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1. Introduction 

The work is aimed to determine the representative 

or typical electrical load days along one year by 

applying a modern technique, under a strong 

development process: time series clustering. 

Indeed, though three different clustering 

algorithms, a dataset composed by 365 daily load 

curves is clustered into 36 or less clusters, and for 

each cluster a representative day is selected 

(typical load day). The obtained number of 
clusters is not random: it is derived through some 
quality indexes that will be further presented. In 
the following, first a brief theoretical explanation 
on time series, similarity measures and clustering 
will be provided. Then, the employed algorithms 
will be presented, and some simulations will be 
run on Matlab and R-studio to determine the 
typical load days from a real-life dataset. The 
result will show that it is possible to consider only 
the obtained representative days, instead than the 
complete dataset, as input to many different 
specific algorithms, obtaining coherent outputs in 
a fraction of the necessary computational time.  

2. Scientific approach to 

clustering 

First, it is convenient to provide some theoretical 

details on time series, similarity measures and 

clustering. More precisely, three subsections are 

considered below: time-series (section 2.1), 

dissimilarity measures (section 2.2) and time-series 

clustering (section 2.3). 

2.1. Time series analysis 

The term time series denotes a succession of values 

obtained by observation of a phenomenon, 

ordered according to the time variable. In formal 

terms: 

 
𝑌(𝑡) = {𝑦1, 𝑦2, … , 𝑦𝑡 , … , 𝑦𝑁} 

(2.1) 

𝑁 is called duration of the series and corresponds 

to the number of observations. It is important to 

remark that each observation 𝑦𝑖  can be composed 

by multiple variables. This type of series, in which 

each observation 𝑦𝑖  is a vector containing multiple 

variables, are called multivariate time series and, for 
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the sake of simplicity, will not be considered in this 

work. Two different approaches are possible to 

study a time series: the “classical” approach or 

deterministic approach and the “modern” approach 

or statistical approach. In the first case, it is assumed 

that the process represented by the series has a 

deterministic nature, which allows to decompose 

the series in four virtual components that can be 

estimated [1]. These components are called trend 

component (long-term progression of the series), 

cyclical component (repeated but not periodic 

fluctuations), seasonal component (seasonal 

variations) and irregular component (random or 

irregular behavior of the series). In formal terms, it 

is possible to define the following relationship for 

a considered time series: 

𝑌𝑡 = 𝑓(𝑇𝑡 , 𝐶𝑡 , 𝑆𝑡 , 𝐼𝑡) 

(2.2) 

where 𝑡 = 1, … , 𝑁.  

The second approach, instead, assumes that the 

series has been generated by a stochastic process, 

so that each observation is the realization of a 

random variable 𝑌𝑡 [2]. More formally:  

A time series model for the observed data {𝑦𝑡} is the 

specification of the joint distribution (or evenly of the 

mean and the covariance) of a sequence of random 

variables {𝑌𝑡} of which {𝑦𝑡} is postulated to be a 

realization. 

Generally, only the first order moment and the 

second order moment of the joint distributions are 

specified. Moreover, even in this case the 

decomposition already presented is valid, 

adopting different techniques to estimate the 

virtual components of the series with respect to the 

deterministic approach. 

Since time series decomposition will not be 

employed in this work, focused instead on time 

series clustering, it is convenient to move on to the 

next subsection, that explains the concept of 

similarity and dissimilarity measures between 

time series. 

2.2 Similarity and dissimilarity 

measures 

The theoretical issue of time series 

similarity/dissimilarity search has been proposed 

by Agrawal et al. [3] and subsequently it became 

one of the main research areas in data mining and 

clustering, since this latter relies on dissimilarity 

measures to perform. In time series clustering, the 

degree of similarity or dissimilarity between time 

series is calculated approximately. Indeed, 

typically a distance function is exploited to 

determine the distance measurement between all 

the points of the multiple time series to be 

compared, and an estimated distance between time 

series, representing the (dis)similarity, is then 

derived. More precisely, let 𝑌𝑡 be a time series 

representing a set of data. A function 𝑠: 𝑌𝑡 × 𝑌𝑡 → ℝ 

is called similarity on 𝑌𝑡 if it satisfies the following 

properties, ∀ 𝑦𝑖 , 𝑦𝑗 ∈ 𝑌𝑡: 

• Non-negativity: 𝑠(𝑦𝑖 , 𝑦𝑗) ≥ 0 

(2.3) 

• Symmetry: 𝑠(𝑦𝑖 , 𝑦𝑗) = 𝑠(𝑦𝑗 , 𝑦𝑖) 

(2.4) 

