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Sommario

Questo lavoro è dedicato alla determinazione dell’algoritmo di machine learning più
promettente e del miglior insieme di variabili adimensionali in grado di predirre il
tipo di regime bifase all’interno di una generica componente industriale. Pertanto,
utilizzando un dataset eterogeneo, una machine learning pipleine che riceve quantità
fisiche come inputs e i regimi di flusso come target è sviluppata ed ottimizzata. Per-
tanto, in un primo step, i dati vengono pre-elaborati, sostituendo valori mancanti o
errati, per poi inserire quantità fisiche di interesse. A seguire, vari modelli di machine
learning vengono confrontati tra di loro, al fine di individuare quello più promettente
per risolvere il problema in questione. Utilizzando il miglior algoritmo identificato nel
passaggio precedente, il miglior set di variabili adimensionali è quindi determinato
tramite un processo di feature selection iterativo. In seguito, lo step di ottimizzazione
dei vari modelli viene ripetuto, questa volta utilizzando solo il sottoinsieme di variabili,
ed il miglior algoritmo (in termini di cross-validation accuracy) è individuato. Tale
modello utilizza solo cinque variabili adimensionali, ma è in grado di raggiungere
una accuratezza del 95,9% ed un F1-score medio del 95,4% sul test set, maggiore di
qualsiasi altro modello attualmente disponibile in letteratura. Ai fini di verificare la
generalizzabilità del modello, questo è anche utilizzato per riprodurre alcune delle
mappe di flusso bifase più note, ed i risultati si dimostrano essere estremamente
soddisfacenti. Infine, per garantire una maggiore fruibilità del modello, la pipeline
ottimizzata è resa disponibile tramite un software open source.

Parole Chiave: Stima del regime di flusso, Flusso bifase, Machine learning, Selezione
dei parametri, Ottimizzazione degli algoritmi.
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Abstract

The present work is dedicated to the determination of the most promising machine
learning algorithm and the most suitable set of dimensionless features for estimating
the the flow pattern in two-phase flows. Accordingly, using a comprehensive and
heterogeneous dataset retrieved from the literature, a machine learning based pipeline,
which receives dimensionless quantities as inputs and the flow regime as the target is
developed and optimized. Employing a benchmark algorithm, a wrapping feature selec-
tion algorithm is next applied, and the most promising combination of dimensionless
features is determined. Subsequently, the algorithm selection and tuning procedure is
performed in order to identity the most suitable machine learning algorithm (and its
corresponding hyper-parameters) which leads to the highest achievable cross-validation
accuracy. The obtained results demonstrate that the determined optimal pipeline
utilizes only five dimensionless features as inputs, which simplified the model’s com-
plexity and facilitates the physical interpretation. Furthermore, employing the optimal
pipeline a test accuracy of 95.9% and a macro averaged F1-score of 95.4% is achieved,
which is greater than the accuracy that can be obtained using any other model that
is currently available in literature. The estimations of the proposed pipeline are also
compared with those provided by the state-of-the-art multi-phase flow regime maps
and the corresponding coherence has been demonstrated. In order to enhance the
model’s reproducibility and ease-of-use, the optimal pipeline has been made publicly
accessible as an open-source software.

Keywords: Flow Regime Estimation, Two-Phase Flow, Machine Learning, Feature
Selection, Algorithm Optimization.
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Extended Abstract

0.1 Introduction
Several components utilized in the industry such as various types of heat exchangers [1],
oil extraction devices [2], and fuel cells [3] include two-phase flows. In these units, gas
and liquid flow simultaneously, and the mixture can assume a wide range of different
configurations, known as flow regimes or flow patterns. The relative velocity between
the phases is heavily influenced by the flow pattern assumed by the mixture, and it is
a fundamental quantity to predict during the design phase of these components, as it
is related to both frictional and gravitational pressure drop. [4]. However, determining
the flow pattern has been proven to be a remarkably challenging task, as it is a
function of multiple quantities such as the pipe’s internal diameter, the system’s
tilt, and the superficial velocities of the two phases. Over the years, the scientific
community has put extensive efforts to develop a model able to accurately predict the
flow regime under a wide range of working conditions [4]. Usually, these models are
presented in term of two-dimensional multiphase flow maps, which aim at simplifying
the process of determining the flow regime by providing the user with a simple graph
where just two quantities (usually related to the phase velocities) are necessary to
determine the flow regime. To this day however, no framework is able to work in
a generalized environment [5], since the chaotic nature of multiphase flows requires
to make strong assumption for physical models, and empirical models are lacking in
that they are limited to the experimental evidence they are based on. Moreover, the
implementation of these models in a project is often time consuming and lackluster in
terms of code portability: the abundance of logical branches and over-reliance on case-
specific dimensionless variables hinders the integrability of these codes in an unified
environment. However, as experimental studies are periodically performed in this field,
the amount of available data continue to increase. This allow us to recast this issue
in terms of a classification problem, opening the path for machine learning solution
to be employed [5] [6]. When compared to traditional techniques, machine learning
has the advantage of being easy to update with new experimental evidence and is
able to manage complex interactions between a large number of variables, grasping
correlations otherwise not possible to find using traditional statistical techniques.
Thus, the present study is focused on optimizing and deploying a machine learning
pipeline using data available in open literature. The aim of this pipeline is two
fold: first, it generates the best machine learning algorithm for this problem, then,
through feature selection, it also identifies what are the best physical quantities able
to differentiate the various regimes.
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0.2 Flow Regimes
In a two phase system, the geometrical configuration of the interfaces determine the
flow regime (flow pattern). While in single phase flows the laminar and turbulent
regimes should only need to be distinguished, when gas and liquid flow together
inside a pipe, the interaction between the two phases can generate a large number of
configurations. As the characterization of multi-phase flow regimes can be at times
subjective, there is still some debate towards the actual number of patterns that can
exist inside a pipe [7]. In the present work, the initial classification that was adopted
in the study conducted by Pereya et al [8] has been followed, in which six different
multi-phase flow patterns (provided below) are considered:

• Stratified smooth (SS): the liquid and gas phases are completely separated and
the interface between the two phases is flat. Commonly observed in horizontal
pipes in which both gas and liquid phases flow at low velocities. This flow regime
is completely absent in upward inclined pipes.

• Stratified wavy (SW): similar to the SS, liquid and gas are still completely
separated, though, due to the higher liquid or gas velocities, the interface is
now wavy. This flow regime is typical of downward tilted pipes and tends to
disappear in upward inclinations.

• Dispersed bubble (DB): the gas is moving as dispersed bubbles in the liquid
phase. This regime occurs at high liquid velocities, where the turbulence is high
enough to dominate over the buoyancy, entrapping gas particles in the liquid
flow.

• Bubbly flow (B): the gas is dispersed as discrete bubbles in continuous liquid.
This flow regime can only take place in near vertical systems at low liquid
velocities, where the turbulence is not enough to break the bubbles and result
in transition to DB.

• Intermittent flow (I): gas and liquid alternates one another. This is one of
the most common flow patterns and can be present in any type of system
configuration, usually for intermediate liquid and gas velocities.

• Annular flow (A): the bulk of the liquid flows on the wall of the pipe as a film,
while the gas occupies the center of the duct as a continuous phase.
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0.3 Description of the employed dataset

Table 1. Summary of the studies in the data base.

Authors Fluids ρl (Kg/m3) ρg (Kg/m3) µl (Pa·s) σ (N/m) d(cm) θ (deg) Data Points

Shoham [9] Air-Water 1000 1.18 0.001 0.070 2.54 and 5.1 -90 to +90 5676

Lin [10] Air-Water 1000 1.12 0.001 0.070 2.54 and 9.54 0 141

Kouba [11] Air-Kerosene 814 3.00 0.0019 0.029 7.62 0 53

Kokal [12] Air-Oil 860 4.13 0.007 0.032 2.58 to 7.63 -9 to +9 1668

Van Dresar [13] Hydrogen-Water 77 0.13 0.00001 0.070 0.874 1.5 83

Wilkens [14] CO2-Salty Water 1025 to 1059 5.02 to 14.90 0.001 0.070 9.72 -2 to +5 204

Meng [15] Air-Oil 883 to 889 1.49 to 2.16 0.0047 to 0.0063 0.03 5.01 -2 to +2 153

Manabe [16] Natural Gas-Oil 789 to 809 8.10 to 26.90 0.0032 0.015 5.49 0 to +90 247

Mata [17] Air-Oil 879.8 1.3 0.483 0.03 5.08 0 80

Adbuvayt [18] [19] Nitrogen/Air-Water 1000 5.52 to 23.4 0.001 0.07 5.49 and 10.64 0 to +3 443

Omebere-Iyari [20] Nitrogen-Naptha 700 and 702 23.4 and 104 0.0003 0.01 18.9 90 98

The experimentally obtained dataset that has been utilized in the present study is
the one collected by Pereyra et al. [8], which consists of the data reported in several
studies conducted on flow pattern prediction. Each point in the dataset contains
information about the system operating conditions (pressure (P), temperature (T),
internal diameter (d), inclination angle (θ)), the fluids superficial velocities (UsL and
UsG) and the fluid properties (density (ρ), viscosity (µ), superficial tension (σ)). A
summary of this database is reported in Table 4.1. Most of the data points are derived
from a study carried out by Shoham [9] in 1982, that investigated the behaviour of
air-water systems, in 50.8 and 25.4 mm pipes, under all possible inclinations angles.
In another study, Lin [10] similarly studied the air-water flow, but utilized 25.4 and
95.4mm pipes while only considering only horizontal configurations. The data from
Kouba [11], deals with slug flows in air-kerosene systems. The work of Kokal [12]
constitute another major part of the database that is focused on air-oil systems in near
horizontal configurations, under different levels of pressure. Next, Van Dresar [13]
investigated the behavior of cryogenic fluids under conditions of low mass and heat
flux. Wilkens [14], studied the CO2 and salty water flows in a 97.2 mm diameter pipe.
Meng [15] investigated low liquid loading in wet gas pipelines. The data from Man-
abe [16] contains information about the relation between pressure and flow patterns.
Mata [17], in 2002, created a flow pattern map for high viscosity oil and water in an
horizontal pipe. Abduvyant [18] studied the effects of pressure and pipe diameter on
gas-water in near horizontal systems. Lastly, Omebere [20] studied flow patterns in
large diameter vertical pipes at high pressures.

In fig 1 we reported the distribution of the most important design conditions
according phenomenological models. It is evident that the database provide heteroge-
neous working configurations, but most of the data points refers to the intermittent
(I) flow regime. Since an unbalanced dataset may lead to biased estimators, over-
sampling techniques will be applied during the training of the models, to give the
same importance to all flow regimes. It should be underlined that these oversampling
techniques are used exclusively on the training set, and both validation and testing
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frames will not have any type of synthetic data in them, avoiding to generate optimistic
expectations [21].

Figure 1. Distribution of the most important variables in the database

0.4 Physical Models
To improve the generalizability of the developed models, the knowledge of currently
employed physical models is fundamental. In fact, as demonstrated by Quintino [22]
and MustafaAl-Naser [5], utilizing dimensionless quantities as features can help the
machine learning algorithms to leverage the known physics and achieve a superior
generalization capability. Thus, the basic physical features of the dataset are trans-
formed into dimensionless quantities, that have been widely employed in the physical
phenomena-based models such as the ones present in Barnea’s unified model [23]. A
complete list of the features that are employed in the present work is provided in
Table 2.

Dataset’s Features P T ρL ρG µL µG σ d θ UsL UsG

Transformed Features ReG ReL FrG FrL XLM Y KG NL We Eo TTB

θ αL X2
LM

Table 2. Features employed in this work
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0.5 Machine Learning Models
In this section we spend a few words on the more technical aspects focusing on the
necessary machine learning theory behind our models. In fact, the knowledge of their
inner workings can provide useful insights on the validity of the generated outputs.
Since the process of optimizing and tuning a model is computationally expensive [24],
only those models whose performance can be deemed state-of-the-art were explored
in this thesis. First, multiple types of ensemble techniques were considered, such as
gradient boosting machines [25] and random forests [26]. In these algorithms, the
general aim is to train and aggregate the outputs of a series of models in order to
generate a prediction. Then, deep learning solutions were considered, in particular
a Multi-Layer-Perceptron [27] and Tab-Net [28]. The first algorithm is the most
common type of neural network, made of only perceptrons connected in a feed-forward
architecture. Tab-Net [28] on the other hand is an attention based network, and it
employs much more complex building blocks such as transformers. In Table 3 all the
explored algorithms, as well as their Python packages, are reported.

