
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in Telecommunication Engineering

Federated-Learning-Assisted Failure
Management in Microwave Networks

Supervisor:
Prof. Massimo Tornatore
Co-Supevisors:
Prof. Francesco Musumeci
Dr. Omran Ayoub

Candidate:
Tara Tandel
Matricola: 927088

Academic Year 2020 - 2021

Acknowledgements

I would like to express my sincere gratitude to Prof. Massimo Tornatore
to give me this incredible opportunity to expand my knowledge and trust-
ing me to implement them. I would like to extend my sincere thanks to
Prof. Francesco Musumeci for his assistance, invaluable advice, continuous
support, and patience during every stage of the research project, and to Dr.
Omran Ayoub that was a big source of positiveness and motivation. With-
out their tremendous understanding and encouragement in the past year, it
would be impossible for me to complete my study. My appreciation also
goes out to my family, my boyfriend Giovanni and my good friends for their
encouragement and support all through my studies.

In the end, I would like to thank the Polimi University and all my pro-
fessors and staff that made this possible.

Milan, August 25 T.T.

II

Abstract

Faults are unavoidable and cause network downtime and degradation of
large and complex communication networks. The need for fault management
capabilities for improving network reliability is critical to rectifying these
faults. Current communication networks are moving towards the distributed
environment enabling these networks to transport heterogeneous multimedia
information across end-to-end connections. An advanced fault management
system is thus required for such communication networks. Fault Management
provides information on the status of the network by locating, detecting, and
identifying, network problems thereby increasing network reliability. A large
portion of next-generation (6G) services and applications, such as cloud com-
puting, video streaming, and smart working platforms, have strict availability
requirements and must be available at all times from any location on the net-
work. Because of the increased use of these apps, internet service providers
(ISPs) are being forced to develop new solutions to deliver Ultra-Reliable
Low-Latency Communication (URLLC).

As 5G communication networks become more widely implemented world-
wide, both business and academics have begun to go beyond 5G and towards
6G communications. It is widely assumed that 6G will be founded on per-
vasive Artificial Intelligence (AI) to provide data-driven Machine Learning
(ML) solutions in heterogeneous and massive-scale networks. Traditional
ML approaches, on the other hand, need centralized data gathering and
processing by a single server, which is becoming a bottleneck to large-scale
applications in daily life as privacy concerns grow.

In this context we present a failure management system based on Feder-
ated Learning that protects data privacy by performing local detection model
training and inference. Not only is privacy protected in this method, but de-
vices may also profit from their peers’ expertise by transmitting just their
changes to a distant server, which aggregates the latter and provides an en-
hanced detection model with participating devices. We do extensive tests on
the SIAE dataset, an Italian company that provided us with genuine data to
assess the efficacy of the suggested strategy. Experiment findings show that

IV

the suggested Federated Learning detection model outperforms the isolated
model in terms of accuracy.

V

Abstract (Italiano)

I guasti sono inevitabili e causano tempi di inattività della rete e il de-
grado di reti di comunicazione grandi e complesse. Diventa fondamentale
quindi la capacità di gestione degli errori per migliorare l’affidabilità della
rete e correggere questi errori. Le attuali reti di comunicazione si stanno spo-
stando verso l’ambiente distribuito che consente a queste reti di trasportare
informazioni multimediali eterogenee attraverso connessioni end-to-end. Per
tali reti di comunicazione è quindi necessario un sistema avanzato di ges-
tione dei guasti. La gestione dei guasti fornisce informazioni sullo stato della
rete individuando, rilevando e identificando i problemi di rete, aumentando
così l’affidabilità della rete. Una gran parte dei servizi e delle applicazioni
di nuova generazione (6G), come il cloud computing, lo streaming video e
le piattaforme di smart working, hanno requisiti di disponibilità rigorosi e
devono essere sempre disponibili da qualsiasi punto della rete. A causa del
maggiore utilizzo di queste applicazioni, i provider di servizi Internet (ISP)
sono costretti a sviluppare nuove soluzioni per fornire una comunicazione a
bassa latenza ultra affidabile (Ultra-Reliable Low-Latency Communication -
URLLC).

Man mano che le reti di comunicazione 5G si sviluppano sempre di più
in tutto il mondo, sia le imprese che gli istituti accademici hanno iniziato
ad andare oltre il 5G e verso le comunicazioni 6G. È ampiamente ipotizzato
che il 6G sarà fondato sull’intelligenza artificiale pervasiva (AI) per fornire
soluzioni di Machine Learning (ML) basate sui dati in reti eterogenee e su
larga scala. Gli approcci ML tradizionali, d’altro canto, richiedono la raccolta
e l’elaborazione centralizzata dei dati da parte di un singolo server, che sta
diventando un collo di bottiglia per le applicazioni su larga scala nella vita
quotidiana man mano che crescono i problemi di privacy.

In questo contesto presentiamo un sistema di gestione dei guasti basato su
Federated Learning che protegge la privacy dei dati eseguendo l’addestramento
e l’inferenza del modello di rilevamento locale. Non solo la privacy è pro-
tetta con questo metodo, ma i dispositivi possono anche trarre vantaggio
dall’esperienza di altri dispositivi trasmettendo solo le loro modifiche ad un

VI

server remoto che aggrega il dispositivo e fornisce un modello di rilevamento
avanzato con i dispositivi partecipanti. Effettuiamo test approfonditi sul
dataset SIAE, azienda italiana che ci ha fornito dati veritieri per valutare
l’efficacia della strategia suggerita. I risultati dell’esperimento mostrano che
il modello di rilevamento del Federated Learning suggerito supera il modello
distribuito in termini di accuratezza.

VII

Contents

1 Introduction 1
1.1 Thesis Contribution . 5
1.2 Thesis Outline . 5

2 Related work 7
2.1 Failure Management . 7
2.2 Federated Learning in Networks 9

3 Background 11
3.1 Machine Learning Methodologies 11

3.1.1 Machine Learning Definition 11
3.1.2 Classification . 12
3.1.3 Classification algorithms 17

3.2 Federated Learning Methodologies 20
3.2.1 Federated Learning Definition 20
3.2.2 Federated Learning Local Data Owners Distribution . . 28
3.2.3 Federated Optimization 29
3.2.4 Federated Learning Algorithms 32

3.3 Microwave Networks Technologies 36
3.3.1 Hardware Components 36
3.3.2 Channel Characterization 40
3.3.3 ACM . 42
3.3.4 Performance Metrics 43
3.3.5 Categories Of Failures In Microwave Links 44

4 Problem Statement 48
4.1 Failure Identification . 48

4.1.1 Input Data . 48
4.2 Failure Identification With Traditional Machine Learning . . . 50

4.2.1 Supervised Failure identification 50

VIII

4.3 Strategies for Training Machine Learning Model in Distributed
Datasets . 53
4.3.1 Centralized Machine learning 54
4.3.2 Distributed Machine learning 54
4.3.3 Federated Learning Solution 55

5 Federated-Learning-Assisted Failure Management in Microwave
Networks 57
5.1 Data Preprocessing . 57

5.1.1 Handling Incomplete Information 59
5.1.2 Features Normalization 61

5.2 Failure Identification Using Federated Learning 62
5.2.1 Training . 62
5.2.2 Model and Hyperparameters Search 69

6 Numerical Results 73
6.1 Data analysis and presentation 73
6.2 Data Separation . 75
6.3 Failure Identification . 78

6.3.1 Scenario 1: where only one type of label is missing . . 81
6.3.2 Scenario 2: where two types are labeled is missing . . . 85
6.3.3 Scenario 3: where three types of the label is missing . . 91

6.4 Effect of missing labels on one client 95

7 Conclusions and Future Work 97

IX

List of Figures

3.1 Example of binary classification where data points are consti-
tuted by two features X[1] and X[2] 12

3.2 How we can use the model to perform classification 13
3.3 Examples of confusion matrices for different models. 16
3.4 Multilayer perceptron structure [20]. 17
3.5 Perceptron illustration [20]. 18
3.6 Possible separating linear hyperplane [23] 21
3.7 An example of FL architecture: client-serve model [24] 23
3.8 An example of FL architecture: peer-to-peer model. [24] . . . 24
3.9 Illustration of HFL, a.k.a. sample-partitioned FL where the

over- lapping features from data samples held by different par-
ticipants are taken to jointly train a model [24]. 26

3.10 Illustration of VFL, a.k.a feature-partitioned FL where the
overlap- ping data samples that have non-overlapping or par-
tially overlapping features held by multiple participants are
taken to jointly train a model [24] 26

3.11 Federated transfer learning (FTL). A predictive model learned
from feature representations of aligned samples belonging to
party A and party B is utilized to predict labels for unlabeled
samples of party A. [24]. 27

3.12 Single Organisation, Cross-Device FL [37] 29
3.13 Multiple Organisations, Cross-Silo FL [37] 30
3.14 Basic components that allow LOS microwave communications

[49]. 36
3.15 Representation of the large and small scale channel compo-

nents [50]. 40

4.1 Outer K-fold crossvalidation for performance assessment. . . . 52
4.2 Inner K-fold crossvalidation for model selection. 53
4.3 Model Classifier of Centralized, Distributed and FL [54] 54

X

5.1 Snapshot of the real raw data provided by the network man-
agement system. 58

5.2 Distribution of the transmitted power values [53]. 60
5.3 Distribution of the received power values [53]. 61
5.4 Client-Server(coordinator) architecture of FL 63
5.5 Exemplary client-server architecture for an HFL system [24] . 66
5.6 Hyperparameters of the model based on ANN 69

6.1 Distribution of the values for the received power. 74
6.2 Distribution of the values for the transmitted power. 75
6.3 Resulting categories of FL. left: scenario 1, middle: scenario

2 and right: scenario 3 . 81
6.4 Comparison of accuracy for scenario 1. each set of three

columns displaying one case corresponding to the table 6.5
(groups from right to left in the figure match with the cases
in the table from up to down). Furthermore, each column
represents a client, and the numbers under each column indi-
cate the client’s missing label. Each column displays isolated
accuracy, FedAvg accuracy, and centralized accuracy for one
client. 82

6.5 sub-division of scenario 2. Each sub-division shows a combi-
nation of two types of label that can be missing from one or
two clients at the same time. The letters indicated near, are
the reference inside the text 85

6.6 Comparison of accuracy for scenario 2, the case "a." each set
of three columns displaying one case corresponding to the ta-
ble 6.6 (groups from right to left in the figure is matching with
the cases in the table from up to down). Furthermore, each
column represents a client, and the numbers under each col-
umn indicate the client’s missing label. Each column displays
isolated accuracy, FedAvg accuracy, and centralized accuracy
for one client. 87

6.7 Comparison of accuracy for scenario 2, case "b." each set of
three columns displaying one case corresponding to the table
6.7 (groups from right to left in the figure is matching with
the cases in the table from up to down). Furthermore, each
column represents a client, and the numbers under each col-
umn indicate the client’s missing label. Each column displays
isolated accuracy, FedAvg accuracy, and centralized accuracy
for one client. 89

XI

6.8 Comparison of accuracy for scenario 2, case "c." each set of
three columns displaying one case corresponding to the table
6.7 (groups from right to left in the figure is matching with
the cases in the table from up to down). Furthermore, each
column represents a client, and the numbers under each col-
umn indicate the client’s missing label. Each column displays
isolated accuracy, FedAvg accuracy, and centralized accuracy
for one client. 92

6.9 Comparison of accuracy for scenario 3. each set of three
columns displaying one case corresponding to the table 6.5
(groups from right to left in the figure match with the cases in
the table from up to down). Furthermore, each column rep-
resents a client, and the numbers in each column indicate the
client’s missing label. Each column displays isolated accuracy,
FedAvg accuracy, and centralized accuracy. 94

6.10 Accuracy comparison for missing labels in one client. The
numbers on x axis define the missing labels in the client 96

XII

List of Tables

3.1 Confusion matrix for a binary classification problem [18] . . . 15

4.1 Hyperparameters of the model based on ANN 53

5.1 Convergence comparison on MNIST dataset in three different
scenarios: a) 100 communication rounds, b) 200 communica-
tion rounds, c) various number of participants [54] 64

5.2 Summary of algorithm comparisons, showing if the algorithm
in a row is better (+) , worse (−) , or practically equivalent
(=) compared to the algorithm in a column [62] 64

5.3 Convergence Time in minuets with different conditions. 70
5.4 Hyperparameters for the FedAvg Algorithm 72

6.1 Class occurrences in the labeled data. 74
6.2 Categories of label distribution of dataset. 77
6.3 State space of removing labels for one client. 77
6.4 Space state for 3 clients. the showed numbers are missing labels. 79
6.5 Scenario 1 where only type of label is missing in each case.

