
Executive Summary of the Thesis

Control of an Over-Actuated Vehicle for Autonomous Driving and
Energy Optimization

Laurea Magistrale in Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Gianmarco Grandi

Advisor: Prof. Luca Bascetta

Co-advisor: Prof. Mikael Nybacka

Academic year: 2021-2022

1. Introduction
An over-actuated (OA) vehicle is a system that
presents more control variables than degrees of
freedom. Therefore, more than one configura-
tion of the control input can drive the system to
a desired state in the state space, and this re-
dundancy can be exploited to fulfill other tasks
and solve additional problems. Nowadays, the
energy problem is getting extremely critical and
research in this field of study is paramount. Con-
cerning this problem, Over-Actuation offers the
possibility to drive the vehicle to the desired
state and exploit the redundancy of the control
action to choose the one that minimizes energy
consumption.
Over-actuation research at KTH has been ongo-
ing for some years, with the goal of exploiting
control action redundancy for various purposes.
Different over-actuated prototype vehicles have
been built with the intention to have an experi-
mental evaluation of the solutions.
In this project, a control strategy is developed
to guarantee trajectory following and stability
while minimizing the energy consumption of an
over-actuated vehicle with four driving wheels
and four steering wheels (4WD, 4WS). The con-

troller must be implemented and embedded on
the Research Concept Vehicle (RCV-E) (Fig-
ure 1) to ensure real-time performance.

Figure 1: RCV-E developed at the Integrated
Transport Research Lab (ITRL) within KTH
Royal Institute of Technology.

Previous studies developed at KTH explored
the energy-efficient control methods and models
for an over-actuated vehicle. In P. Sun’s work
[1, 2], an analysis of front steering wheels
(FWS) and torque vectoring (4WD) to directly
control the yaw moment (DYC) for stability and
energy efficiency purposes is carried out. The
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result of an offline optimal torque distribution
to minimize the power consumption is exploited
to relate the engine efficiency with the yaw
moment (Mz) at steady-state cornering.
In J. Edrén’s work, importance is also given to
energy optimization in [3], where it was noticed
that the largest contribution to the reduction
of energy consumption during cornering is
provided by rear-axle steering: compared to
traditional road car driving, the improvements
are about 10%.
Further works on over-actuation intending to
reduce energy consumption are outlined here.
As in [4], the control allocation scheme allocates
torque and steering angles to track the vehicle’s
planar velocities (vx, vy, yaw rate) provided by
the upper-level controller. Two cost functions
are optimized simultaneously; one for reference
tracking and one for the engine’s energy mini-
mization. In [5], an OA vehicle with in-wheel
electric motors exploits a control strategy to
allocate the total reference torque on the two
axles. Results show that for straight driving
at a constant speed, two-wheel drive is more
efficient than four-wheel drive. In [6], an online
control system is proposed in order to improve
the vehicle’s energy efficiency by minimizing
tire power losses: tire slip resistance, and rolling
losses. In [7], a two-step algorithm is presented
to combine vehicle stability and energy mini-
mization. The first step allocates the torques
to satisfy the longitudinal force request on the
wheels using the in-wheel engine characteristic
to minimize power consumption. The second
allocation step starts from this result to find a
close solution that bounds the longitudinal slip
ratio within linear boundaries and provides the
requested total traction force. Lateral forces
are also considered [8] and estimated to limit
the longitudinal ones at the wheels by defining
a stability region within the friction circle.

