
Evaluating the Testability of Inse-
cure Deserialization Vulnerabilities
via Static Analysis

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria
Informatica

Author: Alessandro Sabatini

Student ID: 953493
Advisor: Prof. Stefano Zanero
Co-advisors: Andrea Valenza
Academic Year: 2020-21

i

Abstract

The growing trend of web applications led to the increase of data exposed through the
Internet.

In turn, this resulted a growing concern by the software industry to protect sensitive data
contained in web applications. This sensitive data can be accessed from unauthorized
subjects exploiting some flaws present in the program, that are called vulnerabilities.

In this thesis, we focus on one particular vulnerability: Insecure Deserialization. In
particular, we apply static analysis to test the source code for the presence of Insecure
Deserialization vulnerabilities.

The aim of this thesis is to create a benchmark application that evaluates the effectiveness
of static security scanners when testing for Insecure Deserialization vulnerabilities.

In order to achieve this, we have made an experiment in which we have selected a sample
of five static analysis tools and we have analyzed their behavior in relation to seven target
web applications, vulnerable to Insecure Deserialization. Thanks to the results of this
experiment, we have evaluated the performances of the tools and, learning from them,
we have created our own web application vulnerable to Insecure Deserialization, called
BenchStress, that deliberately blocks testing techniques. This will be a benchmark for
testing the effectiveness of testing tools in detecting Insecure Deserialization Vulnerabili-
ties.

Keywords: Insecure Deserialization, Deserialization of Untrusted Data, Benchmark,
Static Analysis, BenchStress.

iii

Abstract in lingua italiana

La rapida diffusione delle applicazioni web ha portato all’aumento dei dati esposti via
internet.

A sua volta, questo ha provocato una crescente preoccupazione da parte dell’industria
del software per proteggere i dati sensibili contenuti nelle applicazioni web. Questi dati
sensibili possono essere accessibili da soggetti non autorizzati sfruttando alcuni difetti
presenti nel programma, che sono chiamati vulnerabilità.

In questa tesi, ci concentriamo su una particolare vulnerabilità: la Deserializzazione In-
sicura. In particolare, applichiamo l’analisi statica per testare la presenza nel codice
sorgente della vulnerabilità di deserializzazione insicura.

Lo scopo di questa tesi è quello di creare un’applicazione di benchmark che valuti l’efficacia
degli scanner di sicurezza statica durante i test per le vulnerabilità di deserializzazione
insicura.

Per raggiungere questo obiettivo, abbiamo fatto un esperimento in cui abbiamo selezionato
un campione di cinque tool di analisi statica e ne abbiamo analizzato il loro comporta-
mento in relazione a sette diverse applicazioni web target vulnerabili alla deserializzazione
insicura. Grazie ai risultati di questo esperimento, abbiamo valutato le prestazioni dei
tool e, imparando da essi, abbiamo creato la nostra applicazione web vulnerabile alla
deserializzazione insicura, chiamata BenchStress, che blocca deliberatamente le tecniche
di testing. Questa applicazione sarà un benchmark per testare l’efficacia degli strumenti
di test nel rilevare vulnerabilità di deserializzazione insicura.

Parole chiave: Deserializzazione Insicura, Benchmark, Analisi Statica, BenchStress

v

Acknowledgements

Here you might want to acknowledge someone.

vii

Contents

Abstract i

Abstract in lingua italiana iii

Acknowledgements v

Contents vii

1 Introduction 1

2 Background 7
2.1 Insecure Deserialization vulnerability . 7

2.1.1 Definition . 9
2.1.2 Identification and Attack Surface Estimation 10
2.1.3 Exploitation and Vulnerability example 11
2.1.4 Impacts and Mitigations . 13

2.2 Static Analysis . 15

3 Targets Selection 17
3.1 Vulnerable Targets . 17
3.2 BenchStress . 19

4 Experimental Results 25
4.1 List of Analyzed Tools . 25

4.1.1 Find Security Bugs . 26
4.1.2 SonarLint . 28
4.1.3 Error Prone . 30
4.1.4 SonarQube . 30
4.1.5 Semgrep . 31

4.2 Experiment . 35

4.3 Results . 37
4.4 Interpretation of the Results . 38

5 Conclusions and Future Works 43

Bibliography 47

A Vulnerable application 51

B BenchStress 55

1

1| Introduction

Web applications are the most popular way for delivering services via the Internet and
have become essential in our daily lives. Due to their ever growing popularity and the
high value data they expose, the software industry is increasingly paying attention to the
aspects concerning their protection.
A vulnerability, in computer security, can be defined as a weakness in the computer
system that leaves information exposed to unauthorized subjects. It can be described
as a combination of three elements: the presence of a flaw in the system, the ability of
the attacker to discover the flaw and the attacker’s capability to exploit the flaw. The
presence of a flaw could be due to several causes: the lack/misuse of best practices while
coding (e.g., input/output validation); often the testing of security aspects is neglected
in favor of functional requirements; given their performance overheads and possible false
positives that may disrupt normal behavior, attack detection mechanisms are sometimes
not included in the environment.

As is clearly visible from the Figure 1.1, the number of vulnerabilities during the years is
continuously growing, in fact from the 2016 where the number of vulnerabilities overall
was around 6608 in just five years it tripled and more reaching the number of 20137
vulnerabilities in the 2021 year.

While, regarding the 2022 year it is not comparable to the others because it consider just
one month even if it is incredible to note that this number, in just one month, is already
bigger than the 2004 year and all the previous years.

All the data used for Figure 1.1, Figure 2.1 and Table 2.1 have been retrieved from
the National Vulnerability Database (NVD) [16]. The National Vulnerability Database
(NVD) is the U.S. government repository of standards-based vulnerability management
data represented using the Security Content Automation Protocol (SCAP). This data
enables automation of vulnerability management, security measurement, and compliance.
The NVD includes databases of security checklist references, security-related software
flaws, misconfigurations, product names, and impact metrics.

In addition to providing a list of Common Vulnerabilities and Exposures (CVEs), the NVD

2 1| Introduction

Figure 1.1: Trend of all vulnerabilities discovered during the years (data taken on February
2022).

scores vulnerabilities using the Common Vulnerability Scoring System (CVSS) which is
based on a set of equations using metrics such as access complexity and availability of a
remedy.

The Common Vulnerabilities and Exposures (CVE) program is a dictionary or glossary
of vulnerabilities that have been identified for specific code bases, such as software ap-
plications or open libraries. This list allows interested parties to acquire the details of
vulnerabilities by referring to a unique identifier known as the CVE ID. It has garnered
increasing awareness in recent years, making it important for participants and users to
understand the fundamental elements of the program.

Several security problems affect high-level software environments. These problems can
emerge regardless of security measures applied to the underlying systems. This is the
case, for example, of problems arising from deserialization of untrusted data in several
programming languages, such as Java, PHP, Python, and C#, where a technology with
many legitimate uses (data serialization) is exploited to obtain unintended and malicious
behavior in software. By leveraging object deserialization, attackers are able to chain

1| Introduction 3

pieces of benign software, leading to effects such as arbitrary code execution on the target
system. Solving these problems while maintaining functionality is not trivial, because
some of the causes that make the attack possible are needed key features of the serialization
technology. Also, in the code chains mentioned above, it is hard to identify a single
"culprit" that permits attacks; the malicious effects arise from the interaction of pieces of
benign software, with no single point of failure.

The focus of this thesis is on one particular vulnerability: Deserialization of Untrusted
Data or Insecure Deserialization.

Motivation

Deserialization of untrusted data is a cause of security problems in many programming
languages. In Java, it might lead to remote code execution (RCE) or denial of service
(DOS) attacks. Even though it is easy to check whether preconditions for this type of
attack exist in an application (that is, deserialization performed on user-controlled data),
designing and carrying out a real attack is a hard task, due to the complexity of creating
the attack payload. In order to exploit this type of vulnerability, an attacker has to
create a custom instance of a chosen serializable class which redefines the readObject
method. The object is then serialized and sent to an application which will deserialize
it, causing an invocation of readObject and triggering the attacker’s payload. Since the
attacker has complete control on the deserialized data, he can choose among all the Java
classes present in the target application classpath, and manually compose them by using
different techniques (e.g., wrapping instances in serialized fields, using reflection), and
create an execution path that forces the deserialization process towards a specific target
(e.g., execution of a dangerous method with input chosen by the attacker). There are
several public exploits that show the impact of the attack on real Java frameworks, such
as JBoss and Jenkins, which are based on several common Java libraries, such as Oracle
JRE 1.7, Apache Commons Collection 3 and 4, Apache Commons BeanUtils, Spring
Beans/Core 4.x and Groovy 2.3.x and more.

In this thesis we decided to make two important choices: (1) We decided to focus on
only one particular programming language: Java. The motivation behind this choice is
because historically Java has an ecosystem that exploits so much the deserialization and
there are many libraries and applications already made which use it, while other languages
use it less. (2) We applied the static analysis because this vulnerability is easier to find
through the code, instead of a black box approach.

4 1| Introduction

Goal

The goal of this project is to create a de facto benchmark application to evaluate the
effectiveness of static security scanners, with a particular focus on Insecure Deserialization
vulnerabilities. This benchmark application contains portions of code that static security
scanners cannot easily navigate, thus possibly hiding the included Insecure Deserialization
vulnerabilities.

To achieve this, an intermediate goal of this thesis is to understand how real-world au-
tomated scanners detect Insecure Deserialization vulnerabilities in Java source code. In
fact, this thesis reports the results of the evaluation of 5 real-world static analysis tools in
detecting Insecure Deserialization vulnerabilities in 7 vulnerable targets web applications,
as well as our benchmark application.

Overview

The contents of the thesis are organized in five chapters, including the current introductory
one.

In Chapter 2, we start with an overview on the background concepts needed to understand
better this thesis. In particular, the Insecure Deserialization vulnerability is presented
giving its definition, how to identify it and there is also an example of a vulnerable program
with the related exploitation. After, some impacts and mitigations are presented in order
to view how the libraries are affected by this vulnerability and the possible remediation
to counter it. Finally, we give an explanation on the static analysis and the reason why
we chose it.

Chapter 3 gives a description about the targets chosen as samples for the experiment and
also the reason behind the selection of these targets. Furthermore, it is presented our
own web application, called BenchStress, that will be used to test the tools showing some
snippets of code and their description.

In Chapter 4, we have analyzed the results obtained from the experiment. At the be-
ginning, we deal with the introduction of the tools used for this thesis. There is a list
of the tools, and, then, they are presented one by one in detail paying attention to the
patterns used by each tool to discover vulnerabilities that will be a section on its own
called Bug Patterns. Next, it is explained how the experiment was conducted and under
which conditions. Then, we show the results of the experiment in a table that is followed
by some considerations and interpretations of the results. In particular, it is given a lot

1| Introduction 5

of attention to the results when the tools were launched on our benchmark program.

Chapter 5 summarizes the most relevant results achieved in the thesis, pointing out the
advantages and weaknesses associated to the found results. We also propose some exten-
sions to the work.

