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Niccolò Ajroldi

ID:

928375

Academic Year 2020/2021



Abstract

Conformal Prediction (CP) is a versatile nonparametric technique used to quantify uncer-

tainty in prediction problems. In this work, we propose an extension of such method to the

case of time series of functions defined on a bivariate domain. Given the complex nature

of data and the non-trivial dependence structure, we adapt the CP procedure, eventually

deriving distribution-free prediction bands and providing performance bounds in terms of

unconditional coverage and asymptotic exactness. The advantages of the CP method over

the traditional Bootstrap approach are explored on synthetic data in a proper Appendix.

Moreover, we extend the theory of autoregressive processes in Hilbert space in order to al-

low for functions with a bivariate domain. Given the novelty of the subject, we present

estimation techniques for the Functional Autoregressive model (FAR) and for principal com-

ponents analysis (PCA) for two-dimensional functional data. An ad hoc simulation study

is implemented in order to investigate finite sample performances of estimators of the func-

tional autoregressive model, comparing them with benchmark forecasting methods. Finally,

we explore benefits and limits of the proposed approach on a real case study, employing a

dataset from Copernicus Climate Change Service, collecting daily observations of Sea Level

Anomalies of the Black Sea in the last twenty years.

Keywords: Conformal Prediction; Functional Autoregressive Model; Forecasting; Func-

tional Time Series; Prediction band; Two-dimensional Functional data.
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Sommario

La Conformal Prediction (CP) è una versatile tecnica nonparametrica utilizzata per la quan-

tificazione dell’incertezza nei problemi di predizione. In questo lavoro, proporremo un es-

tensione di tale metodo al caso di serie temporali di funzioni definite su un dominio bi-

variato. Per via dell’alta complessità dei dati e dell’intrinseca dipendenza temporale, adat-

teremo la classica procedura CP, derivando bande di previsione e quantificando l’efficienza

predittiva in termini di copertura incondizionata ed esattezza asintotica. I vantaggi del

metodo CP rispetto alla tradizionale tecnica Bootstrap verranno esplorati su dati sintetici

in un’apposita appendice. Adatteremo inoltre la teoria dei processi autoregressivi in spazi di

Hilbert a funzioni con un dominio bivariato. Data l’innovatiità dell’argomento, proporremo

tecniche di stima per il modello Autoregressivo Funzionale (FAR) e due diversi metodi per

l’analisi delle componenti principali (PCA) per dati funzionali bidimensionali. Attraverso

l’implementazione di uno studio di simulazione, valuteremo le prestazioni a campione finito

degli stimatori del modello autoregressivo funzionale, confrontandoli con metodi di previ-

sione di riferimento. Infine, approfondiremo i benefici e i limiti dell’approccio proposto su

un reale caso di studio, utilizzando un set di dati del Copernicus Climate Change Service, il

quale raccoglie osservazioni giornaliere delle anomalie del livello del mare del Mar Nero negli

ultimi venti anni.

Parole chiave: Bande di predizione; Conformal Prediction; Dati funzionali bidimensionali;

Modello funzionale autoregressivo; Predizione; Serie temporali funzionali.
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1 Introduction

Functional data arise naturally across several disciplines, motivating an increasing demand

for dedicated analysis techniques. One interesting and expanding subfield of functional

data analysis (FDA) regards functional time series (FTS). Informally, a functional time

series consists of an ordered sequence of functional objects recorded over a time period and

characterized by some sort of temporal dependency.

Uncertainty quantification in the context of FTS forecasting has received increasing at-

tention in the statistical community in recent decades. Among the different publications

tackling the problem of distributional forecasting, Hyndman and Ullah (2007) proposed a

forecasting approach based on a preliminary functional principal component analysis (FPCA)

and a subsequent univariate time series modelling of each of the FPC scores. Additionally,

relying on the assumption of Gaussian errors, the authors proposed confidence bands for the

predicted function. Building up on the just mentioned work, Hyndman and Shang (2009)

enriched the forecasting algorithm with decreasing weights, introducing also functional par-

tial least square regression along with a bootstrap technique to obtain prediction bands. Zhu

and Politis (2017) presented a residual-based bootstrap procedure to construct prediction

regions, exploiting a functional version of a kernel estimator for the autoregressive operator.

Rossini and Canale (2018) proposed an autoregressive functional modelling framework for

dependent functional data with curve constraints, relying on a bootstrap approach in order

to quantify uncertainty around the forecasted curve. Recently, Hernández et al. (2021) also

tackled the problem of constructing simultaneous predictive confidence bands for a stationary

functional time series, introducing an entropy measure for stochastic processes and deriving

themselves prediction sets through a functional bootstrap procedure.

As is now evident, the bootstrap approach is by far the most developed technique for

distributional forecasting in the FTS context. However, the aforementioned procedure is

only asymptotically valid, doesn’t provide any theoretical guarantee, and is usually very

computationally intensive, especially in the infinite-dimensional context of functional data.

In this work, we will instead focus on Conformal Prediction, another nonparametric approach

which has proved itself to be very useful and versatile. The first appearance of such technique

dates back in Gammerman et al. (1998) and it has been later presented in great details in

the book of Vovk et al. (2005) and in Balasubramanian et al. (2006). A recent review of

the theory of Conformal inference can be found in Zeni et al. (2020). The attractiveness of

Conformal Prediction relies on its great generality and versatility, which permits to couple

it with potentially any machine learning technique, in order to obtain prediction sets.
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It is important to notice that the theory of CP is developed under the only assumption of

exchangeable data. Such very mild hypothesis, despite being one of the strengthens of CP,

is clearly not suitable for the time series context, in which one have to deal with temporal

dependence between data. Adapting CP beyond exchangeable data has recently gathered

attention in the statistical community. Tibshirani et al. (2020) introduced a weighted ver-

sion of CP for problems in which the test and training covariate distributions differ, but

the likelihood ratio between the two distributions is known. A different approach is car-

ried on by Chernozhukov et al. (2018) who rephrased the CP framework in the context of

randomization inference, proving approximate validity of the resulting prediction sets under

weak assumptions on the conformity scores and on the stationarity of the time series. An

interesting recent publication by Xu and Xie (2021) develops a method to build distribution-

free prediction intervals for bootstrap ensemble estimators in the context of time series, by

combining the work of Chernozhukov with the jackknife+-after-Bootstrap (Kim et al. 2020).

Applications of Conformal Prediction to the functional setting is also a novel research

field. Whereas Lei et al. (2013) applied CP to compute simultaneous confidence bands as a

data exploration routine, Diquigiovanni et al. (2021c) proposed a new family of nonconfor-

mity measures which permits finding prediction sets in closed form both for univariate and

multivariate functional data (Diquigiovanni et al. 2021b) and later also in the presence of

temporal dependence (Diquigiovanni et al. 2021a).

Even though functional data are typically considered to be defined on a univariate do-

main over the real line and a great research effort has been settled to develop specific analysis

techniques, to the best of our knowledge very few publications deal with functional data on

bivariate domain. Such type of data are commonly refereed to as two-dimensional func-

tional data, in order to distinguish them with bivariate functional data, which are rather

functions with a bivariate image, instead of a bivariate domain. In this work, we will focus

on time series of surfaces, representing them as two-dimensional functional data with tempo-

ral dependence. We will build on the already cited research of Diquigiovanni et al. (2021a),

extending it to two-dimensional functional data and adapting it to allow for different point

predictors.

The remainder of this paper is as follows: we first introduce two-dimensional functional

data in Section 2, providing some formal definitions. In Section 3 we illustrate conformal

prediction for functional time series. In Section 4 different point-prediction algorithms are

presented, adapting them to the Conformal inference setting and consequently comparing

them by means of the resulting prediction bands in a simulation study in Section 5. Finally,
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in Section 6 we employ the developed techniques to obtain distributional forecasts in a real

scenario, predicting the surface level of the Black Sea surface and repeating the procedure

day by day.

2 Two-dimensional functional data

Two-dimensional functional data are very common in various scientific fields, since they can

arise from records over a raster. Such type of data are frequent in Earth observation missions,

as for instance in temperature tracking of specific areas (Zhou and Pan 2014), in NASA’s

Tropospheric Emission Spectrometer measurements of ozone atmospheric concentrations or

also in sea level recordings (Huang et al. 2017). All this type of data share the fact that

they are defined over a bivariate domain, and can thus be modeled as surfaces, hence as

functional objects. Functional data analysis (FDA) is also accruing interest as a novel option

for representing images, since it allows to preserve their continuous nature. P.-Muñoz et al.

(2014) give a detailed description of the entire imaging process using the FDA approach,

proposing also a representation of iris images through functional data. As shown by Gervini

(2010) even mortality rates can be interpreted as two-dimensional functional data, where

one dimension is the temporal one ad the other one refers to age.

A common preliminary step for functional data analysis consists in a smoothing proce-

dure, where we aim to create an approximation of the original function, while filtering out

noise and measurements error (we refer to Ramsay and Silverman 2005 for an exhaustive

discussion on smoothing techniques for one dimensional functional data). A novel regular-

ization technique for Gaussian random fields on a rectangular domain has been proposed

by Rakêt (2010), where a roughness measure is introduced as a penalizing term in the

likelihood function and a Bayesian model is employed to obtain estimates. Another bi-

variate smoothing approach in a penalized regression framework is introduced by Ivanescu

and Andrada (2013), allowing for the estimation of multiple functional parameters of com-

pletely or incompletely sampled two-dimensional functional data. Yan et al. (2018) proposed

spatio-temporal smooth sparse decomposition, a novel methodology which serves as a dimen-

sionality reduction and denoising technique in a process monitoring framework for images

streams. Functional Principal Component Analysis (FPCA) has also been extended to data

on bivariate domains. Zhou and Pan (2014) presented and compared two approaches for

performing FPCA on functions on a non-rectangular domain, one based on a singular value

decomposition of discretized data and another one which makes use of a mixed effect model.
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We proceed now by introducing some formal definitions for two-dimensional functional

time series.

2.1 Definitions

A two-dimensional functional time series is an ordered sequence Y1, . . . , YT of random vari-

ables with values in a Hilbert space H, equipped with the Borel σ-algebra B(H). More

formally, we consider a probability space (Ω,F ,P), and define a random function at time t

as Yt : Ω→ H, measurable with respect to B(H).