2. Trajectory following
The controller used in this project to track the
given trajectory is an MPC, and it must be able
to follow the path at the reference speed. Lat-
eral dynamics of the vehicle are controlled by
minimizing the lateral deviation from the refer-
ence path, whereas tracking the reference veloc-
ity controls the longitudinal dynamics. Given

the i-th position of the car along the prediction
horizon (xic, y

i
c) and the pose of the i-th reference

point (xir, y
i
r, θ

i
r), the lateral deviation is com-

puted as follows:

LD = −xic sin θ
i
r + yic cos θ

i
r+

+ xir sin θ
i
r − yir cos θ

i
r

(1)

Since the objective of the controller is to have
LD = 0, Equation 1 can be written as a function
of the vehicle state as follows:

[− sin θir, cos θ
i
r]

[
xic
yic

]
= −xir sin θ

i
r + yir cos θ

i
r

(2)

Besides, since the Over-Actuation allows to con-
trol rotation and lateral motion independently
from each other, the desired vehicle direction θr
can be arbitrarily provided as an additional ref-
erence to track. One advantage of having this
DoF tunable by a path planner is that it is pos-
sible to force lateral motion, with the vehicle
yaw angle fixed, to improve vehicle stability as
in a double-lane change. From Equation 2, the
output of the system and the reference to track
can be rewritten as:

yi = Cixi

ri =

 −xir sin θ
i
r + yir cos θ

i
r

θir
vixr


with

Ci =

− sin θir cos θir 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


(3)

where xi is the vehicle state computed at the
i-th step over the prediction horizon defined as
follows.

x =
[
xcar, ycar, θ, vx, vy, θ̇

]T
(4)

3. Sources of energy consump-
tion

Different sources of energy loss in electric ve-
hicles are investigated in this research; de-
spite this, only those that over-actuation (4WD,
4WS) can directly influence are considered. In
particular, three sources of energy loss are iden-
tified.

2



Executive summary Gianmarco Grandi

First are the losses due to longitudinal slip Pσ,
where the traction force due to tire slip is op-
posed to the sliding velocity of the contact patch
and dissipates power. These are defined in [6] as
follows.

Pσ = −Fxvs
where vs = rω − vx = σxrω

(5)

and Fx is the longitudinal force at the contact
patch, vx is the wheel’s longitudinal velocity, r
is the wheel’s radius, ω is the wheel’s rotational
velocity, and σx is the longitudinal slip ratio.

From Equation 5, Pσ becomes

Pσ = −Fxσxrω =

= −CσFzrωσ
2
x

with Fx = CσFzσx

(6)

and Cσ is the normalized longitudinal slip
stiffness.

Second, losses due to cornering resistance
Py, as

Py = Fyvy = −CαFzvxα
2

with Fy = −CαFzα

and vy = vxα

(7)

where Fy is the cornering resistance, vy is the
lateral velocity of the wheel, Cα is the cornering
stiffness, α is the sideslip angle or slip angle,
and vx is the longitudinal velocity of the wheel.

Third, losses in the motor PengineLoss due
to power conversion and dependent on the
engine efficiency characteristic.

PengineLoss = PEl − PMech =
Tω

η
(8)

where PEl is the Electrical Power provided to the
engine, PMech is the Mechanical Power provided
at the shaft, and η is the efficiency of the engine,
which is dependent to the operating conditions
(T, ω).

4. Trajectory-following control
strategy

The controller solves the allocation problem by
allocating eight control variables:

u = [Tfl, Tfr, Trr, Trl, δfl, δfr, δrr, δrl]
T (9)

where Ti is the torque at the wheels and δi is the
wheel’s steering angles.
For this purpose, a structured control strategy
is suggested here. A two-level control structure
is needed to separately control low-frequency
dynamics for the trajectory-following task and
high-frequency dynamics for generating the con-
trol action (Eq. 9) at the wheels. In this regard,
the upper-level controller (LTV-MPC) is respon-
sible for allocating the forces at the wheels in
the vehicle reference frame (FXi, FYi), as shown
in Figure 2a, whereas the lower-level controller
transforms these forces in the wheel’s reference
frame, as in Figure 2b, and derives torque and
steering angle using Equation 11.

(a) (b)

Figure 2: Two-level model. a) Is the model uti-
lized by the LTV-MPC. b) Is the model utilized
by the lower level controller to allocate the forces
for each wheel.

The equations of the model used for the upper-
level controller are as follows.

