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1. Introduction
This thesis concerns a noticeably useful device
in Nonparametric Statistics: the Bootstrap.
The estimation of a random quantity through
the Bootstrap method almost always requires a
Monte Carlo simulation, which adds another er-
ror layer: in practice, the Monte Carlo estimate
of the Bootstrap estimate is used. The mitiga-
tion of the first error, that is, the Monte Carlo
(MC) error, which is the scope of this thesis, has
been of great interest for the contributors of the
Bootstrap, and several variance reduction tech-
niques have been researched. Amongst these
methods, we focus on Importance Resampling,
the adaptation of importance sampling to the
Bootstrap world, which was proposed by Johns
(1988), Do and Hall (1991) and Davison (1988),
with a technique called Exponential Tilting to
yield an importance distribution.
In addition, the statistics we are interested in
are those that are utilised in the construction
of the extension of confidence intervals to high-
dimensional data, namely Simultaneous Confi-
dence Bands (SCBs). In such context, Expo-
nential Tilting fails in the sense it increases the
MC error. We thus propose two new algo-
rithms: Loss Tilting (LT) and Contribution

Tilted Mixture (CTM) who effectively reduce
variance for such statistics, even when the num-
ber of dimensions is high.
The thesis is organised as follows:
• Chapter 2 provides a brief explanation of

the statistical devices used in this work,
namely the Boostrap, Importance Resam-
pling, the nonparametric delta method and
high-dimensional data.
• In Chapter 3 we outline Importance Resam-

pling with Exponential Tilting, as well as
with our proposals Loss Tilting (LT) and
Contribution Tilted Mixture (CTM).
We show through a simulation study they
perform better than Exponential Tilting
and effectively reduce variance when esti-
mating the required quantile of the statis-
tics used in SCBs construction.
• In Chapter 4 we briefly overview the state

of the art on SCBs and carry out an exper-
iment to demonstrate the need for Impor-
tance Resampling in such setting.

2. Theoretical Background
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2.1. The Bootstrap
It is a nonparametric method in Statistics, i.e.
it makes minimal assumptions on the distribu-
tion of the data generating process to produce
estimates. Its underlying intuition is the follow-
ing: given a sample X = {x1, ..., xi, ..., xN}
where N denotes the sample size and each xi is
an i.i.d p-dimensional vector (p integer, possibly
a high value), we want to estimate certain prop-
erties of the unknown underlying distribution of
the sample F . Then, we make the following as-
sumption:

Assumption 1 (The Bootstrap assumption).
The ECDF F̂ given by sample X approximates
the CDF F of the underlying distribution of the
data, so that the sampling distribution T̂ of a
statistic T can be estimated (by T̂ ∗) by sampling
with replacement from F̂ , using the plug-in prin-
ciple.

In practice, such Bootstrap estimate is approx-
imated by a Monte Carlo (MC) simulation,
wherein at each iteration a re-sample from the
given sample X is drawn. Hence we distinguish,
for a statistic T defined by function t:

Remark 1 (Monte Carlo error versus Boot-
strap error). Let us denote µ the true value of a
functional t of F we are estimating, namely:

EF [T ] = µ (1)

with sample estimator function t̂. Denote µ̂
as its Bootstrap estimate, and ˆ̂µMC the Monte
Carlo estimate of µ̂. We distinguish the Boot-
strap error, given by

ϵB = µ− µ̂ (2)

from the Monte Carlo error (MC error),
which arises from the approximation of the
Bootstrap integral:

ϵMC = µ̂− ˆ̂µMC (3)

ϵMC =

∫
Ω(F̂ )

t̂(X∗) dF̂ (X∗) − 1

B

B∑
b=1

t̂(X∗(b))

(4)

where B is the number of MC iterations and X∗

the bth re-sample; and with dF̂ (X∗) being:

dF̂ (X∗) =

N∏
j=1

p
f∗
j

j (5)

; f∗
j denotes the frequency of the jth statistical

unit in re-sample X∗, and pj is 1
N under Ordi-

nary MC

in this thesis we focus on reducing the MC error.