The numbers correspond to the numbers of table of 6.4. 83
6.6 sub-division of scenario 2, case "a", where only label types

medium (0) and low (2) are missing from one or two clients.
The numbers correspond to the numbers of table of 6.4. 86

6.7 sub-division of scenario 2, case "b", where only label types
high(2) and low(5) are missing from one or two clients. The
numbers correspond to the numbers of table of 6.4. 88

6.8 sub-division of scenario 2, case "c", where only label types
medium (0) and high (5) are missing from one or two clients.
The numbers correspond to the numbers of table of 6.4. 90

6.9 Space state for scenario 3. The showed numbers are missing
labels. 91

XIII

Chapter 1

Introduction

Microwave networks, which are made up of radio links, use a commu-
nication technology that travels in free space. Because the communication
in a microwave network is not insulated, as it is with wired technology, the
power measurement of the link might fluctuate over time owing to physi-
cal limitations and changes in the environment. Because of the numerous
different causes of failure, their nature might be either temporary or perma-
nent. Deep fading events can cause both temporary and permanent failures;
in these cases, the received power measure suffers severe attenuation due to
some impairments (i.e., atmospheric events, physical obstacles); the duration
of these deep fading events can provide better intuition on its root-cause and
aid in the identification of the proper countermeasures. Failures in the net-
work can arise as a result of flaws in the design phase, which have a lasting
influence on the link performances and power measurements; they do not al-
low the connection to operate correctly, resulting in a large number of failure
events and an unavailability time. These are the examples of the failure root
causes that can happen in a network.

In the new era, we are moving forward to be a virtual society. We can see
that the classes, meetings, and significant jobs can be done remotely using the
internet; besides, services and applications, such as cloud computing, video
streaming, and smart working platform, have strong availability constraints
and must always be reachable. The increase of usage of these applications
forces internet service providers (ISPs) to research new solutions in order
to provide Ultra-Reliable Low-Latency Communication (URLLC). However,
the implementation of these solutions must be inexpensive, in order to pro-
vide the required high-quality service connection at low costs. The failure

1

identification is one solution to this problem
Nowadays, the failure identification procedure is carried out by human

experts who analyze graphs of radio power measures related to the failure
event, correlating them with the alarms, and then, based on experience, pos-
sible root causes of the failure can be identified, and proper countermeasures
can be implemented to restore the service.

Because sometimes the root cause identification is required, and this
method may take a long time, simply detecting the failure is insufficient
to start the procedure to avoid the loss of communication. As a result, a
solid mechanism for failure detection (recognizing anomalies caused by fail-
ure occurrences), localization (identifying where the failure occurred in the
network), and identification (understanding the actual cause of the failure)
is critical, as it may be used by operators to perform traffic re-routing and
rapid failure recovery.

The number of network links to be examined can be enormous, increasing
the time required to restore service. URLLC imposes a strict time constraint
for restoring service after a failure; this constraint can be met by using data
analysis techniques capable of working with a massive amount of data in a
very short period of time. Machine learning techniques are viewed as a strong
candidate to address this issue, as machine learning enables quick decision-
making by effectively leveraging the plethora of data that can be retrieved
via network monitors.

Edge devices, such as network equipment, gather and store data. Be-
cause of their specializations, organizations such as ISPs frequently have
limited perspectives on network data. However, privacy and security con-
cerns make it more difficult to integrate data from multiple companies in a
straightforward manner. In this setting, federated machine learning (or fed-
erated learning (FL)) appears as a functional solution that may assist in the
development of high-performance models shared across many parties while
still adhering to user privacy and data confidentiality standards.

Aside from privacy and security concerns, another compelling reason for
FL is to maximize computational capacity at a cloud system’s edge devices,
where devices only need to train a limited amount of data; this purpose is
appropriate in cases where our computational power is insufficient for large-
scale machine learning. Moreover, in centralized machine learning, where we
constantly want the data from the devices like network edges, the communi-
cation is most effective when only calculated results, rather than raw data,

2

are transferred between devices and servers. Routers, for example, may han-
dle the majority of computation locally and communicate the needed findings
with the cloud at regular intervals. Access points can complete the majority
of the calculation for the information they need to acquire and communicate
with central servers using only a few communication channels.

An analogy may be used to describe FL in our work. In other words, an
ML model is a final model that wants to recognize the failure in the network,
and the data is stored in each network edge device. Traditionally, the ML are
raised by purchasing data and transporting it to where the a central machine
is situated. However, due to privacy concerns and laws, we are unable to
physically move the data.

In our instance, the data can no longer migrate outside of its immediate
surroundings. FL, on the other hand, utilizes a dual technique. We may
let the data be trained over several network devices, similar to how our ML
model is created in a distributed way, with no data going outside of its local
area. In the end, the ML model grows from everyone’s data.

Horizontal and vertical FL are the two forms of FL. The Google GBoard
system employs horizontal FL and demonstrates B2C (business-to-consumer)
applications. It may also be used to enable edge computing, in which devices
at the periphery of a cloud system do many of the computational activities,
reducing the need to interact with the central servers through raw data.
Horizontal FL, as suggested and expanded by WeBank, is a B2B (business-to-
business) approach in which several businesses form an alliance to construct
and use a shared machine learning model.The model is created with the goal
of guaranteeing that no local data leaves any locations and that the model’s
performance meets business requirements. In our work we cover only the
B2B model.

We examine the failure management problem in microwave networks in
our study using FL, and we primarily focus on the solution of failure identifi-
cation via FL. Our study is part of a research initiative funded and shared by
SIAE Microelettronica, an Italian telecommunications company specialized
in microwave networks,equipment manufacturing.
Microwave networks, which are made up of radio connections, employ a com-
munication technique that travels through free space. Because the communi-
cation in a microwave network is not isolated, as it is with wired technology,
the power measurement of the link might fluctuate over time owing to phys-
ical limitations and changes in the environment. Because of the numerous

3

different causes of failure, their nature might be either temporary or perma-
nent. Deep fading events can cause both temporary and permanent failures;
in these cases, the received power measure suffers severe attenuation due to
some impairments (i.e., atmospheric events, physical obstacles); the duration
of these deep fading events can provide better intuition on its root-cause and
aid in the identification of the proper countermeasures.

Failures in the network can arise as a result of design flaws, with long-term
consequences for link performance and power measurements. They do not
allow the link to function correctly, resulting in a large number of failure oc-
currences and unavailability period. This sort of failure might be attributed
to incorrect radio connection configuration or interference from other lines in
the same region. Other failures can be caused by device aging or hardware
breakdown; in these situations, the connection may perform poorly or cease
to function, resulting in a permanent failure that must be resolved by direct
intervention on the radio link devices.

Techniques from the machine learning discipline are regarded as a strong
candidate to address failure identification issue, as machine learning enables
fast decision-making by effectively leveraging the plethora of data retrieved
via network monitors. However, the final models are not as robust as needed
and can’t provide enough accuracy with limited amount of data, so there
is still space for more sophisticated approaches. As the data are scattered
through different operators, and new regulations for privacy limits the move-
ments of the actual data, to extend the machine learning methods to solve
the failure identification problem, we also consider FL to tackle the problem
of data distribution across multiple operators, resulting in data on isolated
islands.

As a result, the first primary goal of this thesis is to use FL a reliable
failure classifier that takes as input a new network measure associated with
a failure event, and to provide as output the root cause that provides the
specific event. One use of the suggested method is when the operators are
unwilling to disclose their data. For example, we may have one tiny operator
that does not have all failure causes in its dataset can work with other op-
erators to make more reliable predictions. Alternatively, large operators can
work together to construct a more solid classifier without sharing data and
simply communicating the specification of their locally trained model. The
network operator may utilize this solution to reduce analysis time by giving

4

the failure reason and a probable restoration process to execute rapid failure
repair and build a more accurate failure-cause identification model .
In this thesis, we propose a method for training a machine learning model
collaboratively without sharing the data, with the goal of benefiting from
the data of other operators in order to improve classification performance
compared to the case where only one operator trains its data alone without
collaborating with others.

1.1 Thesis Contribution

On this thesis we concentrate on failure-cause identification in microwave
networks. Specifically, the main contributions of this work can be listed as
follows:

• We model the failure identification problem in radio link as a machine
learning classification problem.

• We use an FL algorithm to train a model without sharing data be-
tween different parties. Also, we propose and define a condition for the
convergence of this algorithm.

• We investigate the possible divisions of the clients concerning the rep-
etition of each failure root cause.

• We compare the FL algorithm with centralized learning (the case when
all the data is gathered together) and isolated learning (the case when
an operator train only with its own data)

1.2 Thesis Outline

The remainder of the thesis is organized as follows:
In Chapter 2, an overview of previous work is presented. First we present

state of the art work on failure management in different types of communi-
cation networks. Then related work is presented, in which FL techniques are
implemented in networking use cases.

In Chapter 3, the background knowledge of the thesis is presented. The
first part is a methodological background on machine learning. Then, the
algorithm used in the thesis development are described. The second part

5

discusses a background knowledge on FL. The third part presents a techno-
logical background related to the microwave networks. An overview of the
hardware and software components is provided; also the channel model and
the different failure classes are discussed.

The problem addressed in the thesis is formally described in Chapter 4,
where we also provide a description of the available data set.

In Chapter 5, the approaches to solve the problem are presented. Initially
we describe data preprocessing. Then, the FL approach used in the context
of failure-cause identification is presented.

In Chapter 6, we evaluate the performance of the different approaches
proposed in chapter 5; we compare the different techniques and we discuss
the results.

In chapter 7 we conclude the thesis and identify possible extension of this
work.

6

Chapter 2

Related work

This chapter summarizes the recent developments and the ongoing re-
search related to failure management in communication networks. We em-
phasize the most relevant existing works and discuss other applications where
FL is implemented in the networking domain.

2.1 Failure Management

Network domains have become more and more advanced in terms of their
size, complexity, and level of heterogeneity. Comprehensive fault manage-
ment is one of the most significant challenge in network management. A
variety of techniques for failure management were developed in different net-
working contexts.

Services involved in an service-oriented architecture(SOA) often do not
operate under a single processing environment and must communicate using
different protocols over a network. Under such conditions, designing a fault
management system that is both efficient and extensible is challenging. In [1]
the author performed an analysis and also proposed a self-healing algorithm
over such networks. In [2], the authors provide a survey of data mining and
machine learning-based techniques for network fault management, including
a description of their characteristics, similarities, differences, and shortcom-
ings. In [3] the problem of the failure detection was discussed. The authors
propose a technology based on sequence numbers for network elements con-
nected via two or more routes to solve this problem. The authors of [4]
present an advanced method to solve the multiple failure localization prob-

7

lems, using the network topology information and services information; the
presented approach is based on a Hopfield neural network (HNN), which
receives as input a bipartite graph with the candidate failure link and the
alarm set. The HNN is used for optimizing the uncertainty between failures
and alarms to evaluate the exact position of the failures. In [5], the authors
use the alarms in the microwave network to solve the failure identification
problem. The troubleshooting of the failure is solved with a neural network
that inputs the alarms produced by each base station and provides the cause
of the alarm burst.