7

2| Background

In this chapter we describe background concepts for understanding the security problems
with deserialization of untrusted data in Java. In particular, we briefly describe the
definition of Insecure Deserialization vulnerability and the identification and attack surface
estimation. Then, we present a vulnerability example and how the latter can be exploited
to obtain malicious side effects when applied to untrusted data. Finally, some impacts
and mitigations are described. After this, there is another section in which is explained
the concept of static analysis and why it is important.

2.1. Insecure Deserialization vulnerability

In this section is presented the vulnerability and the reason why it happens.

This vulnerability is present from 2007, but it experienced a significant increase from 2017.
In fact, in 2017 around 60 remote code execution (RCE) deserialization vulnerabilities
were reported, not including deserialization issues that only impact the availability of a
system (Denial-of-Service). In 2018, more than 100 such vulnerabilities have been reported
(Table 2.1).

As is clearly visible from Figure 2.1, the Insecure Deserialization shows a growing trend in
the last years reaching its maximum, until now, in 2021 where this particular vulnerability
represented more than one percent of all the vulnerabilities present in that year.

The deserialization has gain a lot of attention in the last years because of its high impact
and severity, in fact, it can have very dangerous effect. This is what made it earn a
position in the OWASP Top 10 list of the 2017, which is the list of the ten most critical
web application security risks [19]. The OWASP Top 10 is a book/referential document
outlining the 10 most critical security concerns for web application security. The report
is put together by a team of security experts from all over the world and the data comes
from a number of organizations and is then analyzed. The Insecure Deserialization was
added thanks to the community’s effort that voted in a survey for industries and it was
ranked at number three, so it was added to the Top 10 as A8:2017-Insecure Deserialization

8 2| Background

Figure 2.1: Percentage of CWE-502 Deserialization of Untrusted Data (data taken on
February 2022).

after risk rating.

In fact, the major reason for the presence of this vulnerability in the Top 10 is that the
impact of deserialization flaws cannot be overstated. Because these flaws can lead to
remote code execution attacks, one of the most serious attacks possible. Another reason
is the prevalence and detectability of the Insecure Deserialization that has a medium
risk, so lower than the impact risk, but still remarkable because some tools can discover
deserialization flaws, but human assistance is frequently needed to validate the problem.
While, the exploitation of deserialization is somewhat difficult, as off the shelf exploits
rarely work without changes or tweaks to the underlying exploit code [19].

In Table 2.1 the matches represent the CVE founded in that year, while total are the
total number of vulnerabilities discovered in that year. Percentage is trivially the ratio of
matches over total, thus giving information on the presence of Deserialization of Untrusted

2| Background 9

Year Matches Total Percentage

2007 1 6516 0,02%
2008 0 5632 0,00%
2009 0 5732 0,00%
2010 2 4639 0,04%
2011 0 4150 0,00%
2012 0 5288 0,00%
2013 1 5187 0,02%
2014 0 7937 0,00%
2015 1 6487 0,02%
2016 9 6447 0,14%
2017 69 14645 0,47%
2018 127 16509 0,77%
2019 135 17305 0,78%
2020 155 18351 0,84%
2021 214 20136 1,06%
2022 8 2729 0,29%

Table 2.1: Raw data of CWE-502 Deserialization of Untrusted Data (data taken on
February 2022).

Data with respect to all the vulnerabilities present. The latter can be also visible from
Figure 2.1 in a graphic way.

2.1.1. Definition

First, it is important to understand what is serialization and deserialization (see Fig-
ure 2.2 for a graphic interpretation).

• Serialization is the process of turning some object into a data format that can be
restored later.

• Deserialization is the reverse of that process, taking data structured from some
format, and rebuilding it into an object.

Today, the most popular data format for serializing data is JSON. Before that, it was
XML.

However, many programming languages offer a native capability for serializing objects.

10 2| Background

Figure 2.2: Serialization and Deserialization process [12]

These native formats usually offer more features than JSON or XML, including customiz-
ability of the serialization process.

Unfortunately, the features of these native deserialization mechanisms can be repurposed
for malicious effect when operating on untrusted data. Attacks against deserializers have
been found to allow denial-of-service, access control, and remote code execution (RCE)
attacks. [17]

2.1.2. Identification and Attack Surface Estimation

This section gives some hints on how to identify Insecure Deserialization vulnerability and
its attack surface. The work of this thesis is mostly focused on the Java programming
language. In this section will be tackle both the white box approach and the black box
approach in Java even if this thesis is mainly focused on the static analysis and so the
white box approach.
The distinction between the two approaches is that the first one, the white box approach,
is a way of testing the software in which the tester has knowledge about the internal
structure or the code or the program of the software, while the second one, the black
box approach, is a way of software testing in which the internal structure or the program
or the code is hidden and nothing is known about it.
Therefore, after understanding these basic concepts, it is possible to analyze the two
different methods [17]:

• White box : any class that implements the interface java.io.Serializable can be seri-
alized and deserialized. If you have source code access, take note of any code that

2| Background 11

uses the readObject() method, which is used to read and deserialize data from an
InputStream. Furthermore:

1. XMLdecoder with external user defined parameters;

2. XStream with fromXML method (xstream version <= v1.46 is vulnerable to
the serialization issue);

3. ObjectInputStream with readObject ;

4. Uses of readObject, readObjectNodData, readResolve or readExternal ;

5. ObjectInputStream.readUnshared ;

6. Serializable;

7. readObject() method of the java.beans.XMLDecoder class;

• Black box : serialized Java objects always begin with the same bytes, which are
encoded as ac ed in hexadecimal and rO0 in Base64.

The second part of this section will provide some usages of Java serialization, also called
attack surface [15]:

• Servlets HTTP, Sockets, Session Manager, Protocols: RMI (Remote Method Invo-
cation), JMX (Java Management Extension), JMS (Java Messaging System), JNDI,
Clusters, Spring Service Invokers (HTTP, JMS, RMI, etc..), etc..

• HTTP Params (ViewState), Cookies, Ajax Components, etc..

• XML (XStream), JSON (Jackson)

• Android, AMF (Action Message Format), JSF ViewState, WebLogic T3, etc..

2.1.3. Exploitation and Vulnerability example

In this section we present how to exploit this vulnerability in order to gain some privileges
or unexpected behaviors. Exploitation requires a chain of serialized objects triggering in-
teresting functionality (e.g., writing files, dynamic method calls using Java’s reflection
API, etc.). For such a chain the term "gadget" got established. Furthermore, the ex-
ploitation of the Insecure Deseserialization vulnerability, as previously stated, is some-
what difficult because off the shelf exploits rarely work without changes. However, there
are some tools that help you in creating the exploit and one of the most important is
called Ysoserial [9].
Ysoserial is a collection of utilities and property-oriented programming "gadget chains"

12 2| Background

discovered in common java libraries that can, under the right conditions, exploit Java
applications performing unsafe deserialization of objects. The main driver program takes
a user-specified command and wraps it in the user-specified gadget chain, then serializes
these objects to stdout. When an application with the required gadgets on the classpath
unsafely deserializes this data, the chain will automatically be invoked and cause the com-
mand to be executed on the application host. It should be noted that the vulnerability
lies in the application performing unsafe deserialization and not in having gadgets on the
classpath. To better understand the concept, it will be shown below an example of a
vulnerable web application to the Insecure Deserialization vulnerability [29]. The entire
code of this example can be found in Appendix A, while here we show just some snippets
of code relevant to the understanding of the general functioning. This web application
has three classes:

The first is the Server class used mostly to set up the server (see Listing 1 for the entire
code).

1 Tomcat tomcat = new Tomcat();
2 ...
3 tomcat.start();
4 tomcat.getServer().await();

Then, the Serial class (Listing 2 for the complete code) is the vulnerable class in which
is present the Insecure Deserialization vulnerability and, in particular, in the method
fromBase64() at rows 3 and 4 of the below snippet. It opens an ObjectInputStream and
across this receives a deserialized object using the readObject method. Function calls
defined inside readObject generally operate on data read from the stream, and such data
can be controlled by an attacker. In such a context, an attacker can craft nested class
objects in the deserialization input stream and define a sequence of method calls that
end up executing dangerous operations at the operating system level, such as filesystem
activities, command execution, etc.

1 public static Object fromBase64(String s) throws Exception {
2 byte[] data = new Base64().decode(s);
3 ObjectInputStream ois = new ObjectInputStream(new

ByteArrayInputStream(data));↪→

4 Object o = ois.readObject();
5 ois.close();
6 return o;
7 }

2| Background 13

Finally, the last class is called Servlet (Listing 3 for the complete code) and is the one
that calls the vulnerable method of the class Serial inside the method doPost() (Listing 2).

1 String data = req.getParameter("data");
2 if (data == null) {
3 data = Serial.toBase64(new String("text"));
4 } else {
5 try {
6 Serial.fromBase64(data);
7 } catch (ClassNotFoundException e) {...}
8 }

Thus, this application will attempt to java deserialize user provided input. Since commons-
collections4:4.0 is on the classpath, it can be used for playing around with exploitation.
In fact, an example attack using the tool Ysoserial is the following one:

java -jar ysoserial-0.0.4-all.jar CommonsCollections4 'shell command...'

| base64 | tr -d "\n"

This command will create a payload that sent to the vulnerable program will execute the
shell command written. This can lead also to RCE that is one of the most dangerous
vulnerabilities because it allows an attacker to remotely run malicious code within the
target system on the local network or over the Internet. A RCE vulnerability can lead to
loss of control over the system or its individual components, as well as theft of sensitive
data.

In summary, three constraints need to be satisfied in order to obtain a successful attack on
a Java application: (1) the attacker needs to define his own invocation sequence by starting
from a serializable class that redefines readObject ; (2) to obtain malicious behavior, the
attacker has to find a path that starts from the deserialized class and reaches the invocation
of one or more desired methods; (3) all the classes considered in the attack execution path
must be present in the application’s classpath.

2.1.4. Impacts and Mitigations

Impacts

An interesting paper of Ian Haken analyzes the deserialization vulnerability and, using the
Gadget Inspector tool (a Java bytecode analysis tool for finding gadget chains), finds out
some vulnerable libraries [11]. The work consists in running Gadget Inspector against the

14 2| Background

100 most popular java libraries looking for exploits against standard Java deserialization.
The results are:

• commons-collections » commons-collections allows RCE (38th most popular maven
dependency)

• org.clojure » clojure allows RCE (6th most popular maven dependency)

• org.scala-lang » scala-library allows you to write/overwrite a file with 0 bytes. Pos-
sible DoS? Zero-out a blacklist? (3rd most popular maven dependency)

• more vulnerable libraries can be found consulting Ysoserial [9]

Mitigations and Prevention

There are some mitigations that try to solve this problem. The best solution should be
to not accept serialized objects from untrusted sources or to use serialization mediums
that only permit primitive data types. However, this is not always possible, and some
guides [5, 17–19] present intermediate solutions:

• Avoiding native (de)serialization formats will result to a great reduction of risk. By
switching to a pure data format like JSON or XML, you lessen the chance of custom
deserialization logic being repurposed towards malicious ends.

