter we are going to analyse the data acquisition process, which have

the goal of obtaining the operator occupancy area in the workplace in the form

of a point-cloud.

Since one of the aims of this thesis is to prove the concept of virtual commission-

ing, the real plant and press were not used (since they are hypothetically not yet

in place) but virtual reality was implemented.

This type of approach has multiple benefits:

• it allows a preliminary study of the tasks the operators movement before

the actual implementation of the cell;

• it does not require stopping or slowing down industry production, which is

always economically problematic;

• it can be performed in any given location, and requires only the operator

and two devices (a virtual reality visor and a depth camera).

6.1 Virtual Reality

One of the key areas of Industry 4.0 growth and development is virtual reality.

Through VR, exact simulations of products, processes or production plant can be

54 Data acquisition: Virtual Reality and Kinect sensor

(a) Virtual reality device: Facebook Oculus

Quest 2

(b) Data acquisition device: Microsoft Kinect 2

Figure 6.1: Devices used in the data acquisition process

built to enable a different way to see their operation in person and in an immer-

sive mode. Engineers can monitor progress in a more visual and interactive way

through virtual simulation for product or process design and prototype valida-

tion. In return, errors at this stage can be reduced and productivity improved.

Augmented and virtual realities can be adopted to help integrate the human

workforce in the manufacturing system [43].

In our use case it was necessary to virtually simulate the work cell with the

press and the surrounding environment. The first step was to design the press

for moulding the soles (Figure 6.2) using a 3D modelling software (AutoCad®).

Then using Unity we developed an executable Android application. Unity is a

cross-platform graphics engine that is developed by Unity Technologies®. This

software enables the development of video games and other interactive content,

such as architectural visualisations or real-time 3D animations [44].

The procedure involves drawing the scene of the industry as if it were a video

game, inserting the press and other necessary 3D elements (Figure 6.3). Then an

android application is generated from Unity and directly loaded into the visor

6.1 Virtual Reality 55

Figure 6.2: 3D representation of the press, the cobot and the operator

via USB-C cable. The visor used in this project is the Facebook® Oculus Quest

2 (Figure 6.1a). Once this process has been carried out it is possible to use the

Oculus Quest 2 as a stand alone device. This allows the operator to simulate

a complete working scene without being restricted by a cable. In addition, the

visor can be programmed to display a reproduction of the user’s hands in the

scene (Figure 6.4). This is possible thanks to high fidelity tracking functions

utilizing four small cameras positioned directly on the visor [45]. This allows

you to have a much more immersive experience, seeing your hands directly on

the scene and thus being able to simulate with greater fidelity the task that the

operator is required to perform.

56 Data acquisition: Virtual Reality and Kinect sensor

Figure 6.3: Unity editor with the current working cell and press

6.2 Environment setup and data acquisition

A human-tracking device is required to record the data on the movement of the

worker. The Kinect is a device developed by Microsoft® for motion detection

(Figure 6.1b). This device integrates an RGB camera with an infrared projectors

and detectors that allow to acquire a depth map of the environment.

The sensor measures the amount of time the light takes between being emitted

and being picked up by the camera after hitting an object. This technique pro-

vides a point-cloud of the environment. Then, through the random forest algo-

rithm already integrated in the Kinect SDK, the recognition of gestures and the

detection of the body skeleton is carried out. In particular it is possible to obtain

the recognition of the 3D position, with respect to the reference system of the

camera, of different parts of the body [46]. We are interested in: head, shoulders,

elbows, hands and torso (Figure 6.5).

The Kinect camera is positioned 1.20 metres above the ground in a horizon-

tal position. Considering the speed of the operator’s movements, the precision

of the Kinect and the overall time of the tasks it was decided to set a position

6.2 Environment setup and data acquisition 57

Figure 6.4: Actual screenshot of what the operator is seeing when wearing the

visor.

acquisition every 1 second. The operator simulates the work in the industry by

seeing himself in front of the press and completing the tasks. The first task is to

approach the press and remove the soles, the second requires to bring the soles

to the workstation and refine the edges, return to the press, and finally the last

task is to place the rubber sheet and start the machine.

Once the acquisition was completed, a post processing operation was needed.

The distance between the hand and the elbow was wrong in two operator model

acquired, so a correction of the outliers was carried out. In particular, the defects

were found to be greater when the operator was facing backwards, because the

Kinect is not designed for the acquisition of people turned.

Once this phase was completed and the cloud-point of the operator’s positions

were obtained at one-second intervals, it was possible to start the optimization

algorithms.

58 Data acquisition: Virtual Reality and Kinect sensor

Figure 6.5: Kinect acquisition output and Matlab representation of the operator

Chapter 7

Experimental Results

In this chapter we are going to examine the results of the optimization, first by

analysing the output of the algorithm and then by comparing the performance

obtained in a series of experimental tests. These experiments are carried out with

the co-presence of the operator and the cobot in an environment that emulates

the final cell. To better appreciate the differences between these methods three

different indexes are defined.

7.1 Initialization

Since there are several local minima, as explained in Chapter 4, several optimiza-

tion attempts must be made. The optimization result that ended up in the lowest

cost configuration is finally chosen.

