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Abstract

Limited Energy Resources or Nonrenewable Energy Resources like Oil, Natural
Gas, Coil, etc., are going to finish. Statistics show that world energy consumption
in 2017 was near 18.1 Terra Watts and predicted 28 Terra Watts by 2050. Nev-
ertheless, the solar resource energy is 23000 Terra Watts by only considering the
area over lands over a year. These results show that the Sun’s energy is around a
thousand times bigger than our energy demand, and this is the reason for focusing
on Solar Energy.

There are two main research topics regarding the improvement of Solar cell effi-
ciency: Improving the Materials used to Fabricate solar cells and Maximize the
benefit of the received energy on Earth. As we know, only near 30% of the Solar
Energy reaches Earth after passing the atmosphere. So, it is crucial not to waste
this received energy anymore.

In this research work, the focus is on the second topic to benefit maximally from
the Solar Irradiance. Solar Irradiance reaching the earth consists of three main
components:

• 1- Direct Irradiation (Beam Irradiance)

• 2- Diffuse Irradiation

• 3- Ground Reflected Irradiation

However, since the last two parameters are hard to model, the Global Horizontal
Irradiation(GHI) is used for modeling. GHI depends on Cosine Corrected Direct
Normal Irradiance and Diffuse Horizontal Irradiance. By tilting the panel always
to face the irradiance directly, the produced energy by the panels is increased.
Moreover, if the data of future irradiance and cloud position will be available,
the process of tilting the panel can be done automatically. This research work
focuses on predicting the GHI value and Clear Sky Index (CSI) value, which with
combination of these values with the cloud position, the produced energy by solar
cells can be maximized.
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There are three main steps done in this study work. First, the GHI Ramp Iden-

tification and Computing GHI Ramps number are done. Second, multiple image

processing steps are done to make the images well-prepared for Deep Learning

method. Third, two different classifications are implemented to group the images

first based on the feature of the images and the cloud type and depth and sec-

ondly based on the CSI value. Finally, the classified images are processed by the

Deep Learning model for the forecasting part. In this study work, the CSI value

is forecasted for 5’, 10’, and 15’ time horizon.



Sommario

Risorse energetiche limitate o risorse energetiche non rinnovabili come petrolio, gas
naturale, bobina, ecc., Stanno per finire. Le statistiche mostrano che il consumo
mondiale di energia nel 2017 era vicino a 18,1 Terra Watt e prevedeva 28 Terra
Watt entro il 2050.

Tuttavia, l’energia della risorsa solare è di 23000 Terra Watt considerando solo
l’area sulle terre nell’arco di un anno. Questi risultati mostrano che l’energia del
Sole è circa mille volte più grande della nostra domanda di energia, e questo è il
motivo per cui ci siamo concentrati sull’energia solare.

Ci sono due principali argomenti di ricerca riguardanti il miglioramento dell’efficienza
delle celle solari: migliorare i materiali utilizzati per fabbricare celle solari e mas-
simizzare il beneficio dell’energia ricevuta sulla Terra.

Come sappiamo, solo quasi il 30% dell’energia solare raggiunge la Terra dopo aver
superato l’atmosfera. Quindi, è fondamentale non sprecare più l’energia ricevuta.

In questo lavoro di ricerca, l’attenzione si concentra sul secondo argomento per
trarre il massimo vantaggio dall’irraggiamento solare.

L’irraggiamento solare che raggiunge la terra è costituito da tre componenti prin-
cipali:

• 1- Irradiazione diretta (Beam Irradiance)

• 2- Irradiazione diffusa

• 3- Irradiazione riflessa dal suolo

Tuttavia, poiché gli ultimi due parametri sono difficili da modellare, l’irradiazione
orizzontale globale (GHI) è utilizzato per la modellazione. Il GHI dipende dall’irraggiamento
diretto normale corretto al coseno e dall’irraggiamento orizzontale diffuso. Incli-
nando il pannello sempre per affrontare direttamente l’irraggiamento, si aumenta
l’energia prodotta dai pannelli.
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In oltre, se saranno disponibili i dati dell’irraggiamento futuro, il processo di in-
clinazione del pannello può essere eseguito automaticamente. Questo lavoro di
ricerca si concentra sulla previsione del valore GHI e del valore Clear Sky Index
(CSI), che aiuta a massimizzare l’energia solare ricevuta.

Ci sono tre fasi principali svolte in questo lavoro di studio. In primo luogo, vengono
eseguite l’identificazione della rampa GHI e il numero di rampe di calcolo GHI. In
secondo luogo, vengono eseguite più fasi di elaborazione delle immagini per rendere
le immagini ben preparate per il metodo Deep Learning. In terzo luogo, vengono
implementate due diverse classificazioni per raggruppare le immagini prima in
base alla caratteristica delle immagini e al tipo e alla profondità della nuvola e
in secondo luogo in base al valore CSI. Infine, le immagini classificate vengono
elaborate dal modello Deep Learning per la parte previsionale. In questo lavoro di
studio, il valore CSI è previsto per un orizzonte temporale di 5’, 10’ e 15’.



Chapter 1

Introduction

This chapter provides an overview of the thesis. In section 1.1, we explain

the context and motivations which led us to conduct this research. Then,

section 1.2 presents information about the structure of the thesis.

1.1 Context and Motivations

Forecasting Energy, especially Renewable Energy Sources(RES), is now one

of the most popular topics in science community. [1].

Since Fossil Fuels’ demand is increased, solar cells (PV) and wind turbines

have become more popular concerning growth in their installation capacity

[2].

The expected power output, which is the primary goal of forecasting, is un-

predictable behavior in integrated electric systems. Concerning this problem

which is still an unsolved problem, forecasting accuracy can constantly be

improved [3]. By improving the forecasting accuracy of RES, the ordinary

operating reduces. Also, it reduces the balance between energy production

and demand in terms of cost [4]. PV Power Forecast can be implemented in

different periods. Nowcasting, which forecasts PV power in the short term,

becomes interesting to solve grid stability issues and optimize the microgrid’s

energy management systems. Identifying the sun position is the first step of

Nowcasting implementation [5]. The next important step is the measurement

of Global Horizontal Irradiation (GHI). GHI is the received horizontal short-



wave irradiation from the sky on a surface placed in the ground. GHI depends

on DNI, Direct Normal Irradiance, and DIF, Diffuse Horizontal Irradiance.

The importance of GHI identification is in identifying irradiance ramps and

CSI value. Irradiance ramps are the sharp spikes or a sudden change in the

irradiance. Nowcasting can also benefit from sky images captured by regular

cameras installed close to the solar panel. However, the more challenging

part of nowcasting is estimating cloud appearance and movement, weather

conditions, etc. These challenges are solved by computer vision [6].

Several methods can perform nowcasting; the popular categories to do now-

casting are using cloud imagery and the machine learning models [7]. The

focus of this context is on implementing Machine Learning, and Deep Learn-

ing models.

1.2 Structure of the Thesis

Chapter 2 provides information about Nowcasting definition and how now-

casting can be done. Also it introduces the devices needed and the main

concepts and theories related to this topic.

In Chapter 3, an introduction to Artificial Intelligence and its different kinds

are introduced. Also, the differences of these different methods and their

advantages are represented.

Chapter 4 provides the basic concepts of Irradiation. The main focus of this

chapter is to do Data Analysis on solar irradiation in different time horizons

and ramp identification.

In chapter 5, the analysis on our images to make the image dataset is pro-

vided. In this chapter, we prepare the image dataset by doing Image Pro-

cessing Method for Deep Learning Model.

Chapter 6 includes an introduction of Convolutional Neural Networks(CNN)

and the model used for Deep Learning with the obtained results.

In chapter 7, the forecasting part for CSI value prediction in different time

horizons are provided. This chapter includes multiple results of the forecast-

ing analysis.
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Chapter 2

Nowcasting

This chapter provides the basic theoretical frameworks and concepts about

Nowcasting and the tools and procedures needed to achieve the final result.

2.1 Forecasting and Different Techniques of

Forecasting

Forecasting means making predictions using past and present data and,

most commonly, analyzing trends to predict the future. There are three

different forecasting techniques in Solar cells depending on the forecasting

horizon listed below:

• Nowcasting (forecasting 1’ to 30’): Nowcasting in terms of solar cells

is similar to meteorological nowcasting in both spatial and temporal

scales. Nowcasting is used to forecast in short periods from one minute

to thirty minutes ahead.

• Short-term Forecasting (30’ to 4 Hours): This kind of forecasting is

also valuable for forecasting grid operations for both grid operators

and electric market operators [8].

• Long-term Forecasting (lengthy periods): Energy Producers can ben-

efit from this approach for long-term contracts with financial utilities.

This kind of forecasting is not so much popular among the previous

approaches.



The main goal of solar power nowcasting, except forecasting in a short time

horizon, is to gain 90% predictability [9].