• Make fields transient to protect them from deserialization. An attempt to serialize
and then deserialize a class containing transient fields will result in NULLs where
the transient data should be. This is an excellent way to prevent time, environment-
based, or sensitive variables from being carried over and used improperly.

• Some application objects may be forced to implement Serializable due to their hi-
erarchy. To guarantee that your application objects cannot be deserialized, a read-
Object() method should be declared (with a final modifier) which always throws an
exception.

• The general idea is to override ObjectInputStream.html#resolveClass() in order to
restrict which classes are allowed to be deserialized.

• Use a Java agent to override the internals of ObjectInputStream to prevent exploita-
tion of known dangerous types (for example contrast-rO0 [6] or NotSoSerial [13]).
But, it is noteworthy that allow listing is safer than deny listing.

• If available, use the signing/sealing features of the programming language to assure
that deserialized data has not been tainted. For example, a hash-based message

2| Background 15

authentication code (HMAC) could be used to ensure that data has not been mod-
ified.

• Authenticate prior to deserializing.

• When deserializing data, populate a new object rather than just deserializing. The
result is that the data flows through safe input validation and that the functions
are safe.

• Replace your deserialization ObjectInputStream with SerialKiller [4] or use a safe
replacement for the generic readObject() method.

• SWAT (Serial Whitelist Application Trainer) [25] helps you to build a whitelist for
classic Java deserialization occurrences as well as XStream based ones.

For other mitigations please consult the bibliography [5, 17–19].

2.2. Static Analysis

The approach chosen for this thesis is the usage of the static analysis rather than the
dynamic analysis. First, we describe both the approaches and then the explanation on
why we have selected the first one.

One approach is static analysis. This is a generic name for a set of program analysis
techniques performed without actually executing a program. Usually, static analysis in
software engineering is performed on source code. But, in some cases, source code is often
unavailable and, so, it should resort to analysis of binary (i.e., machine) code. In our
context, we have the source code and so we do not need to resort to the analysis of the
binary. Thus, static techniques analyze unchanging information such as the source code
of the software or the one of its environment. They are helpful for modeling control-flow
information as well as data-dependency information.

The second technique is dynamic analysis. It is based on running executables in an
instrumented environment. In other words, with dynamic analysis it is possible to trace
the changes that a program makes to a system.

The advantages of using static techniques are its code coverage and the scalability. In
fact, static analysis does not require many resources, and it gives a full view of a program,
since it analyzes also portions of code that are not revealed during the execution and that
could contain dormant functionality.

In this thesis, we select to choose the static analysis for mainly two reasons:

16 2| Background

1. Detect the Insecure Deserialization vulnerability is easier with static analysis than
dynamic analysis.

2. Since the aim of this thesis is to create a program to test the tools, the tools selected
by us are used for the analysis of the source code because the developer will use the
static analysis tools during the code writing and so he will have the source code.

The goal of this project is to have a de facto standard test for the tools that wants
to recognize the Insecure Deserialization vulnerability. Thus, it can be helpful both for
the tool’s vendor and for the developers that want to write code trying to minimize the
possibility of writing insecure code, because our program can be useful to evaluate the
performances of the tools that they use and, in case, prefer one tool to the other.

17

3| Targets Selection

For the purpose of evaluate the behavior of the tools, in terms of deserialization vulner-
ability founded, as a first phase we selected a sample of vulnerable targets to Insecure
Deserialization that are representative for all the different types of this vulnerability. In
particular, a target is a web application written deliberately with vulnerabilities in the
code section. The selection has three mandatory requirements: first, that the program is
a web application; second that the web application has at least one Insecure Deserializa-
tion vulnerability; finally that the target is written in Java. Thus, all the targets chosen
respect these three characteristics.
While, for the second phase, we chose a sample of tools that have been selected to rep-
resent the most common products used in the market because open source and free (the
second phase will be described in details in Section 4.1).
Then, for each couple of target and tool we have analyzed the behavior in order to eval-
uate the performance of the tool with different kinds of the same vulnerability. Finally,
we have summarized the results in a table (Table 4.1) and from the results we extracted
the most difficult pattern to recognize in order to make a program that acts like a bench-
mark for the tools (Section 3.2). This program presents a lot of Insecure Deserialization
vulnerabilities different from each other with the aim to test the scanners as completely
as possible.
In this chapter we present the targets that have been selected because characterized by the
presence of the Insecure Deserialization vulnerability and, also, the program developed in
order to test the tools that is called BenchStress.

3.1. Vulnerable Targets

In this section will be presented the vulnerable targets to the Insecure Deserialization used
as dataset on which record the tools’ performances. The targets are seven in order to put
to the test the scanners in many different ways and with different levels of complexity.
In order to keep the document light and, so, not too bulky the code of the vulnerable
targets is not present here, but can be found on their GitHub page that will be linked

18 3| Targets Selection

next to their name. These are the targets used:

1. Serial Killer [1]. It is a binary exploitation challenge that was given during the
All-Army CyberStakes 4 CTF. The application is a simple note keeper in which
you can print all notes or add one and the client-server interaction is made with
deserialization.
This target has been chosen because it is a very simple example thus can be useful
to understand if a tool is able to find this simple form of Insecure Deserialization.

2. Java Deserialize webapp [29]. This target was already described in Section 2.1.3
where it was presented as an example of vulnerable code with related exploitation.
This target was chosen because the vulnerable method is inside a class that is called
from another class, therefore, it can be tested the ability to trace back the method
calls of the tools. But in terms of difficulty is still easy to detect.

3. DeserLab [3]. Simple Java client and server application that implements a custom
network protocol using the Java serialization format to demonstrate Java deserial-
ization vulnerabilities.
This program was chosen because it is a bit more complicated with respect to the
two before and so it can make harder the reconnaissance by part of the tools.

4. JavaDeserH2HC [8]. The lab contains code samples that help you understand
deserialization vulnerabilities and how gadget chains exploit them. The goal is to
provide a better understanding so that you can develop new payloads and/or better
design your environments.
The complexity of this target raise a bit because there are more class and more
vulnerabilities. This can be useful to understand the behavior of the tools when
they have to face more vulnerabilities.

5. WebGoat [21]. WebGoat is a deliberately insecure application that allows interested
developers to test vulnerabilities commonly found in Java-based applications that
use common and popular open source components.
This target is still simple, but the vulnerability is written in a different way and,
so, this is a very useful target to test the tools. Because in this way we can test the
tools when dealing to the same vulnerability but written in a different mode.

6. CVE-2017-7525-Jackson-Deserialization-Lab [14]. Basic Java REST application
vulnerable to Insecure Deserialization, leading to RCE.
This web application target comes in handy when we want to test the tools with
the Insecure Deserialization vulnerability because it is not used the usual form of

3| Targets Selection 19

deserialization adopted by the targets above, but it is used another way, less known,
that is still vulnerable to deserialization.

7. Java Deserialization Of Untrusted Data PoC [7]. Here there are practical examples
of the - deserialization of untrusted data - vulnerability. These pocs use the ysoserial
tool to generate exploits.
This last target is different from the others above because it implements a slightly
different way of Insecure Deserialization vulnerability. Moreover, it leverages also
on other platform like JBoss, Jenkins and Bamboo.

3.2. BenchStress

In this section, we introduce our own program, called BenchStress, that is a benchmark
program developed to test the tools. The code can be found on GitHub [24] and also in
Appendix B. However, for convenience, here we present some snippets of code important
to understand the functioning and how the vulnerabilities are presented.
First, the program functioning is very simple: it is a note keeper in which you can print
all notes or add one and the client-server interaction is made with deserialization.

Thus, we start by introduce the Client class. It sets up the socket connection given the
server ip and the port:

1 socket = new Socket(server_ip, port);

Then it starts an infinite while loop that will allow three actions:

1. Print all notes

2. Add a new note

3. Exit this program

After, it sets up the streams: ObjectOutputStream and ObjectInputStream :

1 oos = new ObjectOutputStream(socket.getOutputStream());
2 ois = new ObjectInputStream(socket.getInputStream());

This is the part in which is used the deserialization to send the object through the streams
and it is the insecure part of the code that can be exploited by a malicious person because
of this vulnerability.

20 3| Targets Selection

Finally, there are three if for each case, but only the second if, in which a new note is
created, can be useful for the exploitation:

1 String newNoteTitle = scan.nextLine();
2 String newNoteBody = scan.nextLine();
3 Note newNote = new Note(42, newNoteTitle, newNoteBody);
4 oos.writeObject("SAVE");
5 Thread.sleep(100);
6 oos.writeObject(newNote);

Because at line 6 of the above snippet of code uses the method writeObject() that writes
the specified object to the ObjectOutputStream and so to the server. The Object in this
case is a newNote that can be overwritten and controlled by us, while there are other
writeObject() methods used, but they send a predefined string and so cannot be modified
from us (for example the one at line 4).

Then, the second class is presented (Appendix B for the entire code). It is called Note
and it is a really simple one because it has just three attributes, a constructor and only
a method that will print a note.

1 public class Note implements Serializable{
2 private Integer note_id; private String note_title; private String note_body;
3

4 public void print_note(){
5 System.out.println(note_title + "\n" + note_body + "\n");
6 }
7 }

Finally, the last class, called Server.java, is introduced. This is the most important class
because it is the one that keeps all the information and, so, it should be the safest even
if in this case it is not.
For the sake of the exploitation, the Apache commons collections libraries are imported
because of their well-known vulnerability (Section 2.1.4) that can be leveraged through
the Ysoserial tool [9].

1 import org.apache.commons.collections4.*;
2 import org.apache.commons.collections4.CollectionUtils;

Referring to the code the Server starts initializing a new ServerSocket (line 3) and then,
the socket will start to accept connections (line 7).

3| Targets Selection 21

1 ServerSocket server = null;
2 try {
3 server = new ServerSocket(8888);
4 } catch (IOException e) {
5 System.err.println(e.getMessage()); /* port not available*/ return;
6 }
7 Socket socket = server.accept();

Then, the Server will create an example of notes and a list to store them. After, there
is an infinite while loop also for the server that is inside of another infinite while loop.
Inside the nested while loop it creates the streams:

1 ObjectInputStream ois = new ObjectInputStream(socket.getInputStream());
2 ObjectOutputStream oos = new ObjectOutputStream(socket.getOutputStream());

Here, it will start the most important part of the program in which are present the Insecure
Deserialization vulnerabilities in many different ways in order to test out the tools. As
we understood from Chapter 2, the vulnerability itself is in these two lines:

ObjectInputStream ois=new ObjectInputStream(socket.getInputStream());

Object o = ois.readObject();

Thus, for this reason, we presented these two lines in many different ways in order to
make difficult the reconnaissance from the tools point of view.

The first is the following:

1 try (ObjectInputStream ois2 = new ObjectInputStream(socket.getInputStream())) {
2 Object o = ois2.readObject();
3 } catch (Exception e) {
4 }

In these four lines the ObjectInputStream is instantiated in the try-catch block and for
this reason it can be difficult to discover from some tools.

