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Abstract 

Transportation networks are the backbone of modern civilization in our linked globe, 

supporting the movement of people, products, and services. Disruptions and 

performance degradation threats in these networks, on the other hand, might have far-

reaching implications. This thesis investigates the use of centrality indices, a set of 

network analytic tools, to analyse and manage the risks of performance degradation 

in transportation.  

Using real-world data, researchers use centrality indices to identify critical nodes and 

linkages within transportation networks. This method aids in identifying potential 

network security threats, where attacks on these critical elements may result in 

performance degradation. The study delves into the complex landscape of threats 

affecting transportation performance, assessing the impact of variables such as traffic 

congestion, accidents, and natural disasters." 

The study's findings highlight the importance of centrality indices in risk assessment 

and management within transportation networks. They can, in fact, be used to 

improve network resilience by identifying critical nodes and linkages, implementing 

preventative measures, and developing effective contingency plans. 

Understanding and managing performance decrease risks is critical in a world where 

transportation networks play a critical role in the global economy. This thesis adds to 

the body of knowledge by illustrating how centrality indices may be used as effective 

tools for risk assessment and decision-making in the transportation domain. 

 

Keywords: Centrality Indices, Risk Assessment, Disruption, Failure, Resilience, 

Transportation Networks 
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Abstract in lingua italiana 

Le reti di trasporto sono la spina dorsale della civiltà moderna nel nostro mondo 

interconnesso e supportano il movimento di persone, prodotti e servizi. Le 

interruzioni e le minacce di degrado delle prestazioni in queste reti, d'altra parte, 

potrebbero avere implicazioni di vasta portata. Questa tesi studia l'uso degli indici di 

centralità, un insieme di strumenti analitici di rete, per analizzare e gestire i rischi di 

degrado delle prestazioni nei trasporti. 

Utilizzando dati reali, i ricercatori usano gli indici di centralità per identificare i nodi 

e i collegamenti critici all'interno delle reti di trasporto. Questo metodo aiuta a 

identificare le potenziali minacce alla sicurezza della rete, dove gli attacchi a questi 

elementi critici possono provocare un degrado delle prestazioni. Lo studio si addentra 

nel complesso panorama delle minacce che influenzano le prestazioni dei trasporti, 

valutando l'impatto di variabili come la congestione del traffico, gli incidenti e i disastri 

naturali". 

I risultati dello studio evidenziano l'importanza degli indici di centralità nella 

valutazione e nella gestione del rischio all'interno delle reti di trasporto. Possono, 

infatti, essere utilizzati per migliorare la resilienza della rete identificando i nodi e i 

collegamenti critici, implementando misure preventive e sviluppando piani di 

emergenza efficaci. 

Comprendere e gestire i rischi di riduzione delle prestazioni è fondamentale in un 

mondo in cui le reti di trasporto svolgono un ruolo critico nell'economia globale. 

Questa tesi si aggiunge al corpus di conoscenze illustrando come gli indici di centralità 

possano essere utilizzati come strumenti efficaci per la valutazione del rischio e il 

processo decisionale nel settore dei trasporti. 

 

Parole chiave: Indici di centralità, valutazione del rischio, interruzione, guasto, 

resilienza, reti di trasporto. 

 

 



iv  

 

 

 



v 

 

 

 

 

 

 

 

 

Contents 

Acknowledgements ................................................................................................................ i 

Abstract .................................................................................................................................... ii 

Abstract in lingua italiana .................................................................................................. iii 

Contents ................................................................................................................................... v 

Introduction ............................................................................................................................. 1 

1. Centrality Measures ........................................................................................................ 5 

1.1 Generalities on Centrality Measures ...................................................................... 5 

1.2 The Classical Centrality Index ................................................................................ 6 

1.2.1 Degree Centrality Measures ............................................................................ 6 

1.2.2 Betweenness Centrality Measure .................................................................... 9 

1.2.3 Closeness Centrality Measure ....................................................................... 16 

1.2.4 Eigen Vector Centrality Measure .................................................................. 21 

2. Centrality Indices .......................................................................................................... 28 

2.1 Introduction ............................................................................................................. 28 

2.2 Path Rank ................................................................................................................. 28 

2.3 Icentr ......................................................................................................................... 30 

2.4 Ishortest .................................................................................................................... 33 

3. Types of Risks Involved in Transportation Modes ............................................... 37 

4. Application of Centrality Indices in Risk Analysis Across Transport Modes . 48 



vi Contents 

 

 

4.1 Introduction ............................................................................................................. 48 

4.2 Applications in Various modes of transportation ............................................. 48 

4.2.1 Road Networks ................................................................................................ 48 

4.2.2 Rail Transit System .......................................................................................... 50 

4.3 Comparative Analysis of Centrality Indices ....................................................... 52 

4.4 Integrating Centrality Indices with other Risk Assessment Techniques ........ 56 

5. Discussion and Proposals ............................................................................................ 61 

5.1 Overview of Key Findings .................................................................................... 61 

5.2 Proposals for Practical Application ...................................................................... 62 

5.3 Limitations and Future Research Directions ...................................................... 63 

5.4 Case Studies and Real-World Applications ........................................................ 63 

6. Conclusion ...................................................................................................................... 68 

7. Bibliography .................................................................................................................. 69 

 

 

 



 1 

 

 

Introduction 

The movement of commodities and people throughout the world is undergoing 

extraordinary changes. The need for effective transportation networks is greater than 

ever as urbanization and population growth pick up speed. The movement of people, 

products, and services is made easier by transportation networks, which constitute the 

lifeblood of contemporary society. This promotes social advancement and economic 

expansion. However, because transportation networks are dynamic and subject to a 

wide range of threats, creative solutions are needed to maintain their resilience.  

Risks associated with performance degradation in transportation networks are 

complex and sometimes difficult to forecast and control. These risks have a significant 

influence on the dependability and functionality of transportation systems, ranging 

from traffic congestion in booming metropolises to supply chain interruptions caused 

by unanticipated events. Understanding and mitigating performance decrease threats 

is not just a responsibility, but an essential Scope in an era when our reliance on these 

networks has never been stronger. We now discuss the idea of centrality indices in this 

context. These are a complex yet effective collection of tools that come from network 

research. Due to its ability to identify important nodes and connections inside complex 

systems, centrality indices have attracted a great deal of attention from a variety of 

disciplines. Although these indicators are widely used in fields like statistics and social 

network analysis, there continues to be little study on how to use them to evaluate the 

risks of performance loss of transportation networks. 

The primary goal of this thesis is to investigate the use of centrality indices as tools for 

identifying and managing performance decrease threats in transportation. Our key 

research question is: Can centrality indices give important insights into critical 

components of transportation networks, allowing us to proactively manage and 

avoid performance decrease risks? Our research intends to contribute to the current 

body of knowledge and fill a gap in the literature by putting light on the untapped 

potential of centrality indices around transportation. This thesis has important 

practical ramifications in addition to being an intellectual undertaking. By using 

centrality indices in transportation risk assessment, planners, stakeholders, and 

decision-makers can be better equipped to deploy resources wisely, make well-
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informed decisions, and strengthen the resilience of transportation networks. By 

utilizing the analytical power of centrality indices, transportation systems may be 

made more resilient and flexible in a world where the efficient and dependable flow 

of people and products is essential to economies and civilizations. The theory and use 

of centrality indices in the context of transportation networks will be examined in the 

next chapters, where we will also offer research findings that highlight the 

transformational potential of these indices in the quest of network performance and 

risk reduction. 
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1. Centrality Measures 

1.1 Generalities on Centrality Measures 

Centrality measurements are useful in network studies and graph theory because they 

highlight critical nodes within a network. “Since every centrality measure takes into 

consideration different features of networks, nodes can be central for an index, but less 

important for another one. Hence, it is important to deeply understand the ratio 

behind each index, and to compare outcomes of different indices to have a 

comprehensive understanding of the network”[1] They aid researchers in 

understanding and representing the significance of nodes in networks. These 

measurements are commonly used to identify prominent participants in big and 

complicated social networks.[2]. 

In the context of networks, centrality refers to measures that quantify the relative 

significance or impact of nodes within a network. Centrality measurements are 

important in network analysis because they help anticipate the properties and 

importance of nodes. There are several centrality measures to choose from, including 

degree centrality, betweenness centrality, and closeness centrality. These 

measurements evaluate several elements of a node's significance, such as connection, 

influence in information flow, and closeness to other nodes.[1] 

Here are some key centrality measures and their contributions: 

1. Degree centrality: A node's popularity or influence is determined by the 

number of connections it has.[3] 

2. Closeness centrality: Indicates an efficient means of information dissemination 

by measuring the speed at which a node can connect to other nodes.[3] 

3. Betweenness centrality: Indicates a node's control over information flow by 

measuring how far it is located on the shortest paths between other nodes.[3] 

These centrality measurements aid in the identification of key nodes in a network by 

quantifying their attributes and significance. [1] By offering information on node 

locations, routes, walks, and geodesics, they improve our comprehension of network 
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architecture. [4]  When several centrality measurements are applied to real-world 

networks, the results may be comparable, highlighting the robustness of certain 

network structures. However, it is critical to recognize that divergent centrality 

indices, which are designed to capture different aspects of network dynamics, may 

produce incomparable results. This nuanced understanding emphasizes the 

significance of selecting appropriate centrality measures that are aligned with the 

network's specific characteristics and objectives. [5] All things considered, centrality 

measurements are essential to network analysis since they offer insightful data 

regarding the significance and role of nodes inside a network. [2] 

 

1.2 The Classical Centrality Index 

1.2.1 Degree Centrality Measures 

The number of edges incident to a vertex determines its degree of importance, which 

is a basic concept in network theory. It is the most basic notion of centrality and has 

been applied extensively “to analyse networks of different kind”. Higher degree 

centrality denotes a more central or significant vertex in the network. Degree centrality 

is computed by counting the number of edges connected to a vertex. 

Degree centrality is a key notion in network analysis, providing a basic measure of a 

vertex's importance in a network based on its connection.[6] 

The following are some crucial details regarding degree centrality's significance in 

network analysis: 

1. Fundamental concept: Degree centrality, which rates a Node’s significance in a 

network's structure and dynamics, is the historically first and conceptually most basic 

centrality concept.[6] 

2. Widely used: One of the most used metrics for determining a node's significance 

within a network centrality.[3] 

3. Connection and influence: It is Centrality gauges a node's degree of influence and 

connection by counting the edges that incident on a vertex.[6] 

In general, degree centrality is an essential metric in network analysis since it aids in 

the identification of significant nodes and the comprehension of the dynamics and 

structure of networks.[3] [6] 

A mathematical model that uses a node's number of edges to determine how important 

it is in a network. The fractional information centrality shows shifts in centrality ranks 
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as the fractional parameter fluctuates, and it may be computed using the graph 

Laplacian and its fractional analog. The shift of the fractional information centrality 

from a local to a global centrality measure is revealed by the link between the fractional 

information centrality and the degree centrality.[6][7] 

 

The calculation of degree centrality is shown in Equation. 

𝐶𝐷(𝑗) =  ∑ 𝐴𝑖𝑗

𝑛

𝑗=1
                                                           

𝐶𝐷(𝑗)represents the degree centrality of node (j).  

A denotes the adjacency matrix of the graph. 

The formula for degree centrality in a symmetric matrix and the formula for 

calculating out-degree centrality for an asymmetric matrix are the same. On the other 

hand, the usual formula for determining in-degree centrality is inverted, adding down 

the columns j instead of across the columns i equation. 

It is important to note that in an undirected network, the node for which you are 

calculating the centrality cannot be connected to itself in a simple graph; therefore, 

"Number of connections to the node" represents the number of edges or links 

connected to the node you are interested in. "Total number of nodes - 1" is used to 

normalize the Degree Centrality. It is subtracted by one to exclude the node you are 

calculating the centrality for from the denominator. In a directed network, the formula 

changes slightly:  

In-Degree Centrality (C_in): C_in = (Number of incoming connections to the node) / 

(Total number of nodes - 1)  

Out-Degree Centrality (C_out): C_out = (Number of outgoing connections from the 

node) / (Total number of nodes-1). 

Well, for directed networks, you must sum of rows to get the out-degree and on 

columns to get the in-degree. For undirected networks, rows and columns give the 

same result because the adjacency matrix is symmetric. 

Higher degree centrality values indicate nodes that are more central or well-connected 

within the network. Degree Centrality values vary from [0, n-1]. where n is the number 

of nodes of the network. Furthermore, degree 0 means that the node is connected to 

no other node of the network, and so the network itself is not connected. This does not 

happen in transportation networks. 
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The network's adjacency matrix-based methods can be used to efficiently do this 

computation. [8] 

It is a measure for interpreting a node's significance or centrality inside a network. 

1. Because degree centrality numbers are based on the number of direct connections a 

node has, they might be affected by the local feature of a network.[7] 

2. Other centrality measures, such as information centrality, should be considered. 

Information centrality expresses a node's global significance within a network by 

accounting for not only its direct connections but also the indirect influence it has 

across the entire network structure.[7] 

In network analysis, comparing nodes according to their degree centrality is standard 

procedure.  

Many centrality metrics and techniques for determining prominent nodes according 

to their degree of centrality are covered in several abstracts. These are the main ideas: 

Edge Centrality is taken into consideration: Presents the idea of nearest-neighbor edge 

centrality, which gauges the significance of edges within a network. Although degree 

centrality is a commonly used metric for vertices, an edge centrality idea comparable 

to vertex degree does not yet exist. Nonetheless, a notion known as nearest-neighbor 

edge centrality has been put forth that can recognize central edges in both real-world 

networks and network models.[6] 

The concept of nearest-neighbor edge centrality is introduced, which takes edge 

centrality into account. This metric measures the importance of relationships between 

adjacent nodes to assess the significance of edges within a network. The centrality of 

nearest-neighbor edges reveals information about the local connectivity and influence 

of edges. 

 

Limitations: 

It is important to keep in mind that degree centrality has certain restrictions and 

disadvantages. 

1. Unimodular behaviour: A study revealed that very large and very small groups are 

not very central, suggesting that a group's centrality value rises with size but 

eventually begins to fall. [9]This implies that the significance of very tiny or large 

groups in a network may not be fully captured by degree centrality. 