Regarding the initialization of the decision variable, i.e. the choice of the inter-

mediate configurations (Figure 4.1), we proceeded with a random choice. This is

a very common strategy in the optimization problems since it allows to have very

different outcomes and it is not biased by the human decision. Each joint has

been chosen as a random number between the initial and the final configuration

angle.

The second and third optimization algorithm were carried out using the warm

starting technique (Section 5.5) . More precisely, first the two pick and place

problems are optimized separately and randomly initialized, then the results are

60 Experimental Results

merged to form the initialization set for the general problem. Finally the com-

plete optimization is performed (Figure 7.1).

Figure 7.1: Visualization of the warm starting procedure

7.2 Optimization result

7.2.1 Static human volumetric sweep

This algorithm considers the distance between the robot and every operator po-

sition.

Therefore it is expected that the robot will go faster in the initial part of the tra-

jectory, i.e. when it is further away from the volume spaced by the operator and

slows down as it approaches the inside of the press. In the Figure 7.4 we can

see that the highest speeds of the end effector occur in the first 2 and last 2 sec-

onds. The trajectory of the cobot is avoiding the edge of the press while passing

as far away as possible from the person (Figure 7.2). This is the most conservative

method and results in one pick and place time of 22.5s. The time improvement

from the initial trajectory time to the minima found by the algorithm is 22.95%

(Figure 7.3), considering as initialization a constant speed of 20 deg/s.

There is no need for warm starting since the problem does not change between

the first and second pick and place (they consider always all the human posi-

tions), so it is sufficient to make one representative pick and place optimization.

The overall process requires two pick and place operations in sequence so the

same trajectory is executed twice. The trajectory time is about T = 2 · 22.5 = 45s.

7.2 Optimization result 61

Figure 7.2: Two different view of the path of the first algorithm, Static human

volumetric sweep

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Iteration

22

23

24

25

26

27

28

29

30

C
o
s
t
[s

]

Cost sequence

X 0

Y 29.2

X 4

Y 22.5

Figure 7.3: Cost sequence for the first algorithm: initialization at 29.2s and opti-

mum at 22.5s

62 Experimental Results

0 5 10 15 20

T [s]

0

100

200

300

400

500

600

700

800

900

V
 [

m
m

/s
]

End Effector Velocity

Figure 7.4: Norm of the end effector velocity mm/s during the first algorithm

trajectory

7.2 Optimization result 63

7.2.2 Dynamic human model

This algorithm considers the distance between the robot and one different posi-

tion of the operator for each second. The trajectory presented is constituted by

the two consecutive pick and place optimized using the warm starting technique.

The robot starts when the operator is finishing the process inside the press Fig-

ure 7.5 (1). At the beginning the algorithm knows that the worker position is

near the press, so it will calculate a reduced speed. After a few seconds the man

starts to move away from the press and the robot Figure7.5 (2). The movement of

the cobot during this time frame will be in acceleration phase. When the worker

stays away from the press for the time needed to refine the soles of the boots the

robot will be able to go at a higher speed Figure 7.5 (3). Finally when the ope-

rator is returning to the press to insert the rubber sheet the robot will decrease

gradually its speed Figure 7.5 (4). These speed variations (Figure 7.6) are made

by measuring the minimum distance between the robot and the recording of the

operator’s movement during the data acquisition phase.

Some interesting results of the automatic path planning are shown in Figure 7.5

(3): the robot first moves horizontally away from the press and then back to the

starting configuration, this should be indeed the fastest path if the operator does

not occupy the press position, but it would be forbidden if the operator was close

to it.

The improvement between the initialization trajectory time to the algorithm out-

put trajectory time is 43.8% (Figure 7.7). This improvement are greater than

those of the first algorithm because this technique is less restrictive: the robot

can go faster for the whole time the operator is away in fact this is the less conser-

vative method; it assumes that the operator moves in a very predictable way. The

algorithm exploits every second that the operator is engaged in the other distant

task to move the robot faster. The total trajectory time is T = 27.09s.

64 Experimental Results

Figure 7.5: Four different view of the robot path and the operator position con-

sidered, Dynamic human model.

0 5 10 15 20 25

T [s]

0

100

200

300

400

500

600

700

V
 [

m
m

/s
]

End Effector Velocity

Figure 7.6: Norm of the end effector velocity mm/s during the second algorithm

trajectory

7.2 Optimization result 65

0 1 2 3 4 5 6

Number of Iteration

12

14

16

18

20

22

24

26

28

30

C
o

s
t

[s
]

Cost sequence

(a) Cost sequence for the first pick-and-place

0 5 10 15

Number of iteration

12

14

16

18

20

22

24

26

28

30

C
o
s
t
[s

]

Cost sequence

X 0

Y 29.8

X 15

Y 13.5

(b) Cost sequence for the second pick-and-place

0 5 10 15 20 25 30

Number of iteration

25

30

35

40

45

50

C
o
s
t
[s

]

Cost sequence

X 0

Y 48.2

X 31

Y 27.09

(c) Cost sequence of the overall trajectory

Figure 7.7: Cost sequences for the second method

66 Experimental Results

7.2.3 Time-window human model

The last method is the one that considers three operator’s positions each second,

more precisely, it also evaluates the distance of the operator one second before

and one second after with respect to the previous method.

