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A B S T R A C T

In common engineering applications, the design and analysis of complex systems
is bounded to undergo a phase of numerical studies, which are fundamental to fill
the gap between preliminary results, usually based on simplified analytical models,
and reality. Structural dynamics, in particular, is normally studied with the aid of
the Finite Element Method (FEM), which consists in accurately reproducing the ge-
ometry of a real structure through the union of small elements, each one pertaining
to a portion of the material of the whole structure. The more the model is com-
plex and the more the model is rich in geometrical details, the more elements are
required; this usually leads to models counting hundred of thousands or even mil-
lions of unknowns, whose numerical analysis can be extremely expensive in terms
of computational resources and times. For these reasons, since the very origin of
FEM (and even more then, when computational resources were much more limited
than the ones available today), there has always been a struggle to develop strate-
gies to reduce the complexity of the problem. First examples are to be found in the
so-called modal analysis, where the full solution of the system is sought in terms
of a weighted sum of a relatively low number of system eigenvectors (usually in
the order of tents); this way, simulation times are greatly reduced. Modal analysis
and its derivative methods, however, provide a solution only to problems featuring
a dynamics that can be considered to be linear.

When a structure undergoes a displacement that is relatively large with respect
to its characteristic dimensions, usually the hypothesis of small deformations does
not hold anymore: we talk in these cases of geometric nonlinearities and one has
to resort to nonlinear dynamic analysis. The numerical complexity of the latter,
however, is further increased by the fact some quantities (such as elastic internal
forces and stiffness matrix) are now displacement-dependent and need to be evalu-
ated at each analysis step/iteration of the adopted numerical scheme. For practical
interest applications, this usually exponentially increases the computational times
associated with the single analysis, often already demanding in the case of linear
dynamics. Moreover, several phenomena that can be found in nonlinear dynamics
and that have no counterpart in linear dynamics require specific numerical tools to
be studied; the latter, however, usually can handle only a very limited number of
unknowns.

For these reasons, the development of NonLinear Reduced Order Models (NL-
ROM, or ROM in short), is a research topic which gained ever-increasing momen-
tum over the last decades. Several solutions are already available in the literature,
which will be briefly addressed throughout the present dissertation. A theme that
almost every method shares, however, is the fact that the construction of the ROM
itself is usually an expensive process which, in fact, may hinder the efficiency of the
method. A way to amortize these offline construction times is thus to have the ROM
to be parametric (pROM), that is, valid over a set of one or more parameters rather
than for a single instance of the structure. This way the pROM can be built once
and used multiple times so that the attainable overall speedups can be very high.

In the present dissertation, after introducing some rudiments of nonlinear FEM
and of a class of ROMs, some nonlinear pROMs for the analysis of structures af-
fected by the presence of defects are developed and discussed. Indeed, in many
engineering applications, it is important to assess the performances of a system
not only in the nominal-blueprint case, when the geometry is “perfect”, but also
in the case in which small imperfections are present. Notable examples are the
micro electro-mechanical system (MEMS) industry, where the characteristics of the
sensors are directly related to the imperfections of the production process, and
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the aerospace field, where the presence of lightweight and slender structures un-
dergoing high-amplitude vibrations usually triggers nonlinear responses strongly
affected by the imperfect geometry of the real components.

The present work is organized as follows:

• Chapter 1 reviews the large deformation theory for continua and its imple-
mentation in a Finite Element framework;

• in Chapter 2 linear and nonlinear projection-based Reduced Order Models
are reviewed, with special focus on the method based on Modal Derivatives
(MDs), which is used in the following chapters. A practical use example is also
given to show potential real applications of the presented method (Marconi,
Bonaccorsi, et al., 2021);

• in Chapter 3, a novel parametric ROM is introduced for the analysis of de-
fected structures (DpROM), based on an approximated strain theory (Marconi,
Tiso, and Braghin, 2020);

• the DpROM is revisited and extended in Chapter 4, where it is shown that
a more rigorous deformation theory can be adopted to increase the accuracy
and the applicability range of the method (Marconi, Tiso, Quadrelli, et al.,
2021);

• in Chapter 5, a possible extension of the DpROM to a substructuring setting
is presented, where arbitrary (small) defects are allowed thanks to the Finite
Element Tearing and Interconnecting (FETI) scheme adopted.

• finally, Chapter 6 concludes the work with possible future works and research
directions.



S O M M A R I O

Nella comune pratica ingegneristica, la progettazione e lo studio di sistemi com-
plessi passa sempre e inevitabilmente attraverso l’analisi numerica, che sopperisce
ai limiti di modelli analitici semplificati, generalmente utilizzati solo in fase pre-
liminare. Lo studio strutturale di sistemi meccanici viene di prassi affrontato con
l’ausilio del metodo agli elementi finiti (FEM), il quale permette di costruire modelli
che riproducono accuratamente la geometria reale della struttura rappresentandola
come unione di elementi, ognuno attenente ad una porzione di materiale dell’insie-
me. Più la complessità del problema cresce e il modello si arricchisce di dettagli
geometrici, più elementi sono richiesti per descrivere il problema; nella pratica, ciò
spesso porta a modelli che contano centinaia di migliaia o anche milioni di inco-
gnite, motivo per il quale l’analisi è spesso dispendiosa sia in termini di risorse
computazionali che di tempo. Per questo motivo fin dalle origini del FEM, quando
peraltro le risorse computazionali erano molto più limitate di quelle odierne, si sono
sempre cercati dei metodi per ridurre la complessità del problema. I primi esempi
si ritrovano nell’analisi modale, che va a ricostruire la soluzione dell’intero sistema
come la somma di un numero molto ridotto di autovettori del sistema (in genere
nell’ordine della decina); di conseguenza, i tempi di calcolo vengono estremamente
velocizzati. L’analisi modale (e metodi derivati), tuttavia, è uno strumento valido
nei casi in cui la dinamica può considerarsi lineare.

Quando lo spostamento della struttura diventa relativamente grande rispetto alle
sue dimensioni caratteristiche, l’ipotesi di piccoli spostamenti non è più valida: in
questo caso si parla di nonlinearità geometrica, e si deve ricorrere ad analisi dinami-
che nonlineari. La complessità computazionale di queste ultime è ulteriormente
aggravata dal fatto che alcune quantità (forze elastiche interne e matrice di rigidez-
za) dipendono dallo spostamento corrente della struttura, e quindi vanno rivalutate
ad ogni step o iterazione del metodo di risoluzione adottato. Per sistemi di inte-
resse pratico, questo porta a far esplodere i tempi richiesti per una singola analisi.
Inoltre, molti fenomeni legati alla dinamica nonlineare possono essere studiati sol-
tanto utilizzando strumenti che, attualmente, sono in grado di processare soltanto
un limitatissimo numero di incognite.

Per queste ragioni, lo sviluppo di nuovi e diversi modelli ridotti nonlineari (NL-
ROM, o solo ROM per brevità) è un tema che ha preso sempre più momento negli
ultimi anni e che impegna diversi gruppi di ricerca in tutto il mondo. Già diverse
soluzioni sono disponibili, brevemente ricapitolate nel corso di questo lavoro. Un
tema che però accomuna quasi tutti i metodi è il fatto che la costruzione del ROM
è tipicamente di per sè un processo oneroso in termini di tempo e risorse (anche se,
sicuramente, più conveniente che affrontare la simulazione del sistema non ridotto).
Un modo per ammortizzare ulteriormente i costi di costruzione del ROM è quello
di fare sì che sia parametrico, ovvero valido per diversi valori di uno o più para-
metri. Utilizzando il ROM parametrico (pROM) molteplici volte al posto di analisi
complete, si possono comparativamente ottenere fattori di velocizzazione notevoli.

Nel presente lavoro, dopo aver introdotto i rudimenti necessari di FEM nonlinea-
re e di una classe di ROM nonlineari, saranno presentati alcuni pROM nonlineari
dedicati allo studio parametrico di strutture nelle quali sono presenti dei difetti che
influiscono sulla risposta dinamica delle stesse. Questo tema è infatti di interesse in
molti ambiti, come quello dell’industria dei sistemi micro elettro-meccanici (MEMS),
dove sono intrensicamente presenti difetti di produzione che vanno ad impattare
sulle performance dei prodotti, o nel settore aerospaziale, dove la diffusa presenza
di strutture sottili soggette a spostamenti elevati spesso porta a risposte dinamiche
nonlineari che sono fortemente influenzate dalla precisone geometrica dei vari com-
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ponenti.

Il presente lavoro è organizzato come segue:

• nel Capitolo 1 vengono ripresi gli elementi della teoria di grandi deformazione
di corpi continui, e della sua implementazione nel quadro del FEM nonlineare;

• nel capitolo 2 si passano in rassegna diversi ROM lineari e nonlineari basati su
approcci di proiezione in sottospazi, con speciale attenzione al metodo basato
sulle Derivate Modali (MDs), che costituiranno la base dei metodi presentati
nei successivi capitoli. Un esempio pratico di come i ROM presentati possono
essere utilizzati per applicazioni reali è infine presentato a conclusione del
capitolo (Marconi, Bonaccorsi et al., 2021);

• nel capitolo 3 viene presentato un nuovo ROM parametrico per la rapperesen-
tazione di strutture con difetti di forma (chiamato DpROM), basato su una
teoria di deformazione approssimata (Marconi, Tiso e Braghin, 2020);

• il DpROM è rivisitato ed esteso nel capitolo 4, dove si mostra come un modello
di deformazione più rigoroso può essere adottato per ottenere una maggiore
accuratezza e maggiore campo di validità del modello stesso (Marconi, Tiso,
Quadrelli et al., 2021);

• nel capitolo 5 si presenta una possibile estensione del DpROM al campo del
Substructuring, dove il metodo del Finite Element Tearing and Interconnecting
(FETI) viene utilizzato per gestire indipendentemente i difetti applicati ad ogni
sottostruttura.

• Infine, il capitolo 6 conclude il lavoro con possibili sviluppi futuri e linee di
ricerca.
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1 N O N L I N E A R F E M

“perch’elli ‘ncontra che più volte piega
l’oppinion corrente in falsa parte,
e poi l’affetto l’intelletto lega."

—Dante Alighieri, Paradiso, Canto XIII 118-120

The aim of this chapter is to review the basics of solid mechanics for large de-
formations, from which the nonlinear FE model is derived. Being mainly textbook
material, it is intended just as a quick introduction/reference for students and non-
experts, virtually containing the bare minimum amount of information to under-
stand the topics discussed in the following chapters. For a complete and rigorous
dissertation on continuum mechanics and the Finite Element Method instead, many
specialist texts are available. The reader who is already familiar with these topics
is nonetheless encouraged to skim through the chapter to get acquainted with the
notation used throughout the whole work.

1.1 deformation of continua
Let us consider an initially undeformed body of coordinates x0 = {x01, x02, x03} =

{x0, y0, z0}. When the body undergoes deformation, a material fiber of length dx0
stretches (contracts) to a fiber of length dx, being x = {x1, x2, x3} = {x, y, z} the
final coordinates of the deformed body. We call u(x0) = x − x0 = {u1, u2, u3} =

{u, v,w} the displacement of one material point from the undeformed to the deformed
configurations and F the transformation map x = F(x0) = u(x0) + x0. Figure 1

schematically shows this deformation process. The length of the deformed fiber
then writes

dx =
∂x
∂x0

dx0 =
∂F(x0)
∂x0

dx0 =

(
∂u
∂x0

+
∂x0
∂x0

)
dx0 = Fdx0 = (D + I)dx0, (1.1)

where F = ∇F is the deformation gradient, I is the identity matrix and D is the
displacement derivative matrix, defined as

Dij =
∂ui
x0j

= ui,j with i, j = 1, 2, 3. (1.2)

The stretch of the fiber thus writes

S = dxTdx − dxT0dx0 = dxT0 (F
TF − I)dx0 = dxT0 (D + DT + DTD)dx0. (1.3)

The strains are measured through the Green-Lagrange strain tensor E, which is
linked to the stretch as S = 2dxT0Edx0, leading to

E =
1

2

(
D + DT + DTD

)
. (1.4)

In contrast to linear deformation theory, where small strains are assumed, the
quadratic term DTD cannot be neglected for large deformations. The tensorial
formulation above can be used to define the Hooke law as

Sij = C4,ijklEkl ←→ S = C4 : E, (1.5)

where C4 is the constitutive linear elastic fourth order tensor and S is the Piola-
Kirchhoff stress tensor:

S =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 ,
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2 nonlinear fem

Figure 1: Undeformed and deformed body configurations.

and C is the linear elastic constitutive relation (fourth order) tensor. Equation 1.5,
however, is not easy to handle in computer programs, as it involves tensor oper-
ations which are usually unavailable by default and/or are computationally inef-
ficient. The elastic problem is then often conveniently recast in a vectorized form
using Voigt notation.

To ease the notation, we use the subscripts x, y, z to denote the partial derivative
with respect to the corresponding spatial coordinates x0, y0, z0 (e.g. uz = ∂u/∂z ).
The Voigt strain and stress vectors then can be rearranged as:

Ev =



εxx
εyy
εzz
γxy
γxz
γyz


=



ux
vy
wz

uy + vx
uz +wx
vz +wy

︸ ︷︷ ︸
linear

+



1
2 (u

2
x + v

2
x +w

2
x)

1
2 (u

2
y + v2y +w2y)

1
2 (u

2
z + v

2
z +w

2
z)

uxuy + vxvy +wxwy
uxuz + vxvz +wxwz
uyuz + vyvz +wywz

︸ ︷︷ ︸
quadratic

, Sv =



Sxx
Syy
Szz
Sxy
Sxz
Syz


(1.6)

and the constitutive matrix C for an isotropic linearly elastic material writes

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

 (1.7)

where the Lamé constants λ = νE/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)) have
been used (being E and ν the Young modulus and the Poisson’s ratio, respectively).
Hooke’s law can now be rewritten as a simple matrix product:

Sv = CEv. (1.8)

As FE formulations usually spring from a virtual work expression, we can define it
as

W =Wint −Wext =

∫
Vo

STvδEv dVo −Wext =
∫
Vo

S : δE dVo −Wext (1.9)

using either Voigt or tensor formulations, with Wint and Wext denoting the work
done by internal and external forces, respectively, and δE (δEv) the virtual variation
of the strains. The latter can be written as

δE =
1

2
(δD + δDT + δDTD + DTδD + δDTδD︸ ︷︷ ︸

negligible

) ≈ 1
2
(FTδD + δDTF). (1.10)



1.2 element formulation 3

g

h

x

y

1 (-1,-1) 2 (1,-1)

3 (1,1)4 (-1,1)

3 (x3,y3)

2 (x2,y2)
1 (x1,y1)

global coordinates

mapping

natural coordinates

4 (x4,y4)

Figure 2: Isoparametric mapping for a plane quadrilateral with 4 nodes.

The expression of the virtual work can then manipulated to write the internal forces
and, taking the virtual variation of W, to compute the tangent stiffness matrix. This
step will be better developed in the next section, directly in the FE framework. The
interest reader can find more details in Crisfield, 1991 (chapter 4).

1.2 element formulation
In this section we derive the expressions of the internal elastic forces and of the
tangent stiffness matrix for one continuum element (e.g. tetrahedron, hexahedron,
wedge) in a total Lagrangian setting. Before proceeding, let us quickly recover a few
concepts regarding the isoparametric mapping underlying the formulation of this
type of elements.

1.2.1 Isoparametric Mapping

The displacement fields along the three directions u1, u2, u3 can be related to the
displacement at the nodes ue ∈ Rne of the element (ne number of element’s dofs)
using interpolating functions. These shape functions Ni (with i = 1, ..., nn, being nn
the number of the element’s nodes) are defined in a convenient space, called natural
space (of coordinates {g, h, r}), which is independent from the real shape/dimen-
sion/orientation of the element. The mapping between the global/physical and the
natural coordinates, schematically represented in Fig. 2, allows to treat integration
over the volume (area) with ease, as the domain of integration is the same for all the
elements of the same type and the actual element shape is accounted for through
the jacobian of the transformation. The displacement field over the element writes:

u =


u1
u2
u3

 =

N(g, h, r)T 0 0

0 N(g, h, r)T 0

0 0 N(g, h, r)T


ue1
ue2
ue3

 = N(g, h, r)ue, (1.11)

where the vector N ∈ Rnn×1 collects the shape functions and ue ∈ Rne×1 con-
tains the nodal displacements along the three directions1. The integral of a generic
function f over the physical domain can be carried out in the natural coordinates as
follows

F =

∫xf
xo

∫yf
yo

∫zf
zo

f(x, y, z)dxdydz =

∫gf
go

∫hf
ho

∫rf
ro

f(g, h, r)det(J)dgdhdr, (1.12)

1 Notice that, as we consider a general 3D case, ne = 3nn.
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with go, ho, ro = −1, gf, hf, rf = +1 and being J the jacobian of the map between
the natural and physical coordinates, defined as

∂g
∂h
∂r

 =

∂gx ∂gy ∂gz

∂hx ∂hy ∂hz

∂rx ∂ry ∂rz


∂x
∂y
∂z

 = J


∂x
∂y
∂z

 , (1.13)

where we adopted the shorthand notation ∂?• = ∂ • /∂?.

1.2.2 Derivatives

To compute the strains, the derivatives of the displacement field in the physical space
are required. As the shape functions are defined over the natural space, we have
to apply the chain rule. Let us consider the u displacement along x only (the same
will hold for v and w as well), we have:

∂u
∂x =

∂(N(g,h,r)Tue1)
∂x =

(
∂NT
∂g

∂g
∂x + ∂NT

∂h
∂h
∂x + ∂NT

∂g
∂g
∂x

)
ue1

∂u
∂y =

∂(N(g,h,r)Tue1)
∂y =

(
∂NT
∂g

∂g
∂y + ∂NT

∂h
∂h
∂y + ∂NT

∂r
∂r
∂y

)
ue1

∂u
∂z =

∂(N(g,h,r)Tue1)
∂z =

(
∂NT
∂g

∂g
∂z + ∂NT

∂h
∂h
∂z + ∂NT

∂r
∂r
∂z

)
ue1

, (1.14)

which, reorganized in matrix form, writes
∂xu

∂yu

∂zu

 =

∂xg ∂xh ∂xr

∂yg ∂yh ∂yr

∂zg ∂zh ∂zr


∂gNT

∂hNT

∂rNT

ue1 = J−1Gnatue1 = Gue1. (1.15)

The matrix Gnat ∈ R3×nn thus collects the derivatives of the shape functions in
with respect to the natural coordinates, while the inverse of the jacobian, J−1, takes
into account the mapping to the physical space, yielding G. In the following, we
use the vectorized form of the displacement derivative matrix D, defined as:

θ =



ux
uy
uz
vx
vy
vz
wx
wy
wz


=

G 0 0
0 G 0
0 0 G


ue1
u22
ue3

 = Gue, (1.16)

where we call G ∈ R9×ne shape derivative matrix, which will be repeatedly used in
this and the following chapters.

The jacobian components can be written as, for instance

J12 =
∂y

∂g
=
∂N(g, h, r)T

∂g
ye, (1.17)

where xe, ye, ze ∈ Rnn×1 are the nodal coordinates of the element along the three
directions. The Jacobian can thus be numerically computed as:

J = Gnat
[
xe, ye, ze

]
. (1.18)

How to: Jacobian
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1.2.3 Internal forces and tangent stiffness matrix

Now that an expression for the displacement derivatives is available through the
shape functions and the nodal displacements, we can finally write the strains for
the finite element and compute the virtual work. Equation (1.6) can be recast as

Ev =

[
H +

1

2
A(θ)

]
θ, (1.19)

where H is a constant matrix, defined as:

H =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

 , (1.20)

and where A is a matrix whose elements are the entries of θ, defined as:

A(θ) =



ux 0 0 vx 0 0 wx 0 0

0 uy 0 0 vy 0 0 wy 0

0 0 uz 0 0 vz 0 0 wz
uy ux 0 vy vx 0 wy wx 0

uz 0 ux vz 0 vx wz 0 wx
0 uz uy 0 vz vy 0 wz wy

 . (1.21)

The strain variation thus writes

δEv = Hδθ+
1

2
A(θ)δθ+

1

2
δA(θ)θ+O(δθ2), (1.22)

and, exploiting the fact that δA(θ)θ = A(δθ)θ = A(θ)δθ (which can be easily
verified), we can write:

δEv = [H + A(θ)] δθ+O(δθ2) ≈ [H + A(θ)]Gδue = B(ue)δue, (1.23)

where B is the strain–displacement matrix and where higher order terms were ne-
glected under the hypothesis of small virtual displacements. The expression of the
virtual work for the element then reads

Weint = (δue)T
(∫
Veo

BTSv dVeo

)
= (δue)T feint, (1.24)

feint =
∫
Veo

BTSv dVeo, (1.25)

where Veo is the volume of the undeformed element and feint is the vector of the
element internal elastic forces.

The element tangent stiffness matrix can be obtained from the virtual variation of
the elastic forces, that is:

δfeint =
∫
Veo

BT (ue)δSv + δBT (u)Sv dVeo

=

∫
Veo

BT (ue)CδEv + δBT (u)Sv dVeo

=

∫
Veo

BT (ue)CB(ue)δue + δBT (u)Sv dVeo .

(1.26)

The latter term must be rearranged to make explicit the dependency on ue. It can
be shown that

δBT (u)Sv = GTA(δθ)TSv = GT Ŝδθ = GT ŜGδue, (1.27)
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where

Ŝ =

S 0 0
0 S 0
0 0 S

 , S =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 . (1.28)

Using the formulation above, Eq. (1.26) rewrites

δfeint =

(∫
Veo

[
B(ue)T (ue)CB(ue) + GT ŜG

]
dVeo

)
δue (1.29)

from which we can derive the two components of the tangent stiffness matrix:

Ket1 =

∫
Veo

B(ue)T (ue)CvB(ue) dVeo (1.30)

Ketσ =

∫
Veo

GT ŜG dVeo (1.31)

and

Ket = Ket1 + Ketσ. (1.32)

The obtained expression for Ket features a term which depends directly on the
displacements and a term directly proportional to the stresses (and thus indirectly
on the displacements). Again, for more details the reader is referred to Crisfield,
1991 (chapter 5).

In a standard FE procedure, Ket and feint are computed through Gauss quadrature,
first computing the shape function derivatives (Gnat, J and G), then computing
strains and stresses (θ,Ev and Sv). Then, once the stresses are available, internal
forces and stiffness matrices are computed. As it will detailed later, this proce-
dure has a deep impact on the performances of most projection-based reduction
techniques.

Generally, in FE procedures integrals are carried out through some quadrature
rule, which basically approximates the integral as a weighted sum of the function
to integrate evaluated at specific points. Gauss quadrature is a popular method
that falls into this category, and provides a set of evaluation points and weights to
carry out the sum. In the general case of the integration of a function f over the
element volume, we can then compute the integral as

F =

∫1
−1

∫1
−1

∫1
−1
f(g, h, r)det(J(g, h, r))dgdhdr

≈
ng∑
i=1

ng∑
j=1

ng∑
k=1

αiαjαkf(gi, hj, rk)det(J(gi, hj, rk)),
(1.33)

where ng is the number of quadrature points along one dimension, αi,j,k and
gi, hj, rk are the weights and evaluation points given by the corresponding quadra-
ture rule, respectively. More details can be found in many FE books, for instance
see Belytschko et al., 2014 (Appendix 3).

How to: Gauss quadrature
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1.3 tensorial approach
Although model order reduction has not been introduced yet, it is now convenient
to discuss an alternative representation of the nonlinear internal elastic forces (and
of the tangent stiffness matrix), still at full order model level. As anticipated in
the previous section, in a standard FE procedure one needs to compute strain and
stresses to compute and assemble the internal force vector fint and the tangent
stiffness matrix Kt. Considering for example a transient analysis of a structure in
time and assuming to use a standard solution algorithm (e.g. Newark scheme),
one has to repeat this assembly operation for each time step, and multiple times
within the time step itself for each iteration of the solution of the nonlinear system
of equation (e.g. through Newton’s algorithm). Needless to say, the whole process
is very expensive, particularly for large FE models.

Looking back at Eqs. (1.25), (1.30), (1.31), however, one can see that these ex-
pressions can be written as explicit functions of the displacement ue only, through
Hooke’s law. In other words, it is possible to precompute all the stiffness coeffi-
cients which multiply ue and write a polynomial expression for both fint and Kt.
For instance, using the constitutive relation in Eq. (1.25), we can write

feint =
∫
Veo

BTCEv dVeo,

=

∫
Veo

GT (H + A(Gue))TC
(

H +
1

2
A(Gue)

)
Gue dVeo,

(1.34)

from which it is clear how for continuum elements with total Lagrangian formu-
lation and linear elastic material fint can be expressed as third order polynomials in
ue. As a consequence, we expect to be able to write a second order stiffness tensor

Ke2 ∈ Rne×ne for the linear terms, a third order tensor Ke3 ∈ Rne×ne×ne for the
quadratic terms and a fourth order tensor Ke4 ∈ Rne×ne×ne×ne for the cubic ones.
Equation (1.34) will then rewrite as

feint = Ke2 ue + ( Ke3 · ue) · ue + (( Ke4 · ue) · ue) · ue. (1.35)

Let us illustrate how to retrieve the expressions of these tensors, at element level,
using Einstein notation. First, let us introduce the localization matrix L, such that

A(θ) = L ·θ ←→ AIJ = LIJiθi = LIJiGiju
e
j , (1.36)

so that we “extract" ue from the matrix A. The entries of L are given in Table 1.
Equalling the terms of the same order in ue in Eqs. (1.34) and (1.35), we find∫

Veo

GiIHjiCjkHklGlm�
�uem dVeo = Ke2 Im�

�uem
m→J−−−−→

rename
Ke2 IJ, (1.37)

∫
Veo

GiI

(
1

2
HjiCjkLklaGam�

�uem + LjiaGam�
�uemCjkHkl

)
Gln��u

e
n dVeo

= Ke3 Imn�
�uem��u

e
n

m,n→J,K−−−−−−−→
rename

Ke3 IJK, (1.38)

∫
Veo

GiILjiaGam�
�uemCjkLklbGbn��u

e
nGlp��

uep dVeo

= Ke4 Imnp�
�uem��u

e
n��
uep

m,n,p→J,K,L−−−−−−−−−−→
rename

Ke4 IJKL, (1.39)

where displacements were explicitly cancelled out to illustrate the procedure2.

2 Notice that the change of subscripts is not necessary, as once displacements are simplified the indexes
are not repeated anymore and thus need not to be summed over. However, we prefer to change the
subscripts to capital letters when there is no summation involved, consistently with the adopted notation.
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Table 1: Elements LIJK of the sparse 6× 9× 9 matrices L in the 3D case.

L
(1)
111 = 1, L

(1)
421 = 1, L

(1)
531 = 1, L

(1)
412 = 1, L

(1)
222 = 1, L

(1)
632 = 1, L

(1)
513 = 1, L

(1)
623 = 1, L

(1)
333 = 1,

L
(1)
144 = 1, L

(1)
454 = 1, L

(1)
564 = 1, L

(1)
445 = 1, L

(1)
255 = 1, L

(1)
665 = 1, L

(1)
546 = 1, L

(1)
656 = 1, L

(1)
366 = 1,

L
(1)
177 = 1, L

(1)
487 = 1, L

(1)
597 = 1, L

(1)
478 = 1, L

(1)
288 = 1, L

(1)
698 = 1, L

(1)
579 = 1, L

(1)
689 = 1, L

(1)
399 = 1.

In Einstein notation, internal forces write

feint,I = Ke2 Iiu
e
i + Ke3 Iiju

e
iu
e
j + Ke4 Iijku

e
iu
e
j u
e
k, (1.40)

from which the tangent stiffness matrix can be computed as

Ket,IJ =
∂feint,I
∂ueJ

= Ke2 IJ+( Ke3 IJj+ Ke3 IjJ)u
e
j +( Ke4 IJij+ Ke4 IiJj+ Ke4 IijJ)u

e
iu
e
j . (1.41)

Using Eqs. (1.40) and (1.41) it is possible to compute the tensors for each element
and then assemble the global tensors:

KFα =

Ne⋃
e=1

Keα with α = 2, 3, 4, (1.42)

whereNe is the total number of element in the global (full order3) model and where
we used the symbol ∪ to denote the assembling procedure. These global tensors can
be precomputed offline once and for all, before the analysis starts. Then fint and
Kt can be evaluated online during the analysis, contracting the tensors on the global
displacement field uF, with no need for assembly.

why are tensors not used? The tensorial approach, avoiding the computa-
tional costs associated to the repeated assembly of vectors and matrices during the
analysis, promises relevant savings in terms of computational times. It is then legit
to wonder why such a strategy is not implemented in any (commercial) FE software.

There are three main reasons. First of all, the precomputation of the tensors is
expensive. To have a rough idea, if Tc2 is the time to compute the (standard) second
order tensor of one element, the time to compute the three tensors for the same
element is Tc ≈ Tc2(1+ ne + n2e). One would have then first to evaluate if the cost
associated to the construction of the tensors is greater than the cost of a standard
analysis or not. The second issue is due to online costs being also very high, as the
contraction of uF ∈ Rn over the tensors grows with n2, being n number of dofs of
the global (full order) FE model. The real bottleneck, however, it the fact that the
tensors cannot be stored in the volatile memory of most calculators due to their size.
Even for relatively small models (n ∼ 103) and even exploiting sparsity, one would
simply run out of memory.

As it will explained in the context of model order reduction, however, the ten-
sorial formulation becomes very efficient when dealing with systems with a low
number of dofs, which is the reason why the approach has been introduced here.

1.3.1 Sample code

In this last section, some useful bits of MATLAB® code are reported, as the standard
FE user might not be familiar with operations featuring tensors of order higher than
two. We use the tensor toolbox by Sandia National Laboratories (Bader and Kolda,
2006; Bader, Kolda, et al., 2015).

3 We use the superscript “F" for the global model, later referred to as Full Order Model (FOM).
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Element–tensor construction (3D–version):

function [K3, K4] = compute_tensors(C, H, L, nodes, ne)

% This function computes third and fourth order stiffness tensors for

% a continuum element. It uses the tensor_toolbox developed by Sandia

% National Laboratories.

[X, W] = get_quadrature_rule(); % your quadrature points and weights

K3h = tenzeros([ne,ne,ne]); % initialization (ne: element’s dofs)

K4 = tenzeros([ne,ne,ne,ne]);

for i = 1 : length(W)

g = X(1, i); % quadrature points

h = X(2, i);

r = X(3, i);

we = W(i); % quadrature weights

[G,detJ] = shape_function_derivatives(nodes,g,h,r);

% construct core part of the tensors for each gauss point

GHC = tensor((C*H*G)’);

TC = tensor(C); % create tensor object, rename it to distinguish

TG = tensor(G); % create tensor object out of matrix

LGG = ttt(ttt(L, TG, 3, 1), TG, 2, 1);

K3h_int = ttt(GHC, LGG, 2, 1);

K3h = K3h + K3h_int*detJ*we; % sum over contributions

K4_int = ttt(ttt(permute(LGG,[2 1 3]),TC,2,1),LGG,3,1);

K4 = K4 + K4_int*detJ*we;

end

K3 = K3h./2 + permute(K3h, [3 2 1]); % build third order tensors using K3h

K4 = K4./2;

end

The localization matrix:

function L = localization(dimension)

if dimension == 2 % 2D-problem

L = tenzeros([3,4,4]);

L(1,1,1) = 1; L(3,2,1) = 1; L(3,1,2) = 1; L(2,2,2) = 1;

L(1,3,3) = 1; L(3,4,3) = 1; L(3,3,4) = 1; L(2,4,4) = 1;

elseif dimension==3 % 3D-problem

L = tenzeros([6,9,9]);

L(1,1,1)=1; L(4,2,1)=1; L(5,3,1)=1; L(4,1,2)=1; L(2,2,2)=1; L(6,3,2)=1;

L(5,1,3)=1; L(6,2,3)=1; L(3,3,3)=1; L(1,4,4)=1; L(4,5,4)=1; L(5,6,4)=1;

L(4,4,5)=1; L(2,5,5)=1; L(6,6,5)=1; L(5,4,6)=1; L(6,5,6)=1; L(3,6,6)=1;

L(1,7,7)=1; L(4,8,7)=1; L(5,9,7)=1; L(4,7,8)=1; L(2,8,8)=1; L(6,9,8)=1;

L(5,7,9)=1; L(6,8,9)=1; L(3,9,9)=1;

end

end

where we reported also the 2D-problem version of the matrix L, such that:

A(θ) = L ·θ, with θ =


ux
uy
vx
vy

 and A(θ) =

ux 0 vx 0

0 uy 0 vy
uy ux vy vx

 . (1.43)
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Finally, element internal forces and tangent stiffness matrix can be computed
according to Eqs. (1.40)–(1.41) as:

% precompute (for the tangent stiffness matrix)

K3et = K3e + permute(K3e, [1 3 2]);

K4et = K4e + permute(K4e, [1 3 2 4]) + permute(K4e, [1 4 2 3]);

function [Ket, fe] = tensors_KF(K2e, K3e, K4e, K3et, K4et, ue)

fe = K2e*ue + ttsv(K3e, ue, -1) + ttsv(K4e, ue, -1);

Ket = K2e + ttsv(K3et, ue, -2) + ttsv(K4et, ue, -2);

end



2 M O D E L O R D E R R E D U C T I O N F O R
G E O M E T R I C N O N L I N E A R I T I E S

Throw the lumber over, man! Let your boat of life be
light, packed with only what you need

—Jerome K. Jerome, Three Men in a Boat

In engineering applications often analysts have to construct large FE models in
the order of hundreds of thousands or even millions of unknowns. The struggle to
reduce the computational burden for these analyses is thus as old as the FEM itself,
branching in the development of better solvers and algorithms, in the formulation
of simplified kinematic elements (e.g. Euler-Bernoulli beam elements) and in the
usage of reduced order models (ROMs), which try to reproduce the response of the full
order model (FOM). In this chapter an overview of reduction methods for structural
dynamics is given, with focus on the ones that will be used and developed in the
following chapters.