• If 𝑦𝑖 ≠ 𝑦𝑗 , 𝑠(𝑦𝑖 , 𝑦𝑖) = 𝑠(𝑦𝑗 , 𝑦𝑗) > 𝑠(𝑦𝑖 , 𝑦𝑗) 

(2.5) 

Instead, a function 𝑑: 𝑌𝑡 × 𝑌𝑡 → ℝ is called 

dissimilarity on 𝑌𝑡 if it satisfies the following 

properties, ∀ 𝑦𝑖 , 𝑦𝑗 ∈ 𝑌𝑡: 

• Non-negativity: 𝑑(𝑦𝑖 , 𝑦𝑗) ≥ 0 

(2.6) 

• Symmetry: 𝑑(𝑦𝑖 , 𝑦𝑗) = 𝑑(𝑦𝑗 , 𝑦𝑖) 

(2.7) 

• Reflexivity: 𝑑(𝑦𝑖 , 𝑦𝑖) = 0  

(2.8) 

Typically, when the dissimilarity measure between 

two time series has a low value, the distance 

measure between them has a low value too. This 

suggests the use of distance metrics to determine 

the degree of similarity between time series, as 

already done in many papers and works [4]. 

Moreover, typically the methods to determine 

similarities between time series can be classified 

under three main categories:  

• Similarity in time: distance measures in 

which the time of occurrence of patterns is 

crucial. 

• Similarity in shape: distance measures in 

which the time of occurrence of patterns is 
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not important. More precisely, clusters of 

time series with similar patterns are 

constructed regardless of the time instants. 

• Similarity in change: in this approach 

modelling methods are employed to 

represent the time series and then a 

similarity measure is applied on the 

parameters of the fitted model. 

Different metrics determine different similarity 

categories. Anyway, once a metric has been 

selected, the distance between the time series 

under consideration is typically computed as the 

sum of the distances between individual points. 

More formally, if 𝑌𝑡 and 𝑌𝑡′ are two time series of 

length 𝑁 representing a set of data and 𝑦𝑖 , 𝑦𝑗
′ are 

generic points of the first and second series 

respectively: 

 

𝐷( 𝑌𝑡 , 𝑌𝑡
′) = ∑ 𝐷( 𝑦𝑖 , 𝑦𝑗

′),

𝑁

𝑡=1

      ∀𝑖, 𝑗 ∈ [1, 𝑁] 

(2.9) 

Of course, equation (2.9) supposes that the series 

under consideration have the same number of 

points. If this assumption is true, typically the 

Euclidean distance is used as distance metric. 

Instead, if this assumption is not true, other 

measures (typically non-metric) must be adopted. 

More precisely, a modern technique called 

Dynamic Time Warping (DTW) is exploited in this 

case [5]. DTW allows to address the issue of time 

shift sensitivity of Euclidean distance and makes 

also possible to compare two time series with 

different length. Indeed, since with Euclidean 

distance method the distance measure is computed 

for every couple of points corresponding to the 

same time instants, the two considered series must 

have the same length. Instead, DTW computes the 

distance measure for every possible couple of point 

and determines the minimum/maximum distance 

between the two series, thus finding their optimal 

alignment regardless of their length. It is important 

to recall that Euclidean distance defines a 

similarity in time between the two considered time 

series. Indeed, as already discussed, the fact that it 

is computed only for points of a correspondent 

time instant implies that the time occurrence of a 

pattern is crucial (definition of similarity in time). 

This underlines the great sensitivity to time shifts 

of this distance metric, an open issue that affects 

this method. Instead, DTW is based on similarity in 

shape, since it determines the optimal alignment 

between time series regardless of their time 

occurrence [6]. More precisely, if 𝑌𝑖 and 𝑌𝑗 are two 

time series to be compared of length 𝑁 and 𝑀 

respectively, the algorithm starts by computing the 

distance matrix 𝐶: 𝑁 × 𝑀, that contains all the 

pairwise distances between 𝑌𝑖 and 𝑌𝑗. Indeed, the 

(ℎ, 𝑘) element of 𝐶 corresponds to the Euclidean 

distance between 𝑦𝑖ℎ ∈ 𝑌𝑖  and 𝑦𝑗𝑘 ∈ 𝑌𝑗 . The distance 

matrix is commonly called local cost matrix. 

