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Abstract

Spaceborne Synthetic Aperture Radar (SAR) in the last two decades have become a refer-
ence technology in the fields of Earth imaging and monitoring. To overcome the intrinsic
limitations of monolithic SAR missions, in the last years efforts have been made worldwide
in the design of multi-static SAR missions, to achieve better results and add strong flexi-
bility in the design. In this context, the work proposed focuses on the design of a control
logic with a Model Predictive Control (MPC) based approach for a typical single-pass
SAR interferometry mission, defined in its essential features. The overall control strat-
egy is based on maintaining the Height of Ambiguity (HoA), one of the most important
parameters for DEM generation, inside a small range. In particular two case studies are
considered with different HoA ranges, adaptable to a large basin of landscapes and regions
on the Earth’s surface. Following the objective of implementing a computationally light
controller to reduce the consumption of on-board resources, the MPC approach employs
a linearised relative dynamics model including J2 and differential drag perturbations to
compute δv-optimal control actions. To fasten the controller performances, the origi-
nal non-linear optimal control problem is convexified through an iterative technique and
transformed into sequential second-order cone programming (SOCP) sub-problems, easily
solved by state of the art interior-point algorithms. The results have been validated with
a high-fidelity propagator including atmospheric drag and gravitational perturbations up
to the fourth order. The main purpose of the validation campaign is to verify whether
the impulsive solutions found by the algorithms, basing on a simplified model, can hold
true also in a more detailed environment of simulation keeping the HoA (at least) in a
close neighborhood of the desired behaviour. The campaign shows that, for both the case
studies, the results can be in general considered valid over several orbits.

Keywords: SAR, convexification, model predictive control, height of ambiguity





Abstract in lingua italiana

Le applicazioni spaziali dei Radar ad Apertura Sintetica (SAR) nelle ultime due decadi
sono diventate una tecnologia di riferimento per il monitoraggio e la mappatura ter-
restri. Per superare i limiti intrinseci di missioni monolitiche con SAR, negli ultimi si
è sviluppata la tendenza al progetto di missioni SAR multi-statiche, che permettono di
raggiungere migliori risultati e maggiore flessibilità nel design, In questo contesto, il lavoro
qui proposto si focalizza sul progetto di un controllore con Controllo Predittivo basato su
Modello (MPC) per una tipica missione SAR a singolo passaggio, definita nei sui tratti
essenziali. La strategia di controllo sviluppata si basa sul mantenimento dell’Altezza di
Ambiguità (HoA), uno dei parametri fondamentali nella generazione di Modelli Digitali
di Elevazione (DEM), in un intervallo ristretto. Nello specifico, due casi studio sono stati
considerati con diversi intervalli di HoA, adattabili a numerosi paesaggi sulla superifie
terrestre. Per ridurre il consumo delle risorse di bordo, l’approccio MPC implementa un
modello di dinamica relativa linearizzato, che comprende effetto J2 e resistenza atmosfer-
ica differenziale, per ottimizzare le manovre. Per velocizzare le prestazioni del controllore,
il problema originale non lineare da ottimizzare è stato convessificato tramite un metodo
iterativo e trasformato in successivi sotto-problemi conici del secondo ordine (SOCP),
agilmente risolti dagli algoritmi di interior-point odierni. I risultati ottenuti sono stati
validati per mezzo di un propagatore ad alta fedeltà, che include resistenza atmosferica
e perturbazioni del potenziale gravitazionale fino al quarto ordine. Lo scopo principale
della validazione è stato quello di verificare che le manovre programmate dagli algoritmi,
basati su un modello semplificato, potessero valere anche in un ambiente di simulazione
più raffinato, mantenendo la HoA in un introrno stretto dell’andamento desiderato. La
campagna ha dimostrato che per entrambi i casi studi, i risultati ottenuti possono essere
considerati validi entro per svariate orbite.

Parole chiave: SAR, convessificazione, controllo predittivo modello, altezza di ambiguità
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1| Introduction

Spaceborne Synthetic Aperture Radar (SAR) in the last two decades have become a ref-
erence technology in the fields of Earth imaging and monitoring. What makes this in-
strument so appealing is the independence of its resolution on the flight altitude: a char-
acteristic that introduces a lot of potential and flexibility into Synthetic Aperture Radar
imaging. In addition to this, other remarkable advantages of this sensor are the day and
night, weather-independent imaging capabilities, the very small resolutions are achiev-
able and the large basin of possible applications (mapping and monitoring from space,
topography, oceanography, moving target indication and more on [2]). In particular, with
interferometry it’s possible to differently combine two SAR images of the same region
to retrieve various information, depending on the conditions in which the two pictures
were taken. Among the most interesting applications there is the possibility of generating
Digital Elevation Models (DEM), three dimensional computer graphics representations of
a region’s topology, starting from interferograms, to monitor the evolution of the Earth’s
surface.

1.1. SAR Missions

A key parameter for DEM generation is the Height of Ambiguity (HoA), a measure of the
accuracy of the interferograms: the smaller the HoA, the lower is the influence of errors
in the images caused by the instrument or the decorrelation effects. On the other hand,
strong variations in the topography of a region, like sudden jumps, can only be resolved
correctly if the height of ambiguity is larger than the jump height. Looking at Figure 1.1
it’s possible to see how this parameter influences the accuracy of the interferograms and
the related DEM.
Along with the HoA, another important factor that determines the quality of the interfer-
ograms is the time interval between the two SAR pictures acquisition, that should be kept
as low as possible to enable a proper correlation of the images. Monolithic SAR mission
in this sense are intrinsically limited, because of days-to-weeks revisit time constraints,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.1: Comparison between interferograms (upper row) and associated DEM (bottom
row) generated with different heights of ambiguity. From left to right, the images refer
to heights of ambiguity of 540 m, 218 m and 97 m. Images (d) and (h) show optical and
radar pictures of the same region for comparison.
Credits: Andreas Braun, Open Geosciences [3].

and employ a repeat-pass strategy to acquire the different pictures with multiple passages
over the same area. To overcome this condition, in the last years many efforts have been
made worldwide in the design of multi-static single-passage SAR missions [4, 25, 26], rely-
ing on multiple platforms flying at short distances to reduce (or even cancel) the interval
between acquisitions, drastically increase the quality of the results and enhance flexibility
in the missions design, along with all the advantages of a distributed satellite system.
It’s important to point out that the usual common factor for all these multi-static mis-
sions designs is the implementation of ground-in-the-loop formation control. However,
considering the strong advantages of the research in the field of autonomous guidance,
navigation and control of formation flying spacecrafts that has been made, it’s of natural
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interest to wander which could be the possibilities of implementation for this technology
in a distributed SAR system. In this sense, the most important step that has been made is
the TanDEM-X Autonomous Formation Flying (TAFF) Experiment [1], a demonstrative
experience integrated inside an operative mission to verify the capabilities of autonomous
formation flying SAR systems and assess the advantages in terms of scientific return. The
experiment succeeded, demonstrating that the on-board system could correctly control
the formation during its scientific operations and that significant improvements can be ob-
tained in the control optimisation without the limitations of ground-visibility constraints
for the manoeuvres planning and execution.

1.2. Thesis Objectives and Outline

The work proposed in this paper focuses on the design of an autonomous control strategy
to implement on-board a multi-static SAR mission. The strict scientific requirements
imposed to the mission require to maintain the height of ambiguity inside a defined range
of ±2 m around an objective value to enable data collection. Two different case studies
have been considered, taking as reference two different values for the HoA, 50 m and 150
m, realistically adaptable to various situations and landscapes on Earth.
In Chapter 2, a more detailed dissertation on SAR and its functioning is carried on,
particularly focusing on its applications through interferometry and the definition of the
main formation’s parameter and how they influence the scientific activities. Along with
this, it is introduced the state-of-the-art relative dynamics model embedded in the control
logic definition. Chapter 3 starts by introducing the operative scenario selected, setup
inside the frame of a typical present-day mission and tacking inspiration from recent
missions for the definition of the payload to employ and the absolute orbits. Then,
the control strategy proposed is analysed in deep and the control problem formulation
is introduced. In Chapter 4 this is reprised and detailed through the description of
the algorithms implemented both for the maintenance and the reconfiguration of the
formation in the two case studies considered. Chapter 5 presents the results of an extensive
simulation campaign, aimed at verifying the behaviour and the results of the algorithms
under different conditions. To conclude, Chapter 6 presents the outcomes of the validation
process for the results introduced in the previous chapter.
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2.1. Synthetic Aperture Radar Fundamentals

Synthetic Aperture Radar (SAR) is a multi-purpose class of active remote sensing in-
struments widely employed nowadays. As its name suggests, this class of radars mimics
a very large, fictitious, aperture to overcome the intrinsic limitations of real aperture
radars (RAR) and obtain high resolution images with a compact hardware. To achieve
the synthetic aperture effect, the radar needs to be located on a moving platform: as its
travels through space sending pulses, it can illuminate a target region on the surface of
the Earth from different positions. Then, properly combining each of the images captured
it’s possible to recreate the effect of a larger aperture antenna. A typical spaceborne SAR
acquisition geometry is represented in Figure 2.1.
SAR images are obtained illuminating a certain region of interest with an electromagnetic

pulse. As the wave impacts the ground, it scatters and spreads in every direction, thus
a small fraction of the transmitted signal echoes and returns back to the antenna. The
information embedded in these backscatters (both amplitude and phase of the waves) are
then recorded and post-processed to reconstruct the images. SAR bi-dimensional pictures
are acquired inside a plane given by the flight and the slant range (or look) directions,
called the reference plane or the slant-azimuth plane. This plane is divided in cells, called
resolution cells, and each pixel in the image corresponds to a resolution cell on the refer-
ence plane (Figure 2.2). The dimensions of a cell define the azimuth (δa) and slant range
(δr) resolutions, computed as

δa =
λ

Lsa

R =
La

2
(1.a)

δr =
cτ

2
(1.b)

where λ is the transmitted signal wavelength, Lsa is the synthetic aperture equivalent
antenna length, La is the antenna dimension parallel to the flight direction, c is the speed
of light and τ is the signal transmission duration.
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Figure 2.1: classic SAR acquisition geometry and its relevant parameters.
The purple rectangle represents the antenna mounted on the platform, with dimensions
WaxLa. The antenna is side-looking, inclined with an angle θL with respect to the nadir,
and transmits pulses that describe a cone in space whose axis coincides with the slant
range direction. The pink ellipsoid is the footprint of the beam on the ground.
Sectioning vertically the signal cone, the near and far range are defined (respectively) as
the distances to the footprint’s closest and the furthest points from the antenna.
The difference of their projections on the ground range direction is the swath length Sg.
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Figure 2.2: resolution cells and reference plane of SAR images.
Each cell has dimensions δa x δr and describes a slice in space with fixed range-azimuth
coordinates. The echoes coming from the portion of the ground with those range-azimuth
coordinates, will be imprinted in the pixel related to that cell.

Interferometry is one of the more prolific applications of spaceborne SAR. It’s a technique
employed to extract various information from different images of the same region. Each
pixel of an image is associated to a complex value, representing the backscattered infor-
mation (phase and amplitude) from the corresponding resolution cell on ground. The
amplitude of the echo depends on various and usually poorly manipulable factors, but the
phase instead consists mainly of three terms [20]:

• the two-way travel path from the sensor to the target

• the interaction between the incident signal and the scattering surface

• a phase shift introduced by the processing system

The first contribute, embedding the information on the traveled length, is the most inter-
esting for interferometry. In particular, it’s possible to demonstrate [18] that by taking
two pictures of the same region "under the same conditions" but from slightly different
positions, the difference in the paths traveled by the echoes create a phase difference in
the pictures, and properly combining this phase information it’s possible to reconstruct
the elevation hP on ground of the observed point:
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(a)

Figure 2.3: Geometry of SAR interferometry. S1 represents the deputy, acting both as
transmitter and receiver, while S2 is the deputy.

hP = −λRsinθL
4πB⊥

∂Φ (2.1)

where R is the slant-range distance and B⊥ the component of the spacecrafts baseline
perpendicular to the slant direction, denoted as perpendicular baseline (Figure 2.3). The
term ∂Φ identifies the contribute to the phase shift introduced by a point with altitude
different from zero. Indeed, the total phases difference ∆Φ between the pictures can be
considered as the results of two contributes: a ∆Φref , the shift introduced by points on
a reference flat-Earth plane, and the correction ∂Φ introduced by differences of elevation
with respect to the reference. The constant term of the reference surface is

∆Φref =
4π

λ
Bsin(θL − α) (2.2)

and the phases difference

∆Φ = ∆Φref + ∂Φ. (2.3)

By taking the complex conjugate of one of the two images and summing them, it’s possible
to obtain a map of the relative phase (or interferometric phase) between the two picutres:
the interferogram. Since phases are always ambiguous with respect to integer multiples
of 2π, and generally ∆R ≫ λ, in interferograms the phases difference undergoes multiple
cycles in the [0, 2π] interval called "fringes", and represented with a range of colours. By
looking at Equation 2.1 it’s possible to note that a 2π phase difference corresponds to a

h2π =
λR1sinθL

2B⊥
(2.4)
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height variation, where h2π it’s the height of ambiguity. This is a key parameter in SAR
interferometry, that represents the sensitivity of the generated interferogram to altitude
variations in the terrain and strongly influences the quality of the images necessary for the
DEM generation. In interferometric SAR missions, depending on the region of interest it
might be necessary to change the formation parameters and adapt the value of the height
ambiguity.
Furthermore, as outlined above, two images can be interfered only if they’re captured "in
the same conditions". In principle, the two images can be taken at different instants,
depending on the orbit geometry even after months. But not every pair of pictures can be
interfered: it’s required a certain level of correlation between the two, the risk otherwise is
to obtain somehow corrupted results, even with pictures of the very same area. This is the
concept of coherence. Coherence (γ) is a measurement of the correlation level between
radar pictures. It ranges from 0 (un-correlated pictures) to 1 (complete correlation).
There are numerous sources of decorrelation, and for each of them the coherence factor
can be computed. The product of all these factors represent the total coherence of the
images.
Generally speaking, values of coherence above 0.35− 0.4 are considered quite reliable [6].
There are two principal sources of decorrelation

• temporal decorrelation: by taking the second picture long after the first atmo-
spheric agents, seasons, weather, geological effects and even mankind might deter-
mine sufficiently large changes in the reflective surface of the ground such that the
interaction with the signal coming from the radar is altered, determining a loss
of coherence. Beyond a certain limit pictures become un-correlated, and can’t be
interfered anymore.

• spatial decorrelation: the backscattering from the ground elements can be mod-
eled as a particular case of reflective antenna. Thus, depending on the directions
they’re looked from, a different fraction of the original signal can be observed. The
higher is the distance between the imaging spots, the higher is the effect of "random"
variations between the pictures.