2.1 reduction in linear dynamics
It is first convenient to tackle reduction methods for linear dynamic problems. The
equations of motion in this context write

MFüF + CFu̇F + KFuF = fext(t), (2.1)

where MF, CF, KF ∈ Rn×n are the full order mass, damping and stiffness matri-
ces, respectively, being n the number of dofs of the FOM. Equation (2.1) implies a
linearization about an equilibrium condition, usually uF = 0.

A well-established reduction process is the so-called “modal analysis". Consider-
ing the unforced, undamped system version of Eq. (2.1):

MFüF + KFuF = 0, (2.2)

and assuming a harmonic solution of the type

uF(t) = φje
iωjt, (2.3)

we obtain the eigenvalue problem

(KF −ω2jMF)φj = 0, (2.4)

which admits j = 1, ..., n eigenfrequencies ωj and eigenvectors φj. The latter are
usually referred to as Vibration Modes (VMs) or natural modes, whereas ωj are
called resonance frequencies or natural frequencies. VMs physically represent how a
structure freely vibrates at a given frequency, are linearly independent from each
other and M- and K-orthogonal, i.e.

φTi MFφj = δij, (2.5a)

φTi KFφj = δijωiωj (this is not Einstein summation), (2.5b)

with δij is the Kronecker delta1.

1 VMs are defined up to a constant, here we considered a mass-normalization, i.e. φi = φ′i/
√

φ′Ti MFφ′i
where φ′i is a generic, not-normalized mode.

11
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Since a set of n linearly independent vectors is again a suitable basis for the space
Rn, the full response of the system can be described with a coordinate change and
using mode superposition as

uF(t) =
n∑
k=1

φkηk(t) =Φη(t). (2.6)

where η = [η1, ..., ηn]T ∈ Rn are the new modal coordinates and Φ = [φ1, ...,φn] ∈
Rn×n collects the VMs by columns.

Plugging Eq. (2.6) into (2.1) and pre-multiplying by ΦT one obtains

ΦTMFΦη̈+ΦTCFΦη̇+ΦTKFΦη =ΦT fext(t), (2.7)

or, compactly,

MF
φη̈+ CFφη̇+ KFφη = fext,φ(t). (2.8)

Stemming from the aforementioned orthogonality properties of the VMs, we have
that the mass and stiffness matrices are diagonal and (if the eigenmodes are mass-
normalized) write

MF
φ = diag(1, ... , 1), (2.9a)

KFφ = diag(ω21, ... ,ω2n), (2.9b)

If no damping is present or if Rayleigh damping is considered (where we have
CF = αMF +βKF), then the n equations of the system are fully decoupled:

η̈j + 2ξjωjη̇j +ω
2
j ηj = fext,j(t). (2.10)

where the dimensionless damping coefficient is ξj = (αωj + β/ωj)/2 if Rayleigh
damping is considered, and where fext,j(t) = φTj fext(t).

Equation (2.8) is however still of dimension n, so the only gain in this case would
be the diagonalization of the system. Incidentally, we notice that, although theoret-
ically possible, on the one hand the computation of the full set of eigenfrequencies
and eigenvectors of a high-dimensional system could be very expensive, on the
other hand suffers from numerical issues which lead to very inaccurate or even
wrong results.

2.1.1 Modal Displacement Method

The most common approach to construct a ROM out of Eqs. (2.7)-(2.8) is to select
only a subset of VMs in Φ. This approach goes under the name of Modal Displace-
ment Method (MDM), which basically consists in including only the VMs which
are expected to effectively participate in the response. Consider an external load
given by the summation of different contributions as

fext(f) = P1g1(t) + P2g2(t) + ... + PPgP(t) = Pg(t), (2.11)

where Pp (with p ∈ [1, P]) are the spatial distributions of the loads and gp(t) are the
associated time-varying functions describing the evolution of the loads. The idea is
then to assume that the response u(t) can be well-represented by

u(t) ≈
∑
k∈I

Φkηk(t) =ΦIηI(t), (2.12)

where I is a set of indexes of mφ selected VMs (e.g. I = [1, 2, 7], so that ΦI =

[Φ1,Φ2,Φ7] and ηI = [η1, η2, η7]) whose eigenfrequencies fall into (or reasonably
close to) the frequency range given by g(t)’s spectra and which reconstruct the
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spatial distribution of the load P (see Dickens et al., 1997 for more details on the
residual error associated to this issue).

The reduced system then writes

ΦTI MFΦIη̈I +Φ
T
I CFΦIη̇I +Φ

T
I KFΦIηI =ΦTI fext(t), (2.13a)

MφI
η̈I + CφI

η̇I + KφI
ηI = fext,φI

(t), (2.13b)

and, being of dimensionmφ � n, is extremely fast to solve. In the MOR framework,
the rectangular matrix ΦI is called Reduced Order Basis (ROB) and ηI is the reduced
coordinates vector.

2.1.2 Mode Acceleration Correction

The MDM assumes that the reduced space spanned by the ROB ΦI is able to repro-
duce the whole frequency content of the load. Typically, however, the truncation
given in Eq. (2.12) becomes simply

u(t) ≈
mφ∑
k=1

Φkηk(t) =Φmηm(t), (2.14)

so that all the modes which are left out would contribute to the quasi-static response.
To take this into account, the Mode Acceleration Correction (MAC) can be used.

Let us rewrite the equations of motion as

uF = (KF)−1(fext − MFüF), (2.15)

and, under the assumption that accelerations are well represented by the modal trun-
cation (as higher frequency modes are assumed to behave quasi-statically),

uF = (KF)−1
(

fext −
mφ∑
k=1

MFΦkη̈k

)
, (2.16)

where, from Eq. (2.10) and considering damping negligible,

η̈k = fext,k −ω
2
kηk =ΦTkfext −ω2kηk. (2.17)

Finally, we obtain2

uF =

mφ∑
k=1

Φkηk +

(
(KF)−1 −

mφ∑
k=1

ΦkΦ
T
k

ω2k

)
fext︸ ︷︷ ︸

corrective term

. (2.18)

The last term is thus correcting a posteriori the modal solution with the static contri-
bution that is not already accounted for by the first mφ modes. More details on the
derivation can be found in Géradin and Rixen, 2014 (see Chapters 2.4 and 2.8.2).

2.1.3 Example: cantilever beam

MDM and MAC are just two methods out of many others that can be found in
literature, which account for the static contributions in different ways and/or take
into account even other effects (e.g. rigid body modes, when these are allowed).
Another possible and effortless way to take into account the static contribution is to
append to the ROB of VMs also the actual static deformation, computed as

us = K−1fext, (2.19)

so that the basis V becomes

V = [us,Φ1, ...,Φm] . (2.20)
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Figure 3: Frequency Response of the tip of a cantilever beam with enforced vertical base
motion.

In figure 3 the full and reduced frequency responses for a cantilever beam excited
enforcing the vertical motion of the base are shown. The beam is meshed with 20

Euler-Bernoulli beam elements (each of length le = 0.2 m), with elastic modulus
E = 70 GPa, density ρ = 2800 kg/m3, and square section of side a = 10mm.

As it can be observed, the MDM accurately captures the response in the neigh-
bourhood of the resonances of the modes included in the basis, but fails to retrieve
the correct solution elsewhere. The MAC and the static-mode augmented basis
instead yield almost the same results, which are able to reconstruct the correct so-
lution also in between the considered modes. As expected, all the methods fail to
predict the fourth resonance, whose VM was not included in the ROB.

Finally, notice that the static-mode augmented basis adds a reduced coordinate to
the system, whereas MAC adds the static contribution a posteriori without increas-
ing the number of unknowns. However, the former method might be useful in the
context of nonlinear MOR, where a correction based on mode superposition might
not hold anymore.

2.2 geometrically nonlinear systems
For large displacement around the equlibrium, Eq. (2.1) does not hold anymore.
Instead, linear elastic forces must be replaced by a nonlinear function of the dis-
placement as

MFüF + CFu̇F + fint(uF) = fext(t), (2.21)

where f : Rn → Rn is the vector of internal nodal forces. Depending on the con-
stitutive law of the material and the kinematic assumptions, f can assume different
shapes. For instance, for linear elastic constitutive law and Green-Lagrange strain
tensor, the nonlinear elastic forces are polynomials up to the third order, as shown in
Chapter 1. The same is true for linear elastic materials and von-Karman kinematic
models of beams and plates, which are valid for bending displacements in the order
of the thickness. Other elements and kinematic descriptions may however lead to
more complex formulations, e.g. for co-rotational elements, featuring trigonometric
functions. Notice once more that the term fint(uF) needs to be computed at each
iteration of a numerical solution scheme (along with its jacobian matrix), whereas in

2 notice, again, that mass-normalized VMs are hereby considered.
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linear analysis only KF must be computed once and for all. As a consequence, it is
already clear why reduction of nonlinear systems is highly desirable. On top of this,
as it will be shown in the results of Chapter 4, many numerical tools to compute the
frequency response of nonlinear systems can handle only a very low number of dofs
(in the order of tens), and would fail otherwise. In such circumstances, resorting to
a ROM is mandatory.

2.2.1 Galerkin projection

As for linear system, a possible way to approach reduction of nonlinear systems is
to assume that its full response can be well approximated by the linear combination
of a set of vectors (often generically called modes), that is

uF(t) ≈ Vη(t), (2.22)

where V ∈ Rn×m is the ROB (containing, for the time being, unspecified modes)
and where η ∈ Rm is now the generic vector of reduced coordinates. Substituting
this approximation in Eq. (2.21), we get

MFVη̈(t) + CFVη̇(t) + fint(Vη(t)) − fext(t) = r(t), (2.23)

where r is the (unknown) residual arising from the approximation. The equation
above can be premultiplied by a matrix WT ∈ Rn×m, so that a square system is
obtained. This procedure goes by the name of Petrov-Galerkin projection. The
Galerkin projection correspondes to the special case in which W = V, which entails

VT r = 0, (2.24)

as the residual lies in a subspace orthogonal to colsp(V).3

The equations of motion then write

Mrη̈+ Crη̇+ fint,r = fext,r, (2.25)

where

Mr = VTMV, Cr = VTCV, fext,r = VT fext, (2.26)

and

fint,r = VT fint(Vη). (2.27)

The latter equation, although representing the reduced nonlinear elastic forces,
needs to be evaluated over the full order model (as well as its jacobian matrix). For
this reason, the simple Galerkin projection by itself cannot provide high speedups
(in the author’s experience, one can obtain at most a speedup factor of 2).

2.2.2 Projection-based NL-ROM requirements

The efficient construction of a Nonlinear (NL) ROM requires:

1. a good choice of the reduction basis V, which

– spans the FOM solution subspace, usually on the basis of the expected spec-
trum of the response with respect to the imposed excitation. While al-
most trivial in linear analysis thanks to the superposition principle, in
nonlinear dynamics sub- and/or super-harmonics may arise, posing ad-
ditional difficulties in the choice of the basis.

3 The space spanned by the columns of V.
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– (optional) can be efficiently computed. In other words, it should be possible
to compute the basis a priori and in a lower time than that required for
a full order solution. This point may seem trivial, but many reduction
strategies (e.g. the Proper Orthogonal Decomposition (POD) -based ones)
rely upon the knowledge of the full solution. This is justified by the fact
that the ROM obtained this way is very accurate and can be used for
a multy-query analysis or to construct parametric reduced order models.
Throughout the present work, the focus will be on the so called model-
driven strategies, i.e. the ones which rely on some properties of the model
(e.g. VMs) to construct the basis, which can be constructed without the
need for a FOM solution.

– (desirable) is valid for different loading cases, which is a given in linear modal
analysis, but which is not granted for some nonlinear MOR methods (e.g.
the ones based on the computation of static loads).

2. an efficient way to compute the reduced internal forces fint,r (Eq. (2.27)).
As mentioned earlier, if no measure is undertaken, the only way to evaluate fr
would be by expanding the reduced coordinates η using the basis V to com-
pute the FOM displacements uF, then compute f(uF) at FOM-level, and finally
project the result on the reduced space. This process is extremely expensive
and almost extinguishes any gain provided by the Galerkin projection, reason
why alternative strategies are sought.

3. (desirable) a reliable error indicator. Although an error of some kind can
always be computed with or without the need of the FOM solution (e.g. the
norm of the residual produced by the FOM evaluated at the ROM solution), to
the best of the author knowledge there is no report in literature of non-POD
based ROMs equipped with an a priori and quantitative error estimate. Worth
of notice is the error analysis described in Nicolaidou et al., 2021 to predict
the presence of internal resonances.

In the following an overview of some selected solutions to cope with items 1 and 2

is provided, whereas error indicators will be discussed separately in the following
chapters along with the associated numerical studies.

2.2.3 Tentative ROM classification

Reduced order models are used in many fields of science and engineering. For this
reason, ROM literature seldom features an uniform nomenclature and classification,
much depending on the authors’ background. In this section we spend just a few
words to highlight what are the main characteristics and properties one should pay
attention to when considering a ROM for nonlinear structural mechanics.

A first distinction can be done on the basis of how the ROM is obtained, between:

• intrusive methods, which need low-level manipulation of the code used to com-
pute the solution, either for the construction of the basis and/or for the evalu-
ation of the reduced forces. These methods often need access to the element-
level formulation and/or the modification of the solvers and, for these reason,
cannot be directly used in commercial software;

• non-intrusive methods, which can be applied directly using the outputs nor-
mally provided by commercial software.

Secondly, depending on how the ROM itself is constructed, we can distinguish
between:

• data-driven methods, that is the ones which rely upon the presence of pre-
existing data for the construction of the ROM. We include in this category
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all the methods which use either experimental data or FOM-solutions (e.g.
POD-based methods, see next).

• model-driven (data-free) methods, which, loosely speaking, are based on the
knowledge of the model and its inherent characteristics (e.g. eigenmodes).

Notice that this distinction is sometimes blurred (one method could use both data
and model information). In the present work, the focus is on methods that can
be used by the structural analyst in a design phase, when no experimental data is
available and where the cost associated to FOM solutions is usually not acceptable.
That is, on model-driven methods.

Finally, it is important to underline that projection-based methods, which have been
introduced in the previous sections and which are the object of the present disser-
tation, constitute only a subset of model order reduction methods, see for instance
Cyril Touzé et al., 2021 for a review of nonlinear mapping methods.

2.2.4 Evaluation of nonlinear terms

Reduced order stiffness tensors

As already introduced in section 1.3, depending on the kinematic assumptions and
on the material constitutive law, the (full order) internal elastic force vector can be
expressed as polynomials4 as

fint(uF) = KF2 uF + ( KF3 · uF) · uF + (( KF4 · uF) · uF) · uF. (2.28)

where KF2 ∈ Rn×n, KF3 ∈ Rn×n×n and KF4 ∈ Rn×n×n×n are the second, third
and fourth order FOM stiffness tensors, respectively. As already discussed, these
tensors cannot be computed at FOM level for their excessive memory requirements.
Using Galerkin projection, however, it is possible to directly compute the reduced
order version of these stiffness tensors using element-level projection and assembly.
Indeed, internal reduced forces in Eq. (2.27) can be computed as

fint,r =
Ne∑
e=1

(Ve)T feint(V
eη), (2.29)

being V ∈ Rn×m the reduced basis, Ve ∈ Rne×m its restriction to the rows cor-
responding to the e-th nodal dofs and feint the element internal elastic forces. The
latter can be also expressed using tensors and applying Galerkin projection to Eq.
(1.35) as

feint,r = (Ve)T Ke2 Veη+ (Ve)T ( Ke3 · (Veη)) · (Veη)

+ (Ve)T (( Ke4 · (Veη)) · (Veη)) · (Veη).
(2.30)

which can conveniently expressed using Einstein summation as

(feint,r)I = V
e
iI K

e
2 ijV

e
jkηk + V

e
iI K

e
3 ijkV

e
jlV

e
kmηlηm

+ VeiI K
e

4 ijklV
e
jmV

e
knV

e
lpηlηmηp,

(2.31)

so that, following the same procedure described in section 1.3, we can write the
element reduced stiffness tensors as

Qe2 IJ = V
e
iI K

e
2 ijV

e
jk, (2.32a)

Qe3 IJK = VeiI K
e

3 ijkV
e
jJV

e
kK, (2.32b)

Qe4 IJKL = VeiI K
e

4 ijklV
e
jJV

e
kKV

e
lL, (2.32c)

4 in section 1.3 the expressions for continuum total Lagrangian elements with linear elastic constitutive
law were given.
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where Qe2 ∈ Rm×m, Qe3 ∈ Rm×m×m and Qe4 ∈ Rm×m×m×m are the element
reduced order second, third and fourth order stiffness tensors, respectively. Then,
as done in Eq. (2.29), the assembly procedure for the reduced model can be carried
out just as a simple summation of the elemental contribution, i.e.

Q? =

Ne∑
e=1

Qe? , (2.33)

with ? = 2, 3, 4. Following this procedure, one needs not to assemble the FOM
tensors. Finally, the reduced internal forces write

fint,r(η) = Q2 η+ ( Q3 ·η) ·η+ (( Q4 ·η) ·η) ·η. (2.34)

Using this representation, fint,r(η) is expressed directly in the reduced space as a
function of the reduced coordinates η, and one can precompute once and for all the
reduced stiffness tensor and perform simulations without switching back and forth
from the reduced to the full space and back again, without the need for assembling
procedures. Usually, the online speedups achieved through the tensorial approach
are very high (usually > 100). However, the offline costs associated to the precompu-
tation of the tensors cannot be neglected and lower the effective speedup provided
by the ROM (see Ch. 3-4 for more details).

Notice that Eq. (2.34) is an exact representation of Eqs. (2.27)-(2.29) when the non-
linearity is a third order polynomial5, stemming from the kinematic and material
assumptions. In all the other cases, however, this is just an approximation which
may come, for instance, from a Talyor expansion of a generic nonlinear function.

Sample code

Sample code to compute reduced order tensors (in MATLAB® , using again SNL
tenors toolbox):

function compute_reduced_tensors(nodes, elements, connectivity, V)

ne = size(elements, 2);

Q3 = 0; % initialize

Q4 = 0; % initialize

for e = 1 : ne

element_nodes = elements(ne, :); % el-node IDs

element_dofs = connectivity(e, :); % el-dofs IDs

xyz = nodes(element_nodes, :); % el-coordinates

[K3e, K4e] = compute_tensors(C, H, L, xyz, ne);

% get the basis partition pertaining the eth-element

Ve = tensor(V(element_dofs, :));

Vt = permute(Ve,[2 1]);

% project tensors

Q3e = ttt(ttt(ttt(Vt, K3e, 2, 1), Ve, 3, 1), Ve, 2, 1);

Q4e = ttt(ttt(ttt(ttt(Vt, K4e, 2, 1), Ve, 4, 1), Ve, 3, 1), Ve, 2, 1);

Q3 = Q3 + Q3e; % sum over element contributions

Q4 = Q4 + Q4e;

end

end

Hyper-reduction

Another possible approach to efficiently compute Eq. (2.27) is to approximate the
reduced internal forces by evaluating them only at a few specific locations of the
FOM mesh. The aim is to make so that the cost associated to the assembling solution

5 If the nonlinearity is given as a polynomial with order higher than 3, a tensorial representation can still
be derived using tensors of order higher than 4.
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scales with m rather than with n. For the sake of completeness, we report here
in brief two popular methods, upon which many others were built. For a more
comprehensive dissertation, the interested reader is referred to Jain, 2015.

The first method is the Energy Conserving Sampling and Weighting (ECSW), where
the nonlinear terms are approximated by

fint,r =
Ne∑
e=1

(Ve)T feint(V
eη) ≈

∑
e∈E

ξe(Ve)T feint(V
eη), (2.35)

where E ⊂ {1, ... , Ne} lists a subset of elements, and where ξi ∈ R+ are positive
weights. Equation (2.35) closely resembles a quadrature rule for the evaluation of
integrals: internal forces are evaluated only on a (possibly small) set of elements
and then opportunely weighted and summed. Both the set E and the weights ξe
are determined matching the work done by the projected internal forces on a training
set coming from a FOM (time) simulation through a minimization problem.

The second approach is the Discrete Empirical Interpolation Method, which aims at
approximating the internal forces as the superposition of some force-modes as

fint,r ≈ Uc, (2.36)

where c ∈ Rm×m are unknown factors and U ∈ Rn×m is a basis of force modes,
obtained with a Singular Value Decomposition (SVD) of a FOM-training set of forces
in time as

UΣWT =
[
fint(t0), fint(t0 +∆t), ... , fint(t0 +Nt∆t)

]
, (2.37)

where ∆t and Nt are the time step and the number of time steps in the training set,
respectively. To find c, a boolean matrix P ∈ Rn×m is introduced, with the function
of “picking” rows out of fint, so that:

PT fint = PTUc, (2.38)

and

c = (PTU)−1(PT fint). (2.39)

The matrix P can be determined with a Greedy algorighm, see Chaturantabut and
Sorensen, 2010 for more details. The reduced internal forces thus write

fint,r = VTU(PTU)−1 (PT fint)︸ ︷︷ ︸
dofs subset

. (2.40)

Notice that the term highlighted in the above equation represent a subset of degrees
of freedom of the FOM. Since to compute the single-dof force contribution requires
the evaluation of fint at all the elements sharing the node containing the selected
dof, DEIM may ultimately lead to the selection of a larger set of elements than
ECSW.

Both the presented strategies however rely upon a FOM simulation, which nat-
urally imposes severe limitations to the applicability of the method both in terms
of efficiency and versatility (i.e., the reduction is valid only for the trained set).
Still, these methods find applicability in the context of linear and nonlinear para-
metric ROMs, first because they offer a way to approximate non-affine parameter
dependencies to affine ones (Quarteroni et al., 2016), and secondly because the cost
associated to the evaluation of the training sets over sampled points of the param-
eter space can be amortized by the repeated evaluations of the parametric ROM
(Rafiq and Bazaz, 2020).

However, several alternative versions of DEIM and ECSW have been proposed in
literature to overcome these limitations, see for instance Jain and Tiso, 2018 where
a surrogate training set is proposed to replace the FOM solution and Ryckelynck,
2005, where an adaptive procedure is described.
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2.3 reduction basis
A crucial element for a projection-based ROM is, of course, the Reduced Order Basis
(ROB) V, which defines the reduced subspace where the approximated solution is
sought. As anticipated, in the selection of a good basis is not trivial. Indeed, in
nonlinear structural dynamics the basis should include vectors/modes

• which take into account effects arising due to the presence of large displace-
ment (e.g. stretching-bending coupling in thin walled plates and beams);

• which can describe nonlinear dynamics phenomena (e.g. sub-/super-harmonics,
internal resonances, isolated responses).

An extensive account of existing options available in literature is given in the next
chapters, whereas the present section is devoted to a detailed review of Modal
Derivatives (MDs), which will also be used in the developments of the following
chapters.

2.3.1 Vibration Modes

Before introducing MDs, however, it might be helpful take a step back to VMs.
Consider again the equations of motion (2.21) and asstume to select as ROM V the
full set Φ ∈ Rn×n of eigenmodes of the linear system, we obtain

ΦTMFΦη̈(t) +ΦTCFΦη̇(t) +ΦT fint(Φη(t)) −ΦT fext(t) = r(t), (2.41)

which is completely equivalent to the original system, since the columns of the
basis V span the same space as the Euclidean basis6. Upon this consideration,
one can think to select a reduced basis out of Φ, selecting only the modes which
participate the most. Many methods in literature indeed are devoted to providing
instruction, recipes and algorithms to select suitable VMs to construct the ROB. The
selection however is generally challenging and often the proposed solutions are ad
hoc and/or applicable to selected cases. In C. Touzé et al., 2014, for instance, the
reduction of a plate system is considered and VMs are selected upon inspection,
by making a distinction between membrane and bending dominated modes. An
additional difficulty to be addressed is the fact that numerically computed high-
frequency eigenmodes are not accurate, so that in practise the full set of eigenmodes
is never available. In any case, even if Φ were given, the inspection of n modes for
system typically featuring hundreds of thousands dofs might be challenging. In the
review paper Mignolet et al., 2013 some other solutions are reported, such as the
adoption of the so-called dual modes (Ricardo Perez et al., 2014), obtained through
nonliner static solves imposing VM-like loads, with the aim to capture the nonlinear
transverse-membrane coupling of some dominant modes.

2.3.2 Modal Derivatives

Another solution to form the basis is to resort to Modal Derivatives (MDs), which,
loosely speaking, are basis vectors automatically capturing the nonlinear comple-
ment contribution not provided by VMs. Historically, MDs were first proposed in
Idelsohn and Cardona, 1985 as an extension of modal analysis. For this reason,
the MD-approach features more or less the same advantages and disadvantages of
linear VM-based reduction, as well as the spectrum-based construction criteria.

Let us start from the illustrative example of a beam clamped at both ends. The
first 3 vibration modes about the rest configuration are reported in Fig. 4, where
both axial and transverse displacements u and w, respectively, are shown on the

6 I.e. an identity matrix In ∈ Rn×n.
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Figure 4: First three VMs of a clamp-clamp beam, with axial displacement u (represented
on the vertical axis) in black and vertical displacement w dashed in blue. The
horizontal axis is the x spatial coordinate. 30 von Karman beam elements were
used.

vertical axis. As it can be noticed, these are pure bending modes and no displace-
ment is present along the axial direction. If a ROM was constructed using only these
VMs, for large displacement the system would be “uncapable” to stretch in the axial
direction (as a pulled string would do): this would act as an additional constrain on
the model, as if all the nodes were constrained with rollers in the x-direction. Such
constrain would then activate for large displacements and increase the stiffness of
the system, leading an extreme (and non-physical) hardening behaviour.

Figure 5 shows all the (static) MDs associated to the first 3 VMs, which are all
pure membrane modes. In this toy example, with 87 dofs, it is possible to compute
all the VMs and it turns out that the first 3 axial VMs are the 10th, 16th and 20th.
These (but probably not only these) VMs modes should be included in the basis to
represent the sought stretching behaviour.

In Fig. 6 a comparison of the frequency responses of the ROM obtained using
the first 3 VMs only, the one with the addition of the first 12 membrane dominated
modes, and the ROM with 6 static MDs appended. As it can be seen, the first two
wrongly predict a much steeper hardening behaviour than that provided by the
MD-approach, which accurately approximate the response of the FOM. From this
example, it is apparent how the simple selection of axial modes to append to the
basis is not as straightforward as one would think, hence the necessity of all the
methods and criteria earlier discussed. In addition, the response for a ROM with 1

VM and the associated MD is reported, showing just a small loss of accuracy with
respect to the one using 3 VMs.

MDs computation

One way to compute MDs is to differentiate the eigenvalue problem (2.4), obtaining

(
KF
∣∣
0
−ω2i

∣∣
0

MF
) ∂φi
∂ηj

∣∣∣∣
0

+

(
∂KF

∂ηj

∣∣∣∣
0

−
∂ω2i
∂ηj

∣∣∣∣
0

MF −
∂MF

∂ηj

∣∣∣∣
0

ω2i
∣∣
0

)
φi
∣∣
0
= 0, (2.42)

where (?)
∣∣
0

means “evaluated at equilibrium” (omitted hence on, to ease the no-
tation, although we indicate the linear stiffness matrix as KF0 = KF

∣∣
0

) and where

θij ,
∂φi
∂ηj

, (2.43)

is the Modal Derivative of the i-th VM φi with respect to the modal amplitude of
the j-th VM ηj. Intuitively, MDs thus represent a sensitivity of VMs with respect
to modal amplitudes, and account for mild-large departures from the equilibrium
position with respect to which they are computed.
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Figure 5: (Static) MDs of the clamp-clamp beam relative to the first 3 VMs (only the axial
displacement u is reported on the vertical axis, in black). The horizontal axis is the
x spatial coordinate. 30 von Karman beam elements were used.

Figure 6: Frequency Responses (FR) for a clamped-clamped beam (the model used here is
the one presented in Ch. 4.7, for ξ = 0). The FR are obtained using the Harmonic
Balance method with 7 harmonics [Krack and Gross, 2019]. On the vertical axis,
the amplitude of the first harmonic A1 normalized over the beam thickness t is
reported. For the FOM, only the backbone curve is shown.
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The system in Eq. (2.42) is singular, with both θij and ∂ω2i /∂ηj unknown. As
shown in Jain, Tiso, Rutzmoser, et al., 2017, the system can be made full rank by
adding a normalization condition on the eigenmodes, that is

φTi MFφj = 1, (2.44)

differentiating which one obtains

φTi MF ∂φi
∂ηj

= 0, (2.45)

where the MF is assumed to be a constant matrix. This way, Eq. (2.42) rewrites in
matrix form as[(

KF0 −ω
2
iMF

)
−MFφi

−
(
MFφi

)T
0

]
∂φi
∂ηj
∂ω2i
∂ηj

 =

{
−∂KF
∂ηj
φi

0

}
, (2.46)

Another solution is to compute the so called Static Modal Derivatives (SMDs) by
neglecting all the inertial terms in Eq. (2.42) to obtain

θij = −(KF0)
−1 ∂KF

∂ηj
φi. (2.47)

Apart from the fact that SMDs are cheaper to compute than MDs, they also feature
the symmetry property by which θij = θji (see also Fig. 5). The practical implica-
tion is that if one retains mφ VMs in the basis, the associated MDs are mMD = m2φ,
while SMD are onlymSMD = mφ(mφ+ 1)/2. Worth of notice is the fact that the ex-
pression for SMD is also independently obtained by Weeger et al., 2016 expanding
with a Taylor series a nonlinear static problem.

To compute the stiffness matrix derivative, one has first to switch from the linear
stiffness matrix to the tangent stiffness matrix (which is configuration dependent)
and evaluate it in the modal space, that is

KF0 → KF(u =Φη),

so that the derivative with respect to a modal coordinate ηj can be computed as

∂KF(u)
∂ηj

=
∂KF(Φη)
∂ηj

=
∂KF(Φjηj)

∂ηj
. (2.48)

As already discussed in Ch. 1, the tangent stiffness matrix is usually expressed as
in Eqs. (1.30)-(1.31) as function of strains and stresses. In the case of continuum
elements, we saw in Section 1.3 that we can write the expression of the internal
forces directly as a function of the displacement only as (Eq. (1.34)):

feint =
∫
Veo

GT (H + A(Gue))TC
(

H +
1

2
A(Gue)

)
Gue dVeo .

From this expression, the tangent stiffness matrix can be derived taking the virtual
variation of the internal forces, which writes

δfeint =
∫
Veo

GT (H + A)TC
(

H +
1

2
A
)

Gδue dVeo

+

∫
Veo

GT
(
1

2
HTCδA + δATCH + ATCδA + δATCA

)
Gue dVeo, (2.49)

How to: stiffness matrix derivative
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where the shorthand notation A = A(Gue) and δA = A(Gδue) was used. Since
A(Gue)δue = A(Gδue)ue, we can also rewrite the former equation as

δfeint =
∫
Veo

GT
[
(H + A)TC

(
H +

1

2
A
)
+
1

2
HTCA + ATCA

]
Gδue dVeo

+

∫
Veo

GTδATC (H + A)Gue dVeo = K′δue + K′′δue. (2.50)

From the latter equation one can find the tangent stiffness matrix cancelling out
the displacement virtual variation, however first we have to find a more conve-
nient form for K′′ due to the fact that δue is “inside” δAT . Let us switch to
Einstein notation and, recalling Eq. (1.36), we can write

(δfeint,2)I = K
′′
Iiδu

e
i = GiILjikGklδu

e
lCjm(Hmn +Amn)Gnppp, (2.51)

so that the second contribution to the tangent stiffness matrix is

K′′IJ = GiILjikGkJCjm(Hmn +Amn)Gnppp. (2.52)

In matrix notation, the final tangent stiffness matrix writes:

Ke(ue) =
∫
Veo

GT
[
HTCH + HTCA + ATCH + 2ATCA

]
G dVeo

+

∫
Veo

GT [(L ·G) ·11 (C(H + A)Gue)] dVeo . (2.53)

Once an expression of the tangent stiffness matrix as a function of the displace-
ments is obtained, one should change to modal coordinates and then take the
derivative. However, before substituting ue = Φeη in Eq. (2.53), it can be ob-
served that

∂(Φη)

∂ηj
= φj,

and that the derivatives we are interested in are to be evaluated at equilibrium, that
is for η = 0. Upon these considerations, we can directly use instead ue = φej ηj,
leading to

Ke(ue) =
∫
Veo

GT
[
HTCH + HTCAjηj + ATj CHηj + 2ATj CAjη2j

]
G dVeo

+

∫
Veo

GT
[
(L ·G) ·11 (C(H + Ajηj)Gφej ηj)

]
dVeo . (2.54)

Finally, taking the derivative with respect to ηj and evaluating the result at equi-
librium, we get to

∂Ke

∂ηj

∣∣∣∣
0

=

∫
Veo

GT
{[

HTCAj + ATj CH
]

G +
[
(L ·G) ·11 (CHGφej )

]}
dVeo,

(2.55)

and the global stiffness derivative matrix can then be assembled from the element
expression with the usual procedures. Finally, notice that the stiffness matrix
derivative can also be computed in a non-intrusive way by using finite differences
as

∂Ke

∂ηj
≈

Ke(φj∆ηj) − Ke0
∆ηj

, (2.56)
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which, however, suffers from the issue of how selecting ∆ηj, that is small enough
to have an accurate derivative but not too small in order not to incur into numeri-
cal artifacts.