Formally: 

 

𝐶: 𝑁 × 𝑀,      𝑐(ℎ, 𝑘) = |𝑦𝑖ℎ − 𝑦𝑗𝑘|,      

ℎ ∈ {1, … , 𝑁}, 𝑘 ∈ {1, … , 𝑀} 

(2.10) 

Once the local cost matrix has been computed, the 

algorithm determines the alignment path which 

minimizes the total global cost, given by the sum 

of global costs along the path. It is also possible to 

plot a heatmap of the global cost matrix to 

highlight that the optimal alignment path runs 

through its low-cost areas. The alignment path, 

also called warping path or warping function, defines 

the correspondence of an element 𝑦𝑖ℎ ∈ 𝑌𝑖 to an 

element 𝑦𝑗𝑘 ∈ 𝑌𝑗 . More formally, it is a  

sequence of points 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿) with  

𝑝𝑙 = (𝑝𝑖 , 𝑝𝑗) ∈ [1, … , 𝑁] × [1, … , 𝑀] for 𝑙 ∈ [1, … , 𝐿]. 

The main steps to build up the global cost matrix 

and to find the optimal warping path are now 

discussed. First, the algorithm computes the upper 

left corner element of the global cost matrix, as the 

Euclidean distance between the first elements of 

the two time series to be compared. Then, the 

elements of the first row/column are determined as 

the sum of the elements of the local cost matrix in 

the first row/column until the position of the 

considered element. Successively, all the 

remaining elements of the DTW matrix are 

computed iteratively according to: 

 

𝐷(ℎ, 𝑘) = min {
𝐷(ℎ − 1, 𝑘 − 1) + 𝑐(𝑦𝑖ℎ , 𝑦𝑗𝑘),

 𝐷(ℎ − 1, 𝑘), 𝐷(ℎ, 𝑘 − 1)
}

+ 𝑐(𝑦𝑖ℎ , 𝑦𝑗𝑘), 

 ℎ ∈ (1, … , 𝑁), 𝑘 ∈ (1, … , 𝑀) 

(2.11) 

 

Once that the global cost matrix has been obtained, 

the optimal warping path and the global distance 

are derived as already explained. 
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For instance, the following figures show the 

heatmap of the global cost matrix and the so-called 

three-way plot after the application of DTW to the 

following series: 

• First series: 𝑌1 = {7,9,6,9,12,6,4,6,8} 

• Second series: 𝑌2 = {5,6,4,3,9,5,6,8,9} 

 

Figure 2.1: global cost matrix heatmap and 

optimal warping path 

 

Figure 2.2: three-way plot of time series alignment 

The three-way plot places one series horizontally 

in a small lower panel, the other series vertically on 

a left panel and a larger inner panel holds the 

warping curve. In this way, matching points can be 

recovered by tracing indices on the first time series, 

commonly called query series, moving upwards 

until the warping curve is met, and then moving 

leftwards to discover the index of the other 

matched series, commonly called reference series.  

 

 

2.3 Time series clustering 

Before analysing in detail time series clustering, it 

is important to mention the so-called data 

preparation methods, employed to normalize, 

scale and transform data to achieve time-shift 

invariance and insensibility to possible offsets. 

Different possible methods can be exploited, but 

the most common is the z-normalization, which 

also used in this work. This technique transforms 

the time series to the same time scales by 

normalizing them. The new scaled element 𝑦
𝑖
′ can 

be obtained from its related original element 𝑦
𝑖
 as: 

𝑦
𝑖
′ =

𝑦
𝑖

− 𝜇

𝜎
 

(2.12) 

In equation (2.12), 𝜇 and 𝜎 represent respectively 

the mean and standard deviation of the considered 

time series of length 𝑁. After having applied a data 

preparation method, a similarity measure must be 

selected for the clustering algorithm to perform. 

Indeed, before the algorithm can cluster data, it 

must be defined how similar pairwise elements 

are. As already discussed in the previous section, 

the most employed similarity metrics are 

commonly the Euclidean distance and the dynamic 

time warping, which determine similarity between 

time series in time and shape, respectively. After 

having prepared the data and selected a similarity 

measure, the clustering algorithm exploits this 

latter to cluster data. Eventually, it is important to 

carefully check the quality of clustering output; 

this is done by computing some quality parameters 

that indicates the goodness of the result. Figure 2.3 

[7] shows graphically the main steps to perform the 

clustering process, as discussed above. 

 

Figure 2.3: main steps to perform clustering on a 

dataset 

Different classifications are possible for clustering 

algorithms. First of all, in this work the so-called 

whole time series clustering is considered. This 

approach is based on clustering a set of time series 

with respect to their similarity, in contrast with the 
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time-point clustering approach, in which points of 

a single time series are clustered basing on a 

combination of their temporal proximity and 

similarity. Moreover, whole time series clustering 

algorithms can be classified into: 

• Partitional algorithms: given a dataset of 𝑁 

objects, a partitional algorithms creates 𝑘 

partitions (clusters) of them, with 𝑘 ≤ 𝑁. 

Typically, the number of partitions to be 

obtained 𝑘 is an input of the algorithm that 

begins creating an initial partitioning and 

applies an iterative re-locating technique 

which moves objects from one cluster to 

another to improve the result. 