In [6], the authors provide a framework divided into two parts to solv-
ing failure detection and identification problems in an optical link. Their
framework takes the Bit Error Rate (BER) measures from the network as
input, and the authors compare various machine learning algorithms to iden-
tify the best solution for both problems. In [7], failure-cause identification
is addressed considering different machine learning algorithms, namely Sup-
port Vector Machine(SVM), Random Forest(RF), and Artificial Neural Net-
work(ANN). Also, the authors address the automation of failure identifica-
tion in microwave networks, and they provide supervised and semi-supervised
techniques. The authors identify six categories of failure causes in microwave
networks and compare various ML algorithms. They also investigate an
automated labeling procedure, based on autoencoders-like Artificial Neural
Networks, to combine the knowledge of the few manually-labeled data with
extensive unlabeled data.

Failure management is also applied in Wi-Fi networks to simplify the
troubleshooting to not experts users. For example in [8] the authors evaluate
different machine learning algorithms to identify the most common diseases
that can affect the network, providing as input some statistical measures on
the accessibility of the wireless channel.

The authors of the survey [9] demonstrated, there are many areas in the
optical networks in which the use of machine learning is investigated. One
of these areas is the quality of transmission (QOT) estimation, in which the
goal is to compute the transmission quality metrics starting from the physical
measurements evaluated at the receiver. The QOT estimation can be applied
in two scenarios: the first is related to the prediction for unestablished light-
path metrics, and the second is related to monitoring the already present
light paths.

8

2.2 Federated Learning in Networks

AI techniques are widely used in the networking field. However, FL has
been barely used in the context of network failure management. In this
chapter, we present some examples of FL applications in networking areas
different from the failure management.

In [10] A specially designed federated learning method is proposed for ma-
chinery fault diagnosis problems. Also, a self-supervised learning algorithm
is proposed for better explorations of time-series machinery data. Moreover,
a dynamic validation scheme is proposed to adaptively implement model
averaging operation. The challenging scenarios with non-independent and
identically distributed user data are addressed. The proposed data privacy-
preserving learning scheme is validated through experiments on two rotating
machinery datasets. As presented by the authors of the article [11], FL can
be used for IoT systems; they mentioned that smart cities, smart homes,
and smart medical systems had challenged the functionality and connectiv-
ity of the large-scale Internet of Things (IoT) devices. Thus, with the idea of
offloading intensive computing tasks to edge nodes (ENs), edge computing
emerged to supplement these limited devices. They aimed to make DRL-
based decisions feasible and further reducing the transmission costs between
the IoT devices, and edge nodes, FL is used to train DRL agents in a dis-
tributed fashion. The experimental results demonstrate the effectiveness of
the decision scheme and FL in the dynamic IoT system.

In [12] they demonstrate the development of a QoT classifier over an
autonomous machine-learning pipeline, the trading of the classifier over a
federated marketplace, and eventually its deployment in the customer’s net-
work as a cloud-native micro-service. In [13] they introduced a framework,
FedProx, to tackle heterogeneity in federated networks. FedProx can be
viewed as a generalization and re-parametrization of FedAvg, the current
state-of-the-art method for FL. While this re-parameterization makes only
minor modifications to the method itself, these modifications have impor-
tant ramifications in theory and practice. Practically, they demonstrate that
FedProx allows for more robust convergence than FedAvg across a suite of re-
alistic federated datasets. In particular, FedProx demonstrates significantly
more stable and accurate convergence behavior in highly heterogeneous set-
tings than FedAvg–improving absolute test accuracy by 22% on average. It is
proposed in [14] an autoencoder-based anomaly-detection for optical failure

9

detection using FL with unbalanced data (<3%), this means that in each
dataset the number of points differ by 3 percent, which identifies implicit
failure and achieves detection accuracy of 96.8% and an F1 value of 0.9224.

Based on a DCN with OCS, [15] proposes a pattern-aware scheduling and
fas convergence strategy for the distributed machine learning jobs. Exper-
imental results show significant accelerations for completion time and con-
vergence of the jobs. In [16] two-step aggregation is introduced to facilitate
scalable FL(SFL) over passive optical networks(PONs). Results reveal that
the SFL keeps the required PON upstream bandwidth constant regardless
of the number of involved clients while bringing 10% learning accuracy im-
provement.

10

Chapter 3

Background

3.1 Machine Learning Methodologies

3.1.1 Machine Learning Definition

Machine learning is part of the computer science field, defined 60 years
ago, in which the algorithms can learn how to perform a task, receiving as
input the data and the desired output, and not specific instruction. There
are different fields in machine learning. We can divide the machine learning
algorithms into the following categories:

• Supervised learning : These algorithms are based on labeled data, i.e.,
data where each set of inputs (the features) is associated with a spe-
cific output value, either numerical or categorical; the goal of these
algorithms is to find a function able to map the new observations of
input data into an output value, learning from the examples observed
previously, during training phase of the algorithm.

• Unsupervised learning : These algorithms work with unlabelled data,
after the execution of the algorithms, the system will be able to de-
scribe some hidden structures of the unlabelled data exploring them
and drawing inferences from the data-set.

• Semi-Supervised learning : These algorithms are the connecting link
between supervised and unsupervised learning, where there is a vast
amount of data, but only a tiny part of them is labeled; the algo-
rithms can improve their prediction accuracy, w.r.t. a pure supervised

11

approach, exploiting the presence of the unlabelled data to train the
models.

• Reinforcement learning : This method can learn how to behave in a
specific context where the system must maximize its performance. In
this case, the learning procedure is based on a trial and error search,
where the system interacts with the environment by producing action
and discovering errors or rewards. The data to train the machine need
to specify the set of actions, the set of states reachable in the environ-
ment, and the reward function that from each couple (state, action)
provide a reward.

Figure 3.1: Example of binary classification where data points are constituted by
two features X[1] and X[2]

3.1.2 Classification

The main focus of this work is to identify the root cause of failures in
microwave links using local data.

12

Figure 3.2: How we can use the model to perform classification

We model this task as a machine learning classification problem, where
our target labels are elements of a discrete non-ordered set representing dif-
ferent root causes of failures. The goal is to map a set of input variables, in
one of the output variables, i.e., the classes.

Figure 3.1 is an example of a classification problem, in which we have two-
dimensional points, described by the features X[1] and X[2], divided into two
classes, class 0 and class 1. The machine learning algorithm output a model
that discriminates the two classes, described by the solid line. According to
the model, a new unseen point will be classified in Fig.3.2 the points below
the line will be classified as class 1 and above class 0. Usually, the data are
represented in a tabular format; in these cases, the row of our tables are called
data points or data instances. Instead, the columns are called attributes or
features, and the target variable that must be predicted is labeled or class.
In the end, the classification goal is to predict a label for each data point
based on its features.

Some high-level steps are usually taken to solve a machine learning clas-
sification problem, as in the following [17]:

1. Gathering Data: As we need data to train our model, the first step is

13

to collect the data. As the data quality directly influences the classifier
that will be developed, the gathered data must describe all the plethora
of data behavior; they have labeled accurately and do not contain miss-
ing values. Some attributes of the gathered data may be missing using
accurate data, and this problem is faced in step 2.

2. Data Preparation: After the collection of the data that are not suitable
for machine learning algorithms, we have to pre-process it according to
the problem we want to solve. In this step, several methods for data
manipulation are available. For example, visualizing the data can be
an excellent approach to finding a relationship between the features,
which we can use to create new features that simplify the problem.
This step is the one in which the missing data must be processed, and
the data set will be split into train and test set so that our final model
can be evaluated on the data contained in the test set and never used
for training. Usually, the train-test split is about 80/20 or 70/30, but
this also depends on the quantity of data available.

3. Choosing a model: A vast amount of algorithms can be used for clas-
sification, so we need to choose the most suitable one for our problem,
according to the target variable to predict and the type of data we have
as input. Each algorithm has a set of tunable parameters, called hyper-
parameters. There are methods used to select the hyperparameters to
implement the most suitable model to solve our problem. The methods
to perform the hyperparameters selection are presented in the follow-
ing. In the following, some classification algorithms will be explained
in detail.

4. Training: In this step, our model is trained to learn from the available
data. The models are generally constituted by some variables called
weights(W) and biases(b). These are the components that we modify
during the training steps in order to improve the model accuracy. The
training phase starts with the initialization of W and b. Then the
model is used to predict the output of our training data, the prediction
is compared with the actual output, and this information is used to
improve W and b; the procedure is repeated using as start condition
for W and b the output of the previous iteration.

5. Evaluation: After training the model, to check its performance, the

14

test data-set is used. This phase allows us to test our model against
labeled data that has never been used for training. The results should
be representative of how the trained classifier might perform in the real
world.

Evaluation Metrics

The performance of a classifier can be evaluated using different metrics
calculated over the test data. To describe the most commonly used perfor-
mance metrics used to evaluate a classification algorithm, we refer to a binary
classification problem1, where we assume labels 0 and 1 to be negative and
positive class respectively.

Table 3.1: Confusion matrix for a binary classification problem [18]

To calculate most of the metrics, we need to build the confusion matrix
as in Table 3.1; to create it, we need to predict the classes for the points in
the test set, and to fill the cells of the matrix, we need to take in account
both the classes provided in output by the classifier and the ground truth
classes to the test points. the elements in the cells are integer numbers and
are calculated as follows in Table 3.1: tp stands for True positive, it is the
number of points for which the classifier output the class 1 and the actual
class is one too; in the same way tn, that stands for True Negative, is the
number of points classified as 0 which are belonging to the class 0, so this two
number refer to the correct classification, as fp and fn, that stands for False
Positive and False Negative respectively, refer to the wrong classifications,
indeed fp is the number of points belonging to the class 0 but classified as 1,
and at the same time fn is the number of points belonging to the class 1 and
classified as class 0.

When the confusion matrix is built, we can calculate the different per-
formance metrics, as they are presented and compared in [19]; the most
commonly used performance measure is the Accuracy (Acc), that is defined

1The concept can be extended also to multiclass classification problems.

15

as the ratio between the correctly classified samples to the total number of
samples, i.e.:

Acc =
tp+ tn

tp+ tn+ fp+ fn

Figure 3.3: Examples of confusion matrices for different models.

Another metric is the Precision (Prec), which represents the portion of
positive samples that were correctly classified out of the total of the positive
predicted samples, Recall (Rec) represents the positive correctly classified
samples to the total number of positive samples Rec can be considered as an
accuracy only related to the actual positive points; another one instead is
the F1-score that represents the harmonic mean of precision and recall.
Accuracy suffers from imbalanced classes since predicting the most represen-
tative class will provide a high value even if the classification is wrong. To
deal with that, Precision and Recall are calculated jointly. Analyzing them

16

Figure 3.4: Multilayer perceptron structure [20].

alone can provide misleading results because classifying correctly only one
instance yields 100% precision but a very low recall, and respectively classi-
fying all instances as positive yields 100% recall, but very low precision. In
order to avoid these situations, the F1-the score was defined. In Fig. 3.3
examples of confusion matrix are presented with the accuracy calculated for
different models.

3.1.3 Classification algorithms

This section will describe the supervised learning algorithms used in our
analysis from a mathematical point of view. In case the output of the pre-
diction is a continuous value, we are facing a regression problem. Conversely,
when a discrete value is predicted, we are solving a classification problem.
The challenges to get good performance from these algorithms are the num-
ber of samples, which in some cases must be huge, and the number of samples
per class, which generally must be more or less balanced. In our case, we are
facing a classification problem because we are interested in predicting which
problem affects our radio link.

17

Figure 3.5: Perceptron illustration [20].

Artificial Neural Network

Artificial Neural Network (ANN) is an algorithm inspired by the biological
structure of the human brain, where different neurons work in parallel to
solve the same task. ANN is the basic structure for deep learning; indeed,
in the last few years, with the increase of computational capacity, many
variants of the simple multilayer perceptron were created. Most of these
variants are used to analyze images or sequences of data, and they are also
solving different machine learning problems; in this section, we focus on the
feedforward neural networks used for the classification task.

So an ANN has different neurons interconnected with each other and
organized in layers, in Fig.3.4 circles and boxes represent the neurons, and the
connections between neurons are represented by the arrows that are shown
how the information flow inside the network.