Another possible way to disguise the vulnerability can be:

1 if (val) {
2 ObjectInputStream ois3 = new ObjectInputStream(socket.getInputStream());
3 Object o3 = ois3.readObject();
4 }else {

22 3| Targets Selection

5 ObjectInputStream ois4 = new ObjectInputStream(socket.getInputStream());
6 Object o4 = ois4.readObject();
7 }

Here the fact that the vulnerable code is inside the if could create problems to some tools.
val in this case is a boolean value that is always true and for this reason it is possible to
evaluate the performances of the tools also from the optimization point of view.

After the if condition there is another condition statement called switch:

1 switch (valInt) {
2 case 1:
3 System.out.println(valInt);
4 break;
5 case 6:
6 ObjectInputStream ois5 = new ObjectInputStream(socket.getInputStream());
7 Object o5 = ois5.readObject();
8 break;
9 default:

10 break;
11 }

valInt is an int value that is initialized to 6 and so the switch should enter only in the
second case. As the if condition, here we evaluate both the security and the optimization
parts of the tool.

Another way to test the tools could be with the finally clause of the try-catch-finally
block:

1 try {
2 System.out.println(message);
3 }catch (Exception e){
4 System.err.println(e);
5 }finally {
6 ObjectInputStream ois6 = new ObjectInputStream(socket.getInputStream());
7 message = (String) ois6.readObject();
8 }

The fact that the vulnerable code is in the finally clause can create issues to some scanners.

Next, the conditional operator is used to challenge the reconnaissance of the vulnerability:

3| Targets Selection 23

1 ObjectInputStream ois6 = null;
2 ois6 = (val) ? new ObjectInputStream(socket.getInputStream()): null;
3 message = (!val) ? null: (String)ois6.readObject();

Conditional operator is also known as the ternary operator. This operator consists of
three operands and is used to evaluate boolean expressions. The goal of the opera-
tor is to decide, which value should be assigned to the variable. Hence, at line 2 of
the above code, the ObjectInputStream ois6, if val is true, is equal to new ObjectInput-
Stream(socket.getInputStream()) otherwise to null.

Another way to test out the tools is with the for loop and, in particular, as follows:

1 ObjectInputStream[] oisArray = new ObjectInputStream[10];
2 for (i=0; i<10; oisArray[i] = new ObjectInputStream(socket.getInputStream())) {
3 Object o= oisArray[i].readObject();
4 i++;
5 }

Here, the code is a bit tricky, but it can put in serious trouble many tools. First, it
creates an array of ObjectInputStream, then iterate a loop by incrementing the index i
and, instead of putting the incrementation in the for statement, as it is usually done, it
is replaced by the instantiation of a new ObjectInputStream.

At the end, there is a control flow statement called do-while loop:

1 do {
2 ObjectInputStream ois8 = new ObjectInputStream(socket.getInputStream());
3 message = (String) ois8.readObject();
4 i+=10;
5 }while (i<100);

In the lines above the vulnerable part is inside the loop and this can create problems
sometimes.

Finally, there is an if-else condition that is useful for the functioning of the program:

1 if(message.equalsIgnoreCase("GET")){
2 // Client wants all of the saved notes
3 oos.writeObject(noteList);
4 continue;
5 }else if (message.equalsIgnoreCase("SAVE")){

24 3| Targets Selection

6 // Client wants to save a note, accept a Note object
7 Note newNote = (Note) ois.readObject();
8 noteList.add(newNote);
9 continue;

10 }else if (message.equalsIgnoreCase("BYE")){
11 break;
12 }else{
13 }

In which, if the message sent from the client is a "GET", then the entire noteList will be
sent to the client in which all the notes are saved. While, if the client has sent a "SAVE"
message, then a new note is added to the list and here is present another vulnerability
of the Server class. At the end, if the message is "BYE", it will exit from the loop and
terminate.

25

4| Experimental Results

In this chapter we first present the tools used in this thesis to analyze the code of the
target web applications. In particular, the description of the tools on how they work and
how they recognize the vulnerabilities in the code.
The tools, as mentioned in the previous chapter, are selected in a way to represent the
most common products used in the market because are user-friendly, free and open source.
Moreover, another aspect that we have taken in consideration during the selection of the
tools is that they presents the ability to recognize the Insecure Deserialization vulnerabil-
ity. This can be proven by the presence of rules, the so called bug patterns that will be
described below, containing the Insecure Deserialization vulnerability.
Next, we present the experiment with its relative results and, furthermore, the interpre-
tation of the results. Our main aim is to build a program for improving the automatic
discovery and recognition of Insecure Deserialization vulnerabilities by the tools.

All the results will be summarized in a table (Table 4.1) and the description of the results
more in details will follow the table.

4.1. List of Analyzed Tools

The first step consists in the selection of the tools. Since the aim of this thesis is the
static analysis of the code, the choice falls on the Static Application Security Test-
ing (SAST) tools because they are used to secure software by reviewing the source code
of the software to identify sources of vulnerabilities.
Unlike dynamic application security testing (DAST) tools for black-box testing of appli-
cation functionality, SAST tools focus on the code content of the application, white-box
testing. The reason why the analysis of the source code is preferred it is because the
Insecure Deserialization vulnerability is easier to find out through the code analysis, as
can be understood in the Chapter 2.
Next, it will be introduced all the tools used for the analysis. Furthermore, for each tool
will be present also a subsection in which is analyzed the complete list of descriptions
given when the tool identifies potential weaknesses that is called "Bug Patterns". Ba-

26 4| Experimental Results

sically, the Bug Patterns, as the name suggest, are the patterns and so what is searched
by the tool in order to recognize the bug. Since the focus of this thesis is on the Insecure
Deserialization vulnerability, among all the patterns only the ones related with the Object
Deserialization will be addressed. The list is the following:

1. Find Security Bugs (Section 4.1.1);

2. SonarLint (Section 4.1.2);

3. Error Prone (Section 4.1.3);

4. SonarQube (Section 4.1.4);

5. Semgrep (Section 4.1.5);

We now introduce all the tools in details one by one.

4.1.1. Find Security Bugs

Find Security Bugs is the SpotBugs plugin for security audits of Java web applications [2].

Bug Patterns

This subsection, as previously stated, analyzes the bug patterns related to the deserial-
ization bug.

1. OBJECT_DESERIALIZATION. Object deserialization is used and code at risk:
Here the pattern that is searched by the tool is readObject(), that, as already stated
in the previous chapter, is the most common form of deserialization used from the
devolepers. This is very dangerous because it can lead to remote code execution.

1 public UserData deserializeObject(InputStream receivedFile) throws
IOException, ClassNotFoundException {↪→

2

3 try (ObjectInputStream in = new ObjectInputStream(receivedFile)) {
4 return (UserData) in.readObject();
5 }
6 }

2. JACKSON_UNSAFE_DESERIALIZATION. Unsafe Jackson deserialization con-
figuration and code at risk:
The main trigger that creates an alert is the presence of the method enableDefault-
Typing(). The second example, instead, shows that also the presence of readValue()

4| Experimental Results 27

can lead to deserialization and, so, lead to remote code execution.

1 public void example(String json) throws JsonMappingException {
2 ObjectMapper mapper = new ObjectMapper();
3 mapper.enableDefaultTyping();
4 mapper.readValue(json, ABean.class);
5 }
6

7 public void exampleTwo(String json) throws JsonMappingException {
8 ObjectMapper mapper = new ObjectMapper();
9 mapper.readValue(json, AnotherBean.class);

10 }

3. DESERIALIZATION_GADGET. This class could be used as deserialization gadget.
Deserialization gadget are class that could be used by an attacker to take advantage
of a remote API using Native Serialization. This class is either adding custom
behavior to deserialization with the readObject method (Serializable) or can be
called from a serialized object (InvocationHandler).

4. XML_DECODER. XMLDecoder should not be used to parse untrusted data. De-
serializing user input can lead to arbitrary code execution. Vulnerable Code:
This pattern still looks for the readObject() method (like the first bug pattern),
although in this case it is not called from the ObjectInputStream class but from the
XMLDecoder class.

1 XMLDecoder d = new XMLDecoder(in);
2 try {
3 Object result = d.readObject();
4 }

5. LDAP_ENTRY_POISONING. JNDI API support the binding of serialize object
in LDAP directories. Vulnerable code:
The exploitation of the vulnerability will be possible if the attacker has an entry
point in an LDAP base query, by adding attributes to an existing LDAP entry or
by configuring the application to use a malicious LDAP server. The deserialization
is possible when the fifth parameter of the constructor of SearchControls is true
because it returns the object bound to the name of the entry; if false, instead, does
not return object avoiding the deserialization problem.

28 4| Experimental Results

1 DirContext ctx = new InitialDirContext();
2 // ...
3 ctx.search(query, filter,
4 new SearchControls(scope, countLimit, timeLimit, attributes,
5 true, //Enable object deserialization if bound in directory
6 deref));

6. RPC_ENABLED_EXTENSIONS. Enabling extensions in Apache XML RPC server
or client can lead to deserialization vulnerability which would allow an attacker
to execute arbitrary code. It is recommended not to use setEnabledForExten-
sions method of org.apache.xmlrpc.client.XmlRpcClientConfigImpl or, also, from
the org.apache.xmlrpc.XmlRpcConfigImpl. By default, extensions are disabled both
on the client and the server.

For more details please consult the website of SpotBugs [2].

4.1.2. SonarLint

SonarLint is a free and open source IDE extension that identifies and helps you fix quality
and security issues as you code. Like a spell checker, SonarLint squiggles flaws and
provides real-time feedback and clear remediation guidance to deliver clean code from the
get-go [26].

Bug Patterns

This subsection, as previously stated, analyzes the bug patterns related to the deserial-
ization bug.

1. Deserialization should not be vulnerable to injection attacks. Noncompliant Code
Example:
The bug pattern of this tool is very similar to the first one adopted from the tool
described above. In fact, here the pattern that is searched by the tool is the read-
Object() method, that it is the most common way to use deserialization in Java.

1 public class RequestProcessor {
2 protected void processRequest(HttpServletRequest request) {
3 ServletInputStream sis = request.getInputStream();
4 ObjectInputStream ois = new ObjectInputStream(sis);
5 Object obj = ois.readObject(); // Noncompliant

4| Experimental Results 29

6 }
7 }

2. Using unsafe Jackson deserialization configuration is security-sensitive. Sensitive
code example:
This rule raises an issue when: enableDefaultTyping() is called on an instance
of com.fasterxml.jackson.databind.ObjectMapper or, also, from an instance of the
library org.codehaus.jackson.map.ObjectMapper ; otherwise, when the annotation
@JsonTypeInfo is set at class, interface or field levels and configured with use =
JsonTypeInfo.Id.CLASS or use = Id.MINIMAL_CLASS. This pattern, as the pre-
vious one, is very similar to the bug pattern used from SpotBugs, in particular the
second one.