Quadratic Manifold

Before concluding this section, we just give a quick overview of an alternative use of
MDs. As mentioned earlier, Reduced Basis approaches are not the only possibility
to construct a ROM and many other strategies relying upon nonlinear mappings
are available in literature. The Quadratic Manifold (QM) is one of such techniques,
where the solution is assumed to evolve on a low-dimension manifold rather than
a low dimension subspace, that is

u(t) ≈ Γ(η(t)) ,Φη+
1

2
Ω : (η⊗η), (2.57)

where Γ : Rm → Rn is a nonlinear function of the reduced coordinates η, which
in this case are just the modal amplitudes of the VMs included in Φ. The MDs are
included, by columns, in Ω ∈ Rn×m×m (i.e. θij = Ω:,i,j) and are “enslaved” by
the VMs modal amplitudes. This way, the number of unknowns is reduced to m,
whereas in the classic Linear Manifold approach (where MDs are just appended to
the basis, with independent reduced coordinates) the unknowns are m2 (or m(m+

1)/2 for SMDs). In the following, we will not use this approach; the interest reader
is referred to Jain, 2015; Jain, Tiso, Rutzmoser, et al., 2017 and to Cyril Touzé et al.,
2021 for a review.
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2.4 an application: a mems gyroscope

In this last section, we report the practical case of a nonlinear MEMS gyroscope
whose analysis and design were carried out thanks to a ROM using MDs. In partic-
ular, it was possible to design the sensitivity of the sensor computing the nonlinear
frequency response (magnitude and phase) and to design the control loop to drive
the system. The work here presented can be found in Marconi, Bonaccorsi, et al.,
2021.

abstract We describe how mechanical nonlinearities can be exploited to obtain a
frequency-matched MEMS gyroscope. Exploiting the hardening behavior of the os-
cillator, we show how it is possible to match drive and sense frequency by changing
the drive displacement amplitude. This way, both the resonance amplitudes of the
drive and sense axes are exploited, boosting the sensitivity of the device. Moreover,
the near-flat drive frequency response increases both the robustness and bandwidth.
A prototype of a yaw gyroscope was also manufactured to test the feasibility of the
proposed approach.

2.4.1 Introduction

MEMS gyroscopes have countless applications and can be found, for example, in a
wide range of consumer products, military devices, automotive subsystems, and In-
ternet of Things (IoT) gadgets. Focusing on consumer-grade MEMS gyroscopes typ-
ically found in everyday products, and given their constantly growing market, it is
of extreme importance to produce them efficiently and in large numbers. However,
batch fabrication often leads to manufacturing imperfections. Due to this technolog-
ical spread, MEMS devices show performances that may be considerably different
from the nominal design case. This can usually be observed, among other effects,
in a considerable spread level of the drive and sense frequencies of the devices.

To cope with this issue, several strategies have been put into place; the most
commonly adopted solution is the so-called split-mode operation Acar and Shkel,
2008, where drive and sense frequencies, fd and fs respectively, are designed to be
separated by a certain mismatched defined as ∆f = fs − fd in order to operate in a
frequency range where the sensitivity and the bandwidth of the sensor is reasonably
constant. This solution, however, does not fully exploit the sense resonance peak,
which would boost the sensitivity to an external angular rate input. Even though
in frequency-matched Prikhodko et al., 2016 gyroscope fd = fs is imposed and
the sensitivity is maximized, this solution is less popular as (on top of bandwidth
restriction) it requires more power and electronics in order to keep the frequencies
matched by constantly adjusting the rotor voltage. On top of this, these systems are
highly sensitive to temperature and environmental changes, as well as to stress and
ageing effects Tatar et al., 2013.

In this work we propose an alternative approach that uses a mode-matched
strategy in which the natural frequency of the drive axis is progressively changed
by sweeping amplitude along the hardening backbone curve of the nonlinear fre-
quency response. This is new with respect to the classical approach that relies on
sense mode electrostatic softening. A similar approach was proposed in Schwarzel-
bach et al., 2001, albeit with some limitations. In that case, it was suggested to tune
the frequencies by simply changing the drive voltage, which poses some concerns
on the robustness of the approach. In the present work, the mode-matched control
is obtained by means of a Phase-Locked Loop (PLL) and Amplitude Gain Control
(AGC) Acar and Shkel, 2008; Chang et al., 2007 that guarantees the inertial device
is constantly kept at resonance on the backbone curve. The sense frequency, which
can be measured by means of quadrature and phase shift between the sense and
drive axes, is then used to adjust the reference voltage for the AGC. This way the
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Figure 7: (a) Drive mode, (b) Sense mode. The FE model is meshed with 237,636 tetrahedral
elements with quadratic shape functions (TET10), for a total of 1,216,029 DOFs.
This is the same model used to construct the ROM.

drive and sense frequencies can be matched and, setting an acceptable sensitivity
range for the sensor, one can derive the operative range of the device.

Finally, a non-linear MEMS gyroscope prototype was designed in collaboration
with STMicroelectronics and tested to experimentally demonstrate the feasibility of
our drive-based mode matching approach.

2.4.2 Nonlinear mechanical model

The vibration of tuning-fork MEMS gyroscopes oscillators Acar and Shkel, 2008

is typically obtained through a pair of driving electrodes to which is applied a si-
nusoidal or square signal Kempe, 2011 whose frequency matches the drive-mode
resonance. This allows to precisely control the motion along the x-axis with little ef-
fort. Although MEMS gyroscopes are typically designed to work in a linear regime,
geometric nonlinearities need to be taken into account as the oscillation amplitude
gets larger. A common solution to release stresses and mitigate nonlinear effects is
simply to avoid double-clamped beams and use folded beams. As in this case we
want the drive axis to show a pronounced hardening effect, the drive frame was
suspended using four double-clamped beams and the sense mass, inside the drive
frame, by two folded beams. A Duffing oscillator model can be used to describe the
drive axis, while the sense axis can be considered to behave linearly:

{
mdẍd + cdẋ+ kdxd + kd,3x

3
d = Fd

msẍs + csẋs + ksxs = Fcor(Ω)
(2.58)

where for the sake of simplicity we omitted negligible gyroscopic terms and cross-
coupling between axes. It is a known result Nayfeh and Mook, 1985 that the drive
frequency depends on the oscillation amplitude as

ωd(xd) =

√
ω20,d +

3

4

kd,3
md

x2d (2.59)

where ω0,d =
√
kd/md is the eigenfrequency associated with the linear system

underlying the nonlinear model. Equation (2.59) describes the hardening effect we
desire in order to tune and match the drive and sense frequencies.

The model given by Eqs. (2.58) can be difficult to tune, as there are no available
expressions for the nonlinear coefficients of the beams. One solution is to resort
to Finite Element (FE) simulation, performing a number of nonlinear-static traction
tests on the drive axis in order to derive a force-displacement curve. From the latter,
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Figure 8: Drive amplitude response (top) and drive phase (bottom) for different forcing am-
plitudes (up to 12 dBm), computed using the Harmonic Balance method (with H=5

harmonics). The linear response is shown in black for comparison (12 dBm). The
operation points are marked by red crosses, at the top of the amplitude responses
and on the −π/2 line in the phase plot. A quality factor of 2200 has been consid-
ered.

the stiffness linear, quadratic and cubic coefficients can be computed. This approach
can provide a quick and inexpensive way to obtain the model, but it is often too
coarse to correctly capture the nonlinear dynamic response of the system. On top of
that, the two-degree-of-freedom (DOFs) model in Eq. (2.58) cannot describe more
complex nonlinear behaviours such as superharmonics, subharmonics and internal
resonances, which may occur due to the interaction with higher frequency modes.

For this reasons, we resorted to a ROM with MDs and a tensorial approach for the
fast evaluation of the internal reduced elastic forces. A reduction basis V composed
of Vibration Modes (VMs, φi) and Modal Derivatives (MDs, θij) was thus selected,
the latter with the role of taking into account geometric nonlinearities. In particular,
we retained only the first and second VMs (drive and sense, shown in Fig. 7) and
their associated MDs, so that V = [φ1, φ2, θ11, θ12, θ22].

2.4.3 Frequency-matched nonlinear gyroscope

Frequency response

The founding principle of the operational mode we propose is that, along the back-
bone curve of the system, the phase of the response with respect to the forcing stays
constant and equal to −π/2. Fig. 8 shows the forced response obtained using the
ROM described in the former section and the NLvib MATLAB® package Krack and
Gross, 2019; Marconi, Tiso, Quadrelli, et al., 2021 to perform Harmonic Balance.

As it can be observed, increasing the driving force makes the drive mode move
towards higher frequencies but, regardless of the amplitude, the system will stay
at resonance, with a constant phase. The red crosses correspond to these points.
It is clear now that, using a standard controller equipped with PLL and AGC, it
is possible to track the nonlinear response changing the drive amplitude. Also, it
is worthwhile noticing that the slope of the frequency response increases almost
linearly with frequency in the range ∆f = 27.5− 30.5 kHz. In this interval, the drive
amplitude changes from 4µm to 6µm, meaning that in a range of approximately
3000 Hz the drive amplitude changes by only 2µm.

Control scheme

As already discussed, using a PLL+AGC controller allows us to change the drive
amplitude and frequency. This can be achieved just by setting a different refer-
ence voltage Vref for the AGC. However, we need to build an outer control loop to
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Figure 9: Control scheme, featuring the nonlinear drive system, the PLL+AGC controller and
a frequency controller. The sense axis natural frequency is assumed to be known.

Figure 10: Responses for the controlled system assuming different sense frequencies. Top:
drive amplitude. Bottom: drive frequency.

change Vref so that the drive amplitude, starting from zero atω0d, increases follow-
ing the backbone up to the sense frequency ωs, ensuring thus frequency matching.
As mentioned earlier in the introduction, a way to accomplish this is to extract ωs
reading the quadrature signal, but other strategies Sung et al., 2009 could be also
adopted (e.g. using a phase detector for the sense signal).

For the purposes of this work, we simulated the controlled system in MATLAB®

Simulink assuming the sense frequency as known. The control scheme is shown
in Fig. 9. Starting from zero amplitude, the frequency controller changes the am-
plitude reference for the AGC+PLL block, which starts driving the system at the
linear resonance. The amplitude reference is then progressively increased and so
are the drive frequency and displacement. The results for fs = 27.5, 29.5, 30.5 kHz
are shown in Fig. 10, where the frequency controller is shown to behave correctly
in this frequency range, although a finer tuning of the gains could improve perfor-
mances.
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Figure 11: Scanning Electron Microscope (SEM) magnification of the non-linear MEMS gy-
roscope prototype (courtesy of STMicroelectronics).

2.4.4 Experimental results

Fig. 11 shows the SEM photo of the prototype, manufactured by STMicroelectronics.
For the experimental validations, we performed both open-loop and closed-loop
tests. In the open-loop configuration, the system has been forced with a forward
frequency sweep (24–32 kHz, RBW=100 Hz, from -15 to 12 dBm) provided by an
Agilent 4395A spectrum analyzer, which is also used for acquisition. Using the same
setup, we measured the sense frequency fs = 27453 Hz. The closed-loop tests have
been carried out instead using an electronic board equipped with PLL and AGC,
and measuring the drive actuation and drive detection voltages and frequency with
a Tektronix TDS 2014 oscilloscope. The reference for the AGC has been manually
increased from the power supply unit.

Fig. 12 shows the experimental results for the two tests, in terms of drive ampli-
tude and frequency. As it can be observed, the maxima of the open-loop frequency
responses (gray lines) occur approximately on the backbone (red line), described by
the points obtained with the closed-loop tests. For the sake of completeness, in Fig.
13 the comparison between experimental and numerical data is shown.

2.4.5 Conclusions

We presented a new MEMS gyroscope concept, sense and drive frequencies are
matched by sweeping the drive frequency along the backbone of the nonlinear sys-
tem. The drive frequency, indeed, depends on the drive amplitude, which can be
adjusted setting a different reference for the AGC. The forcing of the drive is always
kept 90-degree phased with respect to the position of the drive itself, thanks to a
PLL. Finally, an outer frequency controller changes the AGC reference, based on the
error ∆f = fs− fd. The device has been manufactured and some preliminary exper-
imental tests have been showed, which so far have confirmed the numerical models.
Several questions are still open and will need further studies, such as frequency
stability with temperature, the effect of noise, the robustness against external dis-
turbances, and the possible locking due to internal resonances.
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Figure 12: Experimental results: open-loop drive responses (gray, solid) for different excita-
tion levels and closed-loop responses for different AGC reference voltages (red,
dotted).

Figure 13: Comparison between experimental results (red) and numerical prediction (blue).
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3 A N L– P R O M F O R S H A P E D E F E C T S

The content of this chapter can be found in Marconi, Tiso, and Braghin, 2020; as
such, it is a self-contained work which will briefly touch some of the contents al-
ready discussed (more in deep) in the previous chapters: we apologize for possible
repetitions.

abstract We propose a formulation to derive a reduced order model for geo-
metric nonlinearities which is shown to be valid for a set of parametrized defects.
The latter are imposed in terms of the superposition of precomputed perturbations
of the nominal structure’s 3D-mesh, and parametrized by their amplitudes. A re-
duced order model is then built once and for all using these defect shapes and the
nominal model information only. A suitable reduced order basis is introduced as
well in order to effectively represent the influence of the defects on the dynamics of
the structure. In contrast to many nonlinear parametric reduced order models, the
one we propose does not need any previous training of the model in the parameter
space. In this way, prohibitively expensive full order simulations can be avoided
and offline times are greatly reduced. Numerical tests are performed on a MEMS
resonator and a silicon micro-beam to study the effect of shape imperfections on
the dynamic response of the system.

3.1 introduction

The Finite Elements Method (FEM) is arguably one of the most popular analysis tool
in a wide range of scientific and engineering fields. Nowadays many commercial
software offer increasingly elaborate simulation packages which may even include
multi-physics. Such programs usually come along with powerful Computer-Aided
Design (CAD) environments which allow the representation of very complex sys-
tems, a crucial requirement in many disciplines. In mechanical engineering, very
large FE models, counting several hundred thousands or even millions of degrees
of freedom (dofs), are not rare. This fact leads to the necessity of Reduced Order
Models (ROM) as a mean to alleviate computational burden and times.

Reduced Basis methods represent perhaps the most well-know and widespread
way to come up with such ROMs. Loosely speaking, these approaches consist in se-
lecting a suitable and reasonably small collection of vectors (the reduced basis) to ap-
proximate the full solution of the problem, of dimension N, with a M-dimensional
reduced solution, where M is the number of basis vectors and M�N. From this
point onward, to compute a ROM one could follow a number of techniques, which
largely depend on the availability of data (e.g. results coming from previous simu-
lations), on the accessibility to the (FE) model and solvers, on the specific problem
under study and on the physics involved (e.g. mechanics, fluid dynamics, thermal
analysis).

Historically, in structural mechanics, modal analysis Bathe, 2014 has always been
the most popular reduction method for linear dynamic simulations, where Galerkin
projection is used to reduce the high dimensional space of the full structural model
(often referred to as High Fidelity Model, HFM) to a low-dimensional space spanned
by the Vibration Modes (VMs, i.e. the eigenvectors of the linear system, also known
as natural modes) included in the projection basis. Substructuring techniques are
also widely exploited, where the model is divided in multiple subsystem which can

33
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be independently reduced to be later assembled back together Allen et al., 2020;
Craig and Bampton, 1968; Klerk et al., 2008; Rubin, 1975.

In the context of nonlinear dynamics, the problem of running large FE models
is way more severe than in a linear environment. However, even if resorting to
model order reduction is almost mandatory, rigorous tools to do so are still object of
research today. For this reason, in last years a huge effort has been made to develop
nonlinear ROMs for a number of applications, ranging from contacts Balajewicz
et al., 2015; Géradin and Rixen, 2016, gears Blockmans et al., 2015, bolted junctions
Pichler et al., 2017 and flexible multi-body dynamics Wu and Tiso, 2016; Wu, Tiso,
Tatsis, et al., 2019 to geometric nonlinearities Kuether et al., 2015. The latter topic
will be the focus of this work. In spite of the fact that no unique or widely accepted
technique has been established over the others, literature is mature enough to offer
the analyst an ample range of choices to cope with the main challenges of model
order reduction, namely, the selection of a Reduced Order Basis (ROB) and of an
efficient way to compute reduced nonlinear generalized forces. With reference to
the latter problem, three main options are available. A first way to proceed is
to directly compute all the (modal) coupling stiffness coefficients (quadratic and
cubic terms), task that can be accomplished through non-intrusive methods (i.e. not
relying on low-level FE formulations, e.g. ICE - Implicit Condensation and Expansion
method, where coefficients are identified from a set of static analyzes Hollkamp
and Gordon, 2008) or through intrusive methods (i.e. where FE formulation must be
available for manipulation C. Touzé et al., 2014). Either ways, internal forces assume
a polynomial form and can be directly evaluated, so that assembly of internal forces
and tangent stiffness matrix is no longer required. A second option would be to
resort to the so called hyper-reduction techniques, where the full internal force vector
is obtained by computing forces on an extremely small set of elements only. This
usually comes to the expense of relevant offline times, as the full solution is required
to obtain the training vectors needed to identify the aforementioned set of elements.
In a recent work Jain and Tiso, 2018, a method has been proposed to alleviate
this problem by substituting this full nonlinear solution with a linear one, while in
Ryckelynck, 2005 an adaptive a priori approach is described. Last but not least, in
the case of linear elastic material constitutive law, one may recognize that explicitly
writing internal forces in terms of displacements leads to a third order polynomial,
whose coefficients can be pre-computed and stored in second, third and fourth
order tensors. This (intrusive) tensorial approach is the one we will adopt in this work,
and it is crucial for our method. As for the problem of the ROB selection, again,
many choices are possible. An extension of the popular Rayleigh-Ritz approach is
given in Noor and Peterst, 1980, while an extensive review of basis vectors can be
found in Mignolet et al., 2013, where dual modes, a careful selection of VMs and
Proper Orthogonal Decomposition (POD) are discussed. In Amabili, 2013, an ad
hoc recipe is given to find a suitable VM basis in the case of a circular cylincrical
shells, even in presence of moderate imperfections. Here, however, we will make
use Modal Derivatives (MDs) Idelsohn and Cardona, 1985; Sombroek et al., 2018,
since they feature a set of advantages which make them better fit to our purposes,
as it will be detailed later in Section 3.4.

All of the methods discussed above usually refer to a model of a structure whose
geometry is well defined without uncertainty, model that in the remainder we will
address to as the nominal model. In some circumstances however, it may be relevant
to assess how a structure behaves in presence of shape defects. This is the case for
instance of MEMS devices, whose dynamic response is usually strongly affected by
the presence of manufacturing defects Acar and Shkel, 2008; Farokhi et al., 2013.
Stochastic analysis is therefore often required to assess performances, and a Monte
Carlo approach, where simulations are repeated for each and every set of randomly
generated parameters, is usually the way to go. In terms of FE, a shape defect can
be modeled by changing the nominal geometry and remeshing, or directly applying
a transformation to the nodal coordinates of the nominal mesh. After the new mesh
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is obtained, matrices can be built and simulations performed. This procedure, with
its variants, is already expensive for linear FE analysis, and for nonlinear analysis
is simply inconceivable.

Two possible strategies can be used to address this problem. The first would be
to resort to the family of the so called reanalysis techniques, which basically consist
in exploiting a full, known response of a nominal structure to compute an approx-
imate solution for the same structure with some kind of modification in geometry,
mechanical properties or applied loads. Combined Approximations (CA) and Vir-
tual Distortion Method (VDM) are two popular methods out of many available in
literature Kołakowski et al., 2008. To the authors’ knowledge however, though these
methods usually address material nonlinearity both for statics and dynamics Kirsch
et al., 2006, when it comes to geometric nonlinearities they address static problems
only Kirsch, 2003; Zeoli et al., 2005, usually by alleviating the computational effort
during Newton-Raphson equilibrium iterations.

The second option is to resort to to parametric ROMs (PROM). Again, as for ROMs,
theory is well developed for linear analysis. Moment-matching is a popular strategy,
where basically the (n-th) derivatives of the system equations with respect to the
parameters (n-th moments) between the full and reduced models are required to
match Daniel et al., 2004; Fröhlich et al., 2018; van Ophem et al., 2019. An extensive
survey of existing (projection-based) methods for parametric reduced order models
is given in Benner et al., 2015, covering the issues of a proper selection of the ROB
(e.g. mode-matching, POD), of the very construction of the model (e.g. global and
local bases, basis/subspace/model interpolation) and of a correct sampling of the
parameter space.

Parametric model order reduction for nonlinear problems is instead a field still in
constant evolution, but which already displays a wide number of solutions. Most
of these methods are again ROB based. However, while in many circumstances one
can construct a ROB for nonlinear non-parametric ROMs and/or linear parametric
ROMs just by exploiting information about the model, nonlinear PROMs usually
rely upon a number of HFM simulations (or experimental data, if available) for the
construction of the reduced model itself Balajewicz et al., 2015; Benner et al., 2015.
Due to the way they are obtained, these two groups of ROMs are sometimes referred
to as “model-driven” (or “data-free”) and “data-driven”, respectively. Hybrid solu-
tion are also possible, of course. Then, nonlinear PROMs are (mostly) data-driven
methods. The first step usually consists in sampling the parameter space at some lo-
cations (selected randomly, via greedy search algorithm, Latin Hypercube, Smolyak
sparse grid, to name a few). The HFM solutions corresponding to these set of pa-
rameters are computed in a second phase. Following, a ROB is obtained performing
a POD. This latter indeed features some nice properties, such as optimality of the
(spatial) reduction basis and error bound. One can then use the basis obtained in
this way directly Balajewicz et al., 2015 or use interpolation approaches between
the available (trained) full solutions and/or bases in the parameter space to com-
pute a new response for a new (untrained) parameter. Interpolation approaches
are also used to approximate the nonlinear reduced terms Hesthaven and Ubbiali,
2018; Xiao, Fang, Buchan, et al., 2015; Xiao, Fang, Pain, et al., 2017. Interpolation
on Grassman manifold via tangent spaces is another popular option Oulghelou and
Allery, 2018; Zimmermann, 2019, and data-regression techniques are also available.
In Le Guennec et al., 2018 for instance, the CUR method was expanded to handle
parametric dependence by building multidimensional interpolation functions for
car crash simulations. At multiple stages, however, this method requires the ex-
pert’s judgment and a good knowledge of the system under study (this is however
justified, if not even desirable, in an industrial context).

While in X. Q. Wang, O’Hara, et al., 2018; X. Q. Wang, Phlipot, et al., 2018 ROM
were sought to describe localized defects, the present work aim is to develop a non-
linear ROM to represent shape defects “parametrically”, though this word assumes
here a slightly different meaning than in the context depicted above. Rather than
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having a parameter describing a property or a physical dimension of the structure
(e.g. density, length, width), here the parameter will define the amplitude of a shape
representing the defect. More precisely, the defect will be given by the linear super-
position of precomputed shapes, whose amplitudes are regulated by a parameter vector.
Such defect shapes can be of any kind, as long as compatible with the boundary
conditions of the nominal geometry. The final ROM, in tensorial form, will then be
a function of the parameter vector, and will be able to describe any (small enough)
variation of the system from the nominal geometry. Thus, to study a different de-
fected configuration, remeshing will not be required anymore, as the defects will
be embedded in the ROM formulation itself. To obtain such a model, an alternative
expression for strains is required. This formulation was used by Budianksy to inves-
tigate post-buckling behavior of imperfect structures in Koiter analysis Budiansky,
1967; Koiter, 1981. Basically, it relies on the treatment of defects as additional ficti-
tious displacements. The technique proved successful in a number of other works,
as for instance in deriving the natural frequencies of imperfect beams and shells
Jansen, 2008; Wedel-Heinen, 1991 or to develop a ROM for buckling in presence of
imperfections Tiso, 2006.

To summarize, the model-driven method we propose aims to provide a fast and
versatile tool to aid the design phase of structures subject to known shape defects.
Even if many domain mappings are available in literature to parametrize a geome-
try (see for instance Lassila and Rozza, 2010, where free form deformations (FFD)
are used), these shape defects are introduced in the strain formulation in order to
be able to treat them as they were displacements. With respect to most methods al-
ready available in literature, which rely upon the sampling of the parameter space
through multiple and highly expensive full simulations, this PROM requires only
the nominal geometry of the structure and a set of user-defined shapes representing
the defects. Without the need for training, offline costs to compute the model are
therefore heavily cut down, while online computations are extremely fast thanks to
the explicit (tensorial) expression of the nonlinear internal forces. Moreover, in con-
trast to data-based methods that usually are valid only for a particular loading case
(unless the load itself is included as a parameter to train), the obtained ROM can be
run for an arbitrary number of different load cases (within the frequency validity
range). Of course, the aforementioned benefits come at the expenses of intrusiveness
and with the restrictions of small defects and of geometrical nonlinearities, whereas
data-driven solutions have wider applicability. Moreover, it should also be men-
tioned that the presented model does not exhaustively address all the problems
that may arise in connection to the presence of defects. In particular, residual or
locked-in stresses are not taken into account in the present formulation.

The work is organized as follows: Section 3.2 will describe the procedure by which
the defects are introduced in the nominal model as fictitious displacements, leading
to a new form of the internal forces, without the need of reconstructing the full
model for the structure afflicted by the imperfections. In Section 3.3 the new inter-
nal forces are explicitly written in a tensorial fashion (and directly in reduced form),
featuring additional terms which depend on the selected set of defect-shapes. Sec-
tion 3.4 will discuss suitable ROBs for the model at hand and will introduce a new
kind of reduction shapes, representing defect-sensitivities, to enrich the projection
basis. Nomenclature and procedures for the following numerical studies are in-
troduced in Section 3.5. In Section 3.6 the model is validated on a test structure,
representing a MEMS resonator, over a range of selected relevant defects, while in
Section 3.7 a shallow arch is presented as a second example. Finally, in Section 3.8
conclusions are drawn.
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3.2 modified strain formulation
As already introduced in the previous section, the method we present here relies on
the same procedure adopted by Budiansky in Budiansky, 1967. Its core assumption
is to think of the defects as fictitious displacements to impose to the nominal structure
(i.e. without defects). Strains associated to these defects produce non-physical
stresses that need to be removed. We will make use of Budiansky’s notation to
better illustrate the concept.

Suppose that, under loading, a structure displaces by u. Introducing the linear
and quadratic functionals L1 and L2, the strain can be written as

ε(u) = L1(u) +
1

2
L2(u). (3.1)

By considering a fictitious displacement ud representing the defect, the total strain,
as described earlier, is given by

εtotal ≈ ε′ = ε(u + ud) − ε(ud)

= L1(u + ud) +
1

2
L2(u + ud) − L1(ud) −

1

2
L2(ud)

= L1(u) +
1

2
L2(u) + L11(u,ud),

(3.2)

where L11 is a bilinear functional operator defined as

L2(u + ud) = L2(u) + 2L11(u,ud) + L2(ud),

and where ε(ud) is the strain due to defects only. From Eq. (3.2) it can be seen how
an additional bilinear term in the strain expression appeared, depending on the de-
fect. Corresponding internal forces will arise as well, allowing the parametrization
of the model, as it will be later shown in Section 3.3.

In the following, these arguments - until now reported only in general terms,
are applied to the case of tri-dimensional continuum mechanics and finite element
discretization.

3.2.1 Continuum formulation

Let us consider a material point of final coordinates x = {x, y, z} after deformation,
defined as

x = x0 + u + ud, (3.3)

being x0 = {x0, y0, z0} the initial coordinates, u = {u, v, w} the “real” displace-
ment vector and ud = {ud, vd, wd} the vector of small fictitious displacements
corresponding to the defect along the three directions.

According to continuum mechanics [Crisfield, 1991], we can define a strain mea-
sure considering the stretching of a line element undergoing the displacement
u + ud. Differentiating Eq. (3.3) we obtain

x =
∂x
∂x0

dx0 =
∂(x0 + u + ud)

∂x0
dx0 = (I + D + Dd)dx0 = (F + Dd)dx0, (3.4)

where I,D,Dd, F ∈ R3 × 3 are the identity matrix, the (real) displacement-derivative
matrix, the fictitious displacement-derivative matrix and the deformation gradient
respectively. The stretch then is given by

dS = dxTdx − dxT0dx0. (3.5)

In our case however, we have first to remove the stretch associated to the defect only.
Defining

xd = x0 + ud , (3.6)
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and differentiating

dxd =
∂xd
∂x0

dx0 =
∂(x0 + ud)

∂x0
dx0 = (I + Dd)dx0, (3.7)

we can define the stretch due to the defects only as

dSd = dxTddxd − dxT0dx0, (3.8)

so that the total stretch is obtained subtracting Eq. (3.8) from Eq. (3.5) as

dS′ = dxTdx − dxTddxd
= dxT0 (F

TF − I)dx0︸ ︷︷ ︸
nominal structure

+dxT0 (D
T
dD + DTDd)dx0︸ ︷︷ ︸

mixed terms due to defects

= 2(dxT0E2dx0), (3.9)

where the contributions coming from the nominal structure and from the defects
have been highlighted and where E is a modified version of the Green-Lagrange
strain (second order) tensor. In particular, we can write

E2 =
1

2
(DT + D)︸ ︷︷ ︸

El2

+
1

2
DTD︸ ︷︷ ︸
Eq2

+
1

2
DTd D +

1

2
DTDd︸ ︷︷ ︸

Ed2

, (3.10)

being El,q,d2 the linear, quadratic and (bilinear) defect-related strain tensors respec-
tively. Notice how Eq. (3.10) has the same structure predicted by Eq. (3.2). Using
Voigt notation1, the strain components can be written as

Ev = Elv + Eqv + Edv =



εxx
εyy
εzz
γxy
γxz
γyz


=



ux
vy
wz

uy + vx
uz +wx
vz +wy


+



1
2 (u

2
x + v

2
x +w

2
x)

1
2 (u

2
y + v2y +w2y)

1
2 (u

2
z + v

2
z +w

2
z)

uxuy + vxvy +wxwy
uxuz + vxvz +wxwz
uyuz + vyvz +wywz



+



uxud,x + vxvd,x +wxwd,x
uyud,y + vyvd,y +wywd,y
uzud,z + vzvd,z +wzwd,z

ud,xuy + uxud,y + vd,xvy + vxvd,y +wd,xwy +wxwd,y
ud,xuz + uxud,z + vd,xvz + vxvd,z +wd,xwz +wxwd,z
ud,yuz + uyud,z + vd,yvz + vyvd,z +wd,ywz +wywd,z


, (3.11)

where u? = ∂u/∂?0 and ud,? = ∂ud/∂?0 (with ? = x, y, z) are the displacement
derivatives with respect to the nominal initial configuration (similar definitions for v?
vd,? and w? wd,? hold).

The virtual work of internal forces can be written as

Wint =

∫
Vo

STvδEvdVo =

∫
Vo

S : δE2dVo, (3.12)

being STv = {σxx , σyy , σzz , τxy , τxy , τyz} the Piola-Kirchhoff stress vector and S
the corresponding tensor, the symbol “:” denoting double contraction. The integra-
tion volume is denoted by Vo. The virtual strain change is:

δE2 =
1

2
FTδD +

1

2
δDTF +

1

2
δDTδD︸ ︷︷ ︸
h.o.t.

+
1

2
DTd δD +

1

2
δDTDd, (3.13)

where higher order terms can be neglected for infinitesimal virtual displacements
and where δDd = 0, being the defect given.

1 We will use subscript v to denote Voigt notation
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In principle, since we are operating in a Lagrangian environment and we are
defining all quantities with respect to the nominal configuration, the external work
should be modified through push-forward/pull-back operations, depending if one
defined the forces in the nominal or in the deformed configurations respectively.
This way, the changes induced by the defects on locations, areas and/or volumes
onto which the external forces are applied would be correctly addressed. In the
present work though, assuming that the change between the two configurations is
small, these aspects are neglected.