In the rest of the article we will consider functions belonging to H = L2([c, d] × [e, f ]),

the space of measurable square integrable real-valued functions defined on the rectangle

[c, d] × [e, f ] ⊂ R2, with c, d, e, f ∈ R, c < d, e < f . Such choice is motivated by many

reasons, one above all is the fact that, by considering functions in L2([c, d]× [e, f ]), the usual

Frechet mean for functional data coincides with the pointwise mean and the covariance kernel

coincides with the point-wise covariance. Moreover, H is a separable Hilbert space, with the

usual inner product:

〈x, y〉 :=

∫ d

c

∫ f

e
x(u, v)y(u, v)dudv ∀x, y ∈ H (1)

Hereafter, we will always assume {Yt}Tt=1 ⊂ L4(Ω,F ,P) and consider only stationary time

series. We can thus easily define the Frechet mean as the unique element µ of H that solves

argminx∈H E[||Y −x||2]. As mentioned before, one can easily prove that E[Yt(u, v)] = µ(u, v)

∀(u, v) ∈ [c, d]× [e, f ]. Throughout this work, we will consider only centered random fields,

in such a way that µ coincides with the zero function. The covariance operator Γ0 : H→ H
for a zero-mean stochastic process {Yt}Tt=1 can thus be defined as:

Γ0x = E[〈Yt, x〉Yt] ∀x ∈ H (2)

Similarly, we introduce the lag-1 autocovariance operator Γ1:

Γ1x = E[〈Yt, x〉Yt+1] ∀x ∈ H (3)

Notice that, since functions are elements of H and are assumed to have finite second mo-

ments, the covariance operator can equivalently be defined by introducing the autocovariance

function γ0(u, v;w, z):

γ0(u, v;w, z) := Cov[Yt(u, v), Yt(w, z)] (4)
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in such a way that Γ0 can be seen as a kernel operator:

(Γ0x)(u, v) =

∫ d

c

∫ f

e
γ0(u, v;w, z)x(w, z)dwdz (5)

The functional mean µ can be estimated by the sample mean function:

µ̂(u, v) =
1

T

T∑
t=1

Yt(u, v) (6)

and the covariance function γ0 by its sample counterpart γ̂0:

γ̂0(u, v;w, z) =
1

T

T∑
t=1

Yt(u, v)Yt(w, z) (7)

The sample covariance operator Γ̂0 can hence be defined as the corresponding kernel operator:

(Γ̂0x)(u, v) =

∫ d

c

∫ f

e
γ̂0(u, v;w, z)x(w, z)dwdz =

1

T

T∑
t=1

〈Yt, x〉Yt(u, v) (8)

where, as usual, x ∈ H and (u, v) ∈ [c, d]× [e, f ], in such a way that:

Γ̂0x =
1

T

T∑
t=1

〈Yt, x〉Yt (9)

Similarly, we can estimate the lag-1 autocovariance operator Γ1:

Γ̂1x =
1

T − 1

T−1∑
t=1

〈Yt, x〉Yt+1 (10)

Under rather general weak dependence assumptions these estimators are
√
n-consistent.

One may, for example, adopt the concept of Lp-m-approximability introduced in Hörmann

and Kokoszka (2010) to prove that E[||µ̂ − µ||2H] = O(n−1) and E[||Γ̂0 − Γ0||2] = O(n−1),

where ||.|| is the classical operatorial norm: ||F || := sup||x||H=1 ||Fx||H for any linear bounded

operator F : H→ H.
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3 Conformal inference for functional time series

Conformal Prediction (CP) is a nonparametric approach to the problem of uncertainty quan-

tification in forecasting. While it can be used to obtain prediction sets for a new observation

in a very generic setting, we will employ it in a regression framework. In a nutshell, the

CP approach is based on the idea of assigning scores to new candidate points in order to

assess their non-conformity. Prediction sets are then derived by inverting the hypothesis test

obtained using such scores, including only points with a relatively high conformity level.

In this work, we will consider only the Inductive Conformal Prediction or Split Conformal

Prediction method (Papadopoulos et al. 2002). Such modification of the original Transduc-

tive Conformal method is not only computationally efficient, but is also necessary in the

functional framework. Indeed, the main drawback of the Full Conformal approach is that

the prediction algorithm needs to be retrained for every possible candidate test point y. In

practice, in multivariate problems, where y lies in Rp, one runs the above routine for candi-

date y over a p-dimensional grid. While such approach is prohibitive for high-dimensional

spaces, since computational times grow exponentially with p, it is actually unfeasible in a

functional setting, in which y lies in an infinite-dimensional space. On the other hand, em-

ploying Split Conformal inference along with a particular nonconformity score, introduced

by Diquigiovanni et al. (2021c) and explicitly tailored for functional data, permits deriv-

ing prediction sets in closed form. Specifically, we will consider the approach introduced

by Chernozhukov et al. (2018) for time-dependent data and later adapted by Diquigiovanni

et al. (2021a) to allow for functional time series in a Split Conformal setting. We will extend

such method to two-dimensional functional data.

Consider a time series Z1, . . . ,ZT of regression pairs Zt = (Xt, Yt), with t = 1, . . . , T .

Let Yt be a random variable with values in H (namely a random function), while Xt is a set

of covariates at time t belonging to a measurable space. Notice that Xt is a generic set of

regressors, which may contain both exogenous and endogenous variables. In particular, later

in the manuscript, we will consider Xt to contain only the lagged version of the function Yt,

namely Yt−1.

We aim to design a procedure that outputs a prediction set CT,1−α for YT+1 based on

Z1, . . . ,ZT and XT+1, with unconditional coverage greater or equal than 1 − α for any

significance level α. More formally, we define CT,1−α to be a valid prediction region if:

P(YT+1 ∈ CT,1−α) ≥ 1− α (11)
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Moreover, we would like to construct a particular type of prediction sets, commonly known

as prediction bands, formally defined as:

{y ∈ H : y(u, v) ∈ Bn(u, v) ∀(u, v) ∈ [c, d]× [e, f ]} (12)

with Bn(u, v) ⊆ R union of finitely many intervals for each (u, v) ∈ [c, d] × [e, f ]. The

convenience of such type of prediction sets is extensively motivated in literature (see e.g.

Pintado and Romo 2009, Lei et al. 2013 and Diquigiovanni et al. 2021c), since a prediction

set of this type can be easily visualized (at least for one-dimensional functional data) in a

plot, a property that is instead not guaranteed if the prediction region is a generic subset of

H.

Let z1, . . . ,zT be realizations of Z1, . . . ,ZT . As the name suggests, Split Conformal

inference is based on a random split of data into two disjoint sets: let I1, I2 be a random

partition of {1, . . . , T}, such that |I1| = m, |I2| = l, m, l ∈ N m, l > 0, m+ l = T . Historical

observations z1, . . . ,zT are divided into a training set {zh, h ∈ I1}, from which we will

estimate the prediction model, and a calibration set {zh, h ∈ I2}, that will be used in an

out-of-sample context to measure the nonconformity of a new candidate function. The choice

of the split ratio is non-trivial and has motivated discussion in the statistical community.

Including more data in the training set improves the estimation of the point predictor ĝI1 .

At the same time, having fewer data in the calibration set produces a very rough p-value

function, resulting in greater actual coverage with respect to the nominal one. This trade-off

problem is enhanced in the time series context, in which one would like to have both training

and calibration sets as large as possible, since asymptotic validity is guaranteed when both l

and m goes to infinity. Throughout this work, the training-calibration ratio is fixed equal to

50%-50%, as commonly suggested in literature. Moreover, we stress the fact that the split

is random. This clearly introduce variability in the procedure since results depend on the

particular division of data. We acknowledge a recent advancement in this direction, namely

Multi Split Conformal Prediction (Solari and Djordjilović 2021), which aggregates single

split CP intervals across multiple splits.

Another interesting question regarding the type of split comes up in the time series

context. Due to lacking of exchangeability, two different subdivisions are possible in this

framework. A first choice could consist in a sequential division of data, where the split point

is no longer random, but is a result of the training-calibration proportion (see Figure 1a).

Wisniewski et al. (2020) applied this scheme in a rolling window fashion to forecast Market

Makers’ Net Positions. While this choice may seem more consistent in the presence of
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temporal dependence, since it does not split subsequent observations in two different sets,

it may lead to very biased results if the training size m is very small or if data present a

different trend or seasonal component in the training and calibration sets. The interested

reader may refer to Kath and Ziel (2019) for a more comprehensive discussion on this topic.

All in all, in order to make the model more robust, we preferred to split data randomly, as

reported in Figure 1b.

(a) Consecutive split (b) Random split

Figure 1: Possible types of split with T = 8, m = l = 4.

We then introduce a nonconformity measure A, which is a measurable function with values

in R∪{+∞}. The role of A({zh, h ∈ I1}, z) is to quantify the nonconformity of a new datum

z with respect to the training set {zh, h ∈ I1}. The choice of the nonconformity measure

has a fundamental impact on the resulting prediction sets. Indeed, whereas the validity is

guaranteed regardless of the specific nonconformity measure employed (Diquigiovanni et al.

2021c), such choice is crucial if we aim to find prediction bands (12) and if we want to

find them in closed form. Motivated by such considerations, we will employ the following

nonconformity score, introduced by Diquigiovanni et al. (2021c):

A({zh : h ∈ I1}, z) = ess sup
(u,v)∈[c,d]×[e,f ]

|y(u, v)− gI1(u, v;xT+1)|
sI1(u, v)

(13)

where z = (xT+1, y), gI1 is a point predictor estimated from the training set I1, depending

also on xT+1 and sI1 is a modulation function, which is a positive function depending on

the training set itself that allows for prediction bands with non-constant width. Notice that,

on a theoretical point of view, the nonconformity measure A may assume infinite values,

since we are embedding functions in L2([c, d] × [e, f ]) and we have thus no guarantee on

their boundness. To overcome this issue, one can instead consider the functional space

L∞([c, d] × [e, f ]), as done by Diquigiovanni et al. (2021c), however, such space equipped

with the usual L2 scalar product, is not closed, and is therefore not a Hilbert space. For

such reason, we decided to settle anyway the analysis in L2([c, d] × [e, f ]), resorting to the

fact that, in practical applications, (13) will only assume finite values, given the finite nature
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of observed data.