The movement of the robot, with its accelerations and decelerations will be sim-

ilar to the second method, but in general more conservative. For example, the

algorithm will take into account that the man could stay one second longer near

the press, so it will make the robot go slower in the initial part Figure 7.8 (1). Sim-

ilarly, this method will predict the man to return to his position shortly before he

actually returns, thus starting to slow down in advance Figure 7.8 (4). When the

worker is performing his tasks far away there is no significant difference with the

previous algorithm so the robot will go at a high speed Figure 7.8 (2)(3).

The improvement between the initialization to the algorithm output is 35.74%

(Figure 7.10). This improvement is in between the first and the second algorithm,

considering that even if this method is more efficient than the first one it is also

more conservative than the second. The total trajectory time is about T = 34.7s.

7.2 Optimization result 67

Figure 7.8: Four different view of the robot path and the operator position con-

sidered, Time-window human model.

0 5 10 15 20 25 30

T [s]

0

100

200

300

400

500

600

700

800

V
 [
m

m
/s

]

End Effector Velocity

Figure 7.9: Norm of the end effector velocity mm/s during the third algorithm

trajectory

68 Experimental Results

0 2 4 6 8 10 12 14 16

Number of iteration

16

18

20

22

24

26

28

C
o

s
t

[s
]

Cost sequence

X 0

Y 27.7

X 17

Y 16.88

(a) Cost sequence for the first pick-and-place

0 5 10 15 20 25

Number of iteration

16

18

20

22

24

26

28

30

32

34

36

C
o

s
t

[s
]

Cost sequence

X 0

Y 34.2

X 27

Y 16.88

(b) Cost sequence for the second pick and

place

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of iteration

34

36

38

40

42

44

46

48

50

52

54

C
o

s
t

[s
]

Cost sequence

X 1

Y 34.7

X 0

Y 54

(c) Cost sequence of the overall trajectory

Figure 7.10: Cost sequences for the third method

7.3 Experiment with cobot and operator 69

7.3 Experiment with cobot and operator

These experiments were carried out to verify in real life the quality of the trajec-

tories generated by the three algorithms.

The challenge of this experiment is to faithfully represent the behaviour of an

operator in the workplace. In reality, the worker cannot perform all the tasks

precisely at the same time, but depending on various factors such as fatigue,

boredom, etc., his speed may vary. Trying to reproduce this variability, the expe-

riment was carried out with different operator executions.

From the data acquired it was found that the execution time of the first task (re-

moving the soles) takes 12 seconds.

However, the experiments will also evaluate slower or faster movements of the

operator to see how they interact with the robot’s trajectory previously calculated.

The same thing is done for the second task (moving away and finishing the soles)

which takes 35s.

To obtain this variance in speed, the operator’s speed is increased by 10% and

20% and slowed down by the same proportions. In the experiments the ope-

rator’s work was marked by a timer so that the time of each task could be varied

accordingly to the speed that had to be tested.

In order to understand and quantify the improvement of the three algorithms

a basic trajectory was needed. This trajectory provides a benchmark against

which the algorithms can be compared. This trajectory is the simplest way to

get the robot to move from the starting point to the ending point. For program-

ming this operation the servo-assist training method was used (Section 2.1.1), i.e.

the simplest and most immediate way to program the task. The speed was main-

tained at 20deg/s, i.e. the default speed set on the cobot. This trajectory will be

named "Base".

In order to compare these 4 trajectories (Base, Algorithm1, Algorithm2, Al-

gorithm3) a standard index must be defined.

The first one will be the cycle time, so the total time in between the opening and

the closing of the press.

70 Experimental Results

The second index is the energy transferred in a transient contact with the ope-

rator shoulder.

The last comparing index is the velocity variance admitted by the algorithm, i.e.

how much the operator can vary its task time without colliding with the cobot.

7.3.1 Cycle time

Considering the operator at a standard speed, we will have the following cycle

times:

Method Robot trajectory Time Cycle Time

Base 54s 68s

Algorithm1 45s 60s

Algorithm2 27.1s 52s

Algorithm3 34.7s 52s

Table 7.1: Comparison between Trajectory times and cycle times, i.e. from open-

ing until closing the press

Those cycle times are directly taken from the experiments. The base trajectory

and the first algorithm are particularly slow, so the operator has to wait for the

robot to finish its task before inserting the rubber sheet and starting the press.

This will increase the cycle time and add a downtime in the process. This is

to be always avoided. The second and third algorithms have the same cycle

time because when the operator returns he can directly start the press without

waiting any longer. So in this comparison index the second and third algorithm

are equally well performing.

7.3.2 Transient collision

To define this index, which is correlated with the safety, the energy dissipated

due to transient contact is considered. This value is usually calculated as part of

7.3 Experiment with cobot and operator 71

the Power Force Limiting strategy. This criterion was used because there are no

distance sensors as required by the SSM so in theory this task is subject to the

PFL regulation, as contact could occur.

By making a simple risk assessment the worst case scenario was defined: the

robot (with a payload of one and a half kilograms) hits the person on the shoulder.