3.2.2 Finite Element Formulation

Let us consider now a structure discretized using 3D-continuum elements and hav-
ing nn nodes per element. We define the displacement derivative vector and the defect
derivative vector θ,θd ∈ R9 as

θ = {ux uy uz vx vy vz wx wy wz}
T = Gue, (3.14)

θd = {ud,x ud,y ud,z vd,x vd,y vd,z wd,x wd,y wd,z}
T = Gued, (3.15)

respectively, where ue ∈ R3nn is the nodal displacement vector of one element,
ued ∈ R3nn is the nodal defect-displacement vector, and G is a matrix collecting the
shape function derivatives with respect to physical coordinates. Recalling Eq. (3.11),
we can define the strain vector as

Ev = Elv + Eqv + Edv = Hθ+
1

2
A(θ)θ+ A(θ)θd

=

(
H +

1

2
A(θ) + A(θd)

)
θ,

(3.16)

where H and A(θ) were defined in Chapter 1. Notice that in Eq. (3.16) the prop-
erty A(θ)θd = A(θd)θ was exploited. For more details, the reader is referred to
literature [Crisfield, 1991].

From Eq. (3.16), virtual strain variation writes

δEv = (H + A(θ) + A(θd))Gδue = Bδue, (3.17)

where B is the strain-displacement matrix and, again, δθd = 0. Recalling Eq. (3.12),
the internal virtual work over the element’s volume Veo writes

Wint = (δue)T
∫
Veo

BTSvdVeo = δpT fint (3.18)

while the internal force vector is given by

fint =
∫
Veo

BTSvdVeo =

∫
Veo

BTCEvdVeo, (3.19)

where Hook’s law Sv = CEv has been introduced, being C the elastic constitutive
matrix. From here on, one can take again the variation of internal forces and write
an expression for the tangent stiffness matrix, which will include some additional
terms generated by the defect.

3.3 tensorial approach
In this section we derive the (element-level) tensors required to explicitly write the
internal forces (and consequently the tangent stiffness matrix). Following Eq. (3.19),
writing each term explicitly yields

fint =
∫
Veo

GT (H + A + Ad)
T C

(
H +

1

2
A + Ad

)
ue dVeo, (3.20)
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where Ad = A(θd). Equation (3.20) can be split into the following contributions

f(n,1) = GT (HTCH)Gue = K2 ue, (3.21a)

f(n,2) = GT
(
1

2
HTCA + ATCH

)
Gue, (3.21b)

f(n,3) =
1

2
GT (ATCA)Gue, (3.21c)

f(d,2) = GT (HTCAd + ATd CH)Gue, (3.21d)

f(d,3) = GT
(

ATCAd +
1

2
ATd CA

)
Gue + GT (ATd CAd)Gue, (3.21e)

where, for convenience, integration over volume is implicitly assumed and where
the superscript (?,i) denotes terms associated to the nominal structure only (? = n)
or to the structure with defects (? = d) of order i in ue and/or ued. The linear
stiffness term is trivially given by K2 .

It is at this point convenient to re-express matrix A (Ad) as

A = L ·θ = L · (Gue), (3.22)

being L ∈ R6×9×9 a constant localization matrix, whose expression is given in
Chapter 1.

Remark 1 (notation). In the following, we’ll adopt the notation described in Jain,
2015, which is compatible with the MATLAB® Tensor Toolbox Bader, Kolda, et al.,
2015 used in this work. In short, the notation A · B will always denote the contrac-
tion of the last dimension of A over the first dimension of B. Where this is not
the case, it will be explicitly indicated as A ·ij B, meaning contraction of A’s ith

dimension over B’s jth dimension. For matrices with more than two dimensions,
transpose operation will be explicitly denoted as well. For instance, AT(i↔j) means
that dimension i is switched with dimension j. When Einstein’s notation is used,
we assume summation over the (repeated) lowercase indexes, while uppercase indexes
are not to be summed over (e.g. CIJ = AIiBiJ).

3.3.1 Quadratic terms

Being the expression of the linear terms of equation (3.20) trivial, we start here
by directly considering the quadratic ones. Upon a closer inspection of Equations
(3.21)b-d, an underlying common structure can be recognized. For this reason, it
will be sufficient to study the term

GT (HTCA)Gue → (GTHTC)Ii(LijkGklu
e
l )Gjmu

e
m = fI, (3.23)

By defining the element third-order tensor K̂3 as2

K̂3 Ilmu
e
lu
e
m = fI, (3.24)

we get to

K̂3 IJK = (GTHTC)Ii(LijkGkJ)GjK, (3.25a)

K̂3 = (GTHTC) · (L ·G) ·21 G. (3.25b)

Notice that K̂3 ijk = K̂3 ikj. Finally, using K̂3 , we can define

K3 =
1

2
K̂3 + K̂3

T(1↔3), (3.26)

K3d = K̂3 + K̂3
T(1↔3). (3.27)

2 To avoid confusion with indexes, subscripts denoting tensors’ names will be put on the left side. More-
over, as full order tensors will never be used, we drop the superscript e for the tensors.
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Recalling Eqs (3.21)b-d, it can be easily shown that the following expression hold

f(n,2) = ( K3 · ue)ue, (3.28a)

f(d,2) = ( K3d · ue)ued. (3.28b)

Notice that all the computations here have been done only considering the terms in
ue, but we would have obtained the same results even by using Ad instead of A in
Eq. (3.23).

3.3.2 Cubic terms

As previously done for quadratic terms, even for cubic forces a core term can be
isolated:

fI = K̂4 Ilqru
e,I
l ue,IIq uer

= GTIi(LijkGklu
e,I
l )T(1↔2)Cjm(LmnpGpqu

e,II
q )Gnru

e
r ,

(3.29)

which defines:

K̂4 IJKL = GTIi(LijkGkJ)
T(1↔2)Cjm(LmnpGpK)GnL, (3.30a)

K̂4 = GT (L ·G)T(1↔2) ·21 C · (L ·G) ·21 G. (3.30b)

Notice that, according to this definition, internal forces are obtained following the
sequence of products (( K̂4 · p) · ue,II)ue,I. Recalling Eqs. (3.21)c-e, opportunely
choosing ue,I/II as ue or ued as required and using K̂4 , the following fourth-order
tensors are defined:

K4 =
1

2
K̂4 , (3.31)

K4d = K̂4
T(2↔3) +

1

2
K̂4 , (3.32)

K4dd = K̂4 . (3.33)

Thus, as it can be easily verified, internal forces write

f(n,3) = (( K4 · ue) · ue)ue, (3.34)

f(d,3) = (( K4d · ue) · ue)ued + (( K4dd · ue) · ued)u
e
d. (3.35)

Finally, notice again that the tensors obtained in this and in previous section are
defined for a single element. In theory, these could be assembled as usual into the
global stiffness tensors. However, this is impossible in practice due to memory
limitations. For this reason, Galerkin projection is applied at element level during
the assembly procedure so that the global reduced tensors are directly obtained.

3.3.3 Tensor reduction

As shown previously, the quadratic and cubic terms of the internal forces write

f(2) = f(n,2) + f(d,2)

= ( K3 · ue)ue + ( K3d · ue)ued, (3.36a)

f(3) = f(n,3) + f(d,3)

= (( K4 · ue) · ue)ue + (( K4d · ue) · ue)ued + (( K4dd · ue) · ued)u
e
d. (3.36b)

Assume now to have a suitable reduction basis Ve for ue and assume ued to be a
linear combination of a number of predefined defect shapes, collected by columns
in matrix Ue. Then, we can write

ue ≈ Veη, (3.37a)

ued = Ueξ, (3.37b)
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where Ve ∈ Rne×m, Ue ∈ Rne×md , η ∈ Rm is the reduced coordinates vector, and
ξ ∈ Rmd is the vector of defect-shape amplitudes, being ne, m, md the number of
one element dofs, modes in the basis, and defect-shapes, respectively. Substituting
equations (3.37) into (3.36), we can write the following reduced tensors, here written
in tensor and Einstein notations:

Q3 = (((Ve)T · K3 ) ·Ve) ·21 Ve

Q3d = (((Ve)T · K3d ) ·Ve) ·21 Ue

Q4 = ((((Ve)T · K4 ) ·Ve) ·31 Ve) ·21 Ve

Q4d = ((((Ve)T · K4d ) ·Ve) ·31 Ve) ·21 Ue

Q4dd = ((((Ve)T · K4dd ) ·Ve) ·31 Ue) ·21 Ue

(3.38)

or

Q3 IJK = (VeiI) K3 ijk(V
e
kJV

e
jK)

Q3d IJK = (VeiI) K3d ijk(V
e
kJU

e
jK)

Q4 IJKL = (VeiI) K4 ijkl(V
e
lJV

e
kKV

e
jL)

Q4d IJKL = (VeiI) K4d ijkl(V
e
lJV

e
kKU

e
jL)

Q4dd IJKL = (VeiI) K4dd ijkl(V
e
lJU

e
kKU

e
jL)

where Q3 ∈ Rm×m×m, Q3d ∈ Rm×m×md , Q4 ∈ Rm×m×m×m, Q4d ∈ Rm×m×m×md

and Q4dd ∈ Rm×m×md×md . The reduced internal force vectors for quadratic and
cubic terms write

f̃(2) = ( Q3 ·η)η+ ( Q3d · ξ)η, (3.39a)

f̃(3) = (( Q4 ·η) ·η)η+ (( Q4d · ξ) ·η)η+ (( Q4dd · ξ) · ξ)η. (3.39b)

Finally, notice that

i. once V and U are selected and tensors from Eqs. (3.38) are computed, defects
can be toggled on/off and leveraged just by changing ξ, the parameter-vector
of defect shapes amplitudes

ii. the terms ( Q3d · ξ), (( Q4dd · ξ) · ξ) and ( Q4d · ξ) can be precomputed before
each analysis and added to Q2 and Q3 , respectively; thus, online computa-
tions will involve only three tensors rather than five.

iii. generally speaking, the formulae derived in this paragraph are valid either
referred to the global structure or to the single element. As mentioned earlier
though, projection should be carried out at element level (Ve is the element-
partition of V ∈ Rn).

iv. the tensorial formulation arises from linear elastic constitutive law and Total
Lagrangian formulation. Should other kinematic models (e.g. corotational) be
adopted, the polynomial formulation should be retrieved (e.g. using Taylor
expansion) before applying the presented method.

3.4 enhanced basis for defects
To compute the reduced tensors, one needs to specify first (a) the defect-shapes
in U and (b) the reduced order basis (ROB) V. The choice of the latter is critical,
since the most expensive step of the present method corresponds to the offline
computation of the tensors which, as already highlighted, can only be obtained
directly in reduced form. An a priori selection of the ROB is then crucial, as most
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(if not all) of the advantages provided by the present approach would be lost if one
had to choose a new basis and compute the reduced tensors for every and each
different choice of the parameter-vector ξ.

As already mentioned in the introduction, the choice of a projection basis for a
parametric model can be done as proposed by a number of different parametric
model order reduction techniques (e.g. moment-matching, POD). However, the
particular form of the internal forces (which follows from the strain formulation,
Eq. (3.11)) allows for another option, that will be now discussed.

We first tested a ROB with vibration modes (VMs) and modal derivatives (MDs)
in their static form Jain, Tiso, Rutzmoser, et al., 2017, computed on the nominal
structure. We here briefly recall how to compute MDs with reference to continuum
elements. MDs are defined as

θij ,
∂φi
∂ηj

= −K|−1eq
∂K(φjηj)

∂ηj

∣∣∣∣
eq

φi, (3.40)

where φj is the j-th vibration mode, ηj its modal amplitude and K is the tangent
stiffness matrix. The tangent stiffness matrix evaluated for a displacement uF =

φjηj writes (at element level):

Ke =
∂fe

∂ue
=

∫
Vo

GT
[
HTCH + HTCAη + 2ATηCH + 3ATηCAη

]
G dVo, (3.41)

where Aη = A(Gφej ηj). Taking the derivative with respect to the modal coordinate
ηj and evaluating the resulting expression at equilibrium (i.e. for ηj = 0) leads to

∂Ke(φej ηj)
∂ηj

∣∣∣∣
eq

=

∫
Vo

GT
[
HTCAφ + 2ATφCH

]
G dVo, (3.42)

where Aφ = A(Gφej ). This last equation defines the derivative of the tangent
stiffness matrix with respect to the j-th modal coordinate at element level, and can be
assembled for the whole system following the usual FE procedures; then Eq. (3.40)
can be evaluated.

With VMs and MDs only, however, the basis proves to be sufficient to represent a
subclass of defects only. In particular it yields accurate results only when the defect-
base U corresponds to a subset of VMs. The reason why this happens is likely to
reside in the fact that MDs are included in the ROB, and MDs represent de facto
modal sensitivities.

On the stream of these considerations, the idea is then to enrich the ROB adding
defect sensitivities (DSs). A similar approach was used in Hay et al., 2010, where
POD-modes sensitivities were added to the ROB to model the flow past a square
cylinder, with the incidence angle as a geometric parameter. The method showed
better accuracy with respect to other traditional POD-based approaches. DSs are
obtained following the same procedure to compute MDs. Consider the eigenvalue
problem evaluated at equilibrium (i.e. for uF = 0):(

K|eq −ω2iM
)
φi = 0, (3.43)

being ωi and φi ∈ Rn the i-th eigenfrequency and eigenvector respectively. More-
over, recalling Eqs. (3.20), (3.21) and (3.36) the tangent stiffness matrix is a function
of both displacements and defects. Taking the derivative of the eigenvalue problem
with respect to the j-th amplitude parameter ξj and assuming ξi = 0 for i 6= j (so
that ud = Ujξj), we write

(
K|eq −ω2i |eqM

) ∂φi
∂ξj

∣∣∣∣
eq

+

(
∂K
∂ξj

∣∣∣∣
eq

−
∂ω2i
∂ξj

∣∣∣∣
eq

M

)
φi|eq = 0. (3.44)

Notice that M is the mass matrix referred to the nominal system, and it is assumed
not to vary significantly in presence of defects (its derivatives w.r.t. ξj are therefore



44 a nl–prom for shape defects

zero). Equation (3.44) cannot directly be solved for ∂φi/∂ξj since the coefficient
matrix is singular by definition. Though workarounds can be found in literature,
here we prefer to neglect mass terms as it’s done for static MDs, allowing us to
define DSs as

Ξij ,
∂φi
∂ξj

∣∣∣∣
eq

= −K|−1eq
∂K
∂ξj

∣∣∣∣
eq

φi, (3.45)

which represent the sensitivity of mode i with respect to defect j. In Eq. (3.45),
K = K(uF,uFd) must be evaluated for uF = 0 (equilibrium) and uFd = Ujξj, as well
as its derivative ∂K/∂ξj. Strictly speaking, however, we have that the latter depends
on ξj. This is not desirable, as it would make the ROB V depend on the parameter
amplitude. We can make then the further assumption to take the stiffness matrix
derivative around the nominal configuration, that is for ξj = 0. This way we have,
for the single element,

∂Ke

∂ξj

∣∣∣∣
eq

=
∂Ke(ue = 0,ued = Uej ξj)

∂ξj

= GT
(

HTCAd + ATd CH + 2ξjATd CAd

)
G

= GT
(

HTCAd + ATd CH
)

G,

(3.46)

where Uej is the element subset of the j-th column of U and where, in this case,
Ad = A(GUej ). Finally, (∂K/∂ξj)|eq is formed through standard finite element as-
sembly.

In conclusion, the ROB will be composed of a set of mΦ VMs φi, collected in
matrix Φ, a set of mΦ(mΦ + 1)/2 (S)MDs θij, collected in matrix Θ, and a set of
mdmΦ DSs Ξij, collected in matrix Υ, so that

V = [Φ, Θ, Υ] , (3.47)

for a total of (3/2+mΦ/2+md)mΦ basis vectors. As already mentioned, in the
particular case in which defects are chosen from the set of VMs, and these VMs with
associated MDs are included in the basis, then one could avoid to compute their re-
spective DSs, reducing the size of the ROB. However, since rigorously θij 6= Ξij,
this would be just an approximation. Refer to 3.9 for more details.

Remark 2 (on basis selection). Generally speaking, not all the MDs and DSs in the
projection basis will be strictly required to obtain an accurate ROM. Techniques
to select a subset of MDs are already available in literature Jain, Tiso, Rutzmoser,
et al., 2017; Tiso, 2011 and one could think of applying similar strategies even to
DSs. Though an interesting topic, as V’s dimension strongly affects both offline and
online computational times, this is out of the scope of the present work. Therefore,
it will not be treated here.

3.5 method

3.5.1 Model types

We test the proposed method on a FE model of a realistic system. For each selected
combination of defects, simulations are performed for four different models. First,
the solution is computed for the high fidelity model including defects (HFM-d) and
its “classic” reduced counterpart (ROM-d), that is without the new strain definition
and without parametrization. By this we mean that the reduced order basis V is
obtained form the mesh that directly incorporates defects. As such, DDs are not
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Table 2: Acronyms for the different models considered in the numerical study.

MODEL Description

HFM-n high fidelity model of the nominal structure (i.e. without defects)

HFM-d high fidelity model of the structure with defects

ROM-n “classic” reduced order model (with VMs and MDs) in tensorial
form, computed from the HFM-n

ROM-d “classic” reduced order model (with VMs and MDs) in tensorial
form, computed from the HFM-d

DP-ROM defect-parametric ROM (with VMs, MDs and DSs) in tensorial
form, computed from HFM-n and a given set of defects

Figure 14: Work-flow map. From the inputs (HFM-n, U and ξ), ROM-n, HFM-d, ROM-d
and DP-ROM are computed. Close to each box, it is shown how many times each
block must be evaluated (Nξ is the number of defect combinations). It is also
shown (in green) where the modified strain formulation comes into play.

needed. Secondly, the Defect-Parametric Reduced Order Model (DP-ROM) will be
run. This refers to the ROM discussed in this work. Finally, the “classic” ROM-n
computed from the high fidelity nominal model (HFM-n) is simulated to highlight
the fact that defects are significantly changing the response from the nominal case.
A summary of the model types is given in Table 2.

3.5.2 Procedure

Figure 14 synthesizes the sequence of operations followed for the numerical simu-
lations and, at the same time, attempts to put in evidence the contribution of each
of the elements individually discussed in the previous sections (as, for instance, the
strain formulation and the defects). As common inputs, the user must first specify
the nominal geometry and a set of (admissible) displacement fields to model defects
(namely, U). ROM-n can be directly computed from HFM-n only. Once the ampli-
tude of the defects (ξ) is defined, HFM-d is instead obtained by shifting HFM-n’s
node positions by a displacement defined by uFd = Uξ. ROM-d follows. Finally, to
construct DP-ROM, we compute VMs and MDs using HFM-n (as done for ROM-n)
and DSs are obtained using available information about defects. Tensors are then
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Figure 15: MEMS resonator model and mesh, xy-plane view (top) and xz-plane view (bot-
tom). Insert 1 shows an anchor encastered to the ground, while insert 2 is a
close-up on the beam’s mesh. The structure is meshed in ABAQUS using free
quadratic tetrahedra (TET10), counting 17,158 elements, 30,616 nodes and 91,212

dofs.

Figure 16: Schematic representation of (a) first vibration mode φ1, (b) second vibration
mode φ2, (c) wall angle defect, (d) section A-A of the left beams (x < 0, see
Fig. 15) at half length for modal derivative θ13 (symmetric about y-axis), where
the color-map shows y-displacement. For θ13 mass does not move, thus is not
shown here.

computed exploiting the modified strain formulation. At this point one can select
ξ and optionally precompute the quadratic and cubic tensor deviations due to de-
fects (see Section 3.3.3). Notice that HFM-d and ROM-d have to be computed for
each combination of defects, while ROM-n (obviously) and DP-ROM are computed
once and for all, the latter needing just the aforementioned (inexpensive) precompu-
tation. Once the models are ready, time integration is performed in Matlab using
Newmark’s scheme with full Newton-Raphson iterations. Rayleigh damping is in-
troduced selecting a Q factor of 10,000 in correspondence of the first and second
eigenfrequencies. Errors between HFM-d and DP-ROM are then evaluated.

3.6 numerical tests - i

3.6.1 Micromechanical resonator FE-model

description DP-ROM is tested on a simple MEMS resonator, shown in Fig. 15

(nominal structure). Despite not representing any particular real device, such a sys-
tem is a common element in many MEMS sensors (e.g. accelerometers, gyroscopes),
whose dynamic behavior is strongly influenced by the presence of manufacturing
defects Izadi et al., 2018; Weinberg and Kourepenis, 2006. The system is composed
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Figure 17: Defect Sensitivities for the first VMφ1 with respect to defect U1, U2 and U3. Col-
ormap shows the out-of-plane displacement. Notice that although Ξ11 looks very
similar to Ξ13 if considering the mass only, in the first case the beams undergo
torsion, while in the latter pure bending.

by a 400 × 400 × 20µm mass suspended by four 200 × 5 × 20µm slender beams,
which are connected to the mass at one end and to an anchor at the other end. An-
chors are 25× 25× 25µm parallelepipeds, encastered at the base, keeping the mass
suspended over the ground and free to oscillate. Mesh details are given in Fig. 15

as well. The material is silicon (E = 148 GPa, ρ = 2330 kg
m3

).

defects Out of the many possible defects that could be imposed to the structure,
we selected three defect shapes that produce, even when small (see below), appre-
ciable differences on the dynamic response with respect to the nominal device. The
first shape-defect (U1) is the second eigenmode φ2, which corresponds to a mass
motion along z-axis; the second one (U2) is given by an inclination of the walls of
the structure parallel to the xz-plane by a wall angle αx, that is

vd = tan(αx)z, (3.48)

being z the elevation of the nodes from ground, and where ud = wd = 0; the third
one (U3) is the static MD θ13, which basically consists in a counter-torsion of the
four beams while the mass stays still. The defect-shapes are shown in Fig. 16. The
defect-basis is then

U = [U1 , U2 , U3] = [φ2 , Uαx , θ13] , (3.49)

and the corresponding amplitude vector is

ξ = [ξ1 , ξ2 , ξ3]T . (3.50)

The vectors in U are normalized such that a value ξi = 1 corresponds to a maxi-
mum displacement of 1µm for U1 and U3, and to an angle αx = 1◦ for U2. As it
will be shown later, all these defects introduce a coupling between (in-plane) drive
and out-of-plane directions.

load case A nodal mono-harmonic load is placed in the middle of the lateral
face of the mass, aligned with y-axis, with frequency equal to the first resonance
ω1 of the HFM-d. This is the typical operative condition of a MEMS resonator, which
are kept at resonance with a Phase Locked Loop (PLL) and Amplitude Gain Control
(AGC). Notice that, for each simulation, the natural frequencies of the system may
slightly change depending on the imposed defects: for each set of defects then, the
HFM-d’s first eigenfrequency is used for HFM-d, ROM-d and DP-ROM (but not for
ROM-n, which is always driven at the nominal natural frequency ω1n). Figure 16a
schematically shows the actuation mode φ1 (drive mode).
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Figure 18: Global Relative Errors (GRE) for the three ROMs. On the vertical axis the pair
(ξ2, ξ3) is shown. For each pair, the three bars indicate a different value for ξ1.
The vertical lines mark the maximum errors for the DP-ROM (solid, red), ROM-d
(dash-dotted, blue) and ROM-n (dashed, green).

reduction basis For every reduced model, the ROB is composed by the first
(24.2 kHz)3, second (79.6 kHz) and third vibration modes (139.5 kHz) with their
respective MDs (for a total of 9 vectors). In the case of the DP-ROM, also defect
sensitivities are included, for a total of 9 DSs (derivatives of the 3 VMs with respect
to each defect-shape). Notice that for the present study we include in the basis
even those DSs relative to defects coinciding with VMs (namely, U1). This is done
in order to avoid a special treatment for this case, keeping the analysis as general
as possible. Again, hints on how neglecting VM-related DSs would change the
analysis are given in 3.9. Figure 17 shows the DSs related to the drive mode φ1.

3.6.2 Error evaluation

To assess the accuracy of the method, we adopt the global relative error (GRE) as
an error indicator Jain, Tiso, Rutzmoser, et al., 2017, defined as

GREt =

√∑Nt
i=1(u

F
i − ûFi )T (uFi − ûFi )√∑Nt
i=1(u

F
i )
TuFi

× 100, (3.51)

where uFi = uF(ti) is the displacement vector for the i-th time step of the reference
solution (HFM-d) and where ûFi is the corresponding approximated solution.

Equation (3.51) considers the totality of displacements, disregarding the fact that
the order of magnitude of the response along the three directions is different. It is
then useful to define the GRE separately for the out-of-plane direction as:

GREz =

√∑Nt
i=1(wi − ŵi)T (wi − ŵi)√∑Nt

i=1wTi wi
× 100, (3.52)

where w is the z-displacement vector. In many MEMS applications, displacements
due to unwanted coupling between axes (as it is here the case between drive and z-

3 Values referred to HFM-n
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Figure 19: Time domain response at the force application node along the three directions.
Left: results for the nominal configuration (ξ1 = ξ2 = ξ3 = 0) for all the models
plus a full model run on ABAQUS. Right: results for the ξ1 = ξ2 = ξ3 = 1 case.
T0 is the period of the harmonic driving force.

direction) superimpose to a desired measurement signal. Their correct estimation is
therefore critical. Figure 18 shows the errors considering all the displacements (top)
and only w (bottom). In both cases, we can see that the ROM-d and DP-ROM yield
approximately the same errors. Instead, looking at the performances of ROM-n, it
can be easily seen that along the out-of-plane direction errors become immediately
unacceptable, as the defects lead to a coupling between drive and z-direction which
is not present in the nominal case. It should also be noted that the displacements in
z are much smaller than the ones along y (drive direction), therefore y-errors tend to
“hide” z-errors in GREt. Figure 19 shows the time response at the force application
node in the three directions in the nominal case and in the ξ1 = ξ2 = ξ3 = 1 case.
To validate our in-house Matlab code, results were compared with ABAQUS ones
for the nominal case, showing agreement. Small discrepancies in the x-response
are attributed to possible differences between our Matlab code and ABAQUS in the
FE formulation, integration procedures, solvers and convergence tolerances (notice
that due to the symmetry of the nominal problem the displacement u, which is in
the order of 10−5, should be rigorously zero at the forcing location; therefore u can
be imputed to numerical reasons and mesh asymmetries only). Notice that, while
the response along z changes significantly from case to case, the x and y responses
are barely affected by the presence of the defects.

Role of the reduction basis

We briefly want to stress the importance of using the correct reduction basis. Given
the assumption of small defects, one may be driven to think that it might actually
be enough to use the nominal reduction basis Vnom (i.e. the basis comprising VMs
and MDs only, computed on the nominal geometry) not only for ROM-n, but also
for ROM-d and DP-ROM. To dispel this doubt and further support the arguments
already discussed in Section 3.4, we ran a numerical test for the MEMS resonator
model (ξ1 = ξ2 = ξ3 = 1 case) when using the same nominal ROB used for ROM-n,
that is Vnom = [Φ, Θ]. Again, 3 VMs and their corresponding 6 MDs are included
in the basis. Eigenfrequencies, time responses and GREs are shown in Fig. 20. As it
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Figure 20: Simulations for ROM-d and DP-ROM when using the same (nominal) reduction
basis as ROM-n. The two model are marked by a * to denote the differences with
respect to the definitions given in Table 2. The testing conditions are the same
used for Fig. 19 (right). In particular, we have again ξ1 = ξ2 = ξ3 = 1. (a) First
eigenfrequencies for the different models, (b) time domain responses, (c) errors in
terms of GRE (total and for individual axes). Plot is split to increase visibility.

can be easily observed, the two ROMs yield now completely different results, with
a drastic overestimation of the first eigenfrequency. It is thus evident how informa-
tion about the defects must be present both in the model to be reduced and in the
reduction basis itself.

Remark 3 (ROM-d vs DP-ROM). Looking at Fig. 20, one can also see that even
when using the same reduction basis, ROM-d and DP-ROM lead to slightly differ-
ent results (regardless of how wrong they might be with respect to HFM-d). This
follows from the fact that ROM-d is computed from HFM-d whereas DP-ROM from
HFM-n, with the modified strain formulation to take defects into account. As such,
the latter is just an approximation of the former. Small discrepancies are therefore
expected. The only case in which ROM-d and DP-ROM would coincide would be
the one where ξ = 0 and VROM−d = VDP−ROM. The first condition would make
VMs (and MDs) of the nominal and of the defected models coincide, while the
second would also imply that DSs are either added to VROM−d or removed from
VDP−ROM.

3.6.3 Computational times

In order to assess the computational savings provided by the proposed method, we
define three speed-up coefficients as

SP1 =
tfull
tonline

, (3.53a)

SP2 =
tfull

tonline + toffline
, (3.53b)

SP3 =
tfullNon

tonlineNon + tofflineNoff
, (3.53c)

where tfull is the (online) computational time for the full analysis of HFM-d,
tonline and toffline are the ROMs’ online and offline times respectively, Non is
the number of online runs and Noff is the number of times a ROM has been com-
puted. Notice that toffline accounts for both the times for the ROB and tensors
computation.
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Table 3: Computational times (in seconds) and speed-ups (average values). Speed-ups are
computed using ABAQUS’ online time (average value over 10 cluster runs) as refer-
ence. All the simulations (both on ABAQUS and Matlab) were run on ETH Zürich
Euler cluster with 27 CPUs (4GB RAM each). The times marked by * are the ones
that are affected by parallel computing. The small difference in ROM-d and DP-
ROM online times is due to the number of reduced coordinates (9 and 18, respec-
tively).

offline
(basis)

offline
(tensors)

online Noff Non
total time
(27 cases)

total time
(hh:mm:ss)

SP1
(online)

SP2 (on+off,
1 case)

SP3 (on+off,
27 cases)

HFM-n
(Abaqus)

- - 2,399.7* 0 27 64,792 17:59:52 - - -

ROM-d 18.2 112.1* 5.2 27 27 3,659 1:00:58 461.5 17.7 17.7
DP-ROM 35.9 174.5* 5.8 1 27 367 0:06:07 413.7 11.1 176.5

All the simulations have been carried out on the Euler cluster of ETH Zürich
(with 27 CPUs) in Matlab R2017b, using in-house developed codes. This was done
mainly in order to make a fair assessment of the approximation errors discussed
in the previous section by avoiding unwanted/unforeseen error sources. However,
it would be unfair to compute speed-ups referring to the full simulation carried
out in this environment, for it would be much slower with respect to a state-of-art
commercial software. For this reason, speed-ups reported in Table 3 are computed
with reference to a full (nominal) simulation in ABAQUS/CAE 6.14-1 (same model
HFM-n, load and fixed time steps). All computational times are shown in Table 3

as well.
As it can be easily observed, online speed-ups (SP1) are very high, as it is usually

the case for all tensorial approaches and other reduction techniques. To make a
more comprehensive performance assessment, it is better to look at SP2, which
includes the offline costs. It is however to stress the fact that, if the simulation time-
span is large enough, toffline may become negligible compared to tonline so that
SP2→ SP1 for tonline → +∞. This holds true for SP3 as well. However, if the same
ROM can be exploited more than once, be it for different load cases or for different
parameter sets - as in the case of the DP-ROM, we have that SP3 → SP1 even for
Non → +∞. In the present case, for a moderatly short time-span and relatively
low number of simulations, we have SP3 = 175.5, almost half of the theoretical
maximum limit SP1 = 413.7. Following these considerations, we can confidently
say that the DP-ROM, if fully exploited as in the intention of the authors, will have
SP3 ≈ SP1. As already stated in the introduction, a Monte-Carlo analysis would
make the perfect fit with this method, and one could think to couple it even with
uncertainty quantification methods Pivovarov D, 2019.

3.6.4 About Scalability

Before concluding this section, we would like to make a few comments on how
computational times are expected to change with the size of the full model and on
the tensors computation.

On the one hand, considering online times, it is known that HFM times grow more
than linearly with the number of dofs of the structure. In contrast, the original size
of the model is irrelevant for ROMs, and online speed is determined by the size of
the ROB. Even in this case however, computational times grow more than linearly
with the basis size. On the other hand, ROM offline costs grow almost linearly with
the number of elements thanks to element-level projection assembly. Moreover, the
number of dofs of the element (30 for the 10-nodes tetrahedra TET10 in our test case)
greatly affects performances.

Additionally, to give a rough idea of the influence of the basis dimension and
of parallel computing, the tensor computational speed (in terms of elements per
second) is shown in Fig. 21. These results were obtained in Matlab R2017a on a
local machine equipped with 2 Intel(R) Xeon(R) CPUs (E5-268W 0) @ 3.10 GHz and
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Figure 21: Tensor computational speed as a function of the number of parallel Matlab work-
ers. N is the number of vectors in the reduced order basis. Data are referred to
the MEMS model described in this work, notice however that these values remain
almost unchanged when coarser or finer meshes were considered.

64 GB RAM. As it is often the case with parallel computing, speed grows less than
linearly with the number of workers. The impact of ROB’s size is not negligible,
but very weak if compared to other parameters’ one. Finally, notice once more
that Matlab was used to compute tensors. Thus, a Fortran or C++ dedicated routine
could greatly improve performances, reducing offline times and making the method
even more attractive.