• Hierarchical algorithms: these algorithms 

create a hierarchical decomposition of a set 

of 𝑁 objects. Moreover, they can be 

classified in agglomerative (bottom up) or 

divisive (top-down), according to how the 

decomposition is obtained.  

Other categories can be added to the previous list. 

Anyway, for the purpose of this work, the two 

mentioned categories are sufficient. Before 

examining the considered algorithms, it is 

necessary to briefly analyse the possible 

“representative elements” of a cluster, formally 

called cluster prototypes or cluster centroids. Given a 

cluster 𝐶 = {𝑌1, 𝑌2, … , 𝑌𝑁} containing 𝑁 time series, 

its prototype �̂� minimizes the distance between all 

time series in the cluster and the prototype itself. 

More precisely: 

 

�̂� = min𝑅{𝐷(𝐶, 𝑅)} = min𝑅{
1

𝑁
∑ 𝐷(𝑌𝑖, 𝑅)}

𝑁

𝑖=1

 

(2.13) 

where 𝐷 indicated a generic distance measure. 

Generally, three main cluster prototypes have been 

defined in literature: the mean (average value of a 

cluster), the medoid (element of a cluster which 

minimizes the sum of squared distances to other 

objects within the cluster) and the local search 

prototype (combination of mean and medoid).  

2.4 Optimal number of clusters 

and quality indexes 

This last subsection focuses on determining the 

optimal number of clusters. This is a very 

important task, especially when there is no prior 

knowledge on the data. Many different methods 

have been proposed in literature; the most 

commonly employed are the so-called elbow method 

[8] and gap statistical method [9]. The elbow method 

is a very simple strategy that is based on an 

iterative process. In particular, the sum of squared 

errors is used as an indicator to detect the optimal 

number of clusters. Indeed, a clustering algorithm 

(typically partitional, to reduce the computational 

complexity) is iteratively performed considering a 

required number of clusters ranging from 1 to 

+infinite, and for every clustering the sum of 

squared errors is computed. Then, a graph of the 

SSE vs the number of clusters is plotted. This graph 

will show a strong increase in the first part, since 

increasing the number of clusters will add intra-

cluster variance, and then after an elbow the 

increase is strongly reduced, meaning that 

increasing the number of clusters does not affect 

any more significantly the sum of squared errors. 

Therefore, the elbow point of the graph is selected 

as optimal and the related number of clusters 𝐾 is 

the optimal number of clusters. Instead, the basic 

idea behind the Gap Statistics technique is to 

choose the number of K for which the biggest 

variation in within-cluster distance occurred, 

based on the overall behavior of uniformly drawn 

samples. In practice, the optimal number of 

clusters is selected such that, increasing K, the gap 

function starts decreasing and the maximum 

variation of within cluster distance is obtained.  

After having analyzed the techniques to determine 

the optimal number of clusters, it is convenient to 

briefly examine the parameters for the clustering 

evaluation. In particular, two main clustering 

quality indexes can be defined: the Dunn index [10] 

and the Davies-Bouldin index [11]. The Dunn index 

determines the quality of the clustering result by 

detecting if clusters are well-separated between 

each other. More precisely, it is defined as follows: 

 

𝑄
𝐷

= min {𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛} max {𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟}⁄  

(2.14) 

In equation (2.14), 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 refers to the inter-

cluster distance, while 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 refers to intra-

cluster distance. Thus, the Dunn quality index is 

determined as the ratio between the minimum 

inter-cluster distance (distance between data 

points in different clusters) and the maximum 

intra-cluster distance (distance between data 

points in the same cluster). The value of this 
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parameter is high if clusters are 

well-separated, meaning that the clustering 

process has been efficient. The Davies-Bouldin 

index is a sort of inverse of the Dunn index, 

anyway computed with different formulas. More 

precisely, it is defined as the average value of the 

ratios of within-cluster distances and between 

clusters distances. The lower is the value of the 

Davies-Bouldin index, the higher is the quality of 

the clustering result. Indeed, if clusters are well-

separated, the inter-cluster distance, represented 

by the distance between centroids (denominator) is 

high, while the intra-cluster distance, represented 

by the variance (numerator), is low. 

2.5 Employed algorithms 

The first considered clustering algorithm is called  

k-means. It can be summarized in five steps as 

follows: 

1. Initialize the number of clusters 𝐾 

2. Randomly select 𝐾 datapoints as clusters 

centroids 

3. Assign each point to the cluster with closer 

centroid to the considered point 

4. Recalculate the centroids based on the 

recent cluster assignment of data points 

5. Repeat steps 3 and 4 until centroids no 

longer vary or the convergence of a certain 

criterion function (typically sum of 

squared errors) is reached. 

