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1. Introduction

1.1. Context

The Constellation Optique 3D (CO3D) mission
by the Centre national d'étude spatiales (CNES)
aims at automatically providing a worldwide ac-
curate Digital Elevation Model (DEM). The 3D
photogrammetric reconstruction needs two im-
ages of the same scene - taken at a di�erent an-
gles - that will be refered as stereoscopic cou-

ple. For CO3D mission such acquisitions will be
taken at the same time by (at least) 2 satellites,
thus minimizing temporal di�erences. This will
allow a boost in the DEM accuracy so that it is
conceivable to render smaller scale objects like
trees and buildings, moving to Digital Surface
Model DSM format.

Figure 1: Illustration of the triagulation princi-
ple

Such a 3D detailed information is strategic for
growing applications in space �eld downstream,
from 3D city mapping to damage assessment, to
the incoming smart city market.
CS Group will develop the image ground seg-
ment of CO3D mission. The DSM generation
pipeline is key and at this purpose, CNES and
CS developed two tools: CARS, a multi view
stereo pipeline that from a stereo pair generates
the corresponding DSM; Pandora [1], which is in
charge of the stereo matching step from recti�ed
images.
The shift in the stereo images between homolo-
gous pixels, i.e. belonging to the same point on
Earth, it's associated at the distance between
point and satellite and, by means of a triangula-
tion procedure (Fig. 1), we can retrieve the alti-
tude of the point. Thus the problem reduces to
�nd precisely this correspondance from the pixel
values. This is called stereo matching and it's
the most critical step of the entire DSM chain:
it consists of assigning for each pixel its cor-
responding in the second image, exploiting the
radiometric measures of a neighbourhood. The
shift between the common pixels in the two im-
ages is called disparity and can be associated to
the depth of the point, i.e. the 3D information.
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To estimate a disparity, we slide along image
rows in the �rst image and for each pixel of the
second image we compute a cost function that
tells the similarity between the two neighbour-
hoods. Such a function is hereby referred as cost
pro�le or similarity measure and we can asso-
ciate at its optimum the estimated disparity.

1.2. Objective

However, DSMs produced with current tech-
nology su�er from poor quality in urban ar-
eas. To address this issue, one solution may
be to increase resolution beyond the sensor lim-
its. One could simply use an interpolation tech-
nique (bicubic upsampling is the most used one)
but this doesn't introduce any spectral structure
that might be used from the matching algorithm
to better estimate the disparity. On the other
hand, super resolution (SR) algorithms are de-
signed to recover high frequencies, introducing
signi�cant information in a scene characterized
by strong discontinuities such as a city. State-
of-the-art methods relying on Deep Neural Net-
works (DNN) have shown remarkable results in
this sense [2] [4]. Fig. 2 shows how the Fourier
transform of a neural network super resolved im-
age seems to propagate the spectrum of the im-
age, unlike bicubic upsampling.

LR Bicubic SR

Figure 2: Spectra of an input image, its bicu-
bic interpolation and its super resolved version
using deep learning tachniques

The assumption is that this spectral information
can enhance the stereo matching step, increas-
ing the con�dence we have in the estimation of a
the disparity from the similarity measures (Fig.
3). It can be shown that the reliability of a
disparity measure can propagate into a stereo
pipeline leading to more accuracy in the prod-
uct [3]. The aim of this work is therefore to as-
sess the contribution of SR Deep Learning tech-
niques to the stereo matching and DSMs gener-
ation in space industry. Few similar experiences
have been found in literature [5], leaving room

for improvement for what concerns both super
resolution model training procedure and DSM
quality evaluation. All the experiments will in-
clude a bicubic upsampling counterexample in
order to discern the real in�uence of arti�cial in-
telligence the e�ects that we observe by a mere
increase in image sampling, and thus justifying
the employment of complex model such as deep
neural networks.

Figure 3: High and low con�dence level cost pro-
�les [3]

2. Super resolution via deep

neural networks

The general concept of Super-Resolution (SR)
refers to those algorithms designed for increasing
an image resolution as if a sensor with a higher
nominal resolution was used. In spatial domain
it might be seen as the problem of �nding the
less aliased and blurred interpolation of an im-
age, while in the Fourier space it consists of re-
covering high frequencies from the low ones. SR
is a notoriously ill-posed inverse problem: in�-
nite solutions exist and prior knowledge serves to
guide the optimization towards the best achiev-
able solution. DNNs are suitable for such a task
as they allow automatic extraction of meaningful
highly abstract knowledge, removing the need
for identifying case-speci�c features [2].
Among all possible architectures, residual and
Generative Adversarial Networks (GAN) have
proved to be interesting solutions. In a GAN
two networks are trained: a generator that up-
samples the input image, and a discriminator
whose task is to recognize which image is real be-
tween the ground truth and the generated sam-
ple. This should add perceptual consistency to
the SR image. Together with the Enhanced SR
GAN (ESRGAN) [4], the Residual Dense Net-
work (RDN) [2] was implemented, since the lat-
ter has an architecture really similar to ESR-
GAN generator. In this way, we should be able
to assess the contribution of a discriminator.
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LR Bicubic RDN ESRGAN HR

Figure 4: SR performance on a test image ob-
tained via the CSI, scale factor 4

LR Bicubic RDN ESRGAN

Figure 5: Inference on Pléiades data of Mont-
pellier, scale factor 2

In order to train a SR network we would need a
set of images in input/low resolution (LR) and
the associated target/high resolution (HR) sam-
ples, taken with the very same instrument on the
very same scene. Since such a dataset doesn't
exist, at least for space applications, we usually
choose a HR dataset and apply degradation and
downsample operations to obtain the LR one.
To do so, we assume a sensor model that is ap-
plied in the HR-LR transformation.
For this study, the input is represented by
very high resolution (VHR) multispectral im-
ages (possibly resembling Pléïades products,
given their large availability), while the target
should have a ground sampling distance closer
to aerial sensing (≤ 25 cm). A set of PELICAN
acquisitions (multispectral at 10 cm GSD) on ur-
banized areas in France was kindly provided by
CNES; the french space agency also supplied an
implementation of the Chaîne Simulation Image

(CSI). The CSI is a tool that allows to apply
any step of a satellite image acquisition pipeline
to a given image, producing realistic degrada-
tion. It was con�gured to generate a HR set
at 25 cm using a perfect sensor model, and the
corresponding LR at 50 cm simulating Pléiades
instrument.
The results obtained with these settings are sat-
isfying as the networks outperform bicubic up-
sampling in standard 2D metrics1,2 for both
scale factor and 4 (Tab. 1) in a test set of the

1
PSNR=20log10(

L2

RMSE
)

2
SSIM=

(2µxµy+c1)(2σxσy+c2)(covxy+c3)

(µ2
x+µ2

y+c1)(σ
2
x+σ2

y+c2)(σxσy+c3)

same kind of data of the training set.

PSNR [dB] SSIM

Bicubic x2 18.54 0.4705
RDN x2 23.88 0.7753
ESRGAN x2 20.97 0.6335
Bicubic 17.47 0.3191
RDN 22.94 0.5898
ESRGAN 19.31 0.4032

Table 1: Reference 2D metrics the test set

More importantly, the inference super resolution
was successful on real Pléiades acquisitions of
Toulouse and Montpellier, as we can see in �g-
ures 5 and 4. As a general result, RDN has supe-
rior metrics, it renders well the contours. How-
ever, it arti�cially smooths the object interior it
doesn't add any meaningful detail when passing
from scale factor 2 to 4. On the other hand,
ESRGAN shows an impressive sharpening capa-
bility when pushed to zoom 4, but this comes at
the price of evident artifact generation: uniform
regions are inconsistently textured and some ob-
jects can be even mistaken and resolved as dif-
ferent entities that have been better learned, as
in �gure 6.

LR ESRGAN HR

Figure 6: Test image, scale factor 4, ESRGAN
"hallucination": an air-conditioning plant is su-
per resolved as a car transformed into a car

3. Application to DSM genera-

tion

The trained networks were used in inference
mode for stereo acquisitions of Toulouse and
Montpellier to produce SR inputs for the CARS-
Pandora pipeline. LR data ad a bicubic upsam-
pled version were also processed.
The error between for the four DSMs and a ref-
erence lidar was used as metrics for the possi-
ble enhancement. It turns out that in terms of
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standard statistics (e.g. mean, root mean square
error, etc.) no substantial improvement could
be detected. Nonetheless, we could observe up
to 34% gain in NMAD, a statistics designed for
DEMs which is a sort of median more resistant
to outliers. On the other hand, RMSE (Root
Mean Square Error) increases for more super re-
solved input images of zoom 4, suggesting a de-
crease of measure reliability. However, this also
comes with a higher percentage of reconstructed
points at this scale. In practice, objects can
be better reconstructed but more outliers are
present and the noise ampli�es, especially when
upscaling the input couple 4 times.

LR Bicubic RDN ESRGAN Lidar

Figure 7: Detail from Montpellier dataset's
DSM. Input images upscaled by a factor 2

LR Bicubic RDN ESRGAN

Figure 8: Detail from Toulouse dataset's DSM.
Input images upscaled by a factor 2

Input
stereo pair
type

%
valid
points

RMSE NMAD3

LR 95.53 4.17 1.27
Bicubic x2 94.29 4.02 0.92
RDN x2 94.99 4.18 0.84
ESRGAN x2 95.03 4.11 0.88
Bicubic x4 98.11 4.43 0.98
RDN x4 98.38 4.65 0.97
ESRGAN x4 98.18 4.71 1.13

Table 2: 3D statistics for Montpellier dataset

Qualitatively, a global modest improvement
when upscaling the stereo couple (interpola-
tion or super resolution) is present, although
it comes with an increase in noise. Less evi-
dent is whether or not SR networks outperform

standard bicubic interpolation. In general, deep
learning models have the property of well sharp-
ening edges in a 2D image and this can be found
in 3D with an enhanced renderning of streets
(Fig. 7) and edges, whilst they struggle in ho-
mogeneous areas and this can be seen in �gure
8 as their inputs lead to a failure in well recon-
structing the stadium building, and to an ampli-
�cation noise in correspondence of the river and
football terrains.

4. Similarity measure pro�le

analysis

In order to account for these not completely sat-
isfactory results, a further analysis is proposed,
this time trying to isolate the contribution of SR
images from the rest of the stereo pipeline and
thus coming back to the matching step. The
idea is to understand whether and how the simi-
larity measures between image patches are in�u-
enced by SR. At this purpose, similarity measure
pro�les are an useful tool. By analyzing locally
these curves and the patches corresponding to
the match, it is possible �nd some clues about
the in�uence of radiometric and spectral di�er-
ences to depth estimation. Two signi�cant ex-
amples are proposed. For each one of the consid-
ered cases (LR, bicubic upsampling, RDN and
ESRGAN super resolution) the plot of the simi-
larity coe�cient versus the disparity is presented
together with on overview of the surrounding
area of the matching pixel, the window (also
highlighted with a red square in the bigger crop)
used for similarity measure computation, as well
as the spectrum of such a window. A ground
truth ("GT") estimate of the disparity could be
retrieved from lidar data thanks to Beefröst, a
tool developed in a collaboration between CNES
and CS that produces stereo-rectied images and
ground truth disparity maps, from satellite im-
agery and a 3D reference. We will look for the
maxima of the functions, and in particular how
much it is accurate and well de�ned with respect
to ground truth. Figure 9 shows how in corre-
spondence of high contrast features, such as the
division between illuminated and dark side of a
roof, the con�dence in the measure strongly ben-
e�ts from super resolution. In fact, well sharp-
ened edges and a more precise spectrum lead to
correct the disparity estimation and to totally
exclude a vast portion of the disparity range be-
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cause characterized by lower values. The RDN
and ESRGAN prediction is more reliable and
this introduces stability in the stereo pipeline.
On the other hand we have the example in �g-
ure 10. The considered pixel is part of a tree
which is not consistently rendered by the SR
networks. In ESRGAN case, it likely to be mis-
taken for a building in the left image while fairly
returned as a tree in right image. This leads in-
evitably to confusion in the matching step and
indeed the ESRGAN similarity function is essen-
tially wrong, whilst the LR original image and
the bicubic upscale, although not presenting a
selective pro�le, manage to guess the real dis-
parity with discrete accuracy. By looking at the
spectra, we see how RDN and especially ESR-
GAN force high frequencies even there might not
be needed, adding unhelpful details instead of
facilitating disparity estimation.

Figure 9: Cost pro�le sample from Montpellier
dataset, red band, scale factor between LR and
SR set to 2. SR networks lead to a higher con-
�dence level cost pro�le

5. Conclusions

With the aim of improving the quality of the
DSMs generated by the CARS-Pandora pipeline
part of the CO3D mission image ground seg-
ment, especially in urban context, a large scale
experiment was carried out, to assess whether
deep learning based single image super resolu-
tion could be bene�cial to this process. Two
neural networks, RDN and ESRGAN, were pro-
posed and a bicubic iinterpolation counterex-
ample was taken into account as well. A real-
istic satellite image dataset was created using
the CNES' CSI and this led to remarkable re-
sults when applying the networks to real VHR

Figure 10: Cost pro�le sample from Montpellier
dataset, scale factor, red band between LR and
SR set to 4. SR networks lead to a lower con�-
dence level cost pro�le and to a wrong disparity
estimation

data. Visual and quantitative analysis showed
how SR was successfully implemented, but this
comes at the price of more synthetic images and
�agrant local artifacts. Later, we could learn
that better 2D metrics doesn't automatically
propagate into better 3D models, as SR input
pairs do not outperform standard bicubic up-
ample pairs when it comes to DSM generation,
although an increase in noise can be observed
when forcing a zoom 4, mostly in uniform or
textured regions, and in ESRGAN input pair
upscaling case. However, the marks of the dif-
ferent upsampling methods could be highlighted
by studying at the stereo matching step, through
local analysis of similarity measure pro�les. It
is con�rmed the hypothesis that a denser spec-
trum can be bene�cial for stereo matching when
it is performed in correspondence of discontinu-
ities, as less errors and more selective similarity
functions could be observed where the match-
ing is performed in the presence of high contrast
features. On the other hand, high frequencies
are forced by the networks also where there's
no need, thus uniform zones become character-
ized by artifacts, and textured areas may present
inconsistency with respect to the reality. This
leads in turn uncertainty to propagate through
the stereo pipeline canceling out the favorable
e�ects that can be seen in presence of strong
contrast. As a matter of fact, the overhead im-
age of city is essentially composed by uniform or
textured objects (roofs, parks, squares), divided
by discontinuities (building edges, tra�c lines),
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so it might not be worth to be more precise in
stereo matching on edges and lines while intro-
ducing errors elsewhere, that can spread up to
the DSM.
Further study should be performed to better un-
derstand if these hypothesis are con�rmed, and
whether it's possible to exploit SR potential with
reliability. Additionally, it is possible taht other
combinations of data/loss can improve the pre-
sented SR networks and hence supply images
better suited for any application, including DSM
production. For instance, one could enlarge the
data base or perform monochromatic SR, in-
stead of RGB as in this work. Finally, enforcing
coherency between left and right images could
potentially limit the mismatches caused by un-
controlled artifact generation.

References

[1] M Cournet, E Sarrazin, L Dumas, J Michel,
J Guinet, D Yousse�, V Defonte, and
Q Fardet. Ground truth generation and
disparity estimation for optical satellite im-
agery. The International Archives of Pho-

togrammetry, Remote Sensing and Spatial

Information Sciences, 43:127�134, 2020.

[2] Juan Mario Haut, Ruben Fernandez-
Beltran, Mercedes E Paoletti, Javier Plaza,
Antonio Plaza, and Filiberto Pla. A new
deep generative network for unsupervised re-
mote sensing single-image super-resolution.
IEEE Transactions on Geoscience and

Remote sensing, 56(11):6792�6810, 2018.

[3] E Sarrazin, M Cournet, L Dumas, V De-
fonte, Q Fardet, Y Steux, N Jimenez Diaz,
E Dubois, D Yousse�, and F Bu�e. Am-
biguity concept in stereo matching pipeline.
ISPRS-International Archives of the Pho-

togrammetry, Remote Sensing and Spatial

Information Sciences, 43:383�390, 2021.

[4] Xintao Wang, Ke Yu, Shixiang Wu, Jin-
jin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced
super-resolution generative adversarial net-
works. In Proceedings of the European Con-

ference on Computer Vision (ECCV) Work-

shops, pages 0�0, 2018.

[5] Yongjun Zhang, Zhi Zheng, Yimin Luo,
Yanfeng Zhang, Jun Wu, and Zhiyong

Peng. A cnn-based subpixel level dsm gen-
eration approach via single image super-
resolution. Photogrammetric Engineering &

Remote Sensing, 85(10):765�775, 2019.

6. Acknowledgements

I acknowledge my company supervisor, Loïc Du-
mas, for having guided me in this experience, as
well as my academic supervisor at Politecnico di
Milano, prof. Marco Gianinetto, for his scienti�c
valuable support throughout this work. Thanks
to CS Gruop , the company where the intern-
ship valid as the master thesis was host, and to
the Centre national d'études spatiales (CNES).
The CNES allowed the use of their assets both
in term of computational power, and proprietary
software such as the CSI for the generation of the
dataset, as well as the data used for training.
A special mention to my intern and company
colleagues for their help in overcoming everyday
issues.

6



The contribution of the super res-

olution to the 3D reconstruction

from satellite image pairs

Tesi di Laurea Magistrale in

Space Engineering - Ingegneria Spaziale

Author: Nicola Imperatore

Student ID: 921341
Advisor: Prof. Marco Gianinetto
Co-advisors: Loïc Dumas
Academic Year: 2020-2021





i

Abstract

CO3D is an Earth observation mission by the Centre national d'étude spatiales (CNES)

aiming at providing a worldwide accurate Digital Surface Model (DSM). For this pur-

pose, 3D photogrammetric reconstruction from pairs of satellite images will be employed.

CO3D, french acronym for Constellation Optique 3D, will be composed by at least four

optical satellites that will provide simultaneous acquistions of the same scene. In this

way, temporal di�erences will be minimized, allowing a more accurate stereo matching as

well as automatic production of DSMs at a global scale. Such a 3D detailed information

in DSM format is strategic for growing applications in space �eld downstream, from 3D

city mapping to damage assessment. The DSM generation is key and the CARS-Pandora

pipeline is being developed by the CNES in collaboration with CS Group.

However, DSMs produced with current space technology su�er from poor quality in ur-

ban areas, even using very high resolution acquisitions. Indeed, it is not straightforward

to render with high accuracy smaller scale objects, such as buildings, by means satellite

images that have a limited ground sampling distance capability. To address this issue,

one solution may be to increase resolution beyond the sensor limits. One could simply

use an interpolation technique (bicubic upsampling is the most used one) but this does

not introduce any spectral structure that might be used for a better stereo matching. On

the other hand, super resolution (SR) algorithms are designed to recover high frequencies,

introducing signi�cant information in a scene characterized by strong discontinuities such

as a city. State-of-the-art methods relying on Deep Neural Networks (DNN) have shown

remarkable results in this sense. Hence, the aim of this work is to assess the contribution

of SR Deep Learning techniques to the stereo matching and DSMs generation in space

industry.

Keywords: Super resolution, Digital Surface Model, Stereo-Matching, Deep Neural Net-

works, Satellite Image Simulation, CO3D
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Abstract in lingua italiana

CO3D è una missione di osservazione della Terra del Centre national d'étude spatiales

(CNES) che ambisce a fornire un modello numerico di super�cie (DSM, acronimo dall'inglese

Digital Surface Model) su scala mondiale. Al �ne di ottenere tali prodotti verrà utiliz-

zata una catena di ricostruzione fotogrammetrica 3D da coppie stereogra�che di immagini

satellitari. CO3D sarà composta da almeno quattro satelliti, operanti nello spettro ot-

tico, che forniranno acquisizioni simultanee della stessa porzione di super�cie terrestre.

In questo modo, le di�erenze temporali saranno minimizzate, consentendo una corrispon-

denza stereo più accurata e una produzione automatica di DSM su scala globale. Questo

tipo di informazione dettagliata 3D in formato DSM è strategica per applicazioni crescenti

nel downstream del settore spaziale, dalla mappatura 3D delle città alla valutazione di

danni urbanistici. La pipeline di generazione di DSM è fondamentale e CARS-Pandora è

stata sviluppata dal CNES in collaborazione con CS Group.

Tuttavia, i DSM prodotti con la tecnologia attuale so�rono di scarsa qualità in area

urbana, nonostante l'impiego di immagini VHR (acronimo dall'inglese Very High Res-

olution). Infatti, ripordurre con grande accuratezza oggetti di scala inferiore,come gli

edi�ci di una città, comporta serie di�coltà quando si impiegano coppie di immagini

satellitari con ovvi vincoli in risoluzione al suolo. Una soluzione potrebbe essere quella di

aumentare la risoluzione oltre i limiti del sensore usato, ma una semplice interpolazione

non introduce nessuna struttura spettrale che potrebbe essere usata per una migliore cor-

rispondenza stereo. D'altra parte, gli algoritmi di super risoluzione sono ideati per stimare

le alte frequenze perse durante il campionamento, introducendo informazioni signi�cative

in una scena caratterizzata da forti discontinuità come l'immagine di una città. I metodi

allo stato dell'arte, che si basano su reti neurali profonde, hanno recentemente prodotto

risultati notevoli in questo senso. Pertanto, lo scopo di questo lavoro è di valutare quale

sia il contributo di tali tecniche di Deep Learning sulla corrispondenza stereo nell'ambito

della generazione di modelli sumerici di super�cie.