3.7 numerical tests - ii
In the previous section, a structure subject to multiple defects was studied with the
aim to assess the accuracy and the speed of the proposed method. In that setup
the focus was on correctly describing cross-coupling effects. These, however, would
likely manifest in a linear setting as well (even if, of course, in a different manner).
In this example, instead, we consider the simple case of a beam, clamped at both
ends, where the defect will deform the nominal structure into a shallow arch, with
the purpose to study a case in which the presence of the defect drastically changes
the nonlinear dynamics of the structure. The silicon beam has the same dimension
of the suspension beams of the previous test case, with length Lb along x, width wb
along y and thickness tb along z (see Fig. 15). We used a mesh with 320 hexahedral
quadratic elements (HEX20), for a total of 2117 nodes and 6129 dofs. The defect
shape is given by

vd(x, ξ) = ξ cos
(
π

Lb
x

)
, x ∈ [−Lb/2 , Lb/2], (3.54)

where ξ is the amplitude parameter (ud = wd = 0). The load, fext = step(t),
is placed at half length on one edge of the beam and is aligned with the positive
y-axis. For ROM-n and ROM-d, the reduction basis contains the first 5 VMs and
15 MDs, while for DP-ROM it includes even 5 DSs. Figure 22 shows the errors
in the forcing direction and the time responses at the excitation node in the two
worst cases. As it can be seen, the GRE is almost always less than 10% and the
hardening/softening behavior of the shallow arch is nicely captured by the DP-
ROM, even for very large defects (ξ = ±100%wb). Higher order harmonics in the
full solution, of course, cannot be captured by the tested ROMs due to truncation of
the basis. In analogy with what we have done in the previous test case, we reported
even the responses and the errors we would obtain if using the nominal model with
no defects. Notice that the kink in ROM-n’s GREy is purely coincidental (for those
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Figure 22: Shallow-arch defect. (a) Model mesh, (b) error along y-axis (GREy, in logarithmic
scale), for ξ ∈ [−5,+5], step-load time domain responses in y-direction in the worst
cases for positive (c) and negative (d) values of ξ. T0 is the period corresponding
to the first eigenfrequency of the nominal structure; wb = 5µm is the beam
thickness in y-direction. HFM-d linear responses (gray dotted lines) are shown in
(c) and (d) to put in evidence the hardening/softening behaviors.

particular defect amplitudes and load level, the softening behavior of the structure
brings the nominal response close to the HFM-d’s one).

3.8 conclusions

In this work we proposed a parametric ROM to describe shape defects, defined in
terms of a shifted nodal position of a tri-dimensional mesh with respect to the nomi-
nal geometry. These “defect shapes" are embedded in the strain formulation, which
allows for the parametrization of the model. Indeed, using tensorial reduction, we
showed how these defect shapes can be directly included in a ROM which can be
computed once and for all and which yields accurate results in a neighbourhood
of the nominal configuration for any defect shape. We also discussed the need to en-
hance the projection basis with defect sensitivities (DSs), which can be computed
using the modified strain formulation. Incidentally, DSs could be of interest even in
the context of shape optimization, since they can be analytically derived and do not
need remeshing. In contrast to many strategies employed in nonlinear parametric
model order reduction, no training of the model is needed, so that the offline costs
reduce to the computation of the reduced order tensors only. Two numerical exam-
ples were given. First, a MEMS resonator was studied under operative conditions,
where the presence of defect shapes introduced a not negligible coupling between
axes. Error and computational time analyses showed that consistent speed-ups can
be achieved with minimal loss of accuracy. Finally, a shallow-arch micro-beam was
studied for different heights of the arch under step loading excitation, showing that
the hardening/softening behavior of the structure can be accurately represented.
All in all, we think that the proposed method provides a very efficient tool to aid
the design phase of structures subject to shape defects, as in the case of MEMS
industry.
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Figure 23: First three natural frequencies for increasing defect amplitudes. Eigenfrequencies
for HFM-d (solid black line), for DP-ROM with and without DSs (red dashed
lines) are shown on the left vertical axis. Percent errors (blue, dotted lines) are
shown on the right vertical axis. φ1 is the imposed defect.

3.9 appendix: on mds and dss for vm-defects
As it has already been pointed out in Section 3.4, MD θij can also be interpreted
as the sensitivity of the structure with respect to a defect coinciding with vibration
mode φi. To our purposes, this would suggest that if we were to choose a defect-
shape from a set of VMs, no further DS would be needed to enhance the reduction
basis, as MDs would replace DSs. However, comparing Eq. (3.46) and Eq. (3.42), it
turns out that the two expressions are not equivalent.

Selecting a defect U = φj, we have that Ad = A(GUel) = A(Gφelj ) = Aφ. By
comparing the two expressions:

∂Ke(φej ξj)
∂ξj

∣∣∣∣
eq

= GT
(

HTCAd + ATd CH
)

G 6= GT
[
HTCAφ + ATφCH

]
G

+ GT [(L ·G) ·11 (CHGΦi)] =
∂Ke(φej ηj)

∂ηj

∣∣∣∣
eq

, (3.55)

we notice an additional term in the MDs (integration over volume, again, is implic-
itly assumed).

An inexpensive way to assess the impact of this discrepancy is to look at the
evolution of the eigenfrequencies of the reduced system when including only MDs
and when including also DSs. Figure 23 shows the eigenfrequencies trends for the
model described in Section 3.5 when the first VM φ1 is imposed as a defect. As it
can be easily observed, for the second and third modes frequencies tend to diverge
if DSs are not included. For the present system and the selected defect amplitudes
however the percent error is very small, and one could then think to use only MDs
in the basis. Finally, notice that each defect-shape might have a different impact on
the accuracy on the DP-ROM: for instance, imposing the second VM as a defect to
our nominal model, we could show that errors are more pronounced on the first
eigenfrequency if DSs are not included. For this reason, we recommend to critically
choose whether to exclude or not DSs case by case.



4 A H I G H E R O R D E R N L– P R O M U S I N G
N E U M A N N E X PA N S I O N

The method presented in the previous chapter is based on a strain approximation,
whose validity and limitations cannot be evaluated in advance. This poses some
questions in terms of applicability of the method and degree of accuracy that can be
expected. In this chapter, the method is further refined and different approximation
levels are identified, tested and compared. The content of this chapter can be found
in Marconi, Tiso, Quadrelli, et al., 2021; as such, we apologize for content to some
extent already presented previously.

abstract We present an enhanced version of the parametric nonlinear reduced
order model for shape imperfections in structural dynamics we studied in the pre-
vious chapter. In this model, the total displacement is split between the one due to
the presence of a shape defect and the one due to the motion of the structure. This
allows to expand the two fields independently using different bases. The defected
geometry is described by some user-defined displacement fields which can be em-
bedded in the strain formulation. This way, a polynomial function of both the defect
field and actual displacement field provide the nonlinear internal elastic forces. The
latter can be thus expressed using tensors and, owning the reduction in size of the
model given by a Galerkin projection, high simulation speed-ups can be achieved.
We show that the adopted deformation framework, exploiting Neumann expansion
in the definition of the strains, leads to better accuracy as compared to the previous
work. Two numerical examples of a clamped beam and a MEMS gyroscope finally
demonstrate the benefits of the method in terms of speed and increased accuracy.

4.1 introduction

The Finite Element (FE) method has long been a fundamental analysis and design
tool in many areas of science and engineering. In structural mechanics it is almost
mandatory to use FE models to investigate the behavior of complex systems, which
often have many geometric details that would be difficult to handle with alterna-
tive approaches, such as lumped parameter or analytical models Belytschko et al.,
2014. However, large FE simulations would often require considerable computa-
tional resources and time, so in some cases designers may prefer to perform real
experiments rather than numerical ones. On the one hand, this need for fast and
affordable FE simulations has given rise to numerical techniques to improve com-
putational efficiency: domain decomposition and substructuring Klerk et al., 2008;
Toselli and Widlund, 2005 and FE Tearing and Interconnecting (FETI, Farhat and
Roux, 1991) are just a few examples. On the other hand, model order reduction
methods have emerged, consisting in the construction of a Reduced Order Model
(ROM), whose number of degrees of freedom (dofs) is much smaller than that of
the reference Full Order Model (FOM). The use of linear ROMs also in industrial
contexts is nowadays well established as the theory underlying them. Guyan reduc-
tion Guyan, 1965 and modal analysis He and Fu, 2001 are two well-known examples
in mechanical statics and dynamics, respectively, where FOM’s static deformations
and Vibration Modes (VMs, also known as eigenmodes or natural modes of the lin-
ear system) are used to construct a Reduced Basis (RB) that projects the governing
equations onto a lower dimension subspace. Linear ROMs were also successfully
coupled with substructuring techniques in the Craig-Bampton and Rubin methods
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Figure 24: Overview of the proposed method, schematically illustrated for a pinned beam.

Craig and Bampton, 1968; Rubin, 1975, which are available in many commercial
software.

For nonlinear FE studies many solutions have been proposed over the last decades,
but none of them seems to have prevailed over the others, as each of them offers
certain advantages, requires certain costs and/or targets specific problems. Overall,
however, the literature is mature enough to provide the analyst with many dif-
ferent options in several practical applications, ranging from bolted joints Pichler
et al., 2017, gears Blockmans et al., 2015, contacts Balajewicz et al., 2015; Géradin
and Rixen, 2016, friction Mehrdad Pourkiaee and Zucca, 2019 and viscoplasticity
Ghavamian et al., 2017 to flexible multi-body dynamics with geometric nonlinear-
ities Wu, Tiso, Tatsis, et al., 2019 and substructuring Wu, Tiso, and van Keulen,
2018.

Nonlinear ROMs can be classified according to (i) whether they are RB-projection
based or not, (ii) whether they are data- or model-driven and (iii) their (non-) in-
trusiveness. In the following we consider mostly projection approaches, as the one
adopted in this work; alternatively, one could resort to different strategies, such as
normal form theory or Spectral Submanifolds. The most recent contributions in
this sense include Vizzaccaro et al., 2020 and Jain and Haller, 2021; Jain, Tiso, and
Haller, 2018; Ponsioen et al., 2020. In (ii), for data-driven ROMs we usually refer
to ROMs constructed using previous FOM simulation data (or experimental data,
R. Perez et al., 2017), as opposed to model-driven methods that rely on some intrin-
sic properties of the model itself for ROM construction, such as modal approaches
Amabili, 2013; Hollkamp and Gordon, 2008; Kuether et al., 2015; C. Touzé et al.,
2014. As for intrusiveness, we usually denote a ROM as non-intrusive Mignolet
et al., 2013 if it can be used with routines and solvers of commercial FE software
and, conversely, as intrusive a method requiring dedicated routines. Specifically,
intrusive methods require access and manipulation to element-level quantities, as
for instance nonlinear generalized forces and jacobians. Other distinctions can be
made in terms of the types of nonlinearities that a given model can handle and the
way nonlinear functions are evaluated Jain, 2015. All these differences ultimately
affect the two phases that all ROMs have in common: the offline phase, in which the
ROM is constructed, and the online phase, in which the simulation responses are
retrieved. As the main goal of ROMs is to reduce computational effort and time,
a key aspect to keep in mind when choosing a method is the overhead cost to pay
in the offline phase; in the case of data-driven methods, this cost can be as high
as the cost associated to the solution of the FOM Balajewicz et al., 2015. Generally
speaking then, data-driven methods (usually based on Proper Orthogonal Decom-
position, or POD, strategies Lu et al., 2019) are used in scenarios where the high
cost associated to the data generation can be amortized: typically, this is the case
of multi-query analysis. In this sense, although not as versatile and generally appli-
cable as data-driven POD-based approaches, model-driven strategies in structural
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dynamics are desirable, for no FOM simulation is required a priori. Rayleigh-Ritz
procedures Noor and Peterst, 1980, dual modes Mignolet et al., 2013 and Modal
Derivatives (MDs) Idelsohn and Cardona, 1985; Jain, Tiso, Rutzmoser, et al., 2017;
Sombroek et al., 2018 are some popular examples.

One way to mitigate the offline overhead costs of all the aforementioned methods,
but especially the data-driven ones, is to resort to (nonlinear) parametric ROMs,
(NL-)pROMs. Also in this context, the literature on linear systems is quite well de-
veloped and consolidated. An extensive survey and comparison of these methods
can be found in Baur et al., 2017. The reduction of nonlinear parametric Partial
Differential Equations (PDEs) is instead still an active research topic, which has
attracted increasing interest in various disciplines over the years. Interestingly, the
vast majority of nonlinear parametric model order reduction methods is data-driven,
POD-based. Some recent examples include non-intrusive interpolation methods for
evaluating nonlinear functions with hypersurfaces Xiao, Fang, Buchan, et al., 2015;
Xiao, Fang, Pain, et al., 2017 and use of Gaussian Processes and machine learning
for error evaluation and refinement of the pROM Xiao, 2019 or interpolation on the
Grassman manifold via tangent spaces Zimmermann, 2019. Alternatively, many of
these methods approximate the nonlinear function using hyper-reduction methods
as the Discrete Empirical Interpolation Method (DEIM) Barrault et al., 2004; Chat-
urantabut and Sorensen, 2010 to speed up the evaluation, and in this sense online
basis selection and adaptive algorithms were studied Cho et al., 2020; Phalippou
et al., 2020. However, as mentioned above, POD (and DEIM) needs a number of
FOM simulations to construct the ROM. For this reason, Kast et al., 2020 imple-
mented a Multi-Fidelity strategy in which the parametric dependence was recon-
structed using a large number of low-fidelity models and a minimal number of
high-fidelity evaluations. Other approaches exploit machine learning to construct
an input-output relationship, with convolutional neural networks Hesthaven and
Ubbiali, 2018 and autoencoders Maulik et al., 2020, which require the training of a
network, again, using preexisting data. Note that most of the above methods lead
to pROMs that are only evaluated in the online phase, i.e. no simulation is actually
performed1, but the solutions at the known parameter locations are “interpolated"
to obtain the result.

Although model-driven NL-pROMs seem to be less popular, they offer the un-
deniable advantage of being simulation-free, thus considerably cutting down the
offline costs. Interesting recent examples are loosely based on the extension of
methods for linear systems, such as the Non-Linear Moment Matching (NLMM)
scheme Astolfi, 2008, 2010; Ionescu and Astolfi, 2016. In Ref. Rafiq and Bazaz, 2020,
a non-parametric ROM is constructed with NLMM and DEIM for each parameter
instance sampled from the parameter space. These models are then “adjusted" onto
a common subspace where they are interpolated to produce the pROM. This strat-
egy, however, requires the solution of a set of nonlinear algebraic equations on the
FOM at different time instances, for different signal generators, and at each point
on the parameter grid. For large systems, the computational effort could still be
significant, although lower than that of POD methods.

In this paper we propose a NL-pROM for geometric nonlinearities and parametrized
shape defects to study the behavior of imperfect structures. This is motivated by the
fact that, as it is observed in many engineering applications, even small imperfec-
tions can significantly change characteristics and performances of a system, as for
instance in the case of MEMS devices Acar and Shkel, 2008; Izadi et al., 2018 and
mistuning of gas turbine blades Mehrdad Pourkiaee and Zucca, 2019. Other ROMs
have already been developed in this sense X. Q. Wang, O’Hara, et al., 2018; X. Q.
Wang, Phlipot, et al., 2018, but limited to localized defects. Regarding geometric
nonlinearities, we recall that in the case of continuum finite elements with linear

1 By simulation we refer to the solution of a set of equations describing a system in any kind of analysis
setting (e.g. in time or frequency domain).
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elastic constitutive law and Total Lagrangian formulation, as in our study, the non-
linear elastic forces are a polynomials which can be represented using tensors, so
that qualitatively2 the FOM governing equations write3

MüF + Cdu̇F + K2
FuF + K3

F : (uF ⊗ uF) + K4
F (uF ⊗ uF ⊗ uF) = fext(t) (4.1)

where M, Cd ∈ Rn×n are the mass and damping matrices, uF, u̇F, üF ∈ Rn

the displacement, velocity and acceleration vectors, and fext(t) ∈ Rn an exter-
nal forcing, being n the FOM number of dofs. K2

F ∈ Rn×n, K3
F ∈ Rn×n×n and

K4
F ∈ Rn×n×n×n are the stiffness tensors for the linear, quadratic and cubic elastic

internal forces.
Conceptually, the method retrace the one we presented in Marconi, Tiso, and

Braghin, 2020, but it is based on a different deformation scheme (of which our
earlier work resulted to be a sub-case). An overview of the individual steps of the
method is shown in Fig. 24. The user defines as input data the nominal structure (in
terms of geometry, material properties and FE mesh) and a number m of displace-
ment fields representing the shape defects, which are intended as small deviations
from the nominal geometry (Fig. 24a). These can be known analytically, from exper-
imental measurements or previous simulations, and finally they can be discretized
with displacement field vectors Ui and collected in a matrix U = [U1, ...,Um]. Each
defect can then be leveraged in amplitude by the parameter vector ξ = [ξ1, ..., ξm]T

(Fig. 24b) so that the final defected geometry represented by the model is given
by the global defect displacement field ud = Uξ, i.e. a linear superposition of
the selected defects (Fig. 24c). With this information about the nominal structure
and shape defects, we assemble the RB using a modal approach with VMs, MDs
and Defect Sensitivities (DSs). We then construct the reduced stiffness tensors, once
and for all, projecting the element-level tensors with the selected RB (Fig. 24d). In
this way, linear, quadratic and cubic elastic forces can be evaluated directly with
respect to the reduced coordinates and shape defect magnitudes without switching
between the full and reduced order space when evaluating the nonlinear function.
Our strategy can then be classified as model-driven (simulation-free). Finally, in the
online phase, the simulation is performed with the reduced governing equations
(Fig. 24e). Notice that the model is used to run a simulation, not to evaluate a so-
lution as in interpolation-like techniques: as such, different forcing terms and also
different analysis types (e.g. transient, frequency response) are possible. All of this
is possible thanks to the modified definition of the Green-Lagrange strain tensor we
use. Specifically, our strain tensor embeds two subsequent transformations: (i) the
one from nominal to defected geometry (which, at the end, will be parametrized),
and (ii) the one from the defected configuration to the deformed/final one. The
deformation produced by the latter is the one we measure, so no strain/stresses
are introduced by the presence of the defect in (i); however, the deformation of
(ii) will depend on (i). The formulation we obtain however contains rational terms
which cannot be used for a tensorial representation (which can describe polynomi-
als only). Given the assumed small entity of the shape defects, we advocate the
use of a Neumann expansion to approximate the Green-Lagrange tensor, obtaining
again a polynomial form. Applying standard FE procedures, we finally get to the
expression of the reduced elastic internal forces, which will parametrically depend
on the defect amplitudes ξ. In this framework, we show that the model in Marconi,
Tiso, and Braghin, 2020 (whose deformation formulation was based on Budiansky,
1967) corresponds to a lower order Neumann expansion with integrals evaluated
on the nominal volume, and that the higher order approximation we propose here
leads to better accuracy and to a larger applicability range.

2 Due to memory limitations, third and fourth order stiffness tensors cannot be computed for the FOM,
but they can be constructed in reduced form directly operating at element level Jain, 2015.

3 ⊗ denotes the outer product, : and the double and triple contraction operations. Using Einstein notation,
we have that X = x⊗ x⊗ x (being x a vector) corresponds to XIJK = xIxJxK, a = B : C (being B and C a
3- and a 2-dimensional matrix, respectively) to aI = BIijCij and, similarly, a = B C to aI = BIijkCijk
(where B and C are now 4- and 3- dimensional, respectively).
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Figure 25: Scheme for the considered deformation setting. A nominal structure, of coordi-
nates x0, undergoes a deformation described by the transformation map F1. The
structure is now in the deformed configuration (coordinates xd). A second trans-
formation F2 and the displacement u describe the deformation from the defected
configuration to the final one.

The work is organized as follows: the modified strain formulation is given in
Section 4.2 and approximated using Neumann expansion in Section 4.3. In Section
4.4 the FE discretization is developed and then used in Section 4.5 to construct the
reduced order stiffness tensors. The choice and computation of the RB is described
in Section 4.6. Finally, numerical studies in Sections 4.7 and 4.8 demonstrate the
effectiveness of the proposed approach on a 2D FE clamped beam and on a MEMS
gyroscope and computational times are discussed.

4.2 strain formulation: a two-steps deformation
approach

Strategies to represent the motion of imperfect structures by splitting the total dis-
placement into a constant part, representing a geometrical imperfection, and a vari-
able part, representing the actual displacement, are not new, and have been success-
fully used in many analytical studies with applications to beams and plates Amabili,
2006; Budiansky, 1967; Camier et al., 2009. In Ref. Amabili, 2006 a shallow shell
model is obtained from the von Karman plate model by introducing an additional
out-of-plane displacement field directly in the definition of the strains and neglect-
ing higher order terms; in Budiansky, 1967 a similar strategy was used for imperfect
beams, where the cancellation of h.o.t. was justified by removing the contribution
of the deformations artificially produced by the introduction of the defect. In both
cases, the imperfection was taken as a natural mode of the system. In Ref. Camier
et al., 2009 such limitation was removed and plates were studied expanding the
defect using an arbitrary number of natural modes. Using a different approach, the
authors introduce the imperfection directly in the governing equations, adding ex-
ternal forces to restore static equilibrium and, finally, enforcing stresses to zero (as
the defected configuration is stress-free). In this work we follow an alternative ap-
proach, based on a two steps deformation scheme, which applies to solid mechanics
in general.

Let us consider the scheme depicted in Fig. 25. A nominal body of coordinates
x0 = {x0, y0, z0} undergoes a first deformation described by the map F1, which
brings the body in a new configuration with coordinates xd = {xd, yd, zd} = F1(x0).
The displacement corresponding to this operation is ud = {ud, vd, wd} = xd −

x0. We will refer to this second configuration as the defected configuration. As it
will be detailed later, in our method ud will be a user-defined displacement field
representing a small shape defect which, superimposed to the nominal geometry,



60 a higher order nl–prom using neumann expansion

defines the configuration with respect to which we measure deformation. There
is no a priori restriction for the choice of the shape of the field ud (which can
also change the location of the boundaries)4, as long as no topological changes
are introduced (e.g. holes). Let us now consider a second deformation, described
by the map F2, from the defected configuration to the final one, with coordinates
x(t) = {x(t), y(t), z(t)} = F2(xd, t). We will refer to the latter as to the deformed or
final configuration, whose displacement is given by u = {u, v, w} = x − xd.

Considering the infinitesimal line segment dx0 in the nominal geometry, we can
define the line segments dxd and dx in the defected and deformed configurations
as

dxd = F1dx0, (4.2a)

dx = F2dxd = F2F1dx0, (4.2b)

where the deformation gradients F1 and F2 are given by

F1 = ∇0xd =
∂xd
∂x0

= I +
∂ud
∂x0

= I + Dd, (4.3a)

F2 = ∇dx =
∂x
∂xd

= I +
∂u
∂xd

= I + D2. (4.3b)

and where Dd and D2 are the displacement derivative matrices of the first and
second transformations, respectively. Using the chain rule, we can also define

D =
∂u
∂x0

=
∂u
∂xd

∂xd
∂x0

= D2F1, (4.4)

so that D2 = DF−1
1 can be referred to the nominal coordinates.

Using Eqs. (4.2)–(4.4), the stretch between deformed and defected configurations
writes

S = dxTdx − dxTddxd
= dxT0FT1 (F

T
2F2 − I)F1dx0

= dxT0 (D + DT + DTD + DTdD + DTDd)dx0. (4.5)

Measuring the deformation with respect to the defected configuration, the second
order strain tensor E2 is defined as

S = 2dxTdE2dxd = 2dxT0FT1E2F1dx0, (4.6)

which, rearranged, leads to

E2 =
1

2

(
FT2F2 − I

)
=
1

2
F−T
1 (D + DT + DTD + DTdD + DTDd)F−1

1 . (4.7)

Looking at Eqs. (4.5) and (4.7), it can be easily verified that E2 correctly satisfies the
minimum requirements for a strain measure to vanish under a rigid body transla-
tion (F2 = I) and/or rotation (FT2F2 = RTR = I, R being an orthonormal rotation
matrix), for any F1. Eq. (4.7) is indeed an exact expression for the strains from de-
fected to final configuration. Notice however that in this form all the quantities are
computed with respect to the nominal coordinates x0.

4.3 strain approximations
The introduced strain measure, being referred to the nominal geometry only, paves
the way for the pre-computation of the stiffness tensors, as it will be shown in the

4 F1(x0) can be thought as a transformation corresponding to a static analysis with imposed forces and/or
boundary displacements.
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following sections. However, as mentioned in the introduction, a tensorial formula-
tion can be applied only when the internal forces display a polynomial dependence
on the displacements, which in the present case include both ud and u. The inverse
of the deformation gradient F1 in Eq. (4.7) entails a rational dependence on ud, and
therefore needs some attention. Let us consider the following known result:

Neumann expansion

If P is a square matrix and the Neumann series
∑+∞
n=0 Pn is convergent, we

have that

(I − P)−1 =

+∞∑
n=0

Pn (4.8)

A spectral norma ε = ‖P‖2 < 1 is a sufficient condition for the convergence
of the Neumann series. Moreover, it can be shown X. Wang et al., 2013 that
truncating the sum to order N the norm error δN is bounded as

δN =

∥∥∥∥∥(I − P)−1 −
N∑
n=0

Pn
∥∥∥∥∥
2

6
εN+1

1− ε
= δlim. (4.9)

a The spectral norm of a matrix A is defined as the square root of the largest singular value of
A∗A, being A∗ the conjugate transpose of A, that is: ‖A‖2 =

√
λmax(A∗A)

Letting P = −Dd, we can expand F−1
1 using the Neumann series as

F−1
1 = (I + Dd)−1 ≈

N∑
n=0

(−Dd)n. (4.10)

The series, under the assumption of small defects (i.e. ‖Dd‖2 � 1), is guaranteed
to converge. Moreover, we can truncate the sum in Eq. (4.10) to N = 1, obtaining:

E2,N =
1

2
(I − Dd)T (D + DT + DTD + DTdD + DTDd)(I − Dd), (4.11)

which, solving the product, can be rewritten as:

E2,N =
1

2

(
D + DT + DTD +���DTdD +����DTDd

−���DTdD − DTdDT − DTdDTD − DTdDTdD −�����DTdDTDd
− DDd −����DTDd − DTDDd −����DTdDDd − DTDdDd

+����DTdDDd +�����DTdDTDd + DTdDTDDd + DTdDTdDDd + DTdDTDdDd
)

. (4.12)

where we stroke out terms that cancel each other. Finally, neglecting the terms
O(D2d), i.e. assuming that the first transformation F1 is linear, Eq. (4.12) reduces to:

E2,N1 =
1

2

(
D + DT + DTD − DTdDT − DDd − DTdDTD − DTDDd

)
(4.13)

The modified Green-Lagrange strain tensor E2,N1 is a polynomial function of the
derivatives of the displacement fields u and ud, and can be thus used to compute a
ROM using tensors. Notice that defect-induced strains are not present when there
is no deformation, that is E2,N1 = 0 (being proportional to D) when u = 0.

Remark 1 (on Budiansky approximation). The strain formulation in Budiansky, 1967,
used by Budiansky to study buckling in presence of defects, was obtained by sub-
tracting the strain that a defect would produce on the nominal structure from the
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strain of the deformed structure measured with respect to the nominal configura-
tion. It can be shown that truncating the Neummann series to the zero-th order (i.e.
setting N = 0, so that F−1

1 = I) and using Eq. (4.7) and (4.10), the strain writes:

E2,N0 =
1

2

(
D + DT + DTD + DTdD + DTDd

)
, (4.14)

which is the same strain tensor we adopted in Marconi, Tiso, and Braghin, 2020

following Budiansky’s approximation.

4.4 finite element formulation
In this and the next Section we derive in detail the FE formulation leading to the
parametrized reduced internal elastic forces (Eqs. (4.27) and (4.28)), which are used
in the following numerical tests. We start deriving the elastic internal forces (at
element-level) for the FE discretization of the full order model based on the strain as
defined in Eq. (4.13). We remark that this full model represents just an approxima-
tion of the reference full order model FOMd (where the defect is embedded directly
in the mesh by shifting the position of the nodes). Although not offering any di-
rect advantage over FOMd, this full model will allow us to compute the parametric
ROM, as it will be explained in Section 4.5.

First, it is convenient to switch to Voigt notation, exploiting the symmetry of
E2,N1. Let θ = {u,x u,y u,z v,x v,y v,zw,xw,yw,z}

T be the vectorized form of D
and, similarly, θd the vectorized form of Dd.5 Calling ue ∈ Rne and ued ∈ Rne the
nodal displacement and defect vectors, respectively, of a continuum finite element
with ne dofs and G ∈ R9×ne the shape function derivatives matrix, the displace-
ment derivative vectors can be written as functions of the displacements:

θ = Gue, and θd = Gued.

Equation (4.13) rewrites:

Ev,N1 =
(

H +
1

2
A(θ) + A2(θd) + A3(θd)A(θ)

)
θ = B(ue,ued)u

e, (4.15)

where (•)v denotes Voigt notation, H and A were defined in chapter 1 and

A2 = −1 (4.16a)

×



ud,x vd,x wd,x 0 0 0 0 0 0

0 0 0 ud,y vd,y wd,y 0 0 0

0 0 0 0 0 0 ud,z vd,z wd,z
ud,y vd,y wd,y ud,x vd,x wd,x 0 0 0

ud,z vd,z wd,z 0 0 0 ud,x vd,x wd,x
0 0 0 ud,z vd,z wd,z ud,y vd,y wd,y

 ,

A3 = −1/2 (4.16b)

×



2ud,x 0 0 vd,x wd,x 0

0 2vd,y 0 ud,y 0 wd,y
0 0 2wd,z 0 ud,z vd,z

2ud,y 2vd,x 0 ud,x + vd,y wd,y wd,x
2ud,z 0 2wd,x vd,z ud,x +wd,z vd,x
0 2vd,z 2wd,y ud,z ud,y vd,y +wd,z


such that

D + DT + DTD←→ (2H + A(θ))θ,

−DTdDT − DDd ←→ 2A2(θd)θ,

−DTdDTD − DTDDd ←→ 2A3(θd)A(θ)θ.

5 For the derivatives of the displacement components, we use the notation u,x = ∂u
∂x0

and ud,x = ∂ud
∂x0

(similar definition for v, w and the other spatial coordinates).
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Exploiting the property by which A(θ)δθ = A(δθ)θ, the virtual variation of the
strain in Eq. (4.15) writes

δEv,N1 = (H + A + A2 + 2A3A)Gδue

= B(u,ud)δue, (4.17)

where B is the strain-displacements matrix and where we dropped the explicit de-
pendencies on θd and θ to ease the notation. The virtual work of internal forces on
one element is given by

Weint =

∫
Ved

δETv,N1Sv dVed

= (δue)T
∫
Ved

BTSv dVed, (4.18)

where Sv = CEv is the Piola-Kirchhoff stress in Voigt notation, being C the linear
elastic constitutive matrix, and where Ved is the volume of the element in the de-
fected configuration. The expression for the element internal forces feint follows
from the virtual work:

feint =
∫
Ved

BTCEv,N1 dVed ,

=

∫
Ved

B(ue,ued)
T CB(ue,ued)u

e dVed. (4.19)

The global internal force vector fint can be then obtained assembling the element-
level feint using standard FE procedures. Finally, the tangent stiffness matrix can be
computed as usual taking the virtual variation of the internal forces (see Appendix
4.11). Equations (4.15) and (4.19) can be used to perform tests and/or simulations
of the full model and to compare the results to the corresponding FOM-d in order
to assess the quality of the approximation before the reduction of the model. In the
next section, the DpROM derived from this formulation is presented.

4.4.1 Element–level tensors

Equation (4.19) in full can be written as

feint =
∫
Ved

GT (H + A + A2 + 2A3A)T C
(

H +
1

2
A + A2 + A3A

)
Gue dVed. (4.20)

In the present form, the displacement vectors ue and ued are encapsulated in the
expressions of A, A2 and A3. As our aim is to compute the stiffness coefficients of
the elastic forces, we need to make them explicit in Eq. (4.20). We can write:

A = L1 ·θ = L1 · (Gue), (4.21a)

A2 = L2 ·θd = L2 · (Gued), (4.21b)

A3A = (L3 ·θd) ·θ = (L3 · (Gued)) · (Gue), (4.21c)

where L1,L2 ∈ R6×9×9 and L3 ∈ R6×9×9×9 are constant sparse matrices (see
Appendix 4.10)6.

