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1. Introduction
The exploration of fish-like swimming extends
beyond its significance in biology, reaching into
the realm of engineering applications. In the
field of applied sciences, studying this phe-
nomenon, shaped by millions of years of evo-
lution, is essential for optimizing underwater
propulsion systems and fine-tuning aerodynamic
designs to elevate maneuverability performance.
In the field of Computational Fluid Dynamics
(CFD), numerous studies have explored the dy-
namics of fish-like swimming, with a specific em-
phasis on the scenario of fixed swimming. In
this situation, the swimmer’s body is fixed at
a specific point within a uniform external flow,
showcasing an undulating motion that embod-
ies the essence of swimming. The objective is
to examine thrust forces and vorticity patterns
within the wake structure.
The objective of this study is to model the fish-
like swimming scenario, simulate it using the
open-source software OpenFOAM, which adopts
the Finite Volume method (FVM), and analyze
the characteristics of the obtained results. To
account for the effects of the immersed body
in the mathematical formulation, the study will
employ the Immersed Boundary method (IBM)
with a structured non-conforming mesh.

2. Mathematical Model
Modelling the fish-like swimming scenario in-
volves deriving the governing partial differential
equations, developing a numerical algorithm for
solving the system, and describing the kinemat-
ics of the immersed body.

2.1. Fluid dynamics model
The project relies on assumptions of incompress-
ibility, homogeneity, and Newtonian fluid behav-
ior, with negligible temperature effects on fluid
properties.
Consider the time t ∈ [0,+∞) and the spatial
dimension d. Let Ωtf ⊂ Rd denote the fluid
domain, and Γt be the boundary of the struc-
ture. Let u denote the Eulerian velocity field,
p the pressure field, X the structure Lagrangian
map, ρ the fluid density, ν the kinematic vis-
cosity, f the volume forces, and fΓt the force
exchange at the interface. The governing equa-
tions for the system consist of the incompress-
ible Navier-Stokes equations coupled with the
immersed boundary condition:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p = f + δΓt fΓt , in Ωt

f , t > 0

∇ · u = 0, in Ωt
f , t > 0

u =
dX

dt
, in Γt, t > 0

+ Boundary Conditions on ∂Ωt
f/Γ

t

+ Initial Conditions
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where δΓt is the Dirac delta function with sup-
port on Γt.
Let ex and ey respectively denote the unit vec-
tors parallel and orthogonal to the freestream,
and D(u) = 1

2(∇u+∇Tu). Consider FD as the
drag force and FL as the lift force, defined as

FD =

∮
Γt

(pn− 2µD(u)n) · exdS,

FL =

∮
Γt

(pn− 2µD(u)n) · eydS.

(1)

2.2. Immersed Boundary method
The FVM involves discretizing space into a com-
putational tessellation of cells with finite vol-
umes. This transformation converts the partial
differential equation continuous problem into a
set of algebraic expressions.
To integrate the IBM formulation into the prob-
lem, analyze Figure 1, which illustrates the
boundary Σ of the discrete immersed surface and
delineates the mesh into fluid cells, Immersed
Boundary (IB) cells, and solid cells.

Figure 1: 2D representation of the mesh subdi-
vision into solid cells CS, fluid cells CF, and IB
cells CIB.

The Immersed Boundary method involves cre-
ating an operator to correct the velocity field in
the solid and IB cells. To evaluate the value
of the IB cells, an interpolation of the extended
stencil cells condition uj and the projection into
the surface condition gIB,i is performed:

Ucorr =


sIB,igIB,i +

∑
Cj∈Si

sjuj , if Ci ∈ CIB

gi, if Ci ∈ CS

ui, if Ci ∈ CF

In Figure 2, the scheme of the PIMPLE-IBM al-
gorithm is presented, illustrating the approach
employed to partition and solve the algebraic
system. The PIMPLE-IBM algorithm is derived
from the SIMPLE and PISO methods, incorpo-
rating the Immersed Boundary method correc-
tions.

Figure 2: PIMPLE algorithm flowchart.

The IBM algorithm was implemented in the
OpenFOAM software, building upon the work
outlined in [4].

2.3. Fish-like swimming model
The geometry of the two-dimensional fish is
constructed using the Karman-Trefftz confor-
mal map. This mathematical transforma-
tion, parameterized to fit specific characteristics,
morphs a circular shape into a configuration re-
sembling an airfoil, as illustrated in the Figure 3.

(a) Circle parametriza-
tion.

(b) Airfoil parametriza-
tion.

Figure 3: Karman-Trefftz transform.

To prescribe the kinematics of the backbone of
the fish, a backward travelling wave function
y(x, t) is employed. Let α represent the tail am-
plitude, Tr(t) the transient function, f the oscil-
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lation frequency, λ the wavelength, and ϕ denote
the phase of the wave, such that

y(x, t) = αTr(t)Am(x) sin
(
2π

(x
λ
− ft

)
+ ϕ

)
, (2)

where Am(x) is the amplitude envelope:

Am(x) = A0 +A1x+A2x
2.