1 ObjectMapper mapper = new ObjectMapper();
2 mapper.enableDefaultTyping(); // Sensitive
3 // or another example
4 @JsonTypeInfo(use = Id.CLASS) // Sensitive
5 abstract class PhoneNumber {
6 }

3. Allowing deserialization of LDAP objects is security-sensitive. Sensitive Code Ex-
ample:
This rule raises an issue when an LDAP search query is executed with Search-
Controls configured to allow deserialization. It is interesting to note that, like the
previous ones, also this bug pattern used by SonarLint is very similar to one that is
adopted by SpotBugs (the fifth one).

1 DirContext ctx = new InitialDirContext();
2 // ...
3 ctx.search(query, filter,
4 new SearchControls(scope, countLimit, timeLimit, attributes,
5 true, // Noncompliant; allows deserialization
6 deref));

4. "ActiveMQConnectionFactory" should not be vulnerable to malicious code deserial-
ization. Noncompliant Code Example:
ActiveMQ can send/receive JMS Object messages (named ObjectMessage in Ac-
tiveMQ context) to comply with JMS specification. Internally, ActiveMQ relies on

30 4| Experimental Results

Java serialization mechanism for marshaling/unmarshaling of the message payload.
Deserialization based on data supplied by the user could lead to remote code exe-
cution attacks, where the structure of the serialized data is changed to modify the
behavior of the object being unserialized.

1 ActiveMQConnectionFactory factory = new
ActiveMQConnectionFactory("tcp://localhost:61616");↪→

2 factory.setTrustAllPackages(true); // Noncompliant
3

4 ActiveMQConnectionFactory factory = new
ActiveMQConnectionFactory("tcp://localhost:61616");↪→

5 // no call to factory.setTrustedPackages(...);

For more details please consult the website of SonarSource [28].

4.1.3. Error Prone

Error Prone hooks into your standard build, so all developers run it without thinking,
tells you about mistakes immediately after they are made and produces suggested fixes,
allowing you to build tooling on it [10].

Bug Patterns

This subsection, as previously stated, analyzes the bug patterns related to the deserial-
ization bug.

1. BundleDeserializationCast (Severity ERROR). Object serialized in Bundle may
have been flattened to base type.

2. BanSerializableRead (Severity ERROR). Deserializing user input via the ’Serializ-
able’ API is extremely dangerous.
The Java Serializable API is very powerful, and very dangerous. Any consumption
of a serialized object that cannot be explicitly trusted will likely result in a critical
remote code execution bug that will give an attacker control of the application.

For more details please consult the website of Error Prone [10].

4.1.4. SonarQube

SonarQube is an open-source platform developed by SonarSource for continuous inspection
of code quality to perform automatic reviews with static analysis of code to detect bugs,

4| Experimental Results 31

code smells and security vulnerabilities on 20+ programming languages. SonarQube offers
reports on duplicated code, coding standards, unit tests, code coverage, code complexity,
comments, bugs and security vulnerabilities [27].

Bug Patterns

Since the tool belongs to the same company of SonarLint, they use the same rules to
discover the vulnerabilities. Thus, please consult Section 4.1.2 of SonarLint. But, even if
the tools share the same rules, during the analysis of the tools they had different results
and, for this reason, both are present in the thesis.

4.1.5. Semgrep

Semgrep is a fast, open-source, static analysis tool for finding bugs and enforcing code
standards at editor, commit and CI time [23].

Bug Patterns

This subsection, as previously stated, analyzes the bug patterns related to the deserial-
ization bug.

1. java.jax-rs.security.insecure-resteasy.insecure-resteasy-deserialization
Test code:
When a Restful webservice endpoint is configured to use wildcard mediaType {*/*}
as a value for the @Consumes annotation, an attacker could abuse the Serializ-
ableProvider by sending a HTTP Request with a Content-Type of application/x-
java-serialized-object. The body of that request would be processed by the Serial-
izationProvider and could contain a malicious payload, which may lead to arbitrary
code execution when calling the $Y.getObject method.

1 @Path("/")
2 public class PoC_resource {
3 @POST
4 @Path("/concat")
5 @Produces(MediaType.APPLICATION_JSON)
6 // ruleid: insecure-resteasy-deserialization
7 @Consumes({"*/*"})
8 public Map<String, String> doConcat(Pair pair) {...}
9 }

32 4| Experimental Results

2. java.lang.security.audit.object-deserialization.object-deserialization
Test code:
This is very similar to the patterns written in the previous tools, but there is one
main difference with respect to the other ones that is the pattern searched from
Semgrep, because it is not readObject() but it is new ObjectInputStream().

1 public UserData deserializeObject(InputStream receivedFile) throws
IOException, ClassNotFoundException {↪→

2 // ruleid:object-deserialization
3 ObjectInputStream in = new ObjectInputStream(receivedFile);
4 return (UserData) in.readObject();
5 }

3. java.lang.security.insecure-jms-deserialization.insecure-jms-deserialization
Test code:
JMS Object messages depend on Java Serialization for marshalling/unmarshalling
of the message payload when ObjectMessage.getObject() is called. Thus, the pattern
that will trigger the tool is the getObject() method.

1 ObjectMessage msg = (ObjectMessage) message;
2

3 // ruleid: insecure-jms-deserialization
4 Object o = msg.getObject(); //variant 1: calling getObject method directly

on an ObjectMessage object↪→

5

6 // ruleid: insecure-jms-deserialization
7 Income income = (Income) msg.getObject(); //variant 2: calling getObject

method and casting to a custom class↪→

4. java.lang.security.use-snakeyaml-constructor.use-snakeyaml-constructor
Test code:
Used SnakeYAML org.yaml.snakeyaml.Yaml() constructor with no arguments, which
is vulnerable to deserialization attacks. The pattern that will trigger the tool is when
it is instiantiated a new YAML object: new org.yaml.snakeyaml.Yaml().

1 public void unsafeLoad(String toLoad) {
2 // ruleid:use-snakeyaml-constructor
3 Yaml yaml = new Yaml();
4 yaml.load(toLoad);
5 }

4| Experimental Results 33

5. java.rmi.security.server-dangerous-class-
deserialization.server-dangerous-class-deserialization
Test code:
Using a non-primitive class with Java RMI may be an insecure deserialization vul-
nerability. Depending on the underlying implementation. This object could be
manipulated by a malicious actor allowing them to execute code on your system.

1 // ruleid:server-dangerous-class-deserialization
2 public interface IBSidesService extends Remote {
3 boolean registerTicket(String ticketID) throws RemoteException;
4 void vistTalk(String talkname) throws RemoteException;
5 void poke(Attendee attende) throws RemoteException;
6 }

6. java.rmi.security.server-dangerous-object-
deserialization.server-dangerous-object-deserialization
Test code:
It is interesting to note that this bug pattern is very similar to the one above, except
for the difference that in the method poke() the parameter required in the first case
is of type Attendee, while here the parameter is an Object. Hence, this is a more
general case with respect to the previous one.

1 // ruleid:server-dangerous-object-deserialization
2 public interface IBSidesService extends Remote {
3 boolean registerTicket(String ticketID) throws RemoteException;
4 void vistTalk(String talkname) throws RemoteException;
5 void poke(Object attende) throws RemoteException;
6 }

7. java.lang.security.audit.xml-decoder.xml-decoder
Test code:
This bug pattern is very similar to the fourth of SpotBugs, but there is one dif-
ference that is the pattern searched from the tool. Because in the previous case
SpotBugs was looking for the readObject() method, while Semgrep is looking for
the instantiation of a new XMLDecoder().

34 4| Experimental Results

1 // ruleid: xml-decoder
2 public static Object handleXml(InputStream in) {
3 XMLDecoder d = new XMLDecoder(in);
4 try {
5 Object result = d.readObject(); //Deserialization happen here
6 }
7 }

8. mobsf.mobsfscan.jackson_deserialization.jackson_deserialization
Pattern:
The app uses jackson deserialization library and, in particular, the tool is looking
for an instance of com.fasterxml.jackson.databind.ObjectMapper when it calls the
method enableDefaultTyping(). Also, this bug pattern is very similar to other bug
patterns of the tools described above.

import com.fasterxml.jackson.databind.ObjectMapper;

...

$Z.enableDefaultTyping();

9. mobsf.mobsfscan.object_deserialization.object_deserialization
Pattern:
This pattern is very simple and find object deserialization using ObjectInputStream.
In fact, it searches for the string new ObjectInputStream().

new ObjectInputStream(...);

10. mobsf.mobsfscan.xmldecoder_xxe.xml_decoder_xxe
Pattern:
XMLDecoder should not be used to parse untrusted data. Deserializing user input
can lead to arbitrary code execution. For this reason, the tool is looking for the
pattern new XMLDecoder().

$X $METHOD(...) {

...

new XMLDecoder(...);

...

}

4| Experimental Results 35

For more details please consult the website of Semgrep [23].

4.2. Experiment

The experiment consists in five different tools (Section 4.1) launched over seven different
vulnerable targets (Section 3.1) and, in addition, the one that we have implemented
(Section 3.2). The goal of this analysis is to figure out the behavior of the tools and their
performances.

The main parameter of the analysis that is taken in consideration is only if the tool is
able to recognize all the Insecure Deserialization vulnerabilities and if not, the number
of vulnerabilities found. Thus, in this thesis we do not consider the optimization of the
tools, for example the time needed to analyze all the code, neither their performances
with respect to other vulnerabilities.

Another interesting performance metric for the evaluation phase could be the precision
and recall (Figure 4.1).

First, it is important to understand what the four values mean:

• True Positive (TP): A test result that correctly indicates the presence of a condition
or characteristic.

• True Negative (TN): A test result that correctly indicates the absence of a condition
or characteristic.

• False Positive (FP): A test result which wrongly indicates that a particular condition
or attribute is present.

• False Negative (FN): A test result which wrongly indicates that a particular condi-
tion or attribute is absent.

In a classification task, the precision for a class is the number of true positives (i.e. the
number of items correctly labelled as belonging to the positive class) divided by the total
number of elements labelled as belonging to the positive class (i.e. the sum of true positives
and false positives, which are items incorrectly labelled as belonging to the class). Recall
in this context is defined as the number of true positives divided by the total number of
elements that actually belong to the positive class (i.e. the sum of true positives and false
negatives, which are items which were not labelled as belonging to the positive class but
should have been) [22]. To summarize in a formula, precision Equation (4.1) and recall

36 4| Experimental Results

Figure 4.1: Precision and Recall [22].

Equation (4.2) are then defined as:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

(4.1)

(4.2)

From this we could extract some significant information regarding the tools. For exam-
ple, the precision can be used as metrics to verify if the vulnerabilities found are true
vulnerabilities, while the recall can help to evaluate how many vulnerabilities is able to
find overall.

