
Executive Summary of the Thesis

A metric learning approach for splicing localization based on synthetic
speech detection

Laurea Magistrale in Music and Acoustic Engineering

Author: Francesco Castelli

Advisor: Prof. Paolo Bestagini

Co-advisor: Clara Borrelli, Davide Salvi

Academic year: 2020-2021

1. Introduction
Nowadays, the generation of realistic synthetic
media, as images, videos and audio tracks, is a
relatively easy task thanks to the recent progress
in Artificial Intelligence (AI). On one side, these
technologies can open the doors to new excit-
ing scenarios, for instance, developing speech-
driven human-computer interfaces. On the other
hand, when misused, they can produce unpleas-
ant situations. This is the case of Deepfakes
(DFs), data produced using Deep Learning (DL)
that realistically represent people in deceptive
behaviors. Audio DFs have already been used
for fraud and fake news spreading, making it
crucial to be able to discriminate between real
and fake speech automatically. DF generation
techniques can be used not only to forge fully
synthetic signals but also to replace portions of
real speech signals. We refer to this manipula-
tion technique as audio splicing, i.e., the track
is generated by concatenating two (or more) dif-
ferent signals, whether real or fake. This tech-
nique can produce incredibly realistic tracks and
fool the state-of-the-art detectors when used for
malicious purposes since the audio still contains
sections of real signals. In this work, we con-
sider the problem of splicing detection and lo-

calization based on synthetic voice production.
We are interested only in spliced audio created
by substituting parts of a pristine speech with
synthetically generated speech. The proposed
method extracts embeddings from the input sig-
nal through a sliding window and it employs
the novelty function [1] to analyze the similar-
ity between the embeddings. When the novelty
function shows peaks of significant prominence,
a splicing point is detected and localized.

2. Proposed method
In this work, we aim to perform splicing detec-
tion and localization of synthetically generated
signals. Given an input speech signal y, we say
that it contains a splicing if it has been generated
by the concatenation of multiple audio tracks.
Establishing the presence or absence of a splic-
ing point corresponds to the detection task while
estimating the time instant when it occurs is the
localization task. In particular, we focus on the
concatenations between real and fake signals,
looking for the transitions between speeches of
these two classes. We consider all the authentic
signals as real, while as fake all those generated
with any DF technique. As an example, given
two speech signals s1 and s2 belonging to two

1

Executive summary Francesco Castelli

Figure 1: Pipeline of the proposed method.

different classes l, where l ∈ {REAL,FAKE},
we define

y = [s1, s2] (1)

as a spliced signal and we aim at localizing the
sample at which the concatenation occurs. We
also address multiple splicings in the same audio
track. Finally, since our method focuses on real-
fake transitions, non-spliced signals are made by
concatenating signals of the same class.
Our proposed method is composed of three main
stages. First, we use a sliding window to split
the input signal into frames and an embedding
extractor to map them into the corresponding
embeddings in a high-dimensional space. Then
we calculate the self-similarity matrix (SSM)
S of the embeddings using the squared eu-
clidean distance as a measure of dissimilarity.
Finally, we compute the novelty function from
the matrix S and look for peaks of sufficient
prominence. Those correspond to the detected
splicing points. Figure 1 shows the complete
pipeline.

2.1. Embedding extractor
At this stage we extract embeddings from differ-
ent time windows of the input signal. Starting
from the signal under analysis y, we divide it
into I frames xi, i = 0, 1, ..., I − 1, using a rect-
angular window of length W and overlap of H
seconds. Then, we give each frame xi as input
to an embedding extractor E that turns it into
an embedding ei ∈ RE . In this work we con-
sider RawNet2 [3] as extractor E , thus we feed
the frames xi to the network without any feature
extraction. At the end of this step, we extract
exactly I embeddings of dimension E.
It is worth noticing that our method is not
strictly dependent on RawNet2, and other Deep
Neural Networks (DNNs) can be used as a drop-

in replacement. Specifically, we also tested a
modified version of RawNet2 using a deep met-
ric learning approach in the training phase.