Parole chiave: Super Risoluzione, Modello Numerico di Super�cie, Stereo-fotogrammetria,

Reti Neurali Profonde, Simulazione d'immagini satellitari, CO3D





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

1.1 Internship topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Company and industrial context . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art 9

2.1 CARS - Pandora pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Principles of stereo-vision . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 CARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Pandora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Super resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 The super resolution problem . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Super resolution in Remote Sensing . . . . . . . . . . . . . . . . . . 20

2.2.3 Super resolution algorithm classi�cation . . . . . . . . . . . . . . . 22

2.2.4 Deep learning in super resolution for remote sensing . . . . . . . . . 25

2.2.5 Single image super resolution based DEM generation . . . . . . . . 35

2.2.6 Final observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Implementation of super resolution networks 39

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 CNES' image simulation chain . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 BD Merou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Hyperparameters �ne-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 49



3.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Importance of the degradation model . . . . . . . . . . . . . . . . . 52

3.4.2 2D metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 DSM generation from pairs of super resolved images 63

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 De�nition of a dataset . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 Processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3 Metrics and means of analysis . . . . . . . . . . . . . . . . . . . . . 66

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Cost pro�le analysis 81

5.1 Beefröst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions 95

Bibliography 99

List of Figures 105

List of Tables 107

List of Acronymes 109

Acknowledgements 111



1

1| Introduction

1.1. Internship topic

The Constellation Optique 3D (CO3D) mission (by the Centre national d'étude spatiales

hereby refered as CNES) aims at automatically providing a worldwide accurate Digital

Elevation Model (DEM). The launch is set in 2023, whereas the global 3D coverage is

foreseen by 2025 [25].

Note: A digital elevation model (DEM) is a 3D computer graphics representation

of elevation data to represent Earth surface. A digital terrain model (DTM) is a

DEM that represents only the bare surface, A digital surface model (DSM) is a

DEM which includes objects like trees and buildings.

CO3D places itself within the solid experience of the french space agency for what concerns

optical remote sensing with SPOT and Pléiades generations. Indeed, it inherites from

Pleiades some design characteristics such as a similar ground sampling distance (GSD)

of nearly 50 cm and the spectral bands of the instrument, i.e. red, green, blue and Near

Infra-Red (NIR). At least 4 satellites will compose the mission, all of them equipped

with the same optical instrument. The orbit altitude is 502 km and the local mean time

should be close to eleven o'clock to limit the size of spread shadows and cloud-cover. The

satellites will be placed on the same sun-synchronous orbital plane and will work by pair

[25].

The reason of this peculiar con�guration lies in the principles of photogrammetric recon-

struction. In loose words, in order to generate a DEM, one needs at least two images of

the scene taken at a di�erent angles. Pléiades products include DEM from stereo pairs,

acquired by performing a pitch manoeuvre along an orbit so that a landscape is captured

under two di�erent angles. The breakthrough aspect of the CO3D mission is the fact

that such stereo captures will be taken at the same time by (at least) 2 satellites, thus

minimizing temporal di�erences. This will allow, on the one hand to improve robustness
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Figure 1.1: Sketch representing CO3D orbital con�guration for 4 satellites

of 3D reconstruction passing thus a digital surface model (DSM) format. On the other, it

is achievable to render moving objects like such as cars, vehicles, etc. The 3D photogram-

metric reconstruction from pairs of strereo images is a growing application in space �eld

downstream, thanks to the performance of Very High Resolution satellites (VHR) of last

generation and a better revisit time. CO3D is intended to boost such applications by

providing competitive products both in terms of accuracy and speed of generation. DSM

format data are signi�cance in the remote sensing context, and their value is foreseen to

grow in the following years, due growing applications in space �eld downstream, from 3D

city mapping to urban �uid mechanics studies, from landcover to glacier studies [25]. With

respect to other technologies of 3D geographical representation, e.g. point clouds, DSMs

are more convenient because simplier to manipulate with current techniques. Moreover,

once an adequate satellite is in orbit, DSMs obtained by pairs of satellite image are much

easier to be produced than lidar, local acquisitions which require ad hoc campaigns and

thus allow less temporal frequency.

CO3D images will be elaborated by the ground segment to deliver high quality �nal prod-

ucts to French institutions as well as to the public. CS Group is the subcontractor chosen

by CNES for the development of the ground segment. The DEM generation pipeline is

key since the focus of the mission involves 3D surface models and therefore it is among the

main focus for CS Group Department of Payload and Data Applications. For this reason,

CNES and CS developed CARS, a new scalable pipeline for stereo reconstruction [35].

The stereo matching step from recti�ed images is left to Pandora, an independent yet
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integrated [5], developed and maintained by CS Group. Such aspects will be adequately

detailed in 2. Both frameworks are open source and under improvement12 .

However, when it comes to reconstruct objects at a �ner scale, challenges become less

easy to overcome. In particular, urban areas renders su�er from poor quality: buildings

are not representative of the reality their shape might be unrecognizable. Such defects

are a bottleneck for critical applications of such models. For example, when it comes

to semantic segmentation of a city image, any detector will struggle in presence of "not

squared" buildings, for which is not possible to associate any primitive.

CARS DSM in urban area Lidar DSM in urban area

Figure 1.2: Comparison between photogrammetry DSM and a lidar acquisition on the

same area in Montpellier, France

To address this issue and to investigate how to possibly improve CS Group's products and

CO3D pipeline, the internship aims at evaluating the contribution of a better resolution

of the optical images input of the 3D pipeline, to the �nal DEM. the basic idea is to

"zoom" the input image pair and study downstream the impact this may have. Since

sensors have a resolution limit imposed by the characteristics of the instrument, a post

processing treatment is needed. One could just "zoom", i.e. interpolate an image on a

�ner scale grid, but this doesn't add any additional information. Super resolution, on

the other hand, refers to the process of recovering a high resolution (HR) image from one

or multiple low resolution (LR) versions. This feature could potentially lead to better

3D reconstruction of urban areas, strongly characterized by discontinuities. Furthermore

nowadays in super resolution (as in most of computer vision topics) arti�cial intelligence

1CARS documentation
2Pandora documentation

https://cars.readthedocs.io/en/latest/?badge=latest
https://pandora.readthedocs.io/index.html
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in the form of Deep Neural Networks (DNN) is the focus of the related research. There-

fore, advantages and shortcomings of the neural networks for such a task will be assessed,

meaning that we'll try to investigate how DNN behavior may impact the CARS-Pandora

pipeline and the �nal DSM product.

Figure 1.3: Illustration of the CARS-Pandora pipeline

Figure 1.4: Illustration of the proposed contribution to the CARS-Pandora pipeline

This work was mainly done during my intership at CS Group, more precisely at the BU

Espace Toulouse, Payload and Data Applications Department. After having de�ned the

context and reported some theoretical justi�cations (sections 1.2 and 1.3), a state of the

art will be presented for what concerns single image super resolution (sections 2.1 and 2.2)

and CARS Pandora tool will be presented together with their theoretical fundamentals. In

chapter 3 the methodology and results for a single image remote sensing super resolution

framework will be illustrated. Chapter 4 will be dedicated to the assessment of the impact

of such super resolution technique on the DEM in the CARS-Pandora pipeline. Finally

in chap. 6, some conclusions will be drawn together with a �nal discussion and future

work suggestions.
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1.2. Company and industrial context

CS Group, initially named CS Communication & Systèmes, is a company active in the

domain of design, integration and maintenance of cyber-secured critical systems. With

nearly 2000 employees, achieves a turnover of about 200 millions euro. The headquarter

is in Paris with other 12 locations in France. 15% of the activities is realised in Germany

and Romania, 7% outside Europe. CS works in 5 di�erent industrial sectors: aeronautics,

space, energy, defense and industry.

The space Business Unit (BU Espace) is composed of nearly 430 employees and its main

clients are CNES and the European Space Agency (ESA). Its activities concern space and

ground segments. The BU is further divided into skill centers. This work has been realized

within the Payload & Data applications skill center, specialized in ground segment with a

solid expertise in image processing and remote sensing. The company took part in some

CNES missions such as SPOT or Pléiades. CS Group collaborates with CNES in the

realization of open source projects in the photogrammetry domain, such as CARS [35]

and Pandora [5]. These softwares are integrated in the ground segment pipeline of the

upcoming CO3D mission [25], which will be entirely developed at CS Group. It's the �rst

time that CS is responsible for a CNES ground segment. This allowed a larger �nancial

availability and a good part of the Payload & Data Applications team works on CODIP,

the CO3D image processing pipeline.

Moreover, CS Group is part of the AI4GEO consortium, together with Airbus, CNES,

ONERA, CLS, IGN and other major actors of the french geospatial industry. It aims

to develop a unique solution for the production of automatic 3D geospatial information,

lifting the technological barriers to the automatic production of 2D and 3D Geographic

Data, exploiting innovative methods such as arti�cial intelligence algorithms. This in-

ternship is therefore also collocated in a set of studies aimed at growing the expertise of

CS in Arti�cial Intelligence (AI) applications within AI4GEO consortium.

1.3. Hypothesis

As stated earlier in par. 1.1, the internship's aim is to implement a super resolution

network and apply it to satellite stereo pairs, that are input to a multi-view stereo pipeline

(Fig. 1.3), to understand whether this pre-processing step can be bene�cial for the pipeline

outputs.
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However, an arti�cial increase in resolution is not equivalent to having an instrument

capable of a better GSD, so that one may argue that there's no reason to believe that this

method can boost stereo reconstruction and that it will be just an increase in resolution

for its own sake. In other words, what tells us that such a preprocessing step could be

bene�cial to DSM production? There are actually two main reasons behind the interest

for reducing the sampling interval and in particular for adopting super resolution.

The �rst argument is linked to stereo matching. Without diving into the details of such

a computation (Sec. 2.1.3 is entirely dedicated at this aim), we can say that, in order to

estimate the depth of the image objects, we associate at each pixel of the �rst image a

corresponding one in a second image. This correspondence is identi�ed as the one which

optimizes a certain function of the distance between the two pixels. Such a distance

is referred as disparity. Sometimes, it is not as easy to �nd such an optimum since

there are multiple candidates with similar cost values (Fig. 2.6). Increasing resolution

means that we have more possible disparities because of a smaller sampling interval, and,

consequently, we can better approximate the actual optimum. Figure 1.5 illustrates this

idea. A cost function of the disparities for a nominal resolution ("LR") stereo couple and

a bicubically ("Bicubic") upsampled version are shown, together with the ground truth

("gt") optimum point, corresponding in this case to the maximum. We see that, thanks

to a �ner spatial resolution, the bicubic upsample can better de�ne the real maximum and

therefore estimate a more accurate disparity. In addition, this can lead to avoid mistakes

when two concurrent maximum points are not close to each other and the potential error

can be large.

Figure 1.5: Cost functions of a LR image and its bicubically upsampled version. Example

of how upsampling an image can lead to �nd a more accurate cost optimum

This argument might justify a resolution increase but if it was just for it, we could be

satis�ed with a standard resampling method, without the implementation and training

of such a complex object like a neural network. However, if we tackle the problem from a

spectral point of view, the perspective changes. Super resolution algorithms are designed
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to recover high frequencies from low ones, introducing information, especially in a scene

characterized by frequent and strong discontinuities such as buildings in a city. Bicubic

or other interpolation methods do not add any high frequency information as the Fourier

transform has to be as close as possible to a rectangular 2D function (case of sinus cardinal,

perfect interpolator). This is well visible in �gure 1.6: the LR spectrum can be found

centered in the bicubic spectrum surrounded by a regular pattern with values around

zero, whereas the two networks utilised for this study (RDN and ESRGAN, see chap. 3)

present a more �lled spectrum, that seem to be coherent with the LR values. Such a high

frequency information leads to more accurate signal reconstruction especially in the case

of discontinuities like building edges. The assumption is that such a more de�ned spectral

information propagates into more accurate matching, as we choose matching according to

radiometric similarities/di�erences. At this purpose, much depends on the consistency of

the highlighted high frequencies with respect to ground truth and on the coherence they

may have within a couple of images of the same scene.

Low resolution Bicubic upsampling Super resolution (RDN [55])

Figure 1.6: Spectra of 4 versions a satellite image in urban area. Scale factor between LR

and the others is 2.
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2.1. CARS - Pandora pipeline

2.1.1. Principles of stereo-vision

A DSM can be seen as the estimation on a z axis of a given set of coordinates (x, y).

Among other techniques to extract such a 3D information from 2D one, stereo-vision is

de�nitely the main one. Indeed, in this work, when we talk about DSM we mean 3D

digital models obtained by a stereo-vision processing.

It's impossible to rigorously realize a 3D measure from one single 2D image. Many indexes

exist that tell us which objects are in front and which others are behind (e.g. occlusions),

yet in certain situations they struggle in being accurate and they're not useful to estimate

depth. Stereo-vision is a solution for this problem, it consists of estimating the three-

dimensional coordinates of points on an object employing measurements made in two or

more photographic images taken from di�erent positions. It's what our brain cortex does

in order to assess the depth of the real world, the reason why we have two eyes. Two

di�erent images are returned by our two eyes, and they're merged in one single frame

together with an estimation of the depth. It is easy to experience this phenomenon by

closing on eye: an object close to our face is on the right side of our �eld of view when

we close the left eye, and vice-versa; whereas an object placed far from us apparently

remains in the same position when we close on of our eyes. Even if we do not have

direct perception, the brain cortex treats the two objects distinctly and the generated

information, i.e. the depth of the object, is transmitted to our brain for decision taking.

Formalizing it for an image, we can �nd common points (i.e. belonging to the same

position on the same object) in each image. A line of sight (or ray) can be constructed

from the camera location to the point on the object. It is the intersection of these rays

that determines the three-dimensional location of the point. Satellite imagery makes no

exception and we can use this principle to determine the height of a (x, y) point on Earth

surface. The transformation allowing to assign a height measure from a the positions of
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common points is called triangulation (Fig. 2.1).

Figure 2.1: Representation of triangulation principle [9]

Now, the question that arises is how the common points are determined. At this point

it's important to introduce the notion of image registration. It consists of associating

the points of an image to the points of another image in a di�erent reference frame. We

call the former the left image, the latter the right image. Image registration refers to

a broad set of methods or applications. Here we'll consider the registration of a stereo

pair, i.e. two images of the same scene taken at the same instant from di�erent point

of views. The distance that separates two homologous points in left and right image is

called disparity and it's estimated by the registration method, that in this context can be

equivalently referred as stereo-matching method. In order to �nd the common points we

use the radiometric information present on the images through some sort of algorithm.

This is, loosely speaking, the part left to Pandora in the CARS-Pandora pipeline.

2.1.2. CARS

CARS (french acronym for Chaîne Automatique de Restitution Stéréoscopique) [35] is

a multiview stereo pipeline dedicated to satellite imagery, intended for massive digital

surface model production, developed, among other reasons, in sight of the upcoming

CO3D CNES mission. It is designed to process stereoscopic acquisitions from existing Very

High Resolution optical images such as Worldview3 or Pléïades, on di�erent landscapes

(urban environment, mountainous areas, etc.), and to be robust to image defects. It needs

in input a stereoscopic pair with the associated geometric model of the acquisition, in the

form of Rational Polynomial Coe�cients (RPC). The main output is the DSM of the

given region of interest (ROI). The main bricks that compose CARS are:
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Figure 2.2: Schematisation of the CARS pipeline

1. Recti�cation: it consists of the transformation of left and right images in epipolar

geometry. We say that two images are in epipolar geometry when homologous points

lay on the same line. It is not a necessary step but it presents a fundamental advan-

tage: once the images are in epipolar geometry, we have to look for corresponding

points only along a line, reducing thus matching complexity and possibility of errors.

To perform such a recti�cation, one needs the transformation between a set (x, y, h),

i.e. pixel coordinates and altitude, and the global coordinates (λ, φ) latitude and

longitude, respectively.

f : (x, y, h)→ (λ, φ) (2.1)

(Eq. 2.1) denotes this transformation, that is referred as forward localisation func-

tion. A representation of such a mapping is always available in the image metadata,

for instance in the form of Rational Polynomial Coe�cients (RPC), which is a sim-

pli�ed geometrical model of the satellite acquisition that comes with most Very High

Resolution data. From these localization functions, f1 and f2, respectively, for left

and right image, we can derive a colocalisation function that links the coordinates

(x1, y1, h) of left image to (x2, y2) in the right image (Eq. 2.2).

f1→2(x1, y1, h) = f−1
2 ◦ f1(x1, y1, h) = (x2, y2) (2.2)
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It is also assumed that we dispose of a coarse DTM that e can use an estimation of

h at point (x1, y1) and obtain f1→2(x1, y1, h), h ∈ [hmin, hmax], the epipolar curves

yielded by point (x1, y1) from image 1 in image 2 within altitude range [hmin, hmax]

Stereo-recti�cation operation maps the images into epipolar geometry, i.e. variation

of h in the colocalisation function only occur in the horizontal direction. Epipolar

geometry does not stricly exist for push-broom images (typical case of VHR data).

However, it can be approximated. In CARS, an iterative approximation of a geom-

etry �tting the epipolar constraints is performed. In practice two resampling grids

(g1 and g2 for image 1 and 2, respectively) are estimated recursively by using the

colocalisation function and the fact that disparity in epipolar geometry should be

null at h; once determined grid size and starting point by means of an estimation

of an average a�ne transform at full image scale, we move along an epipolar line

whose direction is de�ned as the tangents ~e1,~e2 to an epipolar curve, (f1→2(x1, y1, h),

f2→1(x2, y2, h)) in the locations de�ned by the grids g1 and g2. Once completed a

line, we move to the next line, along the vector perpendicular to ~e1. To �nd cor-

responding point in g2, we can observe that disparity in epipolar geometry should

be null at h. The itaration of this process leads to the completion of the epipolar

grids, that will be used along with an interpolation function to resample images

to the epipolar geometry, or to convert coordinates between epipolar and sensor

geometries.

It follows a sparse matching in epipolar geometry that relies on a SIFT algorithm

[31]. SIFT is a well known feature matching method, i.e. that automatically iden-

ti�es features within an image (e.g. corners, small details) and describes them. It

is used for object recognition and image registration based on feature matching,

and it combines reliability and good computational performance. In CARS, such

a registration exploits the epipolar geometry to look for matches along the same

image rows. SIFT matches are sought in tiles generated from the image, since a

matching at full scale is not feasible for satellite images. Each tile is de�ned by an

epipolar region R1 = [xm, xM ]×[ym, yM ] in left image. For �nding the corresponding

region in the right image R1, the user sets the ortho-epipolar error upper bound ε,

as well as δm and δM , maximum and minimum di�erences with respect to the low

resolution DTM, so that R2 = [xm + δm
α
, xM + δM

α
]× [ym− ε, yM + ε], where α is the

ratio between variations of altitude and disparity in epipolar geometry. The matches

are computed for each tile and collected in a global set. They allow us to adjust

the epipolar lines, otherwise subject to misalignment because of the imprecision of

sensor modeling. This correction is estimated by least square �tting of the error
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made for the sparse matches. Moreover the SIFT matching allows to estimate a

disparity range [dmin, dmax] that is passed to Pandora in order to limit the research

of the disparity to the interval [x− dmin, x+ dmax].

2. Stereo-matching: this block represents an execution of Pandora, that takes as

input the epipolar images and the range of disparities (as well as, optionally, a

con�guration �le) and outputs the disparity maps. Paragraph 2.1.3 is dedicated to

Pandora illustration.

3. Triangulation: disparity map is used to �nd the homologous points in sensor

geometry by using g1 and g2 functions. Hence, we can project lines of sight from

the sensor to the ground points just found and compute their intersection. The

3D point closest to both lines represents the �nal 3D measurement. Doing it for

every pixel, we obtain a 3D point cloud P = {(λ, φ, h)k}. Figure 2.1 illustrates this

principle.

4. Rasterization: with this term we mean the process of converting some data to

raster format. To do so, CARS employs a Gaussian weighting algorithm to interpo-

late the 3D point cloud within a regular terrain grid of user de�ned resolution. All

the points contained in a cell of the grid contribute to the height value that will be

given to the cell.

All these legs are in practice grouped in the two CARS steps: prepare and compute_dsm.

The pair preparation step is run pair by pair and mainly produces re�ned epipolar re-

sampling grids and the estimation of the disparity range. The DSM Computation Step

processes the output of the pair preparation step for several pairs and computes a unique

DSM from them. CARS has been tested over di�erent cases in terms of landscape (urban,

mountainous) and sensor (Pléiades, SPOT7, WorldView3), and it has achieved results

comparable to other state-of-the-art stereo pipelines [35].