6 L1 coincides with L defined in chapter 1
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We can separate the contributions in Eq. (4.20) as

fe1 =

∫
Ved

GT
(

HTCH + HTCA2

+AT2CH + AT2CA2
)

Gue dVed, (4.22a)

fe2 =

∫
Ved

GT
(1
2

HTCA + ATCH +
1

2
AT2CA

+ATCA2 + 2ATAT3CH + HTCA3A

+2ATAT3CA2 + AT2CA3A
)

Gue dVed, (4.22b)

fe3 =

∫
Ved

GT
(1
2

ATCA + 2ATAT3CA3A

+ATAT3CA + ATCA3A
)

Gue dVed, (4.22c)

where fe1 , fe2 and fe3 are the linear, quadratic and cubic terms in the displacement
ue, respectively. These can be recasted in tensorial form as

fe1 = K2 (ued) · u
e, (4.23a)

fe2 = K3 (ued) : (u
e ⊗ ue), (4.23b)

fe3 = K4 (ued) (ue ⊗ ue ⊗ ue), (4.23c)

where

K2 (ued) = K2n + K3d · ued + K4dd : (ued ⊗ ued), (4.24a)

K3 (ued) = K3n + K4d · ued + K5dd : (ued ⊗ ued), (4.24b)

K4 (ued) = K4n + K5d · ued + K6dd : (ued ⊗ ued). (4.24c)

The element-level tensors in Eqs. (4.24) are named using the left-subscript to
denote their dimension with a number and with a letter to specify if the tensor does
not multiply the defect vector ud (letter “n"), if it multiplies ud once (letter “d") or
twice (letters “dd"). In particular, a tensor denoted by the letter “n" corresponds to
the tensor computed for the nominal geometry. For instance, K3d ∈ Rne×ne×ne is
the 3rd-order tensor multiplying ud once and K2n ∈ Rne×ne is the nominal 2nd-
order tensor. Finally, we remark once more that these are element-level tensors that,
in theory, could be assembled to form the FOM tensors. In practise, however, FOM
tensors would require a prohibitive amount of memory and are never computed.

4.5 dprom formulation

4.5.1 Reduced tensors and internal forces

We now derive the reduced internal forces and tensors via Galerkin projection. Let
V ∈ Rn×m be the RB for uF ∈ Rn, with m � n vectors (or modes), and let U ∈
Rn×md be a basis of md user-defined defect shapes, collected column-wise, for
uFd ∈ Rn. The selection for the modes in V will be discussed in Section 4.6. We
have then that uF ≈ Vη, uFd = Uξ and, referring to element level quantities, we can
reduce ue and ued as:

ue ≈ Veη, with Ve ∈ Rne×m, η ∈ Rm, (4.25a)

ued = Ueξ, with Ue ∈ Rne×md , ξ ∈ Rmd (4.25b)

being Ve and Ue the partitions of V and U pertaining to the element, η and ξ the
reduced coordinates.

Plugging Eqs. (4.21) and (4.25) into Eqs. (4.22), we can directly identify the
reduced order tensor coefficients for η and ξ (and their combinations). Defining the
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projections of shape function derivative matrix G over the two basis as Γ = GVe

and Υ = GUe, using Einstein’s notation we obtain:

Qe2n IJ =

∫
Ved

ΓiIHjiCjkHklΓkJ dVed, (4.26a)

Qe3d IJK =

∫
Ved

ΓiI
(
HjiCjkL2klaΥaK + L2jiaΥaKCjkHkl

)
ΓlJ dVed, (4.26b)

Qe4dd IJKL =

∫
Ved

ΓiIL2jiaΥaKCjkL2klbΥbLΓlJ dVed, (4.26c)

Qe3n IJK =

∫
Ved

ΓiI

(1
2
HjiCjkL1klaΓaK + L1jiaΓaKCjkHkl

)
ΓlJ dVed, (4.26d)

Qe4d IJKL =

∫
Ved

ΓiI

(1
2
L2jiaΥaLCjkL1klbΓbK + L1jiaΓaKCjkL2klbΥbL

+ 2L3jiabΥbLΓaKCjkHkl +HjiCjkL3klabΥbLΓaK

)
ΓlJ dVed,

(4.26e)

Qe5dd IJKLM =

∫
Ved

ΓiI

(
2L3jiabΥbLΓaKCjkL2klcΥcM

+ L2jiaΥaLCjkL3klbcΥcMΓbK

)
ΓlJ dVed,

(4.26f)

Qe4n IJKL =
1

2

∫
Ved

ΓiIL1jiaΓaKCjkL1klbΓbLΓlJ dVed, (4.26g)

Qe5d IJKLM =

∫
Ved

ΓiI

(
L1jiaΓaKCjkL3klbcΥcMΓbL

+ L3jiabΥbMΓaKCjkL1klcΓlL

)
ΓlJ dVed,

(4.26h)

Qe6dd IJKLMN = 2

∫
Ved

ΓiIL3jiabΥbMΓaLCjkL3klcdΥdNΓcKΓlJ dVed, (4.26i)

where, for convenience, tensor dimensions of size m are denoted by capital letter
subscripts, dimensions of sizemd by underlined capital letter ones. So, for example,

Qe4dd ∈ Rm×m×md×md .
The global reduced tensors of the full structure can then be computed directly

summing up the element contributions as

Q? =

Nel∑
e=1

Qe?

where Qe? is one of the element-level tensors in Eqs. (4.26), Q? the assembled ten-
sor for the FOM andNel is the total number of elements. Notice that this procedure
is highly parallelizable, as Qe? can be computed separately and summed up in the
end. Reduced (global) internal forces fint,r can therefore be defined as

fint,r = Q2 (ξ) ·η+ Q3 (ξ) : (η⊗η) + Q4 (ξ) (η⊗η⊗η), (4.27)

where

Q2 (ξ) = [ Q2n + Q3d · ξ+ Q4dd : (ξ⊗ ξ)] , (4.28a)

Q3 (ξ) = [ Q3n + Q4d · ξ+ Q5dd : (ξ⊗ ξ)] , (4.28b)

Q4 (ξ) = [ Q4n + Q5d · ξ+ Q6dd : (ξ⊗ ξ)] , (4.28c)

while the reduced tangent stiffness matrix Qt can be written simply as

Qt IJ = Q2 IJ + ( Q3 IJj + Q3 IjJ)ηj + ( Q4 IJij + Q4 IiJj + Q4 IijJ)ηiηj. (4.29)

Upon inspection of Eq. (4.27), it can be seen that elastic internal forces are cubic
in η and quadratic in ξ, thus producing quintic terms in (η,ξ).
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Remark 2 (on tensor computation). Equations (4.26) give directly the stiffness tensors
in reduced form, and this is in general highly desirable as their integration over the
element volume takes multiple evaluations (e.g. through Gauss quadrature). Since
the computational complexity highly depends on the number of dofs of the tensor,
it is preferable to integrate directly the reduced ones as long as the number of
reduced coordinates m is lower than the number of element’s dofs ne (e.g. ne = 60

for a serendipity hexahedron with quadratic shape functions). In case m > ne, it
is computationally more efficient to compute the element tensors first (using Eqs
(4.26) and replacing both Γ and Υ with G) for Gauss integration, then project the
element tensors using V and U accordingly. A similar reasoning can be done for
md, but under the very likely hypothesis that md � ne it results almost always
convenient to adopt the reduced form.

4.5.2 Volume integration

The tensors in Eqs. (4.27)-(4.28) must be computed over the defected volume Vd. As
such, the model cannot be profitably used, as for each new instance of the parameter
vector ξ the volume Vd would change and a new integration would be required.
This way, one would need to compute a new ROM for each parameter realization,
which is in direct contrast to the very idea of pROM. To circumvent this problem,
one can adopt the following approximation.

Let Qe?
∫ be the generic expression of an element tensor to be integrated over the

volume Ved. We can compute the global reduced tensor Q? as:

Q? =

Nel∑
e=1

∫
Vd

Qe?
∫ dVd

=

Nel∑
e=1

∫
Vo

Qe?
∫det(F1) dVo. (4.30)

where Nel is the total number of elements. The determinant of F1 can now be
approximated retaining only first order terms. To the purpose of illustration, let us
consider the following 2D example where the global defect is given by the linear
superposition of two shape defects, that is:

ud(x0,ξ) =
{
ud
vd

}
=

[
f
(1)
u (x0) f

(2)
u (x0)

f
(1)
v (x0) f

(2)
v (x0)

]{
ξ1
ξ2

}
=
[
f (1), f (2)

]
ξ, (4.31)

where we denote with f (i) = [f
(i)
u , f

(i)
v ]T the vector of the functions describing the

i-th shape-defect for the x-displacement ud and the y-displacement vd, respectively.
We can approximate the determinant of F1 as

det(F1) = 1+ ud,x + vd,y + ud,xvd,y − ud,yvd,x,

det(F1) = 1+ ξ1

(
f
(1)
u,x + f

(1)
v,y

)
+ ξ2

(
f
(2)
u,x + f

(2)
v,y

)
+ ξ21

(
f
(1)
u,xf

(1)
v,y − f

(1)
u,yf

(1)
v,x

)
+ ξ22

(
f
(2)
u,xf

(2)
v,y − f

(2)
u,yf

(2)
v,x

)
+ ξ1ξ2

(
f
(1)
u,xf

(2)
v,y + f

(2)
u,xf

(1)
v,y − f

(1)
u,yf

(2)
v,x − f

(2)
u,yf

(1)
v,x

)
,

det(F1) ≈ 1+ ξ1

(
f
(1)
u,x + f

(1)
v,y

)
+ ξ2

(
f
(2)
u,x + f

(2)
v,y

)
,

where we neglected higher order terms, consistently with the assumption of small
defects (already introduced for the Neumann expansion of the strains). Generaliz-
ing this result for md defects, we can write

det(F1) ≈ 1+
md∑
i=1

ξi

(
div f (i)

)
, (4.32)
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so that Eq. (4.30) can be approximated as:

Q? ≈ Q′? +

md∑
i=1

ξi
(

Q′′? i

)
, (4.33)

where

Q′? =

Nel∑
e=1

∫
Vo

Qe?
∫ dVo, (4.34a)

Q′′? i =

Nel∑
e=1

∫
Vo

Qe?
∫ (div f (i)

)
dVo. (4.34b)

Q′? is the tensor evaluated on the nominal volume and Q′′? i is the contribution
of the i-th defect, which can be computed again once and for all offline, referring to
the nominal volume. The additional computational burden to compute Q′′? i grows
less than linearly with the number of defects, since in a quadrature integration
scheme we can use the Qe?

∫ evaluated at integration points for both Eqs. (4.34).
The additional computations therefore involve only scalar by tensor multiplications
and tensor sums, so that most of the added computational time is merely due to
memory access management. Notice that one could also compute all the additional
tensors needed to describe det(F1) with no approximation (even tough this is in
most cases unnecessary, for h.o.t. do not improve accuracy significantly). However,
the first order approximation we presented has the advantage to introduce only one
new term for every additional defect.

Remark 3 (on computational efficiency). The corrective terms Q′′i in Eq. (4.33) are null
for an isochoric transformation between nominal and defected domain (det(F1)=1).
In practice, one can set up a procedure to avoid the computation of these terms to
speed up the construction of the reduced tensors.

Remark 4 (on Budiansky approximation). According to the framework presented in
Budiansky, 1967 and used in Marconi, Tiso, and Braghin, 2020, integration can only
be carried out on the nominal volume V0. This constitutes an additional approxi-
mation on top of the lower-order expansion discussed in Remark 1. As it will be
later shown in Section 3.8, when the imposed defect does not represent an (almost)
isochoric transformation and/or is not sufficiently small, integration over V0 is a
too coarse approximation and yields large errors.

4.5.3 Equations of motion

Finally, the equations of motion for the parametric reduced order system write:

Mrη̈(t) + Crη̇(t) + fint,r(η(t),ξ) = fext,r(t), (4.35)

where Mr = VTMdV and Cr = VTCdV are the reduced mass and damping matri-
ces, fext,r(t) = VT fext(t) the reduced external forces acting on the system. Notice
that since mass and damping matrices must be integrated over Vd, new matrices
must be computed for each new parameter realization. However, being these matri-
ces constant during the analysis, this additional cost is negligible.

4.5.4 Truncated version

Before concluding this section, we present a lighter version of the proposed model,
with the aim to alleviate the offline computational burden. Considering Eq. (4.13),
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Table 4: Acronyms for the different models considered in the numerical studies.

Model Description
FOMd Full Order Model with defect included by shifting the mesh nodes from

the nominal configuration (no approximation). It is the reference model.
ROMd Reduced Order Model computed from FOM-d. Its reduction basis comprises

VMs and MDs.
DpROM-0? Defect parametric Reduced Order Model, based on the 0-th order Neumann

expansion (see Eq. (4.14)). Its reduction basis comprises VMs, MDs and DSs.
Tensors are up to the 4-th order (see chapter 3).

DpROM-1? Defect parametric Reduced Order Model, based on the 1-st order Neumann
expansion (see Eq. (4.13)). Its reduction basis comprises VMs, MDs and DSs.
Tensors are up to the 6-th order (see Eqs. (4.26)).

DpROM-1t? Truncated version of DpROM-1? (see Section 4.5.4). Tensors are up to the
4-th order.

? = d indicates that the model is computed integrating over the defected volume Vd
(see Section 4.5.2).

? = n indicates that the model is computed integrating over the nominal volume V0.
This is allowed for isochoric transformations and is otherwise an
approximation (see Section 4.5.2).

we can make the further assumption that O(DdD2) terms can be neglected, obtain-
ing

E2,N1t =
1

2

(
D + DT + DTD − DTdDT − DDd

)
. (4.36)

All the subsequent equations are consequently modified by putting A3 = 0 and
L3 = 0, resulting in the fact that the tensors in Eqs. (4.26) can be simplified. In
particular, the last two terms in Q4d (Eq. (4.26e)) and the entire Q5d , Q5dd and

Q6dd tensors are null. In this sense, the reduced elastic internal forces in Eq. (4.27)
are “truncated". As 5-th and 6-th order tensors are the most expensive to construct,
neglecting them greatly reduces offline costs. As it will be shown in Section 3.8,
this further approximation, although empirical, does not appreciably deteriorate
the quality of the results.

4.5.5 Models and nomenclature

In Sections 3.7 and 3.8 we study two numerical examples using different levels
of approximation for our Defect-parametric ROM, DpROM. Specifically, we use
the 0-th order Neumann expansion for the strains (Eq. (4.14)), the 1-st order one
(Eq. (4.13)) and its truncated version, discussed in the previous section. The three
variations will also be tested in the case of integration over Vd and over V0 (which
is a further approximation). The acronyms to denote each model are shown in Table
4, where, for convenience, information about the RB of each model (discussed in
the next section) is also reported. Finally, notice that the model we presented in
Marconi, Tiso, and Braghin, 2020 (chapter 3) corresponds to DpROM-0n.

4.6 reduction basis
To construct the system described so far it is necessary to select the bases V and
U. The latter is simply a collection of user-defined displacement vectors, each rep-
resenting one specific defect, so that the final defected shape is given by a linear
superposition (see Eq. (4.25b)). The (properly said) RB is V, whose choice may
not be trivial, as it must correctly represent the system response over a range of
parameters without the possibility to be changed (since a change would require to
recompute the stiffness tensors). As previously done in Marconi, Tiso, and Braghin,
2020, our choice is to use a modal-based approach including VMs, MDs and Defect-
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Sensitivities (DSs) Hay et al., 2010 in the RB, as this solution offers a way to con-
struct a basis in a direct way, that is without convoluted basis selection strategies,
the need of computing all (or an excessively high number of) eigenvectors or the
need for previously computed simulations. We remark however that, in principle,
one could use also other RBs, as long as they are valid over the parameter space.

Let us consider the following eigenvalue problem(
Kt −ω2iM

)
Φi = 0 (4.37)

where Kt = Kt(u,ud) is the tangent stiffness matrix, M the mass matrix, ωi the i-
th eigenfrequency and Φi the corresponding eigenvector. Static Modal Derivatives
θij (MDs) are computed neglecting the mass term, by taking the derivative of Eq.
(4.37) with respect to ηj and evaluating the resulting expression at equilibrium (i.e.
ηj = 0) and for ξ = 0:

θij =
∂Φi
∂ηj

∣∣∣∣
0

= −K−1
0

∂Kt(Φjηj, 0)
∂ηj

∣∣∣∣
0

Φi , (4.38)

being K0 = Kt (0, 0). Retaining mΦ VMs in the basis V, mΦ(mΦ + 1)/2 MDs can
be computed.

Defect Sensitivities (DSs) Ξi,j can be obtained following a similar procedure, dif-
ferentiating each VM Φi with respect to each defect amplitude ξj:

Ξi,j =
∂Φi
∂ξj

∣∣∣∣
0

= −K−1
0

∂Kt(0,Ujξj)
∂ξj

∣∣∣∣
0

Φi. (4.39)

A total of mdmΦ DSs can be computed this way, being md the number of defects
in U. Expressions for the tangent stiffness derivatives are given in Appendix 4.11.

Remark 5 (on higher derivatives). Given the increased accuracy of the model, larger
defect magnitudes can be considered as compared to Marconi, Tiso, and Braghin,
2020. To fully exploit the increased applicability range, a richer RB might be nec-
essary, reason why we here introduce second Defect-Sensitivities (DS2s) and MDs-
Sensitivities (MDSs). Let us take the derivative of Eq. (4.38) with respect to the k-th
defect amplitude ξk. We define the MDS θij,k as:

θij,k =
∂θij

∂ξk

∣∣∣∣
0

= −K−1
0

(
∂Kt
∂ξk

∣∣∣∣
0

θij +
∂2Kt
∂ηj∂ξk

∣∣∣∣
0

Φi +
∂Kt
∂ηj

∣∣∣∣
0

Ξi,k

)
. (4.40)

Notice that θij,k 6= θji,k. In the same manner, the second Defect Sensitivities (DS2s)
with respect to ξk write:

Ξi,jk =
∂Ξi,j

∂ξk

∣∣∣∣
0

= −K−1
0

(
∂Kt
∂ξk

∣∣∣∣
0

Ξi,j +
∂2Kt
∂ξj∂ξk

∣∣∣∣
0

Φi +
∂Kt
∂ξj

∣∣∣∣
0

Ξi,k

)
. (4.41)

It is evident that the blind inclusion of DS2s and/or MDSs in the RB would add
an unacceptable number of unknowns, especially when considering MDSs. De-
pending on the type of the analysis (linear/nonlinear), on the kind of the defect
(i.e. affecting the linear or the nonlinear dynamics) and on the entity of the defect
itself (large/small), one can decide whether to include some vectors or not. Pre-
selection strategies to reduce the basis size, as the one presented in Tiso, 2011 and
Jain, Tiso, Rutzmoser, et al., 2017, are beyond the scopes of this work and are not
treated hereafter.

4.7 numerical tests – i
We consider now a FE model of an aluminum beam, of length lx = 2m, thickness
ty = 50mm and width wz = 0.2m, clamped at both ends. We use a 2D plain strain
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Figure 26: (a) Model-I: Nominal mesh and defected mesh with ξ = 1 (and a x5 scale factor).
(b) Frequency Responses and backbone curves for different defect amplitudes ξ
using the Harmonic Balance method (7 harmonics) for: ROMd ( ), DpROM-
1n ( ), DpROM-0n ( , only backbones). Backbones have been computed
also for the FOMd ( ) using the shooting method for validation. The vertical
displacement of the mid-span of the beam is shown (first harmonic coefficient of
the Fourier series, normalized over the beam thickness ty). For each plot, the
detuning parameter is σ = f− f01,d, being f [Hz] the forcing frequency and f01,d
[Hz] the first eigenfrequency of the FOMd (corresponding to the selected ξ). The
bottom-right figure collects the backbone curves for comparison.

model, with a mesh of 80 quadrilateral elements with quadratic shape functions
(630 dofs). A Rayleigh damping matrix Cd = αMd+βK0 is introduced by imposing
a quality factor Q1 = Q2 = 100 on the first and second modes of the linear system
(α = 3.1, β = 6.3 · 10−6). A nodal load F is applied to the mid-span of the beam
(with F = 1 kN and F = 4 kN for the forced responses). A single shape defect
defined as the vertical translation of the nodes vd(x, ξ) = ξty sin(π/lxx) is imposed,
deforming the nominal geometry of the straight beam into a shallow arch. Notice
that this kind of defect represents an isochoric transformation, therefore integration
over the nominal volume V0 is used for this example (see Section 4.5.2).

Again, refer to Table 4 for the acronyms used for the models of this and the next
numerical study. For ξ = {0, 0.25, 0.5, 0.75, 1}, backbones and Frequency Responses
(FR) are computed for ROMd, DpROM-1n and DpROM-0n, constructed using 5

VMs, 15 MDs, and 5 DSs (only for DpROMs), i.e.

V = [Φ1, ... ,Φ5,θ11,θ12, ... , θ45, θ55,Ξ1,1, ... ,Ξ5,1], (4.42)

for a total of 25 RB modes (i.e. mΦ = 5 VMs, mΦ(mΦ + 1)/2 = 15 MDs and
mdmΦ = 5 DSs, being U ∈ Rn×md and md = 1).

Remark 6 (on basis choice). Reduction with MDs was historically introduced as an
extension of time-domain linear modal analysis to the field of (mild) geometric non-
linearities Idelsohn and Cardona, 1985. As such, the selection criterion is frequency-
based, meaning that modes are chosen accordingly to the spectral content of the
forcing. Usually, vibration modes are retained up to 3-5 times the highest frequency
of interest, as a rule of thumb. All the MDs related to the retained VMs are then
included (as well as all the DSs for the DpROMs). Also notice that MDs, loosely
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Table 5: Average computational times. The data of the two DpROMs, being very similar,
are clustered togeter. For the FR, the times refer to the higher forcing (F = 4 kN).
ROMd, DpROM-1/0n and FOMd have 20, 25 (due to the 5 additional DSs) and 630

dofs, respectively. Notice that, being the size of the FOMd very small, no significant
conclusions in terms of speedups can be drawn from this data (refer to the next
section for a detailed discussion).

Model–I ROMd DpROM-1/0d FOMd

Harmonic Balance (HB) Freq. Response 649 s 673 s –
Backbone 237 s 273 s –

Shooting Backbone 31 min 35 min 83 h 18 min
ROM construction 0.97 s 6.5 s / 2 s –

speaking, represent the second order Taylor expansion of the solution Idelsohn and
Cardona, 1985; Jain, Tiso, Rutzmoser, et al., 2017 and results are thus expected to
deteriorate for high amplitudes of the response. In the present case, being our
analysis restricted to the first mode, we include all the vibration modes up to the
5th, being ω05/ω01 ≈ 9. This is a rather conservative choice which allows us to
study the parametric variations of the model with relative comfort and up to rela-
tively large levels of vibrations. Indeed, it could be shown that retaining VMs up to
the 3rd (ω03/ω01 ≈ 3.7) is already sufficient to retrieve a good accuracy, showing
slight departure at larger amplitudes (with reference to the results in Fig. 3, FOM
and ROM backbones start departing for normalized amplitudes greater than 0.8,
ultimately leading to a 1Hz-difference at an amplitude of 1.2). Interestingly, the
aforementioned empiric rules used to select VMs find theoretical confirmation in
Shen et al., 2021; Vizzaccaro et al., 2020, where it is argued that a slow-fast decom-
position assumption have to be made for the MD-based quadratic manifold approach
to work, indicating a threshold ratio of 4 between the linear eigenfrequencies (i.e.
ωp/ωs > 4, p 6= s). However, to the best of the authors’ knowledge, there is
no guarantee that this limit remains valid also in the MD-based linear manifold ap-
proach used in this work (i.e., where MDs are appended to the RB and additional
independent reduced coordinates are introduced).

The Harmonic Balance (HB) method was used (with 7 harmonics) using the
NLvib Matlab tool Krack and Gross, 2019 (slightly modified to adapt the direct use
of tensors) and our in-house Matlab FE code. To validate the results of the ROMs,
the Shooting Method is used to find the backbones of the corresponding FOM-d.
Results are shown in Fig. 26. Computations were carried out in Matlab 2020a on a
local machine equipped with an Intel(R) Xeon(R) Silver 4214 CPU @2.20 GHz and
256 GB RAM @2666 MHz. Tensors were built in a Julia sub-routine, called by the
main Matlab code, which uses the TensorOperations package Jutho et al., 2019 for
the tensor contraction. At present, the tensor construction is implemented serially,
therefore leaving space for possible future speed-ups exploiting parallel computing,
as mentioned earlier. We remark once more that tensors in Eqs. (4.28) are evaluated
offline before performing HB/shooting: online evaluations use only the 2-nd, 3-rd
and 4-th order reduced stiffness tensors for both ROMd and the DpROMs.

As it can be observed, the shift from hardening to softening behavior is well
captured by all the models, with a minor loss of accuracy of the DpROMs as ξ
increases. In particular, DpROM-0n shows a significant frequency offset of the first
linear eigenfrequency which remains constant throughout the backbone curve (the
same happens for the FRs, but we omitted to plot them for the sake of figures
clarity). The main goal of the present test was to assess the accuracy of the method
verifying the results against the FOM and over a range of frequencies. However,
computational times are collected in Table 5 for completeness. Run times for the
shooting method with the (Dp)ROMs are included for comparison. These figures,
however, must be taken just as an indication, first because of the difference between
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(a) Gyroscope model.

(b) Mesh.

Figure 27: (a) Model–II, a MEMS gyroscope. Drive and sense direction are indicated by
arrows. (b) Meshed model, with 14,920 quadratic hexahedra, for a total of 87,767

nodes and 261,495 dofs. Approximate dimension are given.

FOM and ROMs in terms of convergence during continuation (ROMs are less likely
to incur into numerical artifacts) and, secondly, because speed and convergence of
this kind of analysis is highly sensitive to several parameters and finding the best
combination by trial-and-error usually leads to sub-optimal performances. Last but
not least, the size of the FOM in this case is too low to really appreciate the savings
in terms of ROM construction.

4.8 numerical tests – ii

4.8.1 MEMS gyroscope

The last example we present is a prototype MEMS mono-axial gyroscope, shown
in Fig. 27a. The device consists in a mass suspended by four S-shaped springs,
connected to the ground on the bottom of the anchors. It is a monolithic piece,
produced via Deep Reactive Ion Etching (DRIE), a process which removes material
from a plane silicon wafer to obtain the final geometry. The etching procedure is
the main cause of production shape defects of MEMS devices, as it will be detailed
later. In operative conditions, the mass is kept in motion by comb finger electrodes
at the natural frequency of the drive mode (i.e. a mode featuring motion mainly in
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the x-direction), so that in presence of an external angular rate Ω (along the y-axis)
a vertical displacement wsense arises due to Coriolis effect along the z-axis (sense).
The latter is then converted into an electrical signal through the parallel plate elec-
trode placed on the ground below the mass, providing the measure for the angular
rate. In general, a defect or a combination of them may create a coupling between
the x- and z-axes so that the drive motion generates an additional out-of-plane dis-
placement which superimposes to the Coriolis displacement to be measured. This is
usually referred to as quadrature error since, being proportional to the drive displace-
ment, it is in phase quadrature with the Coriolis signal, proportional to the drive
velocity. Though it is possible to tell apart the two contributions, this is highly un-
desirable as it requires dedicated, over-sized electronics to accommodate the larger
displacements. Ultimately, this results in higher power consumption.

4.8.2 FE model, defects and simulation details

The FE model is shown in Fig. 27b and describes in detail the geometry and mesh of
the device, counting 14,920 quadratic hexahedral elements for a total of 261,495 dofs.
For the present study we selected two typical defects occurring in the production
of MEMS devices, namely the wall angle (shown in Fig. 28a) and a restriction of
the cross section of the beams (Fig. 28b). The first is generated by the fact that
the plasma beam of the DRIE process might be not perfectly perpendicular to the
working plane, while the second one typically comes from an overexposure to the
chemical attacks (over-etching). In the spirit of our method, we can describe the
global defects as the superposition of these two displacement fields (see Eq. (4.25b)),
letting U = [U1, U2] with the associated amplitude parameter vector ξ = [ξ1, ξ2]

T .
The wall angle shape defect U1 = [ud1, vd1, wd1]T is given by

ud1(ξ1, z) = ξ1 tan(αy)z, (4.43)

and vd1 = wd1 = 0. The tapering of the beams U2 = [ud2, vd2, wd2]T is defined
as

vd2(ξ2, x, y) =
2ξ2
Wb

sin
(
π

Lb
x̃

)
ỹ, (4.44)

where

x̃ = x− xoff, 0 6 x̃ 6 Lb,

ỹ = y− ymid, 0 6 ỹ 6Wb/2,

and ud2 = wd2 = 0. Lb and Wb are the length and the width of the beam, xoff
an offset depending on the location of each beam and ymid is the y-coordinate
corresponding to the middle line of each beam. To ease the interpretation of the
amplitude parameters, in the following ξ1 is reported in degrees to represent the
physical wall angle coming from the product ξ1 tan(αy) in Eq. (4.43), while ξ2 is
reported as a percentage of the beam thickness.

We compute the FR of the MEMS gyroscope using the NLvib Matlab tool and our
in-house Matlab FE code. We used a reduction basis with 3 VMs, the corresponding
6 MDs and 3 DSs per defect (only for the DpROMs). More details about the RB
are given in Appendix 4.12. H = 5 harmonics were selected for the HB method
(with Ns = 3H + 1 time samples per period, the minimum number of samples
by which no sampling error is introduced in the harmonics up the the H-th order
when considering polynomial nonlinearities up to the third order Woiwode et al.,
2020, as in our case). Given the size of the model, we take as reference the results of
ROMd, as it would be prohibitively time and memory consuming to compute the
frequency response for FOMd. Apart from the practical issues, we justify this choice
considering on the one side the good results obtained for lower dimensional models
(as the one presented in the previous section), and on the other side considering that,
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(a) Defect 1, wall angle.

(b) Defect 2, tapering.

Figure 28: (a) First defect shape, U1: constant wall angle αy (only one beam is shown). The
colormap indicates x-displacement. (b) Second defect shape, U2: tapering of the
suspension beams, 3D and top views (only one beam is shown). The colormap
indicates y-displacement (absolute value).

ultimately, our DpROMs will be at best as good as ROM-d, which is not parametric
and not approximated in its formulation.

The frequency response was obtained forcing the system in the center of the
suspended mass with a nodal load directed along the x-direction, with amplitude
F = 0.4µN, and using a Rayleigh damping matrix with α = 105 and β = 0. Figure 29

reports the FRs around the first eigenfrequency of the system for the x-displacement
u (drive direction) and the z-displacement w (sense direction) for all the combina-
tions of ξ1 = {0◦, 0.5◦, 1◦} and ξ2 = {0%, 0.5%, 1%, 1.5%, 2%}. For the present
study, all the DpROM versions reported in Table 4 are tested and compared.

4.8.3 Results

With reference fo Fig. 29, considering first the effect of the wall angle defect only, it
is apparent how DpROM-0n performances quickly degrade as soon as the parame-
ter ξ1 is increased. This can be seen both in the error on the linear eigenfrequency
and especially in the overestimated w-response, approximately one order of magni-
tude higher than the reference. This may be due to the fact that the S-shaped beams
are specifically designed to minimize the cross-coupling between the drive (x-) and
sense (z-) axes created by the wall angle, so that the w-response is so small (2 orders
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(a) u Frequency Response.

(b) w Frequency Response.

Figure 29: Frequency Responses for different defect amplitudes ξ1 (shown in degrees) and
ξ2 (reported as percentage of the beam width) using the Harmonic Balance
method (5 harmonics) for: ROMd ( ), DpROM-0n ( ), DpROM-1tn ( ),
DpROM-1n ( ), DpROM-0d ( ), DpROM-1td ( ) and DpROM-1d ( ).
The displacements u and w of the center of the mass is shown (first harmonic
coefficient of the Fourier series). For each plot, the percent detuning parameter
σ = (f− f01,d)/f01,d × 100 is referred to the corresponding FOMd first eigenfre-
quency f01,d.

of magnitude lower than the u-response) that it cannot be accurately captured by
DpROM-0n. The same observations can be made for DpROM-0d, as the wall angle
defect by itself represent an isochoric transformation. The responses of all the other
tested DpROMs show instead a perfect match with the reference when ξ2 = 0%.

If the tapering defect only is considered (i.e. with ξ1 = 0◦), we observe that
DpROM-(0/1t/1)n have similar responses, with an error on the eigenfrequency
that translates the whole response by an approximately constant ∆f. This error is
expected, as the tapering is a volume-changing defect and integration over V0 is
thus a too coarse approximation. Moreover, the volume changed by this defect af-
fects the suspension beams dimensions, to which the eigenfrequencies of the system
are very sensitive. If on the one hand DpROM-0d still presents relevant errors, on
the other hand DpROM-1td and DpROM-1d show very accurate results in the full
range of the tested ξ2.

For the remaining cases, the trends observed for the parameters ξ1 and ξ2 in-
dividually mix. Notice that looking at some results (e.g. u-response for ξ1 = 1◦,
ξ2 = 0.5%), it may seem that DpROM-0n gives better results than DpROM-1n. This
is however just a coincidence, as for DpROM-0n the first defect shifts the first eigen-
frequency to lower frequencies while the second defect to higher frequencies, so
that the two errors in this case cancel out. Indeed, when the volume correction is
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Figure 30: Transient response of the center of the suspended mass of the gyroscope for:
ROMd ( ), DpROM-0d ( ), DpROM-1td ( ) and DpROM-1d ( ). The
forcing is harmonic with period T0. Case with ξ1 = 1◦, ξ2 = 2%.

used in DpROM-0d, only the first effect is observed, and the frequencies are shifted
to the left.