To better understand the functioning of the ANN, we start from the fun-
damental element that is the neuron. The neurons are also called perceptrons
in machine learning literature [21]; as explained in [20] and shown in Fig.3.5,
the perceptron computes a linear combination of the inputs, also adding a
biasing term, this combination is called net input, then a possibly nonlinear
activation function is applied to the net input and produce an output; typ-
ically the activation functions are bounded between -1 and 1, or between 0
and 1, in these cases, they are called squashing functions.

18

We can define the output(O) of the perceptron through the formula:

O = f(net) = f(W ·X) = f

n+1∑
j=1

WjXj

 = f

 n∑
j=1

WjXj + θ

where X is the set of input, W is set of weight associated to the arrows in
Fig.3.5 and f is the activation function.

The perceptron with the proper activation function can classify the points
into two different classes. In our case, a more complex structure is needed
to identify more classes, so we use a network of perceptron as in Fig.3.4 this
means that we will have more hidden layers and also more neurons for each
layer to calculate the final output we need to use the recursive formulation
of the network that is:

a0 = X = input data
zi = (W i−1)T ai−1 + bi−1 i ∈ [1, .., L]

ai = f(zi)

aL = Y = target variables

where ai is a vector that identify the value of the neurons in the specific
layer i, the maximum number of layer is L, bi is a vector too and identify the
bias value of the layer i, W i represents a matrix where the elements are the
weights of the connection between the neurons of the two different layers i
and i+1, and f is the activation function used in our neurons.

The neural network, like all the others models, need to be trained to
predict in the most accurate way the target that we want, the training process
at a high level is similar to the one used by much other data science model,
define a cost function and use gradient descent optimization to minimize it.

The gradient is calculated over the cost function that defines the quantity
of the error provided by our model. This error can be calculated only at the
end of the network, but to modify all the weights and the bias term of the
network, we need to propagate back the predicted error. This technique is
called Backpropagation, so the training of a neural network can be divided
into two phases:

• Forward propagation: Using the recursive definition of the neural net-
work presented above, we give data points in the input, and the neural

19

network provides us a prediction.

• Backpropagation: In this phase, we initially calculate the error at the
end of the network, that error is reported at each layer, in this way,
we know which is the impact of that weights in the prediction error
and we can correct them with the right quantity. As shown in [22] we
can calculate the error at each layer and consequently the gradient to
improve our weights in this way:

Output error:
δL = ∇aC � f ′

(
zL
)

Backpropagate the error:

δl =

((
W l+1

)T
δl+1

)
� f ′

(
zl
)

Gradient calculation:
∂C

∂wl
jk

= al−1k δlj and ∂C

∂blj

= δlj

To get the best performances from the neural network, we can tune some
hyperparameters as for all the other algorithms. In our case, we decide to
tune our network’s structure, which means to decide the number of hidden
layers and the number of neurons per layer. Another tunable hyperparameter
is the activation function used in the neurons. According to the problems,
this can be a crucial choice to improve the performances.

3.2 Federated Learning Methodologies

3.2.1 Federated Learning Definition

FL seeks to create a combined machine learning model based on data from
several locations. In FL, there are two processes: model training and model
inference. Information, but not data, can be transferred between parties
throughout the model training process. At each site, the exchange does not
reveal any protected private sections of the data. The trained model might
be kept by one party or shared among several. The model is applied to a
fresh data instance at inference time. In a B2B environment, for example, a
federated medical-imaging system may receive a new patient with diagnoses

20

Figure 3.6: Possible separating linear hyperplane [23]

from multiple hospitals. In this case, the parties work together to make a
prediction. Finally, a fair value-distribution mechanism should be in place
to share the profit generated by the collaborative model. Mechanism design
should be done in such a way that the federation can be sustained.

In broad terms, FL is an algorithmic framework for building ML models
that can be characterized by the following features, where a model is a func-
tion mapping a data instance at some party to an outcome [24]. Applications
of FL are suitable in contexts where the following conditions hold:

• There are two or more parties interested in jointly building an ML
model. Each party holds some data that it wishes to contribute to
training the model.

• In the model-training process, the data held by each party does not
leave that party.

• The model can be transferred in part from one party to another under
an encryption scheme, such that other parties cannot re-engineer the
data at any given party.

• The performance of the resulting model is a good approximation of the
ideal model built with all data transferred to a single party.

21

Consider N data owners {Fi})Ni=1 who want to train a machine learning
model with their respective data sets {Di}Ni=1. A common method is to
gather all data {Di}Ni=1 on a single data server and train an ML model
MSUM on the server using the consolidated data. In the traditional method,
any data owner {Fi, as well as other data owners, will disclose their data {Di

to the service.
FL is an ML process in which the data owners collaboratively train a

model MFED without collecting all data {Di}Ni=1. Denote νSUM and νFED

as the performance measure (e.g., accuracy) of the centralized model MSUM

and the federated model MFED, respectively.
We can capture what we mean by performance guarantee more precisely.

Let δ be a non-negative real number. We say that the FL model MFED has
δ-performance loss if

‖νSUM − νFED‖ < δ

The previous equation expresses the following intuition: if we use secure FL
to build an ML model on distributed data sources, this model’s performance
on future data is approximately the same as the model built on joining all
data sources together.

We allow the FL system to perform a little less than a joint model because,
in FL, data owners do not expose their data to a central server or any other
data owners. This additional security and privacy guarantee can be worth a
lot more than the loss inaccuracy, which is the δ value.

An FL system may or may not involve a central coordinating computer
depending on the application. An example involving a coordinator in a FL
architecture is shown in Figure 3.7 In this setting, the coordinator is a central
aggregation server (a.k.a. the parameter server), which sends an initial model
to the local data owners A–C (a.k.a. clients or participants). The local
data owners A–C train a model using their respective dataset and send the
model weight updates to the aggregation server. The aggregation server
then combines the model updates received from the data owners (e.g., using
federated averaging [25]) and sends the combined model updates back to the
local data owners. This procedure is repeated until the model converges or
until the maximum number of iterations is reached. Under this architecture,
the raw data of the local data owners never leave the local data owners. This
approach ensures user privacy and data security and saves the communication
overhead needed to send raw data. The communication between the central

22

Figure 3.7: An example of FL architecture: client-serve model [24]

aggregation server and the local data owners can be encrypted (e.g., using
homomorphic encryption [24,26]) to guard against information leakage.

The FL architecture can also be designed in a peer to peer manner, which
does not require a coordinator. This ensures further security guarantee in
which the parties communicate directly without the help of a third party,
as illustrated in Figure 3.8. The advantage of this architecture is increased
security, but a drawback is potentially more computation to encrypt and
decrypt messages since each peer has its own security technique.

FL brings several benefits. It preserves user privacy and data security by
design since no data transfer is required. FL also enables several parties to
collaboratively train an ML model so that each of the parties can enjoy a
better model than what it can achieve alone. For example, FL can be used by
private commercial banks to detect multi-party borrowing, which has always
been a headache in the banking industry, especially in the Internet finance
industry [27]. There is no need to establish a central database with FL, and
any financial institution participating in FL can initiate new user queries
to other agencies within the federation. Other agencies only need to answer

23

Figure 3.8: An example of FL architecture: peer-to-peer model. [24]

questions about local lending without knowing the specific information of the
user. This approach protects user privacy and data integrity and achieves a
critical business objective of identifying multi-party lending.

While FL has great potential, it also faces several challenges. The com-
munication link between the local data owner and the aggregation server may
be slow and unstable [28]. There may be a vast number of local data owners
(e.g., mobile users). In theory, every mobile user can participate in FL, mak-
ing the system unstable and unpredictable. Data from different participants
in FL may follow non-identical distributions [29–31], and different partici-
pants may have unbalanced numbers of data samples, which may result in
a biased model or even failure of training a model. As the participants are
distributed and difficult to authenticate, FL model poisoning attacks [32],
in which one or more malicious participants send ruinous model updates to
make the federated model useless, can take place and confound the whole
operation.

3.2.1.1 Categories of Federated Learning

Matrix Di denote the data held by the ith data owner. Suppose that each
row of the matrix Di represents a data sample, and each column represents
a specific feature. At the same time, some data sets may also contain label
data. We denote the feature space as X, the label space as Y , and we use I
to denote the sample ID space. For example, in the financial field, labels may
be users’ credit. In the marketing field, labels may be the user’s purchasing

24

desire. In the education field, Y may be the students’ scores. The feature X,
label Y , and sample IDs I constitute the complete training data-set (I;X;Y).
The feature and sample spaces of the data sets of the participants may not
be identical. We classify FL into horizontal FL (HFL), vertical FL (VFL),
and federated transfer learning (FTL), according to how data is partitioned
among various parties in the feature and sample spaces. Figures 3.9,3.10,3.11
show the three FL categories for a two-party scenario [24].

HFL refers to the case where the participants in FL share overlapping
data features, i.e., the data features are aligned across the participants, but
they differ in data samples(also the samples can have overlaps in some sense).
It resembles the situation that the data is horizontally partitioned inside a
tabular view. Hence, we also call HFL sample-partitioned FL or example-
partitioned FL [33]. In our work we used the overlapped features of our data
for different operatos so we used HFL to identify failure root causes. Also,
in our separation assume that we don’t have any overlapping sample.

Different from HFL, VFL applies to the scenario where the participants in
FL share overlapping data samples, i.e., the data samples are aligned amongst
the participants, but they differ in data features. It resembles the situation
that data is vertically partitioned inside a tabular view. Thus, we also name
VFL as feature-partitioned FL. FTL is applicable for the case when neither
is overlapping in data samples nor features.

For example, when the two parties are two banks that serve two different
regional markets, they may share only a handful of users, but their data may
have very similar feature spaces due to similar business models. That is,
with limited overlap in users but significant overlap in data features, the two
banks can collaborate in building ML models through horizontal FL [24,26].

When two parties are providing different services but sharing many users
(e.g., a bank and an e-commerce company), they can collaborate on the
different feature spaces that they own, leading to a better ML model for
both. That is, with considerable overlap in users but little overlap in data
features, the two companies can collaborate in building ML models through
vertical FL [24, 26]. Split learning, recently proposed by [34], and [35], is
regarded here as a particular case of vertical FL, which enables vertically
federated training of deep neural networks (DNNs). That is, split learning
facilitates training DNNs in FL settings over vertically partitioned data [35].

In scenarios where participating parties have highly heterogeneous data
(e.g., distribution mismatch, domain shift, limited overlapping samples, and

25

Figure 3.9: Illustration of HFL, a.k.a. sample-partitioned FL where the over- lap-
ping features from data samples held by different participants are taken
to jointly train a model [24].

Figure 3.10: Illustration of VFL, a.k.a feature-partitioned FL where the overlap-
ping data samples that have non-overlapping or partially overlapping
features held by multiple participants are taken to jointly train a
model [24]

26

Figure 3.11: Federated transfer learning (FTL). A predictive model learned from
feature representations of aligned samples belonging to party A and
party B is utilized to predict labels for unlabeled samples of party
A. [24].

scarce labels), HFL and VFL may not build effective ML models. In those
scenarios, we can leverage transfer learning techniques to bridge the hetero-
geneous data owned by different parties. We refer to FL leveraging transfer
learning techniques as FTL.

Transfer learning aims to build effective ML models in a resource-scarce
target domain by exploiting or transferring knowledge learned from a resource-
rich source domain, which naturally fits the FL setting where parties are
typically from different domains. [36] divides transfer learning into mainly
three categories: (i) instance-based transfer, (ii) feature-based transfer, and
(iii) model-based transfer. Here, we provide brief descriptions of how these
three categories of transfer learning techniques can be applied to federated
settings.

• Instance-based FTL. Participating parties selectively pick or re-
weight their training data samples such that the distance among do-
main distributions can be minimized, thereby minimizing the objective
loss function.