2.2 Nowcasting Definition

In Nowcasting, the images taken by upward-facing cameras are used to pre-

dict future irradiances. The number of solar plants needed can be decreased

by nowcasting because the goal is to find an optimized way to generate the

wanted amount of power. Also, the negative ramp-rate can be fulfilled tradi-

tionally. In nowcasting, the optimized resolution of receiving data is around

5-10 minutes. Nowcasting can be obtained by techniques such as:

• Statistical Techniques: Implementing statistical methods on the present

and past data.

• Satellite-based Techniques: Implementing forecasting based on satellite

images.

• Ground-based Techniques: Implementing forecasting based on images

taken by All-Sky Imager (ASI).

Most Numerical Weather Prediction (NWP) and satellite data are unsuitable

because of their low spatial and temporal resolution. Also, in our case, to

analyze the irradiance more accurately, a weather station near our plants

should be installed which might be impossible, since the weather stations

are sparse and few. Thus, finding another way is preferred. There are some

ways to provide a service to obtain more accurate data from stations to be

used for our PV plants, but they are expensive. The best way for nowcasting

is to capture the local weather at the solar panel location but with high

spatial and temporal resolution using a regular video camera that points

towards the sky and is installed near the solar panel [10]. NWP models are

used to forecast in time horizons up to several days ahead with temporal

resolutions in hours which is needed to improve balance area and control

performance and scheduling. Satellite-based systems are used to get more

accurate forecasting for time horizons up to 8-9 hours. However, Concerning

the spatial and temporal resolution, these systems are not suitable for intra-

hour forecasting. Ground-Based ASI is used for the immediate future forecast

with a high temporal and spatial resolution [11].
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2.3 All-Sky Imager

ASI is the device used to take pictures from the sky and store them for further

analysis. ASI is an automatic full-sky camera with 180 fields of view. It

provides high-resolution images such as JPEGs and live-video stream. It can

also store the temperature and humidity of the environment. An image of ASI

captures can be seen in figure 2.1. The 3D positions and shapes of all visible

clouds are determined via voxel carving. The voxel is an abbreviation for

volume element, and voxel carving derives 3D objects from multiple camera

perspectives. The cameras are synchronized using an NTP server, and each

camera takes pictures from the sky every minute.

There are multiple factors determine the ASI-based nowcasting systems’ ac-

curacy. Cloud Height and Cloud tracking are the most critical factors. In this

research work, the main focus is on Cloud Tracking, which will be discussed

in section 2.4.

Figure 2.1: ASI Captures

5



2.4 Cloud Tracking

The most popular cloud tracking approaches are formed on Block Matching

or optical flow algorithms. Also, radiative transfer models are helpful in

order to analyze the radiative effects on clouds. Analyzing clouds leads to

some attributes, which the most important attributes are: Height, Motion,

Position, and Transmittance [12]. The radiative transfer model calculates

electromagnetic radiation’s transfer through a planetary atmosphere such as

the Earth’s.

The physical energy transfer phenomenon in the form of electromagnetic

radiation is called Radiative Transfer. Absorption, scattering, and emission

are the processes that affect the propagation of radiation.

Detecting clouds, identify their motion, and analyzing the radiative effect are

obtained by these type of nowcasting systems.

2.5 Nowcasting Procedure

ASI cameras are indeed cheap, but the challenge here is that they only pro-

vide photos of the sky, and we need to find a relation between these images

and the output power of the PV panels. This analysis is challenging because

we need to analyze the clouds’ model, speed, shapes, etc. Then predict these

parameters in the future. So here there are two jobs to be done:

• 1- Analyze the movements of the cloud by image-processing techniques.

• 2- Using deep learning methods to predict the movements of clouds

and obtain an algorithm or algorithms to find a relation between the

sky appearance (like clouds, sun, clear sky, and . . . .) and the output

power of the solar panels.

In nowcasting, Machine Learning (ML) methods or, in a specific way, deep

learning methods are used. The architectures of deep-learning or estimation

that can be used are:

• Multilayer-Perceptron (MLP): MLP is a class of feed-forward Artificial

Neural Network (ANN). There are mainly three layers in MLP such as

Input Layer, Hidden Layer, Output Layer [13].
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• 2- Convolutional Neural Network (CNN): CNN is a class of Deep Neural

Networks. CNN is most widely used to analyze images [14].

• 3- Long Short-Term Memory (LSTM): Long short-term memory (LSTM)

is a field of Deep Learning which is also called Recurrent Neural Net-

work (RNN). LSTM has feedback connections that are not similar to

other feed-forward models. The application area of LSTM is not limited

to Images. It can be applied to Videos and Speech [15].

MLP has the lowest Root Mean Squared Error (RMSE) with 7%, and LSTM

has the largest RMSE with 21%. CNN has RMSE with an amount of 12%.

Some steps should be taken for power computation to compute solar pan-

els’ power and predict future power values. The critical parameters in this

project are taken from the sky-images. So, by performing image process-

ing techniques on the taken images, the analysis’s necessary data can be

obtained. The predictions of future results are achievable by deep learning

methods. The images’ crucial parameters are cloud tracking, cloud move-

ment, position, the shadow of the sun, the sun’s position, the type of clouds,

etc. The tasks which could be predicted by deep learning methods are:

• Future frames from historical image sequences.

• Future rainfall intensity.

• Forecasting solar irradiance and power.

2.6 ASI Images

2.6.1 Cloud Tracking using a cluster of images

Clustering is an unsupervised classification technique used to group similar

data into a cluster. The data which can be used in clustering are Images,

Videos, etc [16]. In nowcasting, clustering can be used to predict the coverage

of sunlight by clouds [17]. There are two different types of events related to

the coverage of the sun with clouds: (in fact, they are the same physical

phenomenon analyzed from a different point of view):

• 1- Obscuration

• 2- Ramp Down
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Figure 2.2: Feature Points Detection

Obscuration is called the condition in which the sun is covered partly or

entirely by clouds.

Ramp-down is a situation when the irradiance drops dramatically within a

short-time-interval.

Feature points should be used to adopt tracking in clustering. The Feature-

Point Detection method aims to obtain image information at every image

point and make decisions whether the given image includes the given type or

not. The feature points are clustered in different groups using the proposed

enhanced clustering algorithm. Figure 2.2 [18] makes the definition of Feature

Points detection more familiar.

For Obscuration events prediction, the position of the sun must be located

in all sky-images. A ramp-down event happens when the difference between

current irradiance and the irradiance at the previous time is more significant

than the threshold. The ramp-down event analysis is necessary to initialize

alternative energy sources if the predicted solar power is not enough to be

dispatched to the utilities.
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2.6.2 Determination of cloud transmittance for ASI

The cloud transmittance is the ratio of ground-level horizontal irradiance and

top-level irradiance [19].

There are two types of transmittance:

• Known Transmittance

• Unknown Transmittance

The angular distance of the relevant clouds from the Sun, which depends

on cloud height and speed, is the distinguishing factor of being Known-

transmittance or Unknown transmittance [20].

The approach selection for Cloud Transmittance determination is based on

two facts:

• Vertical cloud profiles hold essential information about the types of

clouds. It means that the cloud types can be identified by cloud height.

• The types of clouds can be associated with different optical properties.

In other words, solar irradiance is attenuated in the atmosphere by

absorption and scattering, and the attenuation itself caused by cloud

is described by the cloud optical thickness (COT).

COT depends on particle size distribution, shape, water path, thermody-

namic phase, and vertical extent [21]. A larger adequate particle size in-

creases the absorbance. On the other hand, smaller particle size increases

scattering [22]. Although there is no simple relation between cloud, height,

type, and optical thickness, a probabilistic approach includes historical and

current cloud height and transmittance measurements can be suitable.

2.6.3 Cloud height and tracking accuracy in systems

with multiple ASI

This task is complex since the clouds have different layers, and they move in

different directions simultaneously. Cloud heights are an essential factor in

detecting the correct positions of the shadows on the ground. Moreover, an

error in the detection of cloud height leads to an error in cloud size detection

[23].
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Measuring clouds height is usually done with Lidars and Ceilometers, which

sample the sky only above the sensor. The distance between Cloud Base

Height (CBH) and Cloud Top Height (CTH), equals to Cloud Boundaries,

is measured by Lidars. However, concerning the laser beam’s attenuation,

especially for clouds with high optical depth, these capabilities are limited.

There is another option called Millimeter-Wave Cloud Radar (MMCR) which

is capable of scanning the entire horizon by measuring the different properties

of clouds like layer height and thickness [24].

Both Lidars and MMCR are so costly for nowcasting systems. Recently,

coverage of cloud height and motion is achievable with satellites. Achieving

a large field of view is one of these systems’ benefits. ASIs capture images

from the sky simultaneously, and then by matching the segmented clouds,

the cloud heights are achievable.

2.6.4 Validation of ASI-based nowcasting

Segmenting clouds is one of the most challenging parts of nowcasting. In now-

casting, CSL (Clear Sky Library) is used, a library that provides estimates

of the surface solar irradiance under a clear sky [23] [25]. There is some

vital information stored in CSL like the RGB values for every pixel of the

Clear Sky, dependent on Sun Pixel Angle(SPA), Pixel Zenith Angle(PZA),

air mass, and Linke Turbidity.

