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Abstract In the future cellular networks,
there will be cell densification, in which cells
are becoming smaller. For this reason, the
number of handovers that a moving User
Equipment (UE) faces increases significantly
if a conventional handover decision scheme is
used. The increased number of handovers
causes more signaling overhead for the net-
work. Furthermore, the Handover Failures
(HOF)s due to the serving or target cell’s
low signal quality will also increase. So it
is very important to decrease the number of
handovers and HOFs, So the UE can trans-
mit and receive data with more sophisticated
Modulation and Coding Schemes (MCS) and
achieve a higher data rate.

The advances in Artificial Intelligence (AI) re-
search open up the door for prediction tech-
niques of channel state information. The
predicted channel state information can be
used to decrease the number of handovers
and HOFs. This thesis focuses on a han-
dover optimization scheme that relies on pre-
dicted channel state information to minimize
the number of HOFs and unnecessary han-
dovers while maintaining the signal quality as
high as possible. The proposed scheme as-
signs UE to one cell at each time step by pos-
ing an Integer Programming (IP) optimiza-
tion problem. The proposed scheme assigns
UE to one cell at each time step by posing an

IP optimization problem. The performance
of solutions to the original IP problem with
solutions to its LP (Linear Programming) re-
laxation is compared.

The proposed scheme is evaluated using the
ns3-ai simulator with the help of the SUMO
simulator using a map of Berlin.

Index Terms Handover, Handover Failure,
Too Late Handover, Too Early Handover,
Wrong Cell Selection, Ping-pong Handover,
Optimized Network, Convex Optimization

1. Introduction

In today’s cellular networks, having reliable commu-
nication with a minimum amount of service disrup-
tion is crucial. As we approach five-generation (5G)
and six-generation (6G), high demand in mobile ap-
plications requires high network capacity, so it will
be necessary to adopt small cell utilization[4] [8].
While the UE transmits and receives data to its cur-
rent cell, it measures signal power from other cells.
At some point, It is necessary to get disconnected
from its serving cell and switch to another due to
the degradation of the current cell’s signal strength.
This process is called handover. The time it takes
to perform a handover from one cell to another is
called Handover Interruption Time (HIT). This pro-
cess usually takes between 30ms to 60ms [17]. Dur-
ing this period, the user cannot transmit data due
to the signaling procedure.

Cells usually have overlaps in coverage. This over-



lap helps UE not fall into Radio Link Failure (RLF)
while the handover is performed. If the UE moves
along the border of two cells, there will be many han-
dovers from one cell to another and vice versa. This
type of handover is called ping-pong handover, and
it causes unnecessary signaling for the network.
Even though the cells have coverage overlap, there
might be a Handover Failure (HOF) due to RLF. If
the RLF is due to the current cell’s low signal qual-
ity, the HOF is called too late handover. If RLF is
because of the target cell’s low signal quality and the
UE reconnects to its previous cell, the HOF is called
too early handover. Furthermore, the UE may do
a handover to the wrong cell and fall into RLF. In
this case, the HOF is categorized as the wrong cell
selection. After the HOF, the UE needs to recon-
nect to one cell [10]. This process takes hundreds of
milliseconds to a couple of seconds [3]. During this
process, the UE does not transmit any data. The
total time that the UE cannot transmit and receive
data due to performing handovers and HOFs is called
Mobility Interruption Time (MIT).

The UE faces many more handovers using small-cell
technology. So, keeping the number of HOF and
ping-pong handovers as little as possible is vital.
In order to decrease the number of handovers and
HOFs, networks use the concept called Self Orga-
nized networks (SON). A SON is a network that can
adapt and optimize itself without the involvement of
humans. One of the main features of SON is Mobil-
ity Robustness Optimization(MRO)[12]. MRO tries
to find the best handover parameters to minimize
the number of handovers and HOF.

The remainder of this executive summary is orga-
nized as follows. Section II introduces the current
handover method and related works. Section III
presents the optimization problem with mathemat-
ical formulation and a proposed algorithm to solve
it. Section IV provides simulation configuration, nu-
merical analysis, and results.

2. Theoretical background and
related work

One of the most critical steps of the handover de-
cision is the measurement report from UE. In
this report, the handover decision is made based
on a series of actions called "Events." One of the
most important types of event-based handover is
the A3-event handover. A3-event Handover is trig-
gered when the neighboring cell serves with a hys-
teresis better serving the cell for a specific amount of
time. This amount of time is called Time To Trigger
(TTT).
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2.1. Related works

There are many types of research in order to decrease
the number of handovers and HOFs. In this section,
some of these methods are going to be explained.