K-means clustering is relatively scalable, very 

efficient in clustering big datasets due to its quite 

low computational complexity and generally 

reaches a local optimum. However, it cannot be 

applied if the average value of the data cannot be 

defined, for instance in case of presence of 

categorical variables. Eventually, this algorithm is 

sensitive to noise and outliers, since a small 

number of these data can sensibly affect the 

average values [12]. 

K-medoids algorithm has been introduced to 

address the issues of k-means. Indeed, it is less 

sensitive to noise and outliers, resulting in a more 

robust algorithm [13]. More precisely, instead of 

using the mean as the centroid of a cluster,  

k-medoids selects an actual point in the cluster to 

represent it. This choice for the computation of the 

centroids allows to greatly reduce the sensitivity of 

the algorithm to outliers, since their presence affect 

significantly only the mean and not the medoid of 

the cluster, as it does not modify crucially the data 

distribution. However, the computational 

complexity of k-medoids is higher than k-means 

complexity, since determining the value of the 

median is more computationally expensive than 

determining the value of the mean. It is possible to 

summarize the main performed steps as follows: 

1. Initialize the number of clusters 𝐾 

2. Randomly select 𝐾 datapoints as clusters 

centroids 

3. Assign each data point to its nearest cluster 

by minimizing the sum of dissimilarities 

between each point and its medoid. 

4. Recalculate the medoids of each cluster by 

determining the object that decreases its 

average dissimilarity coefficient (cost 

function). 

5. If there is no change in the medoids the 

algorithm stops. If medoids still change 

then steps 3 and 4 must be repeated until 

medoids does not vary anymore or until 

the convergence of a criterion function 

(typically sum of absolute errors) is 

reached. 

The base strategy of the k-medoids algorithm is to 

partition the 𝑁 object into 𝐾 clusters. As for k-

means, 𝐾 is an input parameter and must be 

defined a priori by the user. As the previously 

presented steps highlight, 𝐾 objects are first 

randomly selected as medoids of the clusters. 

Then, each remaining object is inserted in the 

cluster related to the most similar medoid to the 

object itself. The similarity is typically computed 

through Euclidean distance or dynamic time 

warping measures. Successively, the algorithm 

iteratively substitutes medoids 𝑜𝑗 with all the  

non-medoids objects 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, stopping when the 

clustering quality cannot be improved anymore. 

This quality is estimated through a cost function 

that measures the average dissimilarity of an object 

and the medoid of its cluster. Every time that a 

reassignment of data occurs, the cost function 

varies from its previous value; this variation can be 

positive or negative. The sum of all the variations 

of the cost functions obtained after the 

reassignment of all the non-medoids objects 

according to the previous cases is called total 

swapping cost. If the total swapping cost is negative, 

𝑜𝑗 is substituted with 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 since the total error is 

reduced. Instead, if the total swapping cost is 

positive, the current medoid 𝑜𝑗 is considered 

acceptable and is not substituted. The examined 
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procedure is repeated until medoids do not vary 

anymore or until the sum of absolute errors is 

lower than a defined threshold. 

Ward hierarchical algorithm [14] is an 

agglomerative hierarchical algorithm. More 

precisely, it starts by considering each object as a 

separate cluster and then merges these atomic 

clusters until some determined conditions are 

satisfied. The various algorithms inside this 

category differ just for the computation of the 

similarity measure between clusters (inter-cluster 

similarity). If 𝑝 and 𝑝′ are two generic objects 

belonging to different clusters 𝐶𝑖 and 𝐶𝑗, 𝑚𝑒𝑎𝑛𝐶𝑖
 is 

the mean value of the cluster 𝐶𝑖 and 𝑁𝑖 is its 

number of objects, the distance measure employed 

in Ward algorithm is: 

𝑑𝑊𝑎𝑟𝑑(𝐶𝑖, 𝐶𝑗) =
𝑁𝑖𝑁𝑗

𝑁𝑖+𝑁𝑗

∑ ∑ |𝑝 − 𝑝′|
2

𝑝′∈𝐶𝑗𝑝∈𝐶𝑖

 

(2.15) 

Moreover, the main steps to be performed are: 

1. Set the initial number of clusters 𝑛 equal to 

the total number of objects 𝑁.  

2. Determine the centroid of each cluster as 

the mean value of the cluster itself. 

3. Compute the distance between each pair of 

clusters according to Ward’s method. 

4. Merge the two closest clusters. 

5. Update 𝑛 = 𝑛 − 1 

6. If a predefined condition is satisfied (for 

instance, the number of clusters is equal to 

a desired value) go to step 7, otherwise go 

to step 2. 

7. Determine the centroid of each cluster as 

the cluster medoid. 