The estimation of gI1 is discussed in Section 4, while the functional standard deviation

will be employed as modulation function sI1 , allowing for wider bands in the parts of the

domain where data show high variability and narrower and more informative prediction

bands in those parts characterized by low variability. For an extensive discussion on the

optimal choice of modulation function, we refer to Diquigiovanni et al. (2021c).

We now aim to define a family Π of index permutations πi : {1, . . . , T+1} → {1, . . . , T+1},
that leave unchanged the indices of the training set, and modify only {I2, T + 1}, namely

the indices of the calibration set and the next time step.

In order to do so, let’s first introduce a function λ : {I2, T + 1} → {1, . . . , l + 1} such

that λ(t) returns the t-th element of the ordered set {I2, T + 1}. Fix now a positive integer

b ∈ {1, . . . l+1} such that l+1
b ∈ N and define a family Π̃ of index permutations that act on the

set {1, . . . , l+1}. Each π̃i ∈ Π̃ is required to be a bijection π̃i : {1, . . . , l+1} → {1, . . . , l+1},
for i = 1, . . . , l+1

b . In particular, we will consider non-overlapping blocking permutations,

with b representing the size of the blocking scheme:

π̃i(j) =

j + (i− 1)b if 1 ≤ j ≤ l − (i− 1)b+ 1

j + (i− 1)b− l − 1 if l − (i− 1)b+ 2 ≤ j ≤ l + 1
(14)

Notice that |Π̃| = l+1
b . Moreover, such family of transformations forms an algebraic group,

containing among other the identity transformation π̃1.

It is then straightforward to introduce the family Π of index permutations acting on {1, . . . , T+

1}. Each πi ∈ Π, with i = 1, . . . , l+1
b is defined as:

πi(t) =

t if t ∈ I1

λ−1(π̃i(λ(t)))) if t ∈ I2 ∪ {T + 1}
(15)

In Figure 2 is reported a trivial example of the families of permutation Π and Π̃.
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Figure 2: Example of permutation families Π̃ and Π, with sample size T = 6, training set
I1 = {1, 3, 6}, calibration set I2 = {2, 4, 5}, l = m = 3, size of blocking scheme b = 2. In
this case λ : {I2, T + 1} ≡ {2, 4, 5, 7} → {1, 2, 3, 4}, Π̃ = {π̃1, π̃2} and Π = {π1, π2}.

Consider now a candidate function y ∈ H and define the augmented dataset as Z(y) =

{Zt}T+1
t=1 , where:

Zt =

(Xt, Yt), if 1 ≤ t ≤ T

(XT+1, y), if t = T + 1
(16)

We refer to Zπ
(y) = {Zπ(t)}T+1

t=1 as the randomized version of {Zt}T+1
t=1 . Let’s then define the

randomization p-value as:

p(y) =
1

|Π|
∑
π∈Π

1(S(Zπ
(y)) ≥ S(Z(y))) (17)

where the nonconformity scores S(Z(y)) and S(Zπ
(y)) are defined as:

S(Z(y)) = A({Zh : h ∈ I1},ZT+1) (18)

S(Zπ
(y)) = A({Zh : h ∈ I1},Zπ(T+1)) (19)

The idea is to apply permutations, modifying the order of observations in the calibration

set, while at the same time preserving the dependence between them, thanks to the block

structure of Π. For each π, we compute the nonconformity score of Zπ
(y). The p-value of a

test candidate value y is then determined as the proportion of randomized versions Zπ
(y) with

a higher or equal nonconformity score than the one of the original augmented dataset Z(y).

Notice that p(y) is a measure of the conformity of the candidate function y with respect to

the permutation family Π. It is then natural to include in the prediction set only functions y
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with an “high” conformity level. In other words, given a significance level α ∈ [b/(l+ 1), 1]1,

we define the prediction bands by test inversion:

CT,1−α := {y ∈ H : p(y) > α} (20)

As mentioned before, the advantage of using the Split Conformal method along with the

conformity measure (13) relies on the possibility to find the prediction set in closed form.

Define ks to be the d(|Π|+ 1)(1− α)eth smallest value of the set {S(Zπ(t)), π ∈ Π}.

y ∈ CT,1−α ⇐⇒ p(y) > α

⇐⇒ S(Z(y)) ≤ ks

⇐⇒ ess sup
(u,v)∈[c,d]×[e,f ]

|y(u, v)− gI1(u, v;xT+1)|
sI1(u, v)

≤ ks

⇐⇒ |y(u, v)− gI1(u, v;xT+1)| ≤ kssI1(u, v) ∀(u, v) ∈ [c, d]× [e, f ]

⇐⇒ y(u, v) ∈ [gI1(u, v;xT+1)± kssI1(u, v)] ∀(u, v) ∈ [c, d]× [e, f ]

Therefore, we have derived the prediction set in closed form:

CT,1−α := {y ∈ H : y(u, v) ∈ [gI1(u, v;xT+1)± kssI1(u, v)] ∀(u, v) ∈ [c, d]× [e, f ]} (21)

In the case in which regression pairs are exchangeable, the proposed method retains ex-

act, model-free validity (Chernozhukov et al. 2018). However, when such assumption is not

met, one can guarantee only approximately validity of the proposed approach under weak

assumptions on the conformity score and the stationarity of the time series.

More formally, let A∗ be an oracle nonconformity measure, inducing oracle nonconformity

score S∗. Define F to be the cumulative (unconditional) distribution function of the or-

acle nonconformity scores, namely F (x) = P(S∗(Zπ
(y)) < x) and F̂ the empirical counter-

part, obtained by applying permutations π ∈ Π: F̂ (x) := 1
|Π|
∑

π∈Π 1{S∗(Zπ
(y)) < x}. Let

{δ1l̄, δ2m̄, γ1l̄, γ2m̄} be sequences of numbers converging to zero. Theorem 1 of Diquigiovanni

et al. (2021a) prescribes sufficient conditions in order to guarantee asymptotic exactness

of the prediction set. We report such result with a slightly modified notation. Let here

Z = Z(YT+1), where the candidate function y is now substituted by the random function

YT+1.

1if α ∈ (0, b/(l + 1)) the resulting prediction set will coincide with the entire space H
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Theorem 1. If the following conditions hold:

• supa∈R |F̂ (a)− F (a)| ≤ δ1l̄ with probability 1− γ1l̄

• 1
|Π|
∑

π∈Π

[
S(Zπ)− S∗(Zπ

(y))
]2
≤ δ2

2m̄ with probability 1− γ2m̄

• |S(Zπ)− S∗(Zπ)| ≤ δ2m̄ with probability 1− γ2m̄

• With probability 1− γ2m̄ the pdf of S∗(Zπ) is bounded above by a constant D

then the Conformal confidence set has approximate coverage α:

|P(YT+1 ∈ CT,1−α(XT+1)− (1− α))| ≤ 6δ1l̄ + 2δ2m̄ + 2D
(
δ2m̄ + 2

√
δ2m̄

)
+ γ1l̄ + γ2m̄ (22)

The first condition concerns the approximate ergodicity of F̂ for F , a condition which

holds for strongly mixing time series using blocking permutation Π defined in (15) (Cher-

nozhukov et al. 2018). The second condition is a requirement for the quality of approximating

the oracle S∗(Zπ) with S(Zπ), intuitively, δ2
2m̄ bounds the discrepancy between the noncon-

formity scores and their oracle counterparts.

4 Point Prediction

In order to guarantee validity of Conformal Prediction bands, the choice of an accurate

point predictor is crucial. As mentioned before, whereas in the typical i.i.d. case finite-

sample unconditional coverage still holds when the model is heavily misspecified, in the time

series context a strong model misspecification compromises the coverage guarantees and not

only the efficiency of the resulting prediction bands. The interested reader may further

investigate this issue in the work of Chernozhukov et al. (2018) and Diquigiovanni et al.

(2021a).

4.1 FAR(1)

One of the most popular statistical models used to capture temporal dependence between

functional observations is the functional autoregressive process (FAR). The theory of func-

tional autoregressive processes in Hilbert spaces is developed in the monograph of Bosq

(2000) and a comprehensive collection of statistical advancements for the FAR model can be

found in the book by Horváth and Kokoszka (2012).
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A sequence of mean zero random functions {Yt}Tt=1 ⊂ H follows a non-concurrent functional

autoregressive process of order 1 if:

Yt = ΨYt−1 + εt t = 2, . . . , T (23)

where {εt}t∈N is a sequence of iid mean-zero innovation errors with values in H satisfying

E[||εt||2] < +∞ and Ψ is a linear bounded operator from H to itself. In particular, we will

consider Ψ to be a Hilbert-Schmidt operator with kernel ψ, in such a way that:

(Ψx)(u, v) =

∫ d

c

∫ f

e
ψ(u, v;w, z)x(w, z)dwdz ∀x ∈ H, ∀(u, v) ∈ [c, d]× [e, f ] (24)

In order to ensure existence of a stationary solution to the functional AR(1) equation (23),

one has to require the existence of an integer j0 ∈ N such that ||Ψ||j0 < 1 (Bosq 2000, Lemma

3.1).