• Feature-based FTL. Participating parties collaboratively learn a com-
mon feature representation space, in which the distribution and seman-

27

tic difference among feature representations transformed from raw data
can be relieved and such that knowledge can be transferable across dif-
ferent domains to build more robust and accurate shared ML models.

Figure 3.11 illustrates an FTL scenario where a predictive model learned
from feature representations of aligned samples belonging to party A and
party B is utilized to predict labels for unlabeled samples of party A.

• Model-basedFTL. Participating parties collaboratively learn shared
models that can benefit transfer learning. Alternatively, participating
parties can utilize pre-trained models as the whole or part of the initial
models for a FL task.

In our work, the data separation is in the domain of HFL. We will elab-
orate more on that in chapter 4.

Besides these categories, we can classify FL by the distribution of the
clients.

3.2.2 Federated Learning Local Data Owners Distribu-
tion

FL is a machine learning setting where many clients (e.g., mobile devices
or whole organizations) collaboratively train a model under the orchestra-
tion of a central server (e.g., service provider) while keeping the training
data decentralized. It embodies the principles of focused collection and data
minimization and can mitigate many of the systemic privacy risks and costs
resulting from traditional, centralized machine learning [33].

The term Federated Leaning was introduced in 2016 by McMahan et
al. [25]: “We term our approach FL since the learning task is solved by a loose
federation of participating devices (which we refer to as clients) which are
coordinated by a central server.” An unbalanced and non-IID (identically and
independently distributed) data partitioning across many unreliable devices
with limited communication bandwidth was introduced as the defining set of
challenges.

The categories that were introduced above can have one of the classifica-
tions as follow:

28

Figure 3.12: Single Organisation, Cross-Device FL [37]

Cross-Device Federated Learning

To restate some of the challenges, we are working at scale, potentially
needing millions of devices for the federation to work. Devices may be offline,
and we need to be careful about when we consume compute and impact user
experience. Again, with their control of the OS, Google is in a unique position
versus app developers, for example, and it may be more difficult to implement
a solution if we are a smaller scale, standard business with an app. The data
in this scenario partitioned horizontally [37].

Cross-Silo Federated Learning

Cross-silo FL is usually used in B2B communications; most of our work
also falls into this classification. We are now looking to unlock the value of
data that is more widely distributed. In this case, we have a few local data
owners with lots of data, for example, between hospitals and banks, perhaps
distributed aggregate data from consumer wearable in different fitness app
businesses we have cross-silo FL.

While the aim for Cross-Silo is generally said to be the same — to update
and enhance a central, and in this instance, shared model — there are po-
tentially more substantial problems on the security front. At the same time,
each company can employ more consistent, resilient, and scalable computing.

3.2.3 Federated Optimization

To distinguish it from distributed optimization, the optimization issue
emerging from FL is referred to as federated optimization [25, 38]. In real-

29

Figure 3.13: Multiple Organisations, Cross-Silo FL [37]

ity, federated optimization differs from traditional distributed optimization
problems in numerous ways [25,39,40].

• Datasets with non-independent identical distributions (Non-
IID). It is possible to guarantee that various compute nodes have IID
datasets for distributed optimization inside a data center, such that all
local updates appear pretty similar. IID datasets cannot be ensured in
federated optimization. We cannot use IID assumptions for decentral-
ized datasets in FL because the data held by various participants may
have entirely different distributions [41]. While similar participants
may have similar local training data, two randomly selected individu-
als may yield substantially different model weight updates or gradient
updates.

• Unbalanced number of data points. It is feasible to split the data
evenly across the computing nodes in a data center for distributed opti-
mization. However, in practical settings, different participants typically
have vastly varying quantities of training datasets [38,42,43]. Some in-
dividuals, for example, may have a few data points, while others may
have a significant amount of data.

• Huge number of participants. The number of parallel comput-
ing nodes inside a data center may be readily adjusted for distributed
optimization. However, because ML or DL typically requires a large
amount of data, FL applications may need to engage many users, par-
ticularly with mobile devices [44]. Every one of these participants has
the potential to engage in FL, making it considerably more dispersed
than that found in a data center.

30

• Slow and unreliable communication links. In a data center, it
is anticipated that nodes interact swiftly with one another and that
packets are nearly never lost. However, with FL, communication be-
tween clients and the server is based on existing Internet connections.
Uploads (from client to server, for example) are significantly slower
than downloads, especially if the connection is made from a mobile
terminal. Some clients may also experience brief Internet connectivity
outages [28].

[25] first used the FedAvg algorithm. He focuses on non-convex objective
functions that are often encountered when training DNNs. FedAvg may be
used to calculate any finite-sum objective function of the following form:

min
w∈Rd

f(w), f(w) :=
1

n

n∑
i=1

fi(w),

Where n is the number of data points and w ∈ Rd is the dimension d of
model parameters (e.g., model weights of an ANN).

For an ML or DL issue, we usually use fi (w) = L (xi, yi;w), which is
the prediction loss on sample (xi, yi). For the given model parameters w,
where xi and yi indicate the ith data point and the accompanying label,
respectively. Assume there are K participants (also known as data owners
or clients) in an HFL system, with Dk representing the dataset held by the
kth participant and Pk denoting the collection of data point indexes on client
k. As the cardinality of Pk, define nk = |Pk|. That is, the ith participant
is expected to have nk training data points. As a consequence, given K

participants, Equation 3.2.3 may be rewritten as

f(w) =
K∑
k=1

nk
n
Fk(W), where Fk(w) :=

1

nk

∑
i∈Pk

fi(w)

When the data points held by the K participants are distributed indepen-
dently and identically (IID), we get EDk

[Fk (w)] = f (w), where the expecta-
tion EDk

[.] is taken over the set of data points owned by the kth participant.
In the DML paradigm, distributed optimization algorithms generally make
this IID assumption. If the IID assumption is violated, as stated above in
the non-IID setting, the loss function Fk (.) preserved at the kth participant
may be an arbitrarily poor approximation of the function f (.) [29, 45].

31

3.2.4 Federated Learning Algorithms

The algorithms that we consider optimize the finite-sum objective

min
w∈Rd

f(w), f(w) :=
1

n

n∑
i=1

fi(w),

where w is a vector that contains d model parameters. In supervised
learning, we treat the function fi(w) as loss function fi(w) = l (xi, yi;w),
where an input-output pair (xi, yi) is one of n given labeled examples, often
referred to as training examples. the objective function fi(w) is defined by
the model parameters w conditioned on n labeled examples. The problem
can this be interpreted as finding the w which minimized the average loss
over all n training examples.

In a significant data context, where the number of training examples is
too large to be stored on one computer, we must distribute the computation
to multiple computers. If the number of training examples held by client
k is denoted by nk = |Pk|, then we can rewrite the objective function as a
weighted sum over all Fk(w):

f(w) =
K∑
k=1

nk
n
Fk(W), where Fk(w) :=

1

nk

∑
i∈Pk

fi(w)

Distributing the data and computational burden leads us to re-formulate
the objective function f(w) from Eq. 3.2.4 to 3.2.4. Assume that there are K
clients across which data and computation are distributed. Each client then
holds a part Pk of all training examples and computes FK(w), the average
loss on client k.

Our evaluation includes the synchronous FedAvg and FSVRG algorithms
as well as the asynchronous CO-OP algorithm. In our work we picked Fe-
dAvg algorithm since it is most suited for HFL. This section describes these
algorithms and gives their pseudocode [46].

3.2.4.1 Federated Averaging (FedAvg)

FedAvg orchestrates training via a central server that hosts the shared
global model wt, where t is the communication round. However, the actual
optimization is done locally on clients using, for instance, Stochastic Gradient

32

Decent (SGD). FedAvg has five hyperparameters: the fraction of clients C
to select for training, the local mini-batch size B, the number of local epochs
E, a learning rate η, and possibly a learning rate decay λ. The parameters
B, E, η, and λ are commonly used when training with SGD. However, here
E stands for the total number of iterations through the local data before the
global model is updated.

The algorithm starts by randomly initializing the global model w0. One
communication round of FedAvg then consists of the following: The server
selects a subset of clients St, |St| = CK ≥ 1, and distributes the current
global model wt to all clients in St. After updating their local models wk

t
to the shared model, wk

t ← wt, each client partitions its local data into
batches of size B and performs E epochs of SGD. Finally, clients upload
their trained local models wk

t+1 to the server, which then generates the new
global model wt+1 by computing a weighted sum of all received local models.
The weighting scheme is dependent on the number of local training examples,
as described in Algorithm 1 on line 7 [46].

3.2.4.2 Federated Stochastic Variance Reduced Gradient (FSVRG)

The idea behind FSVRG is to perform one expensive full gradient com-
putation centrally, followed by many distributed stochastic updates on each
client. With each iteration through a random permutation of the local data,
a stochastic update is performed by performing one update per data point.
Standard FSVRG only has one hyperparameter: the step size h. However,
this step size is not used directly. Instead, client k has a local step size hk

33

that is inversely proportional to nk , i.e. hk = h
nk

. The motivation behind
hk is that clients should make roughly the same amount of progress when nk
varies greatly from client to client [47].

Algorithm 2 gives a complete description of FSVRG, where one iteration
is performed as follows: First, to compute a full gradient, all clients download
the current model wt and compute loss gradients to their local data. Clients
then upload their gradients, which the server aggregates to form the full
gradient ∇f(wt). Next, all clients download ∇f(wt) and initialize their local
model wk

t and local step-size hk . After creating a random permutation
of their local data, clients will iteratively perform nk SVRG updates using
both the local and the full gradient as well as a client-specific step size hk.
Finally, when all clients have computed and uploaded their final wk

t+1, the
server combines all wk

t+1 to form a new global model wt+1, similar to FedAvg.
SVG in its original form [[47], Alg. 4] is primarily concerned with sparse

data in the sense that some features are seldom represented in the dataset or
are only present on few clients. This sparsity structure is exploited by multi-
plying gradients and model parameters with diagonal matrices that contain
how frequently features are represented. However, this scaling is only possi-
ble because the dimension of the model is the same as the dimension of the
input in the Support Vector Machine (SVM) model they consider. However,
in a neural network model, the number of parameters is generally much larger
than the input dimension.

3.2.4.3 CO-OP

Whereas FedAvg and FSVRG rely on synchronized model updates, CO-
OP [48] proposes an asynchronous approach. This approach will immediately
merge any received client model with the global model. Each client k has
an age ak associated with its model, and the global model has age a. The
model age difference, a − ak, is used to compute a weight when merging
models. This idea is motivated by the fact that some clients will train on
outdated models in an asynchronous framework while others will train on
more up-to-date ones.

A local model will only be merged if bl ≤ a− ak ≤ bu,for some choice of
integers bl < bu. The intuition behind this acceptance rule is that we neither
want to merge outdated models (a− ak > bu) nor models from overactive
clients (a− ak < bu). The lower and upper bounds, bl and bu , can therefore

34

35

be thought of as an age filter. CO-OP also inherits all hyperparameters from
its underlying optimization algorithm, for instance SGD.

The training procedure is as follows: Each client has its training data
and performs E rounds of an optimization algorithm before requesting the
current global model age a from the server. The client now decides whether
or not its age difference meets the restrictions. Should the local model be
outdated, the client reconciles with the global model and starts over. Should
the client instead be overactive, it just continues training. Otherwise, the
local model is uploaded to the server for merging. The pseudocode of CO-
OP is presented in Algorithm 3.

3.3 Microwave Networks Technologies

3.3.1 Hardware Components

Figure 3.14: Basic components that allow LOS microwave communications [49].

The basic structure of a microwave communication system with its build-
ing blocks is shown in Fig.3.14. The structure includes a microwave radio
at the transmitter site, connected to a directional antenna via a transmis-
sion line. The outbound signal from the directional antenna is aligned to a
receiving antenna connected to a radio receiver. This section discusses the

36

37

characteristics of three main elements and their impact on the link’s func-
tionality.

Radio

The radio element is the only active element in the system. The trans-
mitter site (TX) generates the signal to transmit and code it, then aggregate
and compress it in a relatively small radio channel. This procedure is called
Modulation. After the Modulation, the radio up-converts the radio channel
to the right microwave frequency to be transmitted.