2.2. Defintion of Importance Resam-
pling

In such method, instead of sampling from distri-
bution (5) with pj =

1
N , the idea is to (re)sample

utilising some other resampling probabilities gj
provided by some importance distribution.
Id est, the integral in (4) becomes:∫

Ω(F̂ )
t̂(X∗) dF̂ (X∗) =

∫
Ω(F̂ )

t̂(X∗)
dF̂ (X∗)

dH(X∗)
dH(X∗)

(6)

where H is the so-called importance distribu-
tion, characterised by its re-sampling probabil-
ities gj which differ from N−1, and is chosen
such that the expected MC variance under Im-
portance Resampling is diminished.
The right-hand integral is approximated with
MC estimate ˆ̂µIR (where IR stands for Impor-
tance Resampling):

ˆ̂µIR :=
1

B

B∑
b=1

m̂(X∗b)w(X∗b) (7)

with w(X∗b) = dF̂ (X∗)
dH(X∗) being the likelihood ra-

tio, necessary to ensure unbiasedness. Its vari-
ance is:

V arH [ˆ̂µIR] =

B−1
{∫

Ω(F̂ )
(t̂)2(X∗)w2(X∗) dH(X∗)− µ2

}
(8)

2.3. Nonparametric delta method
As it will be seen later, the importance dis-
tribution H can be provided by Exponential
Tilting (Johns (1988), Davison (1988), Do and
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Hall (1991)) or by our proposals LT and CTM.
The first relies on the use of a statistical de-
vice known as the nonparametric delta method,
which is the extension of the Taylor series ex-
pansion to statistical functions. Applying it in
the Bootstrap section, we can have the linear
approximation of a statistic:

t̂L(X
∗) := t̂(X) + n−1

N∑
i=1

l∗j (9)

where l∗j is the influence value (derivative of the
statistical function w.r.t statistical unit) of the
jth statistical unit of the Bootstrap sample.
The nonparametric delta method result
states that for a smooth functional, the error
of such approximation is asymptotically normal,
which will not be the case with the statistics
used in the simulation study.

2.4. Data with High Dimensions
We denote by N the sample size and p the num-
ber of random elements per statistical unit. Let
S be the set of random variables (dimensions)
of each statistical unit. Thus, in the univariate
case it will be a singleton; in the multivariate
case S = {1, ..., p} and in the functional case
S = (a, b). When p is large, we deal with high-
dimensional data.
In this thesis we deal with the multivari-
ate extension of confidence intervals for large
p, namely Simultaneous Confidence Bands
(SCBs). We use Degras (2011) as a reference
and propose two statistics pertinent to that
task, namely the sup of the element-wise Stu-
dent’s t statistic

sup
s∈S

√
N

µ̂(s)− µ(s)

σ̂(s)
(10)

with Bootstrap estimator sups∈S
√
N µ̂∗(s)−µ̂(s)

σ̂∗(s) ,
and the sup of the element-wise so-called bias:

sup
s∈S

µ̂(s)− µ(s) (11)

with Bootstrap estimator sups∈S µ̂∗(s)− µ̂(s).
The critical quantile 1−α of these statistics is es-
timated such that a coverage of confidence level
1−α is obtained. We remark that the sup oper-
ator is necessary for the coverage to be across all
elements s ∈ S (i.e. simultaneous), in a similar
fashion to Pini and Vantini (2017).