2. Limited information regarding node positions: The number of edges incident to a 

node determines degree centrality, which is a basic indicator of significance but could 

miss other crucial details of a node's placement within the network.[4]. In some 
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circumstances, additional centrality measures like betweenness centrality and 

closeness centrality may offer a more thorough knowledge of node importance. [10] 

3. Suitability in psychological networks: Because of presumptions that might not hold 

true in this situation, degree centrality, betweenness centrality, and closeness 

centrality may not be appropriate indicators of node importance in psychological 

networks. More suitable centrality measurements might be ones that consider the 

unique traits of psychological networks.[10].  

In conclusion, degree centrality is a commonly used measure, but it has limits when it 

comes to accurately representing the significance of nodes in a network, especially 

when it comes to very small or huge groups as well as certain network types like 

psychological networks. In these situations, a more thorough understanding of node 

importance might be possible using other centrality methods. In some cases, degree 

centrality might not give an accurate representation. Here are a few justifications: 

1. Fractional centralities: The fractional degree centrality,  which is primarily driven by 

the local aspect, is unable to capture changes in node centrality rankings that the 

fractional version of the information centrality, which considers both local and global 

aspects, can produce.[7] The fractional degree centrality quantifies the fraction of 

neighbors a node connects to within a network, which is primarily driven by the local 

aspect. It cannot, however, capture changes in node centrality rankings. The fractional 

version of information centrality, on the other hand, takes into account both local and 

global aspects, providing a more comprehensive measure of a node's significance by 

accounting for both direct and indirect influences throughout the network. 

In summary, Degree centrality is a local centrality measure that counts the number of 

edges that intersect a node to determine its importance. This measure is relevant to 

complex networks and can be used to compute group centrality estimations. Instead 

of focusing on individual nodes, group centrality often includes analyzing the 

centrality of a group of nodes collectively. 

 

1.2.2 Betweenness Centrality Measure 

Betweenness centrality is a measure that quantifies a single vertex's tendency to be 

more central than all other vertices in a graph. [11] The number of shortest paths that 

pass through the vertex determines its percentage. From the perspective of network 

analysis, it’s crucial for locating important nodes and connections inside a network. A 

graph is said to be betweenness-uniform if its betweenness centrality is the same at 

every vertex. These graphs have intriguing characteristics, like the fact that they are 

either 3-connected graphs or K-regular graphs Furthermore, tiny diameters are 
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typically found in betweenness uniform graphs with high maximal degree. [12]. The 

idea behind the mathematical definition of betweenness centrality is that a node can 

potentially affect the information traveling down a path if it is located on the shortest 

path between two other nodes.[13]  Different centrality measures: In network analysis, 

several centrality measures are employed. However, betweenness centrality is 

particularly significant as a measure that captures a node's impact in linking others in 

the network. Compared to other centrality measures like degree centrality, it differs 

conceptually. 

In terms of shortest pathways, it measures the frequency with which a node appears 

between pairs of other nodes. Many measures have been put out to quantify 

betweenness centrality, such as Random Walk Betweenness Centrality, Stress 

Centrality, and Betweenness Centrality. The classic formula for calculating 

betweenness centrality (B) for a network node i is as follows: 

𝐵(𝑖) = 𝛴𝑠≠𝑖≠𝑡

𝜎𝑠𝑡(ⅈ)

𝜎𝑠𝑡
 

𝜎𝑠𝑡 is the total number of shortest paths between nodes s and t, 

𝜎𝑠𝑡(𝑖) is the total number of paths that pass-through node i. 

Axiomatic methods have been used to examine and characterize these 

measurements.[14] Applications for it can be found in many domains, including as 

information dissemination, network control, and social network analysis.[15] [16] Find 

all the shortest pathways in the network between pairs of nodes, then count how many 

of those path’s travel through each node to calculate betweenness centrality.[17]  

Betweenness Centrality Equation (Brandes Algorithm): 

𝐵(𝑣) = 𝛴𝑠≠𝑣≠𝑡

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 

It finds all the shortest paths in the network between two nodes, counts how many of 

those paths pass through each node, and calculates betweenness centrality.  

𝐵(𝑣) is Betweenness centrality of node v .𝜎𝑠𝑡 Total number of shortest paths from node 

s to node t . 𝜎𝑠𝑡(𝑣) Number of those paths that pass-through node v. 

The equation is derived from the Brandes algorithm, which is widely used for 

computing betweenness centrality in complex networks. In particular, Maccari's 

research has helped to improve the efficiency and scalability of algorithms for 

calculating betweenness centrality in large-scale networks. 

The Brandes algorithm improves the computation of betweenness centrality by 

efficiently counting the number of shortest paths and those that pass through each 
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node. Maccari's contributions could include additional optimizations or performance 

improvements to the algorithm, allowing it to be applied to larger and more complex 

networks. 

To calculate betweenness centrality, several techniques are available, including the 

O(n^3) tipass-through randes algorithm.[18]. Additional techniques, such as the one 

put out by Maccari et al., are designed to increase the computational efficiency of 

betweenness centrality in distributed networks.[19] 

The following are the ways that betweenness centrality varies for directed and 

undirected networks: 

1.Undirected Networks: The average shortest distance between nodes in connected 

components determines the betweenness centrality in undirected networks. The 

relationship between average shortest distances and betweenness in undirected 

networks is disclosed by the betweenness identities.[14] 

2. Directed Networks: According to their function, such as a transition node inside a 

cluster or across clusters, this model characterizes nodes' behaviour. In directed 

networks, it offers a node classification and strengthens dense communities. A novel 

centrality model based on random paths betweenness centrality is applied in directed 

networks. [20] 

In network analysis, this is a crucial node influence measure. By counting the number 

of shortest paths that travel through a node, it evaluates a node's potential influence 

on a network. The following are some essential details about betweenness centrality's 

significance: 

1. Node influence: The degree to which a node serves as a link or intermediary between 

other nodes in a network is measured by betweenness centrality. Nodes with high 

betweenness centrality can regulate the movement of resources or information 

throughout the network.[13] 

Several effective techniques have been put forward to calculate betweenness 

centrality. 

k-step BC and k-step GBC: These betweenness centrality variations calculate the 

probability that information will go along the shortest paths in a predetermined 

amount of transmission time.[15] 

Betweenness Centrality k-step (BC k-step): 

1. The chance that information will travel down the shortest paths inside a 

network within a certain length of transmission time (k steps) is calculated by 

k-step BC. 
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2. Rather of considering all feasible paths, k-step BC concentrates on the shortest 

paths that can be taken within a given time period or transmission budget (k 

steps). It takes into account the amount of time it takes for information to transit 

between nodes. 

k-step Group Betweenness Centrality (k-step GBC): 

1. K-step GBC, like k-step BC, extends the concept to group dynamics. It computes 

the likelihood that information will flow down the shortest paths among a set 

of nodes within a given transmission time (k steps). 

2. In the context of k-step GBC, the analysis is focused on groups of nodes as well 

as individual nodes. The metric sheds light on how information can travel 

efficiently within a group in a short amount of time. 

Both types have a temporal component by taking into account the number of steps or 

time units necessary for information transfer. These measurements are especially 

relevant in cases where the amount of time it takes for information to transit between 

nodes is essential. 

2. Approximation algorithms: To expedite betweenness centrality computations, 

several approximation algorithms have been created. The computing time can be 

drastically decreased by using these algorithms. Approximation algorithms for 

betweenness centrality use a variety of techniques to produce faster computations, 

such as randomization, single-pass tactics, parallel processing, and heuristics. These 

techniques are critical in dealing with the computing challenges of centrality analysis 

in big and complicated networks. The specific choice of an approximation method is 

determined by the network's features and the desired balance of speed and accuracy. 

4. Distributed algorithm: With just minor adjustments to distance-vector routing 

protocols, an effective algorithm has been developed for calculating betweenness 

centrality in a distributed Network [19] 

5. borders computation: To decrease the number of candidate groups of nodes and 

increase efficiency, a method has been developed to compute boundaries on the group 

betweenness centrality of groups of vertices.[21] 

6. Incremental approach: Rather than starting from scratch, an incremental technique 

has been designed to compute betweenness centrality in dynamic networks. 

The incremental technique to computing betweenness centrality in dynamic networks 

is a strategy that efficiently updates centrality scores as the network changes over time. 

Instead of recalculating centrality from scratch each time the network topology 

changes, the incremental technique updates the existing centrality values to integrate 
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the changes more efficiently. Dynamic networks are those that alter over time. 

Changes can include the addition or removal of nodes, the addition or deletion of 

edges, or changes to the weights of existing edges. 

The following equation the betweenness centrality of a node 𝑣: 

𝑔(𝑣) = ∑
𝜎𝑆𝑡(𝑣)

𝜎𝑆𝑡

𝑠≠𝑣≠𝑡

 

Where 𝜎𝑆𝑡 total number of shortest paths from node 𝑆 to node 𝑡 and 𝜎𝑆𝑡(𝑣) is the 

number of those paths that come through 𝑣 (where 𝑣 is not an end point. 

According to the summation indices, a node's betweenness centrality grows with the 

number of pairings of nodes. As a result, the computation may be rescaled by dividing 

through by the number of node pairings that do not include 𝑣. 

The measure of betweenness centrality, indicated by g(v), is not naturally constrained 

to the range [0,1]. However, for the purposes of normalization, it is usual in directed 

graphs to divide by (N-1)(N-2)/2, and in undirected graphs to divide by (N-1)(N-2)/2. 

This normalization is used to scale values inside a specified range and make 

comparisons across networks easier, where N is the number of nodes. It should be 

noted that this scales for the greatest possible value when every single shortest path 

crosses one node. This is frequently not the case, and normalization can be conducted 

without sacrificing precision. 

Normal (𝑔(𝑣)) = 
𝑔(𝑣)−𝑚𝑖𝑛(𝑔)

𝑚𝑎𝑥(𝑔)−𝑚𝑖𝑛(𝑔)
     Where the results in  max(normal) = 1 ;Min(normal) = 

0 where min(g) represents the minimum betweenness centrality value in the network, 

and  max(g) represents the maximum. The normalized values obtained, given as 

Normal (𝑔(𝑣)), range from 0 to 1. It is important to note that this normalization method 

is network-specific and may not be appropriate when comparing betweenness 

centrality values across different classes of networks. 

All things considered, these algorithms offer effective methods for calculating 

betweenness centrality in various network settings, enhancing computation speed and 

accuracy. 

It is important to note that this is always a scaling from a smaller range into a wider 

range, thus no accuracy is lost. 

Higher values denote greater centrality. When the index is normalized, the 

betweenness centrality values normally vary from 0 to 1. Because it is located on 

numerous shortest paths that connect other Nodes, a vertex with a high betweenness 

centrality value is thought to be more central and influential in the network.[22][13]. 
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Understanding the significance of a vertex in a graph can be gained by interpreting 

high and low betweenness centrality values. 

1. High betweenness centrality: When a vertex in a graph has a high betweenness 

centrality score, it means that it is important for connecting other vertices. It implies 

that the vertex may be a bottleneck or bridge in the network since it is located on 

numerous short paths connecting other vertices. 

2. Low betweenness centrality: Conversely, a vertex with a low betweenness centrality 

score may have less of an impact on the connections it makes with other vertices. It can 

suggest that the vertex is not a vital bridge or connectivity in the network. 

When evaluating betweenness centrality ratings, it's critical to take the specific context 

and goal of the network study into account. 

In conclusion, vertices with high betweenness centrality scores are critical for forming 

short connections with other vertices, whilst those with low scores are thought to have 

less influence. Nonetheless, the interpretation needs to take the particulars of the 

network under research into account and be dependent on the surroundings. 

[4][10][22] 

Evaluating applications of betweenness centrality in transportation and infrastructure 

planning. 

1. Identifying critical sites in road networks necessitates consideration of both 

topological and geographical factors. A modified type of betweenness centrality 

known as origin-destination betweenness centrality was used in this scenario. To 

identify crucial spots in a transportation network, this modified measure considers 

both topological traits and geographical considerations. 

2. Determining the number of passengers drawn to public transportation stations: It 

was discovered that network centrality analysis, which includes betweenness 

centrality, was a helpful indication for determining the number of passengers at public 

transportation stations. [23] 

These results suggest that betweenness centrality can be utilized in infrastructure and 

transportation planning to evaluate the configuration of road networks, pinpoint 

important sites, and calculate the number of passengers drawn to public 

transportation hubs. [24][25][23] 

There are various restrictions and difficulties related to betweenness centrality that 

need to be taken into account: 

Shortest path assumption: Betweenness centrality assumes that data in the network 

travels along the shortest paths. In real-world networks, where information may travel 

via several paths, this could not always be the case. 
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Computational complexity: It can be computationally costly to calculate betweenness 

centrality for big networks. To expedite these computations, three approximation 

techniques have been created. 

Graph operations: A composite graph's nodes' betweenness centrality may vary 

depending on its structure. When a composite graph is created by joining various 

graphs, the betweenness centrality of nodes within the composite graph can vary. This 

variation is due to the structural properties established during the process of joining 

different graphs, which alter the flow of information and the relative importance of 

nodes in the final composite network. 

amalgamation and merging are graph procedures that entail joining nodes and edges 

to produce composite networks. These procedures can be used to investigate the 

betweenness centrality of composite networks and to comprehend how the combining 

of different topologies affects the flow of information or influence within the final 

network.[13][26][27] 

In Following cases, betweenness centrality might not be the best measure. 

1. The assumption that every connected betweenness-uniform graph is either a cycle 

or a three-connected graph means that the uniformity in betweenness centrality is 

specifically seen in these two categories. When a graph does not fall into the cycle or 

three-connected categories, it implies that betweenness centrality may not exhibit the 

same uniform patterns, allowing for more sophisticated graph topologies that differ 

from this observed uniformity.[12] 

3. Spatial arrangement of network elements: Betweenness centrality computations 

may be biased due to the spatial density of nodes. A factor to consider in network 

analysis where the spatial density of nodes might induce bias in estimates of 

betweenness centrality. This bias occurs when densely inhabited areas may have 

greater centrality values mistakenly, thus influencing the understanding of the 

network's structural relevance.  

Betweenness centrality offers an alternative viewpoint on node relevance when 

compared to other centrality measures like degree centrality, whereas degree 

centrality counts the number of connections a node has. Conversely, betweenness 

centrality emphasizes a node's function in tying other nodes in the network together. 

Although each of the two centrality measures has advantages and disadvantages of 

their own, betweenness centrality is especially helpful in locating nodes in the network 

that serve as bottlenecks or bridges. [12][11][10] 
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The Benefits 

1. Measures node importance: Betweenness centrality calculates a node's relevance 

based on its position in the network. 