2.1.1 Self Organized Networks

SONs are Radio Access Networks (RAN) that auto-
matically configure, optimize and heal themselves to
increase efficiency, stability, and quality of service in
mobile networks [12].

2.1.2 Mobility Robustness Optimization

The 3GPP group has introduced the MRO as a part
of the SON functions. The main aim of MRO is to
optimize handover parameters such as hysteresis au-
tomatically [1]. In [16], the authors have proposed an
algorithm for adjusting handover parameters, which
is based on several influence factors such as distance,
channel condition, cell load, and user velocity. Each
function’s weight is considered to estimate an accu-
rate hysteresis and TTT. In [15], the authors have
examined undesirable handovers and RLF and cal-
culated the optimum Cell Individual Offset based
on geometry, user position, and velocity to minimize
RLFs and ping-pong handovers at the same time. In
[6], the authors propose an algorithm that updates
hysteresis and TTT based on user speed and received
signal reference power to adapt hysteresis and TTT
to reduce the frequent handovers and HOF ratio. In
[5], a handover mechanism is introduced that dy-
namically modifies handover parameters in response
to the detection of HOF.

2.1.3 Fuzzy Logic Scheme

The fuzzy logic scheme is used to improve han-
dover performance. In [9], the authors offer a self-
optimizing fuzzy logic-based approach for adapting a
hysteresis for handover decisions depending on user
velocity and radio channel quality to decrease the
number of ping-pong handovers and the HOF ra-
tio while allowing UEs to benefit from dense small-
cell deployment. In [14], The author has designed a
Fuzzy Logic Controller (FLC) that inputs Call Drop
Rate and HOF. The first step translates the input
into a fuzzy set with linguistic terms such as high
and low. In the second step, the fuzz sets are trans-
lated to the actions the FLC should execute. The
output is Ahysteresis, which should be added to the
hysteresis.

2.1.4 Conditional Handover

As a part of 3GPP Release, 16 [2]|, Conditional Han-
dover (CHO) has been proposed. The idea has been
discussed in [11] to improve the reliability of the han-
dover. The idea is to divide the handover procedure



into two steps. The preparation step, in which a set
of target cells are prepared by allocating resources to
the UE, and the execution step, where the handover
is executed on one of the chosen cells.

2.1.5 Machine Learning Method

In recent years, Machine Learning (ML) methods
have been used to improve handover optimization
by decreasing the number of HOF and redundant
handovers. In [7], the authors developed a handover
management method that improves target cell se-
lection. The algorithm learns from its previous ex-
perience using machine learning techniques how the
handover decision to a specific cell influences HOF.
A supervised learning approach based on a neural
network predicts the most appropriate cell for han-
dover. In [13], the author has presented a Data-
driven Handover Optimization (DHO) strategy to
mitigate HOFs and ping-ping handovers. In this
technique, data is collected using mobile communi-
cation measurements, and then a model is provided
to predict the relationship between the HOFs and
features from the obtained dataset. Based on the
model, the handover parameters are tuned to mini-
mize the HOFs.

3. Proposed Predictive Han-
dover Optimization

The event-based handover schemes fall into many
handovers and HOFs since they rely only on chan-
nel information from their current and past measure-
ments. By predicting the channel values, the number
of handovers and HOFs can be decreased. In order
to decrease, the Model Predictive Control (MPC)
scheme is used. Each time step has a time window
in which the channel values are predicted. Then an
optimizer computes the cell assignment based on the
predicted data for time step t to the t + T where T
is the window size. Then, the optimizer’s output
value at t-+1 is used to decide if the UE should stay
connected to its previous cell or do a handover to
another cell. The procedure is repeated over time.
At each time step, there is an optimization problem
being solved. Assume there are M cells, the time
window consists of T time steps, and the handover
constraint is N. The optimization problem can be
written as follows:

k2 k¥,
M 2T
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subject to z;; € {0,1} Vie M,VjeT

M
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The objective function of this optimization prob-
lem is the maximize the average predicted RSRQ

achieved by the cell assignment according to X.

e First constraint: The decision variable z; ; is
binary, which indicates whether the UE should
connect to cell i at time step j.

e Second constraint: This constraint assures
that the UE connects to one and only one cell
at each time step.

e Second constraint: This constraint ensures
that the number of handovers should be less or
equal to N.