Modelling atmospheric absorption and scattering of solar irradiation is called

Linke Turbidity [26]. It represents the optical thickness of the atmosphere

due to the absorption of water vapor and the absorption and scattering of

aerosol particles in comparison to a dry and clear atmosphere [27].

Each color channel has 80 layers in the CSL. A special jointed air mass and

Linke turbidity bin belong to each layer. The RGB values of photographs

taken under clear sky conditions are contained within a layer depends on two

angles, SPA, and PZA. If a pixel of the image is clouded, the RGB values de-

viate from the CSL, and the cloud is detected with CSL color channel ratios.

Based on the current air mass and Linke turbidity, 1 CSL layer per color chan-

nel is selected. From these CSL layers, ratios (depicted: red-to-blue ratio)

and differences are calculated compared to the current image. Cloud detec-

tion is then performed by using multiple thresholds. The thresholds used for

the segmentation depend on PSA, PZA, and the current weather situation

10



(e.g., overcast, clear sky). The current weather situation is determined con-

sidering irradiance and illuminance fluctuations, detected movements, and

cloud coverages found in the previous segmentation [25].

In figure 2.3, the different steps in cloud detection by using CSL can be seen.

Figure 2.3: Cloud Detection Steps
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Chapter 3

Artificial Intelligence

This chapter provides an introduction to Artificial Intelligence and its branches

Machine Learning and Deep Learning.

3.1 Artificial Intelligence Introduction

The goal of Artificial Intelligence is to teach the computers the way that

human thinks. It is related to simple computers we use; it can also teach

robots how human thinks. AI teaches computers how to decide, how to work,

how to think. The most important part is to teach them how to conclude

the obtained results in the training process. The conclusion helps to solve

the problems, predictions, etc. Machine Learning and Deep Learning are the

main branches of AI. Deep Learning is the focus of this research work.

AI has been dominant in various fields such as [28]:

• Gaming: AI plays a vital role in running strategic games where the

computer is taught to think about many possible ways to win the game.

AI is used in games such as Chess, Poker, Backgammon, etc.

• Natural Language Processing: It is possible to use computers to un-

derstand human language to interact with humans.

• Expert Systems: Some applications that can interact with a human

in the way of advising and reasoning. These applications integrate

machine software for interaction.



• Speech Recognition: AI can be used in intelligent systems that can hear

and comprehend sentences and catch the meanings while a human is

talking to them. These systems have a database of all the accents and

slang words to comprehend any single word. They are also capable of

realizing a change in human voice caused by illness.

• Handwriting Recognition: The machines are taught to distinguish the

letters and numbers to determine any handwriting.

• Intelligent Robots: Robots can perform the assignments given by a

human. They have sensors to distinguish physical information from the

real world, such as light, warmth, temperature, development, sound,

bump, and weight. They have effective processors, numerous sensors,

and colossal memory to display insights. Also, they are competent to

learn from their mistakes and adjust to the modern environment.

3.2 Machine Learning

ML is the study of trainable algorithms. It means that these algorithms are

capable of improving by training more and more [29].

ML algorithms build a model by training on the training set and then im-

plement these trained algorithms on the test set to make predictions or de-

cisions [30].

ML can work on both small datasets and large datasets by examining the

data to find a typical pattern for the next steps.

Why Machine Learning?

The main reason that data scientists need Machine Learning is the impor-

tance of predicting the future. Future prediction can help make better de-

cisions. Since this field is critical in science, it is continuously evolving to

make prediction accuracy better.

Besides the importance of future prediction, ML helps to improve the way of

analysis. It increases the speed of analysis with the automatic process. It is

now a replacement to previous traditional statistical techniques [31].
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There are four different approaches in ML:

• Supervised Learning

• Unsupervised Learning

• Semi-Supervised Learning

• Reinforcement Learning

3.2.1 Supervised Learning

The main characteristic of Supervised Learning, a branch of ML, is labeled

data in the training set. Two sets of data are available for the process,

Training Set and Test Set. The machine learns the concept of labels by being

trained on the training set and applying these concepts to the test set where

the data is unlabelled. So, the main goal of Supervised Learning is to identify

the label in the test set with high accuracy. Identifying the fruits and sorting

them into the appropriate categories is an excellent example of Supervised

Learning. The model will choose from a variety of fruit photographs. The

model begins practicing on some of these labeled pictures and tries to predict

the correct category for unlabeled data in the test set [32].

3.2.2 Unsupervised Learning

The main difference between Unsupervised Learning and Supervised Learn-

ing is the presence of labeled data. In Unsupervised Learning, the model

mainly works on unlabelled data. How to represent the input data to return

the overall collection’s statistical structure is Unsupervised Learning’s goal.

Unsupervised Learning is more similar to how the brain does the process,

and concerning that, it is more critical than supervised learning [33].

3.2.3 Semi-Supervised Learning

Supervised Learning learns from the labels and predicts based on the labels.

However, Unsupervised Learning should be able to predict the labels too.

Semi-Supervised Learning aims to understand how to learn if both labeled

data and unlabelled data exist in the dataset. Understanding the combina-

tion of labeled and unlabelled data and design algorithms to take advantage

of this combination is Semi-Supervised Learning’s goal. It can use unlabeled
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data to improve supervised learning tasks when the labeled data or labeling

them are expensive [34].

3.2.4 Reinforcement Learning

Reinforcement learning (RL) is a Machine Learning branch that explores how

intelligent agents can behave in a given context to optimize the principle of

cumulative reward [35]. An excellent example of RL is to train a robot

to reach the destination only by walking through the white squares and

ignoring the black squares. RL’s labeled input or output is not a concern

like Supervised or Unsupervised Learning [36].

Figure 3.1 [37] indicates the differences between the mentioned ML ap-

proaches.

Figure 3.1: ML Different Approaches

3.3 Deep Learning and ANN

Deep Learning and ANN’s strength is Speech Recognition, Handwriting

Recognition, Transfer Learning, Gaming, etc. In these fields, Deep Learning

and ANN have shown higher performance [38]. In this research work, the

main focus is on the classification area of ANN.

In this research work, the Deep Learning performance of analyzing the visual

data is used. Deep Learning can automatically learn all the representative

parts of the images like the edges, the colors, the shapes, etc. By repeating

these processes multiple times, the model can better understand the train-

ing process and learn these parts. By applying this learned model on the
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test set, the model does the classification and predicts based on the learned

parameters [39].

An Artificial Neural Network (ANN) is a model that attempts to replicate bi-

ological neural networks’ structure and functionality. An artificial neuron, or

a simple mathematical model, is the fundamental building block of any ANN

(function). Multiplication, summation, and activation are three basic princi-

ples in this model. At the artificial neuron entrance, the inputs are weighted,

meaning that every input value multiplies with individual weight. Artifi-

cial Neuron’s middle section is a sum function that sums all weighted inputs

and bias. At the artificial neuron output, the sum of previously weighted

inputs and bias passes through the activation function called the transfer

function [40].

In figure 3.2, the architecture of ANN can be seen [41].

Figure 3.2: ANN Architecture
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The main architectures of deep learning are:

• Convolutional Neural Networks (CNN)

• Recurrent Neural Network (RNN)

• Generative Adversarial Networks (GAN)

3.3.1 CNN

Convolutional Neural Networks (CNNs) are similar to standard artificial neu-

ral networks (ANNs) in that they are made up of neurons that learn to op-

timize themselves. Each neuron will still receive input and operate (such as

a scalar product followed by a non-linear function) - the basis of countless

ANNs. From the input raw image vectors to the final output of the class

score, the entire network will still express a single perceptive score function

(the weight). The last layer will contain loss functions associated with the

classes, and all of the regular tips and tricks developed for traditional ANNs

still apply. The only significant distinction between CNNs and standard

ANNs is that CNNs are mainly used for image pattern recognition. It al-

lows us to encode image-specific features into the architecture, making the

network more suited for image-focused tasks - while further reducing the pa-

rameters required to set up the model. Traditional types of ANN struggle

with the computing complexities needed to compute image images, which is

one of their most significant shortcomings [42].

Figure 3.3 shows the architecture of a CNN model [43]:

Figure 3.3: CNN Architecture

CNN is the focus of this research work. Details of this architecture will be

discussed in chapter 6.
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3.3.2 RNN

A recurrent neural network (RNN) is a type of artificial neural network in

which nodes are connected in a directed graph that follows a temporal series.

It can show temporal hierarchical behavior as a result of this. RNNs derived

from feedforward neural networks can process variable-length sequences of

inputs using their internal state (memory) [44] [45]. It makes them applicable

to tasks such as unsegmented, connected handwriting recognition [46] or

speech recognition [47] [48].

”Recurrent Neural Network” is roughly applied to two types of networks

that have a standard general structure: finite impulse and infinite impulse

networks. The behavior in both types of networks is temporally complex [49].

A directed acyclic graph replaced with a strict feed-forward neural network

is known as a finite impulse recurrent network. An infinite impulse recurrent

network, on the other hand, is a directed cyclic graph that cannot be unrolled.