2.2. Splicing detection and localiza-
tion

At this step we detect and localize the splicing
points in the audio track y, if present. Given
the I embeddings e0, e1, ..., eI−1 extracted from
the speech signal under analysis, we compute
the distance matrix D between them. D is a
I × I symmetric matrix, such that each element
D(i, j) is computed using the squared euclidean
distance

D(i, j) = ∥ei∥2 − 2⟨ei, ej⟩+ ∥ej∥2, (2)

where ei and ej are the considered embeddings.
The matrix D is then turned into a SSM S such
that each element S(i, j) is computed as

S(i, j) = exp((D(i, j)) /σD), (3)

where σD is the standard deviation of the ma-
trix D. Then, a novelty value ∆[i] is com-
puted for each time window i by correlating a
checkerboard-like kernel K of size L along the
main diagonal of the S matrix:

∆[i] =
∑

k,l∈[−L,L]

K(k, l) ∗ S(i+ k, i+ l). (4)

The novelty function ∆ exhibits noticeable
peaks if any splicing is present in the input
audio. We select peak î as candidate splicing
point based on its prominence, which defines
how much it stands out from the surrounding
baseline of the signal, and height ∆[̂i]. All the
peaks with a prominence value greater than an
absolute prominence P and height ∆[̂i] greater
than a threshold T are detected as splicing and

2

Executive summary Francesco Castelli

localized at the corresponding peak position in
the signal.

3. Experimental setup
3.1. Splicing dataset
To evaluate the proposed method, we built two
datasets of spliced tracks called SplicingSingle
and SplicingDouble. All the tracks of the two
sets have been generated by concatenating dif-
ferent speech signals, both real and fake. The
number of concatenated signals is equal to two
for SplicingSingle and three for SplicingDouble,
resulting in a number of splicing points up to
1 and 2 in the two datasets, respectively. Ac-
cording to our approach, we highlight that two
concatenated tracks belonging to the same class
(real/fake) do not constitute splicing.
The considered audio chunks used to generate
the data are all taken from the Logical Access
(LA) partition of the ASVSpoof 2019 dataset [4],
which contains both real and fake data. In par-
ticular, fake samples are generated considering
19 different systems, including text-to-speech
(TTS), voice conversion (VC) or TTS/VC hy-
brid methods. The first 6 generation methods
(named A01, A02, ..., A06) are included in the
train and dev partitions of the dataset. The fol-
lowing ones (A07, ..., A19) are present in the
eval set only.
The generation pipeline of each audio signal of
the two datasets is divided in the following steps:

1. Selection: We select speech signals from the
ASVspoof 2019 dataset following two con-
straints. All the selected tracks must con-
tain speech from the same person and all
the chosen fake signals in the same track
must be generated using the same deepfake
technique.

2. Silence trim: We trim the leading and trail-
ing silences from the selected tracks, in or-
der to remove the uneven distribution of si-
lences duration of the ASVspoof dataset [2].

3. Concatenation: We generate the final au-
dio track by concatenating all the selected
speech signals.

In the Selection step, the number of chosen sig-
nals equals n = 2 for the SplicingSingle dataset
and n = 3 for the SplicingDouble. We created a
closed and an open set version for each of the two
datasets based on the generation methods of the

Table 1: Structure of the splicing datasets.

SplicingSingle

Set 0 splicing 1 splicing Tot

Closed 9877 10052 19929
Open 19955 19991 39946

SplicingDouble

Set 0 splicing 2 splicing Tot

Closed 10023 9977 20000
Open 20086 19962 40048

fake tracks. In particular, we used the dev par-
tition of ASVspoof 2019 to create the closed set
version and the eval partition for the open set.
Table 1 shows the structure of the two datasets.
The audio signals that do not contain any splic-
ing point are those generated by the concate-
nation of chunks of the same class. These are
added to the dataset to prove that the simple
concatenation of audio does not introduce ar-
tifacts that our method can use to find splic-
ing points. Indeed, if the latter were true, the
model would also find splicing points in signals
like those.