Note that the last constraint can be written as
>jot S |Tige1 — wig) < 2N

This is an Integer Programming(IP) optimization
problem. Solving an IP problem could be computa-
tionally complex for large-scale problems. So relax
the decision variable and let the x be any value be-
tween 0 and 1.

The original optimization problem will be relaxed to
the following :
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By relaxing the decision variable, we obtain a con-
vex problem. After solving this convex optimization
problem, the obtained decision matrix X has a
continuous value between 0 and 1, while in order to
do a cell assignment, the value should be binary,
and at each time step, one cell should be chosen. To
achieve this property, we use the following heuristic:
We define a function ¢ that maps any vector to
one-hot vector: ¢ : RM + {0,1}M. The function
maps the vector x to one-hot vector based on the
following equation:

1 ifi=4*
Vi€ M, ¢(@)l = {0 otherwise

where i* is : min{i € M|z; = max{xy,...,xr}}
This mapping function is performed on the vector
of each time step of X and converts X to X, which
consists of a series of one-hot vector columns. Cell
assignment will be done based on the second column
of X algorithm 1 shows how the proposed scheme
works in detail.

4. Scenario Configuration and
Result

In this section, the configuration of the simula-
tion will be discussed, then the results will be ex-
plained. The map data has been gathered using
OpenStreetMap. Then the data is exported to



Algorithm 1 Proposed Preditive Handover Optimiza-
tion Algorithm
1:t=0
2: Lookahead = T
3: Handover Budget = N
4: Connect to the strongest cell
5. while ¢t < 7 do
6: t=t+1
7. if UE in RLF then
8: go to step 5
9: end if
10:  data = Prediction[t : t+T]
11:  pose the optimization problem with linear re-
laxation
12: X = optimize(data,N)
13 X =¢:RM— {0,1}M
14:  next cell = argmax(X[:,1])
15:  go to step 6
16: end while

SUMO simulation, and the UE mobility is obtained.
In our scenario, one three-sector Macrocell and 18
microcells with a transmission power of 40 dBm and
15 dBm with a distance of 300m have been used. The
channel state information for optimization is Refer-
ence Signal Received Quality (RSRQ). In order to
validate the results, 100 different simulations have
been run with different users’ trajectories, and the
results are averaged.

Figure 1 compares the number of handovers using
IP and LR while the prediction window is increas-
ing and the number of handovers is limited. As can
be seen, by increasing the prediction window, the
number of handovers is decreasing. Additionally, the
number of handovers while employing linear relax-
ation differs slightly from the IP approach. This is
because the heuristic used to convert the optimized
linear relaxation matrix, which is a continuous value
between 0 and 1, to the matrix made of a series
of one-hot vectors would violate the handover con-
straint and result in a different number of handovers.
The effect of this violation can also be seen in Fig-
ure 2 which the number of HOFs is being compared.
As is shown, although by increasing the prediction
window, the number of HOFs increases, the relaxed
version falls into less number of HOFs. So, the re-
laxed problem finds a trade-off between the number
of handovers and HOFs, and it has the capability to
be run with a decimal value of handover constraint.
In order to find this trade-off, the MIT is used for
decimal values of the handover constraint.

Each point on the figure 3 is the MIT obtained by
having the prediction window equal to the corre-
sponding lookahead and the handover budget equal
to the lookahead multiplied by the corresponding
ho/sec. As it can be seen in the figure, based on
Z?z_ll Zf\il |l‘ij+1 —Z‘ij| < 2N while 2N < 1, the
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optimizer gives zero handovers as an output so the
MIT is high. Furthermore, the 0.6 handover per 3
seconds has the minimum MIT.

Table 1 shows that using the conventional handover
scheme, the UE experiences high MIT since the han-
dover decision is based on current and previous mea-
surements. So it falls into many numbers of HOFs,
which leads to high MIT.