ẋcar = vx cos θ − vy sin θ

ẏcar = vx sin θ + vy cos θ

θ̇ = θ̇

v̇x = vy θ̇ +
Fx

m

v̇y = −vxθ̇ +
Fy

m

θ̈ =
Mz

J
with

Fx = FXfl + FXfr + FXrr + FXrl

Fy = FYfl + FYfr + FYrr + FYrl

Mz = −(FXfl + FXrl) ∗ ll + (FXfr+

+ FXrr) ∗ lr + (FYfl + FYfr) ∗ lf−
− (FYrr + FYrl) ∗ lb

(10)

3



Executive summary Gianmarco Grandi

Whereas the equations of the model for the
lower-level controller are:

Fx,i = FXi cos(δi) + FYi sin(δi)

Fy,i = −FXi sin(δi) + FYi cos(δi)

Ti = Fx,i ∗ rw

δi =
Fy,i

Cα ∗ Fzi

+ αi i = fl, fr, rr, rl

(11)

The LTV-MPC can be formulated as a quadratic
problem, as follows.

min
U(k)

[R(k)− Y (k)]TQ0[R(k)− Y (k)]+

+ UT (k)R0U(k)

s.t. x(k + i+ 1) = Ak+ix(k + i)+

+Bk+iu(k + i) +Gk+i

y(k + i) = Ck+ix(k + i)

LB ≤ V · U(k) ≤ UB

∀ i = 0, . . . , N − 1

(12)

where Q0 and R0 are the positive definite
weight matrices, V is a matrix for the con-
straints definition, and LB and UB are the
lower and upper bounds of the constraints.

A simple open-loop solver is used to con-
trol the lower-level system.

The division adopted to structure the ve-
hicle’s controller allows for considering stability
conditions at the wheels directly in the LTV-
MPC. The friction circle constraint limits the
forces at the wheels (FXi, FYi) and keeps them
in the stable region. However, it is a nonlinear
constraint, and to include it in the LTV-MPC
formulation, the friction circle is approximated
to an octagon, such that the sides of the polygon
can be expressed as linear constraints in the
cost function (Eq. 12). Besides, an integral
action is added in the LTV-MPC to improve
the longitudinal speed tracking.

4.1. Results
The results obtained in the simulation to eval-
uate the controller performance in tracking the
reference trajectory are shown in Table 1. Here,
three maneuvers are investigated. 1) Driving on
a mixed-profile road with corners and straight
lines, 2) on a straight line, including acceler-
ation, steady-state driving (130 km/h), and

braking, with a double lane change maneuver
to mimic an overpass, where the reference
yaw angle points in the same direction, and
3) steady-state cornering on a 30m-radius
turn at 50 km/h. Tests are performed for six
combinations of the prediction horizon:
1) A prediction horizon (Th) of 2.0 s with a
sampling time (Ts) of 0.2 s and 10 samples (N).
2) Th = 1.5 s, Ts = 0.15 s and N=10.
3) Th = 1.0 s, Ts = 0.1 s and N=10.
4) Th = 1.4 s, Ts = 0.2 s and N=7.
5) Th = 1.5 s, Ts = 0.3 s and N=5.
6) Th = 1.0 s, Ts = 0.2 s and N=5.

Mixed-profile Road
MPC comb. LD RMSE YAW RMSE
1) 0.193 0.024
2) 0.171 0.019
3) 0.124 0.014
4) 0.217 0.022
5) 0.307 0.034
6) 0.176 0.021

Straight Road
MPC comb. LD RMSE YAW RMSE
1) 0.087 0.006
2) 0.076 0.010
3) 0.078 0.053
4) 0.086 0.019
5) 0.110 0.027
6) 0.075 0.050

Steady-state cornering
MPC comb. LD RMSE YAW RMSE
1) 0.347 0.007
2) 0.268 0.005
3) 0.176 0.004
4) 0.382 0.010
5) 0.561 0.016
6) 0.279 0.014

Table 1: Results of the controller for trajectory
following performance during the three maneu-
vers. The RMSE of the lateral deviation from
the reference path and the RMSE of the yaw an-
gle tracking are reported.