3. Importance Resampling
3.1. Importance Resampling for

Bootstrap Quantile Estimation
As mentioned before, the estimands of interest
are the critical quantiles of the statistics in Sec-
tion 2.4. Thus, for a sample estimator T̂ the
quantity of interest, we are interested in quan-
tile ξ1−α, which is the solution to:

PF (T̂ ≤ ξ1−α) = 1− α (12)

where F is the distribution of the data, its Boot-
strap estimate is:

PF̂ (T̂
∗ ≤ ξ̂1−α) = 1− α (13)

Through an MC simulation of B iterations, an
estimate ˆ̂

Q(y) of the ECDF (empirical cumula-
tive distribution function) of T̂ ∗ (Q̂(y)) is ob-
tained, namely:

ˆ̂
Q(yb) = PF̂ (T̂

∗ ≤ yb), b = 1, ..., B (14)

whence we obtain MC estimate ˆ̂
ξMC,1−α of ξ̂1−α:

ˆ̂
ξMC,α = inf{y(b) : ˆ̂

QMC(y
(b)) ≥ α , b = 1, ... , B}

(15)
(see Hall (1992)). In the case of Importance Re-
sampling, the weights have to be taken into ac-
count too. Thus, the values of Bootstrap statis-
tic at each iteration are ordered: T̂ ∗

1 < ... < T̂ ∗
B

and their corresponding weights are w∗
1 < ... <

w∗
B. Then, if the order of the quantile is < .5,

the MC estimate of the Bootstrap estimator for
the desired quantile is T̂ ∗

M with M such that:

1

B

M∑
b=1

w∗
b ≤ α <

1

B

M+1∑
b=1

w∗
b (16)

and when the order of the quantile is > .5, T̂ ∗
M

such that

1

B

B∑
b=M

w∗
b ≤ 1− α <

1

B

B∑
b=M+1

w∗
b (17)

where the idea is just to use the highest values
in order to avoid potentially exploding weights
(and thus increases in variance), since by tilt-
ing the importance distribution to the right, the
smallest values of T̂ ∗ have a high dF̂ (X∗) and
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low dH(X∗), which makes w(X∗b) = dF̂ (X∗)
dH(X∗)

skyrocket, and also the variance (8) (see Davison
and Hinkley (1997) and Do and Hall (1991)).
We furtherly remark that the farther the or-
der of the quantile is from 0.5, the larger the
variance of Ordinary MC is, which makes it an
idoneous task for the application of Importance
Reasampling (see Davison and Hinkley (1997)
and Hall (1992)).

3.2. Choice of the Importance Dis-
tribution for Importance Resam-
pling

3.2.1 Exponential Tilting

The three classic papers rely this method,
namely Johns (1988), Davison (1988) and Do
and Hall (1991), yet they differ slightly on this
procedure. We outline the main reasoning made
in Davison and Hinkley (1997) for Importance
Resampling, where T̂ ∗ is the Bootstrap estima-
tor of sample version T̂ of statistic T on sample
X, exploiting Exponential Tilting:

1. We approximate the statistic T̂ ∗ by its lin-
earised version T̂ ∗

L (as seen on Equation (9))
which is an accurate approximation of it-
self.

2. Such statistic T̂ ∗
L follows approximately

a normal distribution, which is the case
asymptotically, as long as the nonparamet-
ric delta method reusult holds (which is
true if the statistical function t̂ of statistic
T̂ is smooth)

3. Exponential tilting is used to define the
gj in (5) s.t. the importance distribution
yields values t̂(X∗b) centered at value ξ̂I,α,
which is an initial rough estimate of the
αth quantile of T̂ ∗ we will estimate better
through Importance Resampling.

which makes the following Assumptions:

Assumption 2 (Accuracy of the Linear Ap-
proximation). The linear approximation T̂ ∗

L of
T̂ ∗ is accurate.

Assumption 3 (Normality of the Linearised
Statistic). The linearised statistic T̂ ∗

L under or-
dinary resampling is approximately normal.