2. Identifies central nodes: In a network, nodes with high betweenness centrality are 

frequently regarded as its center nodes. [4] 

Negative aspects: 

1. Computational complexity: It can be computationally costly to calculate 

betweenness centrality for big networks.  

Complementarity:  

Betweenness centrality is a measure that evaluates a node's importance in linking other 

nodes in a network. Here are some important conclusions and revelations regarding 

betweenness centrality: 

1. Axiomatic analysis: One of the medial centrality metrics that evaluates a node's 

contribution to linking other nodes in the network is betweenness centrality. It is 

predicated on the idea that data in networks takes the shortest paths.  On the other 

hand, Random Walk Betweenness Centrality assumes that data moves at random 

along the edges. 

2. characteristics of graphs that are betweenness-uniform: Three-connected graphs or 

cycles are examples of betweenness-uniform graphs. Furthermore, tiny diameters are 

found in betweenness uniform graphs with high maximal degree.[12] 

3. Connection to additional centrality metrics: The foundation of betweenness 

centrality is the distinction between the most central vertex's centrality and all other 

vertex's centralities.[13][22] 

 

1.2.3 Closeness Centrality Measure 

Closeness Centrality is a distance-based centrality measure that assigns a node's rank 

in a graph according to how close it is to other nodes. Closeness centrality is a useful 

measure for assessing node relevance in a variety of contexts, including spatial 

network facility placement issues. [28] The information content and flow in networks 

can be described using information elements and partial ordering. [29] 

Cross-Layer Closeness Centrality (CCC): A novel measure known as cross-layer 

closeness centrality (CCC) has been defined in the context of multiplex social networks 

or multi-layer networks to calculate a node's degree of closeness to each other node in 

the network. [30]  The CCC is calculated by considering the shortest paths that span 
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different layers of the multiplex network. The goal is to capture both intra-layer and 

inter-layer connections, providing a more comprehensive measure of a node's 

centrality across the entire multiplex structure. 

While classical closeness centrality focuses on the shortest paths inside a single layer, 

CCC applies this notion to multiplex networks by combining data from many layers. 

It simply combines intra-layer closeness centrality with inter-layer connections, 

providing a more nuanced view of a node's proximity within the larger multiplex 

social network. CCC presents a valuable technique for capturing the deep 

relationships inside multiplex networks, providing insights regarding node centrality 

that extend beyond the bounds of standard closeness centrality. 

The closeness centrality of vertices in a variety of graph forms, including the shadow 

graph, complementary prism, edge corona, and disjunction of graphs, can be 

calculated using derived formulas. [31] 

𝐶𝐵(𝑥) =
1

𝛴𝑦 ⅆ(𝑦, 𝑥)
 

Where ⅆ(𝑦, 𝑥) is the distance (shortest route length) between vertices 𝑥 and 𝑦  

[32]People commonly refer to closeness centrality in its normalized version, which 

indicates the average length of the shortest pathways rather than their total. It is 

commonly provided by multiplying the preceding formula by N-1, where N is the 

number of nodes in the graph, resulting in: 

𝐶(𝑥) =
𝑁 − 1

𝛴𝑦 ⅆ(𝑦, 𝑥)
 

The normalizing of closeness makes it easier to compare nodes in graphs of varying 

sizes. For big graphs, the negative one in the normalisation becomes insignificant and 

is frequently deleted. 

Closeness centrality can be computed by means of a modifies breadth-first search 

algorithm as follows. Starting with a node, the algorithm finds its neighbors, then the 

neighbors, and so on, until every node has been examined. Each visited node's distance 

from the starting node is measured, and the reciprocal of the total of these distances is 

used to compute its closeness centrality.[33] 

The following equation describes the described algorithm for computing closeness 

centrality via a modified breadth-first search: 

𝐶𝐶(𝑣) =
1

∑ ⅆ(𝑣,𝑢)𝑢≠𝑣
     

Where, 

𝐶𝐶(𝑣)   is the closeness centrality of node 𝑣 
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ⅆ(𝑣, 𝑢)  represents the shortest path distance from node 𝑣 to node 𝑢 

The sum is taken over all nodes  𝑢 that are not equal to 𝑣 measuring the reciprocal of 

the total of these distances. 

It measures the average separation between a certain node and every other node in the 

network.[30][34] 

Closeness centrality can also be calculated using shortest-path graphs. These trees can 

be used to determine the inverse relationship between the logarithm of degree and 

closeness centrality, as well as to estimate the network topology. In this context, 

"estimating network topology" refers to the use of certain structures, most commonly 

trees, to study and infer the network's overall organization and connectivity patterns. 

A special component of this analysis is the inverse relationship between the logarithm 

of degree and closeness centrality, which provides insights into the interaction 

between node degrees and their network centrality. 

Closeness centrality can also be calculated using shortest-path graphs. These trees can 

be used to determine the inverse relationship between the logarithm of degree and 

closeness centrality, as well as to estimate the network topology.[35] 

The following instances demonstrate how closeness centrality for nodes in a network 

is calculated: 

1. Distributed Detection: Each node in a distributed network uses a breadth-first search 

technique to approximate its own closeness centrality, which it then shares with other 

nodes.[33] 

Shortest-Path Tree: A tree structure known as a shortest-path tree covers all the nodes 

in a network, with each edge denoting the shortest path between a root node and all 

other nodes. It is a depiction of the shortest routes between the network's root and 

every other node. The "inverse of closeness centrality" is the reciprocal of closeness 

centrality. The degree to which a node is close to every other node in the network is 

measured by its closeness centrality. The inverse of closeness centrality within the 

shortest-path tree's structure is directly proportional to the degree logarithm of the 

node. This suggests that in the shortest-path tree, nodes with greater degrees typically 

have lower inverse closeness. Nodes with greater degrees in the tree may have a 

different closeness centrality profile than nodes with lower degrees, according to a 

pattern suggested by the link between the inverse of closeness and the logarithm of 

degree in the shortest-path tree. 

2. Approximation of Closeness Centrality via Shortest-Path Tree: The inverse of 

closeness is directly proportional to the logarithm of degree in a shortest-path tree.[35] 
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When analyzing networks, closeness centrality is a crucial indicator of node influence. 

Calculating closeness centrality requires a lot of work and time, particularly when 

separating graphs. [36] Although there are different centrality measures and 

modifications to consider based on the environment and analytic aims, Closeness 

centrality is an effective measure for evaluating node accessibility and influence in 

networks.  

The information content and flow in networks can be described using information 

elements and partial ordering. [29] 

In complex network systems, the significance of nodes and edges can be ascertained 

by analyzing flow adjacency matrices and network context. A Flow adjacency matrix 

is a square matrix in which each element (i, j) denotes the degree or intensity of flow 

in the network from node i to node j. The flow can depict a variety of interactions, 

including resource exchange, influence, traffic, and information transfer. When 

working with directed networks, where interaction direction is important, this matrix 

is extremely helpful.[37]  

The following insights can be used to interpret closeness centrality values, both high 

and low. 

A node with a high closeness centrality score is close to many other nodes and has a 

rapid path to every other node in the network.  A node with a low closeness centrality 

score may be difficult to reach in the network due to its relative distance from other 

nodes.[30] 

It is crucial to remember that the network context—such as psychological networks—

may affect how appropriate closeness centrality is as a gauge of node importance. Due 

to assumptions that could not be consistent with the interactions between 

psychological variables, betweenness and closeness centrality may be less appropriate 

as indicators of node importance in psychological networks.[10] 

In conclusion, low closeness centrality values imply limited reachability, whereas high 

scores show that a node is well-connected and can swiftly reach other nodes. The 

specifics and presumptions of the network under analysis must be considered, as the 

interpretation may change based on the network context.[10][30] 

Effective calculation: Developing methods that split large networks into biconnected 

components and employ incremental update approaches to maintain computation 

results when graphs change is one way to solve the time-consuming nature of accurate 

closeness centrality calculations.[38] Subgraphs that are maximally biconnected within 

a graph are called biconnected components. Stated differently, it is a connected 

subgraph that maintains its connectivity even if any vertex (node) or edge is 
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eliminated. In graph theory, biconnected components are essential, especially when it 

comes to recognizing strong network architectures. 

The drawbacks and difficulties of closeness centrality must be considered. 

1.Disjoint multipath closeness centrality: In contrast to alternative paths, traditional 

closeness centrality simply considers the shortest paths. discontinuous multipath 

closeness centrality is a new metric that takes into account multiple shortest and 

discontinuous quasi-shortest paths to discover nodes that are multiply connected and 

close to all other nodes. Better-connected nodes are identified by this metric, which 

also retains strong agreement with other closeness measures. [39] Closeness of disjoint 

multipath A new measure called centrality was created to evaluate a node's centrality 

in a network by accounting for numerous shortest paths as well as discontinuous 

quasi-shortest paths in addition to the shortest paths. This method yields a more 

complex measure of closeness by identifying nodes that are multiply connected in 

addition to being well-connected. 

2. Distinctiveness centrality: This is a novel measure that gives nodes that maintain 

connections with the network's perimeter a better score. It finds social players with 

more distinctive network relationships and penalizes links to highly connected nodes. 

While they employ different strategies, closeness centrality and distinctiveness 

centrality both aim to identify significant nodes within a network. Distinctiveness 

centrality adds a dimension of uniqueness by prioritizing nodes that maintain 

distinctive connections, especially with the network's perimeter, while closeness 

centrality stresses efficiency and centrality in the network. The delicate balance 

between being important and unique determines how the two relate to one 

another.[36] 

Degree centrality and closeness centrality have a nonlinear relationship in which the 

logarithm of degree determines the inverse of closeness.[35] 

Considering nodes as processes, input, and output betweenness centralities are 

suggested as measures to identify significant nodes in directed networks.[40] 

Effective calculation: Developing methods that split large networks into biconnected 

components and employ incremental update approaches to maintain computation 

results when graphs change is one way to solve the time-consuming nature of accurate 

closeness centrality calculations.[38] Subgraphs that are maximally biconnected within 

a graph are called biconnected components. Stated differently, it is a connected 

subgraph that maintains its connectivity even if any vertex (node) or edge is 

eliminated. In graph theory, biconnected components are essential, especially when it 

comes to recognizing strong network architectures. [41] 
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Dynamically developing directed and weighted networks are those that constantly 

add new nodes and edges as they develop. The connections between nodes in this class 

of networks are given a weight and a direction. According to the theory of dynamic 

growth, the network grows when new nodes and edges are added, including 

modifications and additions to the system. A fast approach that adjusts to the dynamic 

structure of the network is used to compute closeness centrality values in dynamically 

developing directed and weighted networks. This method optimizes the closeness 

centrality computation without having to do a new calculation by accounting for 

dynamic changes like the insertion of additional nodes and edges. 

1.2.4 Eigen Vector Centrality Measure 

Eigenvector centrality is the term used to describe the primary eigenvector of a graph's 

adjacency matrix. [42] It is a metric for determining a node's relative relevance in a 

network based on the quantity of interactions it has as well as its structural placement. 

Eigenvector centrality has been extensively employed in numerous applications, 

including multiplex network characterization and node ranking in complex 

systems.[43] To overcome some of its shortcomings, like the localization of the major 

eigenvector and challenges with centrality weight assignment, it has also been 

expanded upon and altered. Overall, eigenvector centrality is a useful technique for 

determining the importance of nodes in complicated networks.[44] 

It considers the quantity of interactions a node has in addition to its structural 

placement within the network.[42] 

An effective metric for determining node relevance in intricate networks is eigenvector 

centrality. It has been expanded upon and used in a variety of contexts to provide 

insights on network dynamics and structures. It considers both the quantity of 

interactions and the structural locations of nodes. 

The primary eigenvector of the graph's adjacency matrix serves as its foundation. The 

following are the main characteristics of the eigenvector centrality mathematical 

formulation: 

The eigenvector centrality (EC) for a node i in a graph with adjacency matrix A 

𝐸𝐶(ⅈ) =
1

𝜆
𝛴𝑗𝐴𝑖𝑗 ⋅ 𝐸𝐶(𝑗)  

where: 

𝐸𝐶(ⅈ) is the eigenvector centrality of node ⅈ 

𝐴𝑖𝑗 represents the element at the ⅈth row and 𝑗th column of the adjacency matrix A 

λ is the eigenvalue corresponding to the eigenvector centrality. 
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Weights can be added to the diagonal elements of strongly connected components in 

the adjacency matrix to use the principal eigenvectors of the adjacency matrix as 

centrality measures for digraphs. 

For layer-coupled multiplex networks, where the layers represent various 

relationships and interactions between entities, matrix function-based centrality 

measures have been extended. By considering the graph's adjacency matrix and 

utilizing the principal eigenvectors of the matrix or modified matrices based on 

various graph components, eigenvector centrality may be computed. 

1. Start with the adjacency matrix of the graph. The graph's nodes' connections are 

represented by this matrix. 

2. The adjacency matrix is symmetric in the event that the graph is undirected. 

The adjacency matrix of a directed graph could be asymmetric. 

An eigenvalue issue must be solved to determine the eigenvector centrality. The 

formula to be solved is 𝐴𝑣 = 𝜆𝑣 where,  

𝐴  is the adjacency matrix;𝑣 is the eigenvector;𝜆 is the corresponding eigenvalue. 

The adjacency matrix's primary eigenvectors are calculated. The biggest eigenvalues 

are represented by these eigenvectors. Next, the acquired eigenvector is normalized to 

make sure that all its members have a magnitude of one or add up to one. It is 

important to do this normalizing step when comparing centrality ratings between 

various nodes. The graph's nodes' centrality scores are represented by the components 

of the normalized eigenvector. Nodes in the network are regarded as more central 

when they have greater centrality scores. 

The following algorithms are used to compute eigenvector centrality: 

It is a well-established and effective technique that is frequently employed in many 

different applications, including PageRank, spectral embedding, and principal 

component analysis. When the right parameters are selected, the power method can 

be further enhanced by utilizing variations such parameterized power methods, which 

can lead to more efficient iteration techniques. For the power iteration approach to be 

optimized, choosing the right parameters is essential. It entails thinking about starting 

points, shifts, normalization, parallelization, iteration limitations, convergence criteria, 

and restarting. When working with huge matrices or in situations where the 

dominating eigenvalue is surrounded by others, modifying these values can result in 

faster and more consistent convergence. 