3.2. Embedding extractor
In the experimental phase we considered two dif-
ferent types of embedding extractors, called E1
and E2, both based on RawNet2 [3].
The first embedding extractor E1 corresponds
to the exact implementation of RawNet2 pro-
posed in [3], with 129 filters in the SincNet layer
and a Mel-distributed filterbank initialization.
We only changed the duration of the input au-
dio signal from 4 seconds (64000 samples) to
0.5 seconds (8000 samples) and either padding
short audio or selecting a random crop of 0.5
seconds in long signals. We re-trained the net-
work from scratch on the train partition of the
ASVspoof 2019 LA dataset with Binary Cross
Entropy (BCE) loss function and mini-batch size
B = 256, trimming all the leading and trailing
silences of the signals before feeding them to the
network.
The second embedding extractor E2 we consider
is a modified version of RawNet2. Specifically,
we applied a two-heads (classification and em-
bedding) network structure. The classification
head corresponds to the Fully Connected (FC)
layers of RawNet2, while the embedding head is

3

Executive summary Francesco Castelli

composed of a single FC layer with 512 neurons
attached to the Gated Recurrent Unit (GRU)
layer. During training we used the loss function

L = Lsoft + λLtriplet, (5)

where Lsoft is BCE loss on the classification
head and Ltriplet is triplet loss used on L2 nor-
malized embeddings at the output of the embed-
ding head. The balancing hyper-parameter λ
was set to λ = 1.2. Online triplet mining is used
to produce triplets on the fly, starting from a
mini-batch of B = 512 embeddings. In particu-
lar, we used hard-sampling as triplet’s sampling
strategy, imposing two additional constraints on
selecting positive/negative. These must present
the same speaker of the anchor when the audio
is real/fake and the same deepfake generation
technique when the audio is fake.
When E1 is used, embeddings are taken from the
output of the GRU layer with a dimension E1 =
1024. In the case of E2, embeddings come from
the embedding head, with a dimension E2 =
512. The parameters for the sliding window for
both E1 and E2 are W = 0.5s and H = 0.125s.

3.3. Splicing detection and localiza-
tion

For the novelty computation we use a Gaussian
kernel KGauss of size L = 6:

KGauss(k, l) = ϕ(k, l) ·Kbox(k, l), (6)

for k, l ∈ [−L,L]. The kernel Kbox is defined as

Kbox(k, l) = sgn(k) · sgn(l), k, l ∈ [−L,L], (7)

and ϕ : R2 → R is a radially-symmetric Gaus-
sian function computed as

ϕ(s, t) = exp(−ε2 (s2 + t2)), (8)

with ε = 0.11 used to control the degree of ta-
pering toward 0 at the edges of the kernel. We
set the prominence to P = 0.2 and threshold
to T = for E1, while values P = and T = are
used to E2. These values are found by analyzing
the detection accuracy at different threshold and
prominence on SplicingSingle and SplicingDou-
ble. As baseline system E2bsl we use the squared
Euclidean distance among consecutive embed-
dings to create the function ∆dist:

∆dist[i] = |e2i − e2i+1|, (9)

where ei and ei+1 are embeddings extracted
with E2. ∆dist should still present peaks if any
splicing point is present and replace ∆.

4. Results
4.1. Anti-spoofing
We evaluate the two embedding extractors E1
and E2 on the eval partition of the ASVSpoof
2019 dataset. The overall balanced accuracy for
extractor E1 is BA = 0.75 and EER = 0.26. Em-
bedding extractor E2, instead, achieved an over-
all balanced accuracy of BA = 0.74 and EER =
0.29. Table 2 shows a more extensive compari-
son of the True Negative Rates (TNRs) on the
real signals and True Positive Rates (TPRs) bro-
ken down for each fake generation system. The
two models shows the same trend among the
generation systems, probably because they are
variations of the same architecture. The two
methods do not reflect the performances indi-
cated in the literature since they do not have
access to silences [2]. All the worst-performing
systems (A10, A12 and A15) are TTS systems
that use a state-of-the-art waveform generator
as WaveNet and WaveRNN.