The previous steps can be graphically summarized 

by the following example: 

 

Figure 2.4: agglomerative hierarchical clustering 

example 

3. Clustering implementation: 

an electrical engineering 

problem 

The considered dataset of load duration curves can 

be downloaded from the ENTSO-E power statistics 

website [15]. Once on the website, many sections 

are available; the set of curves under analysis can 

be found in “Monthly Hourly Load Values”, that 

reports the aggregated monthly electrical power 

consumption of different countries on an hourly 

basis, from 2015 to 2019. The 365 selected load 

curves correspond to the electrical consumption of 

Germany in 2015 (one curve per day, with 24 

points per curve).  

 

Figure 3.1: examples of the considered load 

duration curves 

Figure 3.1 shows three days of different months. 

For instance, the blue curve represents the 

aggregated electrical power consumption of 

Germany on the 2nd January 2015, the yellow curve 

represents the aggregated power consumption of 

Germany on the 2nd April 2015 and the red curve 

represents the aggregated power consumption of 

Germany on 2nd July 2015. As it is possible to 

observe, in July the electrical energy consumption 

is higher than in January or April due to the usage 

of air conditioning systems. This is generally true 

for all summer months with respect to winter 

months, in which the power consumption is lower.  

Once having examined the considered dataset, as 

already discussed, the first task to be performed is 

a data-preparation method in order to make the 

clustering process less sensitive to scaling, time 

shifting and offsets. For the sake of simplicity, the 

z-normalization method has been selected for this 

practical implementation, since it allows to obtain 
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anyway a clustering model with low sensitivity. 

After having normalized the dataset, it is possible 

to perform the clustering process to determine the 

typical load days. Three main clustering 

algorithms have been employed, as already 

defined in the previous chapter: k-means, k-

medoids and Ward’s hierarchical algorithm. 

Moreover, two softwares have been considered: 

Matlab and R-Studio. 

3.1 Matlab implementation 

The algorithms needed to perform clustering can 

be found in the “Statistical and Machine Learning 

Toolbox”. The Matlab function to perform k-means 

or k-medoids algorithms receives as input a matrix 

containing the dataset, the desired number of 

clusters and the similarity measure to be used. 

Instead, it produces as output a vector containing 

the cluster indexes for each of the load duration 

curves, a matrix containing the centroids of the 

obtained clusters, a vector containing the sum of 

within-cluster series-to-centroids distances. and a 

matrix containing distances between each time 

series of the dataset and every centroid. By 

clustering through k-means algorithm and  

k-medoids algorithms the set of 365 load curves, 36 

clusters are obtained. The figures below report 

some results of the clustering process, showing the 

curves belonging to a cluster and their related 

cluster centroid, represented by a line with a bigger 

width.  

 

Figure 3.2: cluster1 obtained by k-means 

 

Figure 3.3: cluster21 obtained by k-means 

 

Figure 3.4: cluster1 obtained by k-medoids 

 

Figure 3.5: cluster21 obtained by k-medoids 

The centroids of the determined clusters are called 

typical days or representative days of electrical 

consumption. It is important to remark that in the 

k-means algorithms, the typical days that are 

obtained are not actual days of electrical 

consumption in Germany, since they are computed 

as the average values of the curves belonging to a 

cluster. Instead, in the k-medoids algorithms, the 

obtained typical days are actual days of electrical 

consumption. This allows to define the most 

important days of the year in term of 

representation. Two different indexes will be 

analysed in order to determine the optimal number 

of clusters and the quality of clustering result. 

These indexes have a different nature: the first is 

the percentage mean error computed on the load 

duration curves (the real one and another one built 

up with clustered data), while the second is the 

already presented Dunn index. Figure 3.6 shows 

the real load duration curve and the reconstructed 

one from clustered data in 36 clusters. The 

reconstructed curve is sometimes higher, 

sometimes lower than the real load duration curve, 

so it is possible to compute the mean percentage 

error between the two curves as:  
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𝑀𝑃𝐸 =
1

𝑁
∑

|𝑑𝑢𝑟𝑟𝑒𝑐,𝑡 − 𝑑𝑢𝑟𝑟𝑒𝑎𝑙,𝑡|

𝑑𝑢𝑟𝑟𝑒𝑎𝑙,𝑡

𝑁

𝑡=1

× 100 

(3.1) 

 For a number of clusters 𝐾 = 36, the computation 

of the mean percentage error gives 𝑀𝑃𝐸 = 0.17%. 