The second source in particular can be separated in two distinct cases: baseline decor-
relation and rotational decorrelation [12]. The first verifies for too large values of the
perpendicular baseline. From mathematical definitions, it’s possible to estimate both the
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coherence and the critical value of B⊥, beyond which the images become un-correlated:

γbase = 1− 2B⊥

λRtanθL
δr

Bcrit
⊥ =

λRtanθL
2δr

(2.5)

(2.6)

The same considerations hold for the case of rotational decorrelation, arising when the
along-track distance δrt parallel to the flight direction between the antennas becomes too
large

γrot = 1−2δasinθL
λ

· δrt
R

δrcritt =
λR

2δasinθL

(2.7)

(2.8)

However, to avoid inferring too much on the gathered data reliability for the work under
presentation it has been decided to set as maximum limits for the perpendicular baseline
and the along-track distance the 10% of their critical values.

2.2. Dynamical Models

In the context of single-pass SAR interferometry missions, given the strict correlation
between the mission objectives (perpendicular baseline) and the relative position of the
platforms, a relative dynamics model can be easily implemented in the GNC subsystem
design. In this sense, in the field of Formation Flying in the late years several models have
been developed to describe the evolution of formations subject to various environmental
perturbations. This wide literature can be organised basing on various and different
topics: linearised or non-linear models, with a state representation based on Cartesian
coordinates, orbital elements or other parameters, models that apply for eccentric or
near-circular orbits, and more again. For the scope of this work, the research of a feasible
relative dynamics model to implement in the definition of a computationally fast opti-
mal control logic focuses first of all on the class of linearised models. Furthermore, since
generally SAR antennas gather a huge amounts of data during imaging, it is decided to
enlighten the computational effort required to the on-board resources by considering the
sub-class of linearised models. Considering the typical operational environment of a SAR
mission (near-circular low-Earth orbits), it was possible to further focus the research on
models based on a reference orbits with small eccentricity, capable of accounting at least
for atmospheric drag and J2, the two most important sources of perturbation in LEO.
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Within this frame, the choice fell on the model developed by D’Amico [7], for multiple
reasons. First of all its simplicity: it’s a linear relative motion model that adopts the quasi
non-singular relative orbital elements (ROE) state vector representation, with the mean
argument of latitude as temporal variable. The ROE state vector comprises the relative
semi-major axis, the relative mean longitude and the relative eccentricity/inclination vec-
tors, well-known practical entities that provide a concrete insight on the relative orbit’s
geometry and introduce the concept of passive-safety formation design. Also, this model
includes first-order secular effects of J2 and differential drag for the spacecrafts. The sec-
ond reason of this choice, it’s the heritage. This model has been extensively employed in
the literature [11, 23, 24] for the development of new formation design and control con-
cepts, especially after the flight validation attained flying on-board missions like PRISMA
[8, 22], GRACE [13, 16] and TanDEM-X [1, 15], that made it an undisputed reference in
this field.
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3| Problem Modeling

This chapter introduces the work done starting from the setup of the problem and the
first parameters definition, for both the radar and the orbits of the satellites. Among
the most important topics included it’s possible to find the modeling assumptions for the
radar, the dynamics models employed to describe the spacecraft’s motion and the control
strategy selected for the mission.

3.1. Payload Design

The purpose of this work is to demonstrate how the proposed control strategy can be
included in the context of modern-day or short-future SAR missions to obtain interfer-
ograms with tight height of ambiguity requirements. Therefore, for the payload design
it can be useful to consider the state of the art and have a look at how in recent SAR
missions the key parameters of the system have been selected. Table 3.1 reports these
values for four recent missions: TanDEM-X, NovaSAR, ICEYE and ALOS-2 [9, 17, 29].

Mission TanDEM-X NovaSAR ICEYE ALOS-2

Antenna Length 4.78 m 3 m 3.2 m 9.9 m
Antenna Height 0.7 m 1 m 0.4 m 2.9 m

Carrier Frequency 9.65 GHz 3.2 GHz 9.65 GHz 1.2 GHz
Signal Bandwidth 100 MHz 100 MHz 30-300 MHz 60 MHz

Slant Range Resolution 6-12 m 6 m 3 m 3-10 m
Incidence Angle 20-45◦ 16-34◦ 15-35◦ 8-70◦

Table 3.1: Recent important SAR missions and relative antenna parameters.

The definition of the radar parameters for this work is freely conducted taking this table
as a reference, along with some general design considerations to keep into account when
dealing with SAR systems [5, 19, 28].
Being located on a moving platform, a Doppler shift is introduced in the echoes from the
target region to the antenna. To avoid aliasing the antenna Pulse Repetition Frequency
(PRF , the reciprocal of the transmission interval between consecutive pulses, Figure 3.1)
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Figure 3.1: Transmission mechanism and its relevant parameters. The pulse duration is
the reciprocal of the signal bandwidth. The reception interval must be sufficiently long
to permit even the reception of the echoes coming from the furthest points, that is the
far range RF

shall be higher than
2

v
La

=
v
δa

≤ PRF

where v is the platform velocity. This means that the transmissions shall occur at least
once every La/2 meters travelled. Hence, the lower the antenna length, the higher the
minimum PRF required. However, the time interval between consecutive pulses trans-
mission cannot be arbitrarily short, otherwise the backscatters of different pulses from
near and far range would overlap. In particular, making the hypothesis of flat-Earth and
flat-terrain to consider equivalent the look and the incidence angles:

PRF ≤ c

2(RF −RN)
≈ c

2SgsinθL

where Sg is the swath width and RN , RF the near and far ranges. To sum up:

v

δa
≤ PRF ≤ c

2SgsinθL

Thus, it’s evident that by selecting a too small resolution in the azimuth direction the
coverage capabilities of the radar get strongly reduced. It’s important to follow the de-
sign keeping in mind that conflicts may arise between different requirements, and (often)
trade-offs might be necessary.
The parameters adopted for this work are reported in Table 3.2.
Following the same approach, the absolute orbit of the chief spacecraft has been designed
keeping into account the reference values of the missions listed above. It is a near-circular
sun-synchronous orbit, with the sun-direction perpendicular to the line of nodes. Since
SAR instruments have strong power requirements, they are usually operated in sunlit con-
ditions. The last requirement permits therefore to maximise the scientific activity of the
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Parameter Value

Antenna Length 4 m
Antenna Height 1 m

Carrier Frequency 3 GHz
Signal Bandwidth 70 MHz

PRF 3800 Hz
Look Angle 25-40◦

Azimuth Resolution 2 m
Slant Range Resolution 6 m

Swath Width 60-90 km
Look-side Left

Table 3.2: SAR parameters selected for the mission.

spacecrafts during the orbits, avoiding zones of shadow. The selected orbital parameters
can be found in Table 3.3.

Orbital Element Value

Semi-Major Axis 6891 km
Eccentricity 0.0015
Inclination 97.46◦

Arg. of Perigee 0◦

β angle 82.54◦

Table 3.3: Selected orbital elements for the chief spacecraft.

3.2. Spacecraft’s Dynamics

Being a remote sensing instrument, SAR missions usually are operated in the context of
highly inclined Low Earth Orbits (LEOs), because of the short periods and the mapping
capabilities. It is well known that in this environment the major orbital perturbations
are due to aerodynamic drag and the J2 effect: it is therefore of primary importance to
study and model adequately these effects.
The spacecraft’s motion has been simulated by means of two different models: an absolute
dynamics model, necessary to determine the altitude variations (primarily caused by drag)
and the consequent changes in the atmosphere’s density, and a relative dynamics model,
to describe the formation’s behaviour.
The absolute dynamics model employed is a high-fidelity propagator that numerically
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integrates the equation of motion:

r̈ = − µ

r3
r + apert (3.1)

expressed in the ECI reference frame, where µ is the gravitational parameter of the central
body, r represents the spacecraft’s position vector, r̈ the acceleration vector and apert is
a general perturbing acceleration. The propagator is embedded into Simulink’s Orbit
Propagator block from the Aerospace Blockset library, and can be extended to include J2

perturbation. Air drag instead was modeled autonomously and then fed to the propagator
as perturbation:

adrag = −1

2
βρv2rel

vrel

||vrel||
(3.2)

in which vrel is the relative velocity of the spacecraft with respect to the rotating atmo-
sphere and ρ is the atmosphere’s density. The ballistic coefficient

β =
cDAcross

ms/c

(3.3)

is derived by Across, the cross-sectional area of the spacecraft perpendicular to vrel, the
drag coefficient cD and the spacecraft’s mass ms/c. The atmosphere’s density is approxi-
mated with an exponential model of the type:

ρ(h) = ρ0exp
[
−h− h0

hscale

]

where h is the orbit altitude, ρ0 the reference density and h0 and hscale the base altitude
and the scale height of the model [27].
The relative dynamics model instead is employed to describe the relative motion of one
of the spacecrafts, denoted as deputy (subscript "d"), with respect to the other, labeled
as chief (subscript "c"). This model is set inside the Hill’s reference frame (or Local-
Vertical-Local-Horizontal frame), centered on the chief and defined by the vectors triad
(or, ot, on) such that:

• or is aligned with the radius rc of the chief and defines the radial direction, positive
away from the Earth

• on points along the chief’s orbit angular momentum, and defines the normal, or
out-of-plane direction

• ot completes the right-handed coordinate system defining the tangential or along-
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track direction.

In this frame the relative state of the spacecraft can be represented either by Cartesian
coordinates

δxcar =



δrr

δrt

δrn

δvr

δvt

δvn


=



∆r · or

∆r · ot

∆r · on

∆v · or +∆r · ȯr

∆v · ot +∆r · ȯt

∆v · on +∆r · ȯn


(3.4)

where ∆r = rd−rc and ∆v = vd−vc and the dotted quantities represent time derivatives,
or by relative orbital elements (ROE) through a non-linear combination of the quasi non-
singular orbital elements of the spacecrafts

δxroe =



δa

δλ

δex

δey

δix

δiy


=



(ad − ac)/ac

ud − uc + (Ωd − Ωc)cosic
ex,d − ex,c

ey,d − ey,c

id − ic

(Ωd − Ωc)sinic.


(3.5)

where δa is the relative semi-major axis, δλ is the mean longitude, δe and δi the relative
eccentricity and inclination vectors and [a, u, ex, ey i, Ω] are the quasi non-singular
orbital elements. In the definition of δa, the chief’s semi-major axis is employed to a-
dimensionalise the quantity, coherently with the rest of the relative state vector.
Under the hypothesis of small eccentricities and small relative distance (compared to the
absolute orbit’s radius), the relative motion model developed by D’Amico [7] expresses
the evolution of the ROE under the effect of J2 and differential drag as function of the
initial condition and the mean argument of latitude u, taken as temporal variable:

δx(u) =



δa0

δλ0 −
21

2
(γsin(2ic)δix,0 +

1

7
δa0)(u− u0)

δe0cos(ϕ0 + ϕ′(u− u0))

δe0 sin(ϕ0 + ϕ′(u− u0))

δix,0

δiy,0 + 3γsin(ic)2δix,0(u− u0)


+



−∆β

n2
ρv2(u− u0)

3∆β

4n2
ρv2(u− u0)

2

0

0

0

0


(3.6)
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where

γ =
J2
2

(
RE

a

)2
1

√
1− ec

4

ϕ′ =
dϕ

du
=

3

2
γ(5cos(ic)2 − 1)

∆β = βd − βc.

In Equation 3.6 the polar notation has been introduced. That’s an alternative way of
representing the relative eccentricity and inclination vectors:

δe =

(
δex

δey

)
= δe

(
cosϕ
sinϕ

)
, δi =

(
δix

δiy

)
= δi

(
cosθ
sinθ

)
, (3.7)

where ϕ and θ are the relative perigee and the relative ascending node. The last contribute
to include in the model is the one given by control actions. An impulsive manoeuvre ∆(δv)

executed at the mean longitude uM causes the following instantaneous variations ∆(δx)

in the ROE state vector:

∆(δa)

∆(δλ)

∆(δex)

∆(δey)

∆(δix)

∆(δiy)


≈



2∆(δvt)/na

−2∆(δvr)/na− 3∆(δvt)(u− uM)/na

∆(δvr)sinuM/na+ 2∆(δvt)cosuM/na

−∆(δvr)cosuM/na+ 2∆(δvt)sinuM/na

∆(δvn)cosuM/na

∆(δvn)sinuM/na


(3.8)

where u identifies the epoch of the relative orbital elements, and the term na is introduced
to make the equations a-dimensional. Considering all the contributes presented above,
the ROE can be then transformed into relative positions through the linear mapping:

δrr/ac = δa− δecos(u− ϕ)

δrt/ac = δλ− 3

2
δa(u− u0) + 2δesin(u− ϕ)

δrn/ac = δisin(u− θ).

(3.9)

Once the relative positions δr have been determined, it’s possible to model the perpen-
dicular baseline between the spacecrafts. Recalling that it is defined as the magnitude of
the baseline component normal to the range direction (Figure 3.2), it can be computed in
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the plane defined by (or, on) subtracting from δr its projection onto the range direction:

B⊥ =

∥∥∥∥∥
(
δrn

δrr

)
−

[(
δrn

δrr

)
·

(
cosθL
-sinθL

)](
cosθL
-sinθL

)∥∥∥∥∥ . (3.10)

Figure 3.2: Perpendicular baseline. The plane orthogonal to the flight direction is the
plane defined by or and on, while the range direction is determined by the look angle θL.

3.3. Control Approach

The control plan developed in this work aims at achieving the scientific objectives while
preserving the formation safety. To understand the motivations behind the formulated
control logic it’s important to recall the steps followed in its definition and the decisions
taken, along with the rationale behind them.

3.3.1. Strategy Definition

To formalise the problem of control, it’s first necessary to understand what are the essential
features of the height of ambiguity (whose expression is recalled below for convenience)
and how does these change during its evolution.

h2π =
λR1sinθL

2B⊥
.