(a) Input left image (b) Epipolar left image (c) Left disparity map (d) Final DSM

Figure 2.3: Illustration of data transformation through the CARS-Pandora pipeline
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2.1.3. Pandora

Pandora [5] is a stereo matching framework that takes in input two images in epipolar

geometry and returns the left and right disparity maps. It is inspired by the work of

Scharstein & Zelinsky (2002) [43], who proposed a taxonomy of stereo matching algo-

rithms that allows us to breakdown a given algorithm into the following steps: matching

cost computation, cost aggregation, cost optimization, disparity computation, subpixel

disparity re�nement, disparity �ltering and validation. Although we won't detail each

step, we will spend some words on how a cost volume can be computed and optimized.

Matching cost: Even by restricting our research of common pixel to 1 dimension,

i.e to the epipolar line, looking for homologous pixel by pixel would be a main

source of error, especially in uniform zones where pixel values are very similar to

each other. An immediate improvement is to perform the associations for blocks of

pixels (block-matching). A neighbourhood surely contains more information or even

features that are more discriminant in �nding correspondences.

In order to determine how much two blocks resemble each other, we de�ne a simi-

larity measure, that is an operation performed at block level on the pixel values and

tells us whether the two blocks are similar. Multiple types of similarity measure

exist, from basic di�erences to neural networks speci�cally designed at this purpose

[53]. The two metrics considered in this work are:

� Census [52]:

Census(IL(x, y), IR(x+ d, y) =
∑

(i,j)∈w

HAMMING(ÎLW (i, j), ÎRw(i+ d, j)

(2.3)

where

Îw(i, j) =

{
1, if Iw(i, j) < Iw(x, y)

0, otherwise

and HAMMING represents the Hamming distance operator. The Hamming

distance indicates in how many pixels the two windows di�er. It's a non para-

metric measure, it gives less importance to patch radiometry than to the order

with respect to the central pixel, characteristic that allows it better results in

presence of discontinuities.
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� ZNCC :

ZNCC(IL(x, y), IR(x+ d, y)) =
∑

(i,j)∈W

(IL(i, j)− µLW )(IR(i+ d, j)− µRw)
√
σL.σR

(2.4)

ZNCC stands for Zero-mean Normalized Cross Correlation. µR,Lw and σR,Lw
being, respectively, the mean and the standard deviation calculated on the

window. It is a crossed correlation, centered and normalized, what makes it

robust to gains and o�sets between the windows. On the other hand, it doesn't

perform very well in presence of discontinuities since it's subject to adhesion

e�ects [9].

Adhesion e�ects are observed in correspondence of depth discontinuities and they

can be associated with occlusions, i.e. when a point in an image is not visible in the

other image, because of the di�erent angle of view. This is the typical case of a tall

building that can hide partially the surrounding ground for o�-nadir views. Figure

2.4 illustrates this phenomenon. Part of the ground is occluded by the building in

the left frame. Let Q be a point whose distance to the building is less than half

of the matching window. We look in the right image for the best correspondent

for Q. If the grey level di�erence between the ground and the building is larger

than the intensity variations in the textured areas, a blockmatching method will

probably choose P, which means that the disparity accorded to Q will be the same

as the one of the building. As a consequence, the reconstructed building will be

dilated by the size of a half window. The application of a census matching cost is

an e�cient way to limit this e�ect because the elevated radiometry di�erences in

the presence of discontinuities are as important as more limited variations on the

non-occulted ground, that in turn may help the matching algorithm to choose the

right disparity. For this work, both ZNCC and census have been used and their

utilization is speci�ed and justi�ed in section 4.1.

By repeating the measure for each pixel of the epipolar line, we'll obtain a series of

values in function of the candidate disparity (Fig. 2.5). We call such a curve the

cost pro�le. The algorithm can then select the optimum (maximum or minimum

according to the used measure) by means of the winner takes all strategy, meaning
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Figure 2.4: Illustration of adhesion e�ects [7]

that only the best candidate accounts for the chosen disparity.

Figure 2.5: Block matching in epipolar geometry [9]

The cost pro�le is an useful graphic tool to reveal us what has happened during a

matching operation. We can use it to understand algorithm errors, robustness and

reliability. It can be simply read as a discretized function of one variable, for which

we will take its optimum (maximum or minimum depending on the matching cost

function used). A critical situation is when two (or more) optima concur, meaning

that there are two blocks on the right image that can match the left block, one

of which is wrong but accidentally resemble the considered patch. In these case,

the algorithm may mistake the wrong optimum for the good one, introducing a

strong error. Another unpleasant condition occurs when many similarity coe�cients

have similar values around the real optimum . When this is the case, we do not

have con�dence that the chosen measure coincides actually with the correct one.

In other words, the ideal cost pro�le con�guration is a single Dirac placed at the

correct disparity, Fig. 2.6 exempli�es these considerations by comparing a similarity
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function in which we have large con�dence and therefore preferable, and another

one less reliable as optimum (maximum in this case) is not clearly distinguishable.

The additional information contained in such curves allows to better characterize

a stereo matching pipeline and in turn to improve its performance. For example,

in [42] an ambiguity measure is de�ned from cost pro�les in order to quantify the

con�dence we have in a disparity measure, and it is shown how this parameter can

be used to enhance disparity maps in Pandora.

Figure 2.6: Example of high con�dence and low con�dence similarity measures

Cost optimization: By calculating the cost pro�le for each pixel along its epipolar

line, between an arbitrary range [dmin, dmax], we will eventually come up with a 3D

array called Disparity Space Image (DSI ), that stores for each possible disparity d

in the considered interval, and pixel coordinates (x, y), a similarity coe�cient. We

can consider this volume globally and apply thus some sort of global optimization.

The approach is to �nd the disparity map which minimizes an energy de�ned as in

(Eq. 2.5),

E(D) = Edata(D) + λEsmooth(D) (2.5)

where Edata is the sum of similarity measures and Esmooth penalizes the less regular

solutions. λ is a coe�cient that allows the two measures to be on the right order of

magnitude, while D is the DSI of an image.

It is an optimization problem with exponential complexity with respect to the image

size and thus it cannot be solved easily. A wide variety of optimization algorithm

might be used at this purpose. Pandora implements a semi-global matching (SGM )

algorithm proposed by Hirschmuller et al (2008) [14]. It consists of de�ning a

regularization term as in (Eq. 2.6).

Esmooth(D) =
∑
p

∑
q∈Np

P1 × T [|Dp −Dq| = 1] + P2 × T [|Dp −Dq| > 1] (2.6)
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with Np the is neighbourhood of a pixel p, T an operator whose value is 1 if the

expression is true and 0 otherwise, P1 and P2 two arbitrary penalty values. Dp and

Dq are the Disparity Space Image image. The �rst term penalizes small disparities

di�erences with weight P1. The second term penalizes larger disparities steps, i.e.

discontinuities, with value P2 that has to be larger than P1.

For each point of the DSI, this energy is calculated along 8 (or 16) 1D paths and

summed. The disparity assigned for each point is then the one for which the energy

is optimal, i.e. a "winner takes all" strategy. This approach allows a 2D approx-

imation while keeping the complexity of the problem 1D. It is halfway between a

2D approach, which would be a NP-complete problem and hence with exponential

complexity with respect to the image size, and a 1D solution that are prone to arte-

facts due to the di�culty of relating the 1D optimizations of individual image rows

to each other.

An appropriate similarity measure together with a SGM-optimization already supply a

reliable disparity map in most cases. Other steps of the Pandora pipeline are essentially

post-processing and consist of classical techniques of noise reduction, outlier removal, etc.

Their contribution is marginal with respect to matching cost computation and optimiza-

tion and therefore will not be treated.

2.2. Super resolution

The general concept of Super-Resolution (SR) refers to those algorithms aimed at increas-

ing the image resolution, that is, increasing the number of pixels but providing �ne details

in the resulting image as if a sensor with a higher nominal resolution would have been

used [10]. One could zoom, i.e. resample one image, in order to increase the number of

pixels, but this does not introduce new information; more precisely, it does not recover

the high frequencies lost during downsampling and the result it is just a blurred larger

version of the original image. Moreover, some aliasing e�ects may occur in high frequen-

cies textures. In other words, SR can be associated with the upsampling of an image

limiting (ideally, removing) blur, aliasing and noise ampli�cation e�ects [1]. SR is meant

to overcome the limits imposed by the acquisition instrument through data processing.

The interest of the scienti�c community for SR in imaging dates as back as 1984, when

Tsai & Huang et al (1984) [45] proposed a frequency domain method to arti�cially in-

crease an image resolution. Since, SR has been object of researches and numerous image

processing tools have been tested in order to solve the SR problem. Recently, the global



2| State of the art 19

di�usion smartphones allowed billions of people to dispose of a camera. These cameras

must be limited in size, hence they're provided with a restricted CMOS (Complemen-

tary Metal-Oxide-Semiconductor) sensors that in turn means poorer quality images. This

hardware are reaching physical limits that are di�cult to overcome, so it is more and

more interesting to arti�cially augment image resolution through post-processing. Thus,

related research is boosted in order to retrieve higher quality, eye pleasant, images from

the size limited sensors. In remote sensing, large availability of LR data and the ascent of

recent applications with high resolution requirements (i.e. object detection) are playing a

similar role in encouraging funding for SR research. This, together with the rise of deep

learning which is opening new frontiers in image processing, lead to a signi�cant interest

in the scienti�c community for super resolution.

An adequate study of the theoretical basis and the contemporary literature is essential gain

con�dence in the results that will be proposed in this work. Therefore, some mathematical

fundamentals will be illustrated and a state-of-the-art will be presented.

2.2.1. The super resolution problem

Let's consider (Eq. 2.2.1)

y = Φ(x) (2.7)

where y is an observed variable x the corresponding model variable, and Φ the unknown

operator that links them. The inverse problem consists in retrieving x from y.

Although the notion of inverse problem is important numerous di�erent �elds, in imaging

it represents a fundamental concept. Typically we have one (or multiple) observed im-

age(s) from which we want to extract the pictured information overcoming the limitations

of the instrument used [1]. Main applications include denoising, deblurring, fusion as well

as super resolution.

The operator Φ is commonly modeled by the contribution of a downsampling operator

D, a blur induced by a convolution kernel h and noise (usually additive) N . Therefore,

(Eq. 2.2.1) can be rewritten (Eq. 2.2.1) [10].

y = D(x ∗ k) +N (2.8)
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The resolution of such a problem consists in the minimisation of a potential J de�ned

by (Eq. 2.2.1). The �rst contribution is a data �delity term, while the second one is a

regularizer in which we may introduce some a priori knowledge of the model in question.

A scale factor α is required in order to be able to compare the two contributions which

might be very di�erent in value.

J = ||y −D(x ∗ k)||+ αψ(x) (2.9)

The super resolution problem (Eq. 2.2.1) is a notoriously ill-posed problem: in�nite

solutions exist and the priors term serves to guide the optimization towards the best

achievable solution [40].

2.2.2. Super resolution in Remote Sensing

Among other areas relying on the visual information, such as computer vision, microscopy,

astrophysics, also remote sensing may bene�t from super resolution and therefore there is

a strong interest in the research community. In particular, LR data are widely available

(e.g. Sentinel-2 data) while HR or Very High Resolution (VHR) data are generally own by

companies and in some cases not even available in the market. Yet, almost every applica-

tion would gain from higher resolution data [49]. On the one hand, LR open source data

have generally poor ground sampling (in the order of 10 meters for the visible range, even

more for other spectral bands), and this is a bottleneck for many situations. Increasing

the resolution would allow to generate perform scienti�c analysis at a �ner scale and to

be more precise when generating products from these data. On the other hand, even

for HR or VHR data would be bene�cial. For example, in some current relevant space

downstream use cases like map updating, road extraction and target identi�cation where,

high requirements in terms of ground sampling distance, closer to aerial imagery, have

to be met. Therefore, there is a natural concern for super resolution, ampli�ed during

the past few years by the success of object detection and classi�cation algorithms, which

strongly bene�t from an increase in image de�nition.
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Note: The notation of HR and LR might have two di�erent meanings within this

work: in this paragraph, we adopted the vocabulary of satellite imagery, where

data with a GSD lower than 1 m are generally referred as HR, while the others

as LR. In the context of super resolution, though, LR is associated to the input

image, while HR to the target one, independently on the actual GSD of the data.

The most dynamical application of SR is in computer vision for enhancing natural images.

Natural images is the term used in literature to indicate photos of a scene in its natural

environment, taken on ground by standard RGB camera, like anyone of us does with

his smartphone. These are the typical images used as benchmark for computer vision

algorithms. This denomination is often used in contrast to aerial or satellite images, that

are taken onto the Earth surface from above with speci�c instruments. Remote sensing

presents some speci�cities that have to be taken into account when designing methods for

SR [44]. We point out some of them:

- Larger size of the image to treat. Remote sensing data are usually supplied in the

form of very large acquisitions over a given range of latitude and longitude. They

can be up to several hundreds of MPs while in computer vision we usually are

in the order of some megapixels. Thus, we typically need to set some criteria to

divide space images into tiles so that this amount of information can be processed

in reasonable times.

- Big amount of information encoded in one observation: cities, vegetation and land

may be pictured in one image. This means that it is di�cult to introduce prior

knowledge valid in the totality of the image.

- Various object orientation. Even objects of the same type can be oriented in di�erent

ways, depending on the scene and on the satellite direction. This, again, introduces

concerns when modelling an a priori that can work in as many cases as possible.

- Satellite acquisition chain peculiarities: CCD (Coupled Charge Device) sensors,

satellite movement, n-bit encoding, compression, etc. The trouble we might en-

counter are multiple, e.g. the complexity of modelling all these di�erent contribu-

tions, the exact knowledge of all the parameters composing the considered camera

model.

- Challenging conditions of the scene, like atmospheric contribution, presence of

clouds, etc. The scene might not be uniform and well visible.

Nevertheless, the use the results of computer vision SR methods in remote sensing (or
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vice-versa) is motivated by the fact that the literature of the two �elds is closely correlated

in direct or indirect means [40]. On the one hand, this is justi�ed theoretically by the fact

that a robust model should be able to inverse di�erent kinds of sensor model [48]. On the

other, such an approach is motivated empirically by numerous successful experiences in the

dedicated literature [29] [38] [48]. Especially in the past decade, that saw computer vision

as one of the most growing �elds in the scienti�c research, remote sensing applications

often follow the main trends of computer vision. What is typically done is to borrow

methods proven for natural images, and adapt them in the context of overhead imagery.

For instance, by addressing the multi-scale aspect of such data [13] [54] [17].

2.2.3. Super resolution algorithm classi�cation

A notable amount of methods have been proposed to solve the ill-posed super resolution

problem (Eq. 2.2.1), involving classic tools of the signal, estimation and probability

theories. Several works proposed a review of SR algorithms, both in remote sensing [10]

[40] [44] and in computer vision [49] [1].

A �rst distinction can be drawn between single image super resolution (SISR), which

attempts to recover a HR version of a LR input image, and multiple image super res-

olution (MISR), where typically sub pixel di�erences between photos of the same scene

are exploited to extract the subpixellic information. In the case of remote sensing, MISR

can be further broken down based on the sequence of used images, whether the latter

is multispectral, multiview or multitemporal. Although multispectral and multitemporal

SR methods are receiving greater attention due to the increasing of revisit time and spec-

tral bands of the publicly available data [36], in the context of the CO3D mission only

multiview approaches might be interesting, when the information redundancy included in

a stereo pair (or n-views) can be exploited for further re�nement of image products.

However, in this work we'll mostly focus on single image approach. Many criteria can be

identi�ed to classify the di�erent algorithms (domain, theoretical tools employed, etc.).

Based on the reviews proposed in [10] [40], we can observe a main distinction between

reconstruction and learning based algorithms. The former arises from traditional signal

treatment techniques in both frequency and spatial domains by attempting to produce

features appearing in the LR image to a higher resolution level (Fig. 2.8). The latter

relies on the automatic estimation of a LR to HR transformation thanks to examples

elaborated by the algorithm (Fig. 2.7). In other words, we try to extract the mapping

between LR and HR from external examples and then apply this transformation to our

image [10]. The main shift of interest we can remark in remote sensing in the last decade
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is indeed the passage from reconstruction based to learning based methods.

Figure 2.7: Representation of single image resolution via learning, Ref. [10]

Figure 2.8: Representation of single image resolution via image reconstruction, Ref. [10]

Based on the reviews in [10] and [40], it is possible to delineate the following brief, non

complete, overview.

• Interpolation

Resampling at higher resolution doesn't mean necessarily super resolving. This is

the case of interpolation: some literatures [40] include it in SR methods while some

other [10] exclude it because, in fact, there's no real attempt to recover high fre-

quencies. Indeed, the perfect interpolator is a cardinal sinus whose spectrum, by

de�nition, is empty in correspondance of frequencies that have values larger than the

starting image. Moreover, it cannot be considered a research topic as interpolation

is generally included in every image processing formation and well-known interpo-

lation methods (bilinear, bicubic) are commonly implemented in any image related

software. In this state-of-the-art bicubic interpolation will be brie�y described be-

cause any SISR paper compares its results to a standard bicubic interpolation, and

so it will be done in this work. Such a benchmark status is due to the fact that

bicubic interpolation is the in practice the best cost-e�ective method when it comes
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to resample an image. Indeed, it preserves �ne detail better than the common bi-

linear algorithm. However, due to the negative lobes on the kernel (Fig.1.6), it can

cause clipping, which is an artifact. On the other hand but it increases apparent

sharpness, and thus it can be desirable.

As the name may suggest, the bicubic interpolation is the 2D extension of the cubic

interplation. In digital imaging it is achieved by applying a convolution with the

kernel in(Eq. 2.10) in both dimensions. a is usually set to −0.5 or −0.75. The

approach was �rst proposed in [22] and sixteen points (a 4x4 grid) are considered

for the operation.

W (x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 for |x| ≤ 1,

a|x|3 − 5a|x|2 + 8a|x| − 4a for |x|1 < |x| < 2,

0 otherwise.

(2.10)

• Reconstruction based

� Frequency domain: these methods concern transformation-based operation

that perform mathematical operations on the frequency components [40]. It

naturally comes to �nd a way to link high and low frequencies, whether using

Fourier or wavelet transforms. The �rst image super resolution work is usually

attributed to Tsai & Huang et al (1984) [45], in which they derived a system

equation that describes the relationship between LR images and a desired HR

image by using the relative motion between LR images. The frequency domain

approach is based on the shifting property of the Fourier transform, and the

aliasing relationship between the continuous Fourier transform of an original

HR image and the discrete Fourier transform (DFT) of observed LR images.

These properties make it possible to formulate the system equation relating the

aliased DFT coe�cients of the observed LR images to a sample of the CFT of

an unknown image.

Although the analysis in a frequency domain can be powerful, these approaches

su�er from the proper modeling of the motion with real-world problems [40].

� Space domain: the focus progressively shifted towards spatial approaches, that

allow to overcome frequency domain limitations. For example, the iteration

back projection (IBP), introduced by Irani et al. et al (1991) [18] is one of the

most cited interpolation methods in the dedicated literature. The SR image is

estimated by back projecting the di�erence between simulated LR images via
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imaging blur and the observed LR images. The reconstruction process is real-

ized by minimizing the energy of the error iteratively. A foremost experience

in super resolution is the SPOT-5 super mode, that combined hardware and

image processing to overcome the constraints of the �ying optical system. This

system shifts half a sampling interval in the horizontal and vertical directions

by a double CCD linear array, which obtains two panchromatic 5 m resolution

images, and then produces an approximately 2.5 m resolution high-resolution

image through super-resolution reconstruction processing [24].

Space domain approaches pushed forward super resolution limits and lead and

to conceive super resolution using a single frame, i.e. the SISR, that sees its

more recent developments in learning based techniques.

• Learning based: SR research is nowadays mostly focused on this set of methods.

SISR can be more easily achieved when priors can be automatically modelled by

the algorithm. Yang et al. et al (2010) [50] introduced sparse coding (SC) for

super resolution and their result is considered among the best non deep learning

techniques to achieve SISR. SC takes advantage of the fact that natural images

tend to be intrinsically sparse when they are characterised as a linear combination

of small patches [10]. Firstly, an overcomplete dictionary from the training patches

is learnt by forcing the high resolution training images and their low-resolution

counterparts to share the same sparse codes. Then, each test LR patch is expressed

in the dictionary with sparse coe�cient. Finally, the HR image is reconstructed

with the weighted coe�cient computed in the previous step [49].

Over the last years, learning based techniques relying on DNN became de�nitely the main

trend in SISR. Sec. 2.2.4 is entirely dedicated at this subject which is in turn the main

focus of this work. Data driven approach seem to overcome the limitations of the previous

generation methods, when adequately supported by proper databases and computational

power. However, many other methods exist, each one with its advantages and short-

comings. Bicubic interpolation usually represents the benchmark to be outperformed.

Although it produces blurred images as it doesn't add any high frequency, it represents

the best cost-e�ective technique when it comes to upsampling an image.

2.2.4. Deep learning in super resolution for remote sensing

CNNs (Convolutional Neural Networks) are speci�c DNN architectures which involve the

use of convolutions in several layers, and are an ideal tool for processing regularly sampled
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data such as 2D and 3D imagery [44]. Almost every �eld of research which deals with

visual data is nowadays trying to understand the potential of such arti�cial intelligence

(AI) architecture, including super resolution in remote sensing. Deep Learning success

boosted research for computer vision tasks, such that sophisticated DNN techniques for

SR showed to be able to outperform past methods.