Therefore, the real load duration curve is well 

approximated by the reconstructed load duration 

curve using only the clustered data. If the number 

of clusters is set to an extremely low value 𝐾 = 2, 

the computation of the mean percentage error 

gives 𝑀𝑃𝐸 ≈ 2%. The MPE has increased by more 

then ten times with respect to considering 36 

clusters, thus reducing the accuracy of the 

clustering model and the goodness of fit of the 

typical days. 

 

Figure 3.6: real and reconstructed load duration 

curves for K=36 

The other parameter exploited to determine the 

optimal number of clusters is the Dunn index. As 

already mentioned, the clustering algorithms has 

been performed with a variable number of clusters 

ranging from 1 to 40 and for every clustering 

output the Dunn index has been computed. The 

result can be observed in figure 3.7: 

 

 

Figure 3.7: Dunn index values for different 

number of clusters 

Figure 3.7 shows that the optimal number of 

clusters is 𝐾 = 34, since the Dunn index reaches its 

highest peak for this number of clusters. The 

performed analysis considering 36 clusters is of 

course valid, since with 𝐾 = 36 the Dunn index has 

still a high value that reflects the goodness of fit of 

the clustering model. 

3.2 R-Studio implementation 

R-studio includes a library for the computation of 

DTW distance measure and its use is very simple. 

The following figure shows the obtained optimal 

alignment between two time series (the same load 

curves reported in figure 3.1) by means of the 

three-way plot. 

 

Figure 3.8: three-way plot of the optimal 

alignment 

The function exploited to cluster the dataset is 

denoted as “tsclust”. More precisely, it produces 

the same outputs as Matlab (vector of clusters 

belonging indexes, centroid matrix, distance 

matrix and sum) while the required inputs are the 

dataset containing the normalized load curves, the 

desired category of clustering algorithms, the 

desired number of clusters and the selected 

similarity measure. Some of the obtained clusters 

for 𝐾 = 2 and for 𝐾 = 36 are reported in the next 

figures. 
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Figure 3.9: overview of the obtained clusters for 

K=36 

 

Figure 3.10: centroids (typical days) of the 36 

obtained clusters 

 

Figure 3.11: overview of the obtained clusters for 

K=2 

 

Figure 3.12: centroids of the 2 obtained clusters 

As it is possible to note from figures 3.9 and 3.11, 

clustering the load curves in a too low number of 

clusters (K=2) results in a bad definition of the 

typical load days. Indeed, even if cluster1 centroid 

catches well the shape of its cluster participants, 

cluster2 centroid misses an important load peak 

around 19 p.m., thus it does not represent well the 

behavior of the load during the days belonging to 

cluster2 itself. Typically, exploiting hierarchical 

algorithms the quality of clustering results is 

higher and the optimal number of clusters is lower 

than using partitional algorithms. This can be 

proved by computing quality indexes as done for 

Matlab implementation. In particular, the 

following figures show the Dunn index, the Davies 

Bouldin index and the gap statistic behavior for 

different numbers of clusters. 

 

Figure 3.13: Dunn index for different numbers of 

clusters 

As it is possible to note from figure 3.24, the highest 

value of the Dunn index is obtained for k=6. 

However, this is in contrast with the already used 

criterion of matching as much as possible the real 

load duration curve with a reconstructed one from 

clustered data. Making several attempts, it is 

possible to determine a good compromise between 

the Dunn index value and the error on the load 

duration curves with a number of clusters 𝐾 ≥ 31, 

coherently with the result obtained in the previous 

section. 
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Figure 3.14: Davies-Bouldin index for different 

numbers of clusters 

According to the Davies-Bouldin index, the 

optimal number of clusters is 31. Indeed, it is 

recalled that the best clustering model is the one 

that minimizes the Davies-Bouldin index and 

maximizes the Dunn index. This value is coherent 

with the tradeoff discussed in the previous page (it 

is possible to determine a good compromise 

between the Dunn index value and the error on the 

load duration curves with a number of clusters  

𝐾 ≥ 31) and allows to obtain a very precise 

reconstructed load duration curve.  

Eventually, figure 3.15 shows the gap statistic 

behavior for different number of clusters. As it is 

possible to note, the optimal value of clusters 

suggested by this parameter is K=10. Indeed, for 

𝐾 ≥ 10 the gap statistic does not exhibit a great 

variation, while it increases rapidly until 10 

clusters are considered. Of course, increasing the 

number of clusters increases the gap statistic value 

and the matching degree between the load 

duration curves (advantages) but the 

computational effort increases too and the values 

of other quality indexes can be reduced 

(disadvantages). Again, after several attempts, it is 

possible to determine a good compromise between 

the gap statistic value and the error on the load 

duration curves with a number of clusters 𝐾 ≥ 21, 

 

 

Figure 3.15: gap statistic value for different 

number of clusters 

3.3 Comparison of results 

After having examined the obtained results with 

Matlab and R-Studio, it is convenient to make a 

brief comparison between them. First, as it is 

possible to note from the computation of the 

quality indexes, there is never a purely correct 

answer to a clustering problem. Different 

parameters provide different results and a 

compromise between them must be always found, 

without focusing too much on one of them but 

rather searching for the optimal tradeoff solution. 