A very popular estimator of Ψ can be derived following a procedure similar to the Yule-

Walker estimation in the scalar setting. Calling Γ0 and Γ1 the autocovariance and the lag-1

autocovariance operators respectively and proceeding similarly to Horváth and Kokoszka

(2012), one can derive the operatorial equation:

Γ1 = ΨΓ0 (25)

A natural idea may consist in computing estimators Γ̂0, Γ̂1 from historical data and defining

then Ψ̂ = Γ̂0Γ̂−1
0 . Unfortunately, the inverse operator Γ−1

0 is unbounded on H (Horváth

and Kokoszka 2012), however, thanks to Γ0 being a symmetric, compact, positive-definite

operator, one can exploit its spectral decomposition to introduce a pseudo-inverse operator

Γ−1
0,M , defined as:

Γ−1
0,Mx =

M∑
j=1

λ−1
j 〈x, ξj〉ξj ∀x ∈ H (26)

where ξ1, . . . , ξM are the first M normalized functional principal components (FPC’s),

λ1, . . . , λM are the corresponding eigenvalues and 〈x, ξ1〉, . . . , 〈x, ξM 〉 are the scores of x

along the FPC’s. We formally define ξi and λi as eigenfunctions and eigenvalues that solve

the functional equation:

Γ0ξi = λiξ i = 1, . . . ,M (27)

Appendix B is dedicated to the illustration of two different estimation techniques for ξi and
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λi, one based on a discretization of functions on a fine grid and the other designed starting

from an expansion of data on a finite basis system,

We can now combine (25) and (26), plugging in estimated eigenfunctions and eigenvalues

and calling Γ̂−1
0,M the resulting estimator of Γ−1

0,M , to finally derive:

Ψ̂M = Γ̂1Γ̂−1
0,Mx (28)

Ψ̂Mx =
1

T − 1

M∑
i,j=1

T∑
t=1

λ̂j〈x, ξ̂j〉〈Yt−1, ξ̂j〉〈Yt, ξ̂i〉ξ̂i ∀x ∈ H (29)

Notice that the operator Γ̂−1
0,M is bounded on H if λ̂j are strictly greater than zero for

j = 1, . . . ,M . Nevertheless, even if such condition is met, in practice one should cautiously

select the number of principal components M , because very small eigenvalues will result

in very high reciprocals λ̂−1
j , providing in practice unbounded estimates of Γ−1

0,M . Such

observation motivated Didericksen et al. (2010) to add a positive baseline to the estimated

eigenvalues λ̂j . This small modification improves the estimation of the operator Ψ, and most

importantly, contributes to weaken the dependency of Ψ̂M on M .

A different yet simpler forecasting procedure has been proposed by Aue et al. (2012) for

one dimensional functional data and will be here extended to the two-dimensional setting.

Calling once again ξ1, . . . , ξM the first M principal components, we can decompose the

functional time series as follows:

Yt(u, v) =

M∑
j=1

〈Yt, ξj〉ξj(u, v) + et(u, v) = (30)

= Y T
t ξ(u, v) + et(u, v) (31)

where Yt = [〈Yt, ξ1〉, . . . , 〈Yt, ξM 〉]T contains the scores of the projection, ξ(u, v) =

[ξ1(u, v), . . . , ξM (u, v)]T and et(u, v) is the approximation error due to the truncation of

the expansion on the first M principal components. Neglecting the approximation error

et, one can prove that the vector Yt follows a multivariate autoregressive process of or-

der 1. Plugging in the estimated FPC’s ξ̂1, . . . , ξ̂M , the parameters of the resulting model

can be easily estimated using classical multivariate statistical techniques and YT+1 is then

forecasted based on historical data Y1, . . . , YT . The predicted function ŶT+1 can be simply

reconstructed as:

ŶT+1(u, v) = Ŷ T
T+1ξ(u, v) (32)

18



Throughout the rest of the work, we will employ both the estimator Ψ̂M (29) of the

Hilbert-Schmidt operator Ψ and the forecasting routine (32) presented just above, eventually

comparing them in Section 5 in terms of prediction performances.

4.2 Conformal Inference for a FAR(1)

In this section, we aim to adapt the previous estimator to the conformal inference setting.

The goal is to accommodate the regression algorithm in order to estimate the point predictor

gI1 from the training set only.

As a preliminary step, given that the FAR(1) model has been presented for mean-centered

data, one has to estimate the mean function µ̂I1 from the training set only and consequently

center all the observations in the training and calibration set around µ̂I1 . If the sample size at

disposal is sufficiently large and if the stationarity assumption is fulfilled, it should make no

great difference to estimate the population function µ with the sample mean µ̂ = 1
T

∑T
t=1 Yt

or with its restriction on the training set µ̂I1 = 1
m

∑
t∈I1 Yt. Another fundamental step is the

estimation of functional principal components. Since in the CP framework we are allowed

to use only the information from the training set in order to compute ξ̂1, . . . , ξ̂M , it is then

natural to employ only training data {zh : h ∈ I1} in such estimation routine.

In order to obtain the “Yule-Walker” estimator Ψ̂M (29), one has to compute Γ̂1 and

Γ̂−1
0,M from the training set. While the computation of the sample pseudo-inverse of the

autocovariance estimator is straightforward:

Γ̂−1
0,Mx =

1

m

M∑
j=1

λ̂j〈x, ξ̂j〉ξ̂j ∀x ∈ H (33)

the CP counterpart of Γ̂1 is more delicate and requires further discussion. Recall indeed that

the classical estimator for the lag-1 autocovariance operator from Y1, . . . , YT is:

Γ̂1x =
1

T − 1

T−1∑
t=1

〈Yt, x〉yt+1 = (34)

=
1

T − 1

T∑
t=2

〈Yt−1, x〉Yt (35)
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In the CP setting, however, we could define three different estimators for Γ1:

Γ̂1x =
1

m− 1

∑
t∈I1[1:m−1]

〈Yt, x〉Yt+1 (36)

Γ̂1x =
1

m− 1

∑
t∈I1[2:m]

〈Yt−1, x〉Yt (37)

Γ̂1x =
1

m

∑
t∈I1

〈Yt−1, x〉Yt (38)

where x ∈ H and I1[i : j] contains the indices from the i-th to the j-th element of I1. Notice

that the three estimators differ because if t ∈ I1, we have no assurance that {t− 1} ∈ I1 or

even {t + 1} ∈ I1. We stress also the fact that the third operator is well-defined only if we

reserve a burn-in set of length 1 at the front of the time series, in such a way that, if {2} ∈ I1,

we can still compute the estimator. Among the three options, we will prefer the third one

(38), since it averages over a larger set. One may also argue that such estimators are not

coherent with the CP setting, since they are inevitably based on data from the calibration

set. However, as mentioned before, we are considering the time series of regression pairs

Zt = (Xt, Yt), t = 1, . . . , T . The key consideration is that, according to the FAR(1) model,

we use as regressors the lagged version of the time series, namelyXt = Yt−1 and the regression

couples becomes Zt = (Yt−1, Yt), for each t = 1, . . . , T . From this perspective, one could

rephrase the definition of the sample covariance operator by making explicit its dependence

from the regressor Xt instead of Yt−1:

Γ̂1x =
1

m− 1

∑
t∈I1

〈Yt−1, x〉Yt = (39)

=
1

m

∑
t∈I1

〈Xt, x〉Yt (40)

It is then straightforward to derive the estimator Ψ̂M,I1 :

Ψ̂M,I1x =
1

m

M∑
i,j=1

∑
t∈I1

λ̂j〈x, ξ̂j〉〈Yt−1, ξ̂j〈Yt, ξ̂i〉ξ̂i = (41)

=
1

m

M∑
i,j=1

∑
t∈I1

λ̂j〈x, ξ̂j〉〈Xt, ξ̂j〈Yt, ξ̂i〉ξ̂i ∀x ∈ H (42)

20



The point predictor finally becomes ŶT+1 = gI1(u, v;XT+1) = (Ψ̂M,I1XT+1)(u, v) =

(Ψ̂M,I1YT )(u, v).

In order to compute (42), it is first mandatory to project the calibration set onto the

EPFC’s in order to compute the scores 〈Xh, ξ̂j〉 for h ∈ I2. Notice that, in the non-Conformal

setting, such step comes for free when performing FPCA. In the CP context, however,

EPFC’s are computed from the training set only, therefore, in order to access the scores of

the calibration set, one needs to explicitly add this projection step.

4.3 Other forecasting algorithms

We finally introduce a model that may appear simplistic, since it neglects time dependence

between different points of the functional domain, but that in practice provides quite satis-

fying results. The prediction method assumes an autoregressive structure in each location

(u, v) of the domain, ignoring the dependencies between different points. More formally, we

define the concurrent FAR(1) as:

Xt(u, v) = ψu,vXt−1(u, v) + εt(u, v) ∀(u, v) ∈ [c, d]× [e, f ], t = 2, . . . , T (43)

where ψu,v ∈ R. Supposing to have observed all functional data y1, . . . , yT on the same

two-dimensional grid {(ui, vj)} with i = 1, . . . , N1 and j = 1, . . . , N2. The goal becomes to

estimate ψui,vj for each location (ui, vj) in the grid.

In order to fix a benchmark on the forecasting performances, we will employ as reference

regression algorithm the naive predictor ŶT+1 = XT+1 = YT , which coincides with the

function at the previous time, thus ignoring the autoregressive structure at all.

5 Simulation study

In this section, we will evaluate the previously presented procedure through a simulation

study. The goal is twofold: we aim to assess the quality of the proposed Conformal Pre-

diction bands and, at the same time, evaluate different point predictors in terms of the

resulting prediction regions. We will employ as a data generating process a FAR(1) model

in order to compare the different estimation routines presented in Section 4.1. Alongside, we

will juxtapose the performances of such estimation procedures with the simpler algorithms

presented in Section 4.3, with the intention of fixing a reference target on the prediction

task, in order to understand how much can be gained by utilizing the autoregressive struc-
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ture of data. Moreover, by including forecasting algorithms that are not coherent with the

data generating process, we can illustrate how the presented CP procedure performs when

a good point predictor gI1 is not available. Although as reported in Section 3 an accurate

forecasting algorithm is sufficient to guarantee asymptotic validity, we will see that in the

performed simulations CP bands will be valid even when such assumption will not hold.

It is important to clarify how we will evaluate the various regression algorithms in the

different scenarios. Since this work is focused on uncertainty quantification in the context of

two-dimensional functional data, we will compare forecasting performances by means of the

resulting Conformal Prediction bands. Firstly and foremost, we will estimate the uncondi-

tional coverage by computing the empirical unconditional coverage in order to compare it

with the nominal confidence level 1−α. In the second place, we will consider the size of the

prediction bands obtained since, intuitively, a small prediction band is preferable because it

includes subregions of the sample space where the probability mass is highly concentrated

(Lei et al. 2013) and it is typically more informative in practical applications.