The shoulder is a relatively hard body part, it cannot distribute energy very well,

therefore it has a low pain threshold. In our setup we will assume the person

to be still, and we will calculate the robot speed relative to the shoulder in the

following way: for each instant we will find the distance between the shoulder

and the end effector, from this variation we will obtain the speed of displacement

from the shoulder. Note this speed is different from the absolute speed of the end

effector in Figure 7.6-7.9.

The index is calculated from the formula:

E =
1
2
µv2

rel (7.1)

where vrel is the relative velocity between the end effector and the operator’s

shoulder when he is standing in front of the press, k is the elastic constant

of the body part, µ is the reduced mass of the two-body system, obtained by

µ =
(

1
mH

+ 1
mR

)−1
where mH is the effective mass of the human body region and

mR is the effective mass of the robot. Both k and mH can be found in the Table

A.3 of the ISO-TS-5066 [1].

Finally it was possible to produce the graphs shown here:

72 Experimental Results

5 10 15 20 25 30

T [s]

0

0.2

0.4

0.6

0.8

1

E
 [

J
]

Energy transferred in a transient impact with the shoulder joint

Algorithm 1

Algorithm 2

Algorithm 3

BaseX 1.9

Y 0.8558

X 4.8

Y 1.068

X 11.4

Y 1.14

X 7

Y 0.0911

Figure 7.11: Visualization of the energy that can be transmitted in a transient

contact between cobot and operator’s shoulder. Note: the Base graph is truncated.

7.3 Experiment with cobot and operator 73

It can be observed that the worst case is represented by the values:

Method Maximum impact energy

Base 0.091J

Algorithm1 0.856J

Algorithm2 1.14 J

Algorithm3 1.068J

Table 7.2: Maximum energy transmitted in the worst case scenario from the cobot

to the operator shoulder in a transient collision

Clearly, the first algorithm, which is the most conservative one, has a low energy

along with an equally low speed. On the other hand, Algorithm 2 and 3, have an

higher energy transmission due to the faster movements. However, this increase

on the danger is necessary in order to have reasonable execution times. In all

cases, even if the operator were to find himself close to the robot at the moment

of maximum energy exchange, this would represent an acceptable risk according

to the FPL criterion. Indeed all the 4 trajectories are well below the ISO threshold

of pain Eshoulder = 1.46 J calculated using the pressure limit associated with the

shoulder joint (Table A.2 of the ISO-TS-15066 [1]) in a 1 centimeter square area.

7.3.3 Velocity variance

The last index considers the synchrony of movements, i.e. what is the speed

variation that the operator can have before coming into contact with the cobot.

Allowing a greater variance is preferred since it results in a more versatile trajec-

tory that can perform well at a range of operator speeds.

For this index it is worthwhile to examine what is the maximum permissible de-

crease in speed. This is because if the operator slows down too much, the cobot

could enter the press while the operator is still finishing the task. On the contrary,

whenever the operator is faster than average, the only risk is that he will have to

wait a few seconds before he can insert the rubber and switch on the press, but

74 Experimental Results

Figure 7.12: Visualization of the collaborative area, its center is inside the press.

Figure 7.13: Time frame of the moment when the operator has finished the first

task and is moving away from the press. It can be observed the cobot to be nearer

the collaborative space in the second algorithm.

an accident can hardly happen.

In order to validate this index, it is useful to study slowed-down experiments

(Figure 7.13). To do so, the distance between the operator and the press has

been graphically represented together with the distance between robot and press

(Figure 7.14, 7.15). Furthermore a collaborative area has been defined (Figure

7.12), such that if the cobot and the person are inside this area simultaneously

there is a risk of collision.

7.3 Experiment with cobot and operator 75

(a)

(b) zoom

Figure 7.14: This graph visualises the movements of the operator at different

speeds and of the robot according to the Algorithm 2. The distance is calculated

from the centre of the collaborative area. When a plot goes below the dashed line

it has to be considered inside the collaborative area. If both cobot and operator

are inside the area at the same time there is a risk of collision.

76 Experimental Results

(a)

(b) zoom

Figure 7.15: This graph visualises the movements of the operator at different

speeds and of the robot according to the Algorithm 3. The distance is calculated

from the centre of the collaborative area. When a plot goes below the dashed line

it has to be considered inside the collaborative area. If both cobot and operator

are inside the area at the same time there is a risk of collision.

7.3 Experiment with cobot and operator 77

The comparison is made between only the second and third algorithms, as the

first and base algorithms have already proved to be irrelevant due to excessive

slow motion.

Method Maximum speed variance

Algorithm2 27%

Algorithm3 42%

Table 7.3: Maximum speed variance admitted before the Human and robot pres-

ence overlap in front of the press

From the experiment it can be seen that the case of the 20% speed reduction

is very close to the limit of Algorithm 2. If we study this algebraically we can see

that the precise limit is 27%, while for Algorithm 3 is 42 %.

This index reveals the main feature of the third algorithm. In fact, by taking into

account a window of values of the operator’s positions, it is able to better accom-

modate possible changes with respect to standard movements. Also, during the

experiments it was found that this algorithm is slightly less aggressive than the

second one, giving in some ways a more comfortable feeling to the operator.