In SR context, they are appealing because of their ability to �nd an optimum solution by

inferring e�ective high level abstractions that bridge the LR and HR spaces [51]. In other

words, DL allows automatic extractions of meaningful a priori knowledge, removing the

need for identifying case-speci�c features [44].

Architectures

The �rst work which proposed Deep Learning for SR is Dong et al (2014) [8], where

they demonstrate the equivalence between the contemporary state-of-the-art learning base

methods (such as sparse coding) and a deep convolutional network. The proposed network,

called Super Resolution Convolutional Network (SRCNN), is the �rst of its kind and thus

utilized as base reference for any other SR via Deep Learning work.

The fundamental di�erence in comparison to the classical CNN tasks such as object recog-

nition or classi�cation, is that the mapping is performed from a high dimensional space

to another high dimensional space (unlike classi�cation where a MxN image is converted

into a limited number of classes). Therefore particular architectures (e.g. Autoencoders,

Generative Adversial Networks) have to be designed which may di�er from the traditional

deep neural networks that map an image into a set of output features. This is common

to other image processing tasks like image restoration, image generation.

In remote sensing, the �rst application of CNNs for super resolution is commonly at-

tributed at Liebel et al (2016) [29]. They show how re-training a CNN designed for

single-image super resolution using an appropriate dataset for training can enhance mul-

tispectral images of Sentinel-2 database. The idea is to train a proven CNN (in fact,

SRCNN) with a di�erent dataset, assuming that the properties of a remote sensing image

only a�ect the parameters of a network and not the structure itself.

Such an approach was successful enough to encourage the remote sensing community

utilizing this strategy: train state-of-the-art networks for natural images with appropri-

ate datasets (or even just �ne tuning natural images trained networks with an ad-hoc

database, see paragraph 2.2.4). In other words, architectures are taken from computer

vision with marginal modi�cations. On the other hand, large scale datasets for remote
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sensing super resolution were lacking and researchers proposed di�erent solutions.

SRCNN [8] proposes a very basic structure in which at each layer corresponds a funda-

mental step: the �rst convolutional layer extracts a set of feature maps, the second layer

maps these feature maps nonlinearly to high-resolution patch representations, and the

last layer transforms the predictions to produce the �nal HR image.

Figure 2.9: Schematics of the �rst CNN for single image super resolution [8]

For its simplicity and its e�ectiveness, SRCNN is an important milestone in SR literature.

Nonetheless, it left space for improvement. For instance[51]: the input of the network is

the bicubically interpolated version of the LR image (time consuming and the kernel used

may introduced undesired information); the structure is only 3 layer deep, while it is

believed that deeper networks can harness more sophisticated transformations; the loss

function (Mean Square Error) is trivial, while it would be interesting to use it in order to

inject some prior knowledge in the model.

In fact, �rst CNN for SR [8] [29] barely outperformed bicubic interpolation while increasing

very much the model complexity and the amount of data to handle. Therefore, much work

has been done to propose more satisfying architectures: di�erent DL approaches can be

identi�ed in the literature. Here we propose some examples of architectures used for

enhancing the resolution of remotely sensing data, inferred from the reviews [40] [51] [44]

[1]. Although all these architectures are based on convolution operations, we recognize

GANs in a di�erent category because of their peculiar framework, where two networks

try to "fool" each other: the �rst has to generate a high resolution image from the low

resolution one, while the second network will try to understand which one between the

SR and HR image is real. Some examples of CNN architectures are hereby reported, but

it is far from being a complete list of what can be found in literature.

• Convolutional Neural Networks (CNN)

� Linear: it is the straightforward way of building a CNN, i.e. the image is
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passed through a series of layers progressively; in fact, nothing conceptually

di�erent from SRCNN depicted in �gure 2.9. The main way for improving the

results is to add layers, to make the network deeper to improve the learning

of LR to HR mapping. That's the basis on which the Very Deep Residual

Network (VDSR) [23] was created in natural images context, and then used

as benchmark in several remote sensing SR works. It represented an improve-

ment with respect to the SRCNN but it was inevitably outperformed by more

elaborated networks.

� Residual: skip connections in the network design avoid gradients vanishing

and make it feasible to design very deep networks. In this approach, algorithms

learn residuals i.e., the high-frequencies between the input and ground-truth,

[1], making them interesting for super resolution since the goal is to retrieve

the missing high frequencies. Haut et al (2019) [13] proposed residual learning

in SR for remote sensing. Speci�cally, residual units and skip connections were

adopted to uncover more relevant features on both local and global image area.

� Recursive: as the name indicates, some layers/ units are recursively con-

nected. This should facilitating the laerning process breaking down the main

task into a set of smaller problems [1]. An interesting implementation of such

networks in remotely sensed data is Ma et al (2019) [34]: the network operates

in the wavelet domain, where low to high frequencies relations may be more

naturally described. Nevertheless and in spite of the network complexity, such

a method couldn't make a big leap forward in terms of results.

� Multibranch: the feature mapping is divided into di�erent paths at multiple

scales. This way the model should be able to learn multilevel representations,

which in remote sensing is of paramount importance given the diverse range

of feature scales in Earth Observation data. A relevant experience often re-

ported in the literature is Lei et al (2017) [34],' Local global combined network

(LGCNet): a "multifork" structure is introduced in the non-linear mapping

step (Fig. 2.9) in order to treat both local details and global environmental

priors.

� Attention based: a relatively novel approach in which one considers that not

all the features (channel, spatial locations) are essential for super-resolution

but have varying importance [1]. Several works have been proposed by the

aerial/space imaging community. We may consider the work from Zhang et

al (2020) [54], characterized by a feature extraction network and a feature
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re�nement network with high-order attention mechanism for detail restoration,

because of its ability to restore �ne and "straight" building edges.

� Combined: the approaches just depicted (residual, recursive, etc.) are often

combined to build more elaborated and remote sensing oriented networks.In

the benchmarks [40] [44], the multi-scale residual neural network (MRNN) by

Lu et al (2019) [32] attains results comparable to GANs. MRNN addresses the

multi-scale nature of satellite images to reconstruct high-frequency information

accurately. Di�erent sizes of patches from LR satellite images are extracted;

large-, middle-, and small-scale deep residual neural networks are designed to

simulate di�erently sized receptive �elds for acquiring relative global, contex-

tual, and local information for prior representation. Then, a fusion network is

used to re�ne di�erent scales of information.

However, improvements are accomplished at the cost of a further rami�cation and

deepening of the network. The impression is that such a complexi�cation is not

always balanced by breakthrough performances. It seems that such an approach is

reaching a sort of "plateau" and it is hard to distinguish an imposing solution, while

the focus is shifting towards GAN.

• Generative Adversarial Networks (GAN)

They consist of a generator network and a discriminator network that produces high

quality and realistic reconstruction of super-resolved images. It is acknowledged to

Ledig et al (2017) [27] the creation of SRGAN,the �rst GAN for super resolution.

The adversarial strategy pushes the generative result towards more natural outputs

which please the human eye. This is achieved by the introduction of a perceptual

loss function (for the generator) which consists of a content loss, i.e. pixel values

similarly to standard CNNs, and an adversarial loss that involves the response of

the discriminator (Eq. 2.2.4). In this way, prior knowledge is synthetized by the

discriminator and taken into account by means of the generator loss function. In

SR, a variant of the original GAN is in fact employed, namely conditional GAN,

where the input is the LR image (or a version of it) instead of random noise. Haut

et al (2018) [12] proposed a GAN for training in an unsupervised way as �rst ap-

plication in remote sensing. Their work is more similar to "traditional" GANs, the

generator starts from random noise to create a the LR image at di�erent scales,

and the transformation learned is then applied to the LR data to obtain super re-

solved data. In such manner, there's no need for supervision and of an external

training set composed by HR data. However, this approach didn't impose among
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others, whereas most of state-of-the-art methods use the LR-HR pairs to generate

the network knowledge.

L = Lcont + αLadv (2.11)

GANs generally improve perceptual quality but may introduce large number of

artifacts and indeterminate details. However, well-tuned architectures and good

regularizations have allowed GANs to become the current reference when it comes

to SR.

Figure 2.10: GAN representation for super resolution [44]

The �rst GAN for super resolution[27] saw soon the rise the rise of other concurrents.

A relatively simple yet e�ective approach was presented by Ma et al (2018) [33].

They propose a simpli�ed version of the prototypical SRGAN [27] capable to improve

the quantitative results. One of the main dinding of the work is that the removal

of batch normalization layers boost both accuracy and speed of architecture. Batch

normalization is considered suitable in the �eld of target classi�cation, rather than

in SR. They also adopt transfer learning from computer vision, where larger datasets

exist, as an e�ective way to perform training of SR network in remote sensing. More

speci�cally, they performed pre-training on the DIV2K, a natural image dataset

often used in for training SR networks. Generally speaking, the features learned

from the former part of the network are in low level and can be shared across

di�erent tasks, while the features learned in the later part are speci�c to the target

task. Thus they �x the parameters in the former part of the network and only

�netune the last three convolutional layers. A weak point of the paper is the use of

a limited dataset (UC merced) [40].
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A signi�cant work in recent literature is Jiang et al (2019) [20], who proposed edge

enhanced GAN (EEGAN) (Fig. 2.11). As the name may suggest, such a network

was designed with the purpose of improving the sharpness of edges, thus leading

to superior edge detection results. A generator network composed by several dense

layers is �rstly used to obtain an intermediate HR result Ibase. Since the latter may

su�er from noise, a second structure is included, whose task is to enhance the target

edges extracted from the intermediate SR image by cleaning up the noises and arti-

facts. Ibase is passed through a laplacian operator to extract edges, hence a dense

subnetwork is utilized to infer �ne edge maps. Such maps are noisy and will cause

di�culties for subsequent discrimination. Therefore, a mask branch simultaneously

learns the noise mask through the attention mechanism. The combination of these

two representations produces an enhanced edge information I∗Edge. By replacing

these puri�ed edges in Ibase, the �nal image is obtained. Finally, a basic discrimi-

nator network will assess the quality of the result by comparison with the ground

truth. In the loss function, in addition to the GAN loss (Eq. 2.2.4), we remark

the presence of a consistency term whose purpose is to reduce potential artifact

generation, weak point of GAN architectures.

Figure 2.11: Schematics of EEGAN [20]

One may argue that TGAN and EEGAN have been tested on a limited dataset,

making the results presented in the respective articles less reliable. However, a

comparison between the two networks and other state-of-the-art methods exist in

ref. [40] and they show to be taken as reference frameworks for remote sensing SR.

On the other hand, CGAN is too recent to have been reviewed but the robustness
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of the neural network is somehow proved in the article by the utilization of multiple

datasets.

Figure 2.12: Comparison of EEGAN and other networks, building edge rendering detail

[20]

• Hybrid approaches

Combination CNNs and more traditional approaches (sec. 2.2.3) also showed to

be a valuable solution especially in computer vision. It is an hybrid technique one

recent work of Google for SR [41].

Datasets

Datasets represents a very critical element when it comes to remote sensing learning

based methods, especially for what concerns super resolution. Indeed, it is well known

that large and representative datasets are essential for the success of deep neural networks.

In overhead imagery, it is not as easy to collect a su�ciently large amount of images well

suited for a network. While in object detection/landcover the most relevant problem is

the labeling of the photos, in super resolution there's an issue is even more complex to

overcome. In fact, in digital imaging, single image super resolution means �nding the

version of an image as if it was captured in higher resolution. Thus, we should have two

images of the very same scene from the very same angle (in the very same conditions !).

Even if we took a picture of a scene and then we zoomed, they may su�er of misalignment

making it inconvenient to evaluate the performance of trained models on such a dataset

[4]. Considering the dynamics of a aerial or space frame acquisition where the capturing

device moves at high speed, it's unrealistic to be able to capture a perfect LR-HR pair.
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Figure 2.13: Representation of a sensor model taken from Ref. [49]

In practice, authors of remote sensing SR usually utilize sets of HR data as ground

truth, and degrade them in order to simulate a corresponding LR set, then train the

model to �nd back the HR images. However, the realistic degradation of an image passes

through the de�nition of an imaging model (Eq. 2.2.1). The latter might also be quite

complicated (Fig. 2.13) in the case of remote sensing imagery, where some factors like

the translation of the instrument and the atmospheric distortions are added to other

natural images contributions. A solution which is often employed in literature is to apply

a bicubic degradation to simulate the blur and then to downsample the data by the

desired factor. Such a procedure enables generation of training data without further

complications, but it is far from a real simulation of remotely sensed data. Typically the

lack of noise addition and therefore, noise in�uence in single image SR reconstruction is

rarely assessed. Moreover, one can argue that a mapping solely composed by a bicubic

blurring plus downsampling is too simple to justify the employment of such complex

models as CNNs, and that a network capable of super resolving images obtained in this

procedure might fail in the case of more composite degradations. Nonetheless,the use of

Deep Learning in single image SR for remote sensing despite the lack of proper data seems

to be justi�ed. For example, in [48], a realistic imaging model is adopted to generate the

LR data and yet a deep convolutional network pre-trained on natural images is a able to

super resolve remote sensing frames for independently from the geographical context.

Hence, the problem of creating a LR/HR dataset is in turn transformed in collecting a

representative set of HR (at the desired ground sampling distance) views. This is again

not trivial in overhead imagery. In fact, single image SR in remote sensing is mainly

interesting because HR or VHR images are often not available (at least, not free), whereas
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LR open data are abundant [10]. This causes issues in learning based SR, where a large

amount of varied HR ground truth data are needed to e�ectively train a model.

Recently, the growing demand for object detection aerial/space systems, a task which has

high requirements in terms of GSD, pushed the creation of larger HR datasets, that in

turn are borrowed by SR authors for the training of their network. Among the most used

datasets, we can name UC-Merced, RSCNN7, AID [11], Spacenet and Spacenet 4 [40].

Dataset Resolution[m] No. images Size [GB] O�-nadir Remarks
UC Merced 0.3 2100 0.317 No
RSCNN7 Google Earth1 2800 0.377 Yes
AID 0.5 - 8 10000 0.740 No
Spacenet 0.31 rasters 3.4 No
Spacenet 4 0.5 - 1.5 rasters 186 Yes US cities
INRIA 0.3 rasters 11.6 No US & EU

cities
ISPRS (Vaihin-
gen)

0.08 rasters 17.1 Yes IR-R-G

ISPRS
(Toronto)

0.15 rasters 5.5 Yes

Table 2.1: Main datasets used in single image super resolution for remote sensing

HR/VHR data

Among all, SpaceNet4 seems to be a good candidate in the context of CO3D mission

because it features an important o�-nadir range of angles, which is indeed the purpose of

its creation [47].

Transfer Learning

Due to the lack of very large datasets, it is a very common practice to pre-train a network

on natural image data (where bigger databases are common) and then use remote sensing

ones to perform �ne-tuning [33]. As justi�ed in sec. 2.2.2, there's no reason to believe

that some features of an upsampling and deblurring mapping can't be common between

natural and remote sensing images. Even though today larger HR datasets are available,

transfer learning can be used to speed up the convergence of any network. Indeed, it is

a common practice in remote sensing SR to use systematically transfer learning. In some

cases [3] even �ne tuning on remotely sensed data is not done.
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2.2.5. Single image super resolution based DEM generation

Some attempts of the employment of single image SR for improvement of DEM are pro-

posed in the recent literature. In fact, a more common approach to improve DSM quality

is to super resolve or re�ne a stereo DSM, often by means of DNNs in the recent works.

A problem of such an approach is the lack of high resolution DSMs, that are challenging

to obtain.

Here, we will stick to image super resolution, i.e. improve stereo pair resolution in order to

get better 3D models at the end of the pipeline. In Zhang et al (2019) [56] the feasibility

of such a methodology is explored. Several SR models are compared as well as a basic

bicubic interpolation for image SR. Furthermore, directly upscale DSMs are added to

the analysis, where LR DSMs are �rstly generated with the low resolution stereo pairs

and then interpolated through a coarse-to-�ne pyramidal approach. The architectures

considered are: the basic SRCNN [8], its deeper version VDSR and the super resolution

network for multiple degradations (SRMD). The latter takes into account more complex

imaging models by treating both LR images and degradation maps. Hence, it might be

more robust to real world images that su�er from noise (suitable for satellite imagery) .

The training is performed on 300 HR and VHR WorldView GeoEye images.

Figure 2.14: Comparison of di�erent SR methods for DSM improvement [56]

Results show an actual enhancement of DSM models thanks to CNN based SR compared

to direct DSM upscale and bicubic upscale SR. In building regions the proposed method
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seems to be satisfactory while in di�cult terrains with vegetation DSM are improved but

the error remains high. On real images data, neural networks do not achieve as good

results as on the simulated data, but it might also be due at the di�erence of information

in the panchromatic images which are taken as reference.

These results are encouraging but several aspects can be improved. First of all, the

network architecture can be changed to obtain a better SR. GANs and other kind of

architectures have proven to outperform the models considered in the paper. Additionally,

the objective function used is RMSE, that it is not very well suited for single image SR

and it doesn't introduce any prior knowledge. Again, the GAN framework can be useful

thanks to its adversarial loss. Secondly, the reference in all experiments is better to be

replaced by ground truth because DSM reconstruction, especially in some kind of terrains,

still su�ers from important errors. Finally, a more complex degradation process of images

might be taken into account to make the technique more robust with respect to real data.

Besides, it is noteworthy that RPC �les also need to be regenerated once the image is

super resolved (the authors propose a simple procedure).

The same approach has been also proposed in aerial imagery, which is likely more coherent

within CO3D where VHR images will be already available and the objective is to get closer

to aerial data. Burdziakowski et al (2020) [3] assess improving of UAV photogrammetric

products by means of image SR. They enhance data taken at 110 meters in altitude by a

factor of two and compare the output dense clouds with the ones originated by original

110 m and 55 m (half the altitude) frames. This means a GSD of, respectively, about 4

and 2 cm. The network employed is a SRGAN, pre-trained on ImageNet and �ne-tuned

on NITRE. This means that no remote sensing dataset is used for SR training and yet

the model is able to improve no-reference image quality score in comparison with the

bipolar interpolation. As expected, the density of the point clouds is increased hence its

resolution and its capacity to solve �ner details. However, photogrammetric accuracy is

degraded when compared to the not super resolved input. By a comparison with 55 m

data, it turns out that lower ground sampling distance results in artifacts, de�ciencies in

the structure that in turn cause reconstruction errors. Thus, the reduction in precision

should be due to some issues of the used softwares with views at lower altitude.

In Pashaei et al (2020) [38] an the contribution of an ESRGAN (enhanced super resolution

GAN, [46]) to dense scene reconstruction for UAS (unmanned aerial systems) photogram-

metry is evaluated. Findings of such a work concern: the possibility of improving results

with a smaller dataset, the investigation of noise removal capability of SR GANs, the

employment of a task-based image quality metrics (IQM).
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With the respect to data, experiments are carried out on a limited number of original HR

and virtually-generated LR UAS images by downsampling the original HR images using

a bicubic kernel with a factor 4 and the addition of white gaussian noise. Unlike many

other works, patches of resolution 1000 x 1000 pixels are used for �ne tuning, assuming

that larger patches can feed the network with higher scale feature information. The �ight

altitude was designed to achieve a GSD of 2.5 cm. The network was pre-trained on very

large computer vision datasets and only �ne tuned on the UAS images. Results show

that this is a valuable approach and �ne-tuning signi�cantly increases model precision.

The measures are task-oriented: camera parameters (interior and exterior) estimation

by Structure-from-Motion (Sfm) photogrammetry and DSM reconstruction. We'll focus

only on the latter: the ESRGAN model performs much better over man-made objects and

natural objects with de�nite boundaries than other targets. For example, DSM generation

fails in case of natural and man-made water bodies with lack of texture and along the

su�ers from o�sets in correspondence of edges of tall natural and man-made structures.

2.2.6. Final observations

SISR literature is thriving in the recent years. Results shown by deep learning methods

are impressive, yet it looks that we're from a a reliable and large scale introduction in

space data applications. As we saw in section 2.2, in order to train a SR network we need

a target and an input datasets generated from the former. The design of the degradation

model is crucial, as the network will de fact learn how to inverse it (Eq. 2.2.1). In liter-

ature (Par. 2.2.4), a bicubic downsampling is usally used to operate this transformation.

Although when the focus is the performance of the model and a benchmark is needed to

have a comparison with other works, bicubic downsampling is not representative of real

remotely sensed data, and thus these results lack of realistic benchmarks, what reduces

their reliability and doesn't exclude biases linked to the particular kernel used in the

models learned by a network.

Generally speaking, several other architectures can be found in the literature, each one

claiming to achieve better results in terms of quality metrics and/or computational perfor-

mance. Additionally, the tendency in remote sensing is to extend the results of computer

vision rather than proposing brand new approaches. Thus, we remark that numerous

networks born for natural images have been directly utilized in remote sensing and their

outcomes are still comparable to architectures born for aerospace imagery. Such a method-

ology may seem naive, nevertheless the close connection between the two �elds of applica-

tion is consolidated in the literature, and such a feature naturally remains when it comes
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to DNNs, models whose purpose is to learn tasks.