For a given graph G= (V, E) with |𝑣| vertices let A = (𝑎𝑣,𝑡) be the adjacency matrix, 

where 𝑎𝑣,𝑡 = 1 if the vertex 𝑣 is linked to vertex 𝑡, and 𝑎𝑣,𝑡 = 0 otherwise. The relative 

centrality score 𝑥𝑣, of vertex 𝑣 can be defined as: 
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𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡 =

1

𝜆
 ∑ 𝑎𝑣,𝑡𝑥𝑡

𝑡∈𝑉

 

𝑡∈𝑀(𝑣)

 

Where 𝑀(𝑣) is the set of neighbours of 𝑣 and 𝜆 is a constant. This may be represented 

in vector notation as the eigenvector equation with minor changes. 

𝐴𝑥 = 𝜆 

Through the construction of a three-order tensor known as the two-step’s tensor, 

eigenvector centrality can be expanded to take into account a node's first and second 

neighbors. 

Localization phenomena are displayed by eigenvector centrality in networks that are 

easily partitionable through the removal of a vertex cut set. Due to its sensitivity to the 

overall network structure and its iterative computation process, which reinforces 

centrality within well-connected communities, eigenvector centrality is a useful tool 

for identifying localization phenomena in networks, which are characterized by 

concentrated centrality in specific regions. 

Different features of node importance in networks can be captured by formulating 

eigenvector centrality in different ways, such as taking neighboring nodes, directed 

networks, and multiplex networks into account. 

It is possible to use eigenvector centrality to take into account a node's influence inside 

a particular subnetwork. Eigenvector centrality is a sophisticated and context-aware 

measure of centrality that goes beyond node degree, making it an excellent choice for 

capturing a node's influence in a subnetwork since it naturally takes into account both 

direct and indirect connections. This makes it possible to comprehend node relevance 

in various situations more deeply.[45] 

A different variation is the one-step extrapolation method, which is especially useful 

for issues with tiny spectrum gaps as it speeds up convergence to the dominating 

eigenvalue/eigenvector pair. [46]Furthermore, a variation known as the Adaptive 

Power Method (APM) allows for reliable estimation of dominant eigenvectors even 

with partial observations. APM adaptively picks a subset of a matrix's entries to 

observe based on the current estimate of the top eigenvector. 

Using the primary eigenvectors of modified matrices based on several strongly 

connected components in a digraph is another technique. By adding data from nodes 

that are two steps away, the two-steps eigenvector centrality can be seen of as an 

extension of eigenvector centrality. The network's unique properties and the node 

influencing factors that must be taken into account determine which of these indicators 

to use. Directed Graphs: The method is intended just for directed graphs, also known 

as digraphs, in which directionality is present in the edges. A unique way to analyze 
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centrality within substructures of directed graphs is to use the major eigenvectors of 

modified matrices based on strongly linked components. 

 

The interpretation of high and low eigenvector centrality scores might provide insight 

into the relevance of nodes in a network.  

1. Nodes with high eigenvector centrality scores are those that are linked to other 

nodes that are likewise very central, in addition to being well-connected. These nodes 

are important for the network's information flow and are regarded as influential.[42] 

2. Nodes with low eigenvector centrality scores are thought to be less prominent and 

have fewer connections throughout the network. These nodes might not be very 

important in the spread of information and might only have restricted access to it.[42] 

3. Eigenvector centrality can be extended and adjusted to capture different 

characteristics of node importance in other network structures, such as directed 

networks and urban networks with specialized data.[47][48]Beyond the conventional 

eigenvector centrality measurements, these extensions offer further insights into node 

importance. 

Eigenvector centrality offers a node relevance measure that considers the connections 

made by the node as well as the significance of those connections. In order to 

comprehend the importance and influence of nodes inside a network, this statistic.  

Understanding eigenvector centrality's benefits, drawbacks, and complementarity 

requires the following insights: 

Similar to how β-centrality generalizes eigenvector centrality, Bonacich's β-centrality 

and related measures have been extended for directed networks. Based on the idea of 

eigenvector centrality, a centrality measure for multiplex networks has been 

developed, accounting for the various connections amongst nodes in each layer. 

Although it is difficult to estimate a network's eigenvector centrality only from nodal 

data, it is possible to do so by taking advantage of the spectral characteristics of graph 

filters.[43].  

Bonacich's β-centrality is the new multiplex network index that is stated. Yes, it is an 

adjustment to eigenvector centrality. Based on the idea that links to nodes with high 

scores add more to a node's score, eigenvector centrality calculates a node's relative 

importance in a network. 

In a network, the eigenvector centrality 𝑥𝑖 of a node ⅈ is determined using the following 

formula: 

𝐴𝑥 = 𝜆𝑥   
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where: 𝐴 is the adjacency matrix of the network. 

𝑥 is the eigenvector corresponding to the largest eigenvalue 𝜆 

 

Bonacich's β-centrality introduces a layer of complexity to the centrality measure by 

extending this concept to include the impact of a node's neighbors and their 

connections. It has been applied to directed networks, and associated metrics involve 

several adjustments to the original formula to take directed edge behavior into 

consideration. In directed networks, for instance, a node's influence is determined by 

both nodes pointing to it and by connections to other nodes that score well. To capture 

the influence flow in both entering and outgoing directions, the formulation must be 

modified as part of the extension. Iterative computation is required to calculate 

Bonacich's β-centrality. 

𝑥𝑖 =
1

𝜆−𝛽
∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1
    

Where: 𝑥𝑖  is the  𝛽 -centrality score for node ⅈ;  

𝜆 is the largest eigenvalue of 𝐴. 

 

The relationship between a node's centrality and that of its neighbors is iteratively 

updated until convergence. Similar to the power iteration method utilized for 

eigenvector centrality, the relationship with eigenvector centrality resides in the 

iterative process. On the other hand, Bonacich's β-centrality introduces the parameter 

β, which permits a more sophisticated regulation of the impact of neighbors. 

A graph filter is a mathematical tool that allows you to manipulate signals on a graph. 

It is difficult to estimate eigenvector centrality in the context of networks since it 

depends on the overall structure of the network and is difficult to estimate from nodal 

data alone. Graph filters make use of the spectral properties of the graph by examining 

the adjacency matrix of the graph's eigenvalues and eigenvectors. This method's 

benefit is that it can estimate centrality even in situations where the complete network 

structure is unavailable, which increases its adaptability to situations with small data. 

The new degree-like centrality method known as Weighted Symmetric Nonnegative 

Matrix Factorization (WSNMF) permits the exclusion of specific dyads from centrality 

calculations. It can be viewed as a generalized version of the current eigenvector-like 

centrality and employs the WSNMF approach. It has demonstrated effectiveness 

across a number of datasets. A pair of nodes (or vertices) and the link (or edge) 

connecting them are referred to as a dyad in network theory. It stands for the most 

fundamental component of a network's connectivity. Not Included in Centrality 
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Estimates: Because WSNMF allows for the exclusion, some node pairs and the linkages 

that link them might not be included in the centrality scores that are computed. This 

adaptability gives the centrality metric an extra degree of personalization. [49] 

 

Extension of eigenvector centrality: By taking into account a node's first and second 

neighbors, the two-steps eigenvector centrality offers a deeper understanding of node 

importance than eigenvector centrality alone.[42] 

Extension to directed networks: By taking into account the in- and out-centrality of 

nodes and their neighbors, Bonacich's β-centrality and related measures extend 

eigenvector centrality to directed networks.[47] 

Localization phenomena: Eigenvector centrality exhibits localization phenomena in 

particular network configurations, such as hub node localization and other sorts of 

localization.[50] 

 

The major eigenvector's localization and delocalization may make it challenging to 

allocate nodes centrality weights based on eigenvector centrality.[51] 

Complementarity spectra: These can be obtained by understanding complementarity 

eigenvalues and reveal information about the structure of a graph.[52] 

Better centrality metrics: To solve issues with directed and weighted networks, new 

centrality measures, such bow-tie centrality, have been proposed as extensions of 

eigenvector centrality. An modification of eigenvector centrality designed specifically 

for directed and weighted networks is called bow-tie centrality. In order to account for 

the complexity brought forth by directed edges and weighted connections, it computes 

centrality scores by utilizing the dominant eigenvector of an applicable matrix. [53] 

While eigenvector centrality can be advantageous in terms of adding more information 

and generalizing to directed networks, there are drawbacks associated with 

localization phenomena and challenges in determining centrality weights. Additional 

options to investigate node relevance in complex networks are provided by 

complementarity spectra and enhanced centrality measurements. 

An effective metric for determining node relevance in intricate networks is eigenvector 

centrality. It has been expanded upon and used in a variety of contexts to provide 

insights on network dynamics and structures. It considers both the quantity of 

interactions and the structural locations of nodes. 
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2. Centrality Indices 

2.1 Introduction 

Mobility services in large cities depend on underground transportation networks, thus 

it's critical to identify the key players and comprehend what happens to them when 

they malfunction. [54][55] 

Based on the amount of information and study objectives, the algorithm analyses 

several approaches to correlate a graph with an underground network. 

The Path Rank algorithm provides a scientific technique for determining the relevance 

of nodes in subterranean transportation networks, assisting in the development of 

focused management measures and the stable operation of urban rail transit 

systems.[54]. 

The Path Rank method, by ranking nodes based on their contribution to network 

pathways and their associated weights, is particularly effective in the fields of 

information diffusion and road data generalization. Information diffusion refers to the 

spread of information, ideas, or trends through the network, where nodes with higher 

Path Rank scores are typically more influential in propagating this information. Road 

data generalization, on the other hand, involves simplifying complex road network 

data into more manageable and understandable forms, where the Path Rank method 

helps identify key routes and junctions that should be prioritized in the simplified 

model [54] 

2.2 Path Rank 

Path Rank is a centrality Measure that ranks nodes in undirected networks according 

to the number and weight of pathways in the graph. It is the PageRank algorithm 

expanded upon. Path Rank is useful in the context of underground transportation 

networks because it may be used to mimic the responses of these networks' most 

crucial components in the event that they malfunction. To keep the mobility service at 

a suitable level, this is essential. A reference dataset was created by mapping 34 

underground networks from cities around the world into graph representations. Path 

Rank was then applied to this dataset, offering a detailed analysis of node centrality 

within these networks. As highlighted in [74], the use of Path Rank not only facilitated 

the ranking of nodes based on their centrality but also proved essential in identifying 

key nodes that play a crucial role in the network's overall structure and efficiency.  
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Path Rank is built on mathematical concepts that give probabilities to nodes according 

to how far apart they are from one another.  

Nodes in undirected graphs are ranked using the Path Rank method, a novel centrality 

measure, according to the number and weight of their paths. It assesses a node's 

relevance in complicated networks and is an Inspiration of the PageRank method. 

Different methods for connecting a graph to an underground network: Graphs can 

illustrate underground networks in a variety of ways, depending on the amount of 

detail and study objectives. This variation in graph representation can have an impact 

on the use of Whatever Centrality Measure in investigating underground networks. 

The number and weight of pathways, node and edge weights, and distance scaling 

must all be considered while analyzing these networks. [54] 

 

The Path Rank algorithm's technical details are as follows: 

Now, we explain how PathRank is computed at each node, The number and weight of 

paths in the graph are used to determine a node's score in Path Rank.[56] 

Let G= (V, E) given.  

Assuming G has n nodes, designated as 1, 2,, n, we set 𝑥𝑖 to be the score of node i in 

order to fix ideas. In PageRank, the neighbor nodes' scores determine the score in 𝑥𝑖 

the following way: 

𝑃𝑎𝑡ℎ 𝑅𝑎𝑛𝑘 (𝑗) = 𝛴𝑖=1
𝑛 𝑏𝑖𝑗

′   Where, 𝑏𝑖𝑗
′  to be the sum of each path's contribution over all 

pathways from  ⅈ to 𝑗, 𝑛 is the number of nodes in the network. 

2. Undirected Graph Adaptation: When evaluating centrality in undirected networks, 

the PageRank method may be changed to account for node distance. This modification 

takes into account translation possibilities dependent on the distance between nodes, 

allowing for a more personalized measure of centrality. There are also unique 

techniques, such as Set Push, that are especially developed for calculating single-node 

PageRank on undirected networks with reduced temporal complexity.[57][58]. In 

short, the fundamental distinctions between the PageRank method and its 

modification for calculating centrality in undirected networks are distance 

consideration and the creation of specialized algorithms for more efficient calculation. 

 

Path Rank has the following advantages and strengths as a centrality measure for 

underground networks: 

1. Considering other pathways: Path Rank considers all paths in the network in 

addition to the shortest ones, which is crucial for preserving network connection.[59] 
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2. The ability to rank nodes according to path characteristics: Path Rank enables a more 

thorough evaluation of node relevance in Underground networks by ranking nodes 

according to the quantity and weight of pathways.[54] 

3. Flexibility and efficiency in diverse types of networks: Path Rank has been used to a 

variety of real-world networks, including transportation networks and urban street 

networks. [57] Overall, Path Rank provides a helpful technique to evaluate centrality 

in underground networks by taking into consideration both the quantity and weight 

of paths, as well as alternate paths for sustaining network connection.[54][59]  

 

2.3 Icentr 

The Icentr Centrality Index is a new centrality index that ranks nodes in a network 

using a mix of node and edge weights that are scaled depending on their distance from 

each other. It is especially relevant in the context of underground transit networks, 

which are critical for maintaining mobility services in major cities. The Icentr Index 

has been applied to 34 underground networks in cities throughout the world, creating 

a reference dataset for researching the most critical components of these networks and 

modeling their responses when they fail. Researchers may use the Icentr Index to study 

the centrality of nodes in underground transportation networks and get insight into 

their relevance and functionality.[54] 

To identify prominent nodes in networks, several centrality metrics such as 

Betweenness Centrality, Closeness Centrality, and Degree Centrality have been 

utilized. [18] 

The Icentr Centrality Index incorporates nodal data, takes into account node and edge 

weights, and may be used to rank nodes in weighted networks. It gives a complete 

measure of network node centrality.[4][18][60] 

It belongs to the class of path-based centrality measures, which make use of 

information about the pathways from a given node to other nodes and geodesics 

between other nodes that contain a particular node. [4] The Icentr centrality index was 

mathematically studied.[61] .  

Overall, the Icentr centrality index provides a theoretical framework for determining 

the relevance of network nodes based on their position and connectedness.[47][61][4] 

The relevance of determining node importance in these networks rests in maintaining 

a desirable degree of mobility service and understanding the network's behaviors 

when components fail. Engineers may use the Icentr Centrality Index to identify the 
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most significant components of subterranean transportation networks and model their 

reactions under various situations.  