In Fig. 30 we also show the transient response of the forced node for ROMd

and DpROMsd (case with ξ1 = 1◦, ξ2 = 0.5%). Each model is forced at its own
first resonance frequency f0 (as it is usually the case for MEMS gyroscopes) with
a harmonic forcing, taking 100 samples per period and for a time span equal to 10

times T0 = 1/f0, with F = 50µN. The integration was carried out in Matlab with
our in-house code, using a Newmark integration scheme. Looking at the responses
along the three axes, we observe that the three DpROMs yield correct results but
for DpROM-0d along the sense z-direction (w component). Also, considering the
z-response, we can see that DpROM-1n is slightly better DpROM-1tn, fact that was
not very visible in the FRs.

4.8.4 Computational times

Table 6 reports the average time for the FR analyses and for the construction of
the different models. To compare in terms of time ROMd and the DpROMs, it
is convenient to consider the variable costs (Tvar), i.e. the ones that have to be
sustained for each new parameter realization, and the overhead costs (Toh), i.e. the
ones sustained once and for all independently from the number of realizations. In
the case of ROMd we have that Tvar = Tconstr + Tsim, being Tconstr the time to
construct the model (i.e. RB and tensors computation) and Tsim the time for one
simulation, while Toh = 0. For ROMd indeed, there are no common overhead costs,
but a new model must be constructed for each new realization of the parameters.
In the case of DpROMs instead, we have that Tpvar = Tpsim and Tpoh = Tpconstr (we
use the superscript “p” to distinguish the parametric models from ROMd). For the
parametric models we have in fact to pay upfront the cost of model construction,
which is generally more expensive than the one for ROMd, but thereafter only the
simulation cost must be sustained for each new case. The first trivial conclusion is
then that there exist a number N̄ of parameter realization above which DpROMs
become convenient, that is:

N > N̄ =

⌈
T
p
oh

Tvar − T
p
var

⌉
. (4.45)

For N̄ to be positive and finite, it follows that

Tvar > T
p
var ←→ Tconstr + Tsim > T

p
sim. (4.46)

From Eq. (4.46) it can be seen how the convenience of the parametric model over
the non-parametric one depends on the relative weight between the simulation and
construction times of the latter and the simulation time of the former, as it can
be observed in Table 6 looking at the different speedups7 for the FR and transient
analyses.

That said, it is clearly difficult to draw general and definitive conclusions on the
benefits of the two solutions, ROMd and DpROMs, time-wise. In the experience

7 Speedups are computed considering the variable costs only, with respect to ROMd.
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Table 6: Average computational times for the FR with the HB method and for the construc-
tion of each ROM (comprising the time to compute VMs, MDs, DSs and the tensors).
ROMd counts 9 dofs, while DpROMs 15 dofs. Apart from the construction costs,
items for the DpROMs are clustered and averaged. Notice that the construction
time for ROMd is sustained for each new parameter realization and contributes to
the variable costs. DpROM names are reported by their respective suffix.

Model–II ROMd -0n -1tn -1n -0d -1td -1d

ROM construction 209 s 335 s 333 s 816 s 353 s 357 s 1,063 s
HB FR 21.7 s 49.2 s
Transient analysis 0.43 s 0.51 s
Overhead cost – 335 s 333 s 816 s 353 s 357 s 1,063 s
Variable cost (FR) 230.7 s 49.2 s
Variable cost (transient) 209.4 s 0.51 s
Speedup (FR) – 4.7×
Speedup (transient) – 410.6×

of the authors, transient analysis offer the best gains, as simulation speed is very
high, grows almost linearly with the simulation time span, and is less sensitive to
the number of dofs than other kind of analysis, as the ones requiring continuation
methods. When continuation is required, one could potentially find greater benefits
in using a model with a low number of dofs, so that ROMd could actually become
the best choice. We remark however that for ROMd we have to take into account
also the construction cost as a variable cost, and that for large FE models the sole
computation of structural eigenmodes can already take several minutes, making
this cost very high.

4.9 conclusions

We presented a ROM for geometric nonlinearities that can parametrically describe
a shape imperfection with respect to the nominal (blueprint) design, named for
brevity DpROM. The imperfection is given by the superposition of user-defined
defect shapes, whose amplitudes are parameters of the model and can be changed
without reconstructing the model itself. This result has been made possible thanks
to a polynomial representation of the internal forces resulting from a two-step de-
formation process (which brings the nominal geometry into the defected one and
then into the deformed one) and from the approximation of the strains obtained
by a Neumann expansion. The latter allowed to eliminate rational expressions un-
der the hypothesis of small defects, so that the elastic internal forces are written
as simple polynomials both with respect to the displacement field representing the
defect and with respect to the actual displacement field. Using a Galerkin projec-
tion and a modal-based approach for selecting the RB, the reduced internal forces
have been recast in tensorial form, where the linear, quadratic and cubic stiffness
tensors are found to be functions of a parameter vector collecting the amplitudes
of the defects imposed on the structure. Within this framework we tested different
versions of the DpROM for different degrees of approximation. In particular, we
have shown that the model we had previously developed using Budiansky’s ap-
proach corresponds to the 0th-order expansion of our model, integrated over the
nominal volume V0 (i.e. DpROM-0n). Finally, in the numerical studies we showed
that the higher order approximation DpROM-1n effectively leads to more accurate
results and that for volume-changing defects a large improvement can be achieved
by approximating the tensor integral over the real volume of the defective geom-
etry (DpROM-(0/1)d). The truncated version DpROM-1tn/d was also presented,
which has almost the same accuracy as its complete counterpart, but without the
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need to construct tensors with dimensionality higher than four. The computational
costs were then critically discussed, taking into account different types of analysis.
In particular, we showed that in transient studies we can usually expect very high
speedups from the parametric models. In the case of FR analysis, which we used
to assess the quality of the solutions over a range of frequencies as an alternative to
multiple time analyses, the gains will be more contained. In this context, to reduce
the dofs of both the parametric and non-parametric ROMs and make FR analysis
faster and thus closer to transient analysis in terms of time and speedups, we think
that an a priori selection of the RB vectors and hyperreduction strategies would
actually be very beneficial, and they can constitute the spur for future investigation.

4.10 appendix a – localization matrices
We report in Tables 7 and 8 the expressions for the matrices L1, L2 and L3 de-
fined in Eqs. 4.21, for the plane-strain/stress continuum problem (2D case) and the
three-dimensional continuum problem (3D case). In the tables, name subscripts are
moved to superscripts to avoid confusion with the indexes (e.g. L(1)ijk is a component
of L1).

Table 7: Elements L(1)ijk, L(2)ijk and L
(3)
ijkl of the sparse 3 × 4 × 4 matrices L1, L2 and of the

sparse 3× 4× 4× 4 matrix L3, respectively, in the 2D case.

L
(1)
111 = 1, L

(1)
321 = 1, L

(1)
312 = 1, L

(1)
222 = 1, L

(1)
123 = 1, L

(1)
343 = 1, L

(1)
324 = 1, L

(1)
244 = 1.

L
(2)
111 = 1, L

(2)
331 = 1, L

(2)
312 = 1, L

(2)
232 = 1, L

(2)
123 = 1, L

(2)
343 = 1, L

(2)
324 = 1, L

(2)
244 = 1.

L
(3)
1111 = 1, L

(3)
3211 = 1

2 , L
(3)
3121 = 1

2 , L
(3)
1331 = 1, L

(3)
3431 = 1

2 , L
(3)
3341 = 1

2 , L
(3)
3112 = 1, L

(3)
2212 = 1

2 ,
L
(3)
2122 = 1

2 , L
(3)
3332 = 1, L

(3)
2432 = 1

2 , L
(3)
2342 = 1

2 , L
(3)
1213 = 1

2 , L
(3)
1123 = 1

2 , L
(3)
3223 = 1, L

(3)
1433 = 1

2 ,
L
(3)
1343 = 1

2 , L
(3)
3443 = 1, L

(3)
3214 = 1

2 , L
(3)
3124 = 1

2 , L
(3)
2224 = 1, L

(3)
3434 = 1

2 , L
(3)
3344 = 1

2 , L
(3)
2444 = 1.

Table 8: Elements L(1)ijk, L(2)ijk and L
(3)
ijkl of the sparse 6 × 9 × 9 matrices L1, L2 and of the

sparse 6× 9× 9× 9 matrix L3, respectively, in the 3D case.

L
(1)
111 = 1, L

(1)
421 = 1, L

(1)
531 = 1, L

(1)
412 = 1, L

(1)
222 = 1, L

(1)
632 = 1, L

(1)
513 = 1, L

(1)
623 = 1, L

(1)
333 = 1,

L
(1)
144 = 1, L

(1)
454 = 1, L

(1)
564 = 1, L

(1)
445 = 1, L

(1)
255 = 1, L

(1)
665 = 1, L

(1)
546 = 1, L

(1)
656 = 1, L

(1)
366 = 1,

L
(1)
177 = 1, L

(1)
487 = 1, L

(1)
597 = 1, L

(1)
478 = 1, L

(1)
288 = 1, L

(1)
698 = 1, L

(1)
579 = 1, L

(1)
689 = 1, L

(1)
399 = 1.

L
(2)
111 = 1, L

(2)
441 = 1, L

(2)
571 = 1, L

(2)
412 = 1, L

(2)
242 = 1, L

(2)
672 = 1, L

(2)
513 = 1, L

(2)
643 = 1, L

(2)
373 = 1,

L
(2)
124 = 1, L

(2)
454 = 1, L

(2)
584 = 1, L

(2)
425 = 1, L

(2)
255 = 1, L

(2)
685 = 1, L

(2)
526 = 1, L

(2)
656 = 1, L

(2)
386 = 1,

L
(2)
137 = 1, L

(2)
467 = 1, L

(2)
597 = 1, L

(2)
438 = 1, L

(2)
268 = 1, L

(2)
698 = 1, L

(2)
539 = 1, L

(2)
669 = 1, L

(2)
399 = 1.

L
(3)
1111 = 1, L

(3)
4211 = 1

2 , L
(3)
5311 = 1

2 , L
(3)
4121 = 1

2 , L
(3)
5131 = 1

2 , L
(3)
1441 = 1, L

(3)
4541 = 1

2 , L
(3)
5641 = 1

2 , L
(3)
4451 = 1

2 ,
L
(3)
5461 = 1

2 , L
(3)
1771 = 1, L

(3)
4871 = 1

2 , L
(3)
5971 = 1

2 , L
(3)
4781 = 1

2 , L
(3)
5791 = 1

2 , L
(3)
4112 = 1, L

(3)
2212 = 1

2 , L
(3)
6312 = 1

2 ,
L
(3)
2122 = 1

2 , L
(3)
6132 = 1

2 , L
(3)
4442 = 1, L

(3)
2542 = 1

2 , L
(3)
6642 = 1

2 , L
(3)
2452 = 1

2 , L
(3)
6462 = 1

2 , L
(3)
4772 = 1, L

(3)
2872 = 1

2 ,
L
(3)
6972 = 1

2 , L
(3)
2782 = 1

2 , L
(3)
6792 = 1

2 , L
(3)
5113 = 1, L

(3)
6213 = 1

2 , L
(3)
3313 = 1

2 , L
(3)
6123 = 1

2 , L
(3)
3133 = 1

2 , L
(3)
5443 = 1,

L
(3)
6543 = 1

2 , L
(3)
3643 = 1

2 , L
(3)
6453 = 1

2 , L
(3)
3463 = 1

2 , L
(3)
5773 = 1, L

(3)
6873 = 1

2 , L
(3)
3973 = 1

2 , L
(3)
6783 = 1

2 , L
(3)
3793 = 1

2 ,
L
(3)
1214 = 1

2 , L
(3)
1124 = 1

2 , L
(3)
4224 = 1, L

(3)
5324 = 1

2 , L
(3)
5234 = 1

2 , L
(3)
1544 = 1

2 , L
(3)
1454 = 1

2 , L
(3)
4554 = 1, L

(3)
5654 = 1

2 ,
L
(3)
5564 = 1

2 , L
(3)
1874 = 1

2 , L
(3)
1784 = 1

2 , L
(3)
4884 = 1, L

(3)
5984 = 1

2 , L
(3)
5894 = 1

2 , L
(3)
4215 = 1

2 , L
(3)
4125 = 1

2 , L
(3)
2225 = 1,

L
(3)
6325 = 1

2 , L
(3)
6235 = 1

2 , L
(3)
4545 = 1

2 , L
(3)
4455 = 1

2 , L
(3)
2555 = 1, L

(3)
6655 = 1

2 , L
(3)
6565 = 1

2 , L
(3)
4875 = 1

2 , L
(3)
4785 = 1

2 ,
L
(3)
2885 = 1, L

(3)
6985 = 1

2 , L
(3)
6895 = 1

2 , L
(3)
5216 = 1

2 , L
(3)
5126 = 1

2 , L
(3)
6226 = 1, L

(3)
3326 = 1

2 , L
(3)
3236 = 1

2 , L
(3)
5546 = 1

2 ,
L
(3)
5456 = 1

2 , L
(3)
6556 = 1, L

(3)
3656 = 1

2 , L
(3)
3566 = 1

2 , L
(3)
5876 = 1

2 , L
(3)
5786 = 1

2 , L
(3)
6886 = 1, L

(3)
3986 = 1

2 , L
(3)
3896 = 1

2 ,
L
(3)
1317 = 1

2 , L
(3)
4327 = 1

2 , L
(3)
1137 = 1

2 , L
(3)
4237 = 1

2 , L
(3)
5337 = 1, L

(3)
1647 = 1

2 , L
(3)
4657 = 1

2 , L
(3)
1467 = 1

2 , L
(3)
4567 = 1

2 ,
L
(3)
5667 = 1, L

(3)
1977 = 1

2 , L
(3)
4987 = 1

2 , L
(3)
1797 = 1

2 , L
(3)
4897 = 1

2 , L
(3)
5997 = 1, L

(3)
4318 = 1

2 , L
(3)
2328 = 1

2 , L
(3)
4138 = 1

2 ,
L
(3)
2238 = 1

2 , L
(3)
6338 = 1, L

(3)
4648 = 1

2 , L
(3)
2658 = 1

2 , L
(3)
4468 = 1

2 , L
(3)
2568 = 1

2 , L
(3)
6668 = 1, L

(3)
4978 = 1

2 , L
(3)
2988 = 1

2 ,
L
(3)
4798 = 1

2 , L
(3)
2898 = 1

2 , L
(3)
6998 = 1, L

(3)
5319 = 1

2 , L
(3)
6329 = 1

2 , L
(3)
5139 = 1

2 , L
(3)
6239 = 1

2 , L
(3)
3339 = 1, L

(3)
5649 = 1

2 ,
L
(3)
6659 = 1

2 , L
(3)
5469 = 1

2 , L
(3)
6569 = 1

2 , L
(3)
3669 = 1, L

(3)
5979 = 1

2 , L
(3)
6989 = 1

2 , L
(3)
5799 = 1

2 , L
(3)
6899 = 1

2 , L
(3)
3999 = 1.

For the sake of completeness, we also report the expressions for the A2 and A3
in the 2D case:

A(2D)
2 = (−1)

ud,x vd,x 0

0 0 ud,y vd,y
ud,y vd,y ud,x vd,x

 , (4.47a)
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A(2D)
3 = (−1/2)

2ud,x 0 vd,x
0 2vd,y ud,y

2ud,y 2vd,x ud,x + vd,y

 (4.47b)

4.11 appendix – stiffness matrix derivatives
The virtual variation wrt u of the internal elastic forces as defined in Eq. (4.20)
writes

δfint =
∫
Vo

[
GT (H + A + A2 + 2A3A)T C

(
H +

1

2
A + A2 + A3A

)
Gδu

+ GT (H + A + A2 + 2A3A)T C
(
1

2
δA + A3δA

)
Gu+

+ GT (δA + 2A3δA)T C
(

H +
1

2
A + A2 + A3A

)
Gu
]

dVo.

(4.48)

Recalling that Aδθ = δAθ, we can write

δfint =
∫
Vo

[
GT (H + A + A2 + 2A3A)T C (H + A + A2 + 2A3A)Gδu

+ GTδATN
]

dVo,
(4.49)

being

N =
(

I + 2AT3
)

C
(

H +
1

2
A + A2 + A3A

)
Gu. (4.50)

The second term on the right-hand side of Eq. (4.49) can be rewritten to put in
evidence the displacement virtual variation δu as

δf′′I =

∫
Vo

GiIL1jikGklδulNj dVo, (4.51)

where Einstein notation was used for convenience. The tangent stiffness matrix
therefore writes:

Kt = K′ + K′′ (4.52)

where

K′ =
∫
Vo

GT (H + A + A2 + 2A3A)T C (H + A + A2 + 2A3A)G dVo, (4.53)

K′′IJ =

∫
Vo

GiIL1jikGkJNj dVo. (4.54)

Substituting u =Φiηi and ud = Ujξj in Eq. (4.52), taking the derivative wrt either
ηi and/or ξj and evaluating the resulting expressions at equilibrium and with zero
defect amplitudes, as required by Eqs. (4.38)–(4.41), we can write the derivatives of
Kt as:

∂Kt
∂ηj

∣∣∣∣
0

=

∫
Vo

[
GT

(
HTCAj + ATj CH

)
G + GT [(L1 ·G) ·11 (CHGΦi)]

]
dVo,

(4.55a)
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Figure 31: RB modes for Model-II, normalized in order to have a maximum displacement of
1 µm and with a scale factor of 50×. The colormap indicates the displacement
magnitude (blue is zero, red is 1).

∂Kt
∂ξj

∣∣∣∣
0

=

∫
Vo

GT
(

HTCA2j + A2Tj CH
)

G dVo, (4.55b)

∂2Kt
∂ηj∂ξk

∣∣∣∣
0

=

∫
Vo

[
GT

(
A2TkCAj + ATj CA2k + 2A

T
j A3TkCH + 2HTCA3kAj

)
G

+ GT
[
(L1 ·G) ·11 (CA2 + 2AT3CH)GΦi

] ]
dVo,

(4.55c)

∂2Kt
∂ξj∂ξk

∣∣∣∣
0

=

∫
Vo

GT
(

A2Tj CA2k + A2TkCA2j
)

GdVo, (4.55d)

where, recalling that ηi and ξj are scalars, we used

A(GΦiηi) = Aiηi,

A2(GUjξj) = A2jξj,

(same for A3) to avoid a cumbersome notation, and where ·ij denotes the contrac-
tion of the i-th dimension of the first term with the j-th dimension of the second
term.
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4.12 appendix – rb for model–ii
Also for Model–II, the RB selection criterion described in Remark 6 is adopted and
eigenmodes up to 3 times the first eigenfrequency are retained. The reduction basis
is thus formed as:

V = [Φ1, Φ2 ,Φ3,θ11,θ12, θ13 ,θ22, θ23, θ33,

Ξ1,1, Ξ2,1 ,Ξ3,1, Ξ1,2, Ξ2,2 ,Ξ3,2], (4.56)

that is, 3 VMs and all their corresponding MDs and DSs are included. Figure 31

shows the mode shapes. Apart from VMs, the interpretation of these vectors is in
general not trivial. One can for instance recognize in θ33 a necessary element to
correctly represent the rotation happening in mode Φ3 and in θ11 the stretching of
the suspension beams required to capture their nonlinear behavior. To better inspect
the contribution of DSs, we plotted Ξ⊥i,k, i.e. Ξi,k orthogonalized with respect to
Φi (via Gram-Schmidt). Ξ⊥1,1 is particularly significant as it represent the out-of-
plane motion of the structure induced on the first VM (x-polarized) by the presence
of the wall-angle defect, which is responsible for the gyroscope quadrature error.
Similarly, it can be observed how Ξ⊥2,1 represent an in-plane motion associated to
the second VM (z-polarized) due to the wall-angle defect. The contributions of Ξ⊥i,2
are instead local and restricted to the suspension beams, as it can be expected given
the local nature of the tapering.

4.13 appendix – additional cases
In this section we showcase some FRs for defects which affect the boundary condi-
tions. We consider again the same beam studied in Sec. 4.7 (same mesh and NLvib
settings); however, we limit the comparison to the only ROMd and DpROM−1d
models.

As it can be observed in Figs. 32a–33b, although the clamped ends of the beam are
moved by the imposed defect, the response of the defected structure is well captured
by the DpROM. In Fig. 33b, due to the large amplitude of the imposed defect, the
value of the linear eigenfrequency is a little bit off, but the overall response (with
the first two resonances tending to coincide) is well represented.
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5 D P R O M F O R S U B S T R U C T U R I N G

It’s a trap!
—Admiral Ackbar, Star Wars Episode VI

Substructuring techniques, loosely speaking, consist into dividing the total do-
main of a structure into sub-domains which, to some extent, can be handled inde-
pendently during a FE simulation run. If each substructure model is then reduced,
we talk of Component Mode Synthesis (CMS) techniques. The most popular CMS
strategies date back to the late sixties (Craig and Bampton, 1968; Rubin, 1975) and
apply to linear dynamics. Recently, these approaches have been extended to nonlin-
ear dynamics (Wu, Tiso, Tatsis, et al., 2019; Wu, Tiso, and van Keulen, 2018) using,
again, a modal-based approach (with VMs, MDs, among other vectors).

In this chapter, we study the feasibility of applying the DpROM in a substructur-
ing framework. Three main paths are possible: in the first, defect shapes for each
substructure are chosen so that they do not alter the interfaces between adjacent sub-
structures; in the second, defects and defect amplitudes (ξ) of each substructure are
chosen so that interfaces are always compatible; in the third, arbitrary defect shapes
are allowed. While the first and the second approach would translate into the (al-
most) straightforward application of known MOR strategies, the third one is more
general and poses an interesting problem, as interfaces are not a priori compatible. In
the following, we study how this problem can be addressed.

5.1 substructuring and cms
In this section we briefly review Substructuring and Component Mode Synthesis.
For more details, the reader is referred to Allen et al., 2020; Klerk et al., 2008.

5.1.1 Substructuring: primal and dual assembly

Considering s = 1, . . . , S substructures with ns dofs each, we can write

Msüs + Csu̇s + Ksus = fs + gs , (5.1)

where Ms, Cs, Ks ∈ Rns×ns are the FOM mass, damping and stiffness matrices of
the s-th substructure (being ns the number of dofs), and us, fs, gs ∈ Rns are the
displacement vector, the external forces and the interface forces, respectively. The
system of equations for the global structure can be written in diagonal form as


Mü + Cu̇ + Ku = f + g

Bu = 0

LTg = 0

(5.2a)

(5.2b)

(5.2c)

where

M = diag(M1, . . . , MS) =

M1 . . . 0
...

. . .
...

0 . . . MS

 ∈ RnS×nS , (5.3a)

C = diag(C1, . . . , CS), K = diag(K1, . . . , KS), (5.3b)

85
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u =


u1
...

uS

 ∈ RnS , (5.3c)

fT = {fT1 , . . . , fTS}, gT = {gT1 , . . . , gTS}, (5.3d)

being nS =
∑S
s=1 ns. B is the compatibility matrix (for conforming meshes, a signed

Boolean matrix), and L is the localization matrix. Equations (5.2b) and (5.2c) state
the compatibility and equilibrium conditions, respectively. Often it is convenient to
define these conditions at the substructure level as{∑S

s=1 Bsus = 0∑S
s=1 LTs gs = 0

(5.4a)

(5.4b)

where Bs and Ls are the nλ×ns compatibility and the ns×nu localization matrices
pertaining to the s-th substructure, being nλ the total number of interface compat-
ibility constraints that need to be imposed and nu the number of global unique
dofs (i.e. without repetition of interface dofs, so that nu < nS). The following
relationships hold

L =

L1
...

LS

 , B = [B1, . . . , BS] . (5.5)

From Eqs. (5.2) one can proceed using a primal or a dual formulation. In the pri-
mal formulation the unique set of nu global unknowns uu = unique(u) is used and
interface forces are eliminated using interface equilibrium. Using the localization
matrix, we can write

u = Luu and/or us = Lsuu ∀s, (5.6)

which automatically satisfies compatibility, that is Bu = BLuu = 0 (which also
entails L = null(B)). The primal system therefore reduces to

(LTML)üu + (LTCL)u̇u + (LTKL)uu = LT f +�
�LTg . (5.7)

In dual formulation the dofs vector u is retained instead, and the interface forces are
constructed such that they act in opposite directions on the coupled substructures,
that is

g = −BTλ and/or gs = −BTsλ (5.8)

where λ are Lagrange multipliers representing the interface forces intensities. Plug-
ging Eq. (5.8) into Eqs. (5.2) we obtain the dual system as{

Mü + Cu̇ + Ku + BTλ = f

Bu = 0

(5.9a)

(5.9b)

or in matrix form[
M 0

0 0

]{
ü
λ̈

}
+

[
K BT

B 0

]{
u
λ

}
=

{
f
0

}
(5.10)

where we considered the undamped system just for ease of notation. Being BT the
null space of LT , equilibrium condition (5.2c) is always satisfied. Dual formulation
thus features more unknowns (repeated interface dofs, Lagrange multipliers) than
its primal counterpart. Its success however is linked to its use in parallel solvers,
such as the FETI method.
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Example 1: Localization matrix

In this example, a 2D truss structure is divided into 4 substructures (a, b, c,
d) with na = 4, nb = 2, nc = 2 and nd = 4 dofs, for a total nS = 12 dofs
and nu = 6 unique dofs.

Figure 34: Example of 4 substructures meshed with 2D truss elements. Interfaces
between structures have been highlighted with different colors to ease the
reading.

5.1.2 Component Mode Synthesis (CMS)

CMS refers to “the construction of substructures based on a reduced space" Klerk
et al., 2008. In these methods, the response of the s-th subcomponent is assumed to
be well represented in a subspace spanned by the ms columns of the reduced basis
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Vs, being ms � ns. The displacement vector of the s-th substructure can therefore
be approximated as

us =
{

uBs
uIs

}
' Vsηs =

[
VBBs VBIs
VIBs VIIs

]{
ηBs
ηIs

}
(5.11)

being ηs the vector of the reduced coordinates associated to Vs and where bound-
ary1 (superscript B) and interior dofs (superscript I) are put in evidence.

Example 2: Compatibility matrix

In this example, we show the use of the B matrix. Notice that at the interface
between substructures a, c and d 6 constraint equations can be written, how-
ever only 4 are linearly independent. Usually this is not a problem; also, it
easier to implement automatic procedures considering all possible constraint
equations. Therefore, in this case nλ = 8 equations were written, but this
number could have been reduced to nλ = 6.

Figure 35: Example of 4 substructures meshed with 2D truss elements. Interfaces
between structures have been highlighted with different colors to ease the
reading.

1 caveat: by “boundary” dofs we refer here to interface dofs between substructures. We assume that dofs
associated to physical boundaries (e.g. clamp) are already removed through appropriate partitioning of
matrices/vectors in the EoM.
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Unless an interface-reduction strategy is adopted, usually boundary dofs are re-
tained in physical coordinates, i.e.

ηBs = uBs ∈ Rn
B
s , (5.12a)

VBBs = Is ∈ Rn
B
s×nBs (5.12b)

VBIs = 0 ∈ Rn
B
s×nIs (5.12c)

with nBs and nIs the number of boundary and interior dofs, respectively, of substruc-
ture s, in which case we have

us =
{

uBs
uIs

}
' Vsηs =

[
Is 0

VIBs VIIs

]{
uBs
ηIs

}
. (5.13)

The choice of the reduced basis depends on the method adopted, e.g. Ritz vectors,
vibration and constraint modes in Craig-Bampton’s method (Craig and Bampton,
1968), or rigid body modes and attachment modes in Rubin’s method (Rubin, 1975).
Regardless, the equations of motion of each substructure can be projected using the
selected basis as

VTsMsVs︸ ︷︷ ︸
M̃s

η̈s + VTsKsVs︸ ︷︷ ︸
K̃s

ηs = VTs fs︸ ︷︷ ︸
f̃s

+VTs gs︸ ︷︷ ︸
g̃s

. (5.14)

where the notation ?̃s is used to denote a projected matrix/vector. One can then
assemble the reduced substructures via primal or dual formulation into the global
reduced system, in a similar manner to the one shown in the previous section for
the full system.

5.2 preliminary considerations
As stated at the beginning of the chapter, the aim here is to use DpROM with sub-
structuring trying to accommodate arbitrary defects. As already mentioned, this
means that we have to allow (initially) non-compatible interfaces. Primal assembly
based methods, not allowing access to the interface dofs and forces, are then ruled
out. As for dual assembly methods, to the best of the author’s knowledge, the
only ROM that can be found in literature is given by Gruber et al., 2019, where a
strategy to stabilize the otherwise unstable Dual-Craig-Bampton2 ROM is proposed.
The price to pay for this stabilization, however, is a second reduction which, in our
parametric setting, cannot be performed: for each new parameter realization a new
ROM should be computed. A thorough dissertation on the pros and cons of differ-
ent methods was performed by Bachmann, 2020. Upon these considerations, in the
following the Finite-Element Tearing and Interconnecting (FETI) method, based on
a dual assembly formulation, is presented.

5.3 feti
The Finite-Element Tearing and Interconnecting was first presented in Farhat and
Roux, 1991 as a subdomain method to minimize the cores intercommunication dur-
ing parallel computing. In other words, the method tries to maximize each sub-
structure’s computational independence from each other. First introduced for static
problems in structural mechanics, the method has become popular and many ex-
tensions have been proposed in literature (Farhat, Chen, et al., 1995; Farhat and
Mandel, 1998).

2 Very similar to Rubin’s method though.
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5.3.1 Linear Static FETI

Let I = {1, . . . , NI} be the set numbering interfaces across all substructures, without
repetition (i.e. shared interfaces are counted only once), being NI the total number
of interfaces. Let now Is ⊆ I be the subset containing only the number of the
interfaces pertaining to substructure s.

Considering the linear elastic static problem, for each substructure s we can write


Ksus = fs +

∑
k∈Is

(Bks )
Tλk for s = 1, . . . , S,

Bksus + Bkrur = 0 for s = 1, . . . , S and ∀k ∈ Is,

(5.15a)

(5.15b)

being Bks the partition of Bs pertaining to interface k, λk the partition of λ per-
taining to interface k and r = r(s, k) the number of the substructure connected to
substructure s through interface k.

In words, the S Eqs. (5.15a) state that elastic forces of each substructure must
balance external loads applied to the structure and interface forces coming from
all adjacent substructures. At the same time, compatibility between each pair of
substructures is enforced by Eqs. (5.15b) (some equations can be redundant, see
example in Fig. 35).

For the sake of illustration, let us consider only two substructures connected by
one interface. Since I = {1}, we can also ease notation noticing that Bks = Bs and
λk = λ. The problem then can be written as


K1u1 = f1 + BT1λ

K2u2 = f2 + BT2λ

B1u1 + B2u2 = 0

(5.16a)

(5.16b)

(5.16c)

and


u1 = K−1

1

(
f1 + BT1λ

)
u2 = K−1

2

(
f2 + BT2λ

)
(

B1K−1
1 BT1 + B2K−1

2 BT2
)
λ = −B1K−1

1 f1 − B2K−1
2 f2 .

(5.17a)

(5.17b)

(5.17c)

The last set of equations can be cheaply solved for λ ∈ Rnλ first using compatibility,
then the equilibrium equation for each substructure can be solved independently,
in parallel on different processors.

The case of unconstrained substructures can also be treated by adding rigid body
modes to the displacement solution, by substituting the stiffness matrix inverse with
its pseudoinverse and then by introducing an orthogonality condition: all details
can be found in Farhat and Roux, 1991. In the same work, it is also offered a way
to avoid the explicit computation of the interface operator

FI =
(

B1K−1
1 BT1 + B2K−1

2 BT2
)
, (5.18)

via a preconditioned conjugate projected gradient (PCPG) algorithm.
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Example 3: Compatibility in FETI

In this example, we have 4 interfaces, so that I = {α, β, γ, δ}, Ia = {α, β, δ},
Ib = {α}, Ic = {γ, δ} and Id = {β, γ}. In the figure, the partitions of B
representing the Bks compatibility matrices to be used in FETI are indicated.

Figure 36: Example of 4 substructures meshed with 2D truss elements. Interfaces
between structures have been highlighted with different colors to ease the
reading.

5.3.2 Nonlinear Dynamic FETI

In Farhat, Chen, et al., 1995 the method was extended to nonlinear dynamics. For
each substructure, the equilibrium equations write

Msüs + fint,s(us) = fs +
∑
k∈Is

(Bks )
Tλk, (5.19)

which can then be discretized in time and linearized as

Ss(ujs,n)∆uj+1s,n = rjs,n +
∑
k∈Is

(Bks )
Tλ
j+1
k,n ,

∆uj+1s,n = uj+1s,n − ujs,n ,
(5.20)
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where n and j denote the time and the iteration steps, respectively, Ss is the tangent
dynamic stiffness matrix (whose expression depends on the chosen algorithm and
which comprises mass, damping and elastic terms), and rs is the out-of-balance
force vector (residual).