78 Experimental Results

Chapter 8

Conclusions

Today the collaborative robotics trend is experiencing significant growth. This

is driven by the numerous advantages that the installation of a cobot brings to a

manufacturing company. These advantages include production flexibility, which

is far from the one of traditional robots, as well as a higher productivity than

what human operators alone can manage. These and other qualities, as well as

lower costs, have motivated and are still motivating many small and medium en-

terprises to adopt collaborative robots. Today these cobots work by sharing work

areas with humans rather than cooperating directly with them. This growing de-

mand for new installations has gone along with the increasing focus on the safety

and comfort of the operator when working with the cobot.

With regards to the safety requirements of this type of robot, an ISO-TS-15066

standard has been developed, which defines a series of approaches such as speed

and separation monitoring and power and force limiting. One of the goals of this

work is to develop an algorithm that can help the programmer to automatically

define offline the optimal trajectory for the cobot, while at the same time increas-

ing the safety of the operation. The aim of this algorithm is to avoid or reduce the

amount of trial-and-error that a programmer has to carry out for each new task.

In particular, the algorithm is able to effectively prevent the robot from colliding

with existing obstacles and to ensure that it does not pass through the area that

the person occupies. All of this is done by trying to emulate the behaviour that

a robot would have if controlled with an online approach such as SSM, which

80 Conclusions

would require additional ad-hoc sensors and installations.

This new approach not only works for cobots already installed and in operation,

but it is also designed to work in those situations where the complete plant with

cobots and other machines is not yet available, i.e. joining the category of virtual

commissioning tools alongside other simulators software.

The first step was to simulate the task that the operator has to perform in the

work area by wearing a virtual reality device that brings him/her into a simu-

lated industry. After recording these movements as point-clouds it was possible

to start the optimization algorithm. This optimization algorithm searches for the

trajectory that results in the lowest cost function represented by the task time.

This is done by simulating at each step the trajectory through RoboDK, mea-

suring each time all the distances between robot and operator and adjusting the

speed accordingly. Depending on the method of calculation of these distances,

three distinct methods have been developed:

• static human volumetric sweep, where the algorithm considers all the posi-

tions the operator takes during the entire operation;

• dynamic human model, where the algorithm considers only the distance

between the robot and the operator at the pose that depends on the given

instant;

• time window human model, where the algorithm considers a window of

positions at each considered instant.

After optimizing the best trajectory between the given start and end points of the

task the program can be loaded directly on the cobot. At this point the cobot is

able to execute the optimized trajectory without the need of additional sensors in

the final setup.

By carrying out several experiments with the trajectories identified by the

three different methods, it was possible to define three quality indices used to

compare the results in a more straightforward and clear manner.

In conclusion, the static human volumetric sweep algorithm is certainly the

most conservative and the safest out of the three, but its overall execution time

8.1 Possible Improvements 81

does not allow it to be considered as a solution applicable in the real world. The

second algorithm, with the dynamic human model, is the best performing algo-

rithm from the point of view of trajectory time. However, it has a low variance

of the allowed operator’s speed, i.e. it only synchronises well with the human

if his/her speed does not deviate too much from the starting acquisition. This

results in a higher risk of collision if the operator does not always work at the

same speed. Combining this higher probability with a higher impact energy than

the other algorithms (although only slightly), the lower safety of the solution

becomes evident. Finally, the third algorithm, the time window human model,

which combines the dynamic approach of the second algorithm with the more

conservative approach of the first one, manages to achieve satisfactory results. In

particular, the overall trajectory time is well matched to the cycle times of the

process in consideration. Indeed, the improved speed variability allows for an

improved collaboration with the operator.

8.1 Possible Improvements

Many things can be improved in further studies.

The process can be further automated through a more high-level management of

the procedure, such as making the application autonomously perform multiple

attempts and choose the best local minimum without human supervision.

Furthermore, in the case of the dynamic and time window model, information

on the direction of movement can be added, as it is safer to go at high speed

when the operator is moving away from the robot than when he is approaching

it. Another possible improvement can be achieved by adding the accelerations

as optimization parameters in order to smooth the speed changes, which are cur-

rently quite sharp. In addition to having smoother trajectories, this also benefits

robot maintenance since more continuous speeds cause less wear on the joints.

Finally, the speed can be raised by increasing the safety scale factor, if the risk

can be proved to be acceptable. One of the methods that can be used to reduce

the risk is to take advantage of the sensors that are already present in the ma-

82 Conclusions

chines near the robot. Taking as an example the work cell studied, one could use

the press safety sensors. This type of sensor, often made by a laser curtain, is

needed to disable the machine when the operator is in the working area. In this

way, when the operator is close to the machine and so to the cobot arm, the joints

speed can be limited by lowering the k; once the operator leaves the press the

cobot velocity can be raised using a higher k.

Bibliography

[1] Organization for Standardization: Switzerland. ISO TC184/SC2, ISO/TS

15066 Robots and robotic devices - Safety requirements for industrial robots.

2013.

[2] Luka Peternel et al. “Towards ergonomic control of human-robot co-

manipulation and handover”. In: 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids). 2017, pp. 55–60. doi:

10.1109/HUMANOIDS.2017.8239537.