All tests were performed using a build of OpenJDK 8 with Java 8 and, in particular, the
version 8u272-b10 for the operating system Windows running on architecture x86 64-bit.
The tests were run on a two-core, Intel Core i5-6200U machine with 12 GB of RAM
running Windows 10. Moreover, all the tools, apart from Semgrep, were launched inside
the IDE IntelliJ IDEA Community Edition 2021.2.3. Semgrep instead was launched via

4| Experimental Results 37

WebApp\Tool Find Security
Bugs SonarLint Error Prone SonarQube Semgrep

Serial Killer Found Not found Not found Not found Found

Java Deserialize
webapp Found Not found Not found Not found Found

DeserLab Found Not found Not found Not found Found

JavaDeserH2HC Found Not found Not found Not found Found

WebGoat Found Not found Not found Not found Partially found

CVE-2017-
7525-Jackson-
Deserialization-
Lab

Partially found Not found Not found Partially found Partially found

Java Deseri-
alization Of
Untrusted Data
PoC

Found Not found Not found Not found Found

BenchStress Partially found Not found Not found Not found Partially found

Table 4.1: Results of the experiment.

Windows Subsystems for Linux (WSL) running Ubuntu 20.04.3 LTS.

4.3. Results

In Table 4.1 the rows represent the different targets, while the columns are the tools and,
as is clearly visible, the intersection is when the tool is launched on that particular target.
Then, we distinguish the result in three possible outcome: "Found", in green, means that
the tool was able to find all the vulnerabilities present in the target program; "Not found",
in red, means that the tool was not able to find any vulnerability in the target; "Partially
found", in orange, means that the tool was able to find at least one vulnerability in the
target program.

The majority of the tools cannot find any vulnerability, however SpotBugs and Semgrep
are able to find almost every vulnerability except a few and in the section below we find
out how they works. This tell us that, even if the Insecure Deserialization vulnerability is
very well-know from 2018, the majority of the tools has not tried to improve this aspect.

38 4| Experimental Results

4.4. Interpretation of the Results

Looking at the results it is possible to make two observations, orthogonal between them:
on the one hand you can see which tool behaves best and which worse, and, on the other,
which are the most critical web applications targets identified.
From the perspective of tools, SpotBugs is the best one among the tools chosen, while
SonarLint and Error Prone are the two that behave worse. SpotBugs is the one that
behaves best in all circumstances because for each vulnerable target it finds at least the
same number of vulnerabilities as the other tools and it usually finds more vulnerabilities
than the other tools. While, as stated above, SonarLint and Error Prone are the ones
that behave worse because in every circumstances they are inferior to the other tools and
they are never able to find any vulnerability.
From the point of view of the targets, instead, it is interesting to note that the one
that is harder to be recognized is CVE-2017-7525-Jackson-Deserialization-Lab. Because,
even if, both Semgrep, SonarQube and SpotBugs were able to find the majority of the
vulnerabilities of the program, they was not able to find all of them. The second vulnerable
web application target which is more critical to recognize is OWASP Webgoat because
only one tool (SpotBugs) was able to find all the vulnerabilities present, while the other
tool (Semgrep) that usually performs well was not able to find all the vulnerabilities
present in the program. What is not detected by the tool is:

1 try (ObjectInputStream ois = new ObjectInputStream(new
ByteArrayInputStream(Base64.getDecoder().decode(b64token)))) {↪→

2 Object o = ois.readObject();
3 if (!(o instanceof VulnerableTaskHolder)) {
4 //Do something
5 }
6 } catch (Exception e) {
7 return failed(this).feedback("insecure-deserialization.invalidversion").build();
8 }

Since the vulnerable part is present inside the round parenthesis of the try block, it makes
difficult the reconnaissance by the tool.
An interesting fact to note is how SpotBugs and Semgrep work, because they work in
a different way and, in particular, the difference is in what they look for in a program.
The first looks for the method readObject(), while the second looks for the instantiation
of a new ObjectInputStream . If the net result of the two "strategies" seems to be
rewarding SpotBugs, it is also necessary to keep in mind the differing in terms of speed
which shows Semgrep a little bit faster than SpotBugs and other factors, but this is not

4| Experimental Results 39

BenchStress SpotBugs Semgrep

Vulnerabilities in Client 1 1 1

Vulnerabilities in Server 9 8 7

Overall Vulnerabilities 10 9 8

Table 4.2: Comparison of SpotBugs and Semgrep on the program.

the scope of this thesis. Thus, regarding only the aspect of vulnerabilities found, SpotBugs
seems to make the right choice in terms of analysis with respect to SpotBugs because it
recognizes more vulnerabilities in almost every situation. In fact, another example that
shows the greater efficiency of SpotBugs in comparison to Semgrep is when the two tools
are launched on the program that we have implemented (BenchStress). Table 4.2 provides
general information on the number of vulnerabilities found in the program.

The BenchStress column contains all the vulnerabilities present in the program, while in
the columns of SpotBugs and Semgrep there are the number of vulnerabilities found by
the tools. Looking simply at the results seems that SpotBugs has found just one more
vulnerability than Semgrep, but this is not totally true because the only vulnerability not
found by the first tool is placed inside an else block that will never satisfy his condition
and so it will never reach the code inside the else. Hence, for this reason, SpotBugs did not
find this vulnerability, or rather it never scan through that code because is unreachable.
The following is the code described above:

1 final boolean val=true;
2 ...
3 if (val) {
4 ObjectInputStream ois3 = new ObjectInputStream(socket.getInputStream());
5 Object o3 = ois3.readObject();
6 }else {
7 ObjectInputStream ois4 = new ObjectInputStream(socket.getInputStream()); //Found

by Semgrep even if this block is unreachable↪→

8 Object o4 = ois4.readObject(); //SpotBugs does not find the vulnerability in the
else because val is always true↪→

9 }

The fact that SpotBugs does not check the code if not reachable can be an optimization,
but this can create some problems: for example in the case if an attacker is able to
control the flow of the program and so modify the value of val. Even if this is a corner
case that consider at least another vulnerability, it is interesting to reflect also about this

40 4| Experimental Results

because it falls within the argument of precision and recall described above (Section 4.2).
For example, in this particular case the classification of the code in the else block as
vulnerability can be considered like a false positive because it is not reachable and, thus, it
will reduce the precision (Equation (4.1)). Hence, the choice of SpotBugs is to maximize
the precision, even if this sometimes can reduce the recall because, for example in the
code above, if the vulnerability not recognized would have been a real vulnerability it will
belong to the false negative thus reducing the recall (Equation (4.2)).
Semgrep, as can be understood from Table 4.2, is not able to detect two vulnerabilities in
the program and this can be an interesting point to analyze. The first vulnerability not
found by the tool is very similar to the one described above when the OWASP WebGoat
application was depicted. In fact, we have taken inspiration also from that program in
order to build our own implementation with the aim to test the tools. The code is the
following:

1 try (ObjectInputStream ois2 = new ObjectInputStream(socket.getInputStream())) {
2 Object o = ois2.readObject();
3 } catch (Exception e) {
4 return;
5 }

This instantiation of a new ObjectInputStream inside the try round parenthesis creates
some problems to the identification of the vulnerability by the tool.
The concept of the second vulnerability not found by Semgrep is similar to the one above
but applied in another situation. The code is presented below:

1 ObjectInputStream[] oisArray = new ObjectInputStream[10];
2 for (i=0; i<10; oisArray[i] = new ObjectInputStream(socket.getInputStream())) {
3 Object o= oisArray[i].readObject();
4 i++;
5 }

First, an array of ObjectInputStream is created in order to store at every iteration a
new ObjectInputStream. Then, inside the for cycle we can find the initialization and the
condition as usual, but instead of the standard increment it is replaced by the instantiation
of a new ObjectInputStream. While, the incrementation is shifted inside the body of the
for loop. This pattern should trigger the tool and detect the vulnerability, but for some
reason Semgrep is not able to detect the vulnerability in this form.

We decided to analyze in detail only these two tools because are the best ones to detect

4| Experimental Results 41

the Insecure Deserialization vulnerability.

43

5| Conclusions and Future Works

This thesis presented a study on SAST tools with respect to Insecure Deserialization
vulnerabilities in Java source code. This study was performed on 5 free and open-source
SAST tools launched against 7 different targets, with the addition of BenchStress, a
benchmark application that we created.

Despite the tools analyzed were a small number, we assume that also other tools, even the
commercial ones, are based on similar patterns and, also that these may be structurally
similar to those analyzed.

Specifically, since we do not have access to the internals of all tools, we studied the behavior
and performance of each tool by focusing on their ability to detect vulnerabilities in the
testing environment.

First, we have given some background concepts needed to understand this thesis. For
instance, the definition of Insecure Deserialization vulnerability and how to identify it.
Moreover, a practical example is provided which is useful to understand a real case scenario
and, also, how to exploit it. Another concept that is explained is the static analysis and
why we use it.

Then, we have presented the targets chosen to test and collect information regarding
the tools. The choice of the targets was very crucial because we had to select the web
applications well-known to be vulnerable to Insecure Deserialization. Moreover, we have
manually confirmed the presence of these vulnerabilities. This was useful to understand if
the tool recognizes a real vulnerability (true positive) or it recognize a false vulnerability
(false positive).

Finally, the most important part of the thesis, that is also the main part, is the analysis
of the results. In which, first we have introduced the tools used for this experiment, with
a particular focus on the bug patterns. The bug patterns are the means by which the
tools are able or not to detect a particular vulnerability. Next, it is explained the exper-
iment and, then, the results are presented with also some interpretations of the latter.
This study highlighted the great difference in terms of performances of different scanners

44 5| Conclusions and Future Works

compared to the same vulnerability. While, some tools were not able to detect almost any
vulnerability, others were able to detect almost all the Insecure Deserialization vulnera-
bilities present in every web application target. Then, we performed a comparison of the
two best static security scanners, SpotBugs and Semgrep, when launched on BenchStress,
the web application program that we have implemented. Both the tools were capable
of detecting the majority of the vulnerabilities, even if Semgrep was the one put in the
most trouble from the program because it was not able to recognize two type of Insecure
Deserialization because written in a different way.

Despite this facts, there are some positive aspects regarding the problems we studied.
They are going to evolve, and in a positive direction. Awareness of information security
topics is constantly growing in both the software engineering community and the industry
management and it is in the interest of maintainers of programming languages to pro-
vide secure technologies to companies and end users in general. At the time of writing,
OWASP has included again the Insecure Deserialization from 2017 as a part of a new
larger category called A08:2021-Software and Data Integrity Failures in the new release
of the OWASP Top 10 Web Application Security Risks project for 2021 [20]. Furthermore,
also Semgrep has updated the rule for the deserialization and it has added a new pattern
that is similar to the one that we used in BenchStress that was not detected by the tool
during our analysis, but now it is able to detect it. Thus, the result of Semgrep when
launched on our program is improved because now it is able to detect 9 out of 10 Insecure
Deserialization vulnerabilities, still one vulnerability is not detected by the scanner. It is
important that such directions are clearly imparted and not underestimated, as education
of the developers’ community is crucial for software quality and security. As most areas
of information security, software protection is constantly improving, as new techniques
emerge for discovering and treating vulnerabilities. With software codebases becoming
bigger and more complex everyday, automated and semi-automated approaches are al-
ready paramount in software validation for security. This trend of increasing importance
of such techniques gives a clear direction to research, which will keep shifting from manual
to automated analysis.