Explored Algorithms Python Packages

Random Forest [26] Sklearn [29]

Gradient Boosting [30]
XGBoost [31]

LightGBM [32]

Stacking [33] Custom

MLP [27] Tensorflow [34]-Keras [35]

Tab-Net [28] Pytorch [36]

Table 3. Models explored and their relative Python packages

0.6 Machine Learning Based Pipeline
Here we discuss in detail the various methodologies adopted to develop and optimize the
machine learning based pipeline. In the first step, considering the governing physical
phenomena and the recommendations that have been provided in the previously
conducted physical phenomena-based studies, a series of additional features are
generated and added to the dataset. Next, the dataset is divided into the training
(80% of samples) and testing (20% of samples) sets. The training set, employing a 5
fold cross-validation method, is used to optimize the pipeline. The test set is instead
utilized to evaluate the performance of the proposed pipeline in estimating the flow
regime on a set of points for which it has not been trained and optimized. In order to
preserve the distribution of the classes, the generation of each fold (validation and
testing) is performed using a stratified approach. The model selection procedure is
then conducted and the most suitable algorithm, while utilizing all of the features,
is identified. In order to give the same importance to all the classes, in the cross-
validation procedure, SMOTE [37] is applied to each fold of the training data. Next,
feature selection is applied to the dataset and employing the Sequential Forward
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Floating Selection (SFFS) approach, features are progressively added until a plateau
in the cross-validation accuracy is achieved. Finally, the selected subset is utilized to
repeat the algorithm optimization step and the most promising algorithm resulting in
the highest accuracy is identified.

0.7 Results and discussions
This section is dedicated to discussing the results found in the various steps of the
implementation and optimization of the pipeline. In the first section, the performance
of the generated models, in terms of accuracy and F1 score, is presented. Next, the
results of the feature selection step are provided and the parameters that have been
selected in the optimal pipeline are explored employing box-plots. Finally, to further
assess the accuracy of the proposed pipeline, the corresponding estimations and the
resulting transition boundaries are compared with experimental multi-phase flow maps
that are available in literature.

Machine Learning Algorithm
All Features Feature Subset

Accuracy [%] F1 score [%] Accuracy [%] F1 score [%]

LightGBM 95.3 94.8 95.2 94.4

Random Forests 91.5 90.0 90.9 88.8

XGBoost 94.8 93.1 94.9 94.1

Stacking 95.3 94.8 95.2 94.4

MLP 93.4 91.6 89.9 90.6

Tab-Net 93.8 92.8 90.7 88.5

Table 4. Comparison between the various optimized machine learning models

Table 4 reports the achieved performance metrics (determined through cross-
validation) metrics associated with all of the explored algorithms are reported. Gradi-
ent boosting machines are clearly proven to be the most promising category of models
to solve this classification problem, as both XGBoost and LightGBM outperform
every other algorithm in any given condition. The performance of random forests and
neural networks algorithms is demonstrated to be similar but lower than the other
algorithms. Lastly, stacking can achieve the same performance of LightGBM in every
scenario, as it uses its outputs to perform predictions. However, given that this is a
second level learner which inevitably tends to over-fit the training data, it was still
deemed inferior than a simple gradient boosting machine.

In the first model optimization step, the best estimator identified by the pipeline
is a gradient boosting machine from the LightGBM library. Said model has a cross
validation accuracy of 95.3% and a macro averaged F1 score of 94.8%. The latter
value confirms that the bias towards the intermittent flow regime is avoided, due
to the oversampling techniques adopted during the training phase. When used to
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evaluate the test set, the performance of the model is even slightly better, as the test
accuracy is 95.9% and the macro average F1 score is 95.6%. The small increment in the
test’s metrics is justified by the fact that cross validation tends to provide pessimistic
expectations. Additionally, as test and validation scores match, it is evident that no
overfitting occurred during the training phase of the model.

Table 5. Cross validation confusion matrix, five features

A DB I SW SS B Precision [%]

A 1168 0 48 30 5 0 93.4
DB 0 606 20 0 0 0 96.8
I 50 39 3199 20 10 5 96.3
SW 28 2 17 802 11 0 93.3
SS 5 0 10 8 281 0 92.4
B 0 0 4 0 0 118 96.7

Table 6. Test confusion matrix, five features

A DB I SW SS B Precision [%]

A 291 0 14 6 2 0 93.0
DB 0 151 5 0 0 0 96.8
I 12 9 808 1 1 0 97.2
SW 8 0 3 201 2 0 93.9
SS 0 0 1 0 76 0 98.7
B 0 0 3 0 0 28 90.2

Using the selected feature subset identified through SFFS, the model optimization
step is repeated, and the best generated estimator is still a gradient boosting machine
from the LightGBM library, but with slightly different hyperparameters. Said model
compares favorably with respect to the previous one, as the cross validation accuracy
is 95.2%, and the F1 score is 94.4% (Table 5). Little to no information is lost, while
the number of employed features is reduced from 13 to 5. Again, the results on the
test set are similar, with an accuracy of 95.9% and an F1 score of 95.4% (Table 6).

All Features θ ReG ReL FrG FrL X2
LM Y KG NL We Eo TTB αL

SFFS Results θ FrL FrG Eo X2
LM

Table 7. Feature selection results

The results of sequential floating forward selection are reported in figure 2 and
Table 7. It is evident that a plateau in the cross validation metrics is achieved as soon
as five features are considered to train our estimators. As reported in Table 7, the
selected subset contains both liquid and gas Froude velocities, as well as the system
tilt. These quantities are the most widely employed by physical models, and wrapping
feature selection is able grasp the importance of these features in determining the
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Figure 2. Sequential feature selection results

Figure 3. Boxplots of the selected feature subset
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correct flow regime. The influence of these features can easily be shown in terms of
boxplots (figure 3), where it is evident that they are able to separate the flow regimes
by some degree.

The influence on the flow pattern for the remaining features is harder to explain,
as they cannot be used alone to separate the flow regimes. From a physical point of
view, the Eo number represent the ratio between gravitational and capillary forces,
and could have been used by our model to introduce information about the system
surface tension. The Lockhart-Martinelli parameter X2

LM on the other hand could
have been used to further assess stratified to non stratified transitions based on the
ratio of the pressure drop between the two phases.

While the proposed pipeline shows remarkable accuracy when used to on experi-
mental conditions similar to the ones of training, real world applications require a
more robust model evaluation. Thus we assessed the generality capabilities of the
proposed pipeline by comparing its outputs with some multiphase flow maps retrieved
from literature, with design conditions different from the ones of training. As the
name suggest, these maps are two-dimensional representation of the problem at hand,
where one can use a pair of physical quantities (such as the velocities of the two
phases) to calculate the flow regime. Of course, these maps are only valid under very
strict design conditions, and tends to fail when generalized. To this end, the best
machine learning model was used to reproduce the map of Madhane [38], and the
results can be seen in figure 4. The transition boundaries closely match the ones of
the author, and the model only shows some discrepancies, where the classification of
the regime is debatable.

Figure 4. Comparison with the map of Madhande (in black) and the one generated with the
proposed pipeline (colored regions)
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0.8 Conclusion
The main objective of this work, was to develop and optimize a machine learning
based pipeline in order to predict the multiphase flow regime under a wide range
of working conditions. Modeling the flow regimes through the physical models was
fundamental in order to increase the explainability of the generated machine learning
model. While using all the features, the best generated algorithm obtained through
the implemented procedure is a gradient boosting machine from the LightGBM library,
with a cross validation accuracy of 95.3% and a macro averaged F1 score of 94.8%.
The latter metric denotes that the model has no bias towards any of the regimes.
When used to evaluate the test set, the metrics are similar to the cross validation ones,
with a test accuracy of 95.9% and a macro averaged F1 score of 95.5%. Given these
values, it is evident that overfitting was avoided. As the second core objective of the
pipeline was to determine the most important physical quantities, sequential floating
forward selection was applied to the dataset. This iterative feature selection technique
showed that, by greedily adding variables to an empty set, the near-optimal feature
combination is: system tilt, liquid densimetric Froude number, gas densimetric Froude
number, Eötvös number and the Lockhart-Martinelli parameter. With this subset,
the new optimized estimator is again a gradient boosting machine from LightGBM
library, but with slightly different hyperparameters. This model has a cross validation
accuracy of 95.1%, and a macro averaged F1 score of 94.2%. Given the similarity on
the metrics between the first and the second model, we can state that little to no
information was lost using the optimized feature subset. When used to evaluate the
test set, it showed no signs of overfitting, as the accuracy was 95.9% and the F1 score
95.4%. To further assess the quality of the generated outputs, this model was also
used to simulate and compare different multiphase flow maps found in literature. The
transition region identified by the model closely matched the one of theory. Given the
overall performance of the pipeline on both feature selection and model optimization,
this work can be considered a success. It should be underlined however that while the
dataset employed for this thesis offers a wide range of working conditions, all the data
points refer to smooth macro tubes. As a machine learning model is only as good
as the data it has been trained with, it won’t be able to consider complex physical
phenomena related to surface roughness or micro channels. However, this deficiency
easily be solved with the introduction of more data related to those phenomena.
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Chapter 1

Introduction

Several components utilized in the industry such as various types of heat exchangers [1],
oil extraction devices [2], and fuel cells [3] include two-phase flows. In these units,
gas and liquid flow simultaneously, and the mixture can assume a wide range of
different configurations, known as flow regimes or flow patterns. The relative velocity
between the phases is heavily influenced by the flow pattern of the mixture, being
highest when the gas phase is separated from the liquid one and lowest when the gas
is dispersed inside the turbulent liquid phase. As this quantity is related to the liquid
holdup, the accurate simulation and estimation of this phenomenon has thus been
of notable importance. In fact, the liquid holdup is used for the calculation of both
frictional and gravitational pressure drop [4], which are essential parameters in the
design procedure of industrial units. However, determining the flow pattern has been
proven to be a remarkably challenging task, as it is a function of multiple quantities
such as the pipe’s internal diameter, the system’s tilt, and the superficial velocities of
the two phases. Over the years, the scientific community has put extensive efforts to
develop physical-phenomena based models that are able to accurately predict the flow
regime under a wide range of working conditions [4]. Taitel and Duckler [39] in 1976
provided a methodology to to determine the flow pattern in horizontal systems. Their
work showed great accordance with the experimental evidence from Madhane [38].
Expanding the latter model, Barnea [23] proposed an unified model, able to work in a
more generalized framework, for the whole range of pipe inclinations. These models
are often served through multiphase flow maps, two-dimensional representation of
the phenomena at hand, where one can use a pair of suitable physical quantities
to determine the flow regime. While these models provide useful insights for the
problem at hand, they tends to fail in a generalized environment. [5]. In fact, the
chaotic nature of multi-phase flows requires to make strong assumptions for physical
models and the obtained empirical models are limited to the experimental evidence
that they are based on. Moreover, the implementation of these models in a project
is often time consuming and lackluster in terms of code portability: the abundance
of logical branches and over-reliance on case-specific dimensionless variables hinders
the integrability of these codes in an unified environment. However, as experimental
studies are periodically performed in this field, the amount of available data continue
to increase. This allow us to recast this issue in terms of a classification problem,
opening the path for machine learning solution to be employed [5] [6]. When compared
to traditional techniques, machine learning has the advantage of being easy to update
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with new experimental evidence and is able to manage complex interactions between
a large number of variables, thus grasping correlations otherwise not possible to
find with traditional statistical techniques. While machine learning has been heavily
employed in other areas of thermo-hydraulics such as pressure drop [40] and heat
transfer estimation, its use in this specific domain remain relatively unexplored. One
of the first studies is from Xie et al [41], which employed an artificial neural network
(ANN) using pressure signals as inputs to predict the flow regime in a three phase
system. Then, MustafaAl-Naser et al [5] also used an ANN trained from synthetic
data from the unified model, but focused on horizontal two-phase systems. Recently,
Mask et al [6] tried different machine learning models to solve the task at hand,
but mentioned the necessity of proper model validation. Lastly, Quintino et al [22]
proposed an hybrid-physics-data machine learning approach, using a set of manually
selected dimensionless features to enhance the generality capabilities of the trained
models. The aforementioned works however either focus on a specific type of machine
learning (ML) model or handpick the features used to train the models. Additionally,
none of them provide an open-source framework that can be updated as new data is
published. Motivated by the mentioned research gap, the present study is focused on
optimizing and deploying a machine learning pipeline using data available in open
literature. The aim of this pipeline is two fold: first, it generates the best machine
learning algorithm for this problem, then, through feature selection, it also identifies
what are the best physical quantities able to differentiate the various regimes.

1.1 Objective and Outline of the Thesis
As stated before, machine learning is becoming more and more prominent in the
field of thermo-hydraulics, thanks to its advanced capabilities when compared to
traditional techniques. For the problem at hand however, currently employed machine
learning solutions fail to provide an open framework that can be updated as new data
becomes available, and they perform little to no validation for the machine learning
model produced. While performing exploratory data analysis, the latter shortcoming
was found to be particularly serious for studies using the same dataset as the one
employed for this thesis. In fact, the data contains some transcription errors that
would hinder the quality of the outputs in real world applications if not addressed
correctly. Thus, the scope of this thesis is to develop and optimize a machine learning
pipeline using data available in open literature in order to predict the multiphase flow
regime under a wide range of working conditions. To this end, the first objective of
the pipeline is to determine the most promising machine learning model to solve the
problem at hand. Then, in order to enhance the model’s interpretability, characteristic
dimensionless physical quantities are introduced as variables, and through an iterative
feature selection algorithm, the best ones to differentiate the flow regimes are identified.
Following, the pipeline is evaluated in terms of adimensional metrics to summarize
the overall performance, and proper model validation is also carried out. Thus, using
famous multiphase flow maps from literature, and an external dataset, the generality
of the model is assessed. Once the results of the generated estimators are deemed
acceptable, the best machine learning model is also containerized as a web application,
providing an open-source tool to the scientific community. Lastly, the whole code
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is also made available in an online repository, to allow the reproducibility of the results.