From Table 1, it is possible to notice that lat-
eral deviation mostly depends on the sampling
time of the MPC. When the samples are closer
to one another, the vehicle tends to cut less of
the path, and the lateral deviation is smaller.
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The prediction horizon has some impact as well,
though less. When the MPC’s vision field is
shorter, it tries to stick as close as possible to
the path just ahead of it, disregarding points
farther away; therefore, it does not jeopardize
the tracking of the near points for the remote
ones.
Regarding yaw angle tracking, the same behav-
ior affects the result. The more the vehicle cuts
corners, the less tangent its direction will be to
the trajectory.
Concerning velocity tracking, all the configura-
tion can track the desired velocity at the limits of
the vehicle thrust and the error at steady-state
conditions is null.

5. Energy Minimization
To minimize the energy consumed by the
vehicle, control techniques must exploit the
over-actuation to influence the sources of energy
loss investigated in Section 3. For this purpose,
two solutions are investigated to act on wheel
losses and engine efficiency.
In Equations 6 and 7, quadratic relations
between power losses at the wheels and the
longitudinal and lateral slips are derived. To
minimize power losses, the slips (longitudinal
and lateral) must be equal for all four wheels.
To create this condition, the requested forces
(FXi, FYi) at the wheels (Figure 2a) must
be proportional to the normal ones (Fz,i). To
achieve this result, the weighting term R0 of the
quadratic cost function (Eq. 12) should have
its terms inversely proportional to the normal
forces (Fz,i) on the wheels, so that the higher
is the normal force on one wheel the lower the
control action is penalized.
In addition, this solution, allocating the forces
proportionally to Fz,i, allows for exploiting
better tire availability maximizing the distance
of the wheel’s forces (FXi, FYi) to the friction
circle limit. The result is less wheel saturation
and higher wheel stability.
The results on energy reduction are reported in
Section 5.1.

Concerning the power losses due to the engine
efficiency, the ideal solution is to model and in-
clude them inside the LTV-MPC cost function.
In this way, the LTV-MPC solution minimizes
the energy consumed along the horizon. How-

ever, the nonlinear efficiency characteristic of
the engines must be linearized to be included
in the cost function, with consequent loss of in-
formation. The LTV-MPC’s solution does not
find convenient points of the engine character-
istic but reduces the energy lost along the pre-
diction horizon by minimizing the torques and
the speeds of all the engines. The consequence
is a reduction in the vehicle velocity and a worse
pursuit of the reference.
An additional allocation step is used to incorpo-
rate the engine’s nonlinear efficiency character-
istic into the controller. This step redistributes
the FX forces provided by the LTV-MPC be-
tween the front and rear axles of the vehicle
based on the nonlinear efficiency characteristic.
The two sides are independent to preserve the
yaw moment provided by the longitudinal forces,
and the friction circle constraint is still satisfied.
Results on this solution in terms of energy min-
imization are reported in section 5.1.

5.1. Results
The tests are performed to compare the cases
when no energy minimization strategy is imple-
mented (B), when only the vehicle’s weight dis-
tribution on the wheels is considered (W), and
when, in addition to weight distribution, also
the engine efficiency optimization strategy is in-
cluded (E).
Three maneuvers are investigated. 1) Straight
acceleration of 2m/s2 on average, 2) Straight
acceleration of 8.5m/s2 on average, 3) Steady-
state cornering at 50km/h on a 30m-radius turn.
At the end of these maneuvers, five power source
measurements were obtained.