[3] Rainer Müller, Matthias Vette, and Ortwin Mailahn. “Process-oriented

Task Assignment for Assembly Processes with Human-robot Interac-

tion”. In: Procedia CIRP 44 (2016). 6th CIRP Conference on Assembly

Technologies and Systems (CATS), pp. 210–215. issn: 2212-8271. doi:

https : / / doi . org / 10 . 1016 / j . procir . 2016 . 02 . 080. url: https :

//www.sciencedirect.com/science/article/pii/S2212827116003620.

[4] Chui et al. “A future that works: automation, employment, and productiv-

ity.” In: (2017). [San Francisco]: McKinsey Global Institute. url: http://

www.mckinsey.com/global-themes/digital-disruption/harnessing-

automation-for-a-future-that-works.

[5] M. P. Groover. “automation”. In: Encyclopedia Britannica (October 22,

2020).

[6] Matt Scanlan. Manufacturing Simulation for Industry 4.0. 2019. url: https:

/ / www . engusa . com / en / posts / manufacturing - simulation - for -

industry-4-0.

https://doi.org/10.1109/HUMANOIDS.2017.8239537
https://doi.org/https://doi.org/10.1016/j.procir.2016.02.080
https://www.sciencedirect.com/science/article/pii/S2212827116003620
https://www.sciencedirect.com/science/article/pii/S2212827116003620
http://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works
http://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works
http://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works
https://www.engusa.com/en/posts/manufacturing-simulation-for-industry-4-0
https://www.engusa.com/en/posts/manufacturing-simulation-for-industry-4-0
https://www.engusa.com/en/posts/manufacturing-simulation-for-industry-4-0

84 BIBLIOGRAPHY

[7] Virtual commissioning. 2015. url: https : / / team3d . it / virtual -

commissioning-cose/.

[8] Ulrich Raschke and Christina Cort. “Chapter 3 - Siemens Jack”. In:

DHM and Posturography. Ed. by Sofia Scataglini and Gunther Paul. Aca-

demic Press, 2019, pp. 35–48. isbn: 978-0-12-816713-7. doi: https :

//doi.org/10.1016/B978-0-12-816713-7.00003-9. url: https://www.

sciencedirect.com/science/article/pii/B9780128167137000039.

[9] 3D manufacturing simulation software. url: https://www.visualcomponents.

com/.

[10] Operazioni globali: Delmia - Dassault Systèmes. url: https://www.3ds.com/

it/prodotti-e-servizi/delmia/.

[11] Fattore Umano Ed Ergonomia: Siemens Software. url: https://www.plm.

automation . siemens . com / global / it / products / manufacturing -

planning/human-factors-ergonomics.html.

[12] RobotStudio: ABB Robotics. url: https : / / new . abb . com / products /

robotics/robotstudio.

[13] Organization for Standardization: Switzerland. ISO 13849-1:2015 Safety of

machinery – safety related parts of control systems – Part 1: General principles

for design. 2015.

[14] K. Kaltsoukalas, S. Makris, and G. Chryssolouris. “On generating the mo-

tion of industrial robot manipulators”. In: Robotics and Computer-Integrated

Manufacturing 32 (2015), pp. 65–71. issn: 0736-5845. doi: https://doi.

org/10.1016/j.rcim.2014.10.002. url: https://www.sciencedirect.

com/science/article/pii/S0736584514000891.

[15] David Šišlák, Premysl Volf, and Michal Pechoucek. “Accelerated A* tra-

jectory planning: Grid-based path planning comparison”. In: Proceedings

of the 19th International Conference on Automated Planning & Scheduling

(ICAPS). Citeseer. 2009, pp. 74–81.

https://team3d.it/virtual-commissioning-cose/
https://team3d.it/virtual-commissioning-cose/
https://doi.org/https://doi.org/10.1016/B978-0-12-816713-7.00003-9
https://doi.org/https://doi.org/10.1016/B978-0-12-816713-7.00003-9
https://www.sciencedirect.com/science/article/pii/B9780128167137000039
https://www.sciencedirect.com/science/article/pii/B9780128167137000039
https://www.visualcomponents.com/
https://www.visualcomponents.com/
https://www.3ds.com/it/prodotti-e-servizi/delmia/
https://www.3ds.com/it/prodotti-e-servizi/delmia/
https://www.plm.automation.siemens.com/global/it/products/manufacturing-planning/human-factors-ergonomics.html
https://www.plm.automation.siemens.com/global/it/products/manufacturing-planning/human-factors-ergonomics.html
https://www.plm.automation.siemens.com/global/it/products/manufacturing-planning/human-factors-ergonomics.html
https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio
https://doi.org/https://doi.org/10.1016/j.rcim.2014.10.002
https://doi.org/https://doi.org/10.1016/j.rcim.2014.10.002
https://www.sciencedirect.com/science/article/pii/S0736584514000891
https://www.sciencedirect.com/science/article/pii/S0736584514000891

BIBLIOGRAPHY 85

[16] Dave Ferguson and Anthony Stentz. “Using interpolation to improve path

planning: The Field D* algorithm”. In: Journal of Field Robotics 23.2 (2006),

pp. 79–101.

[17] L.E. Kavraki et al. “Probabilistic roadmaps for path planning in high-

dimensional configuration spaces”. In: IEEE Transactions on Robotics and

Automation 12.4 (1996), pp. 566–580. doi: 10.1109/70.508439.