The procedure for calculating the Icentr centrality index for a given network is as 

follows: 

 As previously, we use an undirected simple graph G = (V, E) that represents the 

network under investigation, with nodes and edges equally weighted. To use fixed 

notation, the nodes are 1, 2,..., n, and the edges are e1, e2,...,𝑒−𝑟 .We recall that an edge 

is a set with two unique nodes, and two distinct edges have only one common at most. 

Each node on an edge is a neighbor of the other node. The concept of neighbor is 

central to the definition of Icentr. The weights of the nodes are x1, x2,..., xn, whereas the 

weights of the edges are w1, w2,..., wr. 

We note that if the graph is unweighted, all node and edge weights are equal to 1, or 

there may exist x, w such that xi = x, wj = w for every i = 1,..., n, and every j = 1,..., r. 

Nodes and edges are evenly weighted in this situation. It is possible that the nodes are 

uniformly weighted but the edges are not, or that the edges are uniformly weighted 

but the nodes are not. In general, neither nodes nor edges are weighted evenly. Finally, 

we note that the values assigned to each node by Another, not the Centrality index can 

be used as weights for nodes.[54] 

Methodology: We Assume G is Connected, since the Icentr value depends only on the 

connected component containing the node. Let i0 represent the node of interest. We 

partition nodes and edges into levels using a modified Breadth-First Search technique, 

as shown below. The single level 0 node is i0. The neighbors of i0 are the level 1 nodes, 

which are i11, i12,..., i1n1. The level 2 nodes are i21, i22,..., i2n2 neighbors of the level 1 nodes 

that are not in a previous level. In general, a node is in level h if it is a neighbour of a 

node in level h-1 but not of a node in level k for some k < h-1. The level h nodes are ih1, 

ih2,..., ihnh. No node belongs to more than one level. Furthermore, because we are 

assuming that the graph G is connected each node belongs to a level. To split edges 

into levels, consider that an edge e ={ i, j }joins two nodes in either distinct or the same 

level. In the first scenario, the nodes are from successive levels. Moreover, 

we set 𝑙𝑒𝑣(𝑒) = max (𝑙𝑒𝑣(ⅈ), 𝑙𝑒𝑣(𝑗)) 

In the second scenario, we set. 

𝑙𝑒𝑣(𝑒) = 1+ 𝑙𝑒𝑣(ⅈ) = 1 + 𝑙𝑒𝑣(𝑗) 

This selection of edge levels corresponds to the sequence in which they can appear in 

a path beginning with i0. In reality, if an edge links two nodes at different levels and is 

on a path from i0 , it is at the location corresponding to the edge's maximum level. If, 
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on the other hand, an edge links two nodes in the same level and is on a route from i0, 

it is at the location corresponding to the next level with respect to the nodes in the 

edge. 

We recall that w(𝑒) is the edge weight 𝑒. Let x(𝑒) be the weight of the node at the 

highest level in 𝑒 if 𝑒 links two nodes at different levels. The contribution of 𝑒 to the 

value Icentr takes at i0 is then calculated.[54] 

ⅈ𝑐 (𝑒) =
𝑥(𝑒)

2𝑙ⅇ𝑣(ⅇ)−1
𝜔(𝑒) 

If  𝑒= { i, j} links two nodes at the same level with weights xi, xj, the contribution of 𝑒 to 

the value Icentr takes at i0 is then     ⅈ𝐶(𝑒) =
𝑥𝑖+𝑥𝑗

2𝑙ⅇ𝑣(ⅇ) 𝜔(𝑒) 

Because the total value is simply the sum of the separate contributions, we have. 

Icentr (ⅈ0) = ∑ ⅈ𝑐(𝑒𝑗)
𝑟

𝑗=1
. 

Here are the benefits and strengths of the Icentr as a centrality metric for underground 

networks. 

1. Appropriateness for rating nodes in underground transportation networks: 

Underground networks are critical for keeping cities moving, and the Icentr is 

particularly built for rating nodes in these networks. 

2. Consideration of several methods for associating a graph with an underground 

network: The approach used to associate a graph with an underground network takes 

the degree of detail and the goals of the study into consideration, allowing flexibility 

in evaluating different parts of the network. The Icentr provides a personalized way 

to ranking nodes in underground networks that takes into account the unique 

characteristics and relevance of these networks.[54] 

The Icentr centrality index has various limits and obstacles when used in the 

investigation of Underground networks. Here are some crucial points to think about: 

The association of a graph to a transportation network is not unique, and depends on 

the degree of details and study objectives. This variation in network representation 

might be problematic when using centrality indices.[54] 

Overall, the Icentr centrality index is a useful tool for analyzing network structures 

and identifying essential nodes across various fields. 
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2.4 Ishortest 

Depending on the index taken into consideration, the centrality metrics seek to identify 

the nodes in a graph that are the most significant. Such nodes are those whose 

cancelation is likely to significantly alter the graph's performance, yet no one can 

ensure it. There is no straightforward method to compare the values of a centrality 

measure on a network before and after deleting a node and any edges that contain 

it.[62] 

Its values are determined by a graph as well as all graphs created by cancelling one 

node at a time. To calculate Ishortest, we compare the lengths of the shortest pathways 

before and after deleting a node. Because the length of a path in graphs is clearly 

defined, whether weighted or unweighted, we can compute Ishortest for nodes in any 

graph. 

Let G= (V, E) be a graph, with V representing the set of nodes and E representing the 

set of edges.  

We Assume that G has at least three nodes.[62] 

where we assume that the nodes are ordered so that 𝑤(𝑥, 𝑦) contributes to the total 

above just once. Now, we choose a node 𝑣 and compute the total length of the shortest 

routes from V, that is,        𝑤(𝑣, 𝐺) = 𝛴𝑥𝑊(𝑥, 𝑣) 

Furthermore, we create the new graph GV = (V’, E'), where V' = V-{v} and E' is the 

collection of edges in which v does not appear. The subgraph GV, according to G and 

v, may stay connected or not they are related. The value of Ishortest at v is computed 

in different ways, in accordance with GV's connectivity characteristics. 

If we assume that GV is connected, we compute 𝑤(𝐺𝑣), which is the total length of 

shortest routes in GV , We set 

𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) =
𝑤(𝐺𝑣)

𝑤(𝐺) − 𝑊(𝑣, 𝐺)
 

We call it IS1 for convenience. 

Of course, because V has at least three nodes, the denominator is strictly positive. 

Furthermore, if we consider two nodes in V', then 𝑤(𝑥, 𝑦) ≤ 𝑤𝑣(𝑥, 𝑦), where 𝑤𝑣(𝑥, 𝑦)is 

the length of the shortest path in GV from x to y, since certain edges in G are no longer 

edges in GV.  

As a result,𝑤𝑣(𝐺𝑣) ≥ 𝑤(𝐺) − 𝑤(𝑣, 𝐺) [62] 

In other words, Ishortest(v) ≥1 
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However, we now suppose that GV contains two or more connected components, and 

hence v is a cut-vertex, as these nodes are named Of course, there is no path from x to 

y when the two nodes belong to distinct connected components, therefore when the 

cut-vertex is removed, there is a loss of connections. Furthermore, when they are 

members of the same connected component, the length of the shortest path in GV is 

greater than the length of the shortest path in G. Both the loss of connections and the 

increase in distance must be taken into account. As a result, assessed at a cut-vertex 

Ishortest is pair. We recall from the definition of betweenness that 𝜎(𝑥, 𝑦) is the number 

of shortest routes from x to y in a graph. As a result, we define 𝜎𝑣(𝑥, 𝑦) as the number 

of shortest routes between x and y in GV:  

 

If 𝜎𝜈(𝑥, 𝑦) > 0, the two nodes are in the same connected component; otherwise, 

𝜎𝜈(𝑥, 𝑦) = 0. Otherwise, a good indicator of connection loss is 

𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡1(𝑣) =  
∑ 𝑤(𝑥, 𝑦)𝜎𝑣(𝑥,𝑦)=0

𝑤(𝐺) − 𝑤(𝑣1𝐺)
 

 

because the denominator is the entire length of routes that do not exist in GV. IS21 is 

used briefly in the following sections. 

Instead of evaluating the increase in overall length, we consider the sizes of the 

connected components that appear when v is eliminated. So we suppose GV is the 

disjoint union of 𝐺1, … . , 𝐺𝑡 and 𝐺𝑖 contains 𝑛𝑖 nodes. Of course, the number of nodes 

in is 𝑛 = 𝑛1 + ⋯ + 𝑛𝑡 + 1 

Let                                
𝑊𝑣(𝐺𝑖) = ∑𝑥 < 𝑦       𝑊𝑣(𝑥, 𝑦)

𝑥, 𝑦 ∈ 𝐺𝑖
             

                                     
𝑊(𝐺𝑖) = ∑𝑥 < 𝑦      𝑤(𝑥, 𝑦)

𝑥, 𝑦 ∈ 𝐺𝑖
                   

be the total length of the shortest pathways between nodes in G_v and G . 

𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡2(𝑣) =
𝛴𝑖=1

𝑡

𝑛𝑖 ≥ 2

𝑛𝑙̇𝑤𝑣(𝐺𝑖)

𝑛𝑤(𝐺𝑖)
 

 

The equation above represents the average increase in the lengths of the shortest 

pathways, weighted by the size of each connected component with at least two nodes. 

Finally, we established.                

𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) = (𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡1(𝑣), 𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡2(𝑣)) 
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Because the numerator is a addendum of the denominator, the first component is 

always less than 1. Of course, the larger the first component, the greater the loss of 

connections due to the node's cancelation. When there is one extremely big, connected 

component and a few little ones, we expect the second component to be near to 1. On 

the contrary, we anticipate that component to diminish when there are at least two 

connected components of equivalent size. In the case of weighted graphs, its value 

might be considerably greater than one, depending on the weights of the edges on the 

new shortest routes. It is worth noting that if (the cut-vertex) has degree two, this 

component is always equal to 1.[62] 
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3. Types of Risks Involved in 

Transportation Modes 

Transportation modalities provide a variety of hazards and issues that must be 

handled in order to ensure efficient and safe operations. One critical aspect of 

evaluating the risks associated with transportation networks is the use of centrality 

indices, such as the Network Robustness Index (NRI), Path Rank, Icentr and Ishortest. 

Let's delve into a more detailed explanation of how these indices are calculated and 

their application in assessing transportation network resilience. 

Transportation network interruptions or breakdowns are assessed using centrality 

indexes. 

NRI (Network Robustness Index): The NRI is computed by evaluating the impact of 

individual network link closures on a road transportation network. This index uses 

weighted degree centrality to assess network resilience, with a focus on heavily 

travelled routes and connections to northern areas. The NRI is an important tool for 

calculating the impact of disruptions on network operations.[63] 

Steps in Calculation: 

1. Determine which road transportation network is being considered. 

2. To evaluate the impact, select a network link. 

3. Close the chosen link momentarily by simulating closure. 

4. Analyze the impact of any changes to the network's performance, such as longer 

travel times or interrupted routes. 

5. Repeat: To evaluate the overall impact, repeat the procedure for several links. 

Compute NRI: The Network Robustness Index is determined by adding together each 

of the individual impacts. 

The formula for NRI is as follows: 

𝑁𝑅𝐼 = ∑
𝑤𝑖

𝑊

𝑛

𝑖=1
⋅

ⅆ𝑖

𝐷
        

𝑤𝑖 is the weight of the link i ; 𝑊 is the total weight of all links: ⅆⅈ is the degree of node 

i ; 𝐷 is the total degree of all nodes. 

 



38 

 

 

Path Rank: Path Rank is a centrality measure in network analysis that is used to assess 

the relevance or influence of nodes in a network. Unlike other centrality measures that 

emphasize a node's immediate connections, Path Rank emphasizes a node's 

importance in facilitating various paths throughout the network. This metric is 

especially relevant in networks such as transportation or communication networks, 

where the importance of a node goes beyond its direct connections. Path Rank can 

provide insights into the network's robustness, efficiency, and vulnerabilities by 

focusing on paths. 

Steps in Calculation: 

1. The first step involves mapping out all possible paths within the network. This 

includes identifying all nodes and the connections (paths) between them.  

2. In the case of transportation networks, each path is allocated a weight based on 

relevant parameters such as distance, capacity, or even traffic flow. 

3. Calculate how each node contributes to the network's paths. This entails taking 

into account the quality and utility of the pathways that travel through or exit 

from the node. 

4. Each node's Path Rank score is calculated based on its contribution to the overall 

path structure. The computation's details can change depending on the 

network's features and the weighting criteria employed. 

5. Finally, nodes are ordered by their Path Rank scores. Higher scores indicate 

higher network importance or influence. 

𝑃𝑎𝑡ℎ 𝑅𝑎𝑛𝑘 (𝑗) = 𝛴𝑖=1
𝑛 𝑏𝑖𝑗

′   Where, 𝑏𝑖𝑗
′  to be the sum of each path's contribution over 

all pathways from  ⅈ to 𝑗, 𝑛 is the number of nodes in the network. 

 

Icentr: It is another centrality index that is weighted by the distance between nodes. It 

ranks nodes based on a combination of edge and node weights, providing information 

about node relevance in transportation networks. This measure is useful for assessing 

the impact of individual nodes on overall network resilience. 

The following algorithm is used in the computation: 

Steps in Calculation: 

1. Determine the nodes, edges, node weights, and edge weights of the 

transportation network. 

2. To determine a node's centrality, select it. 

3. To find the Icentr value for the chosen node, use the computed sum. 

ⅈ𝑐 (𝑒) =
𝑥(ⅇ)

2𝑙ⅇ𝑣(ⅇ)−1 𝜔(𝑒)   where,   𝑤(𝑒) weight of the edge. 
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4. Go through the procedure again for every network node. 

Icentr (ⅈ0) = ∑ ⅈ𝑐(𝑒𝑗)
𝑟

𝑗=1
. Where, ⅈ0 is the sum of the contributions from all edges 

connected to it, 𝑟 is the number of edges connected to ⅈ0 

 

Ishortest: 

Ishortest focuses on identifying nodes whose failure would have a significant impact 

on the overall performance of the network. It accomplishes this by assessing the nodes 

that, if disrupted, would cause significant changes in the network's functionality. 

Steps in Calculation: 

1. Draw a network of transportation nodes and edges. 

2. Select a node to evaluate its significance. 

3. Find the shortest routes between the chosen node and every other node in the 

network. 