4.2. Splicing detection
We now evaluate our method on the splicing de-
tection task. We highlight that performances on
SplicingDouble dataset may be higher concern-
ing SplicingSingle, since the presence of more
splicing points increase the likelihood of found-
ing at least one of them. On the closed set
versions E1 and E2 respectively reach a bal-
anced accuracy of BAdet = 0.87 and BAdet =
0.94 on SplicingSingle, while BAdet = 0.88 and
BAdet = 0.93 on SplicingDouble. The base-
line reach instead BAdet = 0.9 on SplicingSin-
gle and BAdet = 0.92 on SplicingDouble. On
the open set versions, since spliced data of both
datasets are created by concatenating real and
fake signals generated with systems A07-A19, it
plausible to think that errors of the extractor E
directly influence the splicing detection perfor-
mances. In Table 3 we observe the same TPRs
trend across fake generation systems A07-A19
that we saw in Table 2 when evaluating E1 and
E2 on the anti-spoofing task, confirming our hy-

4

Executive summary Francesco Castelli

Table 2: TPRs and TNRs per fake generation systems of the eval partition of ASVspoof 2019.

TNR TPR

E Real A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

E1 0.850 1.000 1.000 0.604 0.167 0.836 0.085 0.428 1.000 0.160 1.000 0.688 0.460 1.000
E2 0.872 1.000 0.999 0.351 0.125 0.840 0.058 0.433 1.000 0.094 1.000 0.578 0.363 1.000

Table 3: TPRs on the open set versions of the SplicingSingle (1spl) and SplicingDouble (2spl) datasets.

E A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

1
sp

l

E1 0.921 0.901 0.304 0.116 0.474 0.103 0.345 0.909 0.139 0.910 0.343 0.366 0.922

E2 0.983 0.940 0.065 0.041 0.406 0.045 0.380 0.990 0.050 0.976 0.230 0.270 0.988

E2bsl 0.899 0.915 0.322 0.094 0.725 0.059 0.533 0.939 0.089 0.901 0.531 0.240 0.856

2
sp

l

E1 0.971 0.965 0.548 0.397 0.721 0.343 0.567 0.970 0.372 0.974 0.617 0.582 0.977

E2 0.998 0.981 0.306 0.303 0.615 0.289 0.556 0.997 0.282 0.995 0.479 0.464 1.000

E2bsl 0.972 0.977 0.540 0.362 0.818 0.333 0.667 0.986 0.331 0.957 0.723 0.451 0.958

Table 4: Number of detected splicing points per
spliced audio of SplicingSingle.

Closed set

E 0 spl 1 spl > 1 spl

E1 956 9092 4
E2 268 9727 57

E2bsl 1011 8647 394

A07, A08, A14, A16, A19

E 0 spl 1 spl > 1 spl

E1 681 7034 59
E2 193 7526 55

E2bsl 761 6387 626

pothesis. Specifically, E1 and E2 show very good
performances on systems A07, A08, A14, A16
and A19. By restricting our view on those sys-
tems, we can still see that E2 consistently out-
performs E1 and the baseline on both datasets.
Moreover, on non-spliced signals (TNRs) of both
datasets extractor E2 (TNR = 0.87 on Splic-
ingSingle and TNR = 0.81 on SplicingDouble)
significantly outperforms E1 (TNR = 0.81 on
SplicingSingle and TNR = 0.72 on SplicingDou-
ble). With a TNR = 0.8 on SplicingSingle and
TNR = 0.73 on SplicingDouble the baseline sys-
tem is not able to reach the results of the novelty
function.