Looking at Figure 3.3 it’s possible to observe the characteristic behaviour of the height
of ambiguity over time, simulated from an arbitrary initial condition considering both J2

and drag.
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(a) (b)

(c)

Figure 3.3: Height of ambiguity (a) under the influence of perturbations. In (b) a zoom
of image (a), while in (c) is reported the corresponding evolution of the perpendicu-
lar baseline between the spacecrafts. The initial condition for this example is aδx =
[0, 0, 140, 0, 120, 0] m. The radar parameters are λ = 5 cm, θL = π/4 and H = 490 km.
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The plot shows a periodic pattern with two lobes (minima) per each orbit separated by
half an orbital period, diverging from each other because of perturbations. Specifically, by
simulating under different conditions and scenarios it was verified that the main responsi-
ble for this is the drift introduced by drag on the relative semi-major axis. By maintaining
a small bounded δa, the curve would show a stable behaviour with the lobes leveled at
the same height. Assuming this ROE to be close to zero, by sizing correctly the function
it would be possible to obtain two imaging windows per each orbit in which the height of
ambiguity would remain inside the ±2 m interval around its objective value. The size of
the windows cannot be arbitrarily controlled, but depends on the harmonic behaviour of
the relative positions δrr and δrn. Their location along the orbit instead is in principle
always the same. However as observed in the figure, because of drag the drifting relative
semi-major axis widens/shortens the windows size and shifts them downward/upward in
the diagram.
To adequately carry out the scientific activity, the control system must be designed to
counter-act the perturbations and maintain a stable height of ambiguity over time. In
this way it would be possible to keep two fixed imaging windows for each orbit centered
on two different great circles of latitude, symmetric with respect to the equator because
the chief’s orbit has zero argument of perigee. Exploiting the ground-track shift in every
orbit it would be possible to image completely these two great circles in a few days or
weeks, but in order to cover other latitudes it’s necessary to shift the imaging windows
from their location along the orbits. Through simulations it was verified that this can
be achieved by changing the relative phase between relative eccentricity and inclination
vectors. Therefore, alternated to the scientific activities, the control strategy is designed
to foresee some maneuvering windows necessary to reconfigure the formation and shift
the lobes on a different location on the orbit, correspondent to a different great circle of
latitude.
Because of the different topologies that can be found on the Earth’s surface, following the
approach employed in other missions like TanDEM-X it was decided to analyse two case
studies characterised by different objective values of the height ambiguity: 50 m and 150
m. These ranges can adapt to a lot of scenarios and landscapes on the Earth, from small
elevated areas like countries, hills and vegetated areas to the highly elevated mountain
regions and cities. Each case study will have its own windows size, and therefore a differ-
ent number of configurations.
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3.3.2. Control Problem Formulation

Once the strategy has been defined, the logic of the controller can be introduced. Since
the objective of the control is to maintain the parameter of merit (height of ambiguity)
inside a certain range (hobj

2π ±2 m) during its evolution, a natural choice to implement it
is to employ a Model Predictive Control (MPC) approach. Relying on a simplified model
of the system, it can easily foresee how the formation would evolve subject to control
actions and determine the best solution to actuate. However, even though the relative
dynamics model is linearised, the definition of the height of ambiguity would involve
dynamical constraints with strong non-linearities. As mentioned in the introduction,
this work pursues the objective of enabling autonomous control with simplified on-board
computations in order to lighten the overall work-load of the system, considering the large
amount of data that need to be stored for the scientific activities. In this scenario, having
to solve numerous non-linear optimisations would represent an important bottleneck for
the control flow of the formation. Because of this, it is explored the possibility of softening
the workload by exploiting convexification to transform a general non-linear optimisation
problem into a convex optimal control problem, faster and easier to handle. Specifically,
it is transformed into a second-order cone programming (SOCP) problem, a sub-class of
convex optimisation problems efficently solvable with interior-point methods. The general
SOCP problem is formulated as the minimisation of a linear cost function over a domain
described by the intersection of an affine set and a second-order cone [21], like:

min
y

cTy

s.t. ∥Ascy − bsc∥ ≤ dT
scy − γsc

Aeqy = beq

(3.11a)

(3.11b)

(3.11c)

where the quantities with the subscript sc describe the second-order cone and Aeq, beq
define the affine set.
Following the approach proposed by Lu and Liu [14], the dynamical constraints of the
MPC approach can be convexified with an iterative procedure, by solving at each iteration
two SOCP sub-problems. In the first step the i-th non-linear equality constraint hi(y) =
0 is linearised by expanding it at first order. The sub-problem to solve at each iteration
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starting from the previous solution y[k] is:

P1 : min
y

cTy

s.t. hi(y
[k]) +∇hT

i (y
[k])(y − y[k]) = 0 , i = 1, . . . , neq

∥y − y[k]∥ ≤ ρtrust

(3.12a)

(3.12b)

(3.12c)

where neq is the number of equality constraints and Equation 3.12c represents a trust-
region constraint for a region of radius ρtrust, formalised as a second-order cone, necessary
for the method to enforce convergence. Once an optimal solution yp is found for P1

(note that this solution is dependent only on y[k]), it is employed in the computation
of a corrective term of the second order (Equation 3.13) that guarantees superlinear
convergence to the method and enhances robustness. The key point of the method selected
is that this second-order correction doesn’t require the computation of the Hessian matrix,
and depends only on y[k]:

hcorr
i (y[k]) =

1

2
(yp − y[k])T (∇hi(y

p)−∇hi(y
[k])). (3.13)

Once computed, this correction term is introduced in the definition of the second sub-
problem

P2 : min
y

cTy

s.t. hi(y
[k]) +∇hT

i (y
[k])(y − y[k]) + hcorr

i (y[k]) = 0 , i = 1, . . . , neq

∥y − y[k]∥ ≤ ρtrust

whose solution becomes the new y[k+1]. The Matlab function used to solve the SOCP sub-
problems is coneprog, an algorithm that uses an interior-point method to solve the problem
and introduces the possibility to add lower and upper boundaries to the optimisation
variables. For each variable initial conditions, lower and upper boundaries have been
empirically defined by trial and error. The boundaries are on purpose selected large, to
leave to the algorithm the possibility of freely searching for an optimal result through the
solutions space. Then, after the third iteration, the trust-region-like constraint is applied
to help the algorithm focus in its research.
To control the iterative cycle, a stopping criteria has been defined, accounting for a
tolerance on the error and the number of iterations. The cycles stop when both:

• the value of hi(y
[k+1]) , for i = 1, . . . , neq, is lower than 8e-8 for the last two consec-

utive iterations
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• the number of iterations is greater than four, to ensure that the trust-region con-
straint has been introduced in the algorithm.

3.3.3. Formation Safety Requirements

For both the scenarios the same safety requirements are considered: the inter-satellite
distance between the spacecraft shall be limited to a determined range. It means that
both a lower and an upper boundary are imposed to their distance. The lower limit is
introduced to preserve safely the formation, and avoid getting the spacecraft too close to
each other considering possible errors or inaccuracies of the model. The upper boundary
instead is imposed to remain inside the hypothesis of the model and consider it valid.
Following the literature [10], the limits for the spacecrafts’ distance are fixed to 150 m
and 1000 m. In this sense, since by looking at the equations of motion the radial and
out-of-plane positions have a pure oscillatory behaviour, as long as their amplitudes are
limited the only contribute to keep controlled is the along-track position, that can drift
in time.
Considering again a small controlled δa, the terms that introduce drift are due to drag,
a non-zero δix and δvt. Trying to prevent this drift, in principle the x-component of the
relative eccentricity vector could be set to zero from the first configuration of each case
study, and kept unchanged by maneuvering at locations with u = π/2+kπ along the orbit.
However, during the first simulations it was observed that even following this strategy in
both the cases the along-track position had a negative drift, introduced by the positive δvt
term requested by the control system between each couple of manoeuvres. Furthermore
as already mentioned to shift the location of the lobes along the orbits it is necessary to
change the relative phase between δe and δi. Different simulations proved that the best
solution found by the control algorithm is to introduce a δix different from zero. Thus,
the choice of introducing a zero δix would be applicable only for the first configurations.
The strategy adopted to counteract the drift caused by non-zero δix, and maintain a
bounded δrt, is to apply an additional impulse in the along-track direction exploiting the
drift introduced by the δvt term to maintain a bounded δrt. The control strategy selected
implements a trigger logic for the additional impulse, and can be differentiated in two
phases:

• a coasting phase, in which the average of δrt is left free to drift until the oscillations
reach the lower trigger value

• a recovery phase in which after each main manoeuvre the additional impulse is
given to raise the average of δrt, until the upper trigger is reached.
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For each case study, the trigger values are set equal to plus or minus the minimum between
δrcritt and 800 m.
The extra manoeuvre applied during the recovery phase might have a negative impact
on the scientific activity, affecting the height of ambiguity lobes. To counteract this
eventuality, after each reconfiguration the lobes will be designed to maintain a certain
overlap margin with the lobes of the previous configuration, sufficiently small to keep the
number of total configurations as low as possible.
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The algorithms developed for the formation design and control are all based on the con-
vexification method illustrated in the previous chapter: each of them minimises a cost
function that involves the specific problem parameters of the case. To follow the model
predictive approach each optimisation has to be carried out subject to relative dynamics
constraints and boundaries for the optimisation variables.
There are four principal algorithms to describe:

• roe_initial : to compute optimal initial conditions.

• correct_h: to correct the height ambiguity deviation of the next lobe.

• shift_lat : to shift the next lobe along the orbit.

• da_to_di : to compensate the δa term introduced during reconfiguration with an
out-of-plane manoeuvre.

4.1. Algorithm 1: roe_initial

The first algorithm is run just once at the beginning of each simulation, to compute the
optimal initial condition of the case study under exam. It’s objective is to search for a set
of ROE δx0 such that propagated over half an orbit determines an imaging window with
maximised duration. Given this objective, it’s necessary to understand how to impose
the dynamic constraints to the problem, in order to search for the optimal solution.
Looking at the typical behaviour of the height ambiguity curve (Figure 4.1), it’s possible
to identify three points of interest:

• uin: the instant (or mean argument of latitude) at which the curve gets inside the
±2 m range around the objective value hobj

2π .

• uout: the instant at which the curve exits this range.

• umid: the instant in the middle of uin and uout, where the lobe reaches its minimum.
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Figure 4.1: The three points of interest uin, umid and uout in the height ambiguity curve.

The idea adopted is to shape the curve as desired by imposing the location of these
three points along the orbit, with umid close to the lower boundary: the objective of the
optimisation can be hence translated into maximising the distance between uin and uout.

Along with these temporal coordinates, the optimisation shall also define the vector
of initial ROE to be propagated. Following the considerations adopted in the previous
sections, the structure of the ROE vector to be optimised is:

δx =



0

−
δe

ϕ

δix

δiy


where the mean longitude (second entry) is not considered because it doesn’t take part in
the definition of the height ambiguity, and the polar notation for the relative eccentric-
ity vector is adopted just for convenience. Applying the well-known concept of relative
eccentricity-inclination separation e-i separation [16], the boundaries of the related four
ROE are set to design a passively safe formation with almost parallel δe and δi. This
requirement shall be enforced at least for the first configurations, expected to be main-
tained for longer because designed to map the great circle at lower latitudes. Furthermore,
following the considerations of the previous chapter related to the formation safety, it is
decided to select only initial conditions that maintain an inter-satellite distance larger
than 150 m at least for five orbits in case no control is applied.
The seven variables introduced above define the optimisation variables of the problem.
However, before proceeding it is necessary to make a consideration. Since the optimisation
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works to minimise linear a cost function of the type

min
y

cTy

to maximise the distance between uin and uout it’s not possible to employ directly the
latter in the equations, otherwise it would be minimised too. Instead, it’s possible to
introduce a new variable ũout, equal to the reciprocal of uout, to be minimised.
To sum up, the optimisation variables of the problem are:

y = [δe, ϕ, δix, δiy, uin, ũout] =
[
δxopt, δuopt

]
where δxopt and δuopt are vectors of optimisation variables. The optimisation has to be
carried out subject to the dynamical constraints of the relative motion model adopted.
As described in the previous section, for the problem of control the equations of motion
must be linearised and imposed as linear constraints in the optimisation. But rather then
imposing directly the constraints through the height ambiguity, it can be useful to work
with the perpendicular baseline instead, because it simplifies a lot the definitions of the
equations and the Jacobian in the convexification. To perform the optimisation, the set
up and solution of the problem has been done using the Symbolic Math Toolbox of Matlab.
Once the variables have been declared, the relative positions of the spacecrafts and the
perpendicular baseline can be written as function of δxopt and the generic temporal vari-
able u, recalling Equations 3.9 and 3.10:

δrr = δrr(δx
opt, u)

δrn = δrn(δx
opt, u)

B⊥ = B⊥(δx
opt, u)

(4.1)

The passage of the curve through the three points desired can then be enforced through
the non-linear equation:

h(y) =

 B⊥(δx
opt, uin) − Bmin

⊥ − sin

B⊥(δx
opt, umid)−Bmax

⊥ + smid

B⊥(δx
opt, 1/ũout)−Bmin

⊥ − sout

 = 0 (4.2)

where B
min/max
⊥ represents the minimum/maximum values of the perpendicular baseline,

associated to the maximum/minimum values of the height ambiguity in the range hobj
2π ±2

m, and sin, smid and sout are dummy variables introduced to reduce the strength of the
equivalence constraints. The sign of smid in the second equation is different in order to
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search for a solution with the peak smaller than Bmax
⊥ , to maintain the height ambigu-

ity above its lower limit. Therefore, the extended a-dimensional vector of optimisation
variables is:

y = [δe, ϕ, δix, δiy, uin, ũout, sin, smid, sout] .

After an initial condition, a lower boundary and an upper boundary have been set for
each variable, and the trust-region SOC constraint has been declared, the optimisation
can start searching for a solution as described in the previous section until either both
the stopping criteria (minimum number of iterations and norm of h(y)) are satisfied, or
the number of iterations surpasses 20. In the latter case, the simulation gets interrupted.
The presentation of this section is concluded with the logic reported in Algorithm 4.1,
that resumes the structure of all the algorithms presented in this chapter, and Table 4.1
that reports the numerical values of the optimisation parameters of algorithm roe_initial
for the first case study. The values of the second case study are pretty similar to those of
the table except for ũout, the only variable with substantially different boundaries (1/30◦,
1/20◦) and initial condition (1/25◦).
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Algorithm 4.1 General Structure
1: Parameters Input
2: Symbolic Variables Declaration
3: Weights, boundaries and IC definition
4: Non-linear constraints definition
5: Jacobian computation
6: iter = 1, check1 = 0, check2 = 0
7: %Iterative process start
8: while check2 == 0 and iter < 3 do
9: if iter > 20 then

10: break
11: end if
12: if iter > 2 then
13: Activate trust-region constraint
14: end if
15: %SOCP Problems setup and solution
16: First SOCP Problem optimisation
17: Second-order corrective term computation
18: Second SOCP Problem optimisation
19: %Update for stop criteria
20: if check1 == 1 and ∥h(y)∥ < 8e-8 then
21: check2 = 1
22: else
23: check1 = 0
24: end if
25: if ∥h(y)∥ < 8e-8 then
26: check1 = 1
27: end if
28: iter = iter+1
29: end while

4.2. Algorithm 2: correct_h

The task of the second algorithm is to find suitable control actions to counteract the lobes
drift of the height ambiguity plot. This algorithm has a similar structure with respect
to the previous, however with two important differences. The first difference concerns
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Variable LB UB IC Weight Solution
δe 0 6e-5 4e-5 0 3.07e-5
ϕ 200◦ 360◦ 220◦ 0 213◦
δix -2e-5 2e-5 0 0 -7.65e-6
δiy -5e-5 5e-5 -6e-5 0 -5e-6
uin 0 2◦ 0◦ 1 ∼0◦
ũout 1/46◦ 1/34◦ 1/34◦ 1 1/43.5◦

sin 0 1e-5 1e-8 100 4e-10
smid 0 1e-5 1e-8 100 4.6e-10
sout 0 1e-5 1e-8 100 1.6e-7

ρtrust = 1e-3

Table 4.1: Numerical values of the optimisation parameters for algorithm roe_initial, first
case study (hobj

2π = 50 m). The columns identify the lower boundaries (LB), the upper
boundaries (UB), the initial conditions (IC) and the weights of c, while the last column
reports the solution found from the optimisation. For convenience the angular quantities
are reported in degrees, while the lengths are a-dimensionalised by ac = 6891 km.

the treatment of the uout. Since for the mission purposes it’s important to maintain a
constant size for the imaging windows (i.e. the time spent inside the ±2 m range around
hobj
2π ), shall focus on this objective rather than trying to maximise the window size as

in the previous algorithm. That’s an important difference, because as it was observed
it’s possible,by introducing a non-zero relative semi-major axis, to enlarge the size of the
windows. However, a too large value of the semi-major axis leads to instabilities in the
height ambiguity plot and large distancing between the spacecrafts, both conditions that
shall be avoided as possible. This is why at each run the control problem is setup to keep
a size for the windows as close as possible to the one found with the algorithm roe_initial,
defined "condition 0" (uin0, uout0). This is done by introducing the variable uout to replace
its reciprocal, and fixing the boundaries for uin/out at the k-th run in a short interval of
±1◦ around uin0/out0+kπ leaving the algorithm a certain degree of freedom in the research.
Specifically, since the vector y is expected to have components in the order of 10−5 or
even smaller, to avoid potential numerical problem at high mean arguments of latitude
the problem is optimised with respect to two new variables u′

in and u′
out such that at the

k-th run:
uin = uin0 + kπ + u′

in

uout = uout0 + kπ + u′
out.