Furthermore, in literature DNNs are often tested on new samples coming from the same

database used for training. That is, images taken out from the training dataset, but still of

the same kind of data, as much as the contents might be di�erent. Yet, the underlying idea

of these technologies is to be added to a ground segment pipeline, hence to super resolve

images coming from a satellite and not ad hoc processed for a deep learning training.

This makes less reliable the results proposed by the referenced bibliography. In this work

we will attempt to super resolve real sensor data after a training on simulated ones.

Finally, we may identify the following factors that can in�uence a SR deep model:

• Degradation model: whether it is possible that after an appropriate training has

generalized features which belong to every sensor model, or a given network is closely

connected to the sensor considered and it's impossible to use it to infer other type

of acquisitions.

• Network tuning: determine how much are deep learning intrinsic aspects relevant

for such a super resolution problem. Loss, data augmentation, network hyperpa-

rameters etc.

• Transfer learning: from the literature it seems that transfer learning from com-

puter vision large datasets is pretty much straightforward. For example, in [3] the

network is not even �ne tuned on a remote sensing dataset, yet is considered to have

enough generalized to super resolve an aerial set of images.

• Ground Sampling Distance: We do not expect the model to necessarily be able

to resolve at di�erent scales. Nevertheless, if the learned features are more linked to

signal processing and less to physical objects, we could perhaps a network capable

of super resolving images across di�erent scales.

• Radiometry and geometry: in deep learning, the tendency is always to create

bigger and bigger datasets in order to allow the network to generalize. But utilizing

data from di�erent acquisition chains implies the contribution of di�erent sensor

models, which could lead the network to be more confusedt.
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resolution networks

Super resolving images image quality's sake is not the main objective of this work, as we

rather want to study how this impacts an important space downstream application such

us DSM production. However, in order to add a step to such a complex and optimized

process as the CARS-Pandora pipeline (Fig. 1.3), we need to make sure that such a step

is adequate and optimized as well. Indeed, there's no point in launching a large DSM

production if the results of our preprocess are of the same or lower quality of the original

inputs. In addition, the implementation of a SR method might not be straightforward

when we want to take into account realistic image degradation (instead of bicubic down-

sampling). Therefore, much e�orts served in order to accomplish reliable single image

super resolution before running even once the stereo pipeline, and hence the strictly 2D

part (Chap. 3) and the 3D one (Chap. 4) were almost treated separately.

Some objectives were set before designing the SR pipeline, necessary from the very be-

ginning in order to choose models and data, and driven by the company interest around

certain types of data and their availability. The proposed SR method should provide

reliable results:

1. VHR images: in order to do DSMs, we need �ne details to be rendered on the

2D image, hence only HR or VHR data are suitable. Moreover, post processing is

already applied to such images in order to improve resolution (e.g. PAN-sharpening).

A VHR PAN image is a sort of benchmark, because it's what we usually do today.

In the context of this project the idea is to overcome this technological limit.

2. RGB images: Since SR learning methods are supposed to extract low-high fre-

quencies relations from samples, the underlying idea is to feed them with as much

valuable information as possible. Working on single bands appears then as limit-

ing the amount of knowledge that can be derived within a training. Perhaps from

one band the network can infer some geometrical information that in turn helps it

in super resolving in another bands. Moreover, in literature RGB data represent
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predominant choice 2.2.

3. In urban areas: this is where we have interest in improving DSMs. To implement a

method capable of super resolving images in any environment would be as �nding

the holy grail. For the moment, we can be satis�ed if the networks are successfull on

french cities, where the greatest amount of data is available and that will be among

the �rst targets in CO3D mission [25].

Among VHR choices, Pléiades images represent de�nitively the priority given the large

amount of available data for a collaborator of CNES such as CS Group. Furthermore,

typically we expect CO3D images to share some of their characteristics with Pléiades

ones. VHR data (as for Pléiades) often are in 4 multispectral bands plus panchromatic

one. Since we also want to work in RGB, we will be oriented to data that are or resemble

Pléiades PAN-sharpened images. We recall that the latter have a GSD of around 50 cm.

There's no speci�c reason in ignoring NIR band, but it will be discarded from training

for sake of simplicity and to work with a format suitable for most datastes.

3.1. Methodology

One of the �rst design choices regarded the model, i.e. the actual neural network to use.

Among all the possibilities presented in the chapter 2, we chose ESRGAN because it is

somehow a safe choice in GAN domain: it overcomes some limitations of the prototypical

SRGAN [27] but it avoids to add "too innovative" (hence, not extensively tested) modules,

like the Laplacian module of EEGAN [20]. However, GANs are notoriously more di�cult

to train and more prone to artifact generation. This led to the decision of keeping a

second non-GAN network. It has to be remarked that this choice was undertaken after

an extensive literature review as well some trials with di�erent networks. In addition, it's

interesting to study the contribution of discriminator to SR and its applications, since it

introduces remarkable di�erences during a training. That's why the second network was

chosen to be as close as possible to ESRGAN generator. It is the case of the Residual

Dense Network (RDN) [12]. The only remarkable di�erence between it and ESRGAN's

generator is the main block, Residual Dense for the former and Residual in Residual Dense

Block for the latter, as illustrated in �gures 3.1 and 3.2. Indeed, remarkable di�erences

can be identi�ed between the two cases, as it will be shown in chapter4.

RDN [12]

The Residual Dense Network [12] combines the features of residual and dense net-
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works. In practice, connections are skipped (residual) and outputs of a layer are

passed to multiple successive layers (dense). This allows on the one hand the learning

of the residuals, i.e. the di�erence between inputs and ground truth (high frequen-

cies) [51]. On the other, to learn features a di�erent scales avoiding the vanishing

gradient problem, and speeding up the training process [51]. The residual architec-

ture has its origin in the well known ResNet. Any loss could be used, most of them

relying on an error measure between prediction and ground truth. For this project

implementation a L1 loss was used (Eq. 3.1), which quanti�es the error between the

elements n ∈ 1, ..., N of the predicted array ypred and the ground truth one ytrue.

L1 =
1

N

N∑
n=1

|ytrue − ypred| (3.1)

Global architecture

Residual Dense Block

Figure 3.1: Illustration of Residual Dense Network (RDN)

ESRGAN [46]

Such a network is an evolution of the prototypical GAN for SR [27] and indeed

it stands for Enhanced Super Resolution GAN. It proposes a generator composed

by Residual in Residual Dense Blocks (RRDB), thus not very much di�erent from

RDN (Residual Dense Block, RDB). Batch normalization layers are removed. The

discriminator is of probabilistic kind: it returns the probability of an image to be

true or synthetic. The loss 3.2 is composed by three contributions: a perceptual loss

Lpercep that compares the errors on features extracted by a VGG generator (taken pre

trained on DIV2K for this study), an adversarial loss LRaG which is the discriminator
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response, and a content loss L1, that consists of the mere pixel di�erence between

prediction and target, added in order to reinforce attachment to the data. λ and η

are two coe�cients set to harmonize the order of magnitude between losses that do

not measure the same features.

LG = Lpercep + λLRaG + ηL1 (3.2)

Global architecture

Residual in Residual Dense Block

Figure 3.2: Illustration of Enhanced Super Resolution Generative Adversarial Network

(RDN)

The experimental framework used for this phase of the project was largely inspired by

the SR literature features, in particular the taxonomies proposed in [1] [40]. It consists

of training multiple networks (two in our case) with a HR-LR train dataset where LR

dataset is generated by imposing degradation and downsampling to the HR set. A test

set is obtained in the same way and serve to compare network performances by means

of a coherent metrics as well as visual inspection. The details on the metrics considered

for this work can be found in 3.4.2. On the top of that, a counterexample is usually

included as a support of the proposed methods. Bicubic upsampling is the usal choice in

this regard and this work will be no di�erent. This is likely because it o�ers the best deal

between performances in term of 2D metrics and cost of execution

Since it is di�cult to predict the e�ects of SR single image on DSM production, the

implemented framework allows �exibility and modularity: the objective is to test the

behavior of di�erent SR deep networks in terms of architecture, databases as well as

training methodology.
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The enormous amount of open source deep learning software and the increasing appealing

that SR has in the last years, makes it easy to �nd open source software and support. The

developed codes were adapted from MHAN Github repository [54] and PyTorch ESRGAN

implementation. The deep learning framework utilised is Pytorch which allows medium

level operations and because it is slightly easier to �nd SR online code and support in

Pytorch with respect to Tensor�ow.

The experiments run on a a GPU node reserved with 1 GPU NVIDIA Tesla T4, 4 CPUs

Skylake 2.2GHz 92 Gb RAM, courtesy of CNES who allowed the utilization of the HAL

cluster facility.

The approach essentially consisted of modifying training algorithm and data handling,

in order to make it compliant with the used type of data and desired metrics/training

settings, while less attention was given to DNN architectures, assuming that these models

are robust enough and can be transferred to any application without in�uencing the

results.

As remarked in section 2.2.2, remote sensing data are more di�cult to handle then the

the digital images we're used to deal with. In particular three main challenges had to

be tackled: data size (acquisitions larger than 10 MP), radiometric values (continuous

measure of luminosity and not encoded in 8 bits), data format (georeferenced GTi� for-

mat). Some of the datasets widely used in literature (RSSCN7, UC-Merced, AID, etc.)

consists of various source images preprocessed in order to have a format that resembles

everyday pictures (8-bit, less than 1 MP, jpg or png format). Indeed, very often the open

source implementations of SR networks are note capable of handling satellite images. For

this project, though, the choice was to develop a methodology to handle remotely sensed

acquisitions rather than impose a preprocessing step. This was due to the intention of

conserving original radiometry and georeferencing through the networks for using super

resolved images in CARS as we would use standard data.

A �rst constraint to be taken into account is the limited amount of memory when operating

with GPUs. When using very large DNN models with milions of coe�cients the available

memory may run out very soon. Even an image of normal size, say 512x512 pixels, can

turn out to be too large to be fed into a SR network. What is usually done is to crop the

image into a smaller patch. Typical sizes for patches ranges from 48 to 128 pixels. This

might sound odd as it is in contradiction with that we want the network to learn spatial

features that can range from few pixels to some hundreds. Nonetheless it is coherent

with what one can �nd in other deep learning applications such image classi�cation. In

https://github.com/ZhangDY827/MHAN
https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/esrgan
https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/esrgan
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addition, it turns out that �les larger than 1 MP are too big to even be loaded in a such

deep learning routine. The strategy is then to partition an input large image in square

tiles of medium size (typical values for tile size are 256, 512 pixels), and from each tile

operate a random crop of patch size. This way we make sure that within a reasonable

number of epochs, the network will have seen most of one image's extent in the form of

random details. Most of all, it will process the data in the same way independently on

the actual size of the available acquisitions.

Figure 3.3: Illustration of the training methodology

Figure 3.4: Illustration of the inference methodology

In the inference pipeline, where we take a satellite image and ask the network to super

resolve it, tile partition is performed as well but we don't to further extract patches because

of the absence of backpropagation and the fact that, unlike the training phase, we don't

need batches of data. On the other hand, we would like to get back the acquisition at

the original extent and not a set of tiles, and possibly that can be superimposed on a

reference frame to the original image for visual comparison. This is achieved with the

following steps. We store the geotransform of each tile (coordinates of upper left corner

and pixel size in meters), update it by dividing the pixel size by the scale factor, and

reassign back this new transform to the SR sample. Then, the georeferenced tiles are

reassembled together by means of a merge algorithm.

Finally, data in training and inference phase are subject to some radiometric manipula-

tions. Two con�icting evidences have driven this step. On the one hand, it is not desirable

to modify data radiometry as it correspond to physical measures of object radiation. In
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remote sensing, these values are used to physically measure Earth's surface properties.

Therefore, if modi�ed, the data become less reliable from a scienti�c point of view. On the

other hand, in deep learning data are typically normalized and it is well known that it's

bene�cial for training when data are well distributed in the interval [0, 1] . Now, looking

at the histogram of a typical Pléiades image, this is not the case (Fig. 3.5). The proposed

compromise is a band-wise "stretch" of the data histogram.

Original data histogram

Histogram after normalization before inference

Histogram denormalized after inference

Figure 3.5: Stretch and unstretch operations

In practice, before the passage through the network, the 2nd and 98th percentile are

removed and the remaining values are linearly brought back to the [0, 1] interval. In

inference mode, the same is done just before forwarding an image in the DNN, and the

limit values (corresponding to 2nd and 98th percentile) are stored in order to reverse the

stretch once inference is performed. This way, the output pixel values will be compatible

with the input data.
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3.2. Dataset generation

In data science, data can be very often more important than models. Data shape what

is learned by the algorithm and we can teach di�erent tasks to the very same model by

feeding it with diverse nature data. Usually, we want a neural network to generalize, i.e.

to be able to repeat a task learned during a training with new, challenging, data. In the

context of this project, the objective is to super resolve 50 cm GSD RGB images of, at

least, Pléiades type. It is a quiet speci�c task, yet challenging because during training the

model doesn't receive any actual Pléiades or even space data, but only simulated ones.

In paragraph 2.2.6 we justi�ed the choice of looking for realistic data degradations of

our study. For this scope, the CNES kindly allow the utilizatin of its Chaîne Simulation

Image (CSI), illustrated in paragraph 3.2.1. The CSI can apply any step of a satellite

acquisition chain as well as an arbitrary sampling. Thus it is the perfect tool for generating

our dataset and it was used for both HR and LR datasets. Furthermore, the CNES made

available a set of PELICAN aerial images that are described in paragraph 3.2.2, as well

as a con�guration �le for simulating Pléiades images from PELICAN data.

3.2.1. CNES' image simulation chain

The Chaîne Simulation Image is an internal CNES tool that allows the simulation of an

entire satellite acquisition pipeline. A source image is processed according to a set of

modules, that are de�ned by the user in a con�guration �le. Any step can be removed

and modi�ed in order to assess its e�ects on the simulated image. The working principle

can be roughly explained thorough the following process. The input image is loaded in

the memory, a radiometric correction is added if needed, and the luminance values of the

image are converted into re�ectance. Then the imaging system is simulated, taking into

account, at least, the modulation transfer function (MTF) and the sensor noise, and the

product is resampled at the desired resolution. Afterwards, other steps associated to a

particular pipeline can be simulated as well, like, for example, compression and denois-

ing. This is done band-wise, while a fusion operation can also be applied to get a RGB

output. The source image resolution �xes the maximum resolution achievable. Ideally, it

should be at least two times higher than the simulated resolution, in order to be able to

neglect the MTF of the instrument that took the source acquisition. The sensor model

can be precisely de�ned through numerous parameters, e.g. MTF frequencies, maximum

luminance for each band, etc.
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Two con�gurations must be prepared, one for LR and the other for HR dataset. The LR

dataset should simulate Pléiades images at 50 cm GSD. Therefore, for a scale factor of 2,

the HR dataset is set to 25 cm GSD. This ensures that the MTF requirement is largely

satis�ed, since the source BD Merou data are at 10 cm. For the HR dataset, a perfect

sensor is assumed. Loosely speaking, no degradation are applied to the inputs. This is

because we want the network to learn super resolution at the highest quality achievable.

Hence, just a dezoom at a factor of 2.5 and a quanti�cation in 12 bits are applied. The

quanti�cation is the operation of writing pixel values in memory into a de�ned number

of bits.

Regarding the LR dataset, the set up was more complex in order to be representative

of real Pléiades data. A complete illustration of what happens inside such simulations

would require an additional chapter and it's out of the scopes of this report. Here we

present a brief overview of the main manipulations that doesn't mean to be a complete

explaination of how the models used by the CSI for the dataset generation.

1. Resampling: or downsampling in this case. It consists of sampling the image on a

lower scale grid, coarser by a scale factor. In order to respect Shannon criterion, a

low pass �lter is usually applied. This potentially causes a modi�cation of the Mod-

ulation Transfer Function of the image. The MTF is de�ned as the module of the

transfer function of an imaging system. i.e. that characterizes the system behavior

in the frequency domain. It is a quiet central notion when modeling acquisition

systems and it can be associated to the resolving power of an instrument. Many

di�erent physical phenomena contribute to the de�nition of this function, from at-

mosphere e�ects on light to the speed of a satellite with respect to the scene. The

most important one is the contribution of the instrument di�raction. In our case,

the global MTF is approximated with a di�raction (Eq. 3.3).

H(fx, fy) =
2

π
[arccos(

f

fc
)− (

f

fc
)

√
1− (

f

fc
)2] (3.3)

fc is the cut-o� frequency of the instrument.

In the CSI, the source image MTF can be de�ned. While resampling, we apply the

point spread function (PSF) of the simulated instrument and update the MTF of

the source image

2. Radiometric simulation: at this stage it is realized the conversion between the

input luminance and the numerical values read by the detector by adding radiometric
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noise, accordingly to the speci�ed signal to noise ratio (SNR) as well as the noise

potentially present in the source image.

3. Quanti�cation: described a bit earlier in the paragraph.

4. Denoising: a Non Linear (NL) Bayes method is applied in order to remove noise

from the resulting image. In a nutshell, NL-Bayes is an improved variant of NL-

means. In the NL-means algorithm, each patch is replaced by a weighted mean of

the most similar patches present in a neighborhood [26]. As most denoising methods,

it relies on the assumption of additive white Gaussian noise of constant standard

deviation. However, this is not the case of optical whose noise is usually modeled as

the contribution of a constant plus a Poisson terms, i.e. the standard deviation can

be written as σnoise(x, y) =
√
A+B · s(x, y), s(x, y) being the signal. Therefore, an

Anscombe transform is beforehand applied. In loose words, it's a variance-stabilizing

transformation that transforms a random variable with a Poisson distribution into

one with an approximately standard Gaussian distribution. After denoising, an

inverse Anscombe transform returns the image in its natural radiometry.

5. Deconvolution: when the sampling of an image is correctly applied, the MTF of

the optical instrument tends to attenuate high frequencies and hence the raw image

is characterized by blur and needs a contrast enhancement treatment which takes

the name of deconvolution. It consists of multiplying the blurred image spectrum

by a function that depends on the target MTF. In order to limit artifacts due to

high frequency oscillations when we convolute a MTF with a �nite support, target

MTF can be obtained by the convolution of a rectangular and a gaussian functions

[30]. The de�nition of the target transfer function, together with the model of the

instrument MTF, allow us to determine deconvolution �lter in the case of Pléiades

images.

3.2.2. BD Merou

PELICAN is the French acronym for "Plateforme Et Logiciels Informatiques de Cameras

Aeroportees Numeriques". The system, developed in 2003 as an IGN-ONERA-CNES

cooperation project consists of a set of four optical heads each equipped with a 4096 x

4096 pixels CCD detector working in the visible and near IR spectral range (from 400 nm

to 950 nm). This sensor provides synchronous images achieved with a TDI-like control

of the CCD to avoid smearing, thanks to GPS data [6]. CNES provided a collection of

acquisitions in di�erent environments across France at 10 cm called BD Merou (french
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acronym for "Base de Données", i.e. database, Merou). For the main runs, only the

images containing buildings and hence in residential, semi-residential and industrial areas

were selected. Examples of this images are shown in �gure 3.6. The total size of the used

HR and LR datasets are, respectively, 627 MB and 157 MB.

Figure 3.6: Samples from BD Merou

3.3. Hyperparameters �ne-tuning

Once set up a training pipeline and prepared suited data for training, one further step is

often useful. A neural network presents a bunch of hyperparameters that can be changed

in order to well adapt the model functioning and/or �nd the optimal working for the

given data. Sometimes a wrong con�guration can lead to failure of the training. For

this purpose, an ad-hoc tool was used. RayTune is a platform for �ne tuning of large size

models hyperparameters. It allows to spare lots of time in manual tailoring of the network

sizing values. It proposes di�erent modes, from basic grid search to complex multivariable

optimization algorithms. During this project its usage was limited to grid and random

searches. The search space is de�ned in table 3.1. Grid search consists of trying all the

combinations de�ned in the search space. For this mode continuous intervals, as for batch

size and learning, were arbitrarily discretized. In a random search, a random combination

of values taken from continuous or discretized interval is tested. In both cases, a trial

is performed for a certain number of epchs that won't be bigger than a user de�ned

maximum of epochs, and it's recorded. Afterwards, the con�guration that provides the

best performance can be chosen. The great advantage of this way of using RayTune is the

early stopping of the training, i.e. training is stopped if the algorithm understands that

the current con�guration doesn't converge or converges worse than the best con�guration.

The search space values were de�ned after some considerations of network nature and

constraint. It is a rule of thumb that larger batches enhance training, so a minimum of

10 batches is set. On the other hand, a limited amount of memory is available in GPU,

we cannot account for more than 40 batches for the models used. Patch size and tile size
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Batch size Patch size Tile size Learning Rate
Search space [10, 40] 48, 64, 96, 128, 160 256, 512, 768 [1e− 4, 1e− 2]
Best con�g. RDN 30 96 512 1e-4
Best con�g. ESR-
GAN

20 96 512 1.4e-4

Table 3.1: Search space de�nition for Ray Tune search of hypermaters combination

delineate the amount of information: larger patches mean larger scale details included in

a passage through the network; the bigger the tile means the larger extent for taking the

random crop, the less numerous the samples are available for one epoch. The learning

impacts dramatically a network's training. If it's too small, convergence can be so slow

to become impossible. If too large, convergence is achieved rapidly but it's more likely to

get stuck on a local minimum.