While trying to select tools that are representative of what the market offers, the most
obvious limitation of this work lies in the fact that we used only freely available tools and,
often, also open source. Thus, we have not tested any commercial security scanner.

The approach based on static analysis suffers from one limitation: when there is a vulner-
ability at runtime. In such a context, static analysis fails to detect some attack vectors
when, for example, the attacker uses reflection or when he is able to dynamically load
classes at runtime.

5| Conclusions and Future Works 45

However, this is not a limitation of our technique, but is more generally a limitation of
static analysis.

During the development of the thesis, some ideas about possible ways to extend the work
came up. We report the following:

• Perform a similar study but with the black-box web vulnerability scanners with
respect to the same vulnerability.

• Another interesting work could be to see the performances of the tools in terms of
optimization. For example, the time needed to execute the scan.

• Evaluate the metrics of precision and recall could be an extended work of this thesis.
Thus, consider the performance also in terms of true positives and false positives.

• Perform a similar study on SAST tools with respect to others important vulnera-
bilities on OWASP Top 10 list, for example SQL Injections or XXE.

• An addition to this work could be to repeat the same experiment but with a different
programming language (e.g., PHP or Python).

47

Bibliography

[1] All-Army CyberStakes 4. Serial killer aacs 4 ctf, 2020. URL https://github.com/

archang31/aacs4-writeups/tree/master/BinaryExploitation/SerialKiller.

[2] P. Arteau. Find security bugs, 2020. URL https://find-sec-bugs.github.io/.

[3] N. Bloor. Attacking java deserialization, 2017. URL https://nickbloor.co.uk/

2017/08/13/attacking-java-deserialization/.

[4] L. Carettoni. Defending against Java Deserialization Vulnerabilities. Hackers to
Hackers Conference 2017 (H2HC 2017), 2017.

[5] CLASP. Cwe-502: Deserialization of untrusted data, 2006. URL https://cwe.

mitre.org/data/definitions/502.html.

[6] Contrast-Security-OSS. Contrast-security-oss/contrast-ro0: A tiny java agent that
blocks attacks against unsafe deserialization, 2015. URL https://github.com/

Contrast-Security-OSS/contrast-rO0.

[7] S. Cristalli, E. Vignati, D. Bruschi, and A. Lanzi. Trusted execution path for protect-
ing java applications against deserialization of untrusted data. In International Sym-
posium on Research in Attacks, Intrusions, and Defenses, pages 445–464. Springer,
2018.

[8] J. F. M. Figueiredo. An Overview of Deserialization Vulnerabilities in the Java
Virtual Machine (JVM). Hackers to Hackers Conference 2017 (H2HC 2017), 2017.

[9] C. Frohoff and G. Lawrence. Marshalling pickles: How deserializing objects will ruin
your day. In OWASP AppSec California. OWASP, 2015. URL http://frohoff.

github.io/appseccali-marshalling-pickles/.

[10] Google. Error prone, 2022. URL https://errorprone.info/.

[11] I. Haken. Automated discovery of deserialization gadget chains. Proceedings of the
Black Hat USA, 2018.

https://github.com/archang31/aacs4-writeups/tree/master/BinaryExploitation/SerialKiller
https://github.com/archang31/aacs4-writeups/tree/master/BinaryExploitation/SerialKiller
https://find-sec-bugs.github.io/
https://nickbloor.co.uk/2017/08/13/attacking-java-deserialization/
https://nickbloor.co.uk/2017/08/13/attacking-java-deserialization/
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://github.com/Contrast-Security-OSS/contrast-rO0
https://github.com/Contrast-Security-OSS/contrast-rO0
http://frohoff.github.io/appseccali-marshalling-pickles/
http://frohoff.github.io/appseccali-marshalling-pickles/
https://errorprone.info/

48 | Bibliography

[12] A. Issac. Serialization Filtering — Deserialization Vulnerability Pro-
tection in Java, 2021. URL https://medium.com/tech-learnings/

serialization-filtering-deserialization-vulnerability-protection-in-java-349c37f6f416.

[13] Kantega AS. Notsoserial, 2015. URL https://github.com/kantega/notsoserial.

[14] M. Lessio and A. B. Cve-2017-7525-jackson-deserialization-lab,
2020. URL https://github.com/Ingenuity-Fainting-Goats/

CVE-2017-7525-Jackson-Deserialization-Lab.

[15] A. Muñoz and C. Schneider. Serial killer: Silently pwning your java endpoints, 2018.

[16] N. N. I. of Standards and Technology. National vulnerability database nvd, 2022.
URL https://nvd.nist.gov/. [Online; accessed 14-February-2022].

[17] OWASP Foundation. Deserialization cheat sheet, 2017. URL https:

//cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.

html.

[18] OWASP Foundation. Deserialization of untrusted data, 2017. URL https://owasp.

org/www-community/vulnerabilities/Deserialization_of_untrusted_data.

[19] OWASP Foundation. A8:2017-insecure deserialization, 2017. URL https://owasp.

org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization.

[20] OWASP Foundation. Owasp top ten web application security risks 2021, 2021. URL
https://owasp.org/www-project-top-ten/. [Online; accessed 18-February-2022].

[21] OWASP Foundation. Owasp webgoat, 2021. URL https://owasp.org/

www-project-webgoat/.

[22] Precision and recall. Precision and recall — Wikipedia, the free encyclopedia, 2022.
URL https://en.wikipedia.org/wiki/Precision_and_recall. [Online; accessed
07-February-2022].

[23] Return To Corporation. Semgrep, 2021. URL https://semgrep.dev/.

[24] A. Sabatini. Benchstress, 2022. URL https://github.com/alex97saba/

BenchStress.

[25] C. Schneider. Swat (serial whitelist application trainer), 2016. URL https:

//github.com/cschneider4711/SWAT.

[26] SonarSource. Sonarlint, 2020. URL https://www.sonarlint.org/.

[27] SonarSource. Sonarqube, 2021. URL https://www.sonarqube.org/.

https://medium.com/tech-learnings/serialization-filtering-deserialization-vulnerability-protection-in-java-349c37f6f416
https://medium.com/tech-learnings/serialization-filtering-deserialization-vulnerability-protection-in-java-349c37f6f416
https://github.com/kantega/notsoserial
https://github.com/Ingenuity-Fainting-Goats/CVE-2017-7525-Jackson-Deserialization-Lab
https://github.com/Ingenuity-Fainting-Goats/CVE-2017-7525-Jackson-Deserialization-Lab
https://nvd.nist.gov/
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-webgoat/
https://en.wikipedia.org/wiki/Precision_and_recall
https://semgrep.dev/
https://github.com/alex97saba/BenchStress
https://github.com/alex97saba/BenchStress
https://github.com/cschneider4711/SWAT
https://github.com/cschneider4711/SWAT
https://www.sonarlint.org/
https://www.sonarqube.org/

5| BIBLIOGRAPHY 49

[28] SonarSource. Sonarsource rules, 2021. URL https://rules.sonarsource.com/

java.

[29] M. Woloszyn. Java deserialize webapp, 2016. URL https://github.com/hvqzao/

java-deserialize-webapp.

https://rules.sonarsource.com/java
https://rules.sonarsource.com/java
https://github.com/hvqzao/java-deserialize-webapp
https://github.com/hvqzao/java-deserialize-webapp

51

A| Vulnerable application

We present the code of the example of a vulnerable application to deserialization:

52 A| Vulnerable application

Listing 1 Server.java

1 package hvqzao.java.deserialize.webapp.embedded;
2

3 import java.io.File;
4 import java.util.logging.Level;
5 import java.util.logging.Logger;
6

7 import org.apache.catalina.WebResourceRoot;
8 import org.apache.catalina.connector.Connector;
9 import org.apache.catalina.core.StandardContext;

10 import org.apache.catalina.startup.Tomcat;
11 import org.apache.catalina.webresources.DirResourceSet;
12 import org.apache.catalina.webresources.StandardRoot;
13

14 public class Server {
15

16 public static void main(String[] args) throws Exception {
17

18 Logger logger = Logger.getLogger("");
19 logger.setLevel(Level.WARNING);
20

21 Tomcat tomcat = new Tomcat();
22 tomcat.setBaseDir("target/tmp/");
23 Connector connector = tomcat.getConnector();
24 connector.setProperty("port", "8000");
25 //connector.setProperty("address", "127.0.0.1");
26

27 String webappDirLocation = "src/main/resources/webapp/";
28 StandardContext ctx = (StandardContext) tomcat.addWebapp("",
29 new File(webappDirLocation).getAbsolutePath());
30

31 // Declare an alternative location for your "WEB-INF/classes" dir
32 File classes = new File("target/classes");
33 WebResourceRoot resources = new StandardRoot(ctx);
34 resources.addPreResources(new DirResourceSet(resources,
35 "/WEB-INF/classes", classes.getAbsolutePath(), "/"));
36 ctx.setResources(resources);
37

38 System.out.println("Running...");
39 tomcat.start();
40 tomcat.getServer().await();
41

42 }
43

44 }

A| Vulnerable application 53

Listing 2 Serial.java

1 package hvqzao.java.deserialize.webapp.api;
2

3 import java.io.ByteArrayInputStream;
4 import java.io.ByteArrayOutputStream;
5 import java.io.IOException;
6 import java.io.ObjectInputStream;
7 import java.io.ObjectOutputStream;
8 import java.io.Serializable;
9

10 import org.apache.tomcat.util.codec.binary.Base64;
11

12 public class Serial {
13

14 public static Object fromBase64(String s) throws IOException,
15 ClassNotFoundException {
16 byte[] data = new Base64().decode(s);
17 ObjectInputStream ois =
18 new ObjectInputStream(new ByteArrayInputStream(data));
19 Object o = ois.readObject();
20 ois.close();
21 return o;
22 }
23

24 public static String toBase64(Serializable o) throws IOException {
25 ByteArrayOutputStream baos = new ByteArrayOutputStream();
26 ObjectOutputStream oos = new ObjectOutputStream(baos);
27 oos.writeObject(o);
28 oos.close();
29 return new Base64().encodeToString(baos.toByteArray());
30 }
31 }

54 A| Vulnerable application

Listing 3 Servlet.java

1 package hvqzao.java.deserialize.webapp.servlet;
2

3 import java.io.IOException;
4

5 import javax.servlet.ServletException;
6 import javax.servlet.ServletOutputStream;
7 import javax.servlet.annotation.WebServlet;
8 import javax.servlet.http.HttpServlet;
9 import javax.servlet.http.HttpServletRequest;

10 import javax.servlet.http.HttpServletResponse;
11

12 import hvqzao.java.deserialize.webapp.api.Serial;
13

14 @WebServlet(name = "MyServlet", urlPatterns = { "" })
15 public class Servlet extends HttpServlet {
16

17 private static final long serialVersionUID = -1251837460515874243L;
18

19 @Override
20 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
21 throws ServletException, IOException {
22 doPost(req, resp);
23 }
24