The radio on the receiver site (RX) operates the opposite procedure, i.e.,
it down-converts the radio channel from the microwave frequency and then
demodulates the signal to be sent again on the cable communication.

The radio has three basic configurations used in microwave communica-
tions systems [49]:

• Full Indoor: All active components are located inside a building or shel-
ter, allowing easy maintenance and upgrades, without requiring tower
climbs, for instance. Being farther from the antenna may introduce
higher transmission line losses than other configurations, however.

• Full Outdoor: All the electronic devices are mounted outside, eliminat-
ing the need and cost for indoor space. However, they can be difficult
to access for maintenance or upgrades, requiring tower climbs as they
are located on the tower. In some cases, rooftop access mitigates this
challenge.

• Split-Mount: Electronic devices are distributed into an outdoor unit
(ODU) and the indoor unit (IDU), eliminating transmission line losses
with the easy maintenance of the IDU. However, it also combines the
disadvantages of the other two configurations by requiring indoor stor-
age and tower climbs for the ODU.

Transmission Line

The transmission line is the physical media connecting the radio and
directional antenna. Because of the amount of signal loss they can introduce,
the choice of transmission line type is determined mainly by the frequencies
in use. There are two possible implementations for the transmission lines [49]:

38

• Coaxial Cable: It is suitable in applications using frequencies up to, or
just above, 2 GHz. Above this frequency range, the physical medium
introduces unacceptable signal loss.

• Waveguide: It is suitable for higher frequencies. An elliptical waveg-
uide featuring an elliptical cross-section can support frequencies up
to around 40 GHz. However, it is rarely used in applications above
13 GHz. Microwave waveguides are maintained under dry air or dry
nitrogen pressure to avoid moisture condensation that degrades their
performance.

Antenna

Antennas are devices that radiate or receive electromagnetic waves of
specific frequencies. The antenna is a transition structure between the trans-
mission line and the open air that makes the generation of radiated electro-
magnetic power as efficiently as possible. An antenna designed to radiate
and receive microwave frequencies, therefore, is called a microwave antenna.

A directional antenna in a microwave system is typically parabolic in
shape, as this permits the greatest focus of energy possible in a single beam.
The antennas are usually polarized, vertical or horizontal, based on the lo-
cation of their feed connection.

There are different types of antennas, selected according to the link char-
acteristics and evaluating some specific antenna parameters, i.e.:

• Directivity function: It expresses the antenna capability of radiating
and receiving electromagnetic waves in a generic direction, usually iden-
tified by the azimuth and elevation angles. The Directivity Function
shows how, even if the parabolic microwave antennas are highly di-
rectional, some signal energy is lost due to transmission towards the
undesired direction.

• Gain: It represents the gain provided by the antenna in its direction
of maximum directivity for the isotropic antenna; in other words, the
gain is the measure of how the transmitter antenna concentrates power
density in the direction of maximum irradiation, as defined by the di-
rectivity function.

39

• Effective Area: The size of the antenna dish is a vital part of its design,
function, and role within the network. Bigger antenna dishes yield ex-
traordinary power, but they are more challenging to be installed and in-
troduce limitations regarding tower space, tower loading, leasing costs,
and local zoning regulations. The effective area returns the amount of
power flux density captured by the antenna in the reception phase.

3.3.2 Channel Characterization

Figure 3.15: Representation of the large and small scale channel components [50].

In wired networks, the electromagnetic waves used for the communication
are guided, so the attenuation at which they are subjected is provided mainly
by internal effects. Instead, in microwave communications, another element
that affects the transmission is the channel behavior; the electromagnetic
waves are radiated in the free space and suffer the channel effects. The chan-
neling effect can be divided into three components [50], in Fig.3.15 we can see
the attenuation effect of the channel provided by the different components.
The elements that compose the channel effects will be addressed more deeply
in the following sections, referring to Fig.3.15 in order to explain them.

40

Path Loss

Path loss is a phenomenon whose variations are associated with consider-
able distance modifications regarding wavelengths (large-scale components).
The path loss expresses the deterministic relation between the link distance d,
the frequency, and the mean channel attenuation. Path loss can be expressed
in a linear unit or dB.

This component allows using of a straightforward model derived from the
empirical observation, as the channel path loss in dB decreases linearly with
log(d). This relation is shown in Fig.3.15 as a straight dotted line.

Shadowing

The shadowing is a random attenuation that provides fluctuations around
the path loss value; this model component is due to obstacles that shadow
entirely or partially the propagation path.

The fluctuations of the attenuation are well described in linear units by
a log-normal distribution, which means that the logarithmic representation
of the attenuation assumes a Gaussian density.

The model of these components is justified by thinking that the global
attenuation, in dB, is given by the sum of numerous components correspond-
ing to the attenuation of single fractions of the overall path (Central Limit
theorem). The shadowing effect is represented in Fig.3.15 as the sinusoidal
dotted line around the straight line is associated with the path loss.

Multipath Fading

In any terrestrial radio communications system, the signal will reach the
receiver via the direct path and as a result of reflections from objects such
as buildings, hills, ground, water, etc., adjacent to the main path.

Multipath fading is the small scale component, represents a random at-
tenuation fluctuation around the large scale attenuation (path loss + shad-
owing). This component derives from the combination of more signal com-
ponents at the receiver, as reflections or echos, with different phases and
amplitude. In Fig.3.15 its effect is represented with the sharp line around
the sinusoidal line representing the shadowing.

Multipath fading may also distort the radio signal. As the various paths
taken by the signals vary in length, the signal transmitted at a particular

41

instance will arrive at the receiver multiple times along the different paths.
This phenomenon can cause problems as phase distortion and inter-symbol
interference. As a result, it may be necessary to incorporate features within
the radio communications system that reduce the effect of these problems.

Multipath fading can affect radio communications channels in two differ-
ent ways [51]:

• Flat fading: This form of multipath fading affects all the frequencies
across a given channel, either equally or almost equally. When flat
multipath fading is experienced, the signal changes in amplitude, rising
and falling over a while.

• Selective fading: Selective fading occurs when the multipath fading
affects different frequencies across the channel in different ways. This
effect happens when phases and amplitudes of the signal vary across the
channel. Sometimes relatively deep attenuation may be experienced,
and this can give rise to some reception problems. Simply maintaining
the overall amplitude of the received signal will not overcome the effects
of selective fading, and some form of equalization may be needed.

3.3.3 ACM

ACM stands for adaptive code and Modulation. It is a software element
used to fight the effects of fading, and this means that the ACM tries to
match Modulation, coding, and other signal and protocol parameters to the
conditions on the link (i.e., to the quality of the radio channel). The ACM
prevent unavailability dynamically adapting the signal to become more ro-
bust even to bad channel condition (e.g., rain or snow).

The ACM goal is to improve the efficiency of the radio link by increasing
network capacity over the existing infrastructure while reducing sensitivity
to environmental interferences. Adaptive Modulation means dynamically
varying the modulation in an errorless manner to maximize the throughput
under momentary propagation conditions. In other words, a system can
operate at its maximum throughput under clear sky conditions and decrease
it gradually under rain fade (e.g., links can change from 1024QAM down to
QPSK to keep “link alive” without losing connection). Before the invention
of the ACM, the designer must set up the links relying on the "worst-case"
conditions to avoid link outage.

42

Adapting coding and Modulation provide benefits to the distances achiev-
able with the radio links, to the availability that it is considered more im-
portant than the reduction of capacity during the heavy fade phenomena on
the channel. This phrase is acceptable when the connection is provided using
IP, that can work with a variable-capacity, and in the end, allows the opera-
tor to use smaller antennas that will minimize costs and avoid aesthetic and
plan constraints in dense urban areas and regions of natural beauty, where
planners or building owners may prohibit large antennas.

3.3.4 Performance Metrics

The performance of radio links concerning its availability constraints
is evaluated through specific metrics defined by ITU-T. Recommendations
G.826 and G.828 [52] describe how to measure the performances in terms of
errors and availability. The measurements refer to the concept of the block
that is a set of consecutive bits associated with the path, where each bit
belongs to one and only one block.

The recommendations G.826 and G.828, as presented in [52], contain the
following error event counters that are defined as follows:

• Errored Block (EB): A block in which one or more bits are in error.

• Errored Second (ES): one second with one or more errored blocks or
at least one defect; where the defects are different errors from an EB
defined according to the technology.

• Severely Errored Second (SES): A one-second period which contains
30% errored blocks or at least one defect.

• Background Block Error (BBE): An errored block not occurring as part
of an SES.

• Severely Errored Period (SEP): A time during which at least three but
not more than nine consecutive severely errored seconds (SES) occur.

• Errored Second Ratio (ESR): The ratio of ES out of total time in sec-
onds in available time during a fixed measurement interval.

• Severely Errored Second Ratio (SESR): The ratio of SES out of total
time in seconds in available time during a fixed measurement interval.

43

• Background Block Error Ratio (BBER): The ratio of Background Block
Errors (BBE) out of a total number of blocks in available time during
a fixed measurement interval.

• Severely Errored Period Intensity (SEPI): The number of SEP events
in the available time, divided by the total available time in seconds.

The previous metrics are related to communication errors, but none ex-
plained how to measure the unavailability. The system is defined as unavail-
able when being measured ten consecutive severely errored seconds (SES). It
becomes available again after ten consecutive seconds that are not severely
errored. To measure the unavailability, the "Unavailable seconds (UAS)"
measure is defined, it contains the number of seconds when the system is
unavailable in a measurement interval; the UAS of a measurement inter-
val is computed as the sum of all the time intervals containing at least ten
consecutive severely errored seconds in at least one direction of transmission.

3.3.5 Categories Of Failures In Microwave Links

Microwave communication is susceptible to failures caused by various
factors such as rain, vegetation, interference from other radio connections.
These failure reasons can be transient or chronic and can result in channel
unavailability, lowering the link’s dependability and causing massive data
loss. In our challenge, we wish to create a technique for doing automatic
failure troubleshooting that outputs the source of the failure. The failure
factors that we explore in this paper are provided below.

Six distinct failure root causes are identified. Although these six root
causes can coexist and contribute to a failure in actual microwave connec-
tions, we believe that the channel can only be affected by one sort of failure
root cause at a time in our study.

• Deep Fading: The fading is a variation of the channel attenuation.
Fading is provided by different variables like seasonality, geographi-
cal position, or radiofrequency. It is a random event and represents
the shadowing and the multipath effects, presented in subsection 3.3.2.
The deep fading occurs when high attenuation is provided by the chan-
nel, which causes the unavailability of the link. This phenomenon can
be associated with some obstacles in the LOS of the link that was not

44

present in the design phase (e.g., growth of vegetation), or since the
links work at high frequency, it can be provided by some meteorologi-
cal phenomena (e.g., rain, snow and even fog at very high frequencies).
It is a temporary source of unavailability, and normally, no action is
required (e.g., as it happens when some meteorological phenomena oc-
cur). When the shadowing effect occurs, due to some fixed obstacle,
and the LOS is not provided anymore, the problem becomes complex,
and some experts must solve the problem by working actively on it (e.g.,
eliminating the obstacle in LOS or changing the radio link position).

• Extra Attenuation: When the link is designed, the highest Modula-
tion available on the link is defined, and in turn, the nominal received
power is defined, which provides a BER threshold able to satisfy the
availability constraints of the link. In normal conditions, the maximum
received power must match or be near the nominal received power, but
when the gap between the measured data and the project value in-
creases above a certain threshold (i.e., 6 dB), the link is in an extra
attenuation case. This failure may not cause unavailability, but it is
synonymous with some hardware (e.g., crushing of transmission lines)
or configuration problems. The different attenuation problem does not
change over time, and to fix it, human action is needed; this may involve
intervention in the field or remotely.