1. The electric power requested by the engines.
2. The power lost in the motors, computed us-

ing the engine efficiency characteristic.
3. The mechanical power at the shaft of the

four engines.
4. The power lost due to wheel slipping, com-

puted according to Equation 6, only for pos-
itive longitudinal forces at the wheels Fx

since braking is not considered.
5. The power lost due to wheel cornering, com-

puted according to Equation 7.
For each of the five terms, the energy was
computed as the time integral of the power
during the maneuvers.
Results are shown in Table 2.
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Weight distribution affects losses at the
wheels more when the sideslip angles and slip
ratio are higher, so during cornering and severe
accelerations. Results show that during high
acceleration the reduction of the energy wasted
due to longitudinal slip reaches 11%; neverthe-
less, the torque distribution, proportional to the
wheel’s vertical forces, is not optimized for the
energy wasted in the engines, which results in a
null advantage in the electric energy consumed.
During steady-state cornering, the reduction of
the energy wasted due to lateral sliding is 29%
for the case investigated, and since the engine
torque is less affected, this reduction impacts
more on the electric energy provided to the
engines, which decreases only to 19%.
Concerning engine energy loss reduction, results
show that when the total requested torque is
sufficiently low, the reallocation step is better
exploited, and the overall torque is delivered
only by the rear wheels that work at more
efficient engine conditions. In this regard, this
technique affects more low accelerations and
steady-state cornering, reducing the overall
electric energy by 2% during straight accelera-
tion and by 13% during steady-state cornering.
However, this solution increases the longitudinal
slip losses.

6. Implementation of the con-
troller on the RCV-E

MicroAutoBox II - dSPACE is used as control
interface to manage sensors, actuators and soft-
ware of the RCV-E. To integrate the controller
into the dSPACE platform, the DAQP solver [9]
is adopted to solve the quadratic problem of the
LTV-MPC.
The real-time performance is affected only by
the prediction horizon (N) chosen for the LTV-
MPC. Therefore, multiple prediction horizons
have been tested to assess the limits of the solu-
tion.
Results in Table 3 show that the controller does
not suffer from execution problems in real-time.
In particular, the control sample time used in
the simulations for the LTV-MPC is 0.1 s, which
would limit the prediction horizon of the con-
troller to 12 samples. This value is sufficiently
high to guarantee excellent performance of tra-
jectory following and energy minimization.

2 m/s2 average acceleration

Case Elect.
En

Eng.
Loss

Mech.
En

Slip
loss

Cor.
Res.

B 1075.4 163.7 911.7 12.03 0.00
W 1075.1 163.5 911.6 11.91 0.00
E 1052.6 126.0 926.6 28.29 0.00

8.5 m/s2 average acceleration

Case Elect.
En

Eng.
Loss

Mech.
En

Slip
loss

Cor.
Res.

B 1029.6 116.2 913.4 36.28 0.01
W 1028.8 118.5 910.3 32.27 0.01
E 1028.7 115.9 912.8 35.14 0.01

Steady-state cornering

Case Elect.
En

Eng.
Loss

Mech.
En

Slip
loss

Cor.
Res.

B 197.5 72.9 124.6 0.70 79.28
W 154.0 55.5 98.6 0.16 54.90
E 134.7 35.3 99.4 0.45 55.60

Table 2: Energy consumed by the LTV-MPC
with parameters (Th=1.5 s, Ts=0.15 s, N=10)
during the different Maneuvers. All the values
are espressed in kilo-Joule (kJ).

Prediction Horizon N Execution time
N = 5 0.005 s
N = 7 0.014 s
N = 10 0.033 s
N = 12 0.086 s
N = 13 0.113 s
N = 15 0.129 s

Table 3: Execution time of the controller on
dSPACE - MicroAutoBox II.

7. Conclusion
From the results illustrated in Sections 4.1
and 5.1, the vehicle can follow the provided tra-
jectory for all the combinations of prediction
horizons investigated, and the two control tech-
niques investigated can successfully exploit over-
actuation to reduce energy consumption. In par-
ticular, the highest improvements are obtained
during cornering, where the two techniques sum
their effects up, whereas, for the longitudinal
case, slip reduction and engine loss minimiza-
tion have conflicting effects. Last, the controller
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did not show issues in the embedded real-time
performance. As a result, a critical vision of the
developed control strategy may suggest that a
more computationally expensive solution can be
exploited to achieve further improvements while
staying within the margins observed from real-
time performance.
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