(4.3)

This ensures an almost constant level of flexibility to the algorithm in the research for all
the values of u necessary for the simulations. As said above, since the objective is not to
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maximise the windows size, the weights assigned to u′
in and u′

out in the optimisation are
zero.
The second important difference is that the problem now is focused on the impulses,
rather then the ROE. The new vector of optimisation variables is defined as:

y = [∆(δvr),∆(δvt),∆(δvn), u
′
in, u

′
out]

At each run, the state is propagated from the last uin instant up to the new manoeuvre
instant uM . Recalling Equation 3.8 it’s possible to define the relative state vector δxman

at the epoch u after the manoeuvre as function of the impulse given, the manoeuvre
instant and the temporal variable u. This state vector is then employed in the definition
of the dynamical constraints as explained above.

h(y) =

 B⊥(δx
man, uin(u

′
in)) − Bmin

⊥ − sin

B⊥(δx
man, umid(u

′
in, u

′
out))−Bmax

⊥ + smid

B⊥(δx
man, uout(u

′
out))−Bmin

⊥ − sout

 = 0 (4.4)

Then, the algorithm addresses the problem of total total ∆(δv) minimisation. Since the
impulses can be either positive or negative, the variables vector is extended to include
three other dummy variables η. These variables are employed in the definition of three
additional SOC constraints of the type:

∥∆(δv)i∥ ≤ ηi. (4.5)

In this way, it’s possible to minimise the ∆(δv) by setting non-zero weights for the variables
η. The extended vector of optimisation variable then results to be:

y = [∆(δvr),∆(δvt),∆(δvn), u
′
in, u

′
out, sin, smid, sout, ηr, ηt, ηn]

The numerical values of the optimisation parameters of this algorithm for the case study
hobj
2π = 50m are reported in Table 4.2.

4.3. Algorithm 3: shift_lat

The third algorithm concerns the first (and bigger) part of the reconfiguration phase.
It’s task is to sequentially shift the lobes of the height ambiguity curve backwards in the
orbits. The backward shift proved to be more stable and effective with respect to the
forward one, with the algorithms implemented.
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Variable LB UB IC Weight
∆(δvr) -0.8e-4 0.8e-4 1e-7 0
∆(δvt) -0.8e-4 0.8e-4 1e-7 0
∆(δvn) -0.8e-4 0.8e-4 1e-7 0
u′
in -1◦ 1◦ 0◦ 0

u′
out -1◦ 1◦ 0◦ 0
sin 0 1e-8 1e-9 100
smid 0 1e-8 1e-9 100
sout 0 1e-8 1e-9 100
ηin 0 1e-4 1e-6 1
ηmid 0 1e-4 1e-6 1
ηout 0 1e-4 1e-6 1

ρtrust = 3e-3

Table 4.2: Numerical values of the optimisation parameters for algorithm correct_h. The
∆(δv) components are a-dimensionalised by acnc = 7.605 km/s. These values refer to the
case study hobj

2π = 50 m, but are quite representative even for the values of the other case
study.

The objective is achieved by a series of manoeuvres that shift the curve by a fraction
of the imaging window, until the desired number of manoeuvres is reached. Shifting the
whole lobe with a single manoeuvre would mean first of all to have much greater costs
in terms of ∆(δv), and secondly the algorithm could have strong issues in the research of
the solution for a problem too much constrained.
The algorithm was developed basing on the same approach and the same structure of the
previous (correct_h), but with two substantial differences. The first difference regards
the boundaries definition of uin/out. Since it’s necessary to shift the lobes, for each of the
sequential manoeuvres these boundaries differ from the previous values uin0/out0 + kπ by
a factor

−kδushift = −k (uout0 − uin0)
∆over

NM

(4.6)

where ∆over is the overlay margin of the lobes (expressed as a percentage), k identifies
the k-th maneuver and and NM is the total number of manoeuvres desired.
The second difference regards the manoeuvre instant, that in this case is not fixed but
considered as an optimisation variable. That’s because, recalling the definition of the
perpendicular baseline in Equation 3.10, to introduce this shift it’s necessary to properly
change the relative phase between the relative eccentricity and inclination vectors, and
keeping the manoeuvres fixed at the location u = π/2 + kπ strongly limits the algorithm
capabilities of research since a lot of contributions in Equation 3.8 cancel out. Following
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the approach presented in the previous section to prevent numerical instabilities at high
mean arguments of latitude, at each k run this new optimisation variable is defined as:

uM = uin0 + (k − 1)π − (k − 1)δushift + u′
M .

that’s basically the definition of uin in the previous lobe without considering the ±1◦

range. The variable u′
M is left free to vary between δushift and π − δushift, and the

associated weight is zero. The greatest disadvantage of this choice is the introduction of
another drift term in the along-track position due to δix, that must properly controlled
to avoid too large distancing of the spacecrafts.
The optimisation variables vector y for this algorithm hence comprises:

y = [∆(δv)opt, u
′
M , u′

in, u
′
out, sopt,ηopt]

with the compact notation introduced to represent all the variables described in the
previous sections. Table 4.3, reports the numerical values of the optimisation parameters
for the algorithm under exam.

Variable LB UB IC Weight
∆(δvr) -1.3e-4 1.3e-4 1e-6 0
∆(δvt) -1.3e-4 1.3e-4 1e-6 0
∆(δvn) -1.3e-4 1.3e-4 1e-6 0
u′
M δushift π - δushift 2δushift 0

u′
in -1◦ 1◦ 0◦ 0

u′
out -1◦ 1◦ 0◦ 0
sin 0 1e-5 1e-9 100
smid 0 1e-5 1e-9 100
sout 0 1e-5 1e-9 100
ηr 0 2e-4 1e-6 1
ηt 0 2e-4 1e-6 1
ηn 0 2e-4 1e-6 1

ρtrust = 1e-2

Table 4.3: Numerical values of the optimisation parameters for algorithm shift_lat. The
∆(δv) components are a-dimensionalised by acnc = 7.605 km/s

4.4. Algorithm 4:da_to_di

The last algorithm regards the last manoeuvre of the reconfiguration phase. It was ob-
served that the solutions found with algorithm three generally introduce large variations
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in the relative semi-major axis, a potential danger for the successive science phase. The
objective of the algorithm is to cancel this effect by introducing a change in the other ROE.
In particular, it was observed that the most effective choice in this sense is to introduce a
change in the relative inclination vector with an out-of-plane manoeuvre. To avoid other
undesired variations of the δix component, apart from those already introduced with the
reconfiguration, the maneuver is executed at an instant uM = π/2 + kπ, thus affecting
only the y-component of the relative inclination vector. Therefore, only impulses in the
tangential and out-of-plane directions are considered.
The first component, ∆(δvt), is assigned. Since after half an orbit the science phase is
expected to restart, this impulse is computed to leave a sufficiently small relative semi-
major axis, such that at the next maneuver instant (after π radiants of mean longitude)
it will become zero because of drag.∆(δa)des = −δaM +∆Bρv2d/n

2
dπ

∆(δvt) = ∆(δa)des/2
(4.7)

where δaM is the value of the relative semi-major axis at the manoeuvre instant and the
second term represents the variation introduced by drag after π radiants. The out-of-plane
component ∆(δvn) instead is computed through an optimisation, to satisfy the dynamical
constraints as in the previous algorithms. The vector of optimisation variables in this
case is reduced to:

y = [∆(δvn), u
′
in, u

′
out, sin, smid, sout, ηn] ,

and numerical values for the relative optimisation parameters are reported in Table 4.4.

Variable LB UB IC Weight
∆(δvn) -1e-4 1e-4 1e-6 0
u′
in -1◦ 1◦ 0◦ 0

u′
out -1◦ 1◦ 0◦ 0
sin 0 1e-5 1e-9 100
smid 0 1e-5 1e-9 100
sout 0 1e-5 1e-9 100
ηout 0 1e-4 1e-7 1

ρtrust = 1e-2

Table 4.4: Numerical values of the optimisation parameters for algorithm da_to_di. The
∆(δvn) component is a-dimensionalised by acnc = 7.605 km/s
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To test the designed control strategy, simulations have been run using Matlab and Simulink.
The Matlab functions were implemented to simulate the relative dynamics of the space-
crafts and the control system operations. The Simulink model (Figure 5.1) instead was
implemented to simulate the absolute dynamics of the Chief. For each orbit, estimations
of the average spacecraft’s altitude and atmosphere’s density are obtained propagating
under the effect of drag and J2. Because of the short inter-satellite distances hypothesis, it
is assumed that the same values of hold true for the Deputy, and these piece-wise constant
average altitudes and densities are employed for the computation of the relative drag and
the height ambiguity. The time-step for this simulation was set to 10 seconds. Figure 5.2
represents the averaged variations of altitude and density predicted with the model.

To verify the validity of the algorithms, the simulations shall prove both that the drift
of the lobes can be correctly compensated over long periods and that the reconfiguration
manoeuvres are effective in shifting the latitudes range of the curves. To this aim, two
different simulations have been run for both the case studies.
The first is an extended one-month simulation of scientific activity in which relative orbital
control is applied to correct the lobes drift of h2π, with the aim of showing the results
and the long term effectiveness of the algorithm correct_h. To give a better insight, for
each case study this simulation runs over two different configurations, with a programmed
reconfiguration in the middle. A complete reconfiguration with the scheme proposed can
be obtained in three orbits for both the case studies. The resulting simulation layout
foresees:

• 15 days (ca. 225 orbits) of imaging with the first configuration.

• Reconfiguration manoeuvres (three orbits).

• Other 15 days of scientific activity with the second configuration.

The second simulation instead aims at proving the efficacy of algorithms shift_lat and
da_to_di. It verifies that, for each case study, the reconfiguration manoeuvres are effective
in shifting the range of latitudes corresponding to the height ambiguity interval of interest.
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Figure 5.1: Simulink model of the Chief’s orbital dynamics. The orbit altitude is com-
puted by means of the Geocentric to Geodetic Latitude block, starting from the geocentric
latitude and the norm of the position vector. With this, it’s possible to estimate the
atmosphere’s density using the exponential density model described in Section 3.2. For
each orbit, the altitude and the density will be averaged over one orbital period and taken
as constants.
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(a) (b)

Figure 5.2: Results of the Simulink model of the chief for the altitude (a) and density
(b) variations, over 25 days simulation, subject to drag and J2. The red lines identify the
average values per orbit.

It is based on the following structure:

• 1 day (ca. 15 orbits) of imaging

• Reconfiguration manoeuvres (three orbits)

repeated as many times as necessary to cover all the latitudes possible, that means five
times for the case hobj

2π = 50 m and eight times for the case hobj
2π = 150 m. Plus, the one

day scientific activity permits, even if for short terms, to verify the validity of algorithm
1 also for the configurations not considered in the first simulation.
Both the simulations discretize the orbits with a 0.02 degrees step, and the differential
drag coefficient is set to 0.01 m2/kg.
The flowcharts of the simulations are reported below. Figure 5.3 represents the flowchart
of the scientific activity simulation. After initialisation and initial condition computation
with roe_initial, a cycle begins over the index N (number of orbits) until it reaches its
maximum. For each orbit, firstly the values of average altitude, average density and the
limits of B⊥ are updated. Then, the control correct_h searches for an optimal impulse
to correct the deviation of the next lobe, and if it is necessary to control the drift of the
along-track position, also this manoeuvre is computed. The produced outputs are fed to
the relative dynamics simulator, necessary to update the state and predict the behaviour
of the h2π curve after the manoeuvres. This scheme is iterated twice per orbit (over the
index n), to correct both the lobes.
Figure 5.4 instead represents the flowchart of the reconfiguration. The iterative structure
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is similar to that of the previous chart, cycling over the number of orbits (index N) and the
lobes (index n). However in this case there’s no control on the along-track position, and
the manoeuvres executed have the purpose of shifting the lobes in the height ambiguity
curve. The last manoeuvre then is used to cancel the δa term introduced with the shifts
compensating it with a variation of the relative inclination vector (da_to_di).
The rationale followed in the presentation of the results for each case study, and each
simulation, will be the following: firstly the performances of the control algorithms will
be discussed looking at the plots of the height ambiguity curve. To get a deeper insight
on the actions exerted, then, the analysis will focus on the evolution of the ROE under
the effects of the control. Finally, the results in terms of impulses required and algorithms
performances will be presented to conclude the discussion.
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Figure 5.3: Flowchart of the scientific activity simulation: index N identifies the number
of the orbit, while index n represents the number of the lobe (twice per orbit) to correct.
The number Nmax is 15 for the reduced simulation and 225 for the extended one.
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Figure 5.4: Flowchart of the reconfiguration: again index N identifies the number of the
orbit while index n represents the number of the lobe (twice per orbit) to shift.



5| Simulation 43

5.1. Case study hobj
2π = 50 m

This first case considered has a large perpendicular baseline, comprised between 227
and 246 m for the ambiguity interval of interest. The optimal solution found with the
optimisation algorithm roe_initial as initial condition is reported in Table 5.2. Figure
5.5 instead represents the behaviour of the height of ambiguity and the inter-satellites
distance over time starting from this initial condition, in case no control is applied to the
spacecrafts.

aδa aδλ aδex aδey aδix aδiy

0 m 32.5 m -3.7 m -177.3 m 24.5 m -248.4 m

Table 5.1: Optimal initial condition found for the case hobj
2π = 50 m.