4. Apply a formula to determine the selected node's Ishortest value. 

5. Go through the procedure again for every network node. 

𝐼𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑣) =
𝑤(𝐺𝑣)

𝑤(𝐺) − 𝑊(𝑣, 𝐺)
 

 

Natural catastrophes, infrastructure failures, accidents, and operational interruptions 

are all examples of transportation-related hazards. 

Natural disasters: Transportation infrastructure is vulnerable to both natural and 

man-made severe events, which can cause malfunctions and interruptions. These 

incidents endanger the operation of transportation networks and can result in 

infrastructure damage and service interruptions.[64] 

Infrastructure breakdowns: Infrastructure failures can provide risks such as a lack of 

punctuality, dangers to people, equipment, and cargo, and a reduction in the quality 

of logistical services. These failures have the potential to reduce the efficiency and 

safety of transportation networks.[65] 

Accidents and operational disruptions: Transportation-related accidents, particularly 

those involving hazardous goods, can have serious effects for individuals, the 

environment, and property. events or events can also have an influence on the regular 

operation of transportation networks, causing interruptions in routines and work 
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accessibility. [66]Understanding and controlling these risks is critical for guaranteeing 

transportation systems' resilience and safety. Risk assessment and management 

frameworks can aid in the identification and mitigation of these threats.[64] 

The Performance of transportation networks and their ability to withstand 

interruptions have been the subject of much research in recent years. Transportation 

networks that are resilient are essential for enduring and regaining operations after 

disruptive incidents.[67] The resilience of transportation networks has been measured 

using a variety of definitions, measures, and techniques. [68] Resilience has been 

measured and improved via the development of measures, mathematical models, and 

techniques.[67] Some of the factors influencing the resilience of transportation 

networks include the features of the road networks as well as the management and 

organizational aspects.[69] Research has also been done on the resilience of public 

transportation networks, concentrating on the effects of disruptions and ways to 

mitigate them.[70]A composite resilience score is a useful tool for quantifying the 

effects of interruptions on the resilience of fast transit. Resilience evaluations have 

difficulties due to uncertainty and a lack of validated evidence. All things considered, 

this field's study offers insightful information for managing, planning, and designing 

transportation infrastructure to increase resilience. 

It is crucial to evaluate the network's resilience to unfavorable occurrences for several 

reasons. Maintenance and dependability: Network service providers strive to 

maintain acceptable network performance in order to lower subscriber attrition. 

Resolving anomalies and keeping an eye on user experience on the network may help 

prevent poor network service levels and save operating expenses. The pace at which 

remedial action is implemented in response to network disruptions or events that 

affect the network service level is referred to as network resilience. Network resilience 

assessments assist operators in mitigating poor network performance and restoring 

acceptable levels. Evaluating the network's resilience to unfavorable occurrences is 

essential to guaranteeing dependable network performance, reducing downtime, and 

effectively resolving network issues. 

Using fictitious scenarios, let's examine instances of how centrality indices are used to 

evaluate the resilience of transportation networks: 

Network Robustness Index (NRI): 

Situation: Network Robustness Index (NRI) Imagine a metropolis with an intricate 

system of road transportation. The network's ability to withstand possible 

disturbances is evaluated using the Network Robustness Index. 

Utilization:  

1.  Finding the Important Links  
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2. Determine the importance and volume of traffic while choosing important road 

linkages. 

3. Play out the closing of every single link separately. 

4. Analyze the effects on travel time, traffic, and the accessibility of alternate 

routes. 

NRI calculation: 

1. Combine the various effects of connection closures. 

2. To measure the overall robustness of the transportation network, compute the 

Network Robustness Index. 

Planning Strategically: 

1. Make infrastructure upgrades a priority by using the NRI results. 

2. Determine which links would most significantly affect the operation of the 

network if they were disrupted. 

Importance of Results: 

1. The transportation network's total resilience is measured by the NRI. 

2. A network with a high NRI is robust and has connectivity that would only cause 

minor disruptions. 

3. Improving vital linkages first will increase the overall resilience of the network, 

which is significant.  

Path Rank:  

Scenario: Let us contemplate a city with an intricate public transit network. In order to 

improve network performance, Path Rank is used to determine which transit nodes 

are more important. 

Application: 

Analysis of Weighted Paths: 

1. Analyze the number and caliber of routes connecting the various transit nodes. 

2. Think about things like transfer efficiency, passenger volume, and connectivity. 

Node Position: 

1. Sort transit nodes in the network according to the weighted pathways they 

contribute. 

Path Rank computation: 
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1. To give each transit node a score, apply the Path Rank algorithm. 

Optimal Performance: 

1. To determine the important nodes that, when optimized, would improve the 

overall performance of the transportation system, use the Path Rank results. 

2. Invest in high-ranking nodes' infrastructure upgrades, such as more platforms 

or better transfer facilities. 

Importance of Results: 

1. Key transit nodes essential to the overall operation of the system are identified 

by Path Rank. 

2. High-ranking nodes could be indicative of busy transfer hubs or densely 

populated passenger locations. 

3. Infrastructure optimization at these nodes is important since it raises the 

overall transit system's efficiency. 

Icentr:  

Scenario: Let's say there is a region with a varied transportation system that includes 

both roads and trains. Icentr is used to evaluate a node's importance in sustaining 

effective connectivity. 

Utilization: 

Compute Node Importance: 

1. Choose a transportation hub, such as a train station or junction. 

2. To find the weighted sum for the node, take into account the weights of the 

edges and nodes, adjusted for distance. 

How to calculate Icentr 

1. To calculate the chosen node's centrality, use the Icentr formula. 

Functional Importance: 

1. Higher Icentr values for nodes signify increased relevance in preserving 

network efficiency. 

2. For targeted enhancements like improved rail connectivity or optimized traffic 

flow, concentrate on nodes with high Icentr. 
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Importance of Results: 

1. Operationally, nodes with higher Icentr values are more important for 

preserving network efficiency. 

2. For targeted enhancements like improved rail connectivity or optimized traffic 

flow, concentrate on nodes with high Icentr. 

IShortest:  

Imaginary Situation: Let's say there is a city with an extensive urban road system. The 

Ishortest path algorithm is used to determine which nodes are crucial and whose 

failure would significantly affect network performance. 

Utilization: 

Quickest Route Evaluation: 

1. Determine the shortest routes between each road intersection and the other 

connections in the network. 

Computing the Ishortest: 

1. To award scores to each node according to its significance in the network, use 

the Ishortest algorithm. 

Risk Mitigation: 

1. Determine which nodes are crucial and prone to disruptions by looking for 

those with high Ishortest values. 

2. At these crucial nodes, implement focused risk mitigation techniques like better 

traffic control or upgraded infrastructure. 

Importance of Results: 

1. High Ishortest value nodes are crucial locations that are prone to failures. 

2. At these crucial nodes, implement focused risk mitigation techniques like better 

traffic control or upgraded infrastructure. 

The robustness and vulnerability of a network are crucial elements to take into account 

when assessing the resilience of intricately interconnected systems, such  

communication, and infrastructure.[71] 

Numerous methods have been put forth to evaluate network robustness, such as 

gauging the resilience of resilient nodes to assaults and assessing how attacks 

influence the emergent connection of impacted nodes. [72] Moreover, a number of 

metrics have been created to measure network susceptibility, such as comparing the 
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original network to the analysis of the network's decline in resilience. Additionally, 

spectral measures have been developed to evaluate network resilience, such as the 

second spectral moment. These measurements and methods offer insightful 

information about assessing the resilience and susceptibility of networks, which helps 

create efficient defense plans.[73] 

The process of assessing different criteria and approaches is necessary to assess the 

risk of performance degradation in transportation networks.  Standards for evaluating 

performance indicators for public transportation providers that include pertinence, 

efficiency in terms of both money and time, and quality of service.[74] 

The performance assessment methodology emphasizes how crucial efficacy and 

efficiency are to public transportation systems. Effectiveness is the degree to which 

predetermined tasks are completed, whereas efficiency is the proportion of resources 

utilized to outcomes. There are distinct metrics for both commercial efficiency and 

production.[75] 

An approach known as multi-dimensional evaluation is put out to evaluate the 

sustainable performance level of road freight transport in terms of environmental, and 

social aspects. It seeks to enhance supply chain and logistics management and offers a 

comprehensive performance evaluation.[76]. The process of evaluating performance 

takes into account a number of factors, including sustainability, efficacy, and 

efficiency. This method permits efficient management and enhancement of 

transportation networks as well as a thorough assessment of performance. 

Centrality indices are a helpful instrument for calculating how much a disturbance 

affects the operation of the network. This is how they function: 

Centrality measurements use a variety of criteria to assess a node's significance within 

a network. These metrics forecast the traits and significance of nodes inside the 

network.[1]Conventional methods of assessing centrality entail comparing the 

network's performance before and after a node fails. These methods, however, have 

drawbacks and might lead to irrational outcomes in some situations. A novel method 

has been put out to get over these restrictions, and it measures the network's residual 

performance following a node failure to determine the node's centrality. A more 

thorough knowledge of network interconnectivity is offered by this method. In 

conclusion, by analyzing node significance and tracking changes in network 

performance, centrality indices offer a quantitative method to evaluate the effects of 

disruptions on network operation.[77] 

In transportation networks, centrality indices are useful instruments for evaluating the 

danger of performance degradation.  
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Metro disruptions: The association between passenger flows at metro stations and 

network centralities was investigated in a research on the Athens metro system using 

machine learning and linear regression models. The results can be utilized to support 

backup plans in case of disruptions and to calculate medium-term ridership 

estimates.[78] 

Airport performance: An approach incorporating centrality measures such as degree 

centrality and betweenness centrality was used to develop a Global Airport 

Performance Score (GAPS) for ranking international airports. This methodology 

considers both traditional throughput criteria and air transport network topology to 

provide valuable insights for benchmarking airports.[79] 

Distribution networks: Nodes with high degree centrality outperformed less central 

nodes, according to a research on the distribution network of a major German 

automaker. This demonstrates how network topology affects the performance of 

individual network nodes. [80] To sum up, centrality indices have been used to 

evaluate the risk of performance reduction in transportation networks, such as 

distribution networks, airport performance, and metro disruptions. 

Various methodologies and frameworks may be used to address strategies and 

planning approaches for managing performance decrease risk in transportation 

networks. 

The intensity and length of observed deviations from normal circumstances may be 

utilized to calculate operational interruptions in transportation networks using a 

quantitative multicriteria approach.[81] 

PREP (Performance-based Resilience Evaluation Procedure): The PREP methodology 

generates equivalent resilience scores and may be used to any form of transportation 

infrastructure to aid in project prioritization, risk reduction, asset management, and 

infrastructure design for greater reliability.[82] Subsidy as a risk-mitigation strategy: 

Subsidies for railroad operators might encourage them to choose alternate routes away 

from high-risk areas of the network, minimizing the possibility of dangerous 

occurrences. [83] Transportation planners and operators may successfully manage 

performance decrease risks in transportation networks by implementing these 

techniques and approaches. 

The importance of centrality indices in decision-making and risk management cannot 

be overstated.  

Identifying prominent players: Centrality metrics aid in the monitoring of networked 

systems by identifying the most influential individuals. This is especially important in 

financial markets, where strong centrality measurements may be utilized to create 

generic indexes of financial institution centrality. Recognizing global risks: Centrality 
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indices may be used to build statistical relationships among various risk categories, 

assisting governments and companies in understanding the importance of global 

hazards. These indices give useful insights into the links between economic, 

environmental, geopolitical, sociological, and technical concerns by quantifying the 

ambiguity around risk estimates. 

The use of centrality indices to estimate the risk of performance decline may be 

integrated into urban planning and infrastructure management procedures in the 

following ways: 

Identifying important stations and roads: The relevance of urban rail stations and road 

infrastructure may be assessed using centrality indices such as betweenness centrality 

and proximity centrality. These indices take into account aspects such as traffic 

characteristics and location advantage, assisting in the identification of critical stations 

and roads that have a substantial influence on the functioning of urban rail networks 

and emergency response routes.[84] 

Evaluating the carrying capacity of functional urban infrastructures: Centrality indices 

may also be used to assess the carrying capacity of functional urban infrastructures. 

These indices can assist analyse the performance and use of urban infrastructures by 

taking into account elements such as load-carrier models and mean-variance analysis, 

allowing for optimal urban development and management. 

Assessing urban performance and safety: Centrality indices can aid in the assessment 

of urban performance and safety. These indices may evaluate safety conditions in 

different cities and suggest opportunities for improvement in urban safety regulations 

by applying methodologies such as super-efficient data envelopment analysis (SE-

DEA).[85] Decision-makers may get useful insights into the performance, significance, 

and safety of urban systems by incorporating centrality indices into urban planning 

and infrastructure management procedures, supporting informed decision-making 

and sustainable development. 

Informed decision-making in transportation system resilience improves project 

prioritization, risk mitigation, asset management, and design while taking into 

account highway network features and user input for fair outcomes.[86] 

The degree of risk in the transportation process may be estimated using real risk 

incidences along the route. This aids in comprehending any disturbances in the 

transportation process.[87] It is critical to assess these risks in order to provide effective 

risk management solutions. Models of risk analysis for risky commodities 

transportation are critical for decision-making and management. 
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4. Application of Centrality Indices in 

Risk Analysis Across Transport 

Modes 

4.1 Introduction 

When assessing risk in transportation networks, centrality indices are essential. The 

practical uses, advantages, and disadvantages of centrality indices are explored in this 

chapter, with an emphasis on how they might be used to evaluate risk, strengthen 

resilience, and improve the overall effectiveness of transportation networks. 

 

4.2 Applications in Various modes of transportation 

4.2.1 Road Networks  

 

Identification of critical road segments vulnerable to disruptions: 

Transportation planning and management must include the identification of key route 

portions that are susceptible to disruptions. Numerous techniques have been put out 

to evaluate the susceptibility of road networks. One method is evaluating each section 

in a network to determine how vulnerable a road segment is, then creating diversion 

routes to rejoin damaged segments.[88] A different approach identifies crucial road 

segments by combining various network studies, including betweenness centrality, 

road density, and road segment length.[89] A new geo computational technique that 

takes into account the effects of non-road landscape characteristics on traversability 

has been created to identify crucial road segments in a post-disaster setting.[90] These 

techniques offer useful data for traffic planning, emergency response, and strategic 

urban planning. 