To generalize to a 3D motion, a reciprocal func-
tion z(x, t) can be defined with the same struc-
ture of (2).
To transform Cartesian coordinates into the
curvilinear coordinate s ∈ [0, L] associated with
the backbone, consider the following relation:

s(x, t) =

∫ x

0

√
1 +

(
∂y(u, t)

∂u

)2

+

(
∂z(u, t)

∂u

)2

du. (3)

Applying the inverse of the function (3), a map
x = x(s, t) is derived, ensuring that the back-
bone maintains its length L in compliance with
the inextensibility constraint, as explained in [1].
To satisfy the constraint of mass conservation,
each segment of the structure needs to be ro-
tated to maintain the same orientation with re-
spect to the backbone. In this project, Euler
angles were employed, as illustrated in Figure 4.

Figure 4: Euler’s angles considering the rotation
Y − z1 − x2.

The analytical expressions for the Euler angles
are given by:

ψ(x, t) = − arctan

(
∂z(x, t)

∂x

)
,

θ(x, t) = arctan

 ∂y(x, t)/∂x√
(∂z(x, t)/∂x)

2
+ 1

,
φ(x, t) = 2πtfφ,

where fφ is the roll frequency.

By constructing the rotation matrix T(s, t) =
Rψ(s, t)Rθ(s, t)Rφ(s, t), and considering a point
x⋆ in the reference configuration, it becomes pos-
sible to determine the coordinates x at time t in
the deformed state:

x(x∗, t) = s+T(s, t)(x∗ − s∗).

The visual representation of the strategy is per-
formed in Figure 5.

(a) Reference configura-
tion of the structure.

(b) Deformed configura-
tion of the structure at
time t.

Figure 5: Illustration of the swimmer surface
displacement.

The Lagrangian velocity field of the surface is
calculated using second-order backward differ-
encing (BDF2). Additionally, an algorithm has
been devised to determine the Eulerian velocity
field for solid cells, reconstructing the initial po-
sition of the elements and then applying BDF2.

3. Results
To verify the PIMPLE-IBM algorithm, simula-
tions of benchmark cases were performed, in-
cluding flow over a circular cylinder and undu-
lating motions of a flat plate and NACA0012
airfoil [3]. Subsequently, simulations were con-
ducted to explore both 2D and 3D scenarios of
fish-like swimming.

3.1. Two-dimensional simulations
Consider a simulation domain Ω = [x1, x2] ×
[y1, y2], with an inlet in the left wall, outlet in
the right wall and slip condition on the bottom
and top, as illustrated in Figure 6.

Figure 6: Two-dimensional simulation domain.
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In the sensitivity study, a domain Ω = [−1, 12]×
[−4, 4], a grid size of h = 2×10−2 with dynamic
local refinement near the fish, and a time step
of ∆t = 2.5× 10−3 were chosen.
The Reynolds number for aquatic swimming, de-
fined as Re = LU∞/ν, is set to Re = 5000, which
is in accordance with previous research on the
swimming of the aquatic animal.
The assessment of forces will be conducted uti-
lizing the drag and lift coefficients:

CD =
FD

1
2ρU

2
∞L

, CL =
FL

1
2ρU

2
∞L

.

The drag force defined in (1) can be decomposed
into contributions from the viscous and pressure
terms, yielding the pressure drag coefficient CDP
and the viscous drag coefficient CDF .
To prescribe the kinematics of the fish in (2),
consider the parameter set outlined in Table 1,
where T is the transient period.

α A0 A1 A2 λ ϕ T

0.1 0.2 −0.825 1.625 1.0 0.0 0.2

Table 1: Kinematic Parameters.

3.1.1 Frequency analysis

Simulation results for fish-like swimming across
frequencies ranging from f = 0.5 to 2.0 Hz are
presented in Figure 7, showcasing the mean drag
coefficients CD, CDP , and CDF . At high fre-
quencies the drag exhibits a negative value, in-
dicating the presence of a thrust force that drives
the propulsion mechanism.

Figure 7: Time average drag coefficients with
respect to the frequency.

The vorticity profile defined as ω = ∇× u, was
computed for various frequencies and is depicted

in Figure 8. The eddies exhibit an alternating
direction pattern, and their geometry varies in
accordance with the frequency, which modifies
the dynamics of the wake.

(a) Frequency f = 1.0 Hz

(b) Frequency f = 2.0 Hz

Figure 8: Vorticity profile of 2D fish-like swim-
ming.

3.1.2 Amplitude analysis

A study was conducted while maintaining the
parameters outlined in Table 1, varying the tail’s
amplitude α. The resulting curves for the mean
drag coefficient CD are illustrated in Figure 9.

Figure 9: Time average drag coefficient for dif-
ferent amplitudes.