Additional stored states are possible in both finite and infinite impulse recur-

rent networks, and neural networks can control the storage. If the network or

graph contains time delays or has feedback loops, it may also overwrite the

storage. Gated state or gated memory refers to these regulated states used

in Long short-term memory networks (LSTMs) and gated recurrent units. It

is also called Feedback Neural Network (FNN).

Figure 3.4 shows the architecture of the RNN model.

Figure 3.4: RNN Architecture
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3.3.3 GAN

GANs, or Generative Adversarial Networks, is a form of generative modeling

that employs deep learning techniques such as convolutional neural networks.

Generative modeling is an unsupervised learning task that involves automati-

cally detecting and learning regularities or patterns in input data in machine

learning. The model can generate or output new examples that plausibly

could have been drawn from the original dataset.

GANs are an intelligent way of teaching an innovative algorithm by posing

the problem as a supervised learning problem with two sub-models: the

generator model, which we train to produce new examples, and the discoverer

model, which attempts to distinguish examples as true (from the domain)

or false (not from the domain). Both models are trained in an adversarial

zero-sum game before the discriminator model is tricked around half of the

time, indicating that the generator model produces plausible instances.

GANs are an exciting and rapidly changing field, delivering on the promise

of innovative models in their ability to generate realistic examples across a

range of problem domains, most notably in image-to-image translation tasks

such as translating photos of summer to winter or a day. Also, generating

natural photos of objects, scenes, and people that even humans cannot tell

is fake [50].

In figure 3.5 [51], the architecture of GAN is indicated:

Figure 3.5: GAN Architecture
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This research work’s primary focus is on CNN, and the models are imple-

mented by using Tensorflow and Keras libraries in python. In the following

sections, simple introductions to these libraries can be found.

3.4 Tensorflow

TensorFlow is a Google-developed software library or platform for imple-

menting machine learning and deep learning principles in the most simple

way possible. It combines the computational algebra of optimization tech-

niques for the easy calculation of many mathematical expressions.

TensorFlow has many machine learning libraries and is well-documented. It

provides a few main functionalities and methods for doing so.

TensorFlow is often referred to as a ”Google” product. A wide range of

machine learning and deep learning algorithms are used. TensorFlow may

train and run deep neural networks for handwritten digit classification, pat-

tern recognition, word embedding, and the construction of various sequence

models.

By taking multi-dimensional array inputs called Tensor, TensorFlow allows

creating dataflow graphs and structures to describe how data flows through

a graph. It enables the development of a flowchart of operations that can be

done on these inputs and outputs. [52].

The crucial features of Tensorflow are:

• It includes a feature that defines, optimizes, and calculates mathemat-

ical expressions quickly with multi-dimensional arrays called tensors.

• It includes programming support of deep neural networks and machine

learning techniques.

• It has a highly scalable computing capability that works for a variety

of data sets.

• TensorFlow uses GPU computing, automating management. It also

includes a unique feature of optimization of the same memory and the

data used.
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3.5 Keras

Keras is a high-level neural network API. It can be used with Tensorflow,

Theano, or CNTK. It enables fast experimentation through a high-level, user-

friendly, modular, and extensible API. Keras can operate on both CPU and

GPU. Keras was developed and maintained by Francois Chollet and is part

of the Tensorflow core, making it Tensorflow’s preferred high-level API [53].

Keras leverages various optimization techniques to make high-level neural

network API more accessible and more effective. It consists of the following

features:

• Consistent, simple, and extensible API

• Minimal structure - easy to achieve the result without any frills

• It supports multiple platforms and backends

• It is able to perform on both CPU and GPU

• Highly scalability of computation

Keras is a compelling and dynamic framework and comes up with the fol-

lowing advantages:

• Larger community support

• Easy to test

• Keras is compatible with Python which makes things simpler

• Keras supports both convolution and recurrent networks

• Since deep learning models are discrete, they can be combined in a

variety of ways.
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Chapter 4

Irradiation Data Analysis

In this chapter, the focus is on obtained data from implementing image pro-

cessing on ASI images including Irradiance. As known, the main part of

calculating the power of the solar cells is Irradiation. The Irradiation data is

available for eight consecutive months from September 2019 to April 2020.

4.1 Data Analysis Starting Phase

The first phase of Data Analysis is to convert the datasets into a readable

format for the software. Python is used for data analysis in this research

work. Some CSV files contain all the data are available for this work. The

first rows of one of these CSV files are shown below.

Figure 4.1: September 2019 CSV File

In the beginning, all the CSV files should be converted to Pandas Data

Frame. By Pandas Data Frame, full access to all the rows and columns for

data analysis is granted [54]. In Figure 4-1, the column ”GORIZ,” which

contains the data related to GHI, is critical in this research work.



4.2 Converting Time Scale

This dataset’s time scale is 10 seconds. However, the images taken by the

camera are in Minutely Scale. So, the Time Scale of the dataset should be

changed from 10-Seconds to Minutely scale. This process can be done by

selecting only the first row of each minute. In Figures 4-2 and 4-3, all the

Minutely GHI for each month can be seen. As can be seen in Figures 4-2

and 4-3, the maximum values of GHI are in September 2019 and April 2020.

Also, the GHI in December 2019 and January 2020 are lower among the

others.

Figure 4.2: 2019 Minutely GHI
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Figure 4.3: 2020 Minutely GHI

4.3 Ramp Identification

One of the essential points in Nowcasting is identifying the ramps, As men-

tioned in the first chapter. Both ramp-down and ramp-up are crucial. To

better understand the ramps’ meaning, and Figure 4-4 shows the ramp from

the dataset of September 2019.

Figure 4.4: September 2019 Ramp-up and Ramp-down

As shown in Figure 4-4, the GHI value decreased suddenly from 581 to 283,

called “Ramp-down.” Also, there is a sudden increase in GHI value from

229 to 449 which is called ”Ramp-up.” The goal is to analyze the data to

identify all the ramps that exist in the datasets. First, some values should

be defined as a threshold. In this research work, if sudden changes are more
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than 300 W/m2, it will be defined as ramp-up and lower than -300 W/m2

as ramp-down. The result of identifying the Minutely Scale’s ramps can

be seen in Figures 4-5 to 4-6 for the months September and October 2019.

The Minutely Scales ramps for other months from November 2019 to April

2020 can be seen in Appendix A. To investigate the ramps, this process is

repeated for different time scales such as 5 Minutes, 10 Minutes, 15 Minutes,

20 Minutes. In figures 4.7 to 4.14 the ramps identification results for months

September and October can be seen for time horizons 5 Minutes to 20 Minutes

respectively. The figures for the other months for all the mentioned time

horizons are represented in Appendix A.

Figure 4.5: September Ramps Minutely
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Figure 4.6: October Ramps Minutely

Figure 4.7: September Ramps 5 Minutes Time Horizon
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Figure 4.8: October Ramps 5 Minutes Time Horizon

Figure 4.9: September Ramps 10 Minutes Time Horizon
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Figure 4.10: October Ramps 10 Minutes Time Horizon

Figure 4.11: September Ramps 15 Minutes Time Horizon
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Figure 4.12: October Ramps 15 Minutes Time Horizon

Figure 4.13: September Ramps 20 Minutes Time Horizon
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Figure 4.14: October Ramps 20 Minutes Time Horizon
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4.4 Ramps Number Calculation

In this section, the number of ramps at different time scales is calculated.

Since the goal is to compare the number of ramps at different time scales, the

best method to show them is Histogram. In figures 4.15 to 4.22, the results

of this part for both ramp-down and ramp-up can be seen. The number of

ramps is shown for all the time scales from Minutely to 20 Minutes Scale.

As shown in these graphs, the number of ramps usually is decreased by

decreasing the time scale. In other words, by moving from the 20 Minutes

Scale to Minutely Scale, there is a decrease in the number of ramps. Also,

as mentioned before, the number of ramps in months September and April

are the largest among the other months.

Figure 4.15: September Ramps Number
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Figure 4.16: October Ramps Number

Figure 4.17: November Ramps Number
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Figure 4.18: December Ramps Number

Figure 4.19: January Ramps Number
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Figure 4.20: February Ramps Number

Figure 4.21: March Ramps Number
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Figure 4.22: April Ramps Number
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Chapter 5

Sky Images Analysis

This chapter analyzes the images captured from Solar Tech Lab [55] in Po-

litecnico di Milano by ASI. These analyses’ primary purpose is to make an

image dataset for the Deep Learning and Machine Learning methods.

5.1 Image Analysis Starting Phase

Let us consider images 5.1 and 5.2, and then the specification of these images

will be discussed. These are a subset of all the images in the dataset. As

shown in these images, the dot point inside the white circle is Sun. The green

shapes inside the images indicate the clouds. The deeper clouds are shown

with dark blue color. In the next section, the way of producing the images

is shortly discussed.



Figure 5.1: Captured Image on September 18, 2019, at 11:25 A.M

Figure 5.2: Captured Image on October 17, 2019, at 3:36 P.M

37



5.2 Preparation of Images

This section is a part of [5]. In this scenario, infrared sky images can ef-

fectively be implemented to provide information on local phenomena with

very high accuracy. The use of these images can overcome some problems of

the actual color. The most important one is related to the color saturation:

infrared images are less impacted by the Sun’s presence, as shown in Figure

5.3. Here, a comparison between the two types of images simultaneously is

shown.