Case Studies and Examples: 

In a real-world case study, centrality indexes have been used in risk assessments for 

road transportation.[91] The study aimed to determine the environmental 

susceptibility to hazardous material road spills and to propose prevention strategies 
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and emergency notifications.[92] The method entailed combining vulnerability 

analysis with accident data from a specific highway segment.[93] According to the 

findings, several incidents happened in locations of high susceptibility, [94] A 

geographic information system was used in the study to create risk management 

maps, which are necessary for alert systems and prompt environmental protection. 

The case study demonstrates the actual application of centrality indices in analyzing 

and managing hazards connected with dangerous material transportation along 

roadways. It has been used successfully in transportation planning to identify crucial 

road portions that are sensitive to disruptions. Scardoni and Laudanna created the 

concepts of centrality interference and centrality robustness, which allowed them to 

forecast the impacts of local network changes on single nodes as well as global network 

functionality. [95]Oliveira, Portugal, and Juliao proposed a conceptual framework for 

ranking the value of road network linkages based on congestion and vulnerability. 

They discovered that depending exclusively on congestion signs can result in incorrect 

solutions.  

 

Global Applications 

Various areas and countries have used centrality analysis to improve transportation 

planning and management. Hellervik et al., for example, show how to employ 

preferable centrality in the southern half of Sweden to examine the geographical 

distribution of consequences from transportation infrastructure expenditures.[96] 

Cheng et al. provide centrality measurements for the Singapore subway network that 

include transit time delay and commuter flow volume, providing insights for network 

design and dealing with failures.[97] Tsiotas and Polyzos propose mobility centrality 

as a measure for analyzing interregional road networks in Greece, emphasizing its 

capacity to represent flow trends.[98] Rubulotta et al. examine the relevance of 

centrality in sustainable mobility planning and propose a new accessibility measure, 

emphasizing the potential correlation and efficacy of centrality and accessibility 

indexes[99] 

Utilizing centrality analysis for disaster planning and preparation. 

In disaster planning and preparation, centrality analysis is used. It assists network 

operators in incorporating catastrophe event forecasts into their network operation 

plans.[100] Furthermore, after a disaster, centrality analysis can be used to determine 

which communication networks are more centralized in certain locations, which can 

help with organizing evacuation drills and community development.[101] Moreover, 

centrality techniques like Betweenness, Degree, and Closeness can be used to evaluate 
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conceptual resources for crisis management and disaster risk reduction, promoting 

clear and simpler communication amongst experts across different areas.[102] 

Estimation of road network resilience through complex network analysis. 

It is possible to estimate the resilience of the road network by using complex network 

analysis. This involves determining the impact that component failures have on the 

functionality and overall performance of the system. By representing the relationships 

between road network components and the effects of failures, complex network 

analysis makes it possible to estimate the resilience of the road network.[103] Road 

network resilience has been measured using a variety of measures and indices, 

including a resilience index that includes demand- and topological-related data.[104] 

Road network resilience can be increased by updating network components, designing 

with additional capacity and redundancy, and reacting nimbly to interruptions.[105] 

 

4.2.2 Rail Transit System 

 

Evaluation of the importance of urban rail terminals using complex network theory. 

The relevance of urban rail terminals can be assessed using complex network theory. 

A number of techniques have been put out to evaluate the significance of stations in 

urban rail networks. One approach considers the traffic patterns and structural 

features of the lines where the stations are situated and is based on complex network 

theory.[84] Another approach entails examining the rail transit system's global 

characteristics and topological structure, as well as locating subgraphs and motifs 

inside the network.[106] Furthermore, overall network importance and transfer 

waiting numbers can be used to objectively assess the significance of transfer stations 

and lines.[107] There are several measurements that can be used to determine the 

relative importance of nodes in urban rail transport networks, including node 

property, degree centrality, closeness centrality, betweenness centrality, and 

passenger flow centrality.[108] 

Analysis of rail transit operation risks through centrality indices. 

Risks associated with operating rail transit are examined using centrality indices. The 

network centralities of urban railway stations are determined using a variety of 

centrality criteria, including betweenness, and closeness. This can help to clarify the 

number of passengers and average trip time at each station.[109] Fault tree analysis is 

used to identify and assess risk variables for urban rail transit (URT) accidents, and a 

risk evaluation index system is built. [110] The Degree of Nodal Connection (DNC) 
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index is a complete set of measures that is suggested to evaluate vulnerability of large 

heavy rail networks. Transfer stations and links are considered by the DNC index, 

from which four indicators of network vulnerability develop.[111] Advanced 

measures like travel patterns and passenger flows are employed in conjunction with 

typological methodologies for vulnerability analysis of public transportation 

networks, especially urban metro systems. Based on link centrality, serviceability is a 

dynamic approach that considers a variety of variables and shifts in the welfare of 

passengers.[94] In order to determine the significance of stations and lines, the 

centrality features of an urban rail network—such as degree-based, betweenness-

based, and closeness-based indices—are examined. It is discovered that the closeness 

centrality is most significant to the line's operational state.[112]  

Risk variables are factors or variables that contribute to the occurrence or severity of 

accidents in the context of urban rail transport accidents. Human error, equipment 

malfunction, infrastructure challenges, and environmental circumstances are 

examples of variables. After identifying the risk variables, the following step is to 

evaluate their relevance and possible impact on the occurrence and severity of 

accidents. This evaluation entails determining the likelihood of each risk variable 

leading to an accident as well as the potential repercussions if one does occur. 

Accidents involving urban rail transit systems such as subways, light rail, or commuter 

trains are referred to as urban rail transit accidents. These accidents can vary from 

simple mishaps to large disasters, with serious consequences for public safety and 

transportation infrastructure. In the context of urban rail transport accidents, fault tree 

analysis is used to systematically investigate the causes and consequences of accidents 

in order to identify and assess the risk variables involved. Appropriate actions can be 

implemented to prevent or lessen accidents in urban rail transit systems by 

recognizing the underlying elements and their possible impact. [113] 

 

Case Studies and Examples: 

Regression models have been created to demonstrate the relationship between 

passenger flow distribution and centrality indicators, allowing for the approximate 

calculation of passenger flow in public transportation networks.[94] Overall, 

evaluating centrality indices in rail transportation systems is critical for 

comprehending network features, optimizing network design, and making educated 

planning decisions. The study focuses on the Shanghai urban rail network, which is a 

complex and critical part of the city's public transportation system degree-based, 

betweenness-based, and closeness-based indices as three measures of an urban rail 

network's centrality. It compares the results of the investigation to the operational 

conditions of the Shanghai urban rail network.  Closeness centrality is the most 
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important indicator of the line's operating condition. The approaches used are the 

Degree-based index, the Betweenness-based index, and the Closeness-based index. 

The analysis of centrality features is useful for urban transit management and 

operations, the results showed that Degree Centrality is utilized to assess the potential 

travel activities at a station. The operational degree centrality of a station better 

represents the activities available to tourists.[114] 

Study of risk propagation dynamics in rail networks. 

The dynamics of risk spread in rail networks have been thoroughly investigated. The 

analysis of risk production, propagation, and control in urban rail transit (URT) 

systems has been done using a variety of techniques. Complex network theories and 

accident causality theories have been used to analyse the propagation path and law of 

URT hazards, with the goal of preventing and controlling operational mishaps.[115] 

The resilience of rail networks has been analysed using measures such as train and 

passenger delay minutes, showing the network's sensitivity to failures and the need of 

backup restoration during peak travel hours.[116] 

 

4.3 Comparative Analysis of Centrality Indices 

 

Strengths and Limitations by Transportation Mode: 

This section will look at how the strengths and limits of centrality indices differ across 

different types of transportation modes—road networks and rail transit systems. 

Road Networks: 

Strengths: Centrality indices, such as betweenness centrality, are used in network 

analysis to determine the importance or centrality of nodes (in this case, road segments 

and intersections) inside a network. The degree to which a node is located on the 

shortest paths connecting other nodes in the network is precisely measured by 

betweenness centrality. This indicates that in the context of road networks, road 

segments or intersections with high betweenness centrality are those that are located 

on many of the shortest pathways between other road segments or crossroads. The 

utility of these centrality indices is demonstrated in the context of traffic analysis and 

emergency response planning.  

Limitations: Traffic conditions are not constant and can change quickly. Variations in 

traffic volume, speed, and congestion levels are examples of these shifts. The indices 

specified in the highlighted text may be incapable of capturing these dynamic changes 
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in real time. The indices may have been produced using assumptions and conditions 

that do not apply to all traffic scenarios. They may, for example, presume a constant 

traffic flow or uniform vehicle distribution, which may not be the case in constantly 

changing traffic conditions. The indices may be incapable of accounting for the 

interactions and dependencies that exist between various traffic measures. The indices' 

oversimplification of these patterns may result in incorrect judgments of traffic 

conditions. 

Rail Transit Systems: 

Strengths: The application of centrality indices to identify crucial stations and lines 

that are critical to a network's efficiency and resiliency. The research can determine the 

most important stations and lines in a transportation network by applying these 

indices. The study also underlines the importance of centrality indices in 

understanding passenger flow dynamics. The movement of passengers within a 

transportation network, including parameters such as the quantity of passengers, their 

origin and destination, and the routes they follow, is referred to as passenger flow 

dynamics. The research can acquire insights into how passengers move within the 

network and how the main stations and lines indicated by these indices affect 

passenger flow by employing centrality indices. This data can subsequently be used to 

make informed network planning, optimization, and resource allocation decisions. 

The Rail Transit system focuses on network efficiency and resilience in order to 

understand how the identified important stations and lines contribute to the overall 

performance and robustness of the network. The efficiency of a network relates to how 

efficiently it performs in terms of minimizing transit time, congestion, and delays. The 

ability of a network to endure and recover from disturbances such as accidents, natural 

catastrophes, or system failures is referred to as network resilience. The research can 

provide insights into how to increase the network's efficiency and resilience by 

identifying crucial stations and lines. 

The use of centrality indices to pinpoint important stations and lines, the focus on 

comprehending the dynamics of passenger movement, and the attention to network 

resilience and efficiency are, all together, the research's strongest points. These 

findings may have practical consequences for transportation planning and 

management, assisting in the optimization of network performance and the overall 

passenger experience. 
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Limitations:  

Due to the static nature of some centrality measures, there may be potential mistakes. 

The most important or influential nodes in a network are identified using centrality 

measurements. These measurements, however, are frequently generated based on a 

snapshot of the network at a certain point in time. This means that they ignore any 

changes or dynamics that may occur in the network over time. As a result, the 

centrality measures may not fully reflect the current condition of the network or any 

recent changes or disturbances. 

Real-time disruptions and service changes discusses the difficulties associated with 

integrating real-time disruptions and service modifications. It is critical to evaluate the 

impact of real-time events such as accidents, road closures, or changes in service 

schedules while conducting transportation or network studies. Incorporating these 

real-time disturbances and changes into the study, on the other hand, can be difficult. 

It necessitates access to up-to-date and accurate data, as well as advanced modeling 

approaches to account for the network's dynamic nature. Failure to take these real-

time aspects into account may result in erroneous or incomplete findings. 

In summary the study has two drawbacks. To begin with, the static nature of some 

centrality measurements may lead to mistakes because they do not account for 

changes or dynamics in the network over time. Second, incorporating real-time 

disruptions and service changes into the study is difficult but necessary to ensure 

accurate and thorough results. 

2.Comparative Effectiveness 

This section ought to analyse the efficacy of multiple centrality indices across various 

forms of transportation, taking into account how each index delivers unique insights 

and has distinct implications: 

Comparison Across Indices: 

Indexes are mathematical measurements that are used in network analysis to quantify 

numerous aspects of a network's activity and structure. In network analysis, three 

indices are typically used: betweenness, closeness, and degree centrality. 

Betweenness is a metric that quantifies the extent to which a node in a network is 

located on the shortest paths between other nodes. 

1. It detects nodes in the network that serve as significant mediators or bridges. 

2. Nodes having a high betweenness are critical for sustaining connectivity and 

allowing communication across the network. 

3. Betweenness can be beneficial in identifying essential transit routes that connect 

different places or serve as major hubs in the context of transit routes. 
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Closeness is a measure that estimates how quickly a node may reach all other nodes 

in a network. 

1. It identifies key nodes in terms of accessibility and efficiency. 

2. Nodes with a high closeness can reach other nodes in the network faster, 

making them vital for efficient communication and information transfer. 

3. Closeness can be used to analyse how quickly information or resources can 

spread via a network while measuring efficiency. 

Degree centrality is a measure that quantifies the number of network connections a 

node has. 

1. It detects nodes with a high degree of connectivity and a large number of direct 

neighbors. 

2. Nodes having a high degree of centrality are critical for sustaining overall 

connection and encouraging interactions across the network. 

3. Degree centrality can be used to determine which nodes have the most direct 

influence or impact on the network in terms of node importance. 

Icentr to assess relevance, characteristics of edge and node weights are combined and 

adjusted by distance from each node. 

1. This measure is used in transportation for assessing the importance of nodes 

based not only on their connection but also on the quality and capacity of 

connected routes. 

Ishortest focuses on finding critical nodes that, if interrupted, have a major impact on 

network performance. 

1. It is useful in risk analysis and resilience planning for transportation networks 

since it identifies nodes whose failure would have the greatest impact on 

network functionality. 
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4.4 Integrating Centrality Indices with other Risk 

Assessment Techniques 

 

Integrating centrality indices with other risk assessment methodologies, such as the 

Network Robustness Index (NRI) and the Topological Vulnerability Index (TVI), can 

result in a more complete knowledge of network hazards and vulnerabilities. Each of 

these methodologies provides distinct information. 

1. Integration with the Network Robustness Index (NRI) 

1. NRI assesses a network's total resilience to interruptions, measuring how 

effectively the network retains functionality in the face of failures or attacks. 

2. It frequently entails assessing network performance under various 

simulated failure scenarios. 

 

Complementing with Centrality Indices: 

1. The use of centrality indices can help identify crucial nodes whose failure 

would have the greatest impact on the network. Nodes with high 

betweenness centrality, for example, may be critical for network connection. 

2.  NRI can then focus on simulating disruptions at these nodes to determine 

how their failure might affect the overall network resiliency by using 

centrality indices to pinpoint crucial nodes. 

3. This integration contributes to strategic network robustness by identifying 

and reinforcing crucial nodes or rerouting connections to mitigate the 

impact of their possible failure. 

2. Integration with the Topological Vulnerability Index (TVI) 

1. TVI evaluates a network's vulnerability to disruptions based on its 

topological properties, detecting susceptible points in the network structure. 