Look Angle Swath Duty Cycle Bcrit
⊥ δrcritt δrt trigger

25◦ 93.3 km 15’10” 5.15 km 33 km ±800 m m

Table 5.2: Optimal initial condition found for the case hobj
2π = 50 m.

(a) (b)

Figure 5.5: Evolution over time of the height ambiguity (a) and spacecraft’s distance
together with the components of δr (b) for the case hobj

2π = 50 m in conditions of free
motion.

It can be observed that the height ambiguity valleys slowly drift from the 48 m objective,
causing a difference of roughly ±1 m after seven orbits (i.e. 11 hours). During the same
period of time the spacecrafts get to find themselves at a distance of about 1 km, mostly
because of the along-track drift introduced by drag, as it can be recognised a quadratic
behaviour in δrt. Since the principal cause of the valleys drift is the relative semi-major
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axis decay, this slow deviation observable suggests that the case under examination has,
in this sense, a light sensitivity on drag.

5.1.1. Extended Simulation

The first objective of the control system is to correct the valleys deviation of the curve in
Figure 5.5.a, to enable a continuous scientific activity over the latitudes range of interest.
The results for the first configuration are shown in Figure 5.6, together with a description
of the principal features. The plot shows an initial transitory (ca. three orbits) in the first

(a) (b)

Figure 5.6: A zoom close to the lower limit of 48 m (a) and a detail (b) of the resulting
height ambiguity plot after the application of control. The red dotted lines identify the
boundaries of the ±2 m range. On the bottom of image (b), the dots on the yellow line
represent the manoeuvres location along the orbits.

orbits that drives the curve below the 48 m limit. Detecting this overpass, the control
algorithms try to correct this behaviour by raising the value of hmin in the optimisation
by 1 cm. This can be better noted in Figure 5.7. For the entire along-track coasting
phase the curve remains above the lower limit of 48 m. It happens that on the fifth day
(orbit 78) the along-track recovery phase begins, because the spacecrafts get to find at a
distance greater, in modulus, than 800 m. The additional impulses given 30 seconds after
the principal manoeuvres lowers a bit the curve, that however remains above the lower
limit until the end of the simulation. The overall result is that for this simulation the
condition h2π ≥ 48 m is verified more than 99.999% of the time.
For what concerns the upper boundary of 52 m instead, what’s important to verify is
that the height ambiguity range of interest for imaging is located at the same angular
position along each orbit, in order to effectively cover one great circle of latitude with
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Figure 5.7: First configuration of the first case study. The plots point out the transitory
in the initial three orbits of the simulation.

each configuration. Figure 5.8 represents how the angular position of the initial and final
instants of imaging uin and uout vary along the orbits. It reports the behaviour of the
relative shift uerr, defined as the difference between the real measured initial/final instants
and the ideal case in which each interval is separated by half an orbit, normalised by the
length of the first interval. Mathematically it means:

uid
in/out = uin0/out0 + π [0 : 1 : 2× 15× 15− 1]

uerr
in/out =

(uid
in/out − umeas

in/out)

(uout0 − uin0)
× 100

(5.1)

where the notation π [0 : 1 : 2× 15× 15− 1] identifies a vector of 450 elements (2 lobes
times 15 orbits times 15 days of simulation) from 0 to 449 with span 1, multiplied by π,
and represents a straight line with angular coefficient π.

The plots shows some interesting results.
The first thing to note is the three orbits transitory that introduces a non-zero relative
error, slightly forwarding the instants uin and backing uout. The latter then, under the
effect of control actions remains fixed while the position of uin shows short oscillations of
about 0.05%, or 0.02◦. It is noted that, as mentioned at the beginning of this chapter,
that is exactly the size of the discretised temporal variable u of the problem. Thus, these
oscillations represent a discretisation error of the problem, and their real value is comprised
between the two extremes. During the along-track recovery, because of the additional
manoeuvres the curve gets slightly lowered, and this discretisation error is overcome. From
these considerations it’s possible to understand that even the linear behaviour observed
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(a) (b)

Figure 5.8: Relative shift of uin and uout along the orbits for the first half of the simulation,
in the case h2π = 50 m.

in uout is a consequence of the discrete nature of the problem. Generally speaking, the
greatest result observable is the effectiveness of the control algorithms in maintaining the
positions of uin and uout along the orbits.
With these relative shifts of about ±0.1 % (i.e. ≈± 0.04 ◦) the size of the imaging windows
gets slightly modified as reported in Figure 5.9. The changes in the size, normalised with
respect to the first span uout0−uin0, show a reduction of about 0.2%, coherently with the
results of the relative shift analysed above.

(a) (b)

Figure 5.9: Imaging window size for the first configuration of the case study hobj
2π = 50 m.

The discussion above should have clarified the importance analysing both these results:
for the control strategy to be effective, it is necessary not only that the windows maintain
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their size (apart from small acceptable variations), but also that their location is kept
fixed along the orbits.
To better understand the results presented above, it can be interesting to study the
evolution of the ROE over time when subject to control actions. In this sense, probably
the most important to start with is the relative semi-major axis δa, since it’s the principal
source of drift in the lobes of the curve. Figure 5.10 reports its evolution over the first 15
days of simulation.

(a) (b)

(c) (d)

Figure 5.10: First case study. Relative semi-major axis evolution, subject to the control
actions for the first 15 days of simulation (a) and a detail of the initial 15 orbits (b). Image
(c) shows the effect of control in comparison with the evolution in case of free motion (red
line), and image (d) gives a zoom on the fringes.

The first thing noticeable at a glance looking at image 5.10.c is the overall effect of the
control actions when compared to the free motion case: to maintain a stable height am-
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biguity, is necessary to keep a small δa. More in detail, the plots show that after the
transitory the relative semi-major axis keeps oscillating around -0.6 m. During recovery
this average gets raised because of the additional manoeuvres, staying anyway close to
zero. By looking closer (Figure 5.10.d), it’s possible to note an intrinsic asymmetry in the
curve, with one lobe in each orbit higher than the other. This characteristic behaviour,
introduced by the control actions, will be encountered commonly in the results of both
the case studies, and is justified by the small evolution of the ROE (and thus the perpen-
dicular baseline) in the orbits.
Once the behaviour of the semi-major axis is accounted for, the remaining degrees of
freedom of the problem (δvr and δvn) are tuned to refine the solution and exploit as much
as possible the ±2 m range of height ambiguity available.
This can be somehow noted looking at the evolution of the relative eccentricity and incli-
nation vectors. In Figure 5.11 it’s possible to distinguish between two different behaviours:

• a short term evolution, in the time scale of the orbital period. It’s characterised
by small cyclical variations of the vectors’ magnitudes, that increase in the first half
of the orbit and decrease in the second (or viceversa). This particular pattern can
be clearly linked to the asymmetry observed and commented above.

• a long term evolution, in which aδe rises and aδi lowers. This is the result of
the adaption of the control scheme to the complex interaction between the secular
variation of the relative perigee ϕ and the relative ascending node θ (introduced by
J2) and the orbital decay (caused by drag) that change the atmosphere’s density
and the values of Bmin

⊥ , Bmax
⊥ every orbit.
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(a) (b)

(c) (d)

Figure 5.11: First configuration, case study hobj
2π = 50 m. The evolution of norm and

phase ϕ of the relative eccentricity vector (a), zoomed in (b), and the relative inclination
vector (c), zoomed in (d). The dotted lines represents the variation of the phases in case
no control is applied to the spacecrafts. In both the vectors it is possible to recognise the
short term and long term variations.

To conclude the presentation of the effectiveness of the control scheme, the only thing
that’s left to verify is the safety requirements satisfaction. This part is strictly related, in
particular, to the along-track position control, and the phases of coasting and recovery.
Looking at Figure 5.12, is possible to see that for the first part of this simulation the
strategy adopted does its job in maintaining to the along-track position where desired.
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(a) (b)

(c)

Figure 5.12: Relative positions of the spacecrafts for the first configuration of the case
hobj
2π = 50 m. In (a) and (b) the evolution of the three components of δr. It can be noted

the effect of the along-track recovery phase on δrt, together with the long term evolution
of the amplitudes δe and δi. In (c) the norm of δr, where the dotted line identifies the
lower boundary on the distance of 150 m.

However, during the recovery between orbits 100 and 150 it is noted that the spacecrafts
get to find to distances lower than the safety limit. This is because of the evolution of
the three components of δr and their relative phases, caused by both the perturbations
and the control actions. Figure 5.13 shows that in correspondence of the region where δrr

and δrn have relatively small norms (in the order of 200 m), during recovery the peaks
of δrt get to find close to zero, causing an overall inter-satellite distance lower than 150
m. A practical solution to this problem could be to modify the triggers of the along-track
control strategy. Starting the coasting phase when the valleys of δrt get above -150 m, and
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switching to recovery when the peaks get below 150 m, it could be possible to ensure an
inter-satellite distance larger than the prescribed limit with an additional safety margin
given by the non-zeros radial and out-of-plane positions. The relative trajectory of the
deputy for the coasting phase is pictured in Figure 5.14.

(a) (b)

Figure 5.13: Zoom of the out-of-boundary condition. In (a) it’s possible to identify the
contributes of each component of δr, while (b) reports the overall norm.
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(a) (b)

(c) (d)

Figure 5.14: Different views of the deputy’s relative trajectory, limited to the along-track
coasting phase for clarity.
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All the results above come from the first half of the simulation, related to the first config-
uration. After the reconfiguration manoeuvre, the control system has to deal with a new
initial condition and new requirements to satisfy. In this sense, the greatest difference
with the previous configuration is the shorter time span between the manoeuvres instants
(always located at u = π/2 + kπ) and the windows for imaging.
From the height ambiguity point of view, Figure 5.15 shows a trend similar to the one
observed in the previous configuration. It’s possible to distinguish the presence of an ini-
tial oscillatory phase lasting around five orbits (a bit longer with respect to the previous
case of three), in which the curve, again, gets below the 48 m limit. The control system,
adapting to this violation, rises the value of hmin bringing back safely the curve inside the
boundary. From this point on, the curve will remain above the 48 m limit for the rest of
the simulation. In the end, the height ambiguity remains inside the limits for more than
99.998% of the time. The points uin and uout, because of the transitory, slightly shift from
the respective initial values of about 0.68◦ and 0.9◦ respectively. But since they shift in
the exact same way, in the end, the size of the imaging windows remains almost constant,
reduced by only 0.2◦ with respect to the initial span. In general it’s possible to note that
the intervals, this time, have visible oscillations, larger than the discretisation step but
anyway limited in the range of tenths (or even hundredths) of a degree.
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(a) (b)

(c) (d)

Figure 5.15: Simulation results for the second configuration with hobj
2π = 50 m. In (a) an

overview of the height ambiguity, detailed in (b) and shown together with the manoeuvres
location (the yellow dots). Image (c) shows the relative shift of the instants uin and uout,
with respect to the new uin0 and uout0. To conclude, in (d) the relative variation of the
window size during the 15 days.

Also the ROE (Figure 5.16) follow a trend similar to the one observed in the previous
configuration, even if with some important differences. After the transitory, the relative
semi-major axis is kept around an average value of -1.5 m, almost three times the average
value of the previous configuration, and shows oscillations more intense in amplitude.
Furthermore, as can be better seen if Figure 5.16.b the asymmetry in the orbits is more
evident in this configuration, with the first impulse of each couple of manoeuvres smaller
than the second.
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(a) (b)

(c) (d)

Figure 5.16: ROE variation for the second configuration, case study hobj
2π = 50 m. A close

resembling can be found in particular with the plots in Figure 5.11, regarding the relative
eccentricity and inclination vectors of the first configuration

The relative eccentricity and inclination vectors show overall smaller long-term variations:
a few degrees for the phases, that maintain the quasi-parallel vectors condition, and some
meters for the norms. The short-term evolution in the orbits instead is still present,
with slightly enhanced amplitude in the oscillations. The resulting relative positions,
reported in Figure 5.17, point out an unexpected condition. Looking in particular at the
along-track position, it is observed that the distance δrt keeps increasing even during the
coasting phase, bringing the spacecrafts to a distance of 900 m after 15 days. Trying to
search for the causes of this strange behaviour, it can be useful to recall the expression of
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(a) (b)

Figure 5.17: Relative positions of the spacecrafts (a) and inter-satellite distance (b) in the
second configuration, for the case study hobj

2π = 50 m. It’s possible to note the slow long
term evolution of δe and δi, and the effects of the large drift introduced by the relative
semi-major axis on the along-track component.

the along-track position as function of the mean argument of latitude:

δrt/ac ∝ −21

2
(γsin(2ic)δix,0 +

1

7
δa0)(u(t)− u0) +

3

4n2
∆Bρacv

2
c (u− u0)

2 − 3∆(δvt)(u− uM)/n

where constant/harmonic terms were discarded, retaining only the quantities that in-
troduce a drift in time, that are essentially those related to δλ and its evolution. To
understand which are the roles of each term in the definition of this relative orbital ele-
ment, it’s possible to have a look at the plots in Figure 5.18. These represent the evolution
of the single terms that contribute to the relative mean longitude evolution, compared
with the longitude itself. To have a proper comparison, each of the terms in the equa-
tion above is compared with a mean longitude "unwrapped" with respect to the initial
conditions. It means that, while the classical simulation of the relative dynamics foresees
at each manoeuvre instant to update the new initial condition and propagate until the
next manoeuvre time, the δλ term represented below instead is obtained without the
initial condition update. Thus, it represents the real changes introduced in δλ instant per
instant, without considering the history of its evolution.
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(a) (b)

(c) (d)

(e)

Figure 5.18: Comparison term-by-term to identify the cause of the undesired along-track
drift of the second configuration. In (a) the unwrapped mean longitude, in (b) and (c)
respectively the terms related to the semi-major axis and the along-track impulses, clearly
linked to the first plot. The last two images represent the effects of perturbations: J2 (d)
and drag (e).
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Looking at the figures it’s possible to see that the most influencing terms are those given
by the relative semi-major axis and the along-track manoeuvres drifts. This means that
the cause of this undesired behaviour is the solution found by the optimisation itself, that
requires a too large (negative) semi-major axis to maintain the imaging windows along
the orbits, and consequently introduces that strong, positive, along-track drift.
It’s possible to note this also looking back at the plot of δa in Figure 5.16.a. The initial
orbits maintained an average relative semi-major axis much smaller than the -1.8 m value
notable after the along-track recovery (ca. orbit 40). This results evidence an important
limit of the along-track position control strategy adopted: being based on the assumption
of a small relative semi-major axis, once it has to deal with values of negative δa too
large (and this example identifies this "too large" to be, at least, in the order of -1.5 m
on average) it cannot be used anymore, since there’s a too strong natural drift.
Trying to solve this problem maintaining a smaller semi-major axis by applying larger
manoeuvres would be counterproductive for two reasons: firstly, it would interfere with
the solution of the optimisation and the scientific objectives of the mission. Secondly, it
would rise even more the consumption of propellant, and hence ideally the overall mission
complexity and the costs. Furthermore, it should be considered that the 1 km limit on the
maximum distance was imposed with the aim of maintaining the validity of the relative
motion model close to its maximum. Overcoming this boundary doesn’t necessary mean
to jeopardise the mission or its objectives, but just reducing the accuracy of the solution.
It is therefore important to verify the impact this violation has on the reliability of the
results, through a proper validation.
The overall relative trajectory for this second configuration is plot in Figure 5.19
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(a) (b)

(c)

Figure 5.19: Different views of the deputy’s relative trajectory for the second configura-
tion.