• Interference: In this case, the radio link is subject to a consistent num-
ber of errors; this means that the actual BER of the link overcomes the
threshold to respect the required link availability. The errors in the link
are provided by the fact that the received signal is not as pristine as the
receiver would expect. This event happens because the signal arrives
in the radio station with the addition of the channel noise, which is ex-
pected, plus another interferent signal; this makes the received signal
unintelligible and causes errors in the communication. This cause of
failure results from a bad design of the link, particularly a lousy inter-
ference analysis. The interference problem does not change over time.
Human action is needed to turn off the interfering link or change its
carrier frequency to solve the interference problem.

• Low Margin: This problem is the representation of one of the other
known problems that cause the presence of UAS. However, these prob-

45

lems could have been avoided; a lousy design phase generates the prob-
lem. Usually, the problem is because the ACM is disabled or because
the lowest reachable Modulation defined to the ACM is not the low-
est configurable one; if the ACM had been correctly configured, UAS
would not have been detected for the same channel phenomenon.

• Self-Interference: The radio links work in a Full-Duplex way, this means
that each site needs to transmit and receive the signal; in each site are
present two radio components, one for transmitting and one for receiv-
ing. The transmission line that connects the antenna to the two radio
components is split in one point; usually, the transmitted signal cannot
reach the received signal path because they are on two different bands,
but because of the presence of some nonlinear components(e.g., ampli-
fiers) of the microwave radio, they can create some spurious signal in the
received band that is difficult to filter; this unwanted part of the trans-
mitted signal reaches the receiver radio with a higher power concerning
the legitimate signal, creating interference and errors and consecutively
unavailability. The problem can be caused by a wrong design procedure
or by the degradation of the hardware needed to delete the spurious
components of the signals (e.g., filters). The self-interference problem
is a constant failure, and to be solved, human action is needed.

• Hardware Failure: This category of problems encloses all the failure
causes that are not easy to identify analyzing the power measurements.
For the Hardware Failure events, there is not a specific way to identify
the hardware component targeted by the failure due to the presence
of a significant lack of measurements given by the inactivity of the
component and by the incompleteness of the information to identify the
right hardware components targeted by the failure, as the alarms. The
hardware failure is not the only ones present in this class; also, some
failure root causes explained before can be included in this category
due to the not apparent behavior of the radio measures provided in
the failure event. This class of problems contains both permanent and
temporary failure sources; the need for human action can be identified
by analyzing the performance measure, explained in section 3.3.4, and
checking the duration of the unavailability period.

46

Chapter summary

This chapter’s primary focus is the presentation of the FL concept. For
a better understanding of this concept, we first needed to introduce machine
learning. Knowing these definitions and concepts is helpful to understand
the approach used to solve our problem. In general, there is a high-level
presentation of the concept of machine learning, a description of the classifi-
cation problem with its performance measures, and all the steps to provide
a classifier able to solve the problem. After that, we gave a brief of FL and
its categories; also, we provided the most used algorithms in this field. How
the presented algorithm was used in our framework will be explained in the
following chapters.

The main hardware and software components that comprise a radio con-
nection were discussed in this chapter. The hardware components and their
purpose on the connection are presented first, followed by an examination
of the channel components that impact the sent signal. The paper discusses
some hardware and software remedies for limiting channel effects. We de-
scribe the G.828 guidelines’ performance indicators for radio links, as well as
the failure causes we evaluate in our research.

47

Chapter 4

Problem Statement

In this chapter, we will first discuss the underlying reasons for failure.
Then we will describe the data that we are trying to categorize and how
recognize them. Furthermore, we will go through the many scenarios that
might occur in real life and our suggested solution based on FL.

4.1 Failure Identification

4.1.1 Input Data

Our problem’s raw data comprises of measurements taken from an Italian
microwave network with 10841 radio links.

The dataset consists of a period of time from 26/11/2017 to 10/07/2019.
Part of the dataset has been labelled by a human experts with labels indi-
cating failure causes described in section 3.3.5. The labels correspond to a
45-minutes slot and have been applied to windows where at least 1 UAS is
present in the last 15 minuets of the slot. Measurements are repeated for each
link every 15 minutes. A single sample analysis gives a static perspective of
the channel. This analysis can result in circumstances where distinct fail-
ure root-causes behave similarly in terms of power measurements collected
from the connection. To reduce this difficulty, we choose 45-minute inter-
vals, and the items analyzed indicate the trend of the measurements over
time. Analyzing the power measures in the 15-minutes window affected by
the failure, in conjunction with information on their evolution in the previ-
ous 30-minutes window, can help identify different failure root-causes that
behave in the same way during the failure event, but affect the evolution of

48

the power measures in different ways [53].

4.1.1.1 Data Description

There are 44 fields in the input data. We regard the last field as our
output (failure causes) and the rest as our features, as seen below.

General link information (X1 ÷X4): This part, includes information that
uniquely identifies link i.e., they include an identification number (ID-Link),
the data and time when the measures have been collected for three 15-minutes
windows. We will discard this part of the data in our analysis because they
do not add any information to our data.

Design information (X5 ÷X13): This information is related to the pa-
rameters that are fixed during design phase of the link that does not change
over time. The data includes the type of equipment used in the link (X5).
Three types of equipment are considered in our dataset, namely, AlcPlus2e
and two devices of SMOS family, all provided by SIAE Microelettronica. The
lowest modulation format configured in the ACM software (X6), the carrier
frequency and the bandwidth associated with the link (X7−X8), and a flag
indicating if the ACM is enabled on the link (X9). In our analysis we will dis-
card this part of the data because they don’t add any information. From X10

until X13 provide design features (RxNominal, lowthr, Ptx, LowThr), which
describe the design characteristics of the link, we will use these information
to train our model.

Propagation Measures [X13÷X43]: The performance and power measure
sampled during the last 15-minutes windows in which there is at least a UAS
(i.e., EsN, txMaxAN, RxminBN,· · ·), Also, the link performance and power
measure sampled 15 minutes before (i.e., EsN-1, txMaxAN-1, RxminBN-
1,· · ·), and the same radio link measures sampled 30-minutes before (i.e.,
EsN-2, txMaxAN-2, RxminBN-2,· · ·). Note that in all the 15-minutes slots
composing the 45-minutes window, the link measures features are collected
at both side of the link, i.e., site A and site B, we will use these information
to train our model.

The labels associated to part of the data are identified with the variable
name y. The labels identify the root-causes of the failure, i.e., the events
producing at least one UAS, they represent one of the known failure causes as
identified by the human expert as described in section 3.3.5. The considered
labels are the following:

49

• y0: Deep Fading

• y1: Extra attenuation

• y2: Interference

• y3: Low margin

• y4: Self-interference

• y5: Hardware failures

4.2 Failure Identification With Traditional Ma-
chine Learning

The FL framework considered in this thesis is compared against a tradi-
tional machine-learning-based approach where we assume all available data
points are collected in one central machine where training. This approach
has been developed in [53] and is described in the following.

4.2.1 Supervised Failure identification

We can evaluate the failure identification problem as a classification prob-
lem in the machine learning domain. The solution of the machine learning
problem is no more the root cause of the failure event, but it is a classifier
that, receiving as input some information X related to the failure event, is
able to identify the failure cause y of the evaluated event with the highest
classification accuracy.

In the supervised method, we address the machine learning problem with
particular algorithms designed for classification, which require data including
information about the failure occurrences connected with the radio link’s
power measurements and the underlying cause.

Formally, a labeled dataset [X,y] is supplied in input, with each piece of
X connected to network measures impacted by at least one unavailability
second and designated by the characteristics [X1 ÷ X43]. 1, with a label y
attached.We give as output a classifier that can accept as input network mea-
surements X related with failure occurrences and output a projected failure

1Our machine learning algorithm’s input characteristics are an elaboration of [X1÷X43]

50

cause y while optimizing its classification accuracy.

The goal of the supervised algorithm is to discriminate between the six
classes related to the failure cause, explained in chapter 3.3.5.

The authors of [53] evaluated the performances ANN machine learning
algorithms.
To assess the algorithms fairly, They developed a performance evaluation
process that combines the Holdout and k-fold cross-validation techniques.
As to perform a more accurate analysis on the algorithm, they defined a
fixed training/test partition (80% Training - 20% Test), as in the Holdout
procedure, in this way the classifier will be tested on the same set of un-
seen points. The hyperparameters must be chosen in order to maximize the
classifier performance. To fine tune hyperparameters, They used a K-fold
cross-validation method where K is equal to 10, the cross validation proce-
dure is executed only on the training set. note that, in their procedure the
splitting of the dataset, always maintain the proportion between the classes,
i.e., in their test set all the classes will be represented by the 20% of their
points, and in a single iteration of the cross-validation, the classes inside the
validation fold are represented by the 10% of their points inside the training
dataset.
At the end of the model assessment procedure, all the training set is used
to train the selected model, then the performance is evaluated on the test
set containing unseen points.The performance evaluated in this case are the
accuracy of the classifiers.
Note that, the performance calculated using this procedure are biased by
the initial fixed split between training and test set, so, the performance can
be generalized varying also the test set. Doing so, they adopted two nested
K-fold cross-validation procedures. The "outer" cross-validation selects the
test set and calculate the accuracy of the specific classifier, as in Fig.4.1.
Instead the "inner" one perform model selection using the training set iden-
tified by the "outer" cross-validation, as shown in Fig.4.2. In the end the
performance result is obtained as the average of the accuracy performed on
the test sets, as shown in Fig.4.1. The drawback of this approach is related
to the fact that each train/test split (i.e., for each iteration of the "outer"
crossvalidation step) the model with the highest accuracy changes in order
to provide the highest accuracy on average on the train set, this means that
they cannot provide a unique classifier.

51

4.2.1.1 Results of Traditional Machine Learning Approach

The model selection for ANN, provide as a result the hyperparameters
presented in tables 4.1.

In the ANN models They obtained 5 hidden layers, all composed by 100
neurons; each neuron uses as activation function the Rectified Linear Unit
function (RELU), that is mathematically defined as f(x) = max(0, x).

Figure 4.1: Outer K-fold crossvalidation for performance assessment.

52

Table 4.1: Hyperparameters of the model based on ANN

Parameter Value
Number of Hidden Layers 5
Number of Nodes per Layer 100

Activation Function Relu

Figure 4.2: Inner K-fold crossvalidation for model selection.

At the end of the work [53] they obtained the accuracy for ANN 90.2%.
This accuracy is obtained with hyperparameters in table 4.1 which we will
use for our future work.

4.3 Strategies for Training Machine Learning
Model in Distributed Datasets

Consider the Failure Identification issue, where several operators wish to
train a model cooperatively. We have three options for resolving this issue.
Classical machine learning, in particular, includes centralized data training,
in which data is collected, and the entire training process is carried out on
a single server. Distributed machine learning relies on basic assumptions for
data training, whereas FL relies on more resilient assumptions. 4.3

53

Figure 4.3: Model Classifier of Centralized, Distributed
and FL [54]

4.3.1 Centralized Machine learning

Traditional data analysis strategies include sending compressed sensor
data from all operators to a central server and conducting the data analysis
operations [55]. However, the modern equipments of the network can gen-
erate hundreds of gigabytes of data in a single day, which means the data
transfer and the storage of this data are virtually impossible [56]. Also, par-
ticipants’ data contain private information, which poses questions about the
transmission and storage of these data on a central server.