Thus, Chapter 2 is first dedicated to discuss some fundamental concepts of
multiphase-flow theory. In particular, the first section is used for the introduction of the
most used quantities in this field and the description of the pressure drop models used
for multiphase flow, focusing on how the most accurate one is related to the flow regime
of the system. Then, the physical reasoning behind the various regime transitions is
examined, and the dimensionless quantities used to model such changes are introduced.

Chapter 3 instead pertains the description of the various machine learning models
analyzed for this thesis. First the reasoning behind ensemble methods is discussed,
and the most used algorithms from this machine learning (ML) branch are introduced
(random forests (RF), gradient boosting (GB), and stacking). Then, deep learning
solutions are analyzed. The first model discussed is a multi-layer-perceptron (MLP)
along with the fundamental elements present in a neural network (NN). Lasly, an
attention based network is introduced and confronted with the previous architecture.

Chapter 4 is dedicated to the description of the implemented procedure to train
and optimize a machine learning based pipeline. First, the methodology for the
whole optimization process is discussed. This part encapsulates the whole reasoning
behind each action taken in this project. Then each single step of the implemented
procedure is discussed in detail, from data analysis to the deployment of the best model.

Finally, Chapter 5 analyzes the best performing models obtained during the
optimization of the pipeline. They are first benchmarked in terms of accuracy and
F1 score on the validation set. In order to prove that overfitting was avoided, the
most promising estimator is also confronted with a test set, taken from the same
dataset used for training. The generality capabilities of the model are then discussed
by comparing its output with Madhane’s multiphase flow map [38]. Then, using
a different external database taken from literature, the best performing model is
benchmarked again in terms of F1 score and Accuracy against data with previously
unseen system’s design configurations.
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Chapter 2

Multiphase Flows Theory

In order to understand the importance of determining the flow regime in a pipe duct,
one has first to introduce some fundamental aspects of multiphase flows. The first
part of this chapter is then dedicated to discuss some physical quantities of interest for
multiphase system, as well as to briefly describe the most used models to calculate the
pressure drop. The second part of this chapter is instead used to introduce the physical
recommendation currently employed to distinguish the various flow regimes. While
the aim of this thesis is to approach this classification problem using machine learning,
introducing the known physics in terms of dimensionless quantities through feature
engineering can greatly enhance the capabilities of our machine learning models to
find the correct criteria to separate the flow patterns.

Basic quantity Symbol Description Unit

Pressure P Pressure inside the pipe [MPa]

Temperature T Temperature of the system [°C]

Diameter D Pipe’s internal diameter [cm]

Viscosity µ Viscosity of a given phase [Pa · s]

Density ρ Density of a given phase [Kg/m3]

Surface tension σ Surface tension between the phases [N/m]

System’s tilt θ System’s tilt (zero for horizontal configurations) [deg]

Superficial Velocity Us Superficial velocity of a given phase [m/s]

Table 2.1. Basic physical quantities describing the system

2.1 Fundamental Relations in Multiphase Flows
The term "multiphase systems" describe a situation where two or more phases (liquid,
gas, solid) flow together, typically inside a pipe duct. In order to describe these
systems, the knowledge of thermodynamics and hydraulics is fundamental, and the
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physical quantities usually employed in these fields find their way in the description
of multiphase systems. The basic quantities usually characterizing the systems are
summarized in Table 2.1. Only the quantities exclusive to multiphase systems will
be discussed in this section. Additionally, since this thesis only deals with two-phase
systems, the definitions will refer to these specific type of systems.

The first and most important quantity to discuss is the average void fraction, defined
as the ratio between the volume of the diapered (gas) phase VG within the volume V:

α =
VG
V

with V > V0 (2.1)

The condition V > V0 ensures that stationarity is achieved despite of the motion of
elements of the dispersed phase such as particles, drops and bubbles.

Similarly to the void fraction, the liquid holdup is defined as the ratio between the
continuous (liquid) phase VL and the total volume V:

αc =
VL
V

with V > V0 (2.2)

It is clear that due to the volume conservation principle, the sum of the liquid hold
and the void fraction has to be equal to 1:

αc + α = 1 (2.3)

The void fraction (or liquid holdup) can be used to calculate important quantities
used in multiphase, such as the actual velocities of the phases flowing in the pipe.

uG =
ΓG
αAρG

and uL =
ΓL

(1− α)AρL
(2.4)

Where ΓG and ΓL are the two phases mass flows, A is the cross section, ρG and ρL
the two phases densities.

The correct evaluation of the void fraction is quite challenging, and it is often preferred
to work with apparent quantities, which are defined as the physical properties of the
single phase as if it was flowing alone inside the pipe. When dealing with the phase
velocities, they are defined as the superficial velocities:

UsG =
ΓG
AρG

and UsL =
ΓL
AρL

(2.5)

Notice that when compared to the actual velocity, the superficial is actually lower, as
it is divided by the whole area A. The great advantage of using this quantities is that
they are easy to determine, as they are function of known properties of the systems.

Another important quantity to introduce is the vapor or mass quality x, defined as
the ratio between the mass flux of the gas and the total mass flux:

x =
Γg

Γg + Γl
(2.6)
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This is not the only "quality" used in multiphase, and during the development of a
project, the thermodynamic quality (2.7) and the volume quality (2.8) are also usually
calculated:

xth =
hb − hl
hg − hl

(2.7) xv =
Qg

Qg +Ql

(2.8)

In eq 2.7, hb is the bulk enthalpy, while hg and hl are gas and liquid entalphies
respectively. The thermodynamic quality is the only quality that can assume values
that are lower than zero (sub-cooled liquid) and greater than one (over-heated gas).
While in thermodynamic equilibrium, it is equal to the vapor quality. In 2.8 instead,
Qg and Ql are the gas and liquid volumetric flow respectively. When comparing the
definition of mass (2.6) and volume (2.8) qualities, it is clear that they are bounded
by the following relation:

1− xv
xv

=
ρg
ρl

1− x
x

(2.9)

Where ρg and ρl are the densities of the two phases.
Except special cases discussed below, the gas and liquid velocities differ from one

another. It is then convenient introducing the slip ratio, defined as the ratio between
the actual velocities:

S =
ug
ul

(2.10)

This quantity is depended on the configuration assumed by the mixture and can be
used to relate the void fraction to the vapor quality:

1− α
α

= S
1− xv
xv

(2.11)

2.2 Two-Phase Pressure Drop Models
A fundamental aspect of multiphase flows is how to calculate the pressure gradient. As
the slip ratio between the two phases changes, so does the liquid holdup and the liquid
volume fraction (2.11). This quantity is strictly related to the flow regimes, being
highest when in stratified flow conditions and lowest in bubbly condition. Since the
determination of the flow pattern is challenging, different models have been developed
to relive the engineer from the burden of determining it. Needless to say, these models
are a simplification of a real case, and their predictions can even differ in one order of
magnitude from the actual pressure drop of the system.

2.2.1 Homogeneous Flow Model

The concept of homogeneous flow was developed by Soviet scientist in the 1960s. In
the homogeneous flow model, the multiphase fluid is assumed to be an uniform mixture
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(S = 1) with averaged properties of the two fluids. This means that traditional single
phase theory can be applied in order to calculate the frictional pressure drop:

−dpf
dz

= 2
ftpG

2vb
D

(2.12)

The fanning friction factor of the mixture (ftp) can be derived from the Reynolds
number, once a suitable correlation for the mixture viscosity is chosen:

Owens : µtp = µl (2.13)

Cicchitti : µtp = xµg + (1− x)µg (2.14)

MC Adams :
1

µtp
=

x

µg
+

1− x
µl

(2.15)

Since the slip ratio is equal to 1, the void fraction is equal to the volume quality
(xv = α, see eq 2.11). Both the accelerative term and the gravitational term can be
calculated from known design quantities:

−dpg
dz

= ρtpg sin θ = [αρg + (1− α)ρl]g sin θ (2.16)

−dpa
dz

=
d

dx

[
ρg
U2
g

α
+ ρl

U2
l

1− α

]
(2.17)

While the homogeneous model simplifies the problem by trivializing the determination
of the void fraction, it can only be applied when the properties of the two phases
are similar to one another, giving satisfying results when ρl/ρg < 10 or Gg+Gl>2000
kg/(m2s).

2.2.2 Separated Flow Model

Lockhart and Martinelli proposed a model where the two phases display different
properties and flow at different velocities, without interacting with one another. Here
the frictional pressure drop is determined by terms of the two phase multiplier Φ2

L or
Φ2
G:

−
(
dpF

dx

)
= Φ2

L

(
−dpF

dx

)
SL

= Φ2
G

(
−dpF

dx

)
SG

(2.18)

Where (dpF/dx)SL and (dpF/dx)SG are the frictional pressure gradients of the single
phases, as if they were flowing alone inside the pipe. The estimation of the two phase
multipliers is done through the Lockhart-Martinelli parameter X2

LM defined as the
ratio between the pressure gradients of the single phases:

X2
LM =

(dpF/dx)SL
(dpF/dx)SG

(2.19)

Φ2
L = 1 +

C

XLM

+
1

X2
LM

(2.20)
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Φ2
G = 1 + CXLM +X2

LM (2.21)

C is a tabulated quantity, and depends on the single phase flow regime (laminar or
turbulent). In order to calculate the accelerative and gravitational pressure gradients,
the slip ratio is also estimated by terms of X2

LM :

S = k(X2
LM)d (2.22)

Where k and d are empirical coefficients that vary based on the correlation considered.

2.2.3 Drift Flux Model

The models discussed above are a great baseline to estimate the range of the pressure
drop inside a system. In order to further increase the accuracy of our predictions
however, flow pattern dependent models are required. The drift flux model was
introduced by Zuber and Findlay in 1965, and consider the relative motion between
the phases by terms of a kinematic constitutive relation. Using the drift flux model,
the actual gas velocity ug can be expressed as the contribution of a drift term ugj and
the total superficial velocity U:

uG = UGj + C0U (2.23)

C0 is called the distribution parameter, and takes into account for the non-uniformity
of the volumetric flux and the void fraction profiles across the duct. UGj instead is the
drift velocity of the gas and represent the average effect of the local relative velocity
between the phases. Of the model discussed until now, the drift flux model is the
most physically sound, as it takes in consideration the interaction between the phases.
Given C0 and uGj , which are closely related to the flow pattern, the void fraction can
be obtained by combining eq 2.23, 2.5 and 2.4:

α =
UG
uG

=
Ug

UGj + C0U
(2.24)

Once α is known, one can proceed to calculate the pressure drop of the system.
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2.3 Multiphase Flow Regimes
The following section will be dedicated to discuss the physical models developed over
the years to determine the transition boundaries between the various flow regimes.
Aside from being extremely important to understand the problem, introducing physical
quantities of interest in our machine learning models through feature engineering could
help for the generalization of the model. For reference, a summary of the features
employed by the model is reported in Table 2.2

Characteristic quan-
tity

Symbol and equation Description Unit Eq. No.

System’s tilt θ System’s tilt (zero in hori-
zontal configurations)

[deg] (-)

Reynolds number Re = ρDUS

µ
Ratio of inertial forces to vis-
cous forces

[-] (2.30)

Densimetric Froude
number

Fr = Us

(
ρ

gD∆ρ

)0.5

Ratio between inertia forces
and gravity

[-] (2.27)

Weber number We =
U2
SLρLD

σ
Ratio between drag and co-
hesion forces

[-] (2.33)

Eotvos number Eo = ∆ρgD2

σ
Ratio between gravitation
and capillary forces

[-] (2.34)

Lockhart–Martinelli
parameter

X2
LM = (dpF/dx)SL

(dpF/dx)SG
Ratio between the pressure
drop of the two phases as if
they were flowing alone

[-] (2.25)

Chisholm parameter Y = ∆ρgsin(θ)
(dpF /dx)SG

Ratio between gravity forces
and pressure drop of the gas

[-] (2.26)

Dimensionless gas ve-
locity

KG =
FrGRe

1/2
L

cos(θ)
Dimensionless gas velocity [-] (2.31)

Dimensionless liquid
velocity

NL =
fSLFr

2
L

cos(θ)
Dimensionless gas velocity [-] (2.32)

Table 2.2. Utilized characteristic quantities and the corresponding descriptions

2.3.1 Type of regimes

In a two phase system, the geometrical configuration of the interfaces determine the
flow regime (flow pattern). While in single phase flows the laminar and turbulent
regimes should only need to be distinguished, when gas and liquid flow together
inside a pipe, the interaction between the two phases can generate a large number
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of configurations. As the characterization of multi-phase flow regimes can be at
times subjective, there is still some debate towards the actual number of patterns
that can exist inside a pipe [7]. In the present work, the initial classification that
was adopted in the study conducted by Pereya et al [8] has been followed, in which
six different multi-phase flow patterns (provided below and in figure 2.1) are considered:

• Stratified smooth (SS): the liquid and gas phases are completely separated and
the interface between the two phases is flat. Commonly observed in horizontal
pipes in which both gas and liquid phases flow at low velocities. This flow regime
is completely absent in upward inclined pipes.