The analysis of this case study is concluded with the report of the algorithms performances
in Table 5.3 and the information about the total δv required for the control (Table 5.4 and
Figure 5.20). The total impulse in the second configuration is found to be about three
times larger, accordingly to the tighter control perceivable through the shorter excursions
of the ROE. To have an idea of the applicability in real-life contexts, these results can
be compared with data coming from past missions. Taking as benchmark the mission
TanDEM-X, during scientific activities in average conditions it foresees each day two
manoeuvres of about 0.5 cm/s each [15], thus about 10 mm/s per day. The results of
the simulation here proposed require an average of 17 and 53 mm/s per day. The results
are larger, but in the same order of magnitude of the benchmark. Therefore, the results
can be considered realistic. Furthermore, it has to be considered that the operational
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conditions of the two spacecrafts of TanDEM-X are a bit different. Specifically, the two
have been designed to exhibit very similar drag coefficients, resulting in a very small
relative semi-major axis decay of about 10 cm per day, while for the simulation under
exam, as observed in Figure 5.10, the decay is about 30 m per day. By changing the
relative ballistic coefficient to 0.0001 m2/kg (two orders of magnitude smaller), it was
verified that the total impulse (at least for the first configuration) can be lowered to 2.5
mm/s per day.

Algorithm No. iterations Duration No. repetitions
roe_initial 3 1.5 s 1
correct_h 5 4.1 s 900

Algorithms simulation time: 1 hour 4 min
Relative dynamics simulation time: 5 hours 51 min
Reconfiguration simulation time: 3 min

Total simulation time: 6 hours 58 min

Table 5.3: Algorithms performances for the Extended Simulation of the first case study.
The algorithms and the relative dynamics simulation times define the total duration of
the scientific activity simulation.

The number of iterations and the duration in Table 5.3 are meant on average. The data
reported focus on the algorithms directly involved in the scientific activity simulation,
without detailing those related to the reconfiguration that will be commented in the next
section. The algorithms prove to be very fast in the problem solution, and converge within
a small number of iterations, never exceeding the fixed maximum of 12.
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Parameter Config. 1 Config. 2

h2π ≥ 48 m ≥ 99.999 %
of time

≥ 99.998 %
of time

uerr
in

- 0.12 %
(0.045◦)

+ 1.5 %
(0.68◦)

uerr
out

+ 0.1 %
(0.04◦)

+ 1.9 %
(0.9◦)

uout − uin % 99.8 %
(45.26◦)

99.6 %
(45.08◦)

δa average - 0.6 m - 1.6 m
∆δe (end - start) + 60 m + 15 m
∆ϕ (end - start) - 40◦ + 2◦
∆δi (end - start) - 70 m + 5 m
∆θ (end - start) + 3 ◦ - 4◦

∆(δvtot) 263.15 mm/s 789.6 mm/s

∆(δv) for recovery 3.5 mm/s
(1.33% of total) 0 mm/s

Table 5.4: Sum up of the results achieved in the two configurations of the first case study.
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(a) (b)

(c) (d)

Figure 5.20: Magnitude of the impulses for the first (a) and the second (c) configura-
tion. Detail (b) shows the how the additional impulses for along-track recovery, given 30
seconds after the main manoeuvres, are effectively small when compared to them. De-
tail (d) instead points out the behaviour of the solution in the transitory of the second
configuration.
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5.1.2. Reduced Simulation

The reduced simulation instead aims at showing the results of the various reconfiguration
manoeuvres. For the first case study, as observed in the previous simulation the imaging
windows cover about 44.3◦ of mean argument of latitude each, that’s 12.3 % of each orbit.
Considering that there are two windows for every orbital period, it is sufficient to employ
five configurations to cover all the latitudes reachable, including also an adequate overlay
margin between adjacent configurations. In fact:

12.3%
coverage

lobe
× 2

lobes
configuration

× 5 configurations = 123% total coverage

which means that the lobes of the last and the first configurations, in case no overlapping
is considered, would overlay for 23% of the windows duration. Because of the high redun-
dancy in this case study a good choice for this margin could be 9◦ (20% of the window),
far more than sufficient to handle the relative shifts uerr

in and uerr
out observed in Table 5.4

and adequate to evenly spread the overlaying between configurations.
The algorithms implemented require to input the desired number of manoeuvres for each
reconfiguration. Since no constraints have been defined in this sense, the results shown
in this section will arbitrarily consider six manoeuvres for each reconfiguration. However,
it has been verified that the algorithms are capable of adapting over a large range of
total manoeuvres (with a minimum of four): generally speaking it was observed that the
overall variations introduced in the ROE are similar, and the higher is the number of
manoeuvres, the lower is the total ∆(δv) required. This can be verified by looking at
Figure 5.21, where the total impulses required for different number of manoeuvres are
reported for both the case studies.
The results of the Reduced Simulation for the first case study, considering 6 maneuvers

per reconfiguration, are reported in Figure 5.22. The plot compares the lobes in the first
orbit after each reconfiguration (identified by a number, e.j. configuration 1 = # 1) There
are two interesting things to note. First of all, the efficacy of the manoeuvres: the lobes
are correctly shifted backwards along the orbit, remaining inside the ±2 m range around
the objective value of 50 m. The second thing is the regularity of the solution: the lobes
get similarly shifted of about the same degrees, determining a quasi-uniform superimpo-
sition pattern for imaging. A qualitative idea of this result can be obtained by looking at
Figure 5.23, where the average values of the overlay windows for the configurations under
exam are reported. The overlay between configurations #1 and #5 is just reported for
completeness, since it’s not consequential to a direct reconfiguration.

The relative error of the overlay margin in the first and fourth reconfigurations is main-
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(a)

Figure 5.21: Total ∆(δv) in the first reconfiguration for a different number of total ma-
noeuvres: 4, 6, 16 and 30 (one day). In blue the values for the case study hobj

2π = 50 m, in
red for hobj

2π = 150 m.

(a)

Figure 5.22: Reconfiguration results for the first case study. The lobes belong to the first
orbits of each configuration (numerated in the legend).
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(a) (b)

Figure 5.23: Average size of the overlay windows (a) for adjacent couples of configurations
and relative error (b) of the size with respect to the 9◦ objective.

tained within a ±5% range (i.e. ±0.45◦) around zero. It’s possible to note that instead the
passages that involve configuration #3 show larger deviations, up to 15%. In principle,
this is not a problem because as long as there’s a positive error it means that the overlap
between the configurations is higher than programmed, thus the solution found is just
more conservative and does not represent a hazard for the scientific objectives. Neverthe-
less, it’s important to understand which are the motivations behind this behaviour.
By looking at Figure 5.24, it’s possible to note two important characteristics in the plot
of the height ambiguity for this simulation.

The first thing to note is that during reconfiguration, the optimisation sometimes fails
at maintaining the curve close to the 48 m limit. For the purpose of the mission, this
is not a problem since the satellite are not expected to image the ground in this phase;
however, this inaccuracy might partly justify the differences observed in the sizes of the
overlay windows with respect to the desired value of 9◦. The second thing to note is that
the curve of the third configuration shows small fringes, and remains a little bit higher
than the lower limit. There’s a justification for this behaviour.
Since the lobes in each configuration get shifted backwards in the orbits while the deviation-
control manoeuvres are fixed, it happens that at a certain point the lobes are found too
close to the manoeuvres location for the control system to find a stable solution. It is
hence necessary to introduce a shift in the control, where each manoeuvre is used to cor-
rect the behaviour of the lobe immediately following the lobe closer to the manoeuvre
instant. The logic of this shift in the control windows is illustrated in Figure 5.25.
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(a)

Figure 5.24: Reduced simulation result for the height ambiguity of the first case study,
where it’s possible to recognise the 5 science phases and the following reconfigurations.
As observed in the Extended Simulation, each scientific phase shows an initial transitory
of few orbits in which it might happen that the lobes overpass the 48 m limit.

(a)

Figure 5.25: Control windows shift for the first case study, considering four configurations.
The purple dots identify the location of the manoeuvres, exploited to control the windows
contoured by solid lines.

In this case study, the configurations interested by the control windows shift are the num-
ber #3 and the number #4. However, while in configuration #4 the control manoeuvre
for each window is executed inside the immediately previous window (thus the latter is not
so much affected by the manoeuvre), in configuration #3 the manoeuvres are executed a
slightly before. This causes each manoeuvre to have a small interference with the solution
imposed through the previous maneuver: that’s why the lobes in this configuration remain
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slightly above the 48 m limit. Furthermore, the lobes are slightly displaced/distorted in
the orbit. This shift is the principal cause of the deviations previously observed in Figure
5.23 where the overlay windows among configuration #3 resulted larger with respect to
the others.
To better understand the effects of the reconfiguration manoeuvres it might be useful
to have a look at the variations introduced in the ROE. The relative eccentricity vector

(a) (b)

Figure 5.26: Relative eccentricity vector variations during the Reduced Simulation, in po-
lar representation (a) and Cartesian (b). The red dotted lines delimit the reconfiguration
manoeuvres.

(Figure 5.26) is slightly controlled. The most important changes imposed with each re-
configuration mainly address the y-component while the x-component is kept small. In
general it’s possible to note how after each reconfiguration the transitory might introduce
from small to sensible changes, but mostly in the norm. During scientific activities in-
stead this vector is kept almost unchanged. The relative inclination instead, in Figure 5.27
shows a more regular behaviour and the effects of each reconfiguration are more evident.
During scientific activities, its norm and phase are maintained approximately constant,
while the reconfiguration manoeuvres instead enlarge the magnitude and decrease the
phase. In the passage form the configuration #4 to the #5, both the components are
raised, determining a 180◦ shift in the phase because of the passage from negative to
positive of the y-component. The stronger changes applied to these ROE demonstrate
how the relative inclination vector has, for the control algorithms, a crucial importance to
shift the lobes along the orbits, even higher than the relative eccentricity. In particular,
it is noted how in reconfigurations where the norm of δi has stronger variations, the norm
of δe undergoes smaller changes, and viceversa. To conclude, the relative semi-major axis
shows important excursions, in the order of some meters. In this simulation this ROE
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(a) (b)

Figure 5.27: Relative inclination vector variations during the Reduced Simulation, in
norm (a) and phase (b) and Cartesian components (c).

becomes of secondary importance, for two reasons. First of all because its major effect is
to determine a shift in the altitude of the lobes, rather than on their position along the
orbit. The variations observed in Figure 5.28 are mainly side effects of the desired varia-
tions of the relative eccentricity vector, that explain the voids observed in the height of
ambiguity in Figure 5.24. And secondly, because the last impulse of each reconfiguration
is designed to cancel these undesired variations induced in the previous manoeuvres, to
facilitate the beginning of the scientific activities.
The results presented above refer to the Reduced Simulation with 6 reconfiguration ma-
noeuvres. The values of the total ∆(δv) required for each reconfiguration are reported in
Table 5.5 and in Figure 5.29 categorised by algorithm.

In general it’s possible to see that all the reconfigurations have very similar costs in
terms of impulses, and that the last manoeuvres to correct the deviations introduced
in the relative semi-major axis are less than 1.5% of the total cost. Comparing with
the results in Table 5.4 it’s possible to see that despite having a much lower number of
maneuvers, because of the higher impact on the ROE each reconfiguration requires a total
∆(δv) larger than the results of the scientific activity in the Extended Simulation. The
algorithms performances are reported in Table 5.11.
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(a)

Figure 5.28: Relative semi-major axis variations in the Reduced Simulation, first case
study.

Figure 5.29: ∆(δv) of the reconfiguration
manoeuvres for the first case study. In blue
the ∆(δv) found with algorithm shift_lat,
in red the δa corrections computed by algo-
rithm da_to_di.

Reconfiguration ∆(δv) [mm/s]

#1/#2 194.27
#2/#3 188.09
#3/#4 194.72
#4/#5 196.11
Total 801.3

Table 5.5: Total ∆(δv) for the reconfigura-
tion manoeuvres.

Algorithm No. iterations Duration No. repetitions
shift_lat 7 23 s 15
da_to_di 5 9 s 3
Reconfiguration simulation time: 9 min
Scientific activity simulation time: 20 min

Total simulation time: 29 min

Table 5.6: Algorithms performances for the Reduced Simulation of the first case study.
For the number of iterations and the duration, the values shown are meant on average.
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5.2. Case study hobj
2π = 150 m

The second case study considered has a shorter range of perpendicular baseline available
for science, between 140.2 and 144 m. The optimal initial condition found for this scenario
is reported in Table 5.7, while figure 5.30 represents the behaviour of the height of ambi-
guity and the inter-satellites distance over time starting from this initial condition, again
in case no control is applied to the spacecrafts. Table 5.8 reports the critical boundaries
for this case study, along with the relevant mapping parameters.

aδa aδλ aδex aδey aδix aδiy

0 m 4.02 m -180.8 m -114.1 m -49.9 m -30.7 m

Table 5.7: Optimal initial condition found for the case hobj
2π = 150 m.

Look Angle Swath Duty Cycle Bcrit
⊥ δrcritt δrt trigger

40◦ 61.4 km 8’48” 7.21 km 25.79 km ±800 m

Table 5.8: Mapping parameters and critical quantities for the second case study. The
duty cycle is referred to a single orbit.

(a) (b)

Figure 5.30: Evolution over time of the height ambiguity (a) and spacecraft’s distance
together with the components of δr (b) for the case hobj

2π = 150 m in conditions of free
motion.

It can be observed that this time the height ambiguity valleys drift much faster from the
target of 148 m: this scenario proves to be more sensible to the semi-major axis variations
introduced by drag, reaching a difference from the objective value larger than 1 m after
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just one orbit (i.e. 1.5 hours). This behaviour can be justified by the smaller value of the
perpendicular baseline, that subject to the same semi-major axis variation of the previous
case causes this larger drift. Because of this, it is expected that in this case more attention
will be necessary for the control strategy actuation.
The inter-satellites distance instead behaves similarly to the previous scenario, and the
spacecrafts get to the limit distance value of 1 km after more or less nine orbits of free
motion conditions, again because of the along-track drift introduced by drag.