Loss as function of the epoch number

Metrics as function of the epoch number

Figure 3.7: Training �gures for RDN before �ne tuning network hyperparameters

A part from supplying a reliable combination of roughly optimized hyperparameters, such
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Loss as function of the epoch number

Metrics as function of the epoch number

Figure 3.8: Training �gures for RDN after �ne tuning network hyperparameters

an extensive �ne tuning gave insight on the impact that each parameter can have. For

example, it was noticed that with smaller batches and patches, the network tends to

converge more quickly but also is more prone to over�tting.

As we see from �gures 3.7 3.8, a set of good parameters could be found. Nonetheless, the

di�erence in performence is not very signi�cant and thus such an extensive �ne tuning is

only partially justi�ed, given the amount of time and resource needed to implement it.

A complete overview of the metrics proposed is supplied in paragraph 3.4.2. The main

conclusion we could infer is that models and associated hyperparameters are robust even

for speci�c applications as the one of this study. The research is very active in this �eld

and mainly focused on the optimization of the models themselves. Therefore open source

implementation of this kind of neural networks are nowadays trustworthy and one should

put more e�ort in improving the quality of the used data.
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3.4. Inference

3.4.1. Importance of the degradation model

To justify further the use of CSI and of a complex sensor model, a sample of some

intermediary results it is reported in �gure 3.9. A Pléiades image (LR) is upsampled by a

factor 2 using by 5 means: bicubic upsampling, RDN/ESRGAN trained on a LR dataset

obtained via bicubic downsampling, RDN/ESRGAN trained on a LR dataset obtained

via the application of a realistic degradation model by means of the CSI. We can state

the networks struggle in really super resolving the image when the bicubic downsample is

adopted, while the SR images infered from a CSI sensor model trained network are visually

satisfying. It is noteworthy that ESRGAN seems to be more accurate than RDN in the

bicubic case, con�rming the claims found in the literature. For the realistic degradation

model sample, though, the two networks are comparable, supporting the choice of taking

into account a non GAN during the project.

3.4.2. 2D metrics

We are always interested in having a quantitative measurement of the amount of degra-

dation of an image to compare di�erent methods. In super resolution literature, the Peak

to Signal Noise Ration (PSNR) between prediction and ground truth is usually taken as

primary metrics. Nevertheless, being based on the MSE and not on visual perception, it

might not be always appropriate especially when we deal with synthetic images and deep

neural networks. More sophisticated indicators exist and are easily found in reference

literature. Here a brief overview of the metrics presented in this work, largely inspired

by the work [19]. In the case of supe rresolution, metrics are de�ned as a measure of the

di�erence between the tested, super resolved image I2 and a reference, HR one I1.

PSNR = 20 · log10(
L2

RMSE
) (3.4)

with RMSE = 1
MN

∑M
j=1

∑N
i=1(I1(i, j)− I2(i, j))2 and L the maximum value that can be

attained by a pixel. It is the most commonly found metrics, yet it is not judged a reliable

indicator anymore [19]. It's expressed in decibel and higher values indicate better quality.

SSIM =
(2µ1µ2 + c1)(2σ1σ2 + c2)(cov12 + c3)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)(σ1σ2 + c3)
(3.5)
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LR RDN, trained with bicubic

downsampled dataset

ESRGAN, trained with bicu-

bic downsampled dataset

Bicubic upsampling RDN, trained with CSI down-

sampled dataset

ESRGAN, trained with CSI

downsampled dataset

Figure 3.9: Pléiades image and SR sampled for di�erent LR dataset generation mode

In (Eq. 3.5), µ, σ and cov are, respectively, the mean, standard deviation and covariance

of two windows within the image. Multiple windows are utilized for the computation.

c1 = (k1L)2, c1 = (k1L)2, c3 = c2
2
, are three constants whose purpose is to stabilize the

division if the denominator has a too low value. L is the dynamic range. SSIM values

range from -1 to 1. The closer to one, the better the performance. This metrics has been

elaborated to overcome PSNR, as it tells the local structure similarity (from here its name

Structure SIMilarity index) between the two samples assuming that human perception is

more sensitive to structures rather than the pixelwise di�erences.

ERGAS = 100
dh

dl
[
1

n

n∑
i=l

RMSE2

µ2
1

]
1
2 (3.6)

The ERGAS (Eq. 3.6) index is also called Relative Dimensionless Global Error in Syn-

thesis. dh
dl

is the ratio between pixel size of reference an input image, and n iterates on
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the bands. A small ERGAS (close to 0) means good image quality.

SAM(V1, V2) = arccos(
< V1, V2 >

||V1||2 · ||V2||2
) (3.7)

The complete name of SAM (Eq. 3.7) is Spactral Angle Mapper. It computes the spectral

angle between the pixel, vector of the reference image and prediction. It is worked out in

either degrees or radians. It is performed on a pixel-by-pixel base. A value of SAM equal

to zero denotes the absence of spectral distortion.

UQI =
4σ21(µ2 + µ1)

(σ2
2 + σ2

2)(µ2
2 + µ2

2)
(3.8)

UIQI (Eq. 3.8) is an acronym for Universal Quality Index. It accounts for the amount

of transformation of relevant data from reference to tested image. As for SSIM, it ranges

from -1 to 1, with 1 the best possible value.

SE = |(I1 − I2) ? sobelx|+ |(I1 − I2) ? sobely| (3.9)

SE (Eq. 3.9) stands for Structural Error and it relies on the the convolution with Sobel

x and y kernels, thus telling how the input image well represents contours.

3.4.3. Results

Finally, trainings were run with su�cient con�dence on data, model and con�gurations

(Tab. 3.1). Each training was run for an arbitrarily large number of epochs (more than

500), and only the best con�gurations are kept; more precisely, whenever the loss of the

model on a validation test is smaller than the previous best loss, the new value became the

reference and the weights of the running epoch are saved. The results shown are obtained

using the weights of the epoch registering the best validation loss. Moreover, a test set

of BD Merou acquisitions was kept out of the training in order test the network on new

data. The metrics adopted are comprehensive of an image's quality and are described

in section 3.4.2. Results will be shown for scale factors of 2 and 4, for test set from the

BD Merou test set, and Pléiades high reslution images from the cities of Toulouse and

Montpellier. As already underlined inparagraph 3.1, since the objective is to super resolve

Pléiades images at 50 cm GSD, this is the value �xed for LR. The HR GSD, and so the

SR's, depends then on the chosen scale factor: 25 cm for a zoom 2, 12.5 cm for a zoom 4.
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Inference on BD Merou test set

LR Bicubic x2 RDN x2 ESRGAN x2 HR

Figure 3.10: Test image from BD Merou, scale factor 2. A smaller crop taken in the

orange square is zoomed.

Table 3.2: Scale factor 2

PSNR [dB] SSIM ERGAS SAM UQI Struc. err.
Bicubic 18.54 0.4705 0.6810 16.372 0.8471 80954
RDN 23.88 0.7753 0.3695 7.874 0.9562 45542
ESRGAN 20.97 0.6334 0.5151 11.946 0.9165 66457

Table 3.3: Reference metrics for BD Merou test set, scale factor 2

Tab. 3.3 and 3.4, quantitatively con�rm that both trainings were succesfull as the net-

works are superior to bicubic in every measure. The only anomaly is represented by the

SAM of the ESRGAN images, which is higher than the bicubic value. This means that

a strong spectral distortion is intruduced by the GAN, something that is expected from

this network, that is prone to introduce high frequencies even where there's no need for

enhancing an image (Fig. 3.14 ) 5.4 are examples of ESRGAN's artifacts). We remark

that comparing RDN to ESRGAN in terms of PSNR (dependant on the pixel error vis-

à-vis the reference) is pretty unfair because the loss of the former relies solely on the

pixel errors while for the latter other contributions are taken into account. That's why

SSIM other metrics were considered. Nonetheless, RDN shows better performance also

with respect to all the other metrics in both zoom 2 and zoom 4 cases. The SSIM would

suggest that local structures are better reconstructed by RDN and this is pertinent with
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the stronger coherence that RDN has with the ground truth that we can observe when we

zoom. UIQI, on the other hand, acknowledges a good performance from both networks

without much di�erence for a scale factor 4, whereas for the bicubic this value drops.

The structural of ESRGAN is pretty high, much closer to bicubic with respect to the

other metrics. This index tells how vertical and horizontal lines are well rendered, hence

this is again coherent with the synthetic character of ESRGAN images, that struggles in

producing straight lines in output (evident in the tra�c lines of �gure 3.13).

In zoom 2 we can say that ESRGAN metrics performance stands more or less in betwwen

bicubic and RDN, being the two relative di�erences often similar. In scale factor 4 this

is not anymore the case, as ESRGAN metrics are closer to bicubic than RDN ones. This

fact is somehow unexpected since visually RDN seems to return the same image for zoom

2 and 4, while ESRGAN improves the level of detail between the two cases. This can be

due to the ESRGAN's consistent artifact generation, that is more and more evident when

increasing the zoom.

The radiometry is not conserved through the networks. Pixels composing an object may

assume a di�erent value in the SR image in each channel. This is also due to the fact

that data seen by the networks during training are normalized, hence they work with

normalized histograms and not with real ones. The radiometry shift is more evident for

ESRGAN than RDN. This should be related to the loss used in the two cases. RDN was

trained with a L1 loss ((Eq. 3.1)), whose purpose is to make the DNN output numerically

as close as possible to the ground truth. On the other hand, ESRGAN has a loss more

linked to the perception ((Eq. 3.2)) and thus it does not always prioritize the di�erence

between pixels.

When looking at the full scale images of �gure 3.10, we have the impression that super

resolved images approach the target while having a di�erent radiometry. But it is when

we look closer that we can more appreciate the di�erences between the di�erent version

of the image. Well recognizable small scale objects such as cars, and straight features

such as tra�c lines and building edges, are often used as benchmark for evaluating the

performance of a SR deep network. Still in Fig. 3.10 we see that the cars generated by

RDN are closer to the ground truth ones, while the ESRGAN detail of the tree on the top

left of the image closely resembles the HR view. We also have the feeling that homogenous

regions, e.g. the left building's roof and the asphalt, are forced to be smooth in RDN case

while unnecessarily textured in ESRGAN's.

As a matter of fact, for a scale factor 4, ESRGAN perceptually outperforms bicubic and

RDN in terms of sharpness and detail of the learned structures, con�rming the literature's
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LR Bicubic x4 RDN x4 ESRGAN x4 HR

Figure 3.11: Test image from BD Merou dataset, scale factor 4

Scale factor 4

PSNR [dB] SSIM ERGAS SAM UQI Struc. err.
Bicubic 17.47 0.3191 0.5627 10.591 0.6186 91749
RDN 22.94 0.5898 0.2902 4.676 0.9025 58275
ESRGAN 19.31 0.4032 0.4421 13.452 0.8010 89130

Table 3.4: Reference metrics for BD Merou test dataset for bicubic, RDN and ESRGAN

upscaling.

claim around GAN architecture. A non-GAN architecture, indeed, although able to return

an image considerably more sharpened of a standard bicbic upsampling, seems not to be

able to reach HR de�nition. But when looking closer, we see again how RDN is more

attached to the truth whereas a GAN �lls an image with artifacts. Flagrant are the details

pictured in �gures 3.12 3.13 3.14, where the ESRGAN generates fake details that could be

real. This is relevant because it's a proof that this network learned to render cars, that are

a real world common object. Less common objects, such as air-conditiong industrial plants

(Fig. 3.12), or highway tra�c signs (Fig. 3.13) cannot be learned because there are very

few (or even absent) samples in the training set and therefore are upscaled as the object

that more closely resembles their LR version, i.e. a car. In practice, better de�nition

comes at the price of the so called hallucinations. This generative model shows here all

its power in simulating the truth and, at the same time, all its limits because of synthetic

characteristics of the outputs. These evident artifacts suggest that the utilization of

ESRGAN in a 3D pipeline it's potentially critical, because nothing can guarantee that

these hallucinations are coherent between left and right images, leading to mismatch the

area synthetically modi�ed by the network. Furthermore, even if the hallucinations are

coherent we risk big mistakes in the disparity map: for instance in Fig. 3.13 the tra�c

sign has i di�erent altitude with respect to the ground, but being transformed into a line

we totally lose such an information.
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LR ESRGAN HR

Figure 3.12: Test image from BDMerou dataset, scale factor 4. First example of ESRGAN

hallucination: an air-conditioning plant is transformed into a car

LR ESRGAN HR

Figure 3.13: Test image from BD Merou dataset, scale factor 4. Second example of

ESRGAN hallucination: a tra�c sign is super resolved as a tra�c line

LR ESRGAN HR

Figure 3.14: Test image from BD Merou dataset, scale factor 4. Third example of ESR-

GAN hallucination: a tree texture is inappropriately extended to a meadow

Inference on satellite images

Once the ability of the trained network to well super resolve some test images was assessed,

real satellite images were given as input to understand the performance on a real appli-

cation case. As stated in section 3.1, the main objective is to improve the resolution on



3| Implementation of super resolution networks 59

Pléiades images. At this purpose, 2 Pléiades acquisitions on the french cities of Toulouse

and Montpellier were used, their details are reported in paragraph 4.1. Although it is true

that in the train set BD Merou some images of Toulouse were present, the same is not

true for the city of Montpellier and the network performances on the two sites is totally

comparable. We recall that quantitative measurements on these data are impossible as

no reference is available. From a visual inspection, though, we can state that bicubic up-

sampling is outperformed by the networks. Although not measurable, the impression here

is that network performance on real images is not as good as in the simulated validation

test, yet the LR sample is improved in a perceptual sense. Edges are sharper and objects

more detailed, even if not necessarily in a physical manner. The zoom factor 4 doesn't

seem to add any relevant information with respect to the zoom 2 in bicubic and RDN

cases. RDN at 12.5 cm might look sharper but the amount of detail at which the objects

are rendered seems to be stagnant. On the other hand, ESRGAN has the ability to super

resolve further the objects when increasing the zoom. However, the world returned by

ESRGAN lens is far from the reality.

Conclusions

By extensively studying the samples it is possible to note down the following intuitions,

that resume what illustrated in this section and validate the SR part of this work:

• Both networks have the ability of removing the blur and straighten the edges of any

object: buildings, cars, tra�c lines, etc. (Fig. 3.10).

• The radiometry is not conserved through the networks, while the geometry is fairly

well rendered. Sometimes we can note some building edges and tra�c lines that

are curved in the SR images, while in reality they're straight, meaning that the

networks only partially master the notion of geometric primitives.

• ESRGAN's results might be more pleasant when we look at the whole image, but

it turns out to be conditioned by artifacts once we zoom (Fig. 3.15). When looking

closer, we may prefer RDN because it seems to prioritize the conservation of contours

of some objects like cars and buildings, yet they're still not realistic because their

interior is arti�cially smoothened (Fig. 3.10, 3.15). On the other hand, ESRGAN

presents an impressive rendering of some textured objects such as trees (Fig. 3.15),

while it struggles to be reliable for human made objects (e.g. buildings, cars).

• We can appreciate two oppositely diverging behaviors in uniform zones for the two

networks. Such regions of an image are characterized by similar radiometry, yet
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LR Bicubic x2 RDN x2 ESRGAN x2

ESRGAN x2 Bicubic x2 RDN x2 ESRGAN x2

Bicubic x4 RDN x4 ESRGAN x4

Figure 3.15: Test image from Montpellier dataset. A smaller crop taken in the green

square is zoomed.

some details are still present when looking closer (Fig. 3.16). Such details seem

to be �attened by RDN that therefore makes homogenous surfaces even smoother.

On the other hand, ESRGAN ampli�es them, adding non physical textures. In the

context of a 3D pipeline, textures in uniform regions are supposed to help stereo

matching algorithm, yet they have to be coherent between left and right images.

These aspects will be treated further in sections 4.2 and chap. 5.

• What can guessed for a scale factor 2 emphasized in scale factor 4 Increasing the

scale factor means pushing further the SR technology as the information available

to reconstruct the signal is taken at a higher sampling distance. The distinction

between theoretical resolution, i.e. ground extension of the acquisition divided by

the number of pixel, and e�ective resolution, i.e. the size of the smaller detail
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LR Bicubic x2 RDN x2 ESRGAN x2

Bicubic x4 RDN x4 ESRGAN x4

Figure 3.16: Test image from Toulouse dataset

that can be reconstruct through the upsampling technique, is more evident. For

instance, RDN seems to have an asymptotical behavior with respect to scale factor:

the amount of information that we can appreciate at 12.5 cm GSD is more or less

the same that we observe at 25 cm. The ESRGAN, instead, manages to add further

detail, very often in form of artifacts or hallucinations.





63

4| DSM generation from pairs of

super resolved images

So far we treated the single image super resolution, yet during this internship SR was not

implemented for it's sake but for enhancing DSM generation via CARS-Pandora pipeline.

Once SR proved to be robust enough for the speci�c application, the 3D aspects of this

project could bey tackled. In this chapter we'll apply the trained network to the left and

right images and study the impact at di�erent levels of the above mentioned pipeline.

The considered scale factors between LR and SR images are 2 and 4. This means that,

for LR images of Pléiades type, the GSD of 50 cm and SR ones are at 25 or 12.5 cm. The

GSD of the �nal DSM can be set when running the CARS pipeline. For these results, a

50 cm resolution was chosen.

4.1. Methodology

4.1.1. De�nition of a dataset

First, it is necessary to de�ne the test data. Since the the mission CO3D will supply VHR

images at 50 cm GSD, the idea is to use use Pléïades couples in a site where possibly a

good 2D and/or 3D reference was available. Fortunately, some accessible data correspond

to these requirements. They will be referred as:

• Montpellier: sensed stereo data of the city of Montpellier, France, Fig. 4.1a. The

left image image is 50726x62667 in panchromatic (PAN), the right one 48873x60854.

The multispectral (MS) data (Red, Green, Blue and NIR) are four 4 times less reso-

luted. A lidar 3D model of 22680x22680 pixels rasterized at 50 cm resolution is also

available, covering a considerable part of the optic acquisition. The characteristics

of the instrument that took the acquisition are not known. Similar lidar scanners

of the scale of a city are usually done, and can generate a point cloud of 30 pts/m2
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[39]. The con�dence on the measure is typically in the order of tens of centime-

ters. From all these data, a smaller region of interest (ROI) of 3682x3622 pixels was

selected, corresponding to about 3.33 Km2. Indeed, given the local nature of the

analysis performed there's no point in treating an enormous amount of data. The

ROI was chosen in a densely populated area of the city that includes di�erent types

of buildings and urban con�gurations.

• Toulouse: same kind of data as Montpellier, with the de�nition of an analogous

ROI, but for the city of Toulouse, France, 4.1b. The greatest di�erence lies in the

lidar data which, unlike for Montpellier data, are not directly exploitable for visual

purposes but would require additional process. This, together with the fact that

some images of Toulouse were actually seen by the network during the training,

makes Toulouse a little less ideal site for the study.

(a) Overview of Montpellier dataset's ROI (b) Overview of Toulouse dataset's ROI

4.1.2. Processing pipeline

In spite of the reduction of the ROI, the data were still too large in size to be passed

to CARS without making the computational e�ort unsustainable. Hence, such a ROI

has been divided in 9 overlapping tiles of approximately 1536x1536 pixels. Each tile

undergoes the same treatment and the resulting DSMs are eventually merged to form the

ROI's DSM.

The ROI are extracted from the raw data, in panchromatic band as well as in the corre-

sponding multispectral raster, for both left and right acquisitions. Then, left and right
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data go through a pansharpening operation; The GDAL1 pansharpening function was

used for its better handling of data that do not precisely have the same extent and be-

cause it is possible to set the weights used for the algorithm for each band. Such weights

are parameters of the CSI, used by the pipeline to generate the panchromatic sample

when the train dataset was generated (Sec.3.2).

From the pansharpened 4-bands rasters we extract the RGB image and this constitutes

the LR sample, that will be further processed in 3 di�erent ways to obtain the 3 high

resolution versions: bicubic upsampling, super-resolved with RDN, super-resolved with

ESRGAN. Inference by the networks is done straightforward with the process described

in section 3.1. Bicubic upsampling is performed with GDAL2 built in function.

Since in order to do stereo vision we need two gray scale images, only one band was

extracted from RGB images. Blue band is discarded because it doesn't separate well the

vegetation from the surroundings. Green and red bands are kept. Green band is what

it' usually used for CO3D pipeline as the CO3D sensor will be array-like with a Bayer

matrix, and hence green band contains more information than the others. This is actually

not the case for Pléïades sensors and images. The red band was also selected because in

historical european city centers like Toulouse and Montpellier it's common to �nd roofs

in terracotta, material that can be associated to clay soils which typically re�ect more in

red wavelength.

Finally the four couples of images can be input into CARS-Pandora. No modi�cations to

the CARS-Pandora code were necessary, but some adjustments at con�guration / data

stages had to be applied.