4.3. Splicing localization
We introduce the localization accuracy metric
ACCloc used for splicing localization. Let us

consider a spliced audio signal y in which the
correct number of splicing points is detected by
the system. We consider a ground truth splic-
ing point as localized if it is inside a window
of length Wloc, centered around the predicted
splicing point. The audio y is then correctly lo-
calized if all the ground truth splicing points in
it are localized. We define ACCloc as the ratio
among the correctly localized audio and the to-
tal number of audio in which at least the correct
number of splicing points is predicted. Is thus in-
teresting to look at the number of splicing points
detected by our method in each spliced audio
of SplicingSingle and SplicingDouble. Thus, we
restrict the two datasets at only the spliced sig-
nals. As explained in Section 4.2, in the open
set versions we only consider spliced audio of
fake generation systems A07, A08, A14, A16 and
A19. Table 4 shows that extractor E1 do not
detect any splicing point in almost 10% of the
spliced audio of SplicingSingle, which confirms
the lower detection results regarding E2. Table 5
shows that on SplicingDouble closed E2 outper-
forms E1, which only predict one of two splicing
points in almost 15% of the spliced audio. On
the open set both extractor are missing one of
the two splicing points in a fair amount of cases.
The baseline system is instead predicting more
splicing points than the ones truly present in
both datasets: ∆dist is vulnerable to small error
of the extractor on top, causing abrupt changes
which are detected as splicing points. Finally, we
present the localization accuracy of the two ex-

5

Executive summary Francesco Castelli

(a) SplicingSingle dataset (b) SplicingDouble dataset

Figure 2: Splicing localization accuracy on SplicingSingle and SplicingDouble datasets.

Table 5: Number of detected splicing points per
spliced audio of SplicingDouble.

Closed set

E 0 spl 1 spl 2 spl > 2 spl

E1 91 1444 8430 12
E2 12 336 9552 77

E2bsl 104 1742 7606 525

A07, A08, A14, A16, A19

E 0 spl 1 spl 2 spl > 2 spl

E1 216 2693 4553 105
E2 41 2180 5257 89

E2bsl 226 2243 4167 931

tractor in Figure 2 at variable localization win-
dow length Wloc. We should interpret ACCloc as
a measure of the effectiveness of the system in
localize splicing points correctly with a certain
degree of error (Wloc), but we must always con-
textualize it by considering the system ability
to correctly detect the right number of splicing
points. Even if E2 is slightly better than E1 on
the closed set versions, both extractors have very
good localization ability. On the open set ver-
sion of both datasets we observe a deterioration
of performances. Also in this case E2 exceed E1,
with a ACCloc 4% higher at Wloc = 0.5s in both
datasets. The novelty function clearly outper-
forms the baseline on localization.

5. Conclusion
We presented a system for detecting and localiz-
ing the spliced regions in a tampered speech sig-
nal and built two datasets for its evaluation. It
is based on a DNN trained on the anti-spoofing
task, used as embedding extractor, and the nov-

elty function computed on the embeddings to
find the splicing points. The presented sys-
tem outperformed the considered baseline and
proved robust to multiple splicings. Further-
more, we have observed the importance of a met-
ric learning approach used in the training phase
for the overall performance of splicing detec-
tion and localization. Indeed, even if E2 shows
lower performances on anti-spoofing, its ability
to better position the embeddings in the space is
of crucial importance in both splicing detection
and localization.

References
[1] J. Foote. Automatic audio segmentation us-

ing a measure of audio novelty. In IEEE
International Conference on Multimedia and
Expo (ICME), 2000.

[2] Nicolas M., Franziska D., Pavel C., Ro-
man C., Konstantin B., and Jennifer W.
Speech is Silver, Silence is Golden: What
do ASVspoof-trained Models Really Learn?,
2021.

[3] H. Tak, J. Patino, M. Todisco, A. Nautsch,
N. Evans, and A. Larcher. End-to-end anti-
spoofing with RawNet2. In IEEE Interna-
tional Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2021.

[4] M. Todisco, X. Wang, V. Vestman,
M. Sahidullah, H. Delgado, A. Nautsch,
J. Yamagishi, N. Evans, T. Kinnunen, and
K.g A. Lee. ASVspoof 2019: Future horizons
in spoofed and fake audio detection. arXiv
preprint arXiv:1904.05441, 2019.

6

	Introduction
	Proposed method
	Embedding extractor
	Splicing detection and localization

	Experimental setup
	Splicing dataset
	Embedding extractor
	Splicing detection and localization

	Results
	Anti-spoofing
	Splicing detection
	Splicing localization

	Conclusion