5.2.1. Extended Simulation

Figure 5.31 represents the result of the valleys drift correction for the first configuration in
the case under exam. Again, the scientific requirements results satisfied for the majority

(a) (b)

Figure 5.31: A zoom of the lower limit (a) and a detail (b) of the height ambiguity plot for
the case hobj

2π = 150 m. In (b) the dots on the line on the bottom represent the manoeuvre
instants of the first configuration.

of the time. However, it is possible to note that during the first orbits of the simulation
the lower limit gets shortly violated a couple of times. In Figure 5.32 it’s possible to see
that the curve shows, again, a short transitory (ca. two orbits), in which the minima
decrease until they get below 148 m. At this point the control system detects the limits
violation and updates the value of hmin, raising it up by 1 cm.
The curve enters then a stable phase, maintained for the rest of the simulation.

Close to the end of the fifth day (orbit 73), the coasting phase ends. At this point the
control system starts the position-recovery phase, that can be identified by the fringes in
the Figure 5.33, present because of the asymmetry introduced by this additional impulse.
Because of this manoeuvres, during the very first orbit of the recovery phase the control
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(a)

Figure 5.32: Initial transitory with violation of the lower boundary (orbits 1 and 2) and
successive recovery. The plots refer to the first configuration of the case study h2π = 150
m.

system detects another crossing of the lower boundary, and raises the limit value of hmin

by another centimeter: this operation ensure a continuous scientific activity above the
lower boundary for the rest of the simulation. In the end, the condition h2π ≥ 148 m is
verified for 99.999% of the time.

(a)

Figure 5.33: First configuration, case study hobj
2π = 148 m. Begin of the along-track

recovery phase (a) with the second (and last) boundary violation.
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(a) (b)

Figure 5.34: Relative shifts of uin and uout for the first configuration, in the case hobj
2π =

150 m. In (b) a detail of (a) focused on the beginning of the along-track recovery phase.

For what concerns the upper boundary of 152 m instead, the results of interest can be
found in Figures 5.34. In the images it’s possible to recognise the features already observed
in the height of ambiguity: the initial transitory, the along-track coasting and the recovery
phase, identified by the larger oscillations introduced with the additional manoeuvre. For
both the instants uin and uout the relative shifts result fairly contained in small ranges
close to zero, with maximum errors of ±0.5 % (≈ ±0.13◦). It is noted that slightly before
the 150th orbit, the shift on uin has a small jump. By inspection it was verified that this
jump has the same size of the oscillations observed in the along-track coasting phase in
the same plot, that’s exactly the same size of the angular step of the temporal variable.
Thus, these oscillations are nothing more than discretisation errors of the problem: the
real relative shift stays in between the two extremes. The reason why the second error
arises during the along-track recovery phase can be identified by looking closely to the
height of ambiguity plot: Figure 5.35 shows that after orbit 70 the tips of the lobes get
slowly lowered in time, coming closer and closer to the lower limit of 148 m and slightly
increasing the distance between uin and uout.

Going deeper, it’s interesting to verify how the duration of the time windows available
for imaging changes in the orbits. The plots in Figure 5.36 point out that the size of
the windows oscillate of about 1.5% of the initial size (≈ 0.4◦), with an average slightly
larger than the beginning. As already done for the previous case study, the next step of
the analysis consists in the study of the ROE behaviour when subject to control actions.
Figure 5.37 reports the evolution of the relative semi-major axis over the first 15 days
simulation.
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(a)

Figure 5.35: Relative shifts of uin and uout for the first configuration, in the case hobj
2π =

150 m. In (b) a detail of (a) focused on the beginning of the along-track recovery phase.

(a)

Figure 5.36: Imaging window duration for the first configuration in the case hobj
2π = 150

m.
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(a) (b)

(c)

Figure 5.37: Relative semi-major axis evolution, subject to the control action for the
case hobj

2π = 150 m, first configuration. In (a) an overview of the evolution for the whole
simulation. In (b) a detail of (a), and in (c) a comparison with the evolution in case no
control is applied to the Deputy.
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Starting from a large scale analysis, it can be observed how again the control acts to keep
a small value of δa, with an average of -0.6 m. Then, after orbit 73 the average gets
further lowered because of the additional manoeuvres. Figure 5.37.c points out again how
for the phase of scientific activity, control of the relative semi-major axis is a key point
for the maintenance of the lobes.

(a) (b)

(c) (d)

Figure 5.38: Relative eccentricity (a) and inclination (c) vectors over the first half of the
simulation, in the case study hobj

2π = 150 m. Images (b) and (d) show that the short term
evolution is very similar to the previous case study, with the norms and the phases of the
vectors that rise and lower alternating in each orbit.

Proceeding in the analysis, Figure 5.38 represents the effects on the relative eccentricity
and inclination vectors. The magnitudes of these vectors are again slightly modified over
the simulation, with excursions in the order of 10 m. In general, it’s possible to see
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that their long term evolution is slower with respect to the previous case study, where
in the same number of days aδe was raised by almost 60 m, the phase ϕ decreased by
40◦, aδi by 70. The additional manoeuvres in the recovery phase cause small increases
in the magnitudes of the oscillations and a general change of inclination in the curves,
slowing even more the ROE variations over time. Nevertheless, it’s important to highlight
how the relative perigee and ascending node maintain similar phases in the simulation,
guaranteeing passive safety to the formation with respect to along-track uncertainties.
The components of the relative position vector represented in Figure 5.39 synthesise the
effects of all the results reported. In particular, δrr and δrn show much smaller variations
over time with respect to the previous case study, as understandable recalling the slow
evolution observed of aδe and aδi. The along-track position instead drifts similarly, getting
to the limit of -800 m in about five days (73 orbits), and taking more than 10 days to
recover the upper trigger.
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(a) (b)

(c)

Figure 5.39: Relative positions of the spacecrafts for the first configuration in the case
study hobj

2π = 150 m. In (a) and (b) the evolution of the three components of δr. It can be
noted the effect of the along-track recovery phase on δrt, and the slow long term evolution
of the amplitudes δe and δi. In (c) the norm of δr.

The along-track control strategy implemented proves to be effective in maintaining the
relative position between the prescribed maximum boundaries. However, it turns out
to have a side effect. Figure 5.39.c shows that close to the 50th orbit the inter-satellite
distance violates the lower limit of 150 m imposed for safety. Similarly to what observed
for the previous configuration, this behaviour is caused by the relative phases of the three
components of δr. Because of the almost parallel δe and δi, when δrr is at its maximum
δrn is at its minimum, and viceversa. It happens that δrt follows the same trend of the
relative out-of-plane position. But since the norm of δi is about 70 m, when the peaks
of δrt get below 150 m because of the drift, the relative distance becomes too small to
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ensure a proper safety between the spacecrafts (Figure 5.40). A practical solution to this
problem could be to modify the triggers of the along-track control strategy to maintain
the peaks of δrt above 150 m and the valleys below -150 m. The relative trajectory of

(a) (b)

Figure 5.40: Along-track and out-of-plane relative positions (a) and the violation of the
lower boundary for the inter-satellite distance (b).

the deputy for this simulation is reported in Figure 5.41, where it’s possible to verify the
passive stability of the initial condition found. For clarity, the plot shows exclusively the
trajectory for the coasting phase.
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(a) (b)

(c) (d)

Figure 5.41: Different views of the deputy’s relative trajectory. The red parts identify the
imaging windows along the orbits.

The second half of the simulation deals with the control of the second configuration. The
first interesting result is the plot of the height ambiguity (Figure 5.42), that stays within
the 148 m limit for more than 99.98% of the time showing a trend similar to the one of
the previous configuration, with the lower boundary of 148 m this time violated twice. In
the first part of the simulation, the plot shows an irregular behaviour, lasting about 15
orbits after which the curve enters a stable phase with a slightly spiky behaviour. At the
beginning of the along-track recovery, close to orbit 180, the additional impulses cause
the plot to overpass the lower boundary. Detecting this violation, the algorithms act to
recover the objectives by raising the values of hmin in the optimisation of 3 cm. A second
stable phase then begins, lasting for the rest of the simulation.
The essential features observed in the height of ambiguity can be recognised also in the
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behaviour of uin and uout. The relative shift introduced by the initial orbits of adaption
trims around 11% of the original window size (≈ 2.9◦). The similar shits of uin and
uout leave the windows almost unchanged in size, as can be observed in Figure 5.42.d,
at least for the phase of coasting. During along-track recovery instead the oscillations
introduced by the additional manoeuvres cause the windows to contract of about 0.4
◦. The major difference observed with respect to the first configuration is the noisy
nature of the results, a characteristic already observed in the previous case study. But as
long as these oscillations are confined in the order of tenths of degree, continuity in the
scientific activity can be ensured selecting a proper overlay margin between consecutive
configurations.

(a) (b)

(c) (d)

Figure 5.42: Height ambiguity ((a) and (b)) and imaging windows ((c) and (d)) results for
the second configuration of the case study hobj

2π = 150 m. The dotted line in (d) represents
the average windows size.
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A more noisy behaviour is encountered also in the ROE (Figure 5.43), where it’s possible
to note great similarities within the elements evolution in the previous configuration.
The relative semi-major axis is kept close to zero, as expectable at this point of the
presentation, with an average of -1 m. The norms of δe and δi have opposite drifts,
and have total variations of similar values. In particular, it is noted that the relative
perigee and ascending node maintain similar phases, ensuring again passive safety to the
formation with respect to along-track uncertainties. Generally speaking, the ROE show
larger excursions with respect to the previous configuration.

(a) (b)

(c)

Figure 5.43: Relative orbital elements evolution for the second configuration, in the case
study hobj

2π = 150 m. In (a) the relative semi-major axis, in (b) the relative eccentricity
vector and in (c) the relative inclination.

To conclude, the components of the relative positions vector are reported in Figure 5.44
together with the norm of ∥δr∥. The along-track position, raised in the previous con-
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figuration, as expected shows a decrease, until orbit 178 where the along-track recovery
phase begins. The position is correctly recovered and δrt remains inside the prescribed
boundaries for the whole simulation. Because of the relatively small norms of δrr and
δrn, close to 150 m, the inter-satellite distance gets below the limit of 150 m when the
peaks (or the valleys) of the along-track position are close to zero. This already observed
condition can be, once again, simply resolved by properly changing the triggers of the
control logic.

(a) (b)

Figure 5.44: Relative positions for the second configuration of the second case study.
Image (a) shows the three components, while in (b) is reported the vector norm. The red
dotted line identifies the 150 m boundary.

The overall relative trajectory is reported in Figure 5.45, where it’s possible to verify once
again the passive stability of the formation with respect to along-track uncertainties.

The solutions found by the algorithms to control the deputy, in terms of impulses, are
reported in Figure Figure 5.46 for both the configurations. With respect to the previous
case study, the total δv for the first configuration maintenance is approximately doubled,
while for the second configuration the results are very similar. Overall, the simulation
shows that the correction of the lobes requires on average 37 and 48 mm/s per day, still
larger but anyway comparable with the 10 mm/s data from TanDEM-X. By repeating
the simulation with a smaller relative ballistic coefficient (0.0001 m2/kg), the total δv for
the first configuration lower to 10.7 mm/s.

All the results achieved in the second case study are summarised in Table 5.9. The
algorithm performances are instead not reported, because they’re found to be very close
to those of the previous case study.
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(a) (b)

(c) (d)

Figure 5.45: Relative trajectory of the deputy for the second configuration of the second
case study. The red parts along the orbits identify the imaging windows.
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(a) (b)

Figure 5.46: Magnitude of the impulses for the first (a) and the second (b) configuration.
The dotted lines represent the average values of each configuration.

Parameter Config. 1 Config. 2

h2π ≥ 148 m ≥ 99.999%
of time

≥ 99.98%
of time

uerr
in

+ 0.5%
(+0.13◦)

+ 11%
(+2.9◦)

uerr
out

- 0.5%
(-0.13◦)

+ 11%
(+2.9◦)

uout − uin % 100.3 %
(26.65◦)

100.1%
(26.66◦)

δa average - 0.6 m - 1 m
∆δe (end - start) - 15 m - 60 m
∆ϕ (end - start) + 3.5◦ + 15◦
∆δi (end - start) + 10 m + 30 m
∆δθ (end - start) + 12◦ + 20◦

∆(δvtot) 554.09 mm/s 722.15 mm/s

∆(δv) for recovery 8.14 mm/s
(1.47% of total)

5.75 mm/s
(0.79% of total)

Table 5.9: Sum up of the results achieved in the two configurations of the second case
study.
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5.2.2. Reduced Simulation

From the results shown above, is immediate to see that this case study requires more
reconfigurations than the previous. Considering an average window size of 26.2◦, it is
necessary to consider at least eight configurations, to have a sufficient overlap margin.
The adequate value for this case study is found to be 4◦, corresponding to 15.1% the av-
erage size of the imaging windows, again far more than sufficient to cover the excursions
observed in the Extended Simulation.

(a) (b)

Figure 5.47: Lobes shift after reconfiguration (a) and the overall height of ambiguity (b)
for the reduced simulation of the second case study. In (b) the dotted lines delimit the
reconfiguration manoeuvres.

The results of the successive reconfiguration manoeuvres are reported in Figure 5.47. As
in the previous case, it can be observed how the lobes after each reconfiguration get
adequately shifted, remaining sufficiently close to the 148 m limit. Even though small
excursions can be noted for some cases, these don’t really represent a problem since as it
has been extensively observed in this chapter, after each reconfiguration is always present
a small transitory in which the lobes might slightly overpass the lower limit. This can
be confirmed by looking at Figure 5.47.b, where it’s also possible to see the effects of
the control window shift introduced for the configurations in which the manoeuvres are
executed too close (about 30◦) to the imaging windows. The control shift affects mostly
the fourth and the fifth configurations. Because of this, as can be observed in Figure
5.48, the overlay margins across these configurations substantially deviate from the 4◦

objective.
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(a) (b)

Figure 5.48: Average overlay margin size (a) and relative error with respect to the 4◦

objective (b) for the second case study.

During reconfigurations the control algorithms change the ROE to properly shift the
location of the lobes. Figure 5.49 shows the most important variations introduced in the
relative state vector for the Reduced Simulation.
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(a) (b)

(c) (d)

Figure 5.49: Evolution of the relative eccentricity and inclination vectors during the
Reduced Simulation, second case study. The vectors are represented both with polar, in
(a) and (c), and Cartesian coordinates, in (b) and (d).

The relative eccentricity shows smaller variations this time, both in the norm and in the
phase. The greatest variations verify during the one-day scientific activity phases. To
shift the lobes, as already observed in the previous case study the algorithm finds it easier
to intervene on the relative inclination, changing both in norm and phase. In particular
it is noted a regular increase in the norm, along with a decrease in the phase except for
the passage between configurations #3 and #4, where the phase changes of 180◦ because
of the passage of δiy from negative to positive. During scientific activities instead both
the norm and the phase remain almost constant.
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(a)

Figure 5.50: Relative semi-major axis of the Reduced Simulation for the second case
study.