• Stratified wavy (SW): similar to the SS, liquid and gas are still completely
separated, though, due to the higher liquid or gas velocities, the interface is
now wavy. This flow regime is typical of downward tilted pipes and tends to
disappear in upward inclinations.

• Dispersed bubble (DB): the gas is moving as dispersed bubbles in the liquid
phase. This regime occurs at high liquid velocities, where the turbulence is high
enough to dominate over the buoyancy, entrapping gas particles in the liquid
flow.

• Bubbly flow (B): the gas is dispersed as discrete bubbles in continuous liquid.
This flow regime can only take place in near vertical systems at low liquid
velocities, where the turbulence is not enough to break the bubbles and result
in transition to DB.

• Intermittent flow (I): gas and liquid alternates one another. This is one of
the most common flow patterns and can be present in any type of system
configuration, usually for intermediate liquid and gas velocities.

• Annular flow (A): the bulk of the liquid flows on the wall of the pipe as a film,
while the gas occupies the center of the duct as a continuous phase.
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Figure 2.1. Types of flow regimes

2.3.2 Stratified to non-stratified transition

The transition between stratified to non stratified regime can be described by the
Kelvin-Helmholtz instability. Considering a pipe in stratified flow conditions, in which
a wave of finite length is present, in order to maintain the same flow rate, the gas
will accelerate over the wave’s crest causing its expansion due to a drop in pressure.
On the other hand, the gravity acting on the wave will promote its suppression. The
transition between the regime thus depends on whether the acceleration forces can
become dominant over the gravity ones. Taitel [39] and Barnea [23] proposed the
following dimensionless quantities to determine the transition criterion:

X2
LM =

(dpF/dx)SL
(dpF/dx)SG

(2.25)

Y =
∆ρgsin(θ)

(dpF/dx)SG
(2.26)

FrG = UsG

(
ρ

gD∆ρ

)0.5

(2.27)

The first quantity X2
LM is the Lockhart–Martinelli parameter and is defined as the

ratio between the pressure drop of the two phases as if they were flowing alone. This
parameter, which is widely used to provide an estimation of the two-phase frictional
pressure drop multiplier, is utilized in the present study along with the Chisholm
parameter Y (the ratio between the gravity forces and the pressure drop of the gas
phase), to solve the momentum equations for each phase in stratified flow. In the
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present work, aiming at determining the single-phase pressure drop that is required
for the calculation of both X2

LM and Y, the following correlations have been utilized
in order to determine the fanning friction factor:

Laminar: f =
16

Re
for Re < 2300 (2.28)

Turbulent [42]: f = 0.0625

[
log(

150.39

Re0.98865
− 152.66

Re
)

]−2

for Re > 2300 (2.29)

Where Re is the Reynolds number, which is the ratio between inertial and viscous
forces (Eq. 2.30)

Re =
ρDUS
µ

(2.30)

The third employed quantity, FrG, is the gas densimetric Froude number that
defined as the ratio between the inertia forces and the gravity. In the study conducted
by Taitel [39], this quantity was divided by a cosine. To avoid numerical instability,
quantities divided by the system tilt have been modified. While this approach
might negatively impact the performance of each individual feature, machine learning
algorithms are be able to combine the mentioned information with ease.

2.3.3 Stratified Smooth to Stratified Wavy

In the conditions in which the gas velocity is high, but not elevated enough to satisfy
the Kelvin-Helmholtz instability, waves will form on the surface of the liquid. Tatiel-
Duckler [39] were able to identify a transition criteria based on the dimensionless gas
velocity KG (Eq. 2.31).

KG =
FrGRe

1/2
L

cos(θ)
(2.31)

2.3.4 Stratified wavy to annular

In the particular case of downward-inclined pipes, in which the stratified liquid
level is low and the liquid velocity is elevated, Barnea [23] and Tatiel [39] proposed
that droplets may be torn from the liquid surface and be deposited on the upper
wall initiating the annular regime. This transition has been modeled employing the
dimensionless liquid velocity NL (Eq. 2.32).

NL =
fSLFr

2
L

cos(θ)
(2.32)

2.3.5 Dispersed to non-dispersed bubble transition

The transition from dispersed to non-dispersed bubble has been attributed to two
phenomena: bubble agglomeration and bubble creaming. Since the two mechanisms
are related the surface tension of the bubbles, Pereyra [8] proposed the use of the
following dimensionless groups to determine this transition:
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We =
U2
SLρLD

σ
(2.33) Eo =

∆ρgD2

σ
(2.34)

Eo is the Eotvos number, which is defined as the ratio between the gravitational
and the capillary forces, while We is the Weber number that is defined as the ratio
between the drag and cohesion forces.

2.3.6 Transition to dispersed bubble

In near-horizontal systems, if the turbulence is high enough to dominate over the
buoyancy forces keeping the gas at the top of the pipe, transition to the dispersed
bubble regime can happen. This transition has been modeled by Taitel [39] using the
dimensionless quantity TTB, which is the ratio between the turbulent and buoyancy
forces:

TTB =
(dpF/dx)SL
∆ρgcos(θ)

(2.35)

2.3.7 Annular to non-annular transition

This flow regime transition has been attributed to the liquid blocking the gas core,
which consequently promotes intermittent flow. According to Barnea [23], this
phenomena can be due to the instability of annular flow or spontaneous blockage
due to the wave growth in the liquid film. These two phenomena can be modeled
employing the liquid holdup αL parameter in annular flow, which is obtained by
solving the following non-algebraic equation [23] (Eq. 2.36):

Y =
1 + 75αL

(1− αL)2.5αL
− 1

α3
L

X2
LM (2.36)
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Chapter 3

Machine Learning Theory

The most important and computationally time consuming part of the pipeline is
without doubt the model optimization step. When trying to solve a classification
problem through machine learning, we are actually dealing with a function estimation
problem. Suppose of having a systems consisting of "outputs" y and a set of "input"
features x = {x1, ... , xn}. Given a training sample {yi, xi}Ni of known (y,x) values,
the aim of a machine learning algorithm is to find a function F∗(x) that can estimate
y using x as an input. As the various strategies to obtain F∗(x) differ based on the
machine learning model adopted, multiple solutions are offered for the same estimation
problem. Unfortunately, the best machine learning algorithm and its hyperparameters
cannot be known a priori. The only reasonable solution for this optimization step is
then to make educated guesses on the types of machine learning algorithms that can
best solve our classification problem, and tune their hyperparameters using suitable
heuristic techniques. This chapter is then dedicated by to describe the theory behind
the selected algorithms explored during this thesis.

3.1 Ensemble Methods
Ensemble methods are a family of powerful machine learning techniques widely used
to solve classification problems when the data is in tabular form [43]. They are some of
the most performing algorithms on Kaggle [44], a site that host competitions between
data scientists, that gives an unbiased estimate on the performance of the various
machine learning algorithms. While a wide variety of ensemble methods are present
in literature, the idea behind them is the same: as one often consults multiple experts
in order to make a difficult decisions, ensemble methods aggregate the outputs of
multiple models to generate a prediction [43]. How the "base" models are generated,
and the method used to aggregate the outputs will differentiate the various ensemble
methods discussed below.

3.1.1 Boosting

Boosting is an ensemble technique based on converting a series of weak learners in a
strong learner [43]. A weak learner is defined as a model that only slightly perform
better than a random guess, and is typically a simple function, like a decision tree
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with limited depth. Boosting differentiate itself from other ensemble technique in that
these weak learners will be trained in a sequential fashion, and each new model will
aim to correct the errors of the previous ones. Given a dataset S composed of features
x = {x1, ... , xn} and a target y, boosting tries to determine a function F∗(x) that
can estimate y using x as an input, such that over the joint distribution of all (y,x)
values, the expected value E of some specified loss function Ψ(y, F (x)) is minimized:

F∗(x) = arg min
F (x)

Ey,xΨ(y, F (x)) (3.1)

The loss function Ψ is chosen to be differentiable, for regression problems is usually
set to the least squares, while for classification problem with K classes it is usually a
log-loss function:

Ψ(y, F (x)) = −
K∑
k=1

yi,k log(pi,k) (3.2)

Where y is a binary indicator, set to one when k is the correct class, multiplied by
the predicted probability p of k given given observation i.

Boosting will try to approximate the function F (x) using multiple weak learner h(x;a):

F(x) =
M∑
m=0

βmh(x; am) (3.3)

Again, "base learners" are usually simple functions of x, with parameters a = {a1, ...,
an}, that will perform poorly if used alone. The expansion coefficient {β}M0 and the
parameters {am}M0 are used in order to fit the training data in a forward "stage wise"
manner. In the first step, an initial random guess for F 0(x) is generated, and then
updated using the following schema for m = 1,2,...,M :

(βm, am) = arg min
β,a

N∑
i−1

Ψ(yi,Fm−1(xi) + βh(xi; a)) (3.4)

and

Fm(x) = Fm−1(x) + βmh(xi; a) (3.5)

Solving equation 3.4 can be challenging, and while other techniques are present in
literature (eg. AdaBoost [45]), here the methodology adopted by gradient boosting is
described, as this technique will generate the best performing algorithm of the whole
pipeline. In order to determine the solution to said equation, gradient boosting [30] [46]
uses a two step procedure. First, the function h(x; a) is fit using least squares:

am = arg min
a,ρ

N∑
i=1

[ỹim − ρh(xi; a)]2 (3.6)

where ỹim are the "pseudo"-residuals:

ỹim = −
[
∂Ψ(yi,F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

(3.7)
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Once h(x; am) is determined, the optimal value for β m is calculated by minimizing
the loss function:

βm = arg min
β

N∑
i=1

Ψ(yi,Fm−1(xi) + βmh(xi; am)) (3.8)

Using this strategy, solving eq 3.4 becomes trivial, by using first a least squared
method 3.6 and then a single parameter optimization 3.8. As the only constraint for
this strategy is that the loss function Ψ has to be differentiable (eq 3.7), this strategy
is suitable for both classification and regression problems.

In gradient tree boosting, the base learners h(x; a) are regression trees of limited
depth L. Since the depth of these tree is limited, they will be characterized by high
bias, but will be extremely fast to train, and won’t make any strong assumption on
the size of the dataset. At each m-th iteration, a regression tree will divide the x
space in L-disjoint regions {Rlm}Ll=1 and predict a separate constant value (the flow
regime in our problem) in each one:

h(x; {Rlm}Ll ) =
L∑
l−1

ȳlml(x ∈ Rlm) (3.9)

Where ȳlm is the mean of (3.7) in each region of Rlm. The parameters {am}M0 are
the splitting variables and split points defined by the tree. Since eq 3.9 predicts a
constant value for ȳlm, the outputs of the function Fm−1(x) can at best modified by a
quantity γlm:

γlm = arg min
γ

∑
xi∈Rlm

Ψ(yi,Fm−1(xi) + γ) (3.10)

In order to avoid overfitting, a constant learning parameter ν is used to update formula
of Fm−1(x) (eq 3.5), that then becomes:

Fm(x) = Fm−1(x) + νγlml(x ∈ Rlm) (3.11)

This "shrinkage" parameter, can assume values between 0 and 1. Determining the
optimal value for ν can be done through grid search or other hyper-parameters
optimization techniques, but usually small values will lead to a better generalization
error, as overfitting is avoided.

As stated before, gradient tree boosting is not the only type of boosting that can be
found in literature. Another popular option is adaptive boosting, that will modify the
weights βm in eq 3.3 in order to give greater emphasis to the base learners that are
able to correctly classify the errors of the previous models.