Without loss of generality, throughout this section we will consider functions in H =

L2([0, 1]× [0, 1]). In each scenario, we will compare the performances of five selected predic-

tion algorithms, three of which do not exploit the autoregressive structure. To obtain further

insights, we also include the errors obtained by assuming perfect knowledge of the operator

Ψ. For ease of reference, we briefly describe these methods, and introduce some convenient

notation:

• EK (Estimated Kernel) denotes the first estimation procedure presented in Section 4.1,

where we explicitly compute Ψ̂M as prescribed by (29) and then set ŶT+1 = Ψ̂MYT .

• EK+ (Estimated Kernel improved) is a modification of the above method, where

eigenvalues λ̂i are replaced by λ̂i + 1.5(λ̂1 + λ̂2), as recommended by Didericksen et al.

(2010).

• VAR-efpc denotes the forecasting procedure (32) presented in Section 4.1, where we

exploit the expansion on the estimated functional principal components and forecast

YT+1 thanks to the underlying VAR(1) model.

• Concurrent refers to the forecasting algorithm based on the estimation of the con-

current FAR(1) model (43).

• Naive: we just set ŶT+1 = YT . This method does not attempt to model temporal de-

pendence, it is included to see how much can be gained by exploiting the autoregressive
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structure of data.

• Oracle: we set YT+1 = ΨYT , using the actual Ψ from which data are simulated. This

point predictor is clearly not available in practical application, but it is interesting to

include it in order to see if poor predictions might be due to poor estimation of Ψ.

When it is required (namely in EK, EK+, VAR-efpc), FPCA is performed using the

discretization approach, as motivated in Appendix B. The number of principal components

is selected by the cumulative proportion of variance criterion. Calling λ̂1, . . . , λ̂M the M

largest estimated eigenvalues, we choose M ∈ N such that
∑M

j=1 λ̂j/
∑∞

j=1 λ̂j exceeds a

predetermined percentage value, which is in this case fixed equal to 0.8. We noticed that,

on average, this entails to select a number of harmonics between 4 and 6.

Throughout the whole simulation study, we set the significance level α = 0.1. In the

first simulation, in Section 5.1, we will fix the size b of the blocking scheme (15) equal to

1 and the sample size T will take values 19, 49, 99, 499. Secondly, in Section 5.2, we will

instead keep the sample size fixed equal to 119 and repeat the simulations with b = 1, 3, 6.

As usually done in the time series setting, the first observation is taken into account as a

covariate only and will neither take part of the training set, nor of the calibration set. The

proportion of data in the training and in the calibration set are hence equal to one half of

the remaining observations, id est m = l = (T − 1)/2. Thanks to the chosen values of T , l

and α, we can guarantee an actual coverage of 1− b(l+1)αc
(l+1) = 1− α. For each value of T , we

repeat the procedure by considering N = 1000 simulations. The simulations are performed

using the R Programming Language (R Core Team 2020).

Following the implementation of Hörmann and  Lukasz (2017), in order to simulate a

sequence of functions {Yt}t=1,...,T from a functional autoregressive process of order one:

Yt(u, v) = ΨYt−1(u, v) + εt(u, v) = (44)

=

∫ 1

0

∫ 1

0
ψ(u, v;w, z)Yt−1(w, z)dwdz + εt(u, v), t = 1, . . . ,M (45)

we assume that observations lie in a finite dimensional subspace of the function space H,

spanned by orthonormal basis functions φ1, . . . , φM , with M ∈ N representing the dimension
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of such subspace. Therefore, we have:

Yt(u, v) = φ(u, v)TYt (46)

ε(u, v) = φ(u, v)Tεt (47)

ψ(u, v;w, z) = φ(u, v)TΨφ(w, z) (48)

where φ(u, v) = [φ1(u, v), . . . , φM (u, v)]T ∈ RM , ∀(u, v) ∈ [0, 1] × [0, 1], Yt, εt ⊂ RM , ∀t =

1, . . . ,M and Ψ ∈ RM×M . It follows that:

Yt = ΨYt−1 + εt t = 1, . . . , T (49)

We set Y0 = ε0 to initialize the procedure and then perform 50 burn-in iterations, in order

to achieve stationarity.

The basis system φ1, . . . , φM is constructed as the tensor product basis of two cubic B-

spline systems {gi}i=1,...,M1 , {hj}j=1,...,M2 , defined respectively on [0, 1] and [0, 1]. We set

M1 = M2 = 5, in such a way that M = 25. Notice that, by including more functions, we will

better approximate the space H, though inevitably producing rougher curves. On the other

hand, by reducing the size of the basis system, one renounce to have a good representation

of H, but this permits to obtain smoother functions. The choice proposed for M is arbitrary,

but provides a good compromise between the two presented extremes. For an exhaustive

discussion on the tensor product basis system, we refer to Appendix B.0.2.

The matrix Ψ is defined as Ψ := 0.9 Ψ̃
||Ψ̃||F

, with Ψ̃ having diagonal values equal to 0.8 and

out-diagonal elements equal to 0.3. One can easily prove that, if relation (48) holds, then

||Ψ|| = ||Ψ||F , where ||.|| is the usual operatorial norm and ||.||F denotes the Frobenius norm.

Innovation errors εt are independently sampled from a multivariate Student’s t-distribution,

with 4 degrees of freedom and scale matrix Σ having diagonal elements equal to 0.5 and out-

diagonal entries equal to 0.3. We report in Figure 3 an example of the first three realizations

of a simulated Functional Autoregressive Process of order one, represented on a grid of 104

points2.

2A GIF of the FAR(1) process evolution can be found in this GitHub repository.
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Figure 3: Example of the first three realizations (Y1, Y2, Y3) of a simulated Functional Au-
toregressive Process of order one.

5.1 Increasing the sample size

As mentioned before, we first fix the size b of the blocking scheme equal to 1 and let the

sample size T take values 19, 49, 99, 499.

Figure 4a shows the empirical coverage, together with the related 99% confidence interval.

Specifically, the empirical coverage is computed as the fraction of the N = 1000 replications

in which yT+1 belongs to CT,1−α, and the confidence interval is reported in order to provide

an idea of the variability of the phenomenon, rather than to make inferential conclusion on

the unconditional coverage in the various settings. We stress the fact that different point

predictors will intrinsically have dissimilar coverages, consequently this analysis aims to

compare forecasting algorithm in terms of their predictive performances. We can appreciate

that, in all the cases, the 99% confidence interval for the empirical coverage includes the

nominal confidence level, regardless of the sample size at disposal. Moreover, it’s interesting

to notice that, even when an accurate forecasting algorithm gI1 is not available (namely with

Concurrent and Naive), the proposed CP procedure still outputs valid prediction regions.

Following once again the work of Diquigiovanni et al. (2021c), we define the size of a

two-dimensional prediction band as the volume between the upper and the lower surfaces

that define the prediction band:

Q(sI1) :=

∫ 1

0

∫ 1

0
2ksI1(u, v)dudv = 2k (50)

Figure 4b reports the boxplots concerning the size of the N = 1000 prediction bands,

while in Table 1b we collected mean sizes to allow for easier comparison.
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(a) Empirical coverage of CP bands. The dashed
line represents nominal coverage 1− α.

(b) Size of CP bands.

Figure 4: Results of first simulation study.

Method T

19 49 99 499

concurrent 0.895 0.902 0.892 0.909
EK 0.895 0.903 0.891 0.897
EK+ 0.883 0.901 0.891 0.906
Naive 0.892 0.903 0.893 0.895
Oracle 0.895 0.909 0.901 0.913
VAR-efpc 0.908 0.894 0.887 0.894

(a) Empirical coverage of CP bands

Method T

19 49 99 499

concurrent 44.66 28.33 24.59 22.84
EK 41.08 26.98 23.42 21.64
EK+ 39.65 26.63 23.23 21.58
Naive 44.98 31.75 28.14 26.58
Oracle 37.75 25.99 22.87 21.50
VAR-efpc 49.30 27.05 23.17 21.54

(b) Average size of CP bands

Table 1: Results of first simulation study.

One can notice that the size tends to decrease as long as the number of observations T

increases, hence improving the efficiency of the prediction sets. As expected, Naive predic-

tor provides larger prediction bands and while the difference is less emphasized with small

sample sizes, when T grows the size of the prediction regions of other methods systemati-

cally dominates the Naive’s one. On the other hand, EK and EK+, that are both based on

the estimation of autoregressive operator Ψ, provide the tightest prediction bands, not only

when numerous observations is available, but also in small sample sizes scenario. Moreover,

one can notice that EK+ do not significantly improves EK neither in terms of coverage, nor
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(a) Empirical coverage of CP bands. The dashed
line represents nominal coverage 1− α.

(b) Size of CP bands.

Figure 5: Results of second simulation study.

in terms of band size. We acknowledge that, when T = 19, VAR-efpc performs remarkably

worse than the other methods. Indeed, the aforementioned method produces wider predic-

tion bands, which are further source of the higher empirical coverage in Figure 4a. However,

when the sample size increases, such forecasting algorithm performs comparably with the

already mentioned EK and EK+. Finally, although the Conformal Prediction bands pro-

duced by the oracle predictor are obviously the most performing one, we can appreciate that

both EK and EK+ provide CP bands with coverage and size comparable to the theoretically

perfect oracle forecasting method.

5.2 Increasing the blocking scheme size

We repeat here the previous simulation with a blocking scheme of increasing size b and

sample size T fixed equal to 119. Results are reported in Figure 5 and Table 2

Once again, in all the scenarios the 99% confident interval for the empirical coverage

includes the target level of 1− α, hence confirming the validity of the Conformal Prediction

bands even for higher values of b. Moreover, one can notice that, as already pointed out by

Diquigiovanni et al. (2021a) in the one-dimensional functional setting, the band size tends to

decrease when b decreases, thus providing more efficient prediction regions. A comparison of

the different forecasting algorithms performances validates the consideration in Section 5.1.
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Method b

1 3 6

concurrent 0.912 0.910 0.904
EK 0.898 0.901 0.899
EK+ 0.903 0.901 0.899
Naive 0.905 0.891 0.909
Oracle 0.897 0.909 0.912
VAR-efpc 0.892 0.895 0.898

(a) Empirical coverage of CP bands

Method b

1 3 6

concurrent 24.15 24.51 25.12
EK 22.63 23.00 23.58
EK+ 22.62 22.99 23.59
Naive 29.13 29.65 30.29
Oracle 22.56 22.95 23.55
VAR-efpc 22.69 23.04 23.65

(b) Average size of CP bands

Table 2: Results of second simulation study.