Moving to Exponential Tilting, the idea is to
assign:

gj ∝ (λlj), j = 1, ..., N (18)

where lj is the influence value of the jth statis-
tical unit present in the sample, λ is a variable
to tune such that the distribution is centered in
the desired value. This is accomplished through
a Newton solver for the problem:

argmin
λ∈R

(∑N
i=1 li exp(

λli
N )∑N

i=1 exp(
λli
N )

− θ0

)2
(19)

where θ0 is the desired center of the importance
distribution.

Remark 2 (Why exponential tilting?). There
are two main reasons:
• It allows to set the Importance distribu-

tion (gj in Equation (5)) such that the lin-
earised statistic T̂ ∗

L is re-centered to a de-
sired value (although it is not necessarily
the only method to do so)
• It keeps the variance of the linearised statis-

tic T̂ ∗
L the same as under Ordinary Resam-

pling (pj = 1
N ).

Despite the influence values are derivatives,
sometimes thay may be cumbersome to com-
pute. Hence, they are estimated through re-
gression. Moreover, the initial, rough estimate
of the quantile of interest must be provided to
know where to re-center the Importance distri-
bution of the Bootstrap statistic T̂ ∗. Therefore,
a pilot MC run of B1 iterations is performed.
This yields:

• y =

 y1
...

yB1

 where yb = t̂(X∗b), b =

1, ... , B1, where X∗b is the bth re-sample
of original sample X;
• Design matrix Z of dimension B1 ×N , (N

sample size of X)

Z =

 f∗1
1 f∗1

2 ... f∗1
N

...
...

. . .
...

f∗B1
1 f∗B1

2 ... f∗B1
N

 where

f∗b
j , b = 1, ... , B1, j = 1, ..., N is the fre-

quency of the jth statistical unit on the bth
Bootstrap sample. Note that

∑N
j=1 fj =

N, ∀b ∈ {1, ..., B1}
Whence we have the necessary elements to fit
a linear regression, and the estimated (through
Ordinary Least Squares) coefficients vector b̂ is
nothing but the vector of the empirical influence
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values: b̂ =

 l̂1
...
l̂N

. The pilot run gives also

ˆ̂
ξMC,α using (17).
We present Davison’s procedure in the following
Algorithm:

Algorithm 1 Importance resampling (Davison)
1: Set B1 and B2 for the pilot run and the Im-

portance run, respectively.
2: for b ∈ {1, ... , B1} do
3: Obtain Bootstrap sample X∗b by sam-

pling with replacement from original sam-
ple X

4: Set T ∗
b ← t̂(X∗b)

5: end for
6: Obtain the empirical influence values l̂∗j , j ∈
{1, ... , N} through regression.

7: Obtain an estimate of the α quantile ˆ̂
ξB1,α

using T ∗
b , b = 1, ... , B1

8: Calculate the probabilities of resampling
each statistical unit gj by solving Prob-
lem (19), yielding importance distribution
H of shape of Equation 5 with probabilities
gi ∀i ∈ {1, ... , N}.

9: for b ∈ {1, ... , B2} do
10: Obtain Bootstrap sample X∗b by sam-

pling with replacement from original
sample X with probabilities gi ∀i ∈
{1, ... , N}

11: Set T ∗
b as t̂(X∗b)

12: Compute the likelihood ratio as
w(X∗b)← dF (X∗b)

dH(X∗b)

13: end for
14: if α < 0.5 then
15: Estimate the αth quantile using Equation

(16)
16: else
17: Estimate the αth quantile using Equation

(17)
18: end if

We remark that Assumption 2 is not respected
when using statistics (11) and (10), due to the
non-linearity of the sup operator. What is more,
the same goes for Assumption 3, since it is not
a smooth function and the nonparametric delta
method result does not apply. This calls for the
need of other algorithms to provide an impor-
tance distribution.