For instance, with R-Studio a minimum number of 

clusters 𝐾 = 31 has been determined as a good 

compromise between the Dunn index value and 

the error on the load duration curves. The same 

considerations can be made after the computation 

of the Davis-Bouldin index and the gap-statistic 

index. This result is coherent with the one obtained 

with Matlab. Indeed, as shown by the Dunn index 

plot (figure 3.15), the optimal number of clusters 

found with this software is 𝐾 = 35. Moreover, the 

computation of the quality indexes has shown that, 

with a hierarchical clustering algorithm, the 

necessary number of clusters is lower than the one 

with a partitional clustering algorithm. However, 

the need to correctly represent the load duration 

curve increases this number up to the already 

determined value.  

The previous comparison and the different results 

show that, with both softwares, the centroids of the 

obtained clusters (typical load days) are able to 

well-represent the behavior of the load along the 

year, leading to a small error on the load duration 
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curve and on its total area. To properly remark this 

conclusion, it is possible to check if the 

minimum/maximum load ramps are still present 

after having clustered the load curves. The results 

are reported in the following table.  

 

 Maximum 

positive ramp 

[MW] 

Maximum 

negative ramp 

[MW] 

Original dataset 1.031 × 104 −0.612 × 104 

Clustered dataset 1.056 × 104 −1.811 × 104 

Table 3.1: Maximum positive and negative ramps 

for original and clustered dataset 

As it is possible to observe from table 3.1, similar 

values of the maximum ramps are obtained after 

the clustering process. More precisely, it is possible 

to compute the percentage of error as: 

 

𝐸𝑟𝑎𝑚𝑝,% =
|𝑟𝑎𝑚𝑝

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝑟𝑎𝑚𝑝

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
|

|𝑟𝑎𝑚𝑝
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

|
∗ 100 

(3.12) 

The computation of the previous error index using 

the values from table 3.1 gives 𝐸𝑟𝑎𝑚𝑝 𝑝𝑜𝑠,% = 2.45% 

and 𝐸𝑟𝑎𝑚𝑝 𝑛𝑒𝑔,% = 66%. While the error on the 

maximum positive ramp is very low, the error on 

the maximum negative ramp is quite high. 

Anyway, the maximum negative ramp after 

clustering is higher (more negative) than the one 

before clustering. This can be a conservative 

hypothesis (assuming that the load varies more 

than its actual variation) not to undersize machines 

and components and to make worst-case scenario 

economical evaluations. On the other side, if this 

error must be reduced, it is necessary to include 

constraints in the clustering algorithm (for 

instance: impose a maximum negative ramp rate). 

This approach is not easy at all since it need to 

consider the chronological occurrence of data 

points, an issue that still affects the existent 

clustering algorithms. 

The previous comparison shows that there is never 

a purely correct answer to a clustering problem. 

Different parameters provide different results and 

a compromise between them must be always 

found, without focusing too much on one of them 

but rather searching for the optimal tradeoff 

solution. Moreover, the clustering algorithms need 

a starting condition to perform and some crucial 

decisions are taken during operations. The facts 

that the starting condition is typically random and 

that the merging/splitting decisions are irreversible 

and can be affected by errors highlight the 

importance of interpreting the results. Due to this, 

data scientists are currently studying and 

implementing new clustering techniques, 

addressing all the issues that are still present in the 

clustering process. 

4. Conclusions 

The purpose of this work was to highlight the 

extreme importance that clustering has in 

everyday life. Moreover, it has provided a solid 

theoretical basis for understanding and 

implementing the main time-series clustering 

algorithms, applying them to a real-life electrical 

engineering problem by determining the 

representative load days, useful in many planning, 

sizing and development algorithms. Indeed, by 

considering only the representative days instead of 

the original curves, coherent results can be 

achieved in a fraction of the required 

computational time. This shows that clustering is 

essential also in electrical engineering or more 

generally in all the scientific areas in which big 

datasets are used as input of subject-specific 

algorithms. The goodness of the clustering model 

has been estimated through the computation of the 

presented quality indexes, and an optimal number 

of clusters has been found. Eventually, a 

comparison between the obtained results has been 

examined, showing that even if they are coherent 

between different softwares, there is never a purely 

correct answer to a clustering problem. Different 

parameters provide different results and a 

compromise between them must be always found, 

without focusing too much on one of them but 

rather searching for the optimal tradeoff solution. 
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