Following later works by Combescure and Gravouil, 2002; Gravouil and Combes-
cure, 2001; Mahjoubi et al., 2009; A. Prakash and Hjelmstad, 2004, we adopt a
velocity-based Newmark integration scheme with parameters γ and β and time
step h; compatibility is imposed on velocities, i.e.

Bks u̇s + Bkr u̇r = 0 for s = 1, . . . , S and ∀k ∈ Is. (5.21)

Going back to the simple example of two domains with one interface, we can
write

M1ü1 + C1u̇1 + fint(u1) = f1 + BT1λ

M2ü2 + C2u̇2 + fint(u2) = f2 + BT2λ

B1u̇1 + B2u̇2 = 0

(5.22a)

(5.22b)

(5.22c)

and use the Newark formulas for the discretized displacement and velocities

us,n+1 = us,n +

(
γ−β

γ
h

)
u̇s,n +

(
γ− 2β

2γ
h2
)

üs,n︸ ︷︷ ︸
prediction

+
βh

γ
u̇s,n+1︸ ︷︷ ︸

correction

, (5.23a)

üs,n+1 =

prediction︷ ︸︸ ︷
γ− 1

γ
üs,n −

1

γh
u̇s,n+

correction︷ ︸︸ ︷
1

γh
u̇s,n+1 , (5.23b)

where we marked the prediction/correction components to be used in the numer-
ical scheme. As usual, Newton-Rapson iteration algorithm can be used to solve the
nonlinear system. The residuals write

rs = Msüs + Csu̇s + fint(us) − fs − BTsλ = 0 (5.24)

and, at time step n, we can expand it in Taylor series to the first order and set up
an iteration scheme (index j) equalling to zero:

rj+1s,n ≈ rjs,n +
∂rs
∂us

∣∣∣∣j
n

∆us +
∂rs
∂u̇s

∣∣∣∣j
n

∆u̇s +
∂rs
∂üs

∣∣∣∣j
n

∆üs +
∂rs
∂λ

∣∣∣∣j
n

∆λ = 0 (5.25)

which in our scheme becomes

rjs,n + Kts(u
j
s,n)∆us + Cs∆u̇s + Ms∆üs + BTs∆λ = 0

rjs,n +

(
1

γh
Ms + Cs +

βh

γ
Kts(u

j
s,n)

)
∆u̇s + BTs∆λ = 0

S(ujn)∆u̇s + BTs∆λ = −rjs,n

(5.26)

with ∆(•) = (•)j+1n − (•)jn.
In our example, we have

∆u̇1 = −S(uj1,n)
−1
(

rj1,n + BT1∆λ
)

∆u̇2 = −S(uj2,n)
−1
(

rj2,n + BT2∆λ
)

B1(u̇
j
1,n +∆u̇1) + B2(u̇

j
2,n +∆u̇2) = 0

(5.27a)

(5.27b)

(5.27c)

and, after manipulation, the interface equation writes(
B1(S

j
1,n)

−1BT1 + B2(S
j
2,n)

−1BT2
)
∆λ

= B1
(

u̇j1,n − (Sj1,n)
−1rj1,n

)
+ B2

(
u̇j2,n − (Sj2,n)

−1rj2,n
)

. (5.28)
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Solving the latter, Lagrange multipliers can be updated, then equilibrium equations
can be solved to retrieve velocity increments, so that finally all the kinematic vari-
ables can be determined.

5.4 reduction in feti
Due to the high level of independence between substructures in FETI, the applica-
tion of reduction techniques to the substructures is fairly straightforward. Assum-
ing that the response can be approximated as

us ≈ Vsηs, (5.29)

the FETI system can be written simply as
VT1M1V1η̈1 + VT1C1V1η̇1 + VT1 fint(V1η1) = VT1 f1 + VT1BT1λ

VT2M2V2η̈2 + VT2C2V2η̇2 + VT2 fint(V2η2) = VT2 f2 + VT2BT2λ

B1V1η̇1 + B2V2η̇2 = 0

(5.30a)

(5.30b)

(5.30c)

and the iterative solution described in the previous section can again be employed
to solve the nonlinear system. For the sake of illustration, in the case two substruc-
tures, one interface and linear system, we write

(
B̃1S̃−1

1 B̃T1 + B̃2S̃−1
2 B̃T2

)
λ = −B̃1S̃−1

1 f̃1 − B̃2S̃−1
2 f̃2

η1 = S̃−1
1

(
f̃1 + B̃T1λ

)
η2 = S̃−1

2

(
f̃2 + B̃T2λ

)
(5.31a)

(5.31b)

(5.31c)

where B̃s = BsVs and

S̃s = VTsSVs = VTs

(
1

γh
Ms + Cs +

βh

γ
Ks

)
Vs (5.32)

is the reduced (linear) dynamic stiffness matrix.

5.4.1 Nonlinear Craig-Bampton (in a nutshell)

We select the reduction basis V according to CB method (Craig and Bampton, 1968),
extended to nonlinear systems through MDs (Wenneker and Tiso, 2014). The dis-
placement of the structure can be approximated as (we drop the subscript s to ease
notation):

u =

{
uB

uI

}
' Vη =

[
I 0 0 0

ΨI ΨIθ φI θI

]
uB

uBθ
ηϕ
ηθ

 . (5.33)

where the displacement vector was partitioned in order to have the interface (•B)
dofs before the internal ones (•I). The vector in the basis are the Constraint Modes
Ψ (CM), the Constraint Mode Derivatives Ψθ (CMDs), and the internal VMs φI and
MDs θI. Notice that interface dofs uB have not been reduced and that the size
of coordinates associated to DCMs is proportional to the size of uB, reason why,
although not physical, they are here named uBθ . In the following, we define the
introduced vectors.



94 dprom for substructuring

Constraint Modes (CM)

The i-th CMs can be loosely described as “the deformed shape the structure assumes
when the i-th interface dof undergoes an unitary displacement, being the other
interface dofs fixed". Considering the linear static problem with imposed boundary
motion and opportunely partitioning vector and matrices between interface (B) and
internal (I) dofs, we have

Ku =

[
KBB KBI

KIB KII

]{
uB

uI

}
=

{
fu
0

}
= Fu, (5.34)

where

fu =
(

KBB − KBI(KII)−1KIB
)

uB, (5.35)

and

ΨIi = −(KII)−1KIBuBi . (5.36)

Choosing uBi with the i-th dof equal to 1 and zero elsewhere, we can collect all
uBi in an identity matrix I so that, applying Eq. (5.36) to all interface dofs, we can
compute all the (internal) CMs as

ΨI = −(KII)−1KIB. (5.37)

Finally, considering interface dofs, CMs write

CM : Ψ ,

[
ΨB

ΨI

]
=

[
I

−(KII)−1KIB

]
. (5.38)

CMs then account for the static response of the substructure to a displacement of
the interface.

Constraint Mode Derivatives (CMD).

In the case of large deformations, CMs alone cannot describe the static deforma-
tion of the structure. Although MDs may partially span the solution space of the
nonlinear static response, typically a high number of VMs and MDs is required to
retrieve accurate results. Although not canonical, in past works (see van den Broek,
2019) the author found that the derivative of CMs with respect to their amplitude
sensibly improves the response.

The procedure is similar to the one presented to compute static MDs. Considering
the i-th CM, we have

KtΨi = Fu, (5.39)

and taking the derivative with respect to the amplitude uBj , we obtain

∂Kt

∂uBj
Ψi + Kt

∂Ψi

∂uBj
= 0, (5.40)

where the linear stiffness matrix was substituted with the tangent stiffness matrix
and the load vector was assumed displacement-independent. Finally, evaluating at
equilibrium

CMD : (Ψθ)ij ,
∂Ψi

∂uBj

∣∣∣∣∣
eq

= −(Kteq)
−1 ∂Kt

∂uBj

∣∣∣∣∣
eq

Ψi
∣∣
eq

. (5.41)
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Notice that the full set of CMDs computed in this way is not full rank, therefore an
orthogonalization step is always required. Moreover, it is often unfeasible to take
all the available nBs (nBs + 1)/2 CMDs (although the linearly independent vectors
are less than this limit). One could then sensibly take only the subset of (Ψθ)ii, or
apply other selection strategies (e.g. singular value decomposition).

Internal VMs and MDs.

The dynamics of the interior dofs of the structure is trusted to a set of VMs and MDs
(in the nonlinear case). The definition of these vectors is just the same as described
in the previous chapters, however, they are computed using the internal dofs only,
assuming the interfaces to be fixed. For instance, the eigenvalue problem writes(

KII −ω2iMII
)
φIi = 0. (5.42)

Having considered fixed interface dofs, we have that φBi = 0. A similar procedure
can be followed to compute θIij (and, again, we will have θBij = 0).

5.4.2 Interface Reduction: Local level Characteristic Constraints (LCCs)

We introduce here a further step of reduction, involving the interface dofs. The
main motivation is that even after reduction, the ROM in each substructure may
still count a high number of coordinates. In the present context, where a tensorial
approach has been adopted to evaluate internal forces, the number of dofs in each
substructure cannot be too high in order not to spoil the benefits of the ROM it-
self. Several works have been presented in literature on this topic (see for instance
Krattiger et al., 2019; Wu, Tiso, and van Keulen, 2018). To preserve independence
between substructures, we resort here to the Local level Constraint modes (LCCs),
which can be obtained as follows. Let us recall Eq. (5.13)

us =
{

uBs
uIs

}
' Vsηs =

[
Is 0

VIBs VIIs

]{
uBs
ηIs

}
,

and let us partition the system matrices separating interface (non-reduced) dofs and
interior (reduced) dofs:[

Is (VIBs )T

0 (VIIs )T

] [
MBB
s MBI

s

MIB
s MII

s

] [
Is 0

VIBs VIIs

]
,

[
M̃BB
s M̃BI

s

M̃IB
s M̃II

s

]
, (5.43)

where we take the example of the mass matrix and where •̃ denotes the reduced
matrix. Notice that M̃BB

s 6= MBB
s . Selecting the partition pertaining the interface

dofs, we can write the eigenvalue problem

LCC :
(

K̃BBs −ω2i M̃BB
s

)
φ̃s,i = 0 (5.44)

which can be used to compute m̃s � nBs LCCs φ̃s,i, collected in a matrix φ̃s.
Finally, we can write the reduction basis as{

uBs
uIs

}
≈
[

Is 0

VIBs VIIs

]{
uBs
ηIs

}
≈
[

Is 0

VIBs VIIs

] [
φ̃s 0

0 I

]
︸ ︷︷ ︸

Ṽs

{
ηBs
ηIs

}
. (5.45)

Notice that, even if LCCs can be computed independently for each substructure,
their choice must be managed with care: since LCCs for the same interface and
computed for different substructures are not a priori equal, interface compatibility
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cannot be taken for granted anymore. Usually this is not a problem if the interface
is “well behaved” (e.g. it responds in a rigid way) or if enough LCCs are included
in the basis. A way around is to compute LCCs for the same interface on different
substructures and then either select them all and orthogonalize the result or perform
a singular value decomposition of the full set of vectors to select only the most
relevant ones. In both cases, the same basis is then used for all substructures sharing
that interface. However, if these strategies are used, should a substructure design be
modified, all the reduced matrices/tensors of the substructures sharing an interface
with the changed one would have to be recomputed.

Before concluding this section, we point out the recent contribution by Lee et al.,
2020, where a reduced FETI using POD was proposed. In this work, master nodes
coupled to the interfaces were used to link the domains; this strategy, however, is
arguably not in the spirit of model order reduction.

5.4.3 Weak interface compatibility

When interface reduction is adopted, the compatibility condition Eq. (5.30c) might
be too strong, resulting in interface locking. A way around this problem is to weaken
the compatibility condition by defining a projection basis also for the Lagrange
multipliers (Rixen, 1997).

λ = Λζ, (5.46)

being Λ a reduction basis and ζ the corresponding reduced Lagrange multipliers.
Without loss of generality, a static component λ0 can be added separately to take
into account the static response not spanned by the dynamic reduction. Premulti-
plying the interface equation (5.31a) by ΛT , we can write

ΛT
(

B̃1S̃−1
1 B̃T1 + B̃2S̃−1

2 B̃T2
)
Λζ = −ΛT B̃1S̃−1

1 f̃1 −ΛT B̃2S̃−1
2 f̃2, (5.47)

which, indeed, corresponds to the compatibility restricted to a subset of constraints

ΛT (B1u1 + B2u2) = 0. (5.48)

A possible choice for Λ is to take the high end eigenspectrum of the interface
operator FI. However, a thorough discussion of this topic is out of the scopes of
this work, and the interested reader is referred to Rixen, 1997. In the following, Λ is
chosen as the orthogonalized set of LCCs coming from all the substructures sharing
the interface, that is

Λ = orth
([
φ̃1, φ̃2

])
. (5.49)

Notice that this reduction is carried out independently and does not affect the sub-
structure reduction bases, so the ROMs matrices/tensors do not change.

5.5 feti with shape defects
As mentioned in the previous sections, the addition of arbitrary defect shapes for
each substructure poses the problem of interface compatibility: this led us to dual
assembly approaches and, in particular, to FETI. Indeed, in the DpROM settings
described in Chapters 3 and 4, we can write the final position of a material point as
the sum of the nominal coordinates, a fictitious (small) displacement representing a
defect, and the displacement, i.e.

x = x0 + u + ud,
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so that we can rewrite the FETI linear static problem (for two substructures and one
interfaces) as

K1(ud,1)u1 = f1 + BT1λ

K2(ud,2)u2 = f2 + BT2λ

B1(u1 + ud,1) + B2(u2 + ud,2) = 0 ,

(5.50a)

(5.50b)

(5.50c)

where compatibility is now imposed on the sum u + ud, and where the (linear)
stiffness matrices depend on the defect as

Ks(ud) = K2n s + K3d s · ud + K4dd s : (ud ⊗ ud) , Kd,s .

As a first step, we can solve the system in Eq. (5.50) to retrieve an initial compat-
ible state. In other words, we enforce the interfaces of the two substructures to fit
together through the Lagrange multipliers, being the structures otherwise at rest (no
external loads. This can be expressed as

u1 = K−1
d,1BT1λ

u2 = K−1
d,2BT2λ(

B1K−1
d,1BT1 + B2K−1

d,2BT2
)
λ = −B1ud,1 − B2ud,2 .

(5.51a)

(5.51b)

(5.51c)

Solving the system above, it is finally possible to compute the initial state of the
structure, which can be used as initial conditions for a dynamic analysis.

Building on this new framework, it is possible to extend this strategy to (nonlin-
ear) dynamics, and then to ROMs (or, rather, DpROM).

5.5.1 DpROM in FETI

The reduced parametric model can be built as described in Chapters 3 and 4, using
(internal) VMs, MDs and Defect Sensitivities (DS, φIξ), with a few differences, as
specified in Section 5.4. Namely, CMs (CMDs) have to be added for each boundary
node and, if interface reduction is used, LCCs have to be computed to construct the
final reduction basis.

As it will be shown in the numerical examples, in the same manner in which VMs
and MDs only could not capture the correct behavior of the system and DSs had to
be introduced, also in this case CMs and LCCs are not enough. In the same spirit
of DS then, we can compute Defected CMs (DCMs) and Defected LCCs (DLCCs),
differentiating with respect to the defect amplitudes ξj the static problem which
defines the CM (similar procedure used for CMDs), obtaining

DCM : (Ψξ)ij ,
∂Ψi
∂ξj

∣∣∣∣∣
eq

= −(Kteq)
−1 ∂Kt(Uj)

∂ξj

∣∣∣∣∣
eq

Ψi
∣∣
eq
, (5.52)

being Uj the j-th defect shape. Adding DCMs to the basis (after orthogonalization,
to remove linearly dependent vectors), one obtains

u =

{
uB

uI

}
' Vη =

[
I ΨBξ 0 0 0 0

ΨI ΨIξ ΨIθ φI φIξ θI

]


uB

uBξ
uBθ
ηϕ
ηξ
ηθ


, (5.53)

so that now there are md additional coordinates for each interface dof to take into
account the presence of the defects, being md the number of defects. The set of
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“interface coordinates" {uB, uBξ , uBθ } can then be reduced using LCCs, taking care

to partition M̃BB
s and K̃BBs so that the whole set is included (that is, real interface

dofs and additional interface dofs). This way, we have
uB

uBξ
uBθ

 ≈ φ̃ηB . (5.54)

Differentiating the eigenvalue problem defining these new LCCs, we obtain

DLCC : (φ̃ξ)ij ,
∂φ̃i
∂ξj

∣∣∣∣∣
eq

= −(Kteq)
−1 ∂Kt(Uj)

∂ξj

∣∣∣∣∣
eq

φ̃i
∣∣
eq
, (5.55)

and the reduced interface dofs can be approximated as
uB

uBξ
uBθ

 ≈ [φ̃, φ̃ξ]
{
ηB

ηBξ .

}
(5.56)

In synthesis, without interface reduction we have:

{
uB

uI

}
≈

[
I ΨBξ 0 0 0 0

ΨI ΨIξ ΨIθ φI φIξ θI

]


uB

uBξ
uBθ
ηϕ
ηξ
ηθ


, (5.57)

and, defining

[
I ΨBξ 0 0 0 0

ΨI ΨIξ ΨIθ φI φIξ θI

]
←→

[
VBBs 0

VIBs VIIs

]
, (5.58)

the basis for the DpROM with interface reduction writes

{
uB

uI

}
≈
[

VBBs 0

VIBs VIIs

] [
φ̃s φ̃ξ 0

0 0 I

]{
ηBs
ηIs

}
(5.59)

where LCCs and DLCCs were used.

Remarks

In the most general case, Constrain Modes (CM), CM Derivatives (CMD), Defected
CMs (DCM), VMs, MDs, Local level Characteristic Constraint (LCC) and Defected
LCCs (DLCC) are available to form the reduction basis. It is important to:

1) check for linearly independent vectors and remove linearly dependent ones;

2) check with care if interface reduction is necessary;

3) if the interface dynamics can be reasonably assumed to be linear, do not use
CMDs;

4) for linear analysis, do not use CMDs and MDs;

5) if the defect does not change the interface, do not include DCMs and DLCCs
associated to that defect;
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6) remember that, although in substructuring (and parametric substructuring)
more basis vectors are usually required with respect to standard ROMs,

a) the size of each substructure is smaller;

b) the basis of each substructure can be chosen independently, according
to its expected dynamics (linear/nonlinear, frequency range, etc.) and
present defects.

On the basis of these points, a more compact and efficient reduction basis can thus
be constructed.

5.5.2 Interpretation

The Defected FETI (with DpROM) described so far, stirs a little bit away from tradi-
tional substructuring techniques. Indeed, with this method it is not only a matter
of dividing the structure in subdomains and apply defects, that is a mere repre-
sentation of the original geometry. Due to the static step to restore compatibility,
the starting equilibrium position is changed. This fact, from a practical point of view,
entails that the structure starts the dynamic analysis from a prestressed condition
(which can be easily removed in linear analysis, but not in the nonlinear one). On
the interpretation level, the physical phenomenon described by the method is an as-
sembling procedure, where different components, each with independent defect, are
forced to fit (e.g. in a pin-hole joint).
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Defected Mesh 1
Defected Mesh 2

Figure 37: Substructure 1 (200× 100× 8 mm, blue) with torsional defect and substructure 2

(300× 100× 8 mm, red) with bending defect. Nominal meshes are also reported
(shaded). Defect amplitudes are ξ1 = ξ2 = 8 mm (defects are plotted with a
magnification factor 5×). The interface is highlighted in yellow.

5.6 numerical example
In this section, we study a simple example in linear dynamics to showcase the tools
discussed in the previous sections, trying to give an overall idea of what are the
benefits and the issues to be expected in different scenarios.

The model is shown in Fig. 37: a straight beam, clamped at both ends, is divided
into two subdomains (blue and red). Each domain present one defect, torsion and
bending of the beam, respectively. Material is aluminum and the domain is meshed
using 10-noded tetrahedra. The number of interior dofs of each substructure and
of interface dofs is also shown in the figure.

Before the start of the linear analysis, as described in the previous section, the
FETI static problem given by Eqs. (5.51) is solved to restore compatibility. The
results are shown in Fig. 38: this deformed shape represents the new equilibrium
position with respect to which the dynamic analysis is performed.

5.6.1 Dynamic Simulation

Following, the details and settings for the simulation:

• A nodal load is placed at (x, y, z) = (250, 50, 8)mm in z-direction, defined as

fext(t) = f̂ext

(
cos

ω01 +ω02
2

t+ cos
ω02 +ω03

2
t

)
, (5.60)

being f̂ a constant vector and ω0i the i-th eigenfrequency of the nominal sys-
tem;

• Defect amplitudes: ξ = ξ1 = ξ2 = {4, 8, 12}mm (beam thickness is 8mm);

• A time span of T = (40π)/ω01 is considered;

• The Generalized Relative Error computed over all the mesh displacements
(GREt, Eq. (3.51)) is used to assess the performances, and is computed for

– the nominal High Fidelity Model (HFM-n), that is the model without
defects;
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Figure 38: Substructures after compatibility is restored through the linear static FETI step.
Defect amplitudes are ξ1 = ξ2 = 8 mm (defects are plotted with a magnification
factor 5×).

– the defected High Fidelity Model (HFM-d), where the defects are in-
cluded in the mesh and compatibility is restored using the static FETI
step;

– the DpROMs, with and without Interface Reduction (IR). More precisely,
we tested here the Budiansky-based version of the DpROM (see chapter
3), that is DpROM-N0n (see chapter 4);

– the full order model using the aforementioned Budiansky formulation
(full-Bud), where defects are included in the strains rather than in the
mesh. This is done to verify that the errors (GREt) are generated by the
reduction basis, while the underlying formulation is correct.

5.6.2 Results

In Table 9 basis composition and corresponding GREt for different DpROMs are
reported. First, DpROM with only VMs, DSs and CMs is tested: even when using
25 VMs (and DSs) wrong results were obtained. DCMs are then introduced, and
GREt becomes very low even when using only 4 VMs. However, nλ = 27 vectors
for DCMs had to be added. Since in a real application case nλ can be much higher,
we also test DpROM with Interface Reduction (IR). Notice that without IR the total
number of reduced coordinates is

nTOT = nVM +nDS +nCM +nDCM, (5.61)

while when IR is used we have

nTOT = nVM +nDS +nLCC +nDLCC. (5.62)

The final dimension of the basis then is determined after orthogonalization, so that
the actual number of vectors is north 6 nTOT .

The DpROM with VMs, DSs, CMs, DCMs and LCCs is tested, leading to good
results only when the number of LCCs approaches the number of the sum of CMs
and DCMs, basically with no gain with respect to the case without IR. The same
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Table 9: Test 1: bases composition and GREti (with i = 4, 8, 12, corresponding to the defect
amplitude ξ, in mm).

nVM nDS nCM nDCM nLCC nDLCC nTOT north GREt4 GREt8 GREt12
15 15 27 0 0 0 57 57 87.49 102.26 175.13

20 20 27 0 0 0 67 67 82.81 98.41 141.94

25 25 27 0 0 0 77 77 46.61 84.53 91.49

2 2 27 27 0 0 58 58 1.19 3.64 7.07

3 3 27 27 0 0 60 60 1.13 3.57 6.95

4 4 27 27 0 0 62 62 0.96 3.45 6.83

4 4 27 27 25 0 33 33 81.99 92.78 107.37

4 4 27 27 27 0 35 35 71.03 90.34 98.41

4 4 27 27 35 0 43 43 31 64.64 75

4 4 27 27 40 0 48 48 7.7 25.28 43.31

4 4 27 27 45 0 53 53 5.48 16.03 28.74

4 4 27 27 50 0 58 58 3.67 9.19 16.25

4 4 27 27 54 0 62 62 0.96 3.45 6.83

4 4 27 27 10 10 28 28 79.16 81.5 86.01

4 4 27 27 15 15 38 38 24.37 34.44 43.89

4 4 27 27 20 20 48 48 15.83 19.91 25.44

4 4 27 27 22 22 52 52 9.41 11.34 13.48

4 4 27 27 24 24 56 56 6.05 8.3 10.93

4 4 27 27 27 27 62 62 0.96 3.45 6.83

4 4 27 27 35 35 78 62 0.96 3.45 6.83

4 4 27 27 54 54 116 62 0.96 3.45 6.83

Table 10: GREti (with i = 4, 8, 12, corresponding to the defect amplitude ξ, in mm) for the
full order models HFMn and full-Bud.

GREt4 GREt8 GREt12
HFM-n 38.7 87.73 97.32

full-Bud 0.06 0.19 0.35

Figure 39: Test 1: synthetic results, ordered by basis dimension.



5.7 conclusions 103

Table 11: Test 2: weak compatibility. The same basis is always used, only increasing the
number of LCCs and DLCCs. For each case, the size of Λ, nΛ, is progressively
decreased.

nVM nDS nCM nDCM nLCC nDLCC nΛ nTOT GREt4 GREt8 GREt12
4 4 27 27 10 10 27 28 81.5 80.89 85.01

4 4 27 27 10 10 24 28 76.73 76.4 81.82

4 4 27 27 10 10 20 28 75.37 74.85 81.16

4 4 27 27 10 10 16 28 69.99 69.6 76.2
4 4 27 27 10 10 14 28 35.01 35.24 39.73

4 4 27 27 10 10 12 28 31.78 31.93 36.31

4 4 27 27 10 10 10 28 24.41 24.44 28.82

4 4 27 27 10 10 8 28 32.98 50.24 36.95

4 4 27 27 15 15 27 38 34.44 34.64 38.09

4 4 27 27 15 15 24 38 34.29 34.46 37.73

4 4 27 27 15 15 20 38 24.31 24.52 26.86

4 4 27 27 15 15 16 38 16.39 16.65 17.98

4 4 27 27 15 15 14 38 9.31 9.52 10.53

4 4 27 27 15 15 12 38 4.35 4.6 5.25

4 4 27 27 15 15 10 38 1.79 2.85 4.28

4 4 27 27 15 15 8 38 45.36 61.73 49.53

4 4 27 27 20 20 27 48 19.91 20.05 21.89

4 4 27 27 20 20 24 48 13.14 13.28 14.52

4 4 27 27 20 20 20 48 11.44 11.58 12.51

4 4 27 27 20 20 16 48 7.64 7.8 8.29

4 4 27 27 20 20 14 48 2.39 2.8 3.45

4 4 27 27 20 20 12 48 1.66 2.19 2.83

4 4 27 27 20 20 10 48 3.47 4.92 5.98

4 4 27 27 20 20 8 48 48.12 64.77 52.68

4 4 27 27 0 0 27 62 3.45 3.76 3.73

4 4 27 27 0 0 24 62 3.45 3.76 3.72

4 4 27 27 0 0 20 62 3 3.35 3.23

4 4 27 27 0 0 16 62 2.33 2.79 2.62

4 4 27 27 0 0 14 62 2.02 2.6 3.17

4 4 27 27 0 0 12 62 2.65 3.1 3.7
4 4 27 27 0 0 10 62 7.27 8.43 9.14

4 4 27 27 0 0 8 62 51.32 67.96 56.2

tests are repeated using both LCCs and DLCCs, obtaining similar results. Figure 39

summarizes the GRE values ordering for total basis size nTOT .
In order to see if the results can be improved by weakening the compatibility

condition when using IR, a second set of test are run. IR with LCC and DLCC is
tested using a basis Λ as described in Sec 5.4.3. Results are collected in Table 11

and Fig. 40.
As it can be observed, results sensibly improve as compatibility is weakened, and

the minimum error is obtained for nΛ = 10 and nΛ = 12. Remarkably, using
a model with as low as 15 LCCs and 15 DLCCs, a GREt = 1.79 − 4.28% can be
achieved if nΛ = 10. Finally, we repeat the simulations for the IR-cases reported in
Table 9, but using nΛ = 12. The results are shown in Fig. 41. As it can be observed,
now IR with LCCs and DLCCs outperforms all the other cases, both for accuracy
and for basis dimension.

5.7 conclusions
In this chapter we investigated the possibility to use DpROM in substructuring.
First a strategy using FETI was devised in order to allow arbitrary defect shapes
which, in general, might lead to non-compatible interfaces. The problem of reduc-
tion was discussed in detail, introducing an expanded Craig-Bampton basis includ-
ing modal and defect derivatives to take into account nonlinearities and defects,
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Figure 40: Test 2: synthetic results, ordered by Λ dimension. All the simulation are carried
out for ξ = 8mm, with the number of LCCs (and DLCCs) shown in the legend.
The case where compatibility is weakened and without IR is also shown for com-
pleteness.

Figure 41: Test 3: synthetic results, ordered by basis dimension. The cases in shades of blue
and red are the ones already shown in Fig. 39, reported for comparison. The
remaining cases, labelled with “ΛR", correspond to the same cases, in terms of
model, but imposing weak compatibility (nΛ = 12).
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respectively. In particular, interface reduction and weak compatibility were intro-
duced. The proposed method can be used to describe structures whose parts are
physically assembled, and whose interfaces do not initially fit for the presence of
the defects. In the case in which the interfaces are not affected by the presence of the
defects, the method instead greatly simplifies and can be used as a traditional CMS
technique. Finally, an example for a test case in linear dynamics is thoroughly stud-
ied. The main conclusions that can be drawn from the numerical tests are that (i)
DCMs are fundamental to capture the response of the defected structure, (ii) inter-
face reduction without weak compatibility leads to poor results, (iii) comparatively,
if using weak compatibility, DLCCs greatly improve the accuracy of the method.

Future work should focus on strategies, also available in literature, to select the
optimal set of LCCs and weak compatibility modes (Λ). The extension to the nonlin-
ear dynamic domain, here presented on a theory level, should also be investigated
with numerical examples.





6 C O N C L U S I O N S A N D F U T U R E W O R K

All that is gold does not glitter,
Not all those who wander are lost

—J.R.R. Tolkien, The Fellowship of the Ring

In the present dissertation, projection-based reduced order models for nonlinear
structural dynamics were discussed and extended. Being of particular interest for
the MEMS industry, we focused on the modelling and analysis of structures with
geometrical defects in their shape, which can usually be attributed to the manufac-
turing processes. The dynamic response of such structures can sensibly vary with
respect to the nominal case, where the structure has no defects. In the case of MEMS
sensors, this has a direct impact over the statistic distribution of the performances.

Elaborating on earlier deformation schemes, new ones have been developed to in-
clude the defect directly in the strain formulation. We showed that this way it is pos-
sible to refer most of the computations to the nominal mesh, build a reduced model,
and parametrize it using some user-defined defect shapes. The Defect parametric
Reduced Order Model, named DpROM, was presented, first following Budiansky
deformation theory and then a two-steps deformation approach. Using Neumann
expansion, it has been shown that higher order approximations can be obtained
using the same formalism, achieving increased accuracy. Contextually, solutions
to construct the projection basis were provided to adapt to the defect-parametric
nature of the model. Finally, DpROM was tested in a substructuring environment.
The challenging problem of accommodating arbitrary defects for each substructure,
potentially leading to non-compatible interfaces, was addressed using the Finite
Element Tearing and Interconnecting scheme. The latter is a dual substructuring
strategy where the high level of independence featured by each substructure al-
lowed us to set up a first static step to make non-compatible interfaces compatible,
determining a new initial equilibrium position for the dynamic analysis. The ben-
efits of DpROM was tested in several numerical examples, where both time and
frequency domain analysis were performed.

Overall, DpROM offers a versatile tool to study defected structures in nonlinear
regime, where the defects themselves can be easily constructed over the mesh and
where the concepts needed to form the basis stem from traditional spectrum-based
modal analysis. As discussed, however, while in time domain simulations very
high speedups can be obtained, frequency domain responses speedups are heavily
affected by the number of unknowns in the model. Moreover, the tensorial approach
used to compute internal forces also suffers from large set of reduced coordinates,
as the tensor construction time grows with the power of their size. These aspect
call for strategies to either select a more compact projection basis and/or find an al-
ternative way to evaluate the nonlinear forces vector and jacobian. Currently, some
strategies are already under development.

As an alternative to tensors, a hyperreduction strategy have been adapted in
Baghdadi, 2021 to the parametric setting of the DpROM. Using a defected quadratic
manifold lifting, based on our strain formulation, to construct the training set for an
Energy and Conserving Sampling and Weighting scheme (ECSW), it was possible
to carry out the evaluation of the internal forces over the parameter domain over
a limited set of elements, without the need to resort to tensors. The method was
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tested on a MEMS frequency divider (Qalandar et al., 2014), showing how the ap-
proach can also correctly capture parametric resonances.

Following a different approach, it is also under development a strategy to use the
DpROM without carrying out a frequency domain analysis for each new realization
of the parameters. Indeed, always under the assumption of small defects, we can re-
place simulations with a sensitivity analysis. The system can then be simulated only
once, using the nominal model, and then all the defected responses can be obtained
using first and second order sensitivities from the nominal solution. Needless to
say, this update procedure is extremely fast, and allows to test thousands of cases in
the matter of seconds. Preliminary results, using Harmonic Balance, are promising
and pave the way to the statistic analysis and uncertainty quantification.
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