3.2.2 Loss Tilting (LT)

This is our first proposal. We want to re-sample
more frequently the statistical unit j, the more
its influence value lj (or its empirical estimate
l̂j) pushes towards θ0 (which of course happens
in the case of Exponential Tilting).
Then, we denote the difference between the de-
sired center for the tilted Bootstrap distribution
and the center under ordinary resampling:

d := θ0 − t̂(X) (20)

and assign a re-sampling probability gj for the
jth statistical unit such that the closer (in terms
of a possibly symmetric loss function ℓ) its in-
fluence value lj is to d, the higher gj is.
Consequently, we propose the following proce-
dure:

1. Compute the difference d as in (20)
2. For each statistical unit j, compute the

Loss function ℓ, to be provided by the
statistician, of the difference between d and
the (empirical if not derived analytically)
influence value lj (l̂j when estimated em-
pirically): hj = ℓ(d− lj)

3. Since we want a probability distribution, we
normalise hi: h̃j =

hj∑N
i=1 hi

4. Since we want to give less probability the
higher the loss is, we compute the comple-
ment of each h̃i: h̃cj = 1− h̃j

5. And normalise them to get the importance

distribution: gj =
h̃c
j∑N

i=1 h̃
c
i

, j ∈ {1, ... , N}

3.2.3 Contribution Tilted Mixture
(CTM)

This second proposal of ours is aimed at the
scenario with high p and a sup-like operator.
The intuition is the following: since both statis-
tics (10) and (11) are the sup of an estimated
element-wise statistic, then their value neces-
sarily corresponds to the value of one of its
components s̃ , for e.g. sups∈S µ̂∗(s) − µ̂(s) =
µ̂∗(s̃) − µ̂(s̃). Therefore, if such statistics take
only the value of their component say s̃, we
can "forget" about the fact it is a sup and ap-
ply (Exponential) tilting to the quantity for e.g.
µ̂∗(s̃)− µ̂(s̃) in the case of statistic (11). In par-
ticular, if we chose Exponential Tilting, then the
deviation from Assumption (2) would not be vi-
olated as badly as with the sup operator. In
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practice, different components s ∈ S may be
the ones whose value is the one taken by the
statistic with the sup. We consider as a "con-
tributor" each element s ∈ S of the multivari-
ate statistic. We make the following reasoning:
the more frequent the value of element s ∈ S is
the one taken by the statistic with the sup the
bigger the weight we give to the (exponential)
tilting done on the (univariate) quantity of the
statistic at component s.
Exploiting the fact that in Algorithm 1 runs a
pilot run, it would be possible to count, for each
element s ∈ S, how many times it was such el-
ement whose value became the value of the sup
statistics. The idea is to use as an Importance
distribution a weighted Mixture of the individ-
ual weights p

(s)
j , j ∈ {1, ... , N}, s ∈ S obtain

through the point-wise (Exponential) Tiltings
to re-center at the desired quantile of order α.
Thus, we denoting with m̂∗(s), s ∈ S the Boot-
strap estimate of either statistic (11) or (10),
T ∗ = t̂(X∗) = sups∈S m̂∗(s), we define the esti-
mate of the contribution of the element s ∈ S
with:

ĉs :=

∑B1
b=1 1{T̂ ∗

b = m̂∗
b(s)}

B1
, s ∈ S (21)

where B1 is the number of Monte Carlo itera-
tions in the pilot run, T̂ ∗

b and m̂∗
b(s) the values

of Bootstrap T̂ ∗ and m̂∗(s) statistics at the bth
iteration.
Set as resampling probability for the jth statis-
tical unit:

p̃j :=
∑
s∈S

p
(s)
i ĉs (22)

where p
(s)
i is the probability of resampling the

ith statistical unit after applying (Exponential)
Tilting to m̂∗(s) at a fixed s ∈ S so that it is
re-centered at the same order of the quantile of
interest for T̂ ∗. Note it yields an Importance dis-
tribution (i.e.