The relative semi-major axis instead undergoes more contained excursions with respect to
the previous case study for all the reconfiguration phases, coherently with the small vari-
ations observed in the relative eccentricity. Again, apparently δa doesn’t follow a specific
pattern. The transitories (observed especially in the first and the third configurations)
are short, and they last up to maximum four orbits. Generally it can be sad that once
again, the relative semi-major axis reveals to be a parameter more crucial for the scientific
activity, rather than the reconfiguration phases.
The solutions found by the control algorithms in terms of impulses are reported in Figure
5.51 and Table 5.10.

Figure 5.51: ∆(δv) of the reconfiguration
manoeuvres for the second case study, cat-
egorised by algorithm.

Reconfiguration ∆(δv) [mm/s]

#1/#2 78
#2/#3 81.9
#3/#4 86.8
#4/#5 89.7
#5/#6 87.4
#6/#7 89.9
#7/#8 86.1
Total 599.8

Table 5.10: Total ∆(δv) for the reconfigura-
tion manoeuvres.
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The impulses required for the second case study result to be sensibly cheaper with respect
to the previous: even though this time a higher number of reconfigurations is considered,
the total necessary δv is lower, because the shift applied to the lobes is lower. The overall
behaviour however in general is the same observed before: the various reconfigurations
have approximately the same cost, with less than 3% (6% in the fourth reconfiguration)
of the δv employed to cancel the variations introduced in the relative semi-major axis.

Algorithm No. iterations Duration No. repetitions
shift_lat 10 40 s 35
da_to_di 5 6 s 7
Reconfiguration simulation time: 26 min
Scientific activity simulation time: 1 hour 2 min

Total simulation time: 1 hour 28 min

Table 5.11: Algorithms performances for the Reduced Simulation of the first case study.
For the number of iterations and the duration, the values shown are meant on average.

5.3. Validation Campaign

For each case study the performances and the results of the algorithms presented have
been validated through more accurate models. The comparison is carried out with General
Mission Analysis Tool (GMAT) by NASA, an open-license software that implements
refined propagators for mission analysis. The software is employed to propagate the
absolute dynamics of the chief and the deputy in the ECI frame subject to perturbations
and control actions (only the latter) that simulate the scientific activity phase and the
reconfiguration. In particular the simulations are setup to include gravitational potential
disturbances expanded up to the fourth order and atmospheric drag with a time-step
of 0.316 seconds, that approximately corresponds to the discretisation step of the mean
argument of latitude in the linearised model. The properties of the spacecrafts are selected
such that the related absolute ballistic coefficients are βc = 0.1 m2/kg and βd = 0.11
m2/kg, in accordance with the term ∆β = 0.01 m2/kg set for the relative dynamics
simulations. The validation aims at verifying both the long-term results of the height of
ambiguity correction and the lobes shift of the reconfiguration. However, being a more
refined model some kind of divergence in the results is to be expected since the algorithms
developed rely on linearised equations of motion. Therefore, the validation campaign for
both the case studies is structured as follows:

• partial validation of the reduced simulation: a three-days simulation to verify the
results of the algorithm correct_h
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Spacecraft a [km] e [-] i [◦] Ω [◦] ω [◦] ν [◦]
Chief 6891 0.0015 97.4671 180 0 0

Deputy 6891 0.0014996 97.4673 179.9979 359.0169 0.9860

Table 5.12: Initial conditions for the validation, expressed in Keplerian orbital elements.

• validation of the reconfiguration: simulation of a single reconfiguration phase con-
sidering six manoeuvres.

From the absolute positions of the spacecrafts it is retrieved the relative position of the
deputy in the LVLH frame, and the results are compared with those of the linearised
model. The height of ambiguity is estimated, for both the models, starting from the
relative positions and considering the altitude constant along the orbits.

5.3.1. Case hobj
2π = 50 m

The absolute initial conditions of the spacecrafts for this case study are summarised in
Table 5.12.

Science Validation

The first validation aims at verifying whether the control actions computed with the
model predictive approach are capable of maintaining a stable height of ambiguity close
to the limits imposed. For the first case study, the results of the validation are reported
in Figure 5.52.
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(a) (b)

(c)

Figure 5.52: Height of ambiguity computed simulating with the validation (a) and the
linearised relative (b) dynamics models. Image (c) shows the behaviour of the height of
ambiguity in case no control is applied, simulated with the validation model

The first thing to note is the different look of the reference (Figure 5.52.a) and linearised
(Figure 5.52.b) solutions. In the first the asymmetry of the lobes in the orbits is more
evident, and increases over time. The plot shows that the algorithms are indeed capable of
maintaining the curve close to the limits: in the first nine orbits, in particular, the height
of ambiguity remains entirely inside the ±2 m range for the whole imaging windows.
Then, due to inaccuracies and divergences between the models, the curve has a drift
towards lower altitudes and the minima overpass the 48 m limit. However it is noted
that, because of the aforementioned asymmetry, one of the lobes still remains above the
48 m limit for six other orbits.
The results shown become even more significant by comparing them with the free-motion
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simulation, in which no control is applied to the deputy (Figure 5.52.c). It’s clearly notable
the high efficacy of the computed manoeuvres in maintaining the lobes both close to each
other and to the 48 m limit, even thought the precision lowers in time. Due to the different
level of accuracy of the models, the relative positions show a diverging behaviour when
compared, that grows to tents of meters after three days (Figure 5.53), or even hundreds
in the case of the along-track position.

(a) (b)

(c)

Figure 5.53: Differences in the relative radial (a), tangential (b) and out-of-plane (c)
positions between the models.

The large deviations observed in Figure 5.53.b in particular might be given by multiple
factors, on top of which a visible drift of the relative semi-major axis, as notable in Figure
5.54. In this picture, the relative semi-major axis computer with the linearised model
is compared with the difference in the osculating semi-major axes of the chief and the
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deputy computer with the validation model. Even though the linearised model employs
short-periodic averaged ROE, from the osculating orbital elements of the validation model
it’s possible to have a clear insight of the general behaviour of this ROE and its differ-
ences in the two models. Other factors that could explain the differences observed in the
along-track positions are approximations in the atmospheric drag modelling and a small
imprecision in the conversion of the manoeuvre instants from mean argument of latitude
of the linearised model to to time, the temporal variable of the validation model, because
of truncation errors.

(a) (b)

Figure 5.54: Relative semi-major axis evolution from the linearised model (in blue) and
difference between the osculating semi-major axes (in red) coming from the validation
model. Image (b) zooms (a) over the first 5 orbits.

Reconfiguration Validation

The second validation aims at verifying whether the HoA can be shifted correctly to
another range of latitudes. The initial conditions for this simulation are the same of the
first configuration in section 5.1. Figure 5.55 reports the result in the height of ambiguity
plot.
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(a)

Figure 5.55: Reconfiguration validation for the first case study. The plot compares the
results of the linearised model (in blue) with those of the validation model(in red). To
verify the shift, the dotted line represents the behaviour of the HoA during scientific
activity with the first configuration. Finally, the purple dots on the bottom identify the
maneuvers location.

The results point out that the manoeuvre is successfully conducted: the curves of the
two models remain close to each other for all the simulation. The only notable difference
is that with the validation model, the lobes show a small overshoot below the 48 m
limit. However, in the ideal mission scenario this detail wouldn’t represent a problem
since during reconfiguration the spacecrafts are not supposed to image the ground. Going
deeper, Figure 5.56 reports the differences between the instant uin and uout in the two
models.
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Spacecraft a [km] e [-] i [◦] Ω [◦] ω [◦] ν [◦]
Chief 6891 0.0015 97.467 180 0 0

Deputy 6891 0.0014738 97.4666 179.9997 359.3563 0.6455

Table 5.13: Initial conditions for the second case study validation, expressed in Keplerian
orbital elements.

(a) (b)

Figure 5.56: Absoulte (a) and relative (b) errors of uin and uout in the two models. The
dotted lines in (a) represent the ±4.5◦ boundaries for the shift, corresponding to half the
selected overlay margin. In (b), the differences between the models are normalised with
respect to the overlay margin itself. Point number 7 in both the plots doesn’t actually
represent a manoeuvre, but the first lobe of the HoA after reconfiguration.

The plots confirm the validity of the manoeuvre showing how, even though the instants
uin and uout don’t precisely correspond in the two models, the differences in the shifts are
safely maintained inside the overlay boundaries for the entire simulation.

5.3.2. Case hobj
2π = 150 m

The initial conditions of the spacecrafts for the second case study are reported in Table
5.13.

Science Validation

The results of the simulation with the validation model are reported in Figure 5.57,
compared with those coming from the linearised model.
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(a) (b)

(c)

Figure 5.57: Height of ambiguity computed simulating with the validation (a) and the
linearised relative (b) dynamics models. Image (c) shows the behaviour of the height of
ambiguity in case no control is applied, simulated with the validation model.

Also for this case study the plot shows the effectiveness of the algorithms, at least for
the first orbits, in maintaining the lobes close to each other, and close to the lower limit
of 148 m. The higher sensitivity of this case study with respect to the previous, already
observed in the Chapter, is reflected in a more clearly visible asymmetry inside each
orbit that around the 10th orbit acquires a larger importance and separates the lobes
couples, always maintaining one of the two inside the ±2 m interval. The comparison
with Figure 5.57 highlights that despite the higher inaccuracy of the last orbits, the
control algorithms still maintain the curve close to the desired objective in contrast to the
strong drift observable in case no control is applied (Figure 5.57.c).
The differences noted in the validation results are caused by a divergence in the relative
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positions estimations of the two models. Figure 5.58 tests the validity of the linearised
model differentiating its results from those of the validation model. It is recognised a
behaviour analogous to that of the previous case study, with a smaller error on the radial
and out-of-plane relative positions.

(a) (b)

(c)

Figure 5.58: Differences in the relative radial (a), tangential (b) and out-of-plane (c)
positions between the models.

Even though the absolute errors on the relative positions are lower, their weight on the
perpendicular baseline is larger because of the shorter range available for imaging. This
can be verified by looking at Figure 5.59, where the errors on B⊥ are reported normalised
with respect to the interval Bmax

⊥ − Bmin
⊥ . This explains the important differences in the

results observed with respect to the previous case study.
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(a) (b)

Figure 5.59: Relative error on the perpendicular baseline for the case study under exam
(a), compared to the error of the previous (b). The errors are normalised by respectively
4 and 19 m.

Reconfiguration Validation

The validation of the reconfiguration manoeuvres is reported in Figure 5.60.

(a)

Figure 5.60: Reconfiguration validation for the second case study. The plot compares
the results of the linearised model (in blue) with those of the validation model(in red).
To verify the shift, the dotted line represents the behaviour of the HoA during scientific
activity with the first configuration. Finally, the purple dots on the bottom identify the
maneuvers location.
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Also for this case study the plot shows how the two curves remain close to each other in
the simulations. To have a more practical insight on the results, Figure 5.61 shows the
differences in Uin and uout between the two models.

(a) (b)

Figure 5.61: Absoulte (a) and relative (b) errors of uin and uout between the models. The
dotted lines in (a) represent the ±2◦ boundaries for the shift, corresponding to half the
selected overlay margin. In (b), the differences between the models are normalised with
respect to the overlay margin. Point number 7 in both the plots doesn’t actually represent
a manoeuvre, but the first lobe of the HoA after reconfiguration.

This time, the overlay margin in shorter (4◦). The plots show that in the last manoeuvres
the shift of uin and uout gets them outside the overlay boundaries. However, it shall be
noted that as long as the boundaries get violated in the first five manoeuvres, it doesn’t
necessary represent a problem. What’s important to verify is that the points stay within
these boundaries after the last manoeuvre, when the shift of the lobes is concluded. For
the case under exam, the instant Uout satisfies this condition. Nevertheless, it is also
noted that the HoA in Figure 5.60 shows an important overshoot, that inevitably forces
uin to back off and uout to push forward. Thus, it is likely that during scientific activities
through the control actions also uout would re-enter within the boundaries.
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6| Conclusions and future

developments

To resume, the purpose of this thesis was to design and test an approach to SAR satellites
formation control starting from defined scientific requirements. With the aim of enhancing
autonomous control, and at the same time reducing the complexity of on-board operations
opting for a computationally efficient design, the work proposes a control strategy with a
Model Predictive approach based on a linearised relative dynamics model to control the
deputy spacecraft. To limit the control level on the formation, the strategy tries to exploit
the natural formation evolution for scientific activities by counteracting the effects of per-
turbations when necessary. The results point out that the most important factor to keep
into account for the mission design should be to minimise the relative semi-major axis
drift by projecting the spacecrafts with ballistic coefficients as similar as possible. How-
ever, this may not always be possible, considering for example the class of pure bi-static
missions, in which a large transmitter/receiver antenna flies in formation with smaller
only-receiving payloads. Therefore, to consider a more general scenario, the simulation
have been run employing a relatively high difference between the ballistic coefficients that
introduced large drifts in the order of 30 m per day because of drag. By comparing the to-
tal impulses necessary with data coming from real missions it was highlighted how, despite
the larger number of manoeuvres foreseen, the strategy implemented had a comparable
cost, even improvable by selecting more similar ballistic coefficients for the spacecrafts. In
the optics of reducing the total mission cost in terms of δv, apart from properly designing
the platforms, it could be also thought to exploit the natural dynamics to reconfigure the
formation instead of doing it through manoeuvres. In particular with the J2, letting the
relative perigee/ascending node drift to shift the lobes of the HoA over a different range
of latitudes. However, given the relatively large time scales (the period of δe is ≈ 100
days), attention must be posed because this might strongly extend the mission duration,
along with the economical costs.
From the on-board resources point of view, the algorithms developed prove to be very fast
in convergence, both in terms of time and number of iterations. Because of unavoidable
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limitations in the modelling accuracy, the validation shows a divergence in the relative
positions estimation from the linearised model. However, inside the range of a few orbits
(ten and six, for the considered case studies), encouraging results suggest that model can
be considered valid and the control can be applied to maintain the height of ambiguity
and satisfy the scientific requirements. A possible solution to enhance the validity of the
results and further develop this work could be to correct the state of the deputy with
accurate measurements, for example by implementing a relative navigation system. The
major drawback of this solution would be a general increase of the complexity at system
level, with the necessity to allocate a substantial fraction of the on-board computational
resources to the relative state estimation. Drawbacks, in principle, largely compensated
by the advantages of simplified ground operations and control capabilities not limited by
visibility windows requirements.
In conclusion, this thesis demonstrates to be a good starting point for a hypothetical
mission design. The critical points identified in these months of work are a valid hint
for possible future studies in the field on autonomous formation flying SAR satellites, a
strongly attractive topic with enormous growth potentialities over the next years.
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