In order to compare the proposed method, two base-
lines are chosen. The first one is the A3-event han-
dover with minimum MIT, and the second one is con-
necting the UE to the cell with maximum RSRQ. As
it is shown in Table 2, the proposed method faces
a lower number of handovers and ping-pong han-
dovers compared to A3-event handovers and max-
imum RSRQ. Additionally, the proposed method
falls into fewer HOFs compared to the conventional
method. Even though in the proposed method, the
UE experienced less number of handovers since it
chose the proper cell to connect to, It receives higher
RSRQ compared to the conventional method. In
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Hysteresis
TTT 1dB | 2dB | 3dB | 4dB
100 ms 8.03 | 6.84 | 7.07 | 6.68
200 ms 8.28 | 821 | 779 | 7.65
400 ms 10.53 | 16.04 | 11.66 | 13.39
800 ms 30.22 | 31.30 | 30.67 | 31.45
1200 ms 28.98 | 26.57 | 28.30 | 27.58
1600 ms 23.87 | 23.81 | 23.09 | 23.88
2000 ms 23.39 | 24.44 | 23.42 | 24.42

Table 1: MIT of A3-event scheme

the proposed method, the UE experiences much less
MIT compared to the conventional method and max-
imum RSRQ.

Table 3 shows the effect of adding constant predic-
tion error to the RSRQ. As can be seen, by increas-
ing the error, the number of handovers, ping-pong
handovers, and HOF increases while the UE receives
a higher RSRQ for the prediction errors of less than
the standard deviation of 9 dB. Furthermore, the UE
experiences less MIT compared to the best configu-
ration in the conventional method.

As it is shown in Table 4, as the time-variant predic-
tion error increases, the number of handovers, ping-
pong handovers, and HOFs are increasing; however,
they are still lower than for the conventional method.
Furthermore, the average RSRQ decreases as the
number of HOFSs increases, but since the number of
HOFs is still less than for the conventional method,
the UE receives a higher RSRQ. As a result, MIT
remains below the conventional method.

5. Conclusion

In this executive summary, an overview of the exist-
ing handover techniques was provided. Since existing

Max Conv. 0.6 ho / 3
RSRQ sec
Handover | 257.5 95.3 40
PingPong | 141 28 1.3
HOF 0 0.4 0.02
Too Late | 0 0 0
Too Early | 0 0.4 0.02
RSRQ 29.25 28 28.83
MIT (sec) | 15.45 6.68 0.71

Table 2: Comparison of LR, and Conventional

techniques result in many ping-pong handovers and
HOFs, the predictive handover optimization scheme
was introduced to perform cell assignment based on
the predicted RSRQ to minimize the number of han-
dovers and HOF. In this method, at each time step
t, the cell assignment is computed for the next T
time steps to maximize the average RSRQ while con-
straining the number of handovers. Then the UE
gets connected to the cell based on the cell assign-
ment at t+41.

The results show that the proposed method is able
to decrease the number of ping-pong handovers and
HOF simultaneously. Using this method, the UE re-
ceives higher RSRQ on average compared to the best
configuration in the conventional method. Higher
RSRQ means that more sophisticated MCS can be
used to transmit and receive data, leading to an in-
crease in the maximum achievable data rate. Fur-
thermore, using the proposed method, the UE ex-
periences lower MIT compared to the A3-event han-
dover.

The effect of inaccurate channel state information
has also been examined in this thesis. The re-
sults show that by prediction error, the number of
HOFs and averaged MIT increases while the aver-
age RSRQ decreases. However, the number of HOFs
and average MIT remains lower than the conven-
tional method, and the average RSRQ is higher. So
the proposed method is robust to prediction errors.

Handovers | ping- | HOF | RSRQ | MIT

pong dB (sec)

Conv 95.3 28 0.4 28 6.68
0dB 40 1.3 0.02 28.63 | 0.82
1dB 43.1 1.6 0.64 28.49 | 0.70
3dB 44.7 1.5 0.52 28.39 | 047
5dB 46.8 1.6 1.35 28.22 | 1.53
7 dB 48.3 2.2 1.64 27.96 1.82
9dB 48.7 2.1 3 27.74 | 3.18

Table 3: Effect of adding prediction error with con-
stant standard deviation



Handovers | ping- | HOF | RSRQ | MIT
pong dB (sec)
Conv 95.3 24.8 | 0,97 28 6.68
0 dB/s 40 1.3 0.02 28.63 | 0.82
1.5dB/s | 44.7 229 | 04 28.5 3
3dB/s 46.7 3 0.51 28.4 3.3
4.5dB/s | 47.7 3.5 0.29 28.5 3.1
6 dB/s 51.6 5.2 0.7 28.2 3.7

Table 4: Efect of adding Time Variant Prediction

Error
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