Figure 5.3: Captured Image on September 18, 2019, at 11:25 A.M

The infrared image (The figure at right) uses false colors to increase the

contrast between the clear-sky (in blue) and the cloud coverage that can

range from green to red according to the different types of clouds. In these

images, the Sun is shown as a well-defined black dot.

5.3 Editing the Images

In this section, the goal is to make images ready for the Deep Learning

process. Since the sun’s location is the crucial point , the images are cropped

by a square shape, so the sun is located in the middle of the images. The

location of the sun is available for each minute in different CSV files for each

month. In the figure below, some CSV file rows for September 18, 2019, can

be seen.
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Figure 5.4: CSV file for September 18, 2019

As can be seen in figure 5.4, for each minute, the information below is avail-

able:

• GHI-clear sky: Received Irradiance by using CSL.

• GHI-meas: This Shows the measured GHI.

• sunPosition-x: This Shows the position of the sun on the x-axis in the

images.

• sunPosition-y: This Shows the position of the sun on the y-axis in the

images.

• imageName: This Shows the file name with which the file is stored.

For cropping the images based on the sun location, the Skimage library is

used [56]. This library converts the images to a Numpy array [57].

A Numpy array is a grid of values, all of the same type, and is indexed by

a tuple of non-negative integers. The number of dimensions is the array’s

rank; the shape of an array is a tuple of integers giving the array’s size along

each dimension.

Since the images are converted to different arrays, by considering the sun

location in each moment, the images are cropped by taking a subset of these

Numpy arrays.
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In Figure 5.5, the code of the cropping procedure can be seen.

Figure 5.5: Code for cropping the images concerning the Sun location

There are some alternatives to do this process, like using OpenCV [58] or

PIL [59] libraries, but the way used is more straightforward and faster.

As shown in Figure 5.5, the cropped image size is 100 × 100 pixels of the

main image. In figures 5.6 and 5.7, the main image and the cropped image

at the same time can be seen:
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Figure 5.6: The Main Image

Figure 5.7: The Cropped Image
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For all the images, this procedure is repeated. The total number of images is

85,000 images for 145 days, starting from September 18, 2019, and finishing

April 9, 2020.

5.4 Dataset Creation Introduction

As mentioned in chapter 3, the main difference between Supervised Learning

and Unsupervised Learning is the data label.

In order to label the data, four different methods are done. The last method

is the best one. The main idea of classifying the images is based on GHI

value.

Here, there is the list of the methods to label the data:

• Dataset Creation with three labels based on GHI.

• Dataset Creation with four labels based on GHI.

• Dataset Creation with another image processing method.

• Dataset Creation with hand and by the help of GHI.

5.5 Dataset Creation with three labels based

on GHI

In the first dataset, the images are split into three different labels based on

the GHI value:

• Sunny: This shows the sunny weather, which means that there are no

clouds in the sky.

• Semi-Covered: This shows a sky with clouds, but it is not entirely-

covered.

• Cloudy: Which shows a fully-covered sky.

This classification is done by Python and based on the GHI Value by con-

sidering the difference between Measured GHI and Clearsky GHI, specified

as GHI-meas and GHI-clearSky for each image. The classification is done as

listed below:
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• Sunny: If the measured GHI is equal to or more than 70% of the Clear

Sky GHI.

• Semi-Covered: If the measured GHI is between 40% and 70% of the

Clear Sky GHI.

• Cloudy: If the measured GHI is lower than 40% of the Clear Sky GHI.

In figure 5.8, the code of this classification can be seen:

Figure 5.8: Python Code for Classification based on GHI in the first method

As shown in figure 5.8, the result of this classification is stored in a CSV file.

In Figure 5.9, this CSV file can be seen:

43



Figure 5.9: First Classification Method labels

As shown in Figure 5.9, three different labels are indicated by 0, 1, and 2.

The label Sunny is identified by 0, the label Semi-Covered is identified by 1,

and the label Cloudy is identified by 2.

In figures 5.10 to 5.12, an image from each of these three labels can be seen:

As indicated in these images, in the Sunny image, the sky is clear with no

clouds. In the Semi-Covered image, the sky is covered with clouds but not

entirely. In the Cloudy image, the sky is fully covered so that Sun can not

be found.
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Figure 5.10: Image Labelled as Sunny in the First Classification Method

Figure 5.11: Image Labelled as Semi-Covered in the First Classification Method
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Figure 5.12: Image Labelled as Cloudy in the First Classification Method
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However, in this method of classification, the number of images that are in-

correctly labeled is large. The most significant number of incorrectly labeled

images are for Semi-Covered in this classification method. In figures 5.13

to 5.15, an example of these incorrectly labeled images can be seen for each

label:

Figure 5.13: Image Incorrectly Labelled as Sunny in the first method
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Figure 5.14: Image Incorrectly Labelled as Semi-Covered in the first method

Figure 5.15: Image Incorrectly Labelled as Cloudy in the first method
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As shown in Figure 5.13, the sky is covered by clouds, but it is not entirely-

covered, so this image should have been labeled as Semi-Covered. Also, in

figure 5.14, the sky is approximately fully-covered, so this image should have

been labeled as Cloudy. Concerning many incorrectly- labeled images in this

method, we tried a new method with 4 Labels.

5.6 Dataset Creation with four labels based

on GHI

Since the most significant number of incorrectly labeled occurred in the Semi-

Covered label, this label is split into two different parts Low-Covered and

High-Covered. Also, since some Sunny label errors show some images with

cloud in this label and some problems in Cloudy label, the classification

percentage is changed. So, now there are four labels as listed below:

• Clear-Sky: If the Measured GHI is equal and higher than 80% of the

Clear Sky GHI.

• Low-Covered: If the Measured GHI is between 50% and 80% of the

Clear Sky GHI.

• High-Covered: If the Measured GHI is between 20% and 50% of the

Clear Sky GHI.

• Fully Covered (Rainy): If the Measured GHI is lower than 20% of the

Clear Sky GHI.
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In figure 5.16, the code of this classification method can be seen:

Figure 5.16: Python Code for Classification based on GHI in the second method

In figures 5.17 to 5.20, an image from each label can be seen. For the image

labeled as Clear Sky, a blue sky without any clouds is shown in these figures.

In the image labeled as Low Covered, a sky lowly covered with clouds is indi-

cated. In the Highly Covered image, we can see that the sky is approximately

full of clouds. Moreover, in the image labeled as Fully Covered (Rainy), rain

in the image is visible.

Figure 5.17: Image Labelled as Clear Sky in the Second Method
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Figure 5.18: Image Labelled as Low-Covered in the Second Method

Figure 5.19: Image Labelled as High-Covered in the Second Method
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Figure 5.20: Image Labelled as Rainy in the Second Method
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However, again in this method, there are some errors. In the list below, some

of these errors can be seen:

• In the Clear Sky label, some images are covered with clouds that should

be labeled as Low Covered images.

• Some images related to Clear Sky and some images related to the Highly

Covered label exist in the Low Covered label.

• There are some images related to the Low Covered label and Fully

Covered Label in the Highly Covered label.

• In the Fully Covered Label, some images should be labeled Highly

Covered because there was no rain in the images.

The minor error is in the Clear Sky label and Fully Covered label. Some

modifications were done by hand to fix the issues. Finally, the errors in

Clear Sky Label and Fully Covered (Rainy) label are fixed. However, realizing

the difference between Low Covered and Highly Covered images was a big

problem.

In figures 5.21 to 5.23, some of these problems can be seen:

Figure 5.21: Confusion Between Low-Covered or High-Covered Label
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Figure 5.22: Confusion Between Low-Covered or High-Covered Label

Figure 5.23: Confusion Between Low-Covered or High-Covered Label
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As shown in these images, since the clouds’ coverage is between Low-Covered

and High-Covered, it poses a problem of labeling these images. Since there

are many images with this problem in the dataset for this method, it would

be good to choose another method.
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5.7 Dataset Creation with another image pro-

cessing method

In this method, another way to create the images and make them ready for

the dataset is used. Because in the images, colors have the leading role in

classification, so by removing the square red area from images, the classifi-

cation would be more straightforward. In figures 5.24 and 5.25, the main

image and the edited image by using this method can be seen:

Figure 5.24: Captured Image on September 20, 2019, at 7:15 A.M

Figure 5.25: Edited Image
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In figure 5.26 and 5.27, the code for this method can be seen:

Figure 5.26: Python Code for removing Red Part

Figure 5.27: Python Code for removing Red Part

As can be seen in the figures above, the PIL library is used to do this.

Furthermore, a circle mask is created and applied to the image, and then the

Red part from the main image is cropped.
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Nevertheless, this method has a problem in finding the location of the sun.