∑N
i=1 p̃j = 1) since it is a convex

combination (
∑

s∈S ĉs = 1; 0 ≤ cs ≤ 1, ∀s ∈ S)
of the element-wise importance distributions.
Therefore, Contribution Tilting Mixture
(CTM) can be summarised in the following:

Algorithm 2 Contribution Tilting Mixture
1: Given the results of the Pilot run in Algo-

rithm 1, that is:
• element-wise estimate of quantile of in-

terest ˆ̂
ξB1,α(s) of m̂∗(s) , s ∈ S ;

• estimate contribution of each element
ĉs , s ∈ S as in (21)

2: Compute through (Exponential) Tilting
the elemente-wise Importance Distribution,
yielding p

(s)
j , j ∈ {1, ... , N}, s ∈ S

3: Set p̃j :=
∑

s∈S p
(s)
i ĉs i ∈ {1, ... , N} as the

Importance Resampling probabilities.

to be inserted in Algorithm 1.

3.3. Simulation study
We made simulations by sampling with different
N and p of the same data generating process.
We used statistics (11) and (10), with loss func-
tion ℓ(x) = 1

2x
2 for LT and Exponential Tilting

as the element-wise tilting in CTM.
The main result was that Exponential Tilting
failed at p > 1, due to the violations of Assump-
tions 2 and 3, which we confirmed with differ-
ent experiments. LT with a very generic loss
function, although conservative, still managed
to reduce variance w.r.t ordinary Monte Carlo.
CTM, the best algorithm, consistently provided
variance reductions relative to Ordinary resam-
pling, even at the highest values of p, proving
its affinity for data with high dimensions. We
measured the efficiency as the variance of Ordi-
nary Bootstrarp divided by the variance under
Importance Resampling; using 1000 replications
from the sample original sample.

Figure 1: Efficiency curves for statistic (11)).
Each curve represents a value of p
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4. Simultaneous Confidence
Bands for High Dimensional
Data

4.1. Overview of the Boostrap for
building SCBs

We declare Degras (2011) as the reference paper
on this subject, and statistics similar to the one
ibi present were explored in this thesis. State
of the art works have not dealt so far (to our
knowledge) with variance reduction of a Boot-
strap estimate in high dimensional data, yet dif-
ferent variations of the Bootstrap have been pro-
posed to improve the actual coverage level i.e.
percentage of times the mean was within the
SCBs, relative to the desired coverage level, es-
pecially at small sample sizes. Such variations
are Smooth, Parametric, Block, Wild versions
of the Bootstrap, among others.

4.2. Brief simulation study: the need
for variance reduction

For different values of N and p of the same un-
derlying data generating process, we performed
MC simulations for the critical (.95)th quantile
of Degras (2011)’s statistic, with different val-
ues of B, the total number of MC iterations.
Whereas values of 500 (Cuevas and Fraiman
(2004)) or 2500 (Telschow and Schwartzman
(2022)) are commonly used nowadays, we no-
ticed at least B = 5000 iterations are needed,
which calls for the need of Importance Resam-
pling in this setting.

Figure 2: Curves of the MC quantile estimate of
Degras (2011)’s statistic for four different ran-
dom seeds, starting from the same sample at the
different n and p.

5. Conclusions
In this thesis, we have applied Importance Re-
sampling, a variance reduction techinque, for
the estimation of quantiles of statistics used in
the construction of SCBs. Exponential Tilt-
ing, the classical technique proposed by Johns
(1988), Do and Hall (1991) and Davison (1988)
fails in these circumstances, especially when the
dimensions p are many. This opens the possi-
bility for other ways to obtain an importance
distribution. We have proposed Loss Tilting
and Contribution Tilted Mixture, which we have
proven to be effective for variance reduction
through a simulation study. We have also per-
formed a brief experiment in which we show that
Importance Resampling is pertinent nowadays,
as the MC error with the number of iterations
used in state-of-the-art works is still signficant.
We believe future research should be directed to-
wards combining both variance reduction meth-
ods and implementing variations of the Boot-
strap in order to hopefully reduce both MC and
Bootstrap errors.
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