25 @Override
26 protected void doPost(HttpServletRequest req, HttpServletResponse resp)
27 throws ServletException, IOException {
28

29 ServletOutputStream out = resp.getOutputStream();
30 out.write("<!DOCTYPE html>".getBytes());
31 out.write("<html>\n".getBytes());
32 out.write("<body>\n".getBytes());
33 out.write("<p>classpath</p>\n"
34 .getBytes());
35 String data = req.getParameter("data");
36 if (data == null) {
37 data = Serial.toBase64(new String("text"));
38 } else {
39 out.write("<p>Deserializing...".getBytes());
40 try {
41 Serial.fromBase64(data);
42 } catch (ClassNotFoundException e) {
43 e.printStackTrace();
44 }
45 out.write("Done!</p>\n".getBytes());
46 }
47 out.write("<form action=\"/\" method=\"POST\">\n".getBytes());
48 out.write(String.valueOf("<p><textarea type=\"text\" name=\"data\">"+
49 data+"</textarea></p>\n").getBytes());
50 out.write("<p><input type=\"submit\"></p>\n".getBytes());
51 out.write("</form>\n".getBytes());
52 out.write("</body>\n".getBytes());
53 out.write("</html>\n".getBytes());
54 out.flush();
55 out.close();
56

57 }
58

59 }

55

B| BenchStress

We present the code of BenchStress, our web application developed to test the tools:

First is presented the class Server.java:

1 package insecure.deserialization;
2

3 import java.util.ArrayList;
4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7 import java.lang.ClassNotFoundException;
8 import java.net.ServerSocket;
9 import java.net.Socket;

10 import java.*;
11 import java.lang.System;
12

13 import org.apache.commons.collections4.*;
14 import org.apache.commons.collections4.CollectionUtils;
15

16

17 public class Server {
18

19 public static void main(String args[]) throws IOException, ClassNotFoundException
{↪→

20 final boolean val=true;
21 int valInt=6;
22 int i;
23

24 System.setSecurityManager(null);
25

26 ServerSocket server = null;
27 try {
28 server = new ServerSocket(8888);
29 } catch (IOException e) {
30 System.err.println(e.getMessage()); /* port not available*/ return;

56 B| BenchStress

31 }
32

33 System.out.println(server.getInetAddress().getHostAddress());
34 Socket socket = server.accept();
35

36 // Create example notes
37 Note note1 = new Note(1, "Test", "This is the main content");
38 Note note2 = new Note(2, "Shopping list", "Milk\nEggs\nSausage");
39 Note note3 = new Note(3, "Bills", "Don't forget to pay the bills due on the

11th!");↪→

40

41 // Create list to store all notes
42 ArrayList<Note> noteList = new ArrayList<Note>();
43 noteList.add(note1);
44 noteList.add(note2);
45 noteList.add(note3);
46 System.out.println();
47

48 // Server loop
49 while (true) {
50 while(true){
51 // Create streams
52 ObjectInputStream ois = new

ObjectInputStream(socket.getInputStream());↪→

53 ObjectOutputStream oos = new
ObjectOutputStream(socket.getOutputStream());↪→

54

55

56 try (ObjectInputStream ois2 = new
ObjectInputStream(socket.getInputStream())) { //non trovata
da semgrep

↪→

↪→

57 Object o = ois2.readObject();
58 System.out.println(o.toString());
59 } catch (Exception e) {
60 return;
61 }
62

63 if (val) {
64 ObjectInputStream ois3 = new

ObjectInputStream(socket.getInputStream());↪→

65 Object o3 = ois3.readObject();
66 System.out.println(o3.toString());
67 }
68 else {

B| BenchStress 57

69 ObjectInputStream ois4 = new
ObjectInputStream(socket.getInputStream()); //viene trovata
da semgrep anche se il codice non arrivera mai qui

↪→

↪→

70 Object o4 = ois4.readObject(); //Spotbugs does not find the
vulnerability in the else because val is always true↪→

71 System.out.println(o4.toString());
72 }
73

74 switch (valInt) {
75 case 1:
76 System.out.println(valInt);
77 break;
78 case 6:
79 ObjectInputStream ois5 = new

ObjectInputStream(socket.getInputStream());↪→

80 Object o5 = ois5.readObject();
81 System.out.println(o5.toString());
82 break;
83 default:
84 break;
85 }
86

87

88 // convert object from client to String so we can check it
89 // not sure if this is safe...
90 String message=null;
91 try {
92 System.out.println(message);
93 }catch (Exception e){
94 System.err.println(e);
95 }finally {
96 ObjectInputStream ois6 = new

ObjectInputStream(socket.getInputStream());↪→

97 message = (String) ois6.readObject();
98 System.out.println(message);
99 }

100

101 ObjectInputStream ois6 = (val) ? new
ObjectInputStream(socket.getInputStream()): null;↪→

102 message = (!val) ? null: (String)ois6.readObject();
103 System.out.println(message);
104

105 ObjectInputStream[] oisArray = new ObjectInputStream[10];
106 //oisArray[0] = new ObjectInputStream(socket.getInputStream());

found from semgrep↪→

58 B| BenchStress

107 for (i=0; i<10; oisArray[i] = new
ObjectInputStream(socket.getInputStream())) { //not found
from semgrep

↪→

↪→

108 Object o= oisArray[i].readObject();
109 i++;
110 }
111

112 do {
113 ObjectInputStream ois8 = new

ObjectInputStream(socket.getInputStream());↪→

114 message = (String) ois8.readObject();
115 i+=10;
116 }while (i<100);
117

118 /*
119 ByteArrayOutputStream bOutput = new ByteArrayOutputStream(12);
120 byte[] b = bOutput.toByteArray();
121 ByteArrayInputStream bytesIn = new ByteArrayInputStream(b);
122 ObjectInputStream objIn = new ObjectInputStream(bytesIn);
123 Object obj = objIn.readObject();
124 System.out.println(obj.toString());
125 */
126

127 if(message.equalsIgnoreCase("GET")){
128 // Client wants all of the saved notes
129 oos.writeObject(noteList);
130 continue;
131

132 }else if (message.equalsIgnoreCase("SAVE")){
133 // Client wants to save a note, accept a Note object
134 Note newNote = (Note) ois.readObject();
135 noteList.add(newNote);
136 continue;
137

138 }else if (message.equalsIgnoreCase("BYE")){
139 break;
140 }else{
141 // Ignore
142 }
143 }
144 }
145 }
146 }

B| BenchStress 59

Then, we show the Note.java class:

1 package insecure.deserialization;
2

3 import java.io.Serializable;
4

5 public class Note implements Serializable{
6 private Integer note_id;
7 private String note_title;
8 private String note_body;
9

10 // Constructor
11 public Note(Integer id, String title, String body){
12 note_id = id;
13 note_title = title;
14 note_body = body;
15 }
16

17 public void print_note(){
18 System.out.println(note_title + "\n" + note_body + "\n");
19 }
20 }

Finally, it is presented the Client.java class:

1 package insecure.deserialization;
2

3

4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7 import java.net.Socket;
8 import java.net.UnknownHostException;
9 import java.util.ArrayList;

10 import java.util.Scanner;
11

12

13 public class Client {
14 public static void main(String[] args) throws UnknownHostException, IOException,

ClassNotFoundException, InterruptedException{↪→

15 //get the localhost IP address, if server is running on some other IP, you
need to use that↪→

16 Socket socket;

60 B| BenchStress

17 ObjectOutputStream oos;
18 ObjectInputStream ois;
19

20 // Args
21 String server_ip = null;
22 int port = 0;
23

24 // If you want to launch it locally
25 server_ip = "127.0.0.1";
26 port = 8888;
27

28 /* If you want to choose server_ip and port
29 if (args.length==2) {
30 try {
31 port = Integer.parseInt(args[1]);
32 } catch (NumberFormatException e) {
33 System.err.println("Argument" + args[1] + " must be an integer.");
34 System.exit(1);
35 }
36 server_ip = args[0];
37 } else {
38 System.err.println("Usage: client <server_ip> <port>");
39 System.exit(1);
40 }
41 */
42

43 // Scanner
44 Scanner scan = new Scanner(System.in);
45 // Setup socket
46 System.out.println("Connecting to server @ " + server_ip + ":" + port +

"...");↪→

47 socket = new Socket(server_ip, port);
48 System.out.println("Connected!\n");
49 System.out.println("WELCOME TO NOTE KEEPER CLIENT V1.42\n");
50

51 while (true){
52 System.out.println("========= ACTIONS =========");
53 System.out.println("1 - Print all notes");
54 System.out.println("2 - Add a new note");
55 System.out.println("EXIT - Exit this program\n");
56 System.out.print("Select an action to perform: ");
57 String selection = scan.nextLine();
58

59 // Setup streams

B| BenchStress 61

60 oos = new ObjectOutputStream(socket.getOutputStream());
61 ois = new ObjectInputStream(socket.getInputStream());
62

63 // Do action
64 if (selection.equals("1")){
65 // Print all notes from server
66 // Tell server we want all the all the notes
67 oos.writeObject("GET");
68 oos.flush();
69 Thread.sleep(100);
70 // Save the data from the server
71 ArrayList<Note> noteList = (ArrayList<Note>) ois.readObject();
72 // Print all the notes
73 System.out.println("===");
74 System.out.println("================= NOTES =================");
75 System.out.println("===\n");
76

77 for (Note n : noteList){
78 n.print_note();
79 }
80

81 System.out.println("\n===");
82 System.out.println("=============== END NOTES ===============");
83 System.out.println("===\n");
84 continue;
85 } else if (selection.equals("2")){
86 // Send a new note to the server
87 System.out.println("Please enter the following information to create

a new note...");↪→

88 System.out.print("Title: ");
89 String newNoteTitle = scan.nextLine();
90 System.out.print("Body: ");
91 String newNoteBody = scan.nextLine();
92 Note newNote = new Note(42, newNoteTitle, newNoteBody);
93 oos.writeObject("SAVE");
94 Thread.sleep(100);
95 oos.writeObject(newNote);
96 System.out.println("The note has been sent to the server!");
97 } else if (selection.equalsIgnoreCase("exit")){
98 // Quit
99 System.out.println("Exiting...");

100 break;
101 } else {
102 // Invalid action

62 B| BenchStress

103 System.out.println("Invalid Action...");
104 continue;
105 }
106 }
107 }
108 }

	Abstract
	Abstract in lingua italiana
	Acknowledgements
	Contents
	Introduction
	Background
	Insecure Deserialization vulnerability
	Definition
	Identification and Attack Surface Estimation
	Exploitation and Vulnerability example
	Impacts and Mitigations

	Static Analysis

	Targets Selection
	Vulnerable Targets
	BenchStress

	Experimental Results
	List of Analyzed Tools
	Find Security Bugs
	SonarLint
	Error Prone
	SonarQube
	Semgrep

	Experiment
	Results
	Interpretation of the Results

	Conclusions and Future Works
	Bibliography
	Vulnerable application
	BenchStress