As shown in the images taken from [5], the predicted trajectory for the sun

can be seen in figures 5.28 to 5.30:

Figure 5.28: Sun Trajectory Obtained by ANN on September 29, 2019, at 8:29 AM
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Figure 5.29: Sun Trajectory Obtained by ANN on September 29, 2019, at 10:59 AM

Figure 5.30: Sun Trajectory Obtained by ANN on September 29, 2019, at 13:23 AM
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As can be seen in these images, the sun’s trajectory is like an arc. The

problem in this method occurs at deleting the Red area from the images.

As mentioned previously, this job was done by creating a circular mask and

applied that to the main images. So the Sun X and Y position change non-

linearly in the images, because the cropping size should be calculated and

then reduce it from the Sun X and Y position. However, since the trajectory

is an arc and is not a straight line, some problems are posed. Because It

could not crop the image with different sizes, also it is impossible to apply a

specific mask to each image in this large dataset.

5.8 Dataset Creation with hand and by the

help of GHI

This dataset is the dataset used for the next step, but another classification

should be done before applying Deep Learning models on this dataset. This

classification will be discussed in the next section.

This dataset has no errors, and it is created by using the percentages in

section 5.5 and then reclassify them by hand. In this dataset, there are three

labels: Clear Sky, Covered, Rainy.

In figures 5.31 to 5.34, some images of this dataset can be seen. As can be

seen in these images, there are no clouds in the sky for the Clear Sky label.

Also, in the covered label, as shown in the images, the images are in the

same Covered label for both Low-Covered and High-Covered labels. Finally,

for the images in which the weather is rainy, a separate label is assigned. In

this new dataset, there is no error to enter the Deep Learning model. The

number of images in each label is:

• Clear Sky:28704 Images

• Covered:41244 Images

• Rainy:14907 Images

• Total Number of Images: 84855 Images
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Figure 5.31: Image Labeled as Clear sky on September 19, 2019, at 5:41 PM

Figure 5.32: Image Labeled as Covered on March 31, 2020, at 6:46 PM
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Figure 5.33: Image Labeled as Covered on April 1, 2020, at 4:07 PM

Figure 5.34: Image Labelled as Rainy on September 22, 2019, at 5:27 PM
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5.9 Last Classification

As can be seen in figure 5.35, for the next classifier, the Rainy label is removed

because in rainy weather, the GHI is very low, and the produced energy from

solar cells is negligible.

Figure 5.35: Classification Road Map

The second classifier is based on CSI value.

CSI is the ratio of measured irradiance at ground level to estimated irra-

diance in clear sky conditions. It is also utilized in a clear sky model and

information, on atmospheric input parameters is available [60].

In figure 5.36, the ”.mat” file of labeling based on CSI can be seen:

Figure 5.36: ”.Mat” file of classification based on CSI value
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As can be seen in figure 5.36, the ”Kt” column is a CSI value that is equal

to ”GHI-meas/GHI-clearsky.”

Concerning the value of CSI, images are classified into five different labels,

which can be seen below:

• Label1: 0 < Kt < 0.2

• Label2: 0.2 < Kt < 0.45

• Label3: 0.45 < Kt < 0.75

• Label4: 0.75 < Kt < 1

• Label5: Kt > 1

Also, in the ”.Mat” file, some images with label 0 exist related to images near

Sunset and Sunrise when the measured GHI and ClearSky GHI are very close

to each other and have small values. Since the values of both Measured GHI

and ClearSky GHI are shallow, so they are ignored.

After removing the Rainy labeled images and ”Label 0” images, the number

of images in each label is listed below:

• Class1: 6427 Images

• Class2: 12678 Images

• Class3: 9936 Images

• Class 4: 26077 Images

• Class 5: 1635 Images

The total number of images is 56753.
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Chapter 6

Deep Learning Model

Application

In this chapter, first, we prepare an introduction about CNN and the used

model with a description of each layer. Another image modification was

also used to prepare them for Deep Learning, which will be discussed in this

chapter.

6.1 Why Deep Learning?

In figure 6.1 [61], the difference between ML and Deep Learning can be seen:

Figure 6.1: Difference between ML and Deep Learning



Deep Learning is used when:

• Dealing with Unstructured Data

• Do not need easily Interpretable Result

• Benefit from a known architecture

6.2 How does ANN work?

In figure 6.2 [62], the architecture of ANN can be seen. W1, W2, and W3

are the strength of the input signals. Also, as can be seen in the figure:

F = W1 ×X1 + W2 ×X2 + W3 ×X3

Figure 6.2: ANN Architecture
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In figure 6.3 [62], a complete architecture of the ANN model can be seen:

Figure 6.3: ANN Functional Architecture

Key points related to this architecture:

• There are three main layers in the architecture; An input layer, hidden

layers (usually more than 1), and the output layer equal to the classes’

number.

• Filtering the inputs and passing them to the next layer is the hidden

layer’s duty, which makes the network faster and efficient.

• The activation function serves to detect the non-linear relation between

the inputs. Conversion of the inputs to a more valuable output is the

other activation function’s duty.
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The Key advantages of Neural Network are [63]:

• Learning and modeling non-linear and complex relationships which is

similar to the non-linear inputs and outputs in real-life.

• Generalizing is the other advantage of ANNs. They can infer the un-

known and new relationships after learning and modeling the initial

inputs and outputs and making a model which can generalize and pre-

dict the new and unseen data.

• There are no restrictions in the input variables in ANN, unlike the

other methods.

6.3 Important Activation Functions

Many activation functions can be used in ANN. The list of these functions is

listed below. Then a short description of the more critical activation functions

is discussed.

The activation functions used in ANN are [64]:

• Binary Step Function

• Linear

• Sigmoid

• Tanh

• ReLU

• Leaky ReLU

• Parametrized ReLU

• Exponential Linear Unit

• Swish

• SoftMax
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In figures 6.4 to 6.6 the images of mostly used activation functions are shown.

The other activation functions are represented in Appendix B.

Figure 6.4: Sigmoid Activation Function
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Figure 6.5: Tanh Activation Function

Figure 6.6: ReLU Activation Function
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The mostly used activation functions are:

• Sigmoid

• Tanh

• ReLU

• Softmax

6.3.1 Sigmoid

The sigmoid function includes values between 0 and 1. Concerning this,

sigmoid can be useful in cases where the goal is probability. Sigmoid is a

differentiable function which means that its slope can be found at any two

points [64].

6.3.2 Tanh

Sigmoid and Tanh activation functions are very similar. The difference be-

tween these functions is that Tanh is also available for the values 0 to -1. So,

Tanh is mainly used for classification between two output classes [65].

6.3.3 ReLU

The most used activation function which is used in both Deep Learning and

Machine Learning models is ReLU. In ReLU, there are no negative values

since the negative values become zero. So, the model’s ability is decreased

to fit or train the data correctly. It means that for the negative data, ReLU

is not working properly.

6.3.4 SoftMax

Softmax converts a vector of numbers into a probabilities vector proportional

to the relative scale of each value in the vector as a mathematical function.

It is used in multiple outputs models [66].

In the next section, we introduce the model used for Deep Learning

on our image dataset, following a short introduction about the

layers.
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6.4 Deep Learning Model:

In figure 6.7, the summary of the model can be seen. As indicated in this

image, the layers used for Deep Learning are listed below:

• Convolutional Layer

• Maxpooling Layer

• Flatten Layer

• Fully Connected Layer (Dense)

6.4.1 Convolutional Layer

There are several filters in Convolutional Layers. These filters contain dif-

ferent parameters which need to be learned. The activation map of neurons

is calculated with the convolutional of each filter and the input volume. In

other words, the filter is slid across the input’s width and height, and the

dot products between the input and filter are computed at every spatial po-

sition. The convolutional layer’s output volume is obtained by stacking all

filters’ activation maps along the depth dimension. Since each filter’s width

and height are designed to be smaller than the input, each neuron in the

activation map is only connected to a small local region of the input volume.

In other words, each neuron’s receptive field size is small and equal to the

filter size [67].
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Figure 6.7: Deep Learning Model Layers
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6.4.2 MaxPooling Layer

Maxpooling Layer reduces the spatial size of the image. It converts the image

to a matrix and then, concerning the size of the kernel, creates a smaller

matrix so that each argument of the smaller matrix is the maximum of the

selected part of the main matrix. For example, suppose the image is a 224

by 224 matrix, and the kernel size is 2. In that case, there is a two by two

matrix, which passes through all the primary matrix arguments and selects

the maximum of the four arguments in that selected part. It means that the

pooling layer reduces the size of the image by the kernel size. In figure 6.8,

the process of max pool layer can be seen:

Figure 6.8: MaxPooling Layer Process

6.4.3 Flatten Layer

Flatten Layer converts the pooled layer’s output to a simple vector that is

ready to enter to the Fully Connected Layer. As shown in the model, there

is a Flatten Layer after all the pooling layers before the last Fully Connected

Layer (Dense). Flatten Layer reshapes the input vector to a simple vector.

6.4.4 Fully Connected Layer

It makes a full connection between the inputs neuron and the outputs neuron.

The Dense layer creates a complete connection to all the previous activation

functions and neurons.