XGBoost

Extreme gradient boosting (XGBoost [47] [31]) is a scalable, open source, end-to-
end tree boosting system. This package has been extensively used by the scientific
community in order to win data mining and machine learning competitions. XGBoost
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follow the theory discussed above, and builds the candidates decision trees of each
step in a parallel fashion. Additionally, XGBoost offers the possibility of using a
regularized loss function, built in order penalize model complexity and improve the
generality. The hyperparameters for XGBoost are then reported in 3.2

XGBoost hyperparameters Description Type Range

num-of-trees Number of boosting rounds Int 50 - 300

max-depth Maximum depth of each tree Int 1 - 9

eta Step size shrinkage Float 1e-8 - 10

gamma Minimum loss reduction re-
quired to make a further par-
tition on a leaf node

Float 1e-8 - 10

lambda L2 regularization term Float 1e-8 - 10

alpha L1 regularization term Float 1e-8 - 10

Table 3.1. XGBoost hyperparameters and their explored ranges in this work

LightGBM

LightGBM [25] [32] is another library for boosted trees published by Microsoft.
While XGBoost provided remarkable improvements when compared to other gradient
boosting machines in terms of scalability, it still required to analyze all the samples
and the features in order to generate a split of a decision tree. LightGBM reduces the
time required to build said split by using Gradient-based One Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). GOSS is based on the idea that under-trained
instances, characterized by a large gradient, will be able to better minimize the loss
function. When building a split, GOSS will then only select those instances, as well
as a percentage of the other ones (that will be scaled to preserve the original data
distribution). EFB on the other hand is used to reduce the number of features to
analyze. When the data is high-dimensional, the probability of having mutually
exclusive features is large. EFB will then bundle those feature together, effectively
reducing the time needed to build the tree. Given these two implemented techniques,
the trees built using LightGBM will be different from the ones of XGBoost, and a
difference in the performance of the two algorithms has to be expected. Nonetheless,
this difference will be minimal since they still belong to the same class of ML models.
The hyperparameters for LightGBM are then reported in 3.2
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LightGBM hyperparameters Description Type Range

num-of-leaves Maximum number of leaves
in each tree

Int 2 - 300

learning-rate Step size shrinkage Float 1e-8 - 10

num-of-trees Number of boosting rounds Int 50 - 300

min-samples-leaf Minimal number of data in
one leaf

Int 1 - 300

lambda L2 regularization term Float 1e-8 - 10

alpha L1 regularization term Float 1e-8 - 10

Table 3.2. LightGBM hyperparameters and their explored ranges in this work

Figure 3.1. Bagging process overview. In the first step the training data is divided in multiple
sub-samples, and each one of them is used to individually grow a decision tree.
The ensemble then perform prediction by majority voting.
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3.1.2 Bagging

Bagging [43], or bootstrap aggregation (figure 3.1), is an ensemble technique that is
based on the parallel training of multiple models using different parts of the same
dataset S. In the first part of the algorithm, sampling with replacement (bootstrapping)
is applied to the dataset, generating a subset Si that will be used to train a single
model hi. Typically, this model is decision tree, that will be fully grown, as the data
used for its construction is limited. Once the whole ensemble has been generated, the
output of the various model is aggregated, and classification is performed through
majority voting.

Random Forest

Random forest [26] is a machine learning algorithm based on bagging, and represent
one of the state-of-the-art ensemble method. In addition to bootstrapping aggregation,
random forests introduce a randomized feature selection during the training process
of each tree. The hyperparameters for Random Forest are then reported in 3.3. The
pseudo code for random forests is instead reported in Algorithm 1. The algorithm
starts with a an empty ensemble H, a specified number of trees B, and a dataset S
with F features. For each individual tree, a subset Si is extracted from the whole
dataset and used for the training process. At each node, a small subset of features f
is chosen (the original author suggested to be around the logarithm of F ) and used to
generate the split. Once the tree hi is built, it is added to the ensemble H.

Algorithm 1: Random Forest
S ← {(x1, y1), ..., (xn, yn)}
F ← number of features
B ← number of trees
H ← ∅
for i = 1, ..., B do

Si ← bootstrap sample from S
hi ← ∅
for Each node do

f ← subset of F
m ← split with the best feature in f
hi ← hi ∪ {m}

end
H ← ∪ {hi}

end

20



3.1. Ensemble Methods

Random Forests hyper-
parameters

Description Type Range

num-of-trees Number of trees in the
ensemble

Int 10 - 1000

max-depth Maximum depth of
each tree

Int 10 - 150

criterion How to measure the
quality of a split

Categorical Gini or Entropy

min-samples-split The minimum number
of samples required to
split an internal node

Int 2 - 50

Table 3.3. Random Forest hyperparameters and their explored ranges in this work

Figure 3.2. General procedure for blending/stacking. Models are trained with an initial
dataset, and their output are then combined using a second level learner. This
model combine the output of the base model using an holdout validation dataset
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3.1.3 Blending and Stacking

Blending and stacking [33] are meta learning machine learning techniques. The
difference between these two methods only relies on weather cross validation data
(stacking) or a new set (blending (3.2)) is used to train the meta classifier. While
previously discussed techniques aimed at training a large number of relatively simple
models like decision trees, the scope of blending and stacking is to aggregate a relatively
small number of strong estimators to further increase the overall performance. There
is no constrain in the type of models that can constitute the ensemble: it can contain
neural networks, support-vector-machines, gradient boosting machines, random forests
etc. The overall process of blending is reported in figure 3.2. In the first step, a series
of already trained models δ = {δ0, ..., δJ} is used on a new dataset S = {x, y}m0 and
a series of output vectors ŷ = {P0(x), ..., PJ(x)} is generated. Then, using a second
level learner, the output vectors are combined such that a chosen objective function
Φ is maximized (or minimized):

F∗(x) = arg max
F (x)

Φ(y, ŷ) (3.12)

When compared to traditional ensemble techniques, the aim of blending is just to
train a second level learner using the predictions of the already trained models. To
this end, stacking and boosting can either employ complex second level learners (such
as Random-Forests, Gradient-Boosting-Machines etc) or relatively simple ones, such
as logistic regression. The benefit of the latter is that it can determine the optimal
weights w = {w0, ..., wj} for each single first level model, making this technique more
explainable. Additionally, it should be underlined that both learning and stacking
will not act on the already trained models, but will only combine them in the most
performing manner.

3.2 Neural Networks
Neural networks [27] are a type of machine learning technique heavily employed for
classification tasks. They are often used for speech recognition, time series analysis or
image classification, where their performance remain to this day mostly unmatched [28].
The concept of neural networks stems from the idea of mimicking the human brain, by
creating a system composed of signal processing elements (the neurons) interconnected
with each-other using synaptic weights [27]. Given their ability of solving complex
problems, over the years extensive effort has been put to generate new architectures
and building blocks that can be used inside a network, allowing them to be far more
flexible than other machine learning technique. The design of a neural network then
require a strong domain knowledge, in order to consider only those architectures
that can properly solve the problem considered. When the data is in tabular form,
and there is no temporal relation between the inputs, the most used architecture is
without doubt the Multi-Layer-Perceptron (MLP), which employ multiple perceptrons
in a sequential fashion in order to preform classification. Very recently however, the
field of deep learning has been changed by attention based networks, that supposedly
exceed the performance of traditional networks in many applications [48]. Thus, the
performance of an attention based network: Tab-Net [28] [36], is also explored.
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Figure 3.3. A fully connected feed-forward neural network

3.2.1 Multi-Layer-Perceptron

Multi-layer perceptrons [27] are the most common type of neural networks. Their
architecture is relatively simple, as the name suggests, they are composed of multiple
layers of perceptrons (fig 3.3). Their feed-forward structure allow the to only be
passed from one layer to the next one, there is no feedback like in recurrent neural
networks. When a vector {x} is passed through the network, a series of different
activation functions transform the information, obtaining the function F (x):

F(x) = f (n)(f (n−1)(...f (1)(x))) (3.13)

Where n is the number of layers in the network. Typically, these activation functions
are different from each other, and can be sigmoids, rectified linear units or hyperbolic
tangents. The activation function of the output layer on the other hand is chosen in
order to match the form of the target y. For classification purposes, it is usually a
soft-max function:

P(y=j | x) =
ex

Twj∑K
k=0 e

xTwk

(3.14)

During the training of the network, the function F (x) is driven iteratively to match
the real unknown function F ∗(x) by minimizing a suitable loss function, like the one
defined in eq 3.2. The aim of the training procedure is the same described for ensemble
methods (eq 3.14), and is usually done through stochastic gradient descent. As the
convergence of the network is not guaranteed and the training of these models is
expensive (both in terms of time and resources), choosing the correct hyperparameters
is fundamental, as well as understanding what are the unpromising trials that needs to
be pruned. Notably, there is no constrain on the output of middle layers constituting
the network, effectively making this systems a "black-box". In this thesis, the multi-
layer-perceptrons were generated using Tensorflow 2.4.1 [34]. The only modification
to the architecture discussed above was the addition of a batch normalization layer
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at the beginning of the network, to avoid scaling the input features beforehand and
the possibility of adding dropout layers. The hyperparameters for the MLP are then
reported in Table 3.4

MLP hyperparameters Description Type Range

num-of-layers Number of layers in the neu-
ral network

Int 1 - 7

num-of-units Number of neurons in each
layer

int 64 - 256

dropout Fraction of the input units
to drop in each layer

Float 0 - 0.4

learning-rate Learning rate for the net-
work

float 1e-3 - 1e-1

epochs Number of training epochs Int 100 - 1500

optimizer Type of optimizer used dur-
ing the training

Categorical Adam

loss Type of loss used for training Categorical Cross-entropy

batch-size Number of samples each it-
eration

Int 8192

Table 3.4. MLP hyperparameters and their explored ranges in this work. The number of
units and the dropout rate are different for each layer.
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Tab-Net hyperparameters Description Type Range

steps Number of decision blocks in
the architecture

Int 2 - 5

gamma Coefficient for feature
reusage in the masks

Float 1 - 2

n-independent Number of independent
Gated Linear Units layers
at each step

Int 1 - 3

n-shared Number of shared Gated
Linear Units layers at each
step

Int 1 - 3

n-d Width of the decision predic-
tion layer

Int 8 - 64

n-a Width of the attention em-
bedding for each mask

Int 8 - 64

learning-rate Learning rate for the net-
work

float 1e-3 - 1e-1

epochs Number of training epochs Int 100 - 1500

optimizer Type of optimizer used dur-
ing the training

Categorical Adam

loss Type of loss used for training Categorical Crossentropy

batch-size Number of samples each it-
eration

Int 8192

Table 3.5. Tab-Net hyperparameters and their explored ranges in this work.

3.2.2 Tab-Net

The type of neural network discussed above, is a great introduction to discuss attention
based networks like Tab-Net [28]. While the logic behind the training is still the same
(back-propagation with a suitable optimizer), architecture like tab-net are no longer
made of only perceptrons, but additional elements, like feature transformers and masks
are added between each layer. In this architecture, the aim is no longer to emulate the
human brain, but to obtain the benefits of decision trees, such as the ability to use only
the most performing features, in a deep learning setup. This is achieved through fea-
ture selection blocks, that will learn how to restrict the numbers of available features in
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Figure 3.4. Tab-Net architecture

each step, much like a decision tree uses the most performing feature in each node split.

The schematic of Tab-Net is reported in figure 3.4. The network takes as input
raw data, and uses batch normalization and categorical feature embedding as a prepro-
cessing step. The pre-processed data is then passed through all the N decision blocks
of the network. Each of these blocks also take as an input the processed information
of the previous step, in order to train a learn-able mask along with an attentive
transformer to restrict the features used in each step. This attentive transformer
is composed of a fully connected layer, a batch normalization and a sparse-matrix
normalization block (figure 3.5), which control how many times a feature can be used
throughout the net via a relaxation parameter γ. When γ = 1 a feature can be used
only in a single step, while as the value of γ increases, more flexibility is provided
to the data. Once the pool of restricted feature has been selected, they are passed
through a feature transformer block. This unit is composed of a part shared across all
the steps of the network in order to enhance robustness during training, and a part
that is specific to each step. The length of said block can be tuned through suitable
hyperparameters, and is always composed by a series of fully connected layers, a batch
normalization and gated linear units. Once the information has been transformed, it is
passed through a Rectified Linear unit and added to the output of the previous steps,
following the logic of decision trees ensembles. The hyperparameters for Tab-Net are
then reported in 3.5
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Figure 3.5. Feature transformer and attention transformer architecture
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Chapter 4

Machine Learning Based Pipeline

When dealing with a machine learning problem, one has to take in consideration that
most of the time the dataset used to train the algorithms cannot cover all the possible
configurations that a model could encounter over time. Moreover, while one estimator
might perform extremely well on the training and test data, making mathematical
assumptions on its generality capabilities is often impractical. As new experimental
evidence becomes available, it is then essential to guarantee a simple methodology
to update the optimal machine learning pipeline. In the present work, in order to
obtain the optimal pipeline, a multi-staged iterative procedure has been implemented
and conducted which includes the following steps: data cleaning, feature engineering,
model selection, feature selection, model evaluation and model deployment (figure 4.1).
Accordingly, the general methodology that has been adopted to train and optimize
the pipeline is described and the theoretical and practical aspects behind some of the
most important step of the pipeline are illustrated.

Figure 4.1. A schematic of the machine learning pipeline developed for this thesis

4.1 Methodology
In the first step, considering the governing physical phenomena and the recommenda-
tions that have been provided in the previously conducted physical phenomena-based
studies (discussed in section 2), a series of additional features are generated and added
to the dataset. Next, the dataset is divided into the training (80% of samples) and
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testing (20% of samples) sets. The training set, employing a 5 fold cross-validation
method, is used to optimize the pipeline. The test set is instead utilized to evaluate the
performance of the proposed pipeline in estimating the flow regime on a set of points
for which it has not been trained and optimized. In order to preserve the distribution
of the classes, the generation of each fold (validation and testing) is performed using
a stratified approach. The model selection procedure is then conducted and the most
suitable algorithm, while utilizing all of the features, is identified. In order to give the
same importance to all the classes, in the cross-validation procedure, SMOTE [37]
is applied to each fold of the training data. Next, feature selection is applied to the
dataset and employing the Sequential Forward Floating Selection (SFFS) approach,
features are progressively added until a plateau in the cross-validation accuracy is
achieved. Finally, the selected subset is utilized to repeat the algorithm optimization
step and the most promising algorithm resulting in the highest accuracy is identified.