The most signi�cant alteration regards the geometric model (RPC) of the super resolved /

bicubically upsampled images. In practice, during the recti�cation step in CARS (see sec-

tion 2.1.2), the epipolar images are resampled, from the input stereo pair, on a grid whose

size is calculated irrespective of the pixel size speci�ed in the image metadata. Therefore,

the RPC has to be rescaled in order to be coherent with the image and have an unitary

pixel size. Another little trick that may help with respect to CARS default usage is to

set limits to the , (elevation_delta_lower_bound and elevation_delta_upper_bound)

range of disparity calculated in the prepare step. When larger images are given as input,

CARS tends to overestimate such a range (sometimes by one or two orders of magnitude)

making it impossible for the correlator to estimate the good disparity.

1GDAL pansharpening documentation
2GDAL translate documentation

https://gdal.org/programs/gdal_pansharpen.html
https://gdal.org/programs/gdal_translate.htmll
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For what concerns Pandora, di�erent con�gurations were tested since the correlation is

the most critical step. In chapter 5 these aspects will be better illustrated. At this stage, it

is useful to remark that the size of the window used for matching should changed between

original image and SR in order to contain the same information. For example, a detail

which is visible in a 5x5 window in a LR image, will be visible at the same scale in a 9x9

or 11x11 window in a SR image upsampled by a factor 2. Tables 4.1a and 4.1b resume

the parameters used during the internship in the CARS-Pandora pipeline when di�erent

from default settings3.

Epipolar err. up. bound 80
Epipolar err. low. bound -80
Elevation delta up. bound 20

(a) CARS

Matching cost method census, ZNCC
Window size 5,9
P1 8 (census), 2 (ZNCC)
P2 32 (census), 4 (ZNCC)

(b) Pandora

Table 4.1: CARS and Pandora con�gurations utilised if di�erent from default

4.1.3. Metrics and means of analysis

Once generated, the di�erent DSMs need to be evaluated in order to asses the SR con-

tribution. At this stage, a necessary premise has to be put in advance. When it comes

to measure the global quality of a DSM, there are not many options a part from the

mere calculation of the error with respect to a reference and of the associated standard

statistics [16]. Moreover, the reference may su�er from the same biases as the tested

DSMs in case a photogrammetry DSM is used. When relying in a lidar as reference, there

might be some temporal di�erences (e.g. new buildings) in comparison to the utilised

data. In other words, 3D (or 2.5D) metrics is not as developed and reliable as the 2D one.

Therefore, limited attention will be given to the quantitative results because restricted to

the measure of error di�erence, and not really capable of targeting some speci�c features,

such as building shape, urban context rendering, which are in fact the main scope of the

project. On the other hand, qualitative results such as DSM renderings will be the main

focus of this chapter discussion.

Demcompare4 is an open source tool developed by CNES that allows to compare two

DEMs together: one taken as reference, the other is the tested one. The software computes

a wide variety of standard metrics and allows one to classify the statistics with user de�ned

3CARS documentation, Pandora documentation
4Demcompare Github repository

https://cars.readthedocs.io/en/latest/?badge=latest
https://pandora.readthedocs.io/
https://github.com/CNES/demcompare
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criteria (default is slope classi�cation). Furthermore, this tool is robust to di�erent DEMs

characteristics such as format, projection, etc. A coregistration step can be included in the

pipeline, based on Nuth & Kääb universal coregistration method [37]. Some demcompare

results will be proposed in order to supply quantitative measures, although it is likely less

demonstrative than the reader's visual analysis.

In addition, with the purpose of circumscribing the real in�uence of SR to the photogram-

metry pipeline, in chapter 5 we'll take a look into the disparity maps and cost volumes in

the upper stages of the Pandora pipeline.

4.2. Results

Both datasets (Toulouse and Montpellier) were tested for the two selected bands (red

and green) as well as for di�erent con�gurations of the correlator (matching cost method

and window size) and scale factors (2 and 4). In this way, remarkable properties of

the di�erent cases can be generalized, making the intuitions as less dependent from the

peculiar con�guration as possible. However, for each result shown, the parameters used

in terms of disparity estimation, scaling and band used will be reported.

Figures 4.2 and 4.3 show input left image and output DSM for Montpellier and Toulouse

datasets, respectively. In both cases the red band was extracted and a ZNCC (Eq. 2.4)

cost measure was used. The window size is set to 5 for low resolution, while for high

resolution it is approximately doubled for a scale factor 2 and quadrupled for a zoom

4. This is because the window must contain the same type of information in order to

compare the two situations. If a car is present in the LR patch, we must see the very

same car the SR frame, but better resolved.

From a quantitative point of view, tables 4.2 and 4.3 resume standard statistics for the

four cases in Montpellier dataset for scale factors of 2 and 4, respectively. A computation

of the error was only possible for the Montpellier dataset as in no reference was available

for Toulouse one

If we consider mean and root mean square error (RMSE), it looks like the gain in up-

sampling the stereo pair is negligible or even that this step is detrimental to the results.

As a matter of fact, standard statistics are not reliable indicators when we don't control

perfectly the photogrammetry chain. Indeed, they are based on the assumption that the

errors follow a Gaussian distribution and that no outliers exist.

But this is not the case as the correlator may results outside any distribution in certain
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Stereo pair super resolution scale factor 2

% valid points Mean error RMSE Median error NMAD
LR 95.53 -1.00 4.17 -0.55 1.27
Bicubic 94.29 -1.10 4.02 -0.49 0.92
RDN 94.99 -1.10 4.18 -0.47 0.84
ESRGAN 95.03 -1.01 4.11 -0.44 0.88

Table 4.2: Standard statistics for Montpellier benchmark calculated with Demcompare,

red band, ZNCC matching cost method with window size 5 for LR and 9 for the other

cases

Stereo pair super resolution scale factor 4

% valid points Mean error RMSE Median error NMAD
LR 95.53 -1.00 4.17 -0.55 1.27
Bicubic 98.11 -1.24 4.43 -0.49 0.98
RDN 98.38 -1.28 4.65 -0.51 0.97
ESRGAN 98.18 -1.09 4.71 -0.49 1.13

Table 4.3: Standard statistics for Montpellier benchmark calculated with Demcompare,

red band, ZNCC matching cost method with window size 5 for LR and 19 for the other

cases

areas, for examples in façades and in uniform zones without texture. Moreover, the

disparity range within which we search the real disparity is estimated by CARS in the

prepare step (Fig. 2.2), unless known a priori. When underestimated, this leads to

some glaring errors such as the missing reconstruction of the highest buildings in the

scene (because they correspond to the highest/lowest values of disparity). This occurs

especially for upsampled data where the values of such a range are doubled with respect

to a standard GSD image. Therefore, error computation for bicubic and network cases

may su�er from this problem. Whether or not this is linked to the networks behavior

would require additional study. Figure 4.4 illustrates such an e�ect.



4| DSM generation from pairs of super resolved images 69

LR

Bicubic x2 Bicubic x4

RDN x2 RDN x4

ESRGAN x2 ESRGAN x4

Figure 4.2: Crop from Montpellier dataset, left LR, SR and bicubic upsampled images

for a scale factor 2 and resulting DSMs. Red band, ZNCC matching cost, window size 5

for LR, 9 for Bicubic, RDN and ESRGAN
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LR

Bicubic x2 Bicubic x4

RDN x2 RDN x4

ESRGAN x2 ESRGAN x4

Figure 4.3: Crop from Toulouse dataset, left LR, SR and bicubic upsampled images for

a scale factor 4 and resulting DSMs. Red band, ZNCC matching cost, window size 5 for

LR, 19 for Bicubic, RDN and ESRGAN



4| DSM generation from pairs of super resolved images 71

LR, disparity range es-

timated by CARS [-32,

10] pixels

Bicubic, disparity

range estimated by

CARS [-68 18] pixels

RDN, disparity range

estimated by CARS [-

38 17] pixels

Lidar, disparity range

estimated by CARS [-

36 10] pixels

Figure 4.4: "Disappearing building" phenomenon: detail from Montpellier DSM. Dis-

aprity values are multiplied by the scale factor when using upsampled images which is 2

in this case

Since this is a common issue when dealing with DEMs, demcompare proposes the NMAD

index (Eq. 4.2) [16]. It's a sort of estimate for the standard deviation more resilient to

outliers in the dataset.

NMAD = 1.4826 ·medianj(|∆hj −m∆h|) (4.1)

∆hj are the individual errors and m∆h is the median of the errors. We see that, according

to this indicator, there is a remarkable improvement for DSMs generated by upsampled

images, up to about 34% reduction for RDN recall that for Toulouse dataset it was not

possible to generate these statistics as no reference was available.

If we look at table 4.3, we can surprisingly remark that statistics are worse for the scale

four case. However, this also comes with an increase in valid points percentage of more

or less 3%. This means that less points are marked as invalid by CARS. It is therefore

unfair to compare directly the two tables, since they do not compute the statistics on the

very same points. We can rather observe the di�erences between the upscaling methods.

In this sense, bicubic upscaling seems more bene�cial to DSM generation: the output

raster has the lowest RMSE and a NMAD almost equal to the RDN one. ESRGAN super

resolution, unlike for the zoom 2 case, leads to a larger error in terms of both RMSE

and NMAD. This should be due to the highest amount of noise generated with ESRGAN

inputs (observable for example in Fig. 4.3, ESRGAN x4 case) which in turn is caused by

the artifacts introduced with such a network that lead to mismatches.
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No data values are often in correspondence to building façades, that are details notoriously

di�cult to reconstruct in a DSM: when seen from above from two even slightly di�erent

angles, their appearance may change a lot. Additionally, because of the perspective, often

they are represented by very few pixels. These two factors together make very challenging

to perform stereo matching on façades.

In general, an arti�cial increase in stereo pair resolution leads to more noise. Hence, even

if 3D objects might be slightly better rendered, the larger noise amount causes larger

global error as it can be seen in Tab. 4.3. This is con�rmed by the standard deviation

values of DSMs, reported in table 4.4. No data were not taken into account for this

computation.

LR Lidar
σ [m] 4.580 4.576

Bicubic x2 RDN x2 ESRGAN x2
σ [m] 4.634 4.621 4.643

Bicubic x4 RDN x4 ESRGAN x4
σ [m] 4.661 4.705 4.944

Table 4.4: Standard deviation of analyzes DSMs, excluding no data values. MTP dataset,

red band, ZNCC matching cost

We can appreciate how upscaling produces an increase in standard deviation, which is

very similar to the reference (Lidar) for the LR case, has a slight increase for the zoom two

tests and it's much larger for a zoom 4 of the stereoscopic couple. Moreover the standard

deviation remains approximately the same for bicubic between the two factors, while its

value rises considerably for the ESRGAN x4 case. This con�rms the visual impression

when looking at �gures 4.3 where the noisiest DEM is the one labeled ESRGAN x4, and

it is again coherent with the scarce reliability that ESRGAN outputs have with respect

to the reality: artifacts may lead very easily to wrong matching hence to introduce bad

values that are able to pass through the noise �lters of the photgrammetry pipeline.

Additionally, it is possible to estimate the con�dence on the measure by computing statis-

tics on small ROIs that are approximately �at. Some examples are football pitches, roofs

of industrial complexes, rivers, squares. By selecting a su�ciently large area or by repeat-

ing this measure on many di�erent zones we can estimate the con�dence on the altitude

as the range of oscillations of the interested pixels with respect to their mean. An example

is reported in Tab. 4.5 and Fig. 4.5. Many other samples were taken into consideration

but here we only report this one as it is the most e�ective. Indeed, the particular roof

pattern helps stereo matching because of the univocal information it vehicles. Football

pitches are, for instance, less adapted as they often do not have details that can be used
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during matching. This sample comes from Toulouse dataset, where no reference is avail-

able. The accuracy of the lidar used in Montpellier dataset was estimated in the very

same way, since the characteristics of the instrument were not known. The lidar estimated

con�dence is around 30 cm.

LR
µ[m] 194.91
hmax[m] 195.63
hmin[m] 194.11

Bicubic x2 RDN x2 ESRGAN x2
µ[m] 195.22 195.13 195.16
hmax[m] 195.91 196.21 196.08
hmin[m] 194.32 194.48 193.98

Bicubic x4 RDN x4 ESRGAN x4
µ[m] 195.31 195.25 195.25
hmax[m] 196.22 196.32 196.70
hmin[m] 194.52 190.40 191.57

Table 4.5: Mean, maximum and minimum values statistics computed on the zone of Fig.

4.5. Value range increasing with the scale factor.

RGB LR image LR ESRGAN x2 ESRGAN x4

Figure 4.5: Roof used for statistics calculation in Tab. 4.5, RGB image and detail from

the DSM produced via LR, ESRGAN scale factor 2, ESRGAN scale factor 4 input stereo

pairs. Note the increasing amount of noise with the scale factor as well the amplitude of

magnitude of the oscillations around the mean value of the roof's height

It is evident from Tab. 4.5 and Fig. 4.5 that DSMs generated via photogrammetry have

less accuracy than lidar ones, but this is an expected result and the two technologies cannot

be directly comparable. However, being lidar con�dence on the altitude measure empir-

ically estimated to be about one order of magnitude higher than stereo-reconstruction

(20-30 cm vs 2-3 m), it is correct to assume laser scanning measures as the ground truth.

Another way to see the resolution of the two type of DSMs is to evaluate the smallest

scale of the recognizable objects. In �gure 4.6 we can observe that the lidar DSM well

separates small size buildings, cars and trees. In the red box we can distinguish a car,

approximately 3 meters long. The DSMs generated via CARS do not reach the same
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resolution in terms of semantics. We can well see big buildings, while small size ones are

barely recognizable. Cars and trees are totally lost. In the red square, a recognizable

building edge measuring about 9 meters. When upscaling the input images, we gain in

object de�nition and no real di�erences can be observed between the di�erent upsampling

cases, whereas when we keep original image resolution ("LR" case), the impression is that

even less detail is available, as we struggle to recognize any object which is not a large

building.

LR Bicubic x2 RDN x2 ESRGAN x2 Lidar

Figure 4.6: Detail from Montpellier dataset DSMs generated via LR and the 3 upsampling

mode generated image inputs. Lidar DSM is also reported. In the red box the smaller

scale recognizable feature

Quantitative results may suggest that a slight gain in DSM accuracy can be achieved by

upscaling the input stereo satellite pair. On the other hand, we can observe an increase

in noise (Tab. 4.5). A higher scale factor leads to more DSM completeness but not

necessarily to a lower error but instead to even more noise, especially when using neural

network super resolution techniques that do not preserve radiometric consistency. A visual

analysis was simultaneously carried out in order to understand what might be the areas

where the proposed methods perform well and where instead they have their weak points.

Qualitatively we can distinguish two di�erent trends: in regions characterized by high

contrast (building edges, contours, streets) SR may in fact provide a better suited input

pair, since it enhances further the contrast making it easier for the stereo algorithm to

�nd the good match. On the other hand we have uniform or textured areas, where neural

networks may add inconsistent textures leading the stereo matching to �nd the wrong

match and this introduces noise in the stereo pipeline.

High contrast areas

When looking at the center building of �gure 4.7, its edges are not well de�ned in the LR

3D model, in the sense that they are far from being straight. The situation is improved

when passing to a GSD of 25 cm for the stereo couple considered. In particular, in RDN

case the longest wall is relatively little distorted. This might be due to the strongest
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Figure 4.7: Detail from Montpellier dataset, red band ZNCC matching cost, scale factor

2. Building edges are better de�ned when upscaling the input stereo pair, and further

straightened when using SR networks

capacity of RDN of sharpening objects without adding texture, yet one example can not

be taken as evidence. However, this example will be reconsidered in chapter 5 where it

shown how SR networks can enhance stereo matching for such a case. Indeed, they amplify

the radiometric di�erence between street and building making it clearer the distinction

between these two objects. In the right conditions, this property can be re�ected in the

3D model at the end of the pipeline.

Figure 4.8: Detail of a narrow street fromMontpellier dataset, green band census matching

cost, scale factor 2.

Between the two buildings of �gure 4.8 there is a narrow street, that is almost totally

canceled in the LR case in favor of the buildings, while in the DSM generated with

upscaled images we better guess the extent of the street. In this case, ESRGAN behaves

better than the other methods as the way is continuously visible. Even if in the 3D models

generated by a LR stereo pair very often we can observe worse rendering of the buildings,

i.e. less recognizable shape and junction of di�erent constructions, it is not as common

to individuate di�erences between the DSMs generated via the 4 upscaled versions of the

original image. This is relevant as one of the main applications of DSMs is to precisely

map a city and it is therefore indispensable to well separate the buildings composing a
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city. Indeed, it is not always achieved as it can be seen in �gures 4.3 and 4.6. However,

in the case of Fig. 4.8 ESRGAN shows to be bene�cial to the photogrammetry products.

In chap. 5 we'll dig further into this example.

Uniform areas

Figure 4.9: Detail of the rugby stadium and Garonne river from Toulouse DSM. Green

band ZNCC matching cost, scale factor 2.

In �gure 4.9 we can immediately notice how the stadium rendering is completely deterio-

rated when utilising CNNs. This is because some details characterizing the upper side of

the stadium are curiously lost during super resolution step (Fig. 4.10). This is unexpected

and might be linked to the fact that a stadium is a peculiar building and nothing similar

was "seen" by the networks during the training. The results is a radiometric �attening

of stadium roof that in turn leads to a more complicates matching and strong errors in

disparity estimation.

Figure 4.10: Detail of the rugby stadium and Garonne river from Toulouse dataset, left

image. Green band, scale factor between LR and Bicubic, RDN, ESRGAN is 2.

Moreover, in this capture there are two really uniform areas, the football pitch on the

bottom center, and the river Garonne, bottom right. Both su�er from the important

noise, especially in the ESRGAN case. This should be linked to the ESRGAN's texturing
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property (section 3.4), and it is likely due to the fact that left and right images are not

textured in the same way, introducing confusion at the correlation step. Indeed, ESRGAN

patterns always stem from real local changes in pixel values, which are ampli�ed through

the network. In other words, high frequencies are put where they should not be.

One can argue that two other football pitches are present in the picture, yet their elevation

is still rendered for all methods. However, by a closer look we notice that these two pitches,

unlike the third one, have visible lines so the correlator is able to often �nd good references

and thus to make the good estimate.

Figure 4.11: Detail from Toulouse dataset, DSM. Green band census matching cost, scale

factor between LR and bicubic, RDN input pairs is set to 2. Increased noise from LR to

bicubic/SR

While for large uniform areas the increase in noise is evident, this property can be seen

wherever there is a local homogeneous texture as well as in façades. From �gure 4.11 it

is possible to appreciate an increase of the noise when passing in the image 25 cm GSD

domain, whether via a bicubic interpolation or a super resolution network. It's a rule of

thumb that, to have a satisfactory DSM, its resolution should be 3/4 times higher then

the ground sampling distance of the images in order to �lter out the noise from the point

cloud. We totally �nd in when increasing at 1 m the rasterization interval for RDN, with

an input image sampled at 25 cm (Fig. 4.11).

This may have origin in the rasterization step, when an interpolation of the point cloud

generated at the end of triangulation step (CARS illustration sec. 2.1) is applied. We

expect a denser point cloud to be interpolated with more accuracy hence letting less noise

through. But actually it's the opposite. This may mean that the noise introduced in

the disparity maps from wrong matches caused by artifacts or inconsistent information

between left and right image is not totally �ltered out in the successive steps of the stereo

pipeline.
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4.3. Wrap-up

Globally, we can appreciate in most cases a slight quantitative (Tab. 4.2, 4.3) and qualita-

tive improvement when upscaling the input pairs. Nonetheless, side e�ects may attenuate

such enhancements or even cancel out the bene�ts. It is possible to note the following

points:

• From a quantitative viewpoint, it is possible to highlight an improvement in NMAD

statistics when using upsampled images as input of the stereo pipeline. Percentage

of valid points may also bene�t when a greater scale factor is employed. On the

other hand, other statistics seem to contradict this enhancement.

• Visual inspection and global and local standard deviation computations certify an

increase in noise that appears when upscaling stereo pairs, especially when using

neural networks.

• An increase in scale factor of the stereo images does not re�ect in an improvement of

DSM quality. It does help to reconstruct more points, especially in correspondence

of façades, but it also lead to an even noisier 3D model.

• Matching in correspondence of high contrast patches can bene�t in some cases from

SR networks, thanks to the stronger sharpening that halps stereo matching in rec-

ognizing the right features.

• Uniform zones seem to su�er even more than usual when SR is applied. This is

again probably due to inconsistent texturing by neural networks that leads Pandor

to fail more often

• No real global improvement could be highlighted with respect to bicubic upscaling.

This last point brings us to a necessary digression. One may expect to transfer the

di�erences seen in the images in the 3D model. In practice, it is not as evident to

distinguish this and similar features. This would mean that the use of SR networks

for such a task is not always justi�ed and that a bicubic upsampling would be enough.

However, by a closer look we can sometimes recognize some behavior speci�c to the

upsampling method: it is the case of the straight edges produced by RDN inputs in �gure

4.7 (networks improve contrast) and the fail in stadium rendering by network generated

pair in �gure 4.9 (networks may never have seen a building as large as a stadium).