[18] Xingchen Chen, Nanfeng Xiao, and Ya Chao. “Kinect Sensor-Based Trajec-

tory Planning Method of Collision Avoidance for Industrial Manipulator

with an Dexterous Hand”. In: Recent Trends in Intelligent Computing, Com-

munication and Devices. Springer, 2020, pp. 695–704.

[19] Steven M. LaValle. “Rapidly-Exploring Random Trees: A New Tool for Path

Planning”. In: Cambridge University Press (2006).

[20] Rodriguez et al. “An obstacle-based rapidly-exploring random tree”. In:

Proceedings 2006 IEEE International Conference on Robotics and Automation,

2006. ICRA 2006. 2006, pp. 895–900. doi: 10.1109/ROBOT.2006.1641823.

[21] Olzhas Adiyatov and Huseyin Atakan Varol. “Rapidly-exploring random

tree based memory efficient motion planning”. In: 2013 IEEE International

Conference on Mechatronics and Automation. 2013, pp. 354–359. doi: 10.

1109/ICMA.2013.6617944.

[22] John Schulman et al. “Motion planning with sequential convex optimiza-

tion and convex collision checking”. In: The International Journal of Robotics

Research 33.9 (2014), pp. 1251–1270. doi: 10.1177/0278364914528132.

eprint: https : / / doi . org / 10 . 1177 / 0278364914528132. url: https :

//doi.org/10.1177/0278364914528132.

[23] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile

robots”. In: Proceedings. 1985 IEEE International Conference on Robotics and

Automation. Vol. 2. 1985, pp. 500–505. doi: 10.1109/ROBOT.1985.1087247.

https://doi.org/10.1109/70.508439
https://doi.org/10.1109/ROBOT.2006.1641823
https://doi.org/10.1109/ICMA.2013.6617944
https://doi.org/10.1109/ICMA.2013.6617944
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1109/ROBOT.1985.1087247

86 BIBLIOGRAPHY

[24] R. Volpe and P. Khosla. “Manipulator control with superquadric artificial

potential functions: theory and experiments”. In: IEEE Transactions on Sys-

tems, Man, and Cybernetics 20.6 (1990), pp. 1423–1436. doi: 10.1109/21.

61211.

[25] Wenrui Wang et al. “An improved artificial potential field method of

trajectory planning and obstacle avoidance for redundant manipula-

tors”. In: International Journal of Advanced Robotic Systems 15.5 (2018),

p. 1729881418799562.

[26] Matthew P Kelly. “Transcription methods for trajectory optimization”. In:

Tutorial, Cornell University, Feb (2015).

[27] T Chettibi et al. “Minimum cost trajectory planning for industrial robots”.

In: European Journal of Mechanics-A/Solids 23.4 (2004), pp. 703–715.

[28] C.-H. Wang and J.-G. Horng. “Constrained minimum-time path planning

for robot manipulators via virtual knots of the cubic B-spline functions”.

In: IEEE Transactions on Automatic Control 35.5 (1990), pp. 573–577. doi:

10.1109/9.53526.

[29] Jiangyu Lan et al. “A Multi-Objective Trajectory Planning Method for Col-

laborative Robot”. In: Electronics 9.5 (2020). issn: 2079-9292. doi: 10.3390/

electronics9050859. url: https://www.mdpi.com/2079-9292/9/5/859.

[30] Yu Zhao, Hsien-Chung Lin, and Masayoshi Tomizuka. “Efficient Trajectory

Optimization for Robot Motion Planning”. In: (2018), pp. 260–265. doi:

10.1109/ICARCV.2018.8581059.

[31] Lu-Ping Luo et al. “Trajectory planning for energy minimization of indus-

try robotic manipulators using the Lagrange interpolation method”. In: In-

ternational Journal of Precision Engineering and Manufacturing 16.5 (2015),

911–917. doi: 10.1007/s12541-015-0119-9.

[32] Andrea Maria Zanchettin and Paolo Rocco. “Path-consistent safety in

mixed human-robot collaborative manufacturing environments”. In: 2013

https://doi.org/10.1109/21.61211
https://doi.org/10.1109/21.61211
https://doi.org/10.1109/9.53526
https://doi.org/10.3390/electronics9050859
https://doi.org/10.3390/electronics9050859
https://www.mdpi.com/2079-9292/9/5/859
https://doi.org/10.1109/ICARCV.2018.8581059
https://doi.org/10.1007/s12541-015-0119-9

BIBLIOGRAPHY 87

IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013,

pp. 1131–1136. doi: 10.1109/IROS.2013.6696492.

[33] Matteo Ragaglia, Andrea Maria Zanchettin, and Paolo Rocco. “Safety-

aware trajectory scaling for Human-Robot Collaboration with prediction

of human occupancy”. In: 2015 International Conference on Advanced

Robotics (ICAR). 2015, pp. 85–90. doi: 10.1109/ICAR.2015.7251438.

[34] Bakir Lacevic, Andrea Maria Zanchettin, and Paolo Rocco. “Towards the

Exact Solution for Speed and Separation Monitoring for Improved Human-

Robot Collaboration”. In: 2020 29th IEEE International Conference on Robot

and Human Interactive Communication (RO-MAN). 2020, pp. 1190–1195.

doi: 10.1109/RO-MAN47096.2020.9223342.