In the used model, all the activation functions are ReLU, and for the last

layer, the activation function is softmax. As mentioned in the introduction,
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for multilabel cases, Softmax activation is used. Also, the last layer’s output

neurons are five, which is equal to the number of labels in our dataset.

6.5 Training Deep Learning Model on the Dataset

The first step in training the Deep Learning model is to split the dataset into

Training Set, Validation Set, and Test Set. In order to split the data set, the

code which can be seen in figure 6.9 is used.

Figure 6.9: Code for Splitting the Dataset

As can be seen in the figure, the dataset is split by the percentage listed

below:

• Training Set: 75%

• Validation Set: 15%

• Test Set: 10%
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Also, to avoid Class Imbalance concerning larger number of images in Label

4, the number of images is reduced to 10000 images.

The number of images in each Set is:

• Training Set: 30506 Images

• Validation Set: 6101 Images

• Test Set: 4069 Images
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6.6 Image Preprocessing

As mentioned in the previous section, image processing is done to all the

images to prepare them for the Deep Learning method. For this part, the

white square around all the images is removed. As shown in figures 6.10 and

6.11, the main image contains a white square around the core image.

Figure 6.10: The Main Image before Removing the White Square

Figure 6.11: The Main Image after Removing the White Square

After this step, the images should be prepared to enter the Deep Learning

Method. So, they are passed into preprocessing function of Keras. In figure

6.12, the code to make the images ready to enter the Deep Learning model

can be seen:
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Figure 6.12: Image PreProcessing

The batch size is the images’ number that the model selects for the Deep

Learning Process in each step. So, in each step, 32 images are processed.

After preprocessing, the images are ready to enter the model. The final result

of this process can be seen in the confusion matrix in figure 6.13.

Figure 6.13: Confusion Matrix

The rows of the confusion matrix show True Label, and the columns show the

Predicted Label. For example, in Label1, 613 images are correctly predicted

as Label1, 13 images are incorrectly labeled as Label2, eight images are

incorrectly labeled as Label3, nine images are incorrectly labeled as Label4.

For the other labels, there is no error in prediction. This matrix’s accuracy,
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which shows the test set’s prediction accuracy, is equal to dividing the di-

agonal elements’ sum by the sum of all the elements. By calculating the

accuracy, it can be seen that the accuracy on the test set or the accuracy of

the model is 99.26%.

79



Chapter 7

Forecasting

This chapter focuses on the Forecasting process in three different time hori-

zons, including 5, 10, and 15 minutes. First, the dataset-making procedure

has been introduced. Then, the model used for forecasting has been ex-

plained. Finally, the results of the forecasting part, such as the accuracy, the

best day, the worst day, etc are introduced.

7.1 Dataset Preparation Procedure

The forecasting method that is used in this research work is based on the

value of CSI. As introduced in the previous chapter, the images were split

into five different labels concerning the CSI value. Since the value of CSI is

available for every minute, by replacing the next value of CSI (the next value

with respect to the time horizon) with the current value and running the

Deep Learning model, forecasting accuracy is achieved. To be more precise,

the value of CSI(t+dt) is replaced with the value of CSI(t), which ”dt” is

the time horizon.

In figure 7.1, an example of how making the dataset for 5 Minutes forecasting

is shown.



Figure 7.1: 5 Minutes Forecasting Dataset Preparation. As can be seen, the first five
rows are replaced by the next five rows. So the new dataset shows the CSI values for
the next five minutes.

As shown in the figure, the first five rows of the dataset are replaced by

the next five rows. So, the label of the image at 10:25 is replaced by that

of at 10:30. This process is done for all days separately to make sure that

replacing the labels are done correctly. Then, with respect to the new labels,

the images are split into five labels. This process is repeated for 10 and

15 Minutes forecasting as well. The next step is to run the Deep Learning

model. Figure 7.2 is another example of dataset preparation of 10 Minutes

forecasting.
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Figure 7.2: 10 Minutes Forecasting Dataset Preparation. As can be seen, the first
ten rows are replaced by the next ten rows. So the new dataset shows the CSI values
for the next ten minutes.
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7.2 Forecasting Model

In this step, the forecasting model has been run on our image dataset for

our three different forecasting time horizons. We have tried ten different and

independent trials on each time horizon to verify the robustness and reliabil-

ity of the Forecasting model. In figures 7.3 and 7.4, the first two confusion

matrices for 5’ forecasting can be seen. Figures 7.5 and 7.6, represent the

first two confusion matrices for 10’ forecasting. In figures 7.7 and 7.8, the

first two confusion matrices for 15’ forecasting are shown. The confuison

matrices for the other trials are represented in Appendix C.

Figure 7.3: First confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the First trial and is 65.02%.
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Figure 7.4: Second confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Second trial and is 60.61%.
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Figure 7.5: First confusion Matrix for 10 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the First trial and is 65.79%.
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Figure 7.6: Second confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Second trial and is
61.93%.
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Figure 7.7: First confusion Matrix for 15 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the First trial and is 56.25%.
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Figure 7.8: Second confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Second trial and is
59.08%.
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7.3 Forecasting Results

In figures 7.9 to 7.11, the accuracy of the confusion matrices for each time

horizon and for all trials are plotted with the average value. As can be seen in

these figures, the forecasting accuracies for 5, 10, and 15 Minutes forecasting

are 62.7%, 65.48%, and 58.913% respectively.

Figure 7.9: Model Accuracy in 10 different and independent trials for 5 Minutes
Forecasting. The average forecasting accuracy for this time horizon is 62.7%.
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Figure 7.10: Model Accuracy in 10 different and independent trials for 10 Minutes
Forecasting. The average forecasting accuracy for this time horizon is 65.48%.

Figure 7.11: Model Accuracy in 10 different and independent trials for 15 Minutes
Forecasting. The average forecasting accuracy for this time horizon is 58.9%.
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Figures 7.12 to 7.17 represent thirty six samples of correctly classified and

misclassified samples for both the best and worst days through all time hori-

zons. As can be seen in these figures, the correctly classified values are plotted

in blue, and the misclassified values are plotted in red. Also, the label of each

classified samples are separated.

Figure 7.12: Classified and Misclassified samples for one of the best day in 5 Minutes
Forecasting in September 9,2019. The Correctly Classified images are represented
by Blue dots, whereas the misclassified samples are represented by Red dots. The
horizontal axis of this figure is divided to five sections representing each label.
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Figure 7.13: Classified and Misclassified samples for one of the worst day in 5 Minutes
Forecasting in December 30,2019. The Correctly Classified images are represented
by Blue dots, whereas the misclassified samples are represented by Red dots. The
horizontal axis of this figure is divided to five sections representing each label.
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Figure 7.14: Classified and Misclassified samples for one of the best day in 10 Minutes
Forecasting in December 4,2019. The Correctly Classified images are represented
by Blue dots, whereas the misclassified samples are represented by Red dots. The
horizontal axis of this figure is divided to five sections representing each label.
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Figure 7.15: Classified and Misclassified samples for one of the worst day in 10
Minutes Forecasting in March 1,2020. The Correctly Classified images are represented
by Blue dots, whereas the misclassified samples are represented by Red dots. The
horizontal axis of this figure is divided to five sections representing each label.
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Figure 7.16: Classified and Misclassified samples for one of the best day in 15 Minutes
Forecasting in December 23,2019. The Correctly Classified images are represented
by Blue dots, whereas the misclassified samples are represented by Red dots. The
horizontal axis of this figure is divided to five sections representing each label.
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Figure 7.17: Classified and Misclassified samples for one of the worst day in 15
Minutes Forecasting in September 22,2019. The Correctly Classified images are rep-
resented by Blue dots, whereas the misclassified samples are represented by Red dots.
The horizontal axis of this figure is divided to five sections representing each label.
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Figures 7.18 to 7.23 indicate the convergence curves of the Deep Learning

model in each forecasting time horizon. In these graphs, we can see the

prediction and classification accuracy in both Training Set and Validation

Set.

Figure 7.18: The accuracy of the model on Train set and Validation set through 50
epochs for 5 Minutes Forecasting. The blue line represents the performance of the
train set in forecasting. While the orange line shows the validation set performance
for each epoch.
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Figure 7.19: The Loss of the model on Train set and Validation set through 50 epochs
for 5 Minutes Forecasting. The blue line represents the performance of the train set
in forecasting. While the orange line shows the validation set performance for each
epoch.

Figure 7.20: The accuracy of the model on Train set and Validation set through 50
epochs for 10 Minutes Forecasting. The blue line represents the performance of the
train set in forecasting. While the orange line shows the validation set performance
for each epoch.
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Figure 7.21: The Loss of the model on Train set and Validation set through 50 epochs
for 10 Minutes Forecasting. The blue line represents the performance of the train set
in forecasting. While the orange line shows the validation set performance for each
epoch.