6 Case study: Black Sea level anomaly forecasting

6.1 Dataset

Having proved the benefits of the proposed method on simulated data, we now aim to illus-

trate its application potential on a proper case study. We will consider data from Coperni-

cus (add reference), the European Union’s Earth observation program, which collects vast

amounts of global data from satellites and ground-based, airborne, and seaborne measure-

ment systems, in order to provide information to help service providers, public authorities,

and other international organizations.

More specifically, we will analyze a data set from Copernicus Climate Change Service

(C3S), a project operated by the European Center for Medium-Range Weather Forecasts

(ECMWF), collecting daily sea level anomalies of the Black Sea in the last twenty years

(Mertz and Legeais 2018). Sea level anomalies are measured as the height of water over

the mean sea surface in a given time and region. Anomalies are computed with respect to

a twenty-year mean reference period (1993-2012). Up-to-date altimeter standards are used

to estimate the sea level anomalies with a mapping algorithm dedicated to the Black Sea

region. Observations are collected on a spatial raster, with a 0.125◦ resolution both on the

longitude and on the latitude axis. Since observations are collected on a geoid, the domain

actually lies on a manifold, however, because both longitude and latitude ranges are very

small (14◦ and 7◦ respectively), we will ignore this detail and assume data to be observed on

a rectangular grid. The resulting lattice can hence be considered as the Cartesian product of

a grid on the longitude axis made by N1 = 120 points and a latitude grid of N2 = 56 points.

We will refer to (ui, vj), with i = 1, . . . , N1 and j = 1, . . . , N2 as the point (i, j)-th of such
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two-dimensional mesh. Since the Black Sea hasn’t a rectangular shape, we will consider each

surface to be identically equal to zero outside the perimeter of the sea.

Altimetry instruments give access to daily observations of the Sea Surface Height (SSH)

above the reference ellipsoid (see Figure 6), which is calculated as the difference between the

orbital altitude of the satellite and the measured altimetric distance of the satellite from the

sea at time t:

SSHt(ui, vj) = orbital altitude− altimetric range (51)

Staring from this information, one can compute the Mean Sea Surface (MSS) as the temporal

mean of SSH over a reference period with Ñ observations. The mean surface level above

the reference ellipsoid is computed from a twenty-year reference period (1993-2012).

MSSN (ui, vj) =
1

Ñ

Ñ∑
t=1

SSHt(ui, vj) (52)

The Sea Level Anomaly at time t in (ui, vj), SLAt,Ñ (ui, vj), is finally computed as the

anomaly of the signal SSHt around the mean component MSSÑ (ui, vj):

SLAt,Ñ (ui, vj) = SSHt(ui, vj)−MSSÑ (ui, vj) (53)

We will eventually drop the subscript Ñ for ease of notation and just refer to SLAt(ui, vj).

Since we are settling the study in a functional data analysis framework, we will consider the

time series {SLAt}, without making explicit the dependence on the bivariate domain.
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Figure 6: Data measurement process. The image is a replica of Figure 1 in Copernicus’
Product User Guide and Specification v2.4.

(a) Raster representation (b) Surface representation

Figure 7: Sea Level Anomaly [m] on 01/01/2018.
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6.2 Preliminary analysis

If possible, one would preferably forecast directly the time series of Sea Level Anomalies

(SLAt). However, given the nature of the dataset, we expect anomalies to exhibit a periodical

behaviour and perhaps also a trend component due to recent climate changes. In order to

investigate this assumption, we should proceed by testing the functional time series {SLAt}t
for stationarity. However, despite for one dimensional functional time series one could resort

to the test proposed by Horváth et al. (2014), to the best of our knowledge ad-hoc stationarity

test for two-dimensional functional time series hasn’t still be implemented. For such reason,

and aware of the limits of this approach, we will resort here to the analysis of univariate time

series SLAt(ui, vj), fixing some random locations (ui, vj). We stress the fact that stationarity

is indeed not necessary to obtain valid CP bands, but as proved by Chernozhukov et al.

(2018), it is a sufficient condition to guarantee the first assumption of Theorem 1, that we

would hence like to be satisfied.

Figure 8: Univariate time series of Sea Level Anomaly (SLAt), with correspondent ACF
plots. Each column represents a different location. The time windows refer to data from
01/01/2014 to 01/01/2015.

In Figure 8 we report univariate time series SLAt(ui, vj) in 3 fixed locations (ui, vj), along

with the correspondent partial autocorrelation function (PACF) plots. We acknowledge not

negligible partial autocorrelation up to lag 2 or 3 depending on circumstances and the evident

presence of a cyclical behaviour. Moreover, Augmented Dickey Fuller (ADF) stationarity

test fails to reject the null hypothesis of unit root against the alternative one of a stationary
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process. As usually done in time series analysis, we proceed by differentiating {SLAt}t, hence

considering the time series of first differences with lag 1 {∆SLAt}t defined as ∆SLAt :=

SLAt − SLAt−1. As reported in Figure 9, differentiated data still exhibit high partial

autocorrelation for lags greater than one. A similar behaviour has also been found after

a seasonal differentiation, where we employed as differentiation lag both a delay of 29 days,

namely the moon phase cycle, and a lag of 365 days, coinciding with the Earth revolution

time. Since we aim to eventually fit a Functional Autoregressive Process of order one, and

also because in many locations (ui, vj) the related univariate time series still exhibit a non-

stationary behaviour, we proceed with a second differentiation, hoping to obtain stationary

time series with negligible partial autocorrelation for lags greater than one.

Figure 9: Univariate time series of ∆SLAt, with correspondent ACF plots. Each column rep-
resents a different location. The time windows refer to data from 01/01/2014 to 01/01/2015.

We can finally appreciate in Figure 10 what appear to be strongly mixing time series, as

also confirmed by ADF test. Moreover, the PACF plots exhibit almost null partial auto-

correlation for lags greater than one. This last consideration provides a solid motivation to

proceed with modelling with a FAR(1) the time series of second differences {Yt}t, formally

defined as:

Yt := ∆2SLAt = (SLAt − SLAt−1)− (SLAt−1 − SLAt−2) (54)
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Figure 10: Univariate time series of ∆2SLAt, with correspondent ACF plots. Each col-
umn represents a different location. The time windows refer to data from 01/01/2014 to
01/01/2015.

6.3 Results

The case study will employ a common rolling estimation framework which recalculates the

model parameters on a daily basis and consequently shifts the entire training, calibration

and test windows by 24 hours, as shown in Figure 11. As before, we will use a random split of

data in the training and calibration sets, with split proportion equal to 50%. The significance

level α is once again fixed equal to 0.1 and the sample size T is chosen equal to 99 in order

to guarantee an actual coverage of 1 − b(l+1)αc
(l+1) = 1 − α. The size of the blocking scheme

will instead be fixed equal to 1, since, as motivated in Section 5.2, this choice produces the

narrowest prediction bands. The rolling window will be shifted 1000 times, thus iterating for

almost three years the forecasting of the next day based on the last 99 observations. More

specifically, we will consider a rolling window ranging from 01/01/2017 to 04/01/2020.

Figure 11: Training-calibration-test split in a rolling window scenario.
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The point predictors used throughout this application will be the same described in Sec-

tion 5. The number of Functional Principal Components is this time selected equal to 8

through a dedicated validation procedure. Given the vast number of observations at our dis-

posal, we can indeed reserve a fraction of them as a validation set, and use it to estimate the

optimal number of principal components by means of the Mean Squared Error (72) between

the predicted curve and the actual forthcoming one. By choosing beforehand the number

of harmonics rather than selecting them each time by means of the cumulative proportion

of variance (as instead done in Section 5), we expect to obtain better results in terms of

predictive performances. Specifically, historical data from 01/01/2014 to 04/01/2017 are

used in order to determine the optimal number of harmonics.

For each shift of the rolling window and for each forecasting algorithm, we will check if

yT+1 belongs to the CT,1−α, saving also the size of the corresponding prediction band. After

having collected such results, we can calculate the average coverage. We stress the fact

that such quantity does not provide a good estimate of the empirical coverage of employed

methods, since it is computed from correlated data. Indeed, by shifting the rolling window

by one day at the time, we are inevitably including in the new window all the previous data

but once. Nevertheless, a similar setting is often used in practical application, and it is still

interesting to compare performances of the different point predictors in this scenario.

We report in Figure 12 the average coverage along with a 99% confidence interval. Notice

that in this case the confidence interval may be biased, due to correlation between data used

to construct it, however, we still decided to include it in order to assess the dispersion of the

average coverage around the mean. We can notice that, in this more complex scenario, the

Naive predictor struggles to output valid prediction regions, since average coverage is quite

far from the nominal one. This is coherent with the theory presented in Section 3, because

validity of CP intervals is guaranteed only when a good point predictor is available. On the

other hand, all the other methods provide prediction bands with average coverage very close

to 1− α. For what concerns the size of the prediction bands, the Naive ones are by far the

widest ones (see Figure 13), and, as pointed out before, this fact does not reflect in a greater

coverage compared to the other methods. On the other hand, prediction bands obtained with

forecasting algorithms that model the autoregressive structure provide narrower prediction

regions. Among these, we can see that the non-concurrent FAR(1) is the most performing

one, despite the way in which it is estimated (namely with EK, EK+ or VAR-efpc). Nev-

ertheless, also the concurrent FAR(1) model provides very tight prediction bands, almost

comparable with the ones produced by the non-concurrent prediction algorithm.
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Figure 12: Coverage of CP bands. The dashed line represents nominal coverage 1− α.

(a) Boxplot of CP bands’ size. (b) Evolution of CP bands’ size during time.