[35] Niccolò Lucci et al. “Combining Speed and Separation Monitoring With

Power and Force Limiting for Safe Collaborative Robotics Applications”.

In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 6121–6128. doi:

10.1109/LRA.2020.3010211.

[36] Simulate robot applications with RoboDK. url: https://robodk.com/.

[37] About robodk. url: https://robodk.com/about.

[38] Broyden–Fletcher–Goldfarb–Shanno algorithm. 2021. url: https : / / en .

wikipedia.org/wiki/Broyden-Fletcher-Goldfar-Shanno_algorithm.

[39] Larry Armijo. “Minimization of functions having Lipschitz continuous first

partial derivatives.” In: Pacific Journal of Mathematics 16.1 (1966), pp. 1 –3.

doi: pjm/1102995080. url: https://doi.org/.

[40] Richard Scheunemann Denavit Jacques; Hartenberg. “"A kinematic nota-

tion for lower-pair mechanisms based on matrices"”. In: Trans ASME J.

Appl. Mech. 23 (1955), pp. 215–221.

[41] Dan Sunday’s Geometry Algorithms. Minimum distance between two line

segments) in 3D. url: https : / / www . it - swarm . it / it / algorithm /

calcolo-della-distanza-piu-breve-tra-due-linee-segmenti-di-

linea-3d/957789635/.

https://doi.org/10.1109/IROS.2013.6696492
https://doi.org/10.1109/ICAR.2015.7251438
https://doi.org/10.1109/RO-MAN47096.2020.9223342
https://doi.org/10.1109/LRA.2020.3010211
https://robodk.com/
https://robodk.com/about
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfar-Shanno_algorithm
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfar-Shanno_algorithm
https://doi.org/pjm/1102995080
https://doi.org/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-linee-segmenti-di-linea-3d/957789635/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-linee-segmenti-di-linea-3d/957789635/
https://www.it-swarm.it/it/algorithm/calcolo-della-distanza-piu-breve-tra-due-linee-segmenti-di-linea-3d/957789635/

88 BIBLIOGRAPHY

[42] AlainChabrier. Warm start optimization. 2021. url: https://medium.com/

@AlainChabrier/warm-start-optimization-ac73eef189e9.

[43] Lorenzo Damiani et al. “Augmented and virtual reality applications in

industrial systems: A qualitative review towards the industry 4.0 era”. In:

IFAC-PapersOnLine 51.11 (2018). 16th IFAC Symposium on Information

Control Problems in Manufacturing INCOM 2018, pp. 624–630. issn:

2405-8963. doi: https://doi.org/10.1016/j.ifacol.2018.08.388.

url: https : / / www . sciencedirect . com / science / article / pii /

S2405896318315131.

[44] Unity (Motore Grafico). 2021. url: https://unity.com/.

[45] Controllers and Hand Tracking - Oculus Quest2. 2021. url: https : / /

support.oculus.com/290147772643252.

[46] Kinect. 2021. url: https://developer.microsoft.com/it-it/windows/

kinect/.

https://medium.com/@AlainChabrier/warm-start-optimization-ac73eef189e9
https://medium.com/@AlainChabrier/warm-start-optimization-ac73eef189e9
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.388
https://www.sciencedirect.com/science/article/pii/S2405896318315131
https://www.sciencedirect.com/science/article/pii/S2405896318315131
https://unity.com/
https://support.oculus.com/290147772643252
https://support.oculus.com/290147772643252
https://developer.microsoft.com/it-it/windows/kinect/
https://developer.microsoft.com/it-it/windows/kinect/

	Introduction
	Thesis purpose
	Optimization Algorithm
	Cost function
	Velocity management

	Data acquisition: Virtual Reality and Kinect sensor
	Experimental analysis
	Human model in the optimization algorithm
	Experiment with cobot and operator
	Cycle time
	Transient collision
	Velocity variance

	Conclusions
	Abstract
	Introduction
	Collaborative robotics
	Thesis purpose
	Thesis achievements
	Thesis structure

	Background knowledge: Programming, Simulation and ISO-TS 15066
	Current methods for programming cobots in industry
	Servo-Assist Training
	Teach pendant
	Programming by coding

	Simulation & Virtual Commissioning
	Human and Robot Simulator

	Safety requirements

	State of the art
	State of the art of obstacle avoidance
	State of the art of Trajectory optimization
	State of the art Safety algorithm

	Optimization Algorithm
	Robot simulation environment
	The Optimization Algorithm
	Structure
	Computing derivative
	Cost function
	Velocity management
	Complete overview

	Human model in the optimization algorithm
	Industrial Process: task presentation
	Static human volumetric sweep
	Dynamic human model
	Time-window human model
	Warm starting the complete trajectory optimization

	Data acquisition: Virtual Reality and Kinect sensor
	Virtual Reality
	Environment setup and data acquisition

	Experimental Results
	Initialization
	Optimization result
	Static human volumetric sweep
	Dynamic human model
	Time-window human model

	Experiment with cobot and operator
	Cycle time
	Transient collision
	Velocity variance

	Conclusions
	Possible Improvements

	Bibliography