Figure 7.22: The accuracy of the model on Train set and Validation set through 50
epochs for 15 Minutes Forecasting. The blue line represents the performance of the
train set in forecasting. While the orange line shows the validation set performance
for each epoch.
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Figure 7.23: The Loss of the model on Train set and Validation set through 50 epochs
for 15 Minutes Forecasting. The blue line represents the performance of the train set
in forecasting. While the orange line shows the validation set performance for each
epoch.
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In figures 7.24 to 7.26, the sparsity curves of each time horizon are repre-

sented. These curves show how much the misclassified samples are different

from the correctly classified samples based on a logarithmic scale. The pro-

cess of Deep learning is that the model predicts the label presence probability

for each image. The prediction result of each image is available in an numpy

array. For example we have: [0.0007, 0.0090, 0.01, 0.9997, 0.009]

This array shows that this image belongs 99.97% to label4. Then the model

validates this probability by checking the dataset. If the image exists in

label 4, the image is correctly classified. Otherwise it is misclassified. In

the sparsity curves, these probabilities are used. If the images are classified

correctly, they were plotted as a linear (y=x) line. Otherwise, the probability

of the label in which the image exists in that label in our dataset will multiply

by 10000 and then be plotted with a logarithmic scale. The predictions are

multiplied by 10000 since the probability values are minimal in this case.

Figure 7.24: Sparsity Curve for 5 Minutes Forecasting: Red dots show the misclassi-
fied samples and Correctly classified samples are represented by blue linear line

101



Figure 7.25: Sparsity Curve for 10 Minutes Forecasting: Red dots show the misclas-
sified samples and Correctly classified samples are represented by blue linear line

Figure 7.26: Sparsity Curve for 15 Minutes Forecasting: Red dots show the misclas-
sified samples and Correctly classified samples are represented by blue linear line
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As seen in these figures, the red dots indicate the misclassified samples, and

the blue line indicates the correctly classified samples. Also, as seen in these

figures, the misclassified samples are not placed at a long distance from the

blue line, representing that the model was close to predicting the correct label

for most of these misclassified samples. Whereas, for the other dots placed

in a long distance of the blue line, it shows that the model was confused for

the correct label of those images.

In figures 7.27 to 7.29, the sorted daily performance of the forecasting model

for all days through the dataset is represented. In these figures, the perfor-

mance is sorted from the best day to the worst day.

Figure 7.27: Sorted Prediction Performance in Descending order for 5 Minutes Fore-
casting
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Figure 7.28: Sorted Prediction Performance in Descending order for 10 Minutes
Forecasting

Figure 7.29: Sorted Prediction Performance in Descending order for 15 Minutes
Forecasting
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As can be seen in these figures, there are some days with 100% prediction

accuracy and some days with 0% accuracy.
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Chapter 8

Conclusion and Future Work

This thesis represents the inclusive study of Solar Energy Nowcasting em-

ploying Computer Vision to identify the advantages and drawbacks of this

method and the benefits to the other possible methods.

This method is based on implementing Computer vision or in a specific way

Deep Learning on the Images dataset and with respect to the CSI value to

first classify the images and then forecast the CSI value for the next 5’, 10’,

and 15’.

The benefits of this method with respect to the other possible methods are

speed and accuracy. Through Computer Vision and, in a specific case Deep

Learning, the predictions can be much faster than the NWP or the other

traditional methods.

As mentioned, the images captured from the sky using ASI play a vital role

in this study. These images are needed to be processed by different Image

Processing and visualizing methods to be provided for the Deep Learning

model. The model has to process various features of the images like the

edges, the colors, the difference in colors by area, and the different shapes

to understand the difference between the images and group them based on a

reference value. Various Image processing and Image visualizing tests were

performed to find the best-fitted images for the Deep Learning model. Next,

grouping the images are done based on CSI, which is a function of GHI. Since

the output power of solar panels is directly proportional to Irradiation, this

classification, the times with the most and least Irradiation can be identified.



Also, by predicting the changes in Irradiance, the clouds movements, and the

weather conditions, the future changes of Irradiation can be forecasted, and

the generated power by solar panels can be maximized.

By the forecasted results in this research work, the solar panels can be tilted

at an angle that can receive the most Irradiation. The new method now

being used is to use a rotating motor to tilt the panel to the optimum angle

by the data obtained from forecasting.
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Chapter 9

Appendix: Irradiation Data

In this appendix the figures related to the chapter of Irradiation data are

represented. Figures 9.1 to 9.6 indicate the identified ramps in Minutely

scales from November 2019 to April 2020.

Figure 9.1: November Ramps Minutely



Figure 9.2: December Ramps Minutely

Figure 9.3: January Ramps Minutely
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Figure 9.4: February Ramps Minutely

Figure 9.5: March Ramps Minutely
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Figure 9.6: April Ramps Minutely
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In figures 9.7 to 9.30, the ramp identification images for 5’, 10’, 15’, and 20’

time horizons from November to April are represented respectively.

Figure 9.7: November Ramps 5 Minutes Time Horizons
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Figure 9.8: December Ramps 5 Minutes Time Horizons

Figure 9.9: January Ramps 5 Minutes Time Horizons
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Figure 9.10: February Ramps 5 Minutes Time Horizons

Figure 9.11: March Ramps 5 Minutes Time Horizons
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Figure 9.12: April Ramps 5 Minutes Time Horizons

Figure 9.13: November Ramps 10 Minutes Time Horizons
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Figure 9.14: December Ramps 10 Minutes Time Horizons

Figure 9.15: January Ramps 10 Minutes Time Horizons
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Figure 9.16: February Ramps 10 Minutes Time Horizons

Figure 9.17: March Ramps 10 Minutes Time Horizons
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Figure 9.18: April Ramps 10 Minutes Time Horizons

Figure 9.19: November Ramps 15 Minutes Time Horizons
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Figure 9.20: December Ramps 15 Minutes Time Horizons

Figure 9.21: January Ramps 15 Minutes Time Horizons
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Figure 9.22: February Ramps 15 Minutes Time Horizons

Figure 9.23: March Ramps 15 Minutes Time Horizons
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Figure 9.24: April Ramps 15 Minutes Time Horizons

Figure 9.25: November Ramps 20 Minutes Time Horizons
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Figure 9.26: December Ramps 20 Minutes Time Horizons

Figure 9.27: January Ramps 20 Minutes Time Horizons

122



Figure 9.28: February Ramps 20 Minutes Time Horizons

Figure 9.29: March Ramps 20 Minutes Time Horizons
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Figure 9.30: April Ramps 20 Minutes Time Horizons
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Chapter 10

Appendix: Deep Learning

Model Application

In figures 10.1 to 10.5, the other activation functions being used in Deep

Learning models are represented.

Figure 10.1: Binary Step Activation Function



Figure 10.2: Linear Activation Function

Figure 10.3: Leaky ReLU
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Figure 10.4: Exponential Linear Unit Activation Function

Figure 10.5: Swish Activation Function
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Chapter 11

Appendix: Deep Learning

Model Application

In figures 11.1 to 11.24, the remaining confusion matrices of 10 different trials

of the model for 5’, 10’, and 15’ are represented respectively.



Figure 11.1: Third confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Third trial and is 60.86%.
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Figure 11.2: Fourth confusion Matrix for 5 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Fourth trial and is
62.29%.
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Figure 11.3: Fifth confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Fifth trial and is 61.90%.
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Figure 11.4: Sixth confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Sixth trial and is 63.10%.
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Figure 11.5: Seventh confusion Matrix for 5 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Seventh trial and is
62.50%.
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Figure 11.6: Eighth confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Eighth trial and is 65.35%.
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Figure 11.7: Ninth confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Ninth trial and is 63.78%.
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Figure 11.8: Ninth confusion Matrix for 5 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Tenth trial and is 60.89%.

136



Figure 11.9: Third confusion Matrix for 10 Minutes Forecasting. The columns of this
matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Third trial and is 66.47%.
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Figure 11.10: Fourth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Fourth trial and is
65.92%.
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Figure 11.11: Fifth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Fifth trial and is 67.11%.
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Figure 11.12: Sixth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Sixth trial and is 68.28%.
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Figure 11.13: Seventh confusion Matrix for 10 Minutes Forecasting. The columns
of this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Seventh trial and is
64.89%.
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Figure 11.14: Eighth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Eighth trial and is
64.19%.
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Figure 11.15: Ninth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Ninth trial and is 63.46%.
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Figure 11.16: Tenth confusion Matrix for 10 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Tenth trial and is 66.76%.
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Figure 11.17: Third confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Third trial and is 59.53%.
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Figure 11.18: Fourth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Fourth trial and is
59.75%.

146



Figure 11.19: Fifth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Fifth trial and is 58.11%.
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Figure 11.20: Sixth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Sixth trial and is 63.07%.
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Figure 11.21: Seventh confusion Matrix for 15 Minutes Forecasting. The columns
of this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Seventh trial and is
56.97%.
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Figure 11.22: Eighth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows
the Actual Label of the images. The prediction accuracy of the Eighth trial and is
59.25%.
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Figure 11.23: Ninth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Ninth trial and is 54.91%.
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Figure 11.24: Tenth confusion Matrix for 15 Minutes Forecasting. The columns of
this matrix shows the predicted label of the images. The rows of this matrix shows the
Actual Label of the images. The prediction accuracy of the Tenth trial and is 64.11%.
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