4.2 Data Pre-processing

Table 4.1. Summary of the studies in the data base.

Authors Fluids ρl (Kg/m3) ρg (Kg/m3) µl (Pa·s) σ (N/m) d(cm) θ (deg) Data Points

Shoham [9] Air-Water 1000 1.18 0.001 0.070 2.54 and 5.1 -90 to +90 5676

Lin [10] Air-Water 1000 1.12 0.001 0.070 2.54 and 9.54 0 141

Kouba [11] Air-Kerosene 814 3.00 0.0019 0.029 7.62 0 53

Kokal [12] Air-Oil 860 4.13 0.007 0.032 2.58 to 7.63 -9 to +9 1668

Van Dresar [13] Hydrogen-Water 77 0.13 0.00001 0.070 0.874 1.5 83

Wilkens [14] CO2-Salty Water 1025 to 1059 5.02 to 14.90 0.001 0.070 9.72 -2 to +5 204

Meng [15] Air-Oil 883 to 889 1.49 to 2.16 0.0047 to 0.0063 0.03 5.01 -2 to +2 153

Manabe [16] Natural Gas-Oil 789 to 809 8.10 to 26.90 0.0032 0.015 5.49 0 to +90 247

Mata [17] Air-Oil 879.8 1.3 0.483 0.03 5.08 0 80

Adbuvayt [18] [19] Nitrogen/Air-Water 1000 5.52 to 23.4 0.001 0.07 5.49 and 10.64 0 to +3 443

Omebere-Iyari [20] Nitrogen-Naptha 700 and 702 23.4 and 104 0.0003 0.01 18.9 90 98

The experimental database considered for this study is the one collected by Pereyra
et al. [8], which consists of the most important studies conducted on flow pattern
prediction. Each point in the dataset contains information about the system operating
conditions (pressure (P), temperature (T), internal diameter (d), inclination angle
(θ)), the fluids superficial velocities (UsL and UsG) and the fluid properties (density
(ρ), viscosity (µ), superficial tension (σ)). A summary of this database is reported
in Table 4.1. Most of the data points derive from a study conducted by Shoham [9]
in 1982, that investigated the behaviour of air-water systems, in 50.8 and 25.4mm
pipes, under all possible system tilts. Another author, Lin [10], also studied air-water
systems, but used 25.4 and 95.4mm pipes, considering only horizontal configurations.
The data from Kouba [11], deals with slug flows in air-kerosene systems. The work
of Kokal [12] constitute another major part of the database, and it focuses on air-oil
systems in near horizontal configurations, under different values of pressure. Next,
Van Dresar [13] investigated the behavior of cryogenic fluids under conditions of low
mass and heat flux. Wilkens [14], in 1997, studied the effects refers to CO2 and salty
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water systems in a 97.2 mm diameter pipe. Meng [15] investigated low liquid loading
in wet gas pipelines. The data from Manabe [16] contains information about the
relation between pressure and flow patterns. Mata [17], in 2002, created a flow pattern
map for high viscosity oil and water in an horizontal pipe. Abduvyant [18] studied the
effects of pressure and pipe diameter on gas-water in near horizontal systems. Lastly,
Omebere [20] studied flow patterns in large diameter vertical pipes at high pressures.

4.2.1 Exploratory Data Analysis

Using the collected dataset, the first step of the implemented procedure is to perform
data analysis. The aim of this step is to identify and correct erroneous values, and to
provide useful insights on the data. To this end, in figure 4.2 the histograms of some of
the most important variables according to phenomenological models are reported. It
is evident that the dataset provides a wide range of working configurations, but most
of the data points refer to the intermittent flow regime. As an unbalanced dataset
may result in biased models, proper data augmentation techniques will be necessary in
future steps. In particular, for this thesis, Synthetic Minority Oversampling TEchnique
(SMOTE [37]) is used to perform oversampling of the minority classes. It should
be underlined that this method is used exclusively on the training data, and both
validation and testing frames will not have any type of synthetic points in them,
avoiding to generate optimistic expectations [21].

Figure 4.2. Distribution of some of the most important variables in the database

Aside from constructing useful graph to depict the state of the data, exploratory
data analysis is also essential to identify what are possibles outliers of our dataset. In
fact, even if the data used for this thesis is taken from a renowned journal, and hence
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passed peer review, some values were found to be incorrect. For this specific problem,
it should be underlined that the dataset is clearly compiled by an human using a
spreadsheet, and thus common transcription errors are present. Some of these errors
can be easy to spot (for example, the surface tension from the study of Abduvayt [18]
is actually 0.070 N/m, it does not reach the absurd value of 230.070 N/m), while
other require more advanced approaches to be identified. In particular, we first used
Principal Component Analysis (PCA) to collect possible outliers. This techniques
can be used to reduce the number of dimension while keeping as much variance as
possible. Then, by hashing the system operating conditions we recreated the various
multiphase flow maps in order to spot all the remaining incorrect points not identified
using previous technique. It should be underlined that the identified outliers were
modified (or removed) exclusively when the information of the original studies did not
match the database’s one. All other outliers, that were due to exotic experimental
configurations, but still constituted valid evidence, were kept.

Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised technique that aims at reduc-
ing the dimensionality of a problem while preserving the majority of the information.
The idea behind PCA is to project the data in a subspace which preserves as much
variance as possible. In order to achieve this goal, first the mean of the data and the
variance-covariance matrix are calculated:

X =
1

N

N∑
n=1

Xn (4.1)

And:

S =
1

N − 1

N∑
n=1

(Xn −X)(Xn −X)T (4.2)

As this matrix is symmetric by definition, it is always possible to determine a series
of real positive eigenvalues λk and eigenvectors ek. These eigenvalues are calculated
and sorted in descending order, such that the largest λ1 is the first principal component.
Each principal component λk will then capture a portion of the total variance equal
to:

Explained Variance =
λk∑
i λi

(4.3)

The feature space can then be projected using the first k principal components
Ek = (e1, ..., ek):

X̃ = XEk (4.4)

Notably, as the eigenvectors are calculated using the co-variance matrix S, it is
clear that before applying the PCA the data needs to be normalized if the scales of
the variables are different, like the ones employed in this work.
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Figure 4.3. Variance explained by the principal components

In figure 4.3, the results of PCA are reported, and it is evident that most of the
variance is explained by the first few principal components. The graph of the first
two principal components is reported in figure 4.4. It is evident that some outliers are
present, that needs to be investigated. In particular, cluster of points that are far from
the majority of the data will most likely represent exotic experimental conditions,
while lone data points are most likely associated with transcription errors. In figure 4.4
the same image is reported, by isolating the stratified wavy regime. It is evident that
three data points are widely distanced from the rest of the cluster. Unsurprisingly,
they were found to be incorrect, and have hence been removed. However, the same
logic cannot be applied for all the data points of interest identified through PCA. In
fact, some of the outliers for the intermittent flow regime were found to be perfectly
valid data points, so they have been preserved. From PCA, it is also evident that by
projecting the features in the principal component space, the flow patterns can be
somewhat separated. While this could be an argument towards including principal
components as features to enhance the performance of the various machine learning
model, they are void of any physical significance, and have hence been employed for
outliers detection/data-visualization purposes only.
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Figure 4.4. Feature space visualized using the first and the second principal components
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Figure 4.5. Details on the stratified wavy regime. Three points are clearly far from the
cluster
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Map Analysis

After the removal of incorrect data points identified through the employed outlier
detection techniques, it was clear from the analysis of the results that some errors in
the dataset were still present. These errors are not outliers, but are related to clear
transcription errors, where the columns of similar features are inverted, such as the gas
and liquid superficial velocities. To this end, the only method able to identify these
errors is through visual inspection. This was achieved first by grouping the dataset
by experimental setup. In particular, this step was performed by hashing together
pressure, temperature, surface tension, internal diameter, system tilt. Then, through
visual inspection, every map was analyzed to check weather or not it is consistent
within itself. It should be underlined that this technique is far from being perfect, as it
cannot be automatized. Nonetheless, the dataset employed for this study is relatively
small, so visual inspection can be performed without being extremely burdensome.
An example of incorrect data points uncovered with this method is reported in figure
4.6 and 4.7. It is evident that the liquid and gas superficial velocities columns were
inverted for the dispersed bubbly regime, as the patterns on the corrected map actually
match reasonable experimental evidence [23].

Figure 4.6. Data in Shoham study (2.54cm ID, 0.5° upward tilt): the superficial velocities
for the dispersed bubbly regime are clearly swapped
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Figure 4.7. Corrected multiphase flow map

4.2.2 Feature Engineering

Following the data cleaning procedure, the next step in the implemented procedure is
to introduce the physical quantities of interest discussed in chapter 2, summarized
in Table 4.2. It should be underlined again that some of the dimensionless features
were slightly modified: any cosine/sine at the denominator was removed for numerical
stability as the database contains vertical and horizontal systems. By performing non
linear transformation of the "basic" features, the aim is to allow the various machine
learning models to leverage the known physics in order to generalize better.

Basic Features P T ρl ρg µl µg σ d θ Usl Usg

From Physical Models ReG ReL FrG FrL X2
LM Y KG NL We Eo TTB αL

Table 4.2. Physical features employed

Once feature engineering is applied, the dataset contains a total of 13 features.
Needless to say, most them are redundant, and by no means are all required to generate
a strong model. However, as one of the aims of the pipeline is to determine what are
the most important physical quantities, those features are only be used in the first
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optimization step. Later on in the implemented procedure, feature selection methods
are applied, and the final model only uses but a fraction of them.

4.2.3 Data Visualization with t-SNE

While principal component analysis underlined the presence of strong outliers in the
dataset, its ability of differentiating the various classes in a two or three dimensional
space is limited, as it is not actually its main purpose. Once the data has been cleaned
from incorrect values, it is also important to grasp the relative position between the
classes. This step is interesting in that it can be used to validate the assumptions
derived from theory. To this end, t-SNE [49] was used for this work. The aim is
similar to PCA in that we are also trying to reduce a highly dimensional data set
X = {x1, x2, ..., xn} in a two or three dimensional space y = {y1, y2, ..., y3} that can
easily be displayed in a scatter plot. This technique is based on Stocastic Neighboor
Embedding [50], that converts the high-dimensional Euclidean distances between
two points xj and xi into a conditional probability pi|j. This quantity represents
the probability for xi to pick xj as its neighbour if neighbours were selected using a
Gaussian probability density function centered in xi:

pj|i =
exp(−||xi − xj||2/2σ2)∑
k 6=i exp(−||xk − xj||2/2σ2)

(4.5)

It is clear that for near data points, this probability is relatively high, while it tends
to disappear as the euclidean distance starts to increase. Notably, this approach can
also be applied in order to calculate the similarity between two points in the reduced
feature space. In t-SNE this similarity is calculated using a Student t-distribution
with one degree of freedom:

qj|i =
(1− ||yi − yj||2)−1∑
k 6=i(1 + ||yk − yj||2)−1

(4.6)

The aim of t-SNE is then to map X to y such that the conditional probability
between all the points is preserved as much as possible. The goodness of the projection
can then be estimated through the Kullback-Lieber divergence over all the data points:

C =
∑
i

KL(Pi|Qi) =
∑
i

∑
j

pj|i log
pj|i
qj|i

(4.7)

The minimization of equation 4.7 is performed by means of gradient descent, and
the mapping is obtained.

The t-SNE technique was used to map the feature space in a two dimensional space
(figure 4.8) and a three dimensional space (figure 4.9). As expected, the relative
position captured by this technique reflect the one from traditional multiphase flow
maps:

• Intermittent (I) regime neighbors all other classes

• Stratified regimes (SS and SW) are close to each other
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• Annular (A) flow confines with (SW) and (I)

• Dispersed bubbly (DB) and Bubbly (B) are mostly isolated from other classes,
with the exception of (I)

Even while being an unsupervised method, the t-SNE is able to cluster the various
classes effectively, and the majority of the data points reflect the behaviour expected
from theory.

Figure 4.8. t-SNE projection: two components
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Figure 4.9. t-SNE projection: three components

4.2.4 Feature Scaling

Another important step to mention when performing data preprocessing, is feature
scaling. While most of the time this step is applied to the dataset before the training
of the estimators, in this specific problem, it is omitted. This choice is due to the
nature of the machine learning algorithms employed for this study: ensemble methods
are based on decision trees, that are not influenced by the scale of a feature, and the
neural networks employed actually have a batch normalization layer at the beginning.
By removing the feature scaling step, we can avoid making assumption on the shape
of the data, as well as to avoid potential pitfalls caused by information leakage across
the dataset.