Figure 13: Size of CP bands.
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7 Conclusions and Further Developments

In this paper, we applied Conformal Prediction in order to quantify uncertainty in fore-

casting two-dimensional functional time series. Given the novelty of the subject, we have

extended classical procedures from the one-dimensional functional framework, such as func-

tional principal component analysis (FPCA). In particular, we have focused on extending the

non-concurrent Functional Autoregressive process of order one, which represents the state of

the art of functional time series modelling, proposing different estimation techniques. Mov-

ing from the work of Diquigiovanni et al. (2021a), we employed Split Conformal prediction,

describing in Section 3 the randomization inference procedure already proposed by Cher-

nozhukov et al. (2018) and adapting it to our specific setting. Despite Theorem 1 provides

theoretical performance guarantees, we were interested in verifying empirical properties of

CP bands, and, at the same time, testing and comparing different forecasting algorithms in

terms of the resulting prediction regions. We proved the robustness of the proposed method,

emphasizing the advantages of using a correctly specified point predictor in the procedure.

We have finally applied the proposed technique to a real case study, employing a novel time

series dataset (Mertz and Legeais 2018), which consists in daily observations of Sea Anomaly

Level over the Black Sea during the last 20 years. In modelling such complex data, we had to

introduce some major simplifications. Notice that this circumstance does not invalidate the

method at all, but certainly leaves room for improvement. In particular, one could extend

the modelling procedure by taking in to consideration the challenging nature of the domain,

thus adapting the techniques to bivariate functional data on a manifold. On a more simple

but useful level, we shall also extend the proposed scheme to more complex domains, thus

going beyond the rectangular case exploiting numerical integration techniques for functions

defined on a generic subset of R2. Another interesting development could regard the im-

plementation of a stationarity test for two-dimensional functional data, perhaps extending

the already mentioned work of Horváth et al. (2014). For what concerns FPCA though, we

would like to acknowledge some recent improvements in the estimation of functional princi-

pal components (FPC’s) for one-dimensional functional data, which may be extended to the

two-dimensional framework of this paper. One may indeed argue the time-dependency is not

considered in the proposed algorithms for FPC’s estimation. functional principal component

analysis is in fact a static procedure which ignores the information provided by the serial

dependence structure of the functional data under study. Motivated by such considerations,

Hörmann et al. (2015) proposed a dynamic version of FPCA which is based on a frequency

domain approach and Trinka et al. (2021) developed two forecasting algorithms based on
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functional singular spectrum analysis that incorporates the time-dependency into the de-

composition of a functional time series. We conjecture that exploiting such techniques in

the FPC’s estimation could improve the forecasting performances of the proposed methods.
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P.-Muñoz, Dania, Francisco Mata, Noslen Hernández, and Isneri Talavera. Functional data

analysis as an alternative for the automatic biometric image recognition: Iris application.

Computación y Sistemas, 18:111–121, 03 2014. doi: 10.13053/CyS-18-1-2014-022.

H. Papadopoulos, Kostas Proedrou, V. Vovk, and A. Gammerman. Inductive confidence

machines for regression. In ECML, 2002.

Sara Pintado and Juan Romo. On the concept of depth for functional data. Journal of the

American Statistical Association, 104, 06 2009. doi: 10.1198/jasa.2009.0108.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.

Lars Lau Rakêt. 2d functional data analysis, with applications to image analysis. Master’s

thesis, Statistics Department of Mathematical Sciences, Faculty of Science, University of

Copenhagen, 2010.

J. Ramsay and B.W. Silverman. Functional Data Analysis. Springer Series in Statis-

tics. Springer, 2005. ISBN 9780387400808. URL https://books.google.it/books?id=

mU3dop5wY_4C.

40

https://CRAN.R-project.org/package=snowfall
https://CRAN.R-project.org/package=snowfall
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-black-sea?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-black-sea?tab=overview
https://doi.org/10.5067/AURA/TES/TL3O3M.006
https://doi.org/10.5067/AURA/TES/TL3O3M.006
https://www.R-project.org/
https://books.google.it/books?id=mU3dop5wY_4C
https://books.google.it/books?id=mU3dop5wY_4C


Jacopo Rossini and Antonio Canale. Quantifying prediction uncertainty for functional-and-

scalar to functional autoregressive models under shape constraints. Journal of Multivariate

Analysis, 170, 10 2018. doi: 10.1016/j.jmva.2018.10.007.

Peter Rousseeuw and Sabine Verboven. Robust estimation in very small samples. Compu-

tational Statistics and Data Analysis, 40:741–758, 02 2002. doi: 10.1016/S0167-9473(02)

00078-6.

Han Lin Shang. ftsa: An R package for analyzing functional time series. The R Journal, 5

(1):64–72, 2013. URL https://journal.r-project.org/archive/2013-1/shang.pdf.
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A CP vs Bootstrap

The objective of this section is to prove how Conformal Prediction can overcome some

limitations of the Bootstrap approach. The main advantage of CP is the guarantee of

asymptotic validity and the result in Theorem 1, that provides a theoretical bound on the

miscoverage level of the resulting prediction bands. Nevertheless, we now aim to provide

empirical justifications of the advantage of using the proposed approach over the Bootstrap

one. In order to do so, we will first generate one-dimensional functional data from a functional

autoregressive process of order one and compare the bands provided by the two methods.

The forecasting algorithm here employed is the one in (32), that exploits the expansion on

principal components and makes use of the underlying VAR(1) to obtain predictions for

the next time. Both the choice of the point predictor and the preference of settling the

simulation study in a one-dimensional setting are motivated by the possibility to exploit

already implemented routines for obtaining Bootstrap prediction sets. We will in fact make

use of the R package ftsa from Shang (2013), which implements in the farforecast function

a multivariate time-series forecasting method coherent with (32). We slightly modified such

routine in order to use the classical FPCA method and not the default robust principal

component algorithm of Rousseeuw and Verboven (2002). Along with this adjustment, we

also overrode the automatic order selection procedure of the VAR and manually set the order

equal to 1 in accordance with our model. Notice that both these changes are necessary in

order to employ the same point predictor and properly compare the performances of the two

methods.

As usual, we simulate data exploiting a basis expansion on the tensor product basis

of two Fourier basis systems with 5 basis each (see Section 5.2 for further details). The

parameters of the data generating process are selected as follows: the matrix Ψ is defined

as Ψ := 0.9 Ψ̃
||Ψ̃||F

, with Ψ̃ having diagonal values equal to 0.8 and out-diagonal elements

equal to 0.3. Innovation errors εt are independently sampled from a multivariate Student’s

t-distribution, with 4 degrees of freedom and scale matrix Σ having diagonal elements equal

to 0.5 and out-diagonal entries equal to 0.3.

Whereas the significance level α will be fixed equal to 0.1, we will apply the evaluation

procedure with increasing sample sizes: T = 19, 49, 499, in order to compare the convergence

of the two methods. For each value of T , we will repeat the procedure by performing

N = 1000 parallel simulations, implemented with the R package snowfall (Knaus (2015)).

The size of the blocking scheme of the CP procedure is fixed equal to 1, because such choice

provides narrower bands, as explained in Section 5.2.
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Prediction bands will be compared by means of the empirical coverage first and then by

considering their size (as defined by Diquigiovanni et al. 2021c in the case of prediction bands

for one-dimensional functional data).

(a) Empirical coverage, the dashed line represents
nominal coverage 1− α.

(b) Band size.

Figure 14: Results of the simulation study.

We can notice in Figure 14a that the Bootstrap method always outputs regions with

much lower coverage than the nominal one, despite fortunately generating better results

when the sample size grows. On the other hand, CP bands are always valid, even when

few number of observations are available. Such results confirm global validity of Conformal

Prediction bands, in contrast to the pointwise coverage of bootstrap ones. For what concerns

the efficiency of prediction regions, bootstrap ones are systematically narrower than the ones

produced by CP, regardless of the number of observations (see Figure 14b). Notice however

that such smaller sizes are related to different coverages and are thus not easily comparable.

In conclusion, the simulation study showed how the bootstrap procedure struggles to produce

valid predictions bands, displaying slow convergence to the nominal coverage. Moreover, as it

is often the case for bootstrap techniques, computational times becomes quickly prohibitive,

thus proving once again the advantage of employing the Conformal approach.

43



B Comparison of FPC’s estimators for two-dimensional func-

tional data

A fundamental aspect in the design of many regression algorithms is the estimation of

functional principal components (FPC’s) {ξi}i ∈ N. We define FPC’s as functions ξi ∈
L2([c, d]× [e, f ]) solving the functional equation:

Γ0ξ = λξ (55)

In practice, we can only estimate the first M ∈ N eigenfunctions, implicitly performing

dimensionality reduction. The choice of M is non-trivial and depends on the application

framework. Whereas Kargin and Onatski (2005) suggested selecting it in a cross-validation

setting, Aue et al. (2012) proposed a fully automatic criterion for choosing the number of

principal components in terms of predictive performances. Plugging in the estimator of Γ0,

we define estimated eigenfunctions and eigenvalues as solutions of:

Γ̂0ξ̂ = λ̂ξ̂ (56)

On a theoretical point of view, we would like to guarantee that population eigenfunctions

can be consistently estimated by empirical eigenfunctions even in the non-iid framework of

Functional Time Series. We refer to Theorem 16.2 in Horváth and Kokoszka (2012), which

provides asymptotic arguments for such question.

The following subsections are dedicated to the estimation of eigenfunctions and eigen-

value in the two-dimensional functional case. Extending the work of Ramsay and Silverman

(2005), we present two different estimation procedures, based respectively on a discretiza-

tion of the functions to a fine grid and on a linear expansion of data on a finite set of basis

functions. Among the two alternatives, we would resort to the function discretization. In-

deed, such choice does not require the selection of a specific type of basis and not even the

number of basis to employ, which are not trivial problem-dependent questions. Moreover,

notice that also the discretization procedure can be seen as a particular case of the basis

expansion, using as basis system indicator functions on the grid points. Furthermore, in

the subsequent, Appendix B.1 we will demonstrate with a simulation study that there is no

significant evidence to prefer one method against the other in terms of estimation quality.

We want to stress the fact that our methodology for FPCA is general, it works for two-

dimensional functional data regardless of the presence of temporary dependence between
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observations. Not modeling the serial dependence structure will not invalidate the PCA

procedure, but we still have to require that the dynamic is stationary in order for the

covariance estimation to make sense and thus to provide meaningful estimates.