2. It's used to figure out how network layout affects susceptibility and how to 

design for redundancy and resilience. 

Complementing with Centrality Indices: 

1. Centrality indices can improve topological analysis by identifying nodes 

and links that are not only topologically significant but also critical based on 

traffic flow, utilization, or other functional measures. 
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2. TVI analysis can be extended beyond simply topological structure to include 

factors of network utilization and relevance, providing a more 

comprehensive perspective of susceptibility. 

3. The combination of TVI and centrality measures can be used to design more 

effective resilience solutions that focus on both the structural and functional 

components of the network. 

3. Overall Integration Benefits 

The combination of centrality indices with NRI and TVI enables a more 

comprehensive risk assessment that combines structural, functional, and usage-

based aspects. 

Resources can be allocated more efficiently to regions where they will have the 

most impact on strengthening network resilience by identifying both physically 

susceptible and functionally vital portions of the network. 

 

Case Studies and Practical Applications 

1. Underground Transportation Networks 

 

Case Study Overview: The underground Transportation networks uses 

innovative centrality indices, PathRank and Icentr, to underground transit 

networks, which are critical for urban mobility. 

The emphasis is on identifying the most critical stations and tracks and 

simulating their reactions to probable disruptions. 

Methodology and Application: The process entailed graphing and analyzing 

the underground networks of 34 global cities using the new indices. The 

approach sought to identify stations whose loss would result in the greatest 

reduction in network performance. 

Outcomes: The use of these indices showed several aspects of the underground 

networks as well as crucial nodes important for maintaining service levels. 

 

 

2. Maritime Transportation Network 

 

Case Study Overview: A network analysis of marine transportation, with 

container ports acting as nodes and shipping services acting as edges and to 

better understand the dynamics and characteristics of the maritime 
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transportation network, including the flow of products and services between 

ports. 

Methodology and Application: The network topology was analyzed using 

centrality methods, with the extra feature of weekly transit capacity as edge 

weight. 

Outcomes: The study provided insights into the structural value of specific 

ports and shipping routes, which will help guide risk management in marine 

trade. 

 

3. Air Transport Network of China (ATNC) 

 

Case Study Overview: In this scenario, classical centrality indices were applied 

to China's air transport network. Centrality indices can assist in identifying the 

most important airports in terms of connectivity, influence, or control over the 

network in the context of the air transport network. 

Methodology and Application: It Included all cities with operational airports 

and used Degree, Closeness, and Betweenness centrality indicators over a six-

month period. 

Outcomes: The identification of airports crucial for network performance and 

economic impact was made easier by the strong link between centrality ratings 

and socioeconomic variables. This information is critical for risk management 

and planning for future air travel disruptions. 

 

4. Commuter Flow and Time Delay Analysis 

 

Case Study Overview: Cheng et al.'s study offered new indices concentrating 

on commuter flow and transportation network delays. The goal of this research 

was to develop new indices that focus on two distinct features of transportation 

networks: commuter flow and delays. 

The study's goal was to gain a better understanding of how passenger flow and 

delays affect transportation networks, as well as to establish new measurements 

or indices to quantify these elements. 

Methodology and Application: By measuring the effects of node disruptions 

on commuter flow and trip time, the indexes offered a more thorough 

understanding of network performance. 

Outcomes: These indices allowed for a more in-depth understanding of how 

interruptions affect passenger experiences and network efficiency, which is 

critical for mitigating the risks associated with service outages. 
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5. Vulnerability Analysis in Transportation Networks 

 

Case Study Overview: The investigation concentrated on many factors of 

network vulnerability, such as connectivity, accessibility, and capacity. 

Methodology and Application: Topology-based indices were used to quantify 

changes in network performance and the shortest distances between nodes 

during disruptive circumstances. 

Outcomes: The study provides an integrative approach to analyzing network 

vulnerability, assisting in resilience planning against a variety of disruptive 

events. 

 

Finally, these case studies demonstrate that centrality indices are excellent tools for 

transportation network analysis, providing detailed insights into critical components 

and their roles in network functionality. Transportation planners and authorities can 

better foresee, prepare for, and respond to disturbances by using these indices, 

assuring the resilience and reliability of transportation networks in the face of a variety 

of obstacles. This strategic application of centrality indices is critical to ensuring 

continuous and efficient transportation services, which are required for modern 

civilizations to function. 

 

Conclusion 

Centrality indices are mathematical measurements that are used to determine the 

importance of nodes in a network. Centrality indices can be used in transportation risk 

analysis to identify significant nodes or areas in a transportation network that are more 

exposed to hazards or disruptions. Researchers can get insights into the possible 

implications of risks on the whole network and prioritize mitigation solutions by 

assessing the centrality of nodes. 
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5. Discussion and Proposals 

The key arguments and findings in the preceding chapters of the thesis were around 

the application and significance of centrality indices in assessing and managing 

performance reduce risks in transportation networks. Here is a summary of these main 

points: 

 

5.1 Overview of Key Findings 

 

Importance of Transportation Networks: The first section of the thesis emphasized the 

importance of transportation networks in enabling the international movement of 

people, goods, and services. It highlighted that these networks are the foundation of 

contemporary society, and their performance is critical to economic and social 

progress. 

Risks to Transportation Networks: The thesis highlighted a variety of transportation 

network risks, such as traffic congestion, accidents, natural catastrophes, and other 

interruptions. These threats have been identified as having a substantial impact on the 

dependability and functionality of transportation systems. 

Role of Centrality Indices in Network Analysis: Degree centrality, betweenness 

centrality, closeness centrality was all thoroughly examined. These measurements 

have been demonstrated to be significant in identifying critical nodes and pathways 

in transportation networks, aiding in the understanding of the network's structure and 

behavior. 

Application of Centrality Indices in Risk Assessment: We demonstrated how to use 

centrality indices to identify essential components in transportation networks. It is 

feasible to foresee regions of vulnerability and future performance decline by 

identifying these critical nodes and linkages. Different measurements of centrality 

were found to provide varying insights into the network's structure. For example, 

betweenness centrality aided in understanding node responsibilities in information 

flow, whereas closeness centrality shed light on the effectiveness of information 

dissemination across the network. 

Enhancing Network Resilience: According to the results, centrality indices may be 

useful in strengthening the resilience of transportation networks. Transportation 
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planners and decision-makers can implement preventative measures and establish 

effective contingency plans by knowing crucial nodes and linkages. 

The usage of these indicators has been found to aid in proactive management by 

reducing the risks of performance declines and providing more strong and reliable 

transportation networks. 

 

5.2 Proposals for Practical Application 

 

Optimizing Traffic Flow:  

1. Use centrality measures to discover critical nodes and routes that have a 

substantial impact on traffic flow. 

2. To reduce congestion, propose targeted infrastructure improvements or traffic 

control measures at these important areas. 

3. Incorporate real-time data analytics to dynamically change traffic signals and 

control flow based on current network circumstances. 

Increasing Traffic Flow: 

1. Use centrality measures to identify crucial nodes and routes that have a 

significant impact on traffic flow. 

2. Propose targeted infrastructure improvements or traffic control measures in 

these critical regions to decrease congestion. 

3. Incorporate real-time data analytics to alter traffic signals and govern flow 

dynamically based on current network conditions. 

Improving Emergency Response Strategies: 

1. Map ideal routes for emergency services using centrality indices to ensure 

timely access to crucial places. 

2. Create emergency response plans that take advantage of the network's most 

connected and efficient channels. 

3. Coordinate drills and training with local authorities and emergency services, 

leveraging network analysis to improve preparation. 
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5.3 Limitations and Future Research Directions 

 

1. Dynamic Nature of Transportation Networks: 

Limitation: centrality measurements sometimes presume a static network topology, 

which      may not effectively reflect the dynamic nature of transportation systems. 

Future Research: Create dynamic centrality measures that can adjust in real-time to 

changing traffic patterns, road conditions, and network configurations. 

2. Computation and Complexity: 

Limitation: The calculation of centrality measures for large and complex networks can 

be computational and time-consuming. 

Future Research: Look into more efficient algorithms and computational tools, such as 

cloud computing or parallel processing, to better handle large-scale network analysis. 

3. Sustainability and Resilience: 

Limitation: There has been little research into how centrality indicators can improve 

the resilience and sustainability of transportation networks. 

Future research: should look into the role of centrality in supporting resilient and 

sustainable transportation, particularly in light of climate change and urbanization 

challenges. 

 

5.4 Case Studies and Real-World Applications 

 

Case Study: Urban Traffic Management in Singapore 

1.  Background:  

Singapore is a city-state in Southeast Asia.  Singapore is a good example because of its 

sophisticated urban planning and traffic control systems. The city-state is known for 

its creative use of technology in traffic management and public transit. 

2. Implementation of Centrality-Based Strategies: 

Traffic Signal Optimization: Singapore identified crucial intersections and frequently 

used routes using centrality criteria for traffic signal optimization. The city then 

developed an adaptive traffic signal system, which dynamically adjusts light timing 

based on real-time traffic data. 
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Public Transportation Routing:  Centrality analysis was also used to optimize bus 

routes. The public transportation system was reorganized to improve efficiency and 

reduce transit times by identifying critical transit nodes and high-usage corridors. 

3. Outcomes and Improvements:   

Traffic Flow: The adaptive traffic control technology improved traffic flow 

significantly, cutting travel times during peak hours. 

Reduced Congestion: Route optimization based on centrality and traffic signal tweaks 

helped to reduce congestion, particularly in downtown areas. 

Public Transportation Efficiency: With shorter wait times and more direct routes to 

high-demand locations, public transportation became more reliable and efficient. 

Environmental Impact: Improved traffic flow and public transportation efficiency also 

helped to reduce automobile emissions, which aided Singapore's environmental aims. 

This case study can provide vital insights into the actual application of centrality 

measures in urban traffic management by evaluating Singapore's experience, 

illustrating how data-driven solutions can dramatically improve the efficiency and 

sustainability of metropolitan transportation networks. 

 

Case Study: Network Resilience in Tokyo During the 2011 Earthquake and Tsunami 

1.  Event and Disruption: 

catastrophe and Interruption: This disastrous disaster seriously disrupted Tokyo's 

transportation network, affecting vital train and road services. 

Immediate Challenges: The disaster severely damaged infrastructure, forcing the 

shutdown of critical highways and transit lines. 

2.   Application of Centrality Analysis: 

Immediate Response: Tokyo used centrality criteria to swiftly analyze the disaster's 

impact on its transportation network. This entailed assessing which routes and nodes 

were most important for the city's movement and which were most affected. 

Alternative Route Identification: Authorities immediately identified alternative routes 

that avoided damaged areas by examining the significance of key network 

components, ensuring crucial connectivity across the city. 

3.  Mitigation Strategies: 

Rerouting Traffic: To avoid generating new bottlenecks, traffic was diverted to less 

damaged highways and bridges using centrality analysis. 
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Enhancing Public Transportation: Due to their centrality, certain train lines were 

prioritized for immediate repair, while bus services were boosted and rerouted to 

replace areas where rail service was affected. 

4.  Long-Term Resilience Building: 

Infrastructure enhancing: Following the accident, Tokyo concentrated on improving 

its infrastructure, prioritizing renovations in the most vital portions of the network 

using centrality measures. 

Emergency Planning: The city improved its emergency planning strategies by 

including centrality analysis into its preparation for future potential disruptions. 

This case study of Tokyo's earthquake and tsunami in 2011 clearly highlights the 

critical role centrality measures may play in sustaining network resilience and 

functionality during large disruptions, providing valuable lessons for urban planners 

and emergency responders globally. 

Case Study: Public Transportation Optimization in Copenhagen 

Background: 

Copenhagen is well-known for its dedication to environmentally friendly urban 

development and high-quality public transit. To accommodate its rising population 

and satisfy its environmental aims, the city has been aggressively attempting to 

improve its public transportation infrastructure. 

Centrality Analysis Implementation: 

Identifying Central Nodes: The city identified the most critical nodes in their public 

transportation network using centrality measures such as Betweenness and Closeness 

centrality. This study looked at commuter patterns, significant destinations (such as 

workplaces, educational institutions, and shopping centers), and connection between 

various forms of transportation. 

Route Optimization: Based on the findings of the centrality analysis, Copenhagen 

redesigned its bus and train lines to serve these major nodes more efficiently. This 

entailed boosting the frequency of service to high-demand areas and improving 

connectivity between lines. 

Outcomes of the Optimization: 

Increased Public Transportation utilization: By making the public transportation 

system more efficient and user-friendly, Copenhagen saw a rise in the utilization of its 

buses and trains. This was especially noticeable during peak hours, when commuters 

found public transportation to be more convenient than driving. 
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Reduced Travel Times: Route improvement resulted in significant time savings for 

daily commuters. Because of the increased frequency and enhanced communication 

between different lines, there was less waiting time and faster transit around the city. 

Environmental Advantages: As more people choose public transit, there was a 

considerable decline in car usage, which contributed to less traffic congestion and 

decreased carbon emissions. This modification was in line with Copenhagen's goals of 

environmental sustainability and climate change mitigation. 
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6. Conclusion  

 

This thesis has thoroughly investigated the use of centrality indices in the risk analysis 

of various transportation modes, emphasizing their critical significance in improving 

the resilience and efficacy of transportation networks. Degree, Betweenness, and 

Closeness centrality, as well as newer measures like Path Rank, Icentr and Ishortest , 

have proved useful in finding critical nodes and paths inside these networks. This 

identification is critical for comprehending the network's structural and operational 

dynamics, as well as identifying locations prone to disruption. 

The practical uses of these indices have been proved through a variety of case studies, 

spanning from road networks to rail transit systems, underground transportation 

networks, maritime transportation networks, and air transport networks. These 

studies show how centrality indices can be used to analyze and manage hazards in a 

variety of transportation scenarios. The insights gained from this study are priceless 

for transportation planners and authorities, assisting in proactive network 

management to mitigate risks and improve performance. 

However, the study acknowledges the limits of current centrality measurements, 

particularly their static character and the difficulties in incorporating real-time 

disturbances. These limitations highlight the need for future research into more 

dynamic centrality measures that can adapt to changing network conditions and 

disruptions in real-time. 

In conclusion, the thesis emphasizes the importance of centrality indices in 

transportation risk analysis and network management. It lays the groundwork for 

future research aimed at improving the resilience and sustainability of transportation 

networks, which are critical to the operation of modern civilizations. Adopting these 

analytical approaches in transportation planning and management can result in more 

robust, efficient, and safe transportation systems that benefit society as a whole. 
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