4.3 Model Optimization
Once the data is pre-processed, the next step is to generate an optimized machine
learning model. As discussed in chapter 3, for a general problem, the best performing
model and its corresponding hyperparameters cannot be known a priori: the only
reasonable solution is to train multiple classifiers and compare them using a suitable
metric. In the interest of time, we limited our search to the algorithms described
in chapter 3, and tuned their hyperparameters using a Bayesian approach. For
the latter goal, Optuna [24] was employed. The choice of using this platform is
related to its flexibility, ease of use and most importantly the possibility of performing
Bayesian inference in the optimization process. When compared to traditional heuristic
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techniques such as grid search, Bayesian approaches have the advantage of being able
to predict the most promising set of hyperparameters using information from previous
iterations (trials), obtaining the optimal solution with fewer iterations. To optimize
the hyperparameters of an estimator, Optuna uses a custom defined objective function,
to score the performance of the various models, and a sampler, to decide the next set of
hyperparameters. The chosen objective function for the pipeline is the cross validation
accuracy of the generated estimator, to be maximized. The sampler instead is a tree
pazer estimator [51] [52], that fits two different Gaussian mixture models (GMM) to
the previous hyperparameters of the study. The first GMM (l(x)) is fitted to those
parameters associated with the best objective function values, while the second (g(x))
is associated to the remaining ones. At each iteration, the hyperparameters are chosen
such that the ratio l(x)/g(x) is minimized. Using this approach, the algorithm will
spend more time to search the hyperparameter space near optimal regions, neglecting
zones where it tends to perform poorly.

Figure 4.10. Optuna process overview

While the Bayesian sampler alone already increase the hyperparameters search perfor-
mance, it is often useful to prune unpromising trials. To this end, a median pruner was
chosen: if the validation accuracy of a single fold is lower than median of the previous
trials, the estimator is discarded. A sample output of Optuna is reported above (figure
4.10). It is evident that at the beginning of the optimization, the hyperparameters
are chosen randomly as reflected by the value of the objective function. As the study
progresses however, unpromising trials are pruned, and the objective function tends
to assume values near its optimum.

4.3.1 Utilized Metrics

In order to evaluate the performance of the generated machine learning models,
accuracy score was used. In a classification context, this metric is defined as the ratio
between the samples classified correctly and the total number of samples:

Accuracy =
Correct Classifications

Total Number of samples
(4.8)
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While this metric is indeed suited to describe the overall performance of the model,
in unbalanced problem like this one, it can be misleading. For this reason, when
discussing the performance of the proposed pipeline, the macro averaged F1 score
is also reported. Defined as the harmonic mean between precision and recall, this
quantity is able to can clearly show if the model has some bias towards any type of
regime. When considering a single class ’j’, precision is defined as the ratio between
the correctly labeled element (TP) among the relevant ones (TP and FN):

Precisionj =
TPj

TPj + FPj
(4.9)

Recall is instead the ratio between the TP and the total number of elements classified
as positives (TP and FP):

Recallj =
TPj

TPj + FNj

(4.10)

The F1 score of the class j is then:

F1j = 2 · Precisionj · Recallj
Precisionj + Recallj

(4.11)

The macro averaged F1-score is the unbiased mean of the single class F1-score values:

F1 =

∑J
j F1j

J
(4.12)

By using the macro averaged metric, we give the same importance to all the regime
types, by assuming that we have no preference in being able to detect one more than
the others.

4.4 Feature Selection
Once the first model optimization step is completed, it is now time to focus on
removing redundant or useless features. The aim of reducing the dimensionality of the
problem is two-fold: first the model will generalize better once the irrelevant features
and the noise are removed, then the model will also be easier to explain and will be
less computationally demanding [53]. Aside from embedding methods (that depends
on the type of model used), feature elimination methods can be broadly classified
into filter and wrapper methods [53]. The first category relies on a suitable ranking
criterion to perform feature selection by ordering, removing all the features that do
not pass a certain threshold. While these methods are fast, the selected subset might
not be optimal in that redundant features might be chosen. Wrapper methods on the
other hand will use the predictor as a black box, and the predictor performance as
the metric to evaluate the goodness of the variable subset. These methods are able
to take into consideration the interaction between the variables, and the subset will
not include redundant features. The main drawback of these type of algorithms is
that they are computationally expensive, so they may be applied only if the dataset
contains only a small number of features. A good compromise can then be applying
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first a filtering method, that will eliminate irrelevant features, and then a wrapping
method that will discard the redundant ones.

4.4.1 Analysis of Variance

Analysis of variance (ANOVA) is a statistical method used to compare the difference
in means between classes and reject the null hypothesis. It is widely used for filtering
feature selection [54] [55], as it provide a robust and fast method to remove irrelevant
features from the dataset. According to the principle of ANOVA, the statistical
relevance of a feature λ is given by F(λ), that compares the average variability
between the groups to the average variability within the groups:

F(λ) =
MSB
MSW

(4.13)

MSW is the mean square within groups and is calculated by dividing the the Sum of
Squares within groups with the degrees of freedom (n is the number of samples and k
is the number of classes):

MSW =

∑k
i=1

∑ni

j=1(xij − x)2

n− k
(4.14) x =

1

n

k∑
i=1

ni∑
j=1

xij (4.15)

MSB is the mean square between groups, and is calculated by dividing the sum of
squares between the groups and the groups degree of freedom:

MSB =

∑k
i=1 ni(xi − x)2

k − 1
(4.16) xi =

1

ni

ni∑
j=1

xij (4.17)

A greater value of F(λ) denotes a larger statistical significance, hence, features
that scores below a certain threshold, or the lowest performing ones, can be deemed
irrelevant and removed from the dataset.

4.4.2 Sequential Floating Forward Selection

Sequential floating forward selection (SFFS) is wrapper method that uses a greedy
algorithm [56] to build the a near optimal model by iteratively adding features to
an initial empty subset [57]. The aim of this algorithm is to find near optimum
solutions following a series of local optimal choices, reducing d-dimensional problem
to a k-dimensional one. At any point SFFS perform the most promising choice among
a set of all the possible decisions, and then tries to reduce the complexity of the
solution by removing redundant information. Let S being the final subset of k feature
considered, such that is possible to write S = {s1, ..., sk}. Let P be defined as an
optimization problem, where a cross-validation score of an estimator, for example the
accuracy f(S), needs to be maximized, so that is possible to write:

S∗ = arg max
S

f(S) (4.18)

43



Chapter 4. Machine Learning Based Pipeline

At each step i the algorithm considers a set Si of the available features. The
selected element s∗ to be added to the current solution S̃={s1, ..., si−1} correspond to
the local optimum in the current iteration, satisfying the condition:

s∗ = arg max
si∈Si

f

(
S̃ ∪ {sij}

)
(4.19)

Then, SFFS, perform conditional removal if the following condition is met for an
element {s∗} of S̃={s1, ..., si−1}:

f(S̃\{s∗}) > f(S̃) (4.20)

SFFS will continue to insert features in the subset S̃ until k features are added.
The pseudo-code for this wrapper method is reported in A.2.

Algorithm 2: Sequential Forward Floating Selection for a maximization
problem
S̃ ← ∅
m ← f(S̃)
for i = 1, ..., n do

Si = set of available features
s∗ = best feature;
for all si ∈ Si do

if f
(
S̃ ∪ {si}

)
> m then

s∗ ← si

m ← f
(
S̃ ∪ {si}

)
end

end
S̃ ← S̃ ∪ s∗
for all s∗ ∈ S̃ do

if f(S̃ \ {s∗}) > m then
S̃ ← S̃ \ s∗
m ← f(S̃)

end
end

end

4.5 Model Deployment
Once the non-relevant features are removed from the dataset, the model optimization
step is repeated again, and the best machine learning model resulting in the highest
cross-validation accuracy is identified. The final step of the implemented methodology

44



4.5. Model Deployment

is then its deployment on an online environment. This step is extremely important,
as it ensure that the results from the model are reproducible by anyone, making its
output available to the public. In fact, while the whole pipeline can be found on an
online repository, setting up a specific programming environment can be burdensome,
and constitutes a considerable barrier for those who don’t know machine learning
(or Python). To this end, a app was created and deployed using Python Flask and
JavaScript. Said app is then containerized using Docker and hosted using Google
Cloud Run. Getting a prediction from the optimized pipeline is as simple as filling
some blank values with the system’s design condition. Another major advantage
of this step, is that it allows for Continuous Integration and Continuous Delivery
paradigms to be applied. The whole pipeline can now be updated as soon as new
data becomes available with relatively low efforts.
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Model Evaluation

This chapter is dedicated to the discussion of the results obtained during the various
optimization step of the implemented procedure. In the first section, the performance
of the generated models is discussed, in terms of accuracy and F1 score. Then, the
results of the feature selection are presented, and the quantities used by the best
model are analyzed in terms of boxplots where possible. To further assess the quality
of the pipeline, the best identified model is also used to generate some of the most
important multiphase flow maps present in literature, as well as to predict a new set
of data points whose experimental conditions differ from the one used for training.
Finally, the possibility of tuning the probability threshold to increase the generality
of the model is discussed.

5.1 Best Generated Models

Machine Learning Algorithm
All Features Feature Subset

Accuracy [%] F1 score [%] Accuracy [%] F1 score [%]

LightGBM 95.3 94.8 95.2 94.4

Random Forests 91.5 90.0 90.9 88.8

XGBoost 94.8 93.1 94.9 94.1

Stacking 95.3 94.8 95.2 94.4

MLP 93.4 91.6 89.9 90.6

TabNet 93.8 92.8 90.7 88.5

Table 5.1. Model comparison: best of family

The general results of the model optimization step are reported in table 5.1, where
the cross validation metrics associated to all the explored algorithms are reported. As
expected, the performance of XGBoost and LightGBM is similar, as they are still
based boosted decision trees. When comparing the two deep learning architectures,
it is evident that Tab-Net outperforms the MLP when the problem employs a large
number of features. This can be due to the fact that Tab-Net encourage sparseness,
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and it is able to automatically exclude irrelevant features before the feature selection
step. On the other hand, when the number of features is reduced, and embedded
feature selection is no longer necessary, Tab-Net has the same performance as the
MLP. Additionally, the performance of these two models is the most heavily impacted
when the number of features is reduced. This can be due to the fact that as a gradient
boosting machine was used for the feature selection step, the remaining features are
sub-optimal to perform deep learning. Another possibility is that by reducing the
number of features, deep learning models have to use more complex architectures
to extract the same level of information as before. Nonetheless, the hyperparameter
tuning of deep learning models is extremely expensive (both in time and costs, even
when using Optuna), and given the exceptionally good performance of ensemble
techniques in every scenario, no further optimization has been carried out for these
types of algorithms. Random Forests are able to achieve a reasonable performance,
but they are still inferior to gradient boosting machines. Lastly, stacking can achieve
the same performance of LightGBM in every scenario, as it uses its outputs to perform
predictions. However, given that this is a second level learner which inevitably tends to
over-fit the training data, it was still deemed inferior than a simple gradient boosting
machine.

Hyper-
parameters

Description Type Range All Features Feature Subset

num-of-
leaves

Maximum number
of leaves in each
tree

Int 2 - 300 29 87

learning-
rate

Step size shrinkage Float 1e-8 - 10 0.1 0.1

num-of-
trees

Number of decision
trees in the ensem-
ble

Int 50 - 300 250 223

min-
samples-
leaf

Minimal number of
data points in one
leaf node

Int 1 - 300 58 208

lambda L2 regularization
term

Float 1e-8 - 10 2e-8 9e-8

alpha L1 regularization
term

Float 1e-8 - 10 1e-3 3e-3

Table 5.2. LightGBM hyperparameters

In the first model optimization step, the best estimator identified by the procedure
is a gradient boosting machine from the LightGBM library, whose hyperparameters
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are reported in Table 5.2. Said model has a cross validation accuracy of 95.3% and a
macro averaged F1 score of 94.8% (Table 5.3). The latter value confirms that the bias
towards the intermittent flow regime is avoided, due to the oversampling techniques
adopted during the training phase. Furthermore, the confusion matrix reported in
Table 5.3, shows the advantage of using SMOTE, as the bubbly regime (B) has a
single class precision of 95,9%, greater then the average even while being a minority
class. When used to evaluate the test set (Table 5.4), the performance of the model is
even slightly better, as the test accuracy is 95.9% and the macro average F1 score is
95.6%. The small increment in the test’s metrics is justified by the fact that cross
validation tends to provide pessimistic expectations. In fact, after the hyperparameter
tuning step is complete, the whole data can be used to train the model, allowing for
greater learning opportunities. Additionally, as test and validation scores match, it is
evident that no overfitting occurred during the training phase of the model.