B.0.1 FPCA by grid discretization

Consider a grid discretization {ui}i=1,...,N1 of [c, d] and {vj}j=1,...,N2 of [e, f ], let ω1 = 1
N1

,

ω2 = 1
N2

. For any point (ui, vj) of the discretized grid, the lhs of the functional eigenequation

(56) can be rewritten as:

Γ̂0ξ̂(ui, vj) =

∫ d

c

∫ f

e
γ̂0(ui, vj ;w, z)ξ̂(w, z)dwdz ≈ (57)

≈ ω1

N1∑
l=1

∫ f

e
γ̂0(ui, vj ;ul, z)ξ̂(ul, z)dz ≈ (58)

≈ ω1ω2

N1∑
l=1

N2∑
m=1

γ̂0(ui, vj ;ul, vm)ξ̂(ul, vm) (59)

By defining N := N1N2 and introducing a bijection ζ : {1, . . . , N1} × {1, . . . , N2} →
{1, . . . , N}, we can vectorize the two-dimensional grid. Therefore, we can group observed

data into a bidimensional matrix, and proceed with a usual multivariate analysis. Let

Y ∈ RT×N be defined as Y[t, ζ(i, j)] = yt(ui, vj). We hence introduce the estimated variance-

covariance matrix of the just defined multivariate dataset: Γ̂0 ∈ RN×N , Γ̂0 = 1
T Y

TY. Notice

that Γ̂0[ζ(i, j), ζ(l,m)] = γ̂0(ui, vj ;ul; vm). Let also ξ̂ ∈ RN , ξ[ζ(i, j)] = ξ(ui, vj). The

eigenequation can thus be rewritten in the following matricial form:

ω1ω2Γ̂0ξ̂ = λ̂ξ̂ (60)

It is then straightforward to find the eigenvalues ρ and eigenvectors θ of the matrix Γ0 and

to derive λ̂ = ω1ω2ρ and ξ̂ = ω
−1/2
1 ω

−1/2
2 θ. Finally, to obtain an approximate eigenfunction

ξ̂ from discrete values ξ̂, we can use any convenient interpolation method.

B.0.2 FPCA by basis expansion

Let {gi}i∈N be a basis system for L2([c, d]) and {hj}j∈N a basis system for L2([e, f ]). Consider

now the tensor product basis {gi ⊗ hj}i,j , where gi ⊗ hj = gihj . Unfortunately, the space

spanned by the tensor product basis is a proper subset of H = L2([c, d]× [e, f ]), however, one
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could also prove that such subspace is dense in H, thus arguing that the tensor product basis

system is sufficient to model functions of H. Therefore, we will assume that each x ∈ H,

admits the decomposition:

x(u, v) =
∑
i∈N

∑
j∈N

ci,jgi(u)hj(v), cij = 〈x, gi ⊗ hj〉 (61)

Thanks to the existence of a bijection3 between N and N2 we can rearrange the terms of

the basis system in order to obtain one depending on a single index instead of two, namely

{φk(u, v)}k instead of {gi(u)⊗ hj(v)}i,j . We can thus rewrite (61) as:

x(u, v) =
∑
k∈N

ckφk(u, v) (62)

In practical applications, one typically truncates the number of basis functions on the two uni-

variate domains to K1 and K2 respectively, obtaining a total number of basis equal to K :=

K1 +K2. Let us now introduce the vector φ(u, v) ∈ RK , φ(u, v) = [φ1(u, v), . . . , φK(u, v)]T

and the matrix C ∈ RT×K with elements C[t, k] = ctk containing the coefficients of basis

projection of the random functions Y1, . . . , YT , in such a way that:

Yt(u, v) =
K∑
k=1

ctkφk(u, v) + δt(u, v) t = . . . , T (63)

where δt(u, v) is a projection error, which is present due to the truncation of the basis system

to the first K terms. In the remainder of this section, we will neglect the projection error

and identify the observed functions with the ones reconstructed from the first M basis.

Following the work of Ramsay and Silverman (2005) and exploiting representation (62),

we aim to rephrase the eigenproblem (56) in a matricial form. The estimated covariance

3The authors want to thank Edoardo Marchionni for a fruitful discussion on this topic.

46



function can be expressed in matrix terms:

γ̂0(u, v;w, z) =
1

T

T∑
t=1

Yt(u, v)Yt(w, z) =

=
1

T

T∑
t=1

K∑
l,m=1

cilφl(u, v)cimφm(w, z) =

=
1

T
φ(u, v)TCTCφ(w, z)

Suppose now that an eigenfunction ξ admits the decomposition:

ξ(u, v) =
K∑
l=1

blφl(u, v) + κ(u, v) = (64)

= φ(u, v)Tb+ κ(u, v) (65)

where b = [b1, . . . , bK ]T = [〈ξ, φ1〉, . . . , 〈ξ, φK〉]T contains coefficients of basis projection of ξ.

Neglecting once again the projection error κ, the goal becomes now to estimate the coeffi-

cients b and the corresponding eigenvalue λ for each eigenfunction ξj , for j = . . . ,M . Let’s

introduce finally W ∈ RK×K , defined as W :=
∫ d
c

∫ f
e φ(u, v)φ(u, v)Tdudv, notice that the

tensor product basis is composed by two orthonormal basis systems, the resulting tensor

product basis system is itself orthonormal and thus W = I, where I denotes the diagonal

matrix. The lhs of (56) can be rewritten as:

Γ̂0ξ̂(u, v) =

∫ d

c

∫ f

e

1

T
φ(u, v)TCTCφ(w, z)φ(w, z)T b̂dwdz = (66)

=
1

T
φ(u, v)TCTC

(∫ d

c

∫ f

e
φ(w, z)φ(w, z)Tdwdz

)
b̂ = (67)

=
1

T
φ(u, v)TCTCWb̂ (68)

The eigenequation thus becomes:

1

T
φ(u, v)TCTCWb̂ = λφ(u, v)T b̂ ∀u, v (69)

1

T
CTCWb̂ = λb̂ (70)

We can hence derive the eigenvectors b̂j of 1
TC

TCW and the corresponding eigenvalues and
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finally reconstruct the eigenfunctions ξ̂j thanks to (65).

B.1 Comparison of estimation methods

In this section, we aim to compare the two proposed approach for performing functional

principal component analysis, namely the basis expansion and the discretization approach.

Without loss of generality, we will settle the study in L2([0, 1]× [0, 1]).

In general, given a finite basis system {φk}k=1,...,K , one can represent a functional time

series {Yt}Tt=1 by means of representation (63), that we report here for ease of reference:

Yt(u, v) =
K∑
k=1

ctkφk(u, v) + δt(u, v) t = 1, . . . , T (71)

Starting from this decomposition, we have derived in Appendix B.0.2 an estimator of the

functional principal components ξj , which, however, neglects the contribution of the error δt.

For such reason, the choice of the basis system {φk}Kk=1 is crucial, and when a meaningful

option is not available, the approximation residual δt will be large and this procedure will

inevitably provide biased estimates of ξj . On the other hand, the FPCA approach based on

data discretization provides good result as long as the sampling grid is sufficiently dense.

In order to prove such thesis, we simulate a time series of functions {Yt}Tt=1 ⊂
span{φ1, . . . , φK}, from a non-concurrent FAR(1) process with Gaussian errors. Data are

simulated based on a basis expansion on {φ1, . . . , φK}, which is constructed as the tensor

product basis of two Fourier basis systems {gi}i=1,...,K1 , {hi}i=1,...,K2 both defined on [0, 1].

The sample size is chosen equal to T = 50, the number of basis in each of the one-dimensional

systems is selected equal to 5, in order to have a total number of basis K = 25.

Since we know the space where the functions are embedded, we can apply the estimation

procedure in Appendix B.0.2 using as basis system the same one used in the simulation.

Notice that in this case the approximation error δt in (71) will be exactly zero and one

can derive optimal estimates of the functional principal components. Estimators of the

first three functional principal components are represented in Figure 15a. We repeat the

same estimation procedure, this time modelling functions with a basis built from the tensor

product of two one-dimensional cubic B-Spline basis systems with 5 basis each. In this

case, the basis system do not coincide with the one from which functions are simulated.

Nevertheless, as reported in Figure 15b all the scaled eigenfunctions are very close to the

optimal ones estimated before. Finally, we compare the aforementioned estimators with
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the ones coming from the discretization approach. Each of the one-dimensional grids is

discretized using a step size equal to 0.02, thus resulting in a total of 2500 points. Also

in this case (see Figure 15c), estimated harmonics are very close to the optimal ones in

Figure 15a.

(a) FPCA by basis expansion on the same basis system used for the simu-
lation.

(b) FPCA by basis expansion on a different basis system.

(c) FPCA by grid discretization.

Figure 15: First three functional principal components, estimated with three different meth-
ods. As usual in PCA, EFPC’s are unique up to a constant. For such reason, in order to
compare the different approaches, estimated harmonics in the second and third row are each
rescaled by means of the mean difference ratio with the ones in the first row.

To enable for better comparison, we report in Table 3 the Mean Squared Error (MSE) (72)
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between the FPC’s y estimated using full knowledge of the basis system from which functions

are simulated and the ones estimated using other techniques (ŷ). Such quantity is computed

starting from values of y and ŷ on a two-dimensional grid {(ui, vj)}i=1,...,N1;j=1,...,N2 .

MSE(y, ŷ) =
1

N1N2

N1∑
i=1

N2∑
j=1

(y(ui, vj)− ŷ(ui, vj))
2 (72)

We can appreciate very low values of MSE, regardless of the technique used for FPCA, thus

suggesting that both the basis expansion and the discretization approach are valid options

on a practical point of view.

FPCA method EFPC’s

1st FPC 2nd FPC 3rd FPC

Basis on B-Spline 2.62 · 10−3 4.45 · 10−3 2.28 · 10−3

Discretization 7.69 · 10−4 2.45 · 10−3 1.38 · 10−3

Table 3: MSE between estimated FPC’s on the basis system used for the simulation and
FPC’s estimated using another basis system or the discretization approach.
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