Furthermore, when comparing di�erent con�gurations of CARS-Pandora, we can see a

noticeable impact on the �nal DSM for all the cases analysed, perhaps more important
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than the preprocessing adopted for the stereo couple. This can be seen by looking at

�gures 4.7 (ZNCC matching cost, (Eq. 2.4)) and 4.8 (census matching cost (Eq. 2.3)).

They belong to the same dataset but the rendering of building shapes and the amount of

noise di�er considerably.

All these clues lead to the conclusion that the used photogrammetry pipeline is too com-

plex to have total control on the path of the injected information. In other words, it

might be too ambitious to rely on a mere input-output comparison for our analysis and

contributions of di�erent upscaling techniques might be �attened in some steps during

the process. This justi�es a further analysis illustrated in chapter 5.
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The outcomes of section 4.2 left multiple open questions: is super-resolution even bene�-

cial to photogrammetry or should we limit ourselves to standard interpolation methods?

Why a superior 2D metrics doesn't propagate in a 3D context? If SR spectra are more

�lled up, why such a high frequency information seems to be ine�ective to reconstruct a

high frequency signal such as the di�erence in altitude between buildings? Is it because

of the consistency of the added information, or does it have to do with some process in

the CARS-Pandora pipeline?

To try to answer these and other questions a further analysis was performed, trying to

isolate the SR images contribution. The critical step in this sense is the matching cost

computation [42] where a similarity measure is performed in order to associate patches

of the left and right images along an epipolar line. Di�erent images (i.e. di�erent patch

contents) lead inevitably to di�erent measures. By looking at such measures for each

possible disparity, it is attainable to understand the role played by a signal of diverse

nature . For this examination, the Pandora was stopped before sgm optimization [15],

right after the cost computation.

Figures 5.1,5.2, 5.3, 5.4,5.5, 5.6 report some signi�cative examples, showing a comprehen-

sive analysis of what happens for a given pixel when it comes to disparity computation.

They are composed of:

• A plot of the costs associated to the pixel for each disparity of the considered range

(that hereby we de�ne as cost pro�le). There are four lines, one for the LR disparity,

the other three for bicubic, RDN and ESRGAN upsampling pro�les. The ground

truth value is also present in the plot. The unit of measurement for the disparities

is the pixel, so that LR disparity values have been mulitplied by the scale factor in

order to be visually comparable to the higher resolution samples. The matching cost

method considered for these plots is ZNCC (Eq. 2.4), with a window size of 5 for the

LR case, 9 and 19 for the scale factors 2 and 4, respectively. Patch siwes have to be

adapted to the scale factor in order to contain the same, more resolved information

as in the LR image. Thie matching cost method is an arbitrary choice, due to the
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fact that this measure is less a�ected by noise and returns more interpretable cost

pro�les. We recall that for ZNCC measure, the higher the value, the more similar

two patches, hence we will look for the maximum costs.

• A zoom on the left image around the chosen pixel. A red square positions the

window used by Pandora. Such a window is in turn zoomed and its spectrum is also

shown. Looking at the frequency content of a window may allow us to understand

if and how high frequencies interact with disparity estimation.

• A zoom on the right image around the matching pixel computed by Pandora. Zoom

on the window and window spectrum are shown as well.

• A zoom on the right image around the ground truth matching pixel computed by

Pandora. Zoom on the window and window spectrum are shown as well.

Scale factor 2

Figure 5.1: Building edge, detail from Montpellier dataset, red band ZNCC matching cost

Only the Montpellier dataset could be used for this chapter, since is the one with n
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available ground truth, i.e. the associate lidar. On can arge that the lider is a ground

truth for what concerns altitude measure but now we're focusing on disparity maps, that

are a di�erent measure. In order to generate the ground truth disparity, the library

Beefröst was used. It's a tool developed in a collaboration between CNES and CS Group

and presented in paragraph 5.1 (and more comprehensively in [5]). It produces stereo-

recti�ed images and ground truth disparity maps, from satellite imagery and lidar.

5.1. Beefröst

The development of such a tool arise from the interest around the generation of ground

truth stereo datasets, from satellite imagery and lidar, in order to train deep learning

based solution for stereo matching [5]. In order to do so, Beefröst needs as input two

satellite images and the associated lidar altitude data. The main outputs of our pipeline

are stereo-recti�ed images pairs, and their corresponding disparity maps. The recti�cation

step is based on the CARS pipeline [35] (Sec. 2.1), that returns the epipolar grids. It

follows an optional coregistration step: the DSM is computed (again via CARS) and an

a�ne transformation allows the it to be superimposed to the lidar. This procedure is

often useful because the DSM or lidar georeferencing might not be perfect. The disparity

maps computation consists of multiple steps. First, each pixel of the stereo-recti�ed image

is mapped into the original sensor image coordinates using the rectifying grid. Then, the

original sensor image corresponding point is localized onto the aligned lidar and the height

is stored into the left disparity map. Next, a pixel-wise ratio and bias is applied to such

heights (Eq. 5.1).

disparity(i, j) =
height(i, j)− bias(i, j)

ratio(i, j)
(5.1)

The height corresponds to the altitude di�erence for a 1 pixel disparity and the ratio

could be approximated by the resolution divided by the stereoscopic angle between the

two views. The two informations can be retrieved from the RPC of the image. All the

operations are performed on the left and the right image.
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5.2. Case studies

Similarly to the DSM chapter, when studying disparity maps and cost pro�les we can

distinguish two main trends can be distinguished: a potential improvement of matching

for windows characterized by high contrast, and a detrimental e�ect where the match is

performed on an uniform region.

High contrast areas

In 2D, building edges are well straightened when using SR networks. This re�ects in many

cases in a better 3D rendering of such a feature. When it comes to disparity computation,

this can be seen in the cost pro�les of �gure 5.1. This case study belongs to the same

area shown in �gure 4.7. The peak, corresponding to the pixel disparity, is better de�ned

for the case of super resolution thanks to a change in the concavities of the functions. In

this case, bicubic upsampling doesn't really add much with respect to the original, LR

information. On the contrary, both neural network samples present a further, alarming,

maximum around a disparity value of -20, not pointed out in LR-bicubic trends. Looking

at the spectra, we see the edge orientation well re�ected in the Fourier transforms for

RDN and ESRGAN generated patches, while very little of this geometry information

can be seen in LR and bicubic frequency representation. Such a spectral information

might have been useful in better de�ning the actual disparity value with respect to other

candidates. For this particular point, the correct disparity is identi�ed in all cases, so the

more rounded shape of LR and bicubic cases does not propagate into a wrong altitude.

Nevertheless, we can imagine that along this edge the more punctual guess in the RDN,

ESRGAN leads to a more de�ned delineation of roof and ground disparities, as well as to

a more, justifying what we see in �gure 4.7.

If we look at the mid-line of the roof in �gure 5.2, we can see how the contrast between the

two roof sides present in the LR image is strongly enhanced by the networks, that even

create here a black line. This can be seen as a high contrast feature, something that allows

network based methods to improve the cost pro�le. The frequencies added by the networks

�ll a wider area of the spectra, leading to superior de�nition for the high contrast detail

shown. Although a common bias is present with respect to ground truth, the maximum

corresponding to the disparity much more discriminated by RDN, ESRGAN, whereas the

LR, bicubic pro�les are similar and very �at. Again, all methods manage to have their

maximum at the right disparity, but we would be much more con�dent in the measure

obtained with super resolved images. Moreover, in semi-global matching uncertainties

propagate and a well de�ned peak leads more often to a better result [42].
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Scale factor 2

Scale factor 4

Figure 5.2: Roof sides' edge. Detail from Montpellier dataset, red band ZNCC matching

cost.
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When passing to scale 4, things become even more interesting. The bicubic cost pro�le

maintains its very shape as expected. Indeed, as already recalled, bicubic interpolation

can only introduce more blur and hence lead to the very same matching, just at a lower

sampling distance. Less obvious is the fact that RDN zoom 4 pro�le completely recalls the

zoom 2 one. However, this behavior is actually coherent with the conclusions highlighted

for chapter 3: the trained RDN was not capable of add anything signi�cant when increas-

ing the scale factor, acting much like an interpolation. This can be seen in both spectre of

the patch and cost pro�le. Finally, ESRGAN pro�le is relatively changed between the two

zooms. It is remarkable that, even if there's a higher di�erence between maximum and

minimum value for scale factor 2, we may prefer the zoom 4 pro�le because it strongly

�attens almost all the other measures leaving less room for concurrent maxima. This fact

means that matching relevant information was added by enhancing the scale factor, con-

�rming the impression that ESRGAN left in chapter 3, where we observed how additional

information (realistic or synthetic) is introduced by this architecture for a stronger scale

factor.

Another interesting example that supports these hypothesis id shown in �gure �gure 5.3

and it covers the very same area shown in 4.8. We remarked a better resolution of the

street when upsampling the inputs to the DSM pipeline. Furthermore, ESRGAN is the

only one capable of completely separating the two buildings. One could expect that

this is due to less blurred building walls on the street sides, but there's likely another

reason. This street is characterized by a tra�c line which acts as an important clue for

the matching algorithm. The SR networks have the capability to sharpen this line which

becomes a more recognizable feature, as the spectra con�rm. This translates into a better

de�nition of the two maxima of the cost pro�le with respect to LR and bicubic curves.

Moreover, it's interesting to notice that ESRGAN outperforms even RDN in this case,

since its correct maximum (the one corresponding to the ground truth) is well higher than

the wrong one, whereas for the other methods the attribution falls to the wrong maximum,

taking the change of contrast due to shadow light transition instead of the one marked by

the line on the asphalt. This superior performance can be associated to the fact that the

line is not only sharpened but also doubled, adding additional information. As there's

no ground truth in HR for these images, we don't know completely whether this is an

artifact or not. In any case, this tendency of ESRGAN of forcing high frequency details

even where there aren't there, might sometimes be bene�cial for a matching algorithm.
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Scale factor 2

Scale factor 4

Figure 5.3: Tra�c line in a narrow street. Detail from Montpellier dataset, green band

ZNCC matching cost.
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The double line actually disappears when passing at scale factor 4, but again this line is

key for understanding the observed enhancement in the DSM. Its impressive de�nition in

the ESRGAN image fairly leads to a cost pro�le in which we are very con�dent as its shape

is almost ideal. These cost pro�les con�rm what seen a little bit earlier in the paragraph

for �gure 5.2, i.e. that for 1D features the ESRGAN contribute is signi�cant (and in can

be increased with the scale factor), while bicubic and also RDN convey more or less the

same information which in these cases cannot guarantee a con�dent match. This example

also supports the hypothesis that stronger spectral structures information can be helpful

for DSM production in urban areas, as a the ESRGAN is rich in 1D information.

Uniform and textured areas

In �gure 5.3 a probable artifact allows ESRGAN to better resolve the matching. But when

artifacts are not coherent between left and right image, this leads more easily to matching

troubles. Figure 5.4 illustrates this phenomenon. The pixel and the surrounding window

corresponds to a uniform portion of a roof. Here, some not interpretable detail in the low

left image, are turned by the networks into a texture, very evident in the ESRGAN image.

High frequencies are forced and this results in a random pattern. In the right SR images

such an artifact is not present and the roof surface is pretty smooth. Hence, Pandora

cannot �nd the matching window, it simply doesn't exist. This results in a globally lower

similarity measure and more uncertain cost pro�les. In particular, ESRGAN pro�le has

a limited range and the correct maximum is not really distinguishable. The correlator

then looks for windows characterized but some sort of high frequency details, such as

the contrast between the illuminated and shodowed sides of the roof, failing to �nd the

right disparity, unlike the other methods that are closer to the ground truth. When

passing at scale factor 4, this issue persists as it is again present in the ESRGAN window.

The cost pro�le is really confused and the disparity taken is wrong as it corresponds to

the roof edge, where high frequencies in fact are present. Again we can state that the

bicubic cost is basically unvaried across the scale factors while in this case, RDN shows

the better performance when it comes to matching as even if the pro�le doesn't exclude

other maxima, still it highlights the right disparity. This means that, unlike what seen

in the other examples, also RDN has the capability of introducing new high frequency

information for a lower GSD, that in this case was bene�cial for stereo reconstruction.
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Scale factor 2

Scale factor 4

Figure 5.4: Generation of artifacts on roofs. Detail from Montpellier dataset, red band

ZNCC matching cost.
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Scale factor 4

,
Figure 5.5: Stereo matching example on a tree. Detail from Montpellier dataset, red band

ZNCC matching cost.

Fig. 5.5 shows a clear example of how an untrustworthy arti�cial intelligence can be

detrimental when insert in a complex process and it reconnects to the ESRGAN halluci-

nation phenomenon (Fig. 3.12, 3.13, 3.14). The analyzed pixel belongs to a tree, which,

because of its uncommon contrast in the left image, is mistaken for a building by the

networks. This is evident especially in the ESRGAN case where on the left image we

can �gure the roof and the façades of a building, while on right we clearly see a tree. As

one can expect, ESRGAN similarity measure prediction is totally out of the target as its

maximum lies elsewhere. RDN also shows inconstency between left and right patch and

a consequent wrong estimation. LR and bicubic image generated cost pro�les, although

not really discriminatory, assess fairly well the position of the real optimum.
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Scale factor 2

Scale factor 4

Figure 5.6: Stereo matching example on a square. Detail from Montpellier dataset, red

band ZNCC matching cost.
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As already pointed out when illustrating �gure 4.10 4.11, in uniform zones the networks

cause noisier DSMs. This is because RDN makes such areas even more homogeneous,

while ESRGAN textures them inconsistently. This is to say, stereo matching always needs

some sort of contrast so the pixel shown in �gure 5.6 isn't well matched by all methods,

although enough information is present originally to guess the actual optimum in LR and

bicubic interpolation cases. The RDN labeled function resembles LR and bicubic pro�les

but it is biased, perhaps because radiometry is too much modi�ed. ESRGAN matching

presents a very �at pro�le that even shows a local minimum in correspondence of the

real disparity. This induced by the presence of arti�cial details in the looked area and

it shows how in this case high frequencies are introduced incoherently between left and

right images. Moreover, it is interesting how ESRGAN stereo couple produces the only

pro�le that changes considerably when zooming to a factor 4, suggesting again that RDN

has less capability to enforce further information for stronger scale factors.

5.3. Wrap-up

The following main conclusion can be drawn by this cost pro�le analysis :

• Contrasts are enhanced by the SR networks, which leads to more discriminative

cost pro�les for pixels whose windows include discontinuities such as light-shadow

thresholds (Fig. 5.2), edges (Fig. 5.1) or distinct lines (Fig. 5.3). This is coherent

with the hypothesis made in 1.3, i.e. a more �lled spectrum should improve the pho-

togrammetry algorithm in correspondance to discontinuities. This doesn't always

translate to a better DSM but we can observe it distincly in some cost pro�les.

• High frequencies reconstruction by SR networks is not necessarily consistent. This

leads to artifacts (especially for ESRGAN) which can be bene�cial, when coherent

between left and right image (Fig. 5.3), or detrimental when not present in both

images (Fig. 5.4).

• Super resolution doesn't seem to improve matching of uniform zones (Fig. 5.6). On

the other hand, it might add further noise to DSMs because such patches are further

homogenized (RDN) or inconsistely textured (ESRGAN).

• Cost pro�le analysis �nally allow to �nd the 2D results in the stereo pipeline, mean-

ing that the characteristics of the successfully super resolved images presented in

chapter 3 could be seen in the shape of these curves.

� Bicubic interpolation doesn't add much relevant information with respect to
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LR as the two pro�les are often similar, but it increases the sampling which

can be beni�cial

� RDN can be seen as a good interpolator that is powerful in well de�ning the

disparities and it remains fairly coherent with the reality

� ESRGAN, thanks to its peculiar architecture and loss function, force high fre-

quency information but in an uncontrolled way and this can lead to outperform

in matching (Fig. 5.3 5.2) as well as to wrong estimations due to the incon-

sistency of the information (Fig. 5.4). In a DSM, we see mostly this second

contribution as the noise is consistently increased as shown in Chap. 4.
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The thesis is placed in the general context improvement of an existing photogrammetry

3D process based on stereo matching. In particular, the objective is to explore some tracks

for enhancing CS product Pandora hence CNES/CS CARS pipeline. This is relevant for

the more general framework of the CO3D mission, whose processed data will depend from

the reliability of these softwares under development, as well as for the upcoming products

of AI4GEO consortium.

A literature basis has been delineated on the super resolution topic in the beginning of

the internship (chap. 2). SR has a long story in imaging and not only DNN exist for its

resolution. In either case, deep learning methods represent the current state-of-the-art

and might be even easier to implement, given the great amount of open source material,

therefore there's no speci�c reason for using a traditional technique. Nowadays, the focus

in SR is on GANs and hybrid methods. In the �eld of remote sensing, the tendency is to

extend results of computer vision research but dealing with some additional limitations.

Remote sensing SR is characterized by more a minor amount of available data (especially

in HR) with respect to computer vision. This issue seems to have been overcome by the

creation of larger datasets (borrowed by object detection and scene classi�cation related

works, sec. 2.2.4) and a systematical employment of transfer learning from computer

vision. Instead, the approach proposed during this project relies on one hand, in limiting

the target of a SR method to a well speci�c kind of data (VHR Pléiades images). On

the other, on focusing on the generation of a realistic high quality dataset, made possible

by the CSI tool and implementation of a Pléïades sensor model. The results support the

applied methodology, as real Pléïades products are satisfactorily super resolved (chap. 3),

and thus the implemented network could be inserted into the 3D pipeline. Yet a strong

artifact production could be observed for the GAN, making it less suitable for stereo

matching.

There are not many references in literature that assess the in�uence of single image SR for

DSM generation. They con�rm that denser and more detailed clouds can be generated.

More importantly, they suggest some gain in quality can be achieved, so the problem of
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DSM quality improvement might be converted into an easier image SR problem, where

models and high quality data are widely available. A large scale experiment was conducted

at this aim. Results shown chapter 4 seem to agree with literature. Moreover, in an urban

area context, that is the main focus of the study, buildings and streets are slightly better

reconstructed. SR network stereo pair enhanced DSMs mey be slightly more accurate

but tend to deteriorate the reliability of the measure. The gain with respect to bicubic

upsampling is not always �agrant and, in addition, uniform and textured zones are prone

to 3D failures when the upsampling is performed through a network. For what concerns

the comparison with other standard upsampling techniques (bicubic upsampling was the

reference used), the underlying idea is that the high frequency o�ered contribution SR

networks can help in reconstructing a high frequency signal such as di�erences in altitude

in a city. Looking at DSMs generated via CARS-Pandora, though, this is not always

the case. In order to account for this result, a further analysis was performed at the

stereo matching step, and it is presented in chap. 5. Here, we can highlight interesting

di�erences in the way the algorithm attributes disparities with respect to the type of input

image (low resolution, interpolated or super resolved). The main outcome of this analysis

is that super resolved images lead to less stereo mismatches and more de�ned cost pro�les

when matching is performed on a neighborhood characterized by high contrast. This is

relevant also because more discriminator cost pro�les can lead to a more accurate / reliable

disparity map and thus DSMs [42]. Yet, this is counteracted by noise injection in uniform

or textured areas due to artifacts and inconsistent information, that propagate throughout

the stereo pipeline eventually canceling out the bene�ts we may have in correspondence

to edges and lines. As a matter of fact, the image of a city is the composition of uniform

patches separated by high frequency features, so that it might not be worth to be more

precise in stereo matching on edges and lines while introducing uncertainty elsewhere.

DNNs are powerful instruments and they con�rmed their potential in this study, yet

they might not reliable enough for an application where accuracy is strongly needed.

Indeed, SR networks modify radiometry and might generate artifacts that move away

their outputs with respect to the real information. This is a factor that discourages their

use in the DSM pipeline. With more mature networks or trainings, that do not introduce

fake information, or by �nding a way to make coherent the upsampling between left and

right image, we could better exploit SR networks potential in the CARS-Pandora pipeline.

Further extension of this study can take di�erent directions. For example, if the concern

is not only the improvement on DSM quality but also some other tasks, multi task ap-

proach might be envisaged to improve simultaneously image, DSM and related application

quality or performances. In [2] an unique framework for DSM re�nement and roof type
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classi�cation is proposed. Moreover, considering that CO3D will take two or more views

of the same scenes, one can exploit the additional information that can be encoded in

the second image. This would be rather belong to multi image super resolution which

is a completely di�erent set of techniques and would require another study. Yet, some

approaches aiming at exploiting multiview information to boost single image SR have

been proposed [21] [28].

Moreover, during this project, a limited amount of data was used for training. Perhaps,

increasing dataset size and/or usage of even more speci�c data (i.e. stereo acquisitions),

can lead to more generalize and performing SR for the application concerned. Further-

more, we would like from a 2D image to know whether it will be bene�cial for DSM before

running the pipeline. Standard 2D metrics were not very useful in this case as a superior

2D metrics for the networks with respect to bicubic is to found again in 3D. Thus, it

would be interesting to �nd or de�ne some metrics that are directly connected to the

quality of a stereo matching. Finally, enforcing coherency between left and right images

could potentially limit the mismatches caused by uncontrolled artifact generation.
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