Table 5.3. Cross validation confusion matrix, all features

A DB I SW SS B Precision [%]

A 1176 0 34 36 5 0 94.0
DB 0 598 28 0 0 0 95.5
I 57 42 3180 21 13 10 95.7
SW 24 2 17 811 6 0 94.3
SS 3 0 6 5 290 0 95.3
B 0 0 5 0 0 117 95.9

Table 5.4. Test confusion matrix, all features

A DB I SW SS B Precision [%]

A 296 0 11 6 0 0 94.5
DB 0 151 5 0 0 0 96.8
I 14 10 802 3 2 0 96.5
SW 9 0 1 203 1 0 94.9
SS 0 0 1 0 76 0 98.7
B 0 0 3 0 0 28 90.3

Using the selected feature subset identified through SFFS, the model optimization
step is repeated, and the best generated estimator is still a gradient boosting machine
from the LightGBM library, but with slightly different hyperparameters (Table 5.2).
Said model compares favorably with respect to the previous one, as the cross validation
accuracy is 95.2%, and the F1 score is 94.4% (Table 5.5). Little to no information
is lost, while the number of employed features is reduced from 13 to 5. Again, the
results on the test set are similar, with an accuracy of 95.9% and an F1 score of 95.4%
(Table 5.6).
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Table 5.5. Cross validation confusion matrix, five features

A DB I SW SS B Precision [%]

A 1168 0 48 30 5 0 93.4
DB 0 606 20 0 0 0 96.8
I 50 39 3199 20 10 5 96.3
SW 28 2 17 802 11 0 93.3
SS 5 0 10 8 281 0 92.4
B 0 0 4 0 0 118 96.7

Table 5.6. Test confusion matrix, five features

A DB I SW SS B Precision [%]

A 291 0 14 6 2 0 93.0
DB 0 151 5 0 0 0 96.8
I 12 9 808 1 1 0 97.2
SW 8 0 3 201 2 0 93.9
SS 0 0 1 0 76 0 98.7
B 0 0 3 0 0 28 90.3

It is evident that the pipeline is extremely capable of predicting the flow regimes
in experimental conditions similar to the ones of training. While these metrics provide
useful insights about the performance of the model, it is also important to underline
that most of the data point are usually collected near the transition region, given that
it is the most interesting zone to conduct experiments. It is then important to asses
how the model behaves in a more general environment, with the same experimental
conditions of some of the studies in the training set. Thus, some multiphase flow
maps are reproduced, and the regions are confronted with the experimental evidence
from the original authors. In figure 5.3 and 5.2 some maps from Shoham [9] are
displayed, while figure 5.2 used experimental condition from Kokal [12]. The generated
boundaries closely match the experimental evidence from the authors, and all the
errors (if any) occurs near the transition boundaries, where the flow regime can be at
times debatable.
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Figure 5.1. Test data from the study of Shoham, 5.1cm and 0 degrees of tilt

Figure 5.2. Test data from the study of Shoham, 2.5cm and -1 degrees of tilt
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Figure 5.3. Test data from the study of Kokal, 5.1cm and 9 degrees of tilt

Finally, considering the built-in-capability of ensemble methods to predict a
probability and not the class directly, the possibility of excluding some points from
the classification was assessed. The results of this analysis are reported in figure 5.4:
it is evident that the performance of the pipeline increases as the probability threshold
to cast a prediction becomes higher. Nonetheless, as this approach allows the model
to reject the classification of some data points (where the model is "uncertain"), its
application should be considered only when accuracy is fundamental.

Figure 5.4. Effects of increasing the probability threshold on the test accuracy
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5.2 Feature Selection

Figure 5.5. ANOVA results

The results from ANOVA feature selection are reported in figure 5.5. As expected,
many of the features employed by the first optimized model are actually unable to
differentiate the flow regimes if used alone. However, all of them pass the required
threshold in order to be preserved. In fact, while some quantities might contain only
very marginal information to separate the flow regimes, they might be combined with
the most promising features in order to further enhance the quality of our machine
learning algorithms. Given its F (λ), the most performing feature is clearly the liquid
Froude number FrL, and will likely produce the best results if used alone. Following
this variable, the other most performing features are all related to the phase velocities,
as it should be expected, according to theory. Of course, most of these quantities are
redundant, but by using ANOVA, there is no mean of determining what is their best
combination, hence the need of sequential floating feature selection.

All Features θ ReG ReL FrG FrL X2
LM Y KG NL We Eo TTB αL

SFFS Results θ FrL FrG Eo X2
LM

Table 5.7. Feature selection results
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Figure 5.6. Sequential floating feature selection results

The results of sequential floating forward selection are reported in figure 5.6 and
Table 5.7. It is evident that a plateau in the cross validation metrics is achieved as
soon as five features are considered to train our estimators. As reported in Table
5.7, the selected subset contains both liquid and gas Froude velocities, as well as the
system tilt. These quantities are widely employed by physical models, and wrapping
feature selection is able grasp the importance of these features in determining the
correct flow regime.

Figure 5.7. Boxplots of the selected feature subset
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The influence of these features can easily be shown in terms of boxplots (figure
5.7), where it is evident that they are able to separate the flow regimes by some
degree. The influence on the flow pattern for the remaining features is harder to
explain, as they cannot be used alone to separate the flow regimes, as highlighted by
the ANOVA test. From a physical point of view, the Eo number represent the ratio
between gravitational and capillary forces, and could have been used by our model
to introduce information about the system surface tension. The Lockhart-Martinelli
parameter X2

LM on the other hand could have been used to further assess stratified
to non stratified transitions based on the ratio of the pressure drop between the two
phases.

5.3 Generated Maps
While the proposed pipeline shows remarkable accuracy when used on experimental
conditions similar to the ones of training, real world applications require a more robust
model evaluation. In fact, while the training data is heterogeneous, it is evident that
it is not near large enough to cover all the possibles working configurations. Thus, we
assessed the generality capabilities of the proposed pipeline by comparing its outputs
with some multiphase flow maps retrieved from literature, with design conditions
somewhat different from the ones of training. First, we used the optimal pipeline to
reproduce the map of Madhane [38], and the results can be seen in figure 5.8.

Figure 5.8. Comparison with the map of Madhande (in black) and the proposed pipeline
(colored regions)

The transition boundaries closely match the ones of the authors, and the model
only shows some discrepancies, where the classification of the regime is debatable.
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5.4 Generalization

Table 5.8. Summary of the studies in the external data base.

Authors Fluids ρl (Kg/m3) ρg (Kg/m3) µl (Pa·s) σ (N/m) d (cm) θ (deg) Data Points

Yamaguci Air-Water 998.2 1.2 0.001 0.07 8 -90 57

Shumeli Water/Oil-SF6 998-848 46.2 0.001-0.1 0.02-0.06 6.9 0 33

Li Air-Water 999 1.2 0.001 0.07 20.3 -90 or 0 172

Hanafizadeh Air-Water 998 1.2 0.001 0.07 0.2 90 258

Saljoshi Air-Water 998 3.2 0.001 0.07 0.1 to 0.3 0 318

Khaledi SF6-Oil 854 25.54 0.032 0.06 6.9 0 287

Crowley Air-Water/Others 995 to 710 1.2 to 32.1 0.00035 to 0.002 0.02 to 0.07 8.9 to 30 -2 to 4 757

Almabrok Air-Water 998 13.3 0.001 0.07 10 -80 265

Brito Air/Kerosene-Oil 825 to 920 11.34 0.0013 to 0.996 0.028 to 0.034 5.1 0 237

Kristiansen Air/Kerosene-Water/Oil 812 or 998 1.2 to 52 0.001 or 0.002 0.0072 or 0.002 6.9 -0.1 to 0.1 113

Usui Air-Water 998 1.2 0.001 0.07 2.4 -90 110

Ohnuki Air-Water 995 1.2 0.0008 0.07 20 90 58

Ansari Air-Water 999 0.96 0.001 0.07 4 or 7 90 337

Al-Ruhaimani Air-Oil 884 8.1 0.5 0.03 5.1 90 83

It is now time to compare the output of the model to a generalized environment, with
experimental conditions far from the ones of the training set. In order to achieve
this comparison, another dataset was retrieved from literature, composed of different
studies, never seen before by the model. It should be noted that the mentioned dataset
only uses four different flow regimes (SS+SW=Stratified and DB+B=Dispersed) so
the output of the model have been modified accordingly. This dataset is taken from
the work of Quintino [22], is composed of 3259 data points, and more importantly, of
14 different studies (summarized in Table 5.8). The accuracy of the best generated
model is reported in the bar plot of figure 5.9.

Figure 5.9. Accuracies using a new set of different studies
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It is evident that the performance of the estimator is much lower than before.
Nonetheless, it is still better than a random guess, as it achieves a general accuracy of
72.9% as well as a macro averaged F1 score of 70.0%. From this figure, it also evident
that the difference in performance across the various studies is not negligible, and the
model tends to perform well on studies whose experimental conditions resemble those
of the training set. Ansari for example used air-water in vertical macro pipes, much
similar to Shoham. On the other hand, studies that deal with micro tubes tend to
be miss-classified by the model. This can be justified by the fact that, as shown in
the exploratory data analysis of chapter 4, these types of systems are absent in our
training data. To visualize the results on this generalized test set, two different maps
are reproduced by the model, first one from Ansari (figure 5.10) and another one from
Li (figure 5.11), that instead investigated micro tubes.

Figure 5.10. Comparison with data from the work of Ansari

From these images, it is evident that the model struggles to find the correct
transition boundaries from unseen working configuration, but it is interesting to note
that most of the miss classifications are still near the proper flow regime. This is an
important property, as it could be exploited to assure that a certain flow regime is
avoided during the design phase of a component. In fact, the top 2 accuracy of the
model on this new dataset is 92.1%. Looking at this metric when the number of classes
is 4 is not something to be excited about, but it shows the ability of the model to
exclude some regimes. Lastly, we can again explore the effects on how implementing a
probability threshold would impact the overall accuracy on this new external test set
(fig 5.12). Unsurprisingly the overall accuracy increases, and it reaches a maximum of
86%, if we avoid classifying as much as half of the data.

57



Chapter 5. Model Evaluation

Figure 5.11. Comparison with data from the work of Li

Figure 5.12. Effects of increasing the probability threshold on the test accuracy for the new
dataset

58



Conclusions

The main objective of this thesis, was to develop and optimize a machine learning
based pipeline in order to predict the multiphase flow regime under a wide range
of working conditions. Modeling the flow regimes through the physical models was
fundamental in order to increase the explainability of the machine learning estimators
and to provide a rigorous analysis of the generated outputs. In the first step of the
implemented procedure, the dataset is corrected and considerations are made about the
shape of the data. Then, through feature engineering, the available physical knowledge
was introduced in the dataset, in terms of dimensionless variables. The best machine
learning model obtained through the first optimization step was a gradient boosting
machine from the LightGBM library, with a cross validation accuracy of 95.3% and a
macro averaged F1 score of 94.8%. The latter metric denotes that the model had no
detectable bias towards any of the regimes. When used to evaluate the test set, the
metrics are similar to the cross validation ones, with a test accuracy of 95.9% and
a macro averaged F1 score of 95.6%. Given these values, it evident that overfitting
was avoided. As the second core objective of this study was to determine the most
important physical quantities, feature selection methods were applied to the dataset.
Analysis of variance showed that, as expected from theory, quantities related to the
phase velocities are of fundamental importance to differentiate the regimes. While
ANOVA had proven to be an useful tool, it could not consider interaction between the
variables. In order to determine the best features subset to solve this classification
problem, sequential forward floating selection was used. This wrapping technique
showed that, by greedily adding variables to an empty set, the near-optimal feature
combination is: system tilt, liquid densimetric Froude number, gas densimetric Froude
number, Eötvös number and the Lockhart-Martinelli parameter. With this subset, the
model optimization step was repeated, and the new optimized estimator was found
to be again a gradient boosting machine from LightGBM library, but with slightly
different hyperparameters. This model has a cross validation accuracy of 95.2%, and
a macro averaged F1 score of 94.4%. Given the similarity on the metrics between the
first and the second model, we can state that little to no information was lost using
the optimized feature subset. When used to evaluate the test set, it showed no signs of
overfitting, as the accuracy was 95.9% and the F1 score 95.4%. To further assess the
quality of the generated outputs, this model was also used to simulate and compare
famous multiphase flow maps found in literature. The transition region identified by
the model closely matched the one of theory. Given the overall performance of the
pipeline on both feature selection and model optimization, this work can be considered
a success. It should be noted however, that while the dataset employed for this thesis
offers a wide range of working conditions, all the data points refer to smooth macro
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tubes. Since a machine learning model is only as good as the data it has been trained
with, it is not capable to consider complex physical phenomena related to surface
roughness or micro channels. However, this deficiency easily be corrected with the
introduction of more data related to those phenomena. Lastly, the whole implemented
methodology is available on GitHub, while the optimized pipeline is deployed as an
open source software using Google Cloud Run. Here, the outputs of the model are
freely available to everyone, without the requirement of setting up a specific Python
environment.
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Appendix 1

A.1 Online Repository of the Thesis
The online repository for the code used in this thesis can be found on GitHub using
the following link: https://github.com/Benetti-Hub/Multiphase-Flow-Regimes. The
repository also contains the link to the related application hosted on Google Cloud
Run.
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Acronyms

ML Machine learning

RF Random Forests

GBM Gradient Boosting Machine

ANN Artificial neural network

MLP Multi-layer-perceptron

AutoML Automated Machine Learning

PCA Principal Component Analysis

t-SNE t-distributed Stochastic Neighbour Embedding

CV Cross-Validation

SMOTE Syntetic minority oversampling technique

SFFS Sequential Floating Forward Selection

SS Stratified Smooth Flow

SW Stratified Wavy Flow

I Intermittent Flow

DB Dispersed Bubbly Flow

A Annular Flow

B Bubbly Flow
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