The findings indicate that increasing the am-
plitude amplifies the drag force’s impact, caus-
ing higher drag forces at lower frequencies, and
adversely affecting swimming. In contrast, at
higher frequencies, thrust forces rise, propelling
the fish and yielding positive swimming out-
comes, which also require more power to gen-
erate lateral undulation.
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3.1.3 Motion form analysis

To examine the alterations in swimming dy-
namics, various types of motions were analyzed,
specifically comparing the carangiform and an-
guilliform motions by modifying parameters as-
sociated with the amplitude envelope. Illus-
trated in Figure 10 are the backbone configu-
rations in a cycle of oscillation.

Figure 10: Backbone configuration of the
carangiform and anguilliform in a cycle.

The graph portraying the mean drag coeffi-
cient against frequency, illustrated in Figure 11,
demonstrates that the anguilliform motion ex-
hibits higher drag forces at low frequencies. On
the other hand, at higher frequencies, this mo-
tion showcases superior propulsion forces.

Figure 11: Time average drag coefficient for dif-
ferent motions.

3.2. Three-dimensional simulations
Consider a simulation domain Ω = [x1, x2] ×
[y1, y2] × [z1, z2], with an inlet in the left wall,
outlet in the right wall and slip condition on the
bottom, top, front and back, considering regions
of local refinement as illustrated in Figure 12.

Figure 12: Three-dimensional simulation do-
main.

A domain Ω = [−2, 10]× [−2, 2]× [−2, 2], a grid
size of h = 5 × 10−2 with the local refinement
at the wake region, and a time step of ∆t =
2.5 × 10−3 were chosen. The selected structure
resembles a mackerel, representing a realistic fish
geometry.
To maintain the swimming profile, conditions of
z(x, t) = 0 and fφ = 0 were imposed, keeping
the parameters consistent with Table 1. Sim-
ulations were conducted for various oscillation
frequencies. The results, obtained using the Q-
Criterion method for vortex identification in the
flow field, are depicted in Figure 13.

(a) Frequency f = 1.0 Hz

(b) Frequency f = 2.0 Hz

Figure 13: Three-dimensional vortical struc-
tures using the Q-criterion of Q = 0.1.

At lower frequencies, a single trail of eddies ap-
pears, oscillating along the fish’s central axis.
However, at higher frequencies, these eddies split
into two distinct lines, expanding sideways. This
behavior is linked to the fish’s tail exhibiting
increased lateral velocity at higher frequencies,
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causing the fluid eddies to disperse laterally.
These observations align with findings reported
in [2].
Figure 14 depicts a horizontal cross-section
through the middle of the fish, offering a per-
spective similar to the 2D simulation previously
conducted in Figure 8. The results are aligned,
yet a distinction arises in 3D simulations where
the lateral dispersion of vortices at a frequency
of f = 2.0 Hz becomes evident.

(a) Frequency f = 1.0 Hz

(b) Frequency f = 2.0 Hz

Figure 14: Z-plane cross-section vorticity pro-
file in three-dimensional fish-like swimming com-
pared with the Q-criterion profile of Q = 0.1.

4. Conclusions
In this study, a kinematic model for fish-
like swimming, implemented via the Immersed
Boundary method in OpenFOAM, was devel-
oped. This model relies on a travelling-wave un-
dulation, supported by a dedicated C++ algo-
rithm designed to maintain inextensibility, mass
conservation, and accurately represent the Eu-
lerian velocity field of the solid.
A series of simulations were performed in both
two and three dimensions, employing the im-
plemented algorithm for fish-like swimming.
This enables the analysis of diverse scenarios
encompassing various geometries, frequencies,
amplitudes of oscillations, and forms of mo-
tion. Through post-processing, comparisons
were made between the drag forces and wake
vorticity patterns. Then, an analysis was con-
ducted to examine how swimming characteris-
tics influenced the fluid dynamics of the flow and
glean insights from these observations.

The results highlight the substantial impact of
oscillation frequency on drag force, showcasing
an inverse relationship. At higher frequencies,
the mean drag coefficient displays negative val-
ues, revealing propulsion forces acting within
the swim configuration. This analysis was also
conducted across various amplitudes and motion
types.
Furthermore, the wake’s vorticity pattern was
found to be responsive to changes in the oscilla-
tion frequency. The 3D results highlighted that
at lower frequencies, the eddies appeared in a
single trail, whereas at higher frequencies, they
bifurcated into a double trail pattern.
The limitations of the study consist of an ab-
sence of self-propelling swimming modes involv-
ing feedback mechanisms for the center of mass
movement. Turbulence modelling was omitted,
assuming laminar flow. Additionally, 3D sim-
ulations were constrained due to project time,
limiting the exploration of a broader range of
scenarios.
Future efforts should focus on the integration
of fluid feedback mechanisms to analyze self-
propulsion, delving into parameters such as ac-
celeration, maximum velocity, and swimming ef-
ficiency. Moreover, leveraging the developed al-
gorithm opens up the possibility of analyzing a
broad spectrum of scenarios encompassing vari-
ous aquatic animals and motion types.
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