On the one hand, centralized training is computationally efficient for par-
ticipants since they are relieved of computing duties, demanding more re-
sources. Instead, participants’ private data is very vulnerable since the server
might be malevolent or infiltrated by enemies. Meanwhile, uploading a large
amount of data might cause communication overhead between participants
and the server [54]. This approach was thoroughly discussed at section 4.2.1

4.3.2 Distributed Machine learning

While there are many different strategies to increase the processing power
of a single machine for large-scale machine learning, there are reasons to pre-
fer a scale-out design or combine the two approaches, as often seen in HPC
(high performance computing). The first reason is the generally lower equip-
ment cost, both in terms of initial investment and maintenance. The second
reason is the resilience against failures because, when a single processor fails
within an HPC application, the system can still continue operating by ini-

54

tiating a partial recovery (e.g., based on communication-driven checkpoint-
ing [57] or partial re-computation [58]). The third reason is the increase in
aggregate I/O bandwidth compared to a single machine [59]. Training ML
models is a highly data-intensive task and the ingestion of data can become
a serious performance bottleneck. Since every node has a dedicated I/O
subsystem, scaling out is an effective technique for reducing the impact of
I/O on the workload performance by effectively parallelizing the reads and
writes over multiple machines. A major challenge of scaling-out is that not
all ML algorithms lend themselves to a distributed computing model which
can thus only be used for algorithms that can achieve a high degree of paral-
lelism [60]. These existing approaches make fundamental assumptions for the
data training, which are much more robust in FL [33]. Below are the com-
mon assumptions made during the execution of traditional machine learning
algorithms. [54]

1. Data on the participants are sampled as independent and identically
distributed (i.i.d). Whereas, FL assumes non-i.i.d as different users
contain different types of data.

2. Data is evenly distributed among all the participants. This assump-
tion is technically impossible, as the expected number and the actual
number of participants are different in real-time scenarios. Therefore,
FL divides the number of shards among the participated participants
so that each participant can receive an equal amount of data.

3. Total number of participants is smaller than the available local training
examples per participant. This assumption cannot be made in FL as
FL is designed for large scale scenarios where the participants can be
higher in number.

4.3.3 Federated Learning Solution

As described in the sections 4.3.2 and 4.3.1, traditional ways to solve
our problem have certain drawbacks, such as privacy issues, computational
challenges, and distribution issues. FL may be a suitable answer to these
problems. FL is a newly introduced approach where only learning param-
eters of Artificial Neural Network (ANN) are required to be communicated
between the central server and the participants [54]. At the same time, the

55

whole training process is executed collaboratively on the individual partic-
ipants This technique reduces the amount of data transfer and minimizes
the privacy concerns of individual’s private information. Hence, the load on
powerful central servers in traditional machine learning has been distributed
among individual low-power participants such as mobile devices or vehicles or
in the case of cross-silo operators or hospitals. Therefore, we can say that FL
has the potential to challenge the dominant paradigm of distributed compu-
tation FL varies in many ways from traditional machine learning problems
(e.g., distribution of data centres). While both approaches strive to opti-
mize their learning goal, FL algorithms have to consider the reality that
contact with edge devices occurs over unstable networks with limited up-
load bandwidth [47]. As the communication overhead in FL is more often
than computation overhead, therefore minimizing the communication over-
head is crucial. This communication overhead can be measured either by
uploading the gradients or through the communication rounds between the
central server and participants [24]. The performance in FL can define with
the achieved classification accuracy after specific numbers of communication
rounds [54].

56

Chapter 5

Federated-Learning-Assisted
Failure Management in
Microwave Networks

In this chapter, we detail the methodological approaches used in the use
case described in Chapter 4. In the first section, we describe the data pre-
processing process. In the second section, our evaluation approach for the
supervised failure identification using FL case is proposed. In the third sec-
tion, we describe the possible cases of having three network operators which
want to train a machine learning model collaboratively without sharing their
data and possibly with one or two of them lack some information, and our
approach towards them.

5.1 Data Preprocessing

The data used in our work are obtained on an anonymized real microwave
network and consisting of SIAE Microelettronica equipment, see Fig.5.1. As
the nature of the collected data is not suitable to be handled directly by
machine learning algorithms, we used the refined data that is provided in the
work of [53]. Moreover, we performed some further preprocessing to make
the data suitable for our use case..

57

F
ig
ur
e
5.
1:

Sn
ap

sh
ot

of
th
e
re
al

ra
w

da
ta

pr
ov
id
ed

by
th
e
ne

tw
or
k
m
an

ag
em

en
t
sy
st
em

.

58

5.1.1 Handling Incomplete Information

In most real-world settings, data is partial, i.e., some measurements might
be missing owing to, for example, a disconnection between the equipment and
the management system. As a result, appropriately handling missing data
is critical to avoid severely affecting machine learning algorithms. Three
distinct ways to solving the missing data problem are described in [61]:

• Ignoring and Discarding Data: In this method, we either discard the
entire row containing the missing value, or we remove simply the at-
tributes that have a large number of missing values and do not give
meaningful information.

• Parameter Estimation: The parameters of a Maximum likelihood model
are calculated using accurate data, and the model will be used to pre-
dict the probable missing values. An example of this can be: When we
are asking people their salaries statistics showed that the people who
have higher salaries are more probable to refuse to answer. So, our
estimation for empty data about salaries would be in higher ranges.

• Imputation: This method fills the empty data with values calculated
using statistical procedures (i.e., mean or median) or a fixed value
determined by some previously established connection.

We use a mix of the preceding techniques to tackle the missing value
problem in our database. Specifically, we opt to exclude feature acmMax
(i.e., an attribute reflecting the lowest modulation attained in the 15 minutes
measurements) due to its scarcity in our dataset.

The missing values phenomena can influence received and transmitted
power measurements; however, we already knew that missing values imply
a software or hardware fault unrelated to signal propagation, which causes
unavailability occurrences. We examine the values that received and trans-
mitted power features may reach in order to determine the best method
to handle the missing information. We categorize transmitted and received
power levels into three groups:

• Normal: the values provided by the measure are in the operational
ranges, that are for transmitted power [-20, 28] and for received power
[-99, -22].

59

Figure 5.2: Distribution of the transmitted power values [53].

• Anomalous: the values of the features take one value that is not feasible
and that indicates the presence of some problem. The anomalous val-
ues for transmitted power are {Null, -99}, and for the received power
are {Null, -100, -1, 0≈[-2, -8]}. The Null value indicates a missing
information, the one that we want to handle.

• Out of range: The values of the features are not in the operational
range, but they are not anomalous values too.

The entries containing a Null value which are not suitable for ML algorithms
were replaced with a value that corresponds to the presence of a failure. The
exact value of the feature in this case was determined by investigating the
distribution of the received and transmitted power values. As an example
the normal range which is appear in the distribution for transmitted power
is [-20,28] and for received power [-99, -22].

Figures 6.2 and 6.1, shown the distribution of the values associated to
the transmitted and received power respectively. The two distribution, as
explained in the Normal values definition, cover two different ranges of val-
ues. In machine learning, it is a good rule standardize the features, this
means transform all features to have mean equal to zero and standard de-
viation equal to one. In order to do not eliminate the differences of the
points, provided by their feature distribution, we set different values for the
transmitted and received powers. These values will be out of the distribution
depicted by the Figs. 6.2 and 6.1, in order to clearly identify the presence of
a lack of information, but at the same moment the standard deviation of the

60

Figure 5.3: Distribution of the received power values [53].

features does not have to be too big, otherwise the feature standardization
procedure will decrease too much the differences between the possible values.

5.1.2 Features Normalization

After the data preparation, the data samples are not yet suitable to be
used directly in machine learning algorithms, as they must be normalized (or
standardized). The data normalization is the process to transform features so
that they all range in a 0-mean interval and the scale of the various features
are comparable. The normalization procedure is useful when the attributes
of the data have different scales or range of values for the following reasons:

• After feature normalization, all features contribute proportionally to
the output of the machine learning algorithm, therefore in training
phase the algorithm will be less sensitive to scale of data.

• The speed of optimization in machine learning algorithms (specially
the ones that use gradient descent) is related to the scale of data.

In our case we achieve the standardization goal transforming the data to have
mean value zero and variance one in all their features. This means that for
the feature Xi we calculate its mean value X̄i, and its standard deviation σi,

61

to compute the standardize feature we use the formula

Xi − X̄i

σi

the formula can be described also in a vector space, where X is the point
described by the features [X4 ÷X43], X̄ is a vector in which each element is
the mean value of the specific feature (i.e., X̄[i] = X̄i), and σ is the standard
deviation vector, in which each element i is the standard deviation of the
ith feature (i.e., σ[i] = σi). Then the standardized point can be described
through the formula

X − X̄
σ

5.2 Failure Identification Using Federated Learn-
ing

Now we focus on using FL algorithm for failure-root-cause identification
in microwave networks. We use our labeled data to solve a multi-class classi-
fication problem, so this analysis compares centralized machine learning with
FL and shows the benefit of FL over isolated data islands.
The goal of this chapter is to create a classifier that can detect failure root
causes from an unobserved data point. This classifier does not use pooled
data, and it is built only by sharing each client’s local model. So, in order
to attain this aim, we followed a number of actions. In the first section, we
explain our model’s training method using separated datasets; in the second
section, we look for the optimal hyperparameters to utilize.

5.2.1 Training

To be able to identify the failure root-cause with distributed datasets, we
need to be able to build a classifier that is trained collaboratively between
several clients and is able to predict the failure root-cause when as input
we give a data point with the mentioned features in the section 4.1.1.1. To
acquire the final classifier, we went through several processes. Our approach
is based on the FL algorithm called Federated Averaging, which was described
in Algorithm 1. As the name implies, this method operates by averaging the
weights provided by clients.

62

Assume we have many operators, each with a subset of the data described
in section 4.1.1, these operators are referred to as clients. Also, we have a
central server in charge of receiving and averaging the weights received from
clients; this server is known as the coordinator, see fig.?? .

Figure 5.4: Client-Server(coordinator) architecture of FL

For federated model training in HFL systems(see section 3.2.1.1, the fed-
erated averaging (FedAvg) method was used in [25]. Also, in [62] a compari-
son was conducted, and results are shown in the table 5.2. as it is shown, the
FedAvg algorithm has the best performance between all the other algorithms
that have been shown in section 3.2.4. Also, in [54] they made a comparison
on the MNIST dataset between distributed machine learning and centralized
machine learning, which FL outperformed the other two, the result of their
work in shown in the Fig. ??. The figure compares the three algorithms of
FedAVG, CO-OP, and FSRVG, compared to centralized machine learning.
We can see that FedAvg is better than CO-OP and FSRVG. However, it can
perform the same as a centralized case.

5.2.1.1 Federated Optimization

The optimization issue emerging from FL is referred to as federated op-
timization [25, 38]. In reality, federated optimization differs from traditional

63

Table 5.1: Convergence comparison on MNIST dataset in three different scenarios:
a) 100 communication rounds, b) 200 communication rounds, c) various
number of participants [54]

FedAvg CO-OP FSRVG Centr
FedAvg × + + =
CO-OP − × = −
FSVRG − = × −

Table 5.2: Summary of algorithm comparisons, showing if the algorithm in a row
is better (+) , worse (−) , or practically equivalent (=) compared to the
algorithm in a column [62]

distributed optimization problems in numerous ways [25,39,40].

• Datasets with Non-Independent Identical Distributions (Non-
IID). It is possible to guarantee that various compute nodes have IID
datasets for distributed optimization inside a data center, such that all
local updates appear pretty similar. IID datasets cannot be ensured in
federated optimization. We cannot use IID assumptions for decentral-
ized datasets in FL because the data held by various participants may
have entirely different distributions [41]. While similar participants
may have similar local training data, two randomly selected individu-
als may yield substantially different model weight updates or gradient
updates.

• Unbalanced number of data points. It is feasible to split the data
evenly across the computing nodes in a data center for distributed opti-

64

mization. However, in practical settings, different participants typically
have vastly varying quantities of training datasets [38,42,43]. Some in-
dividuals, for example, may have a few data points, while others may
have a significant amount of data.

• Huge number of participants. The number of parallel comput-
ing nodes inside a data center may be readily adjusted for distributed
optimization. However, because ML or DL typically requires a large
amount of data, FL applications may need to engage many users, par-
ticularly with mobile devices [44]. In our work we investigated the
difference in the sense of accuracy between ML and FL. Every one of
these participants has the potential to engage in FL, making it consid-
erably more dispersed than that found in a data center.

• Slow and unreliable communication links. In a data center, it
is anticipated that nodes interact swiftly with one another and that
packets are nearly never lost. However, with FL, communication be-
tween clients and the server is based on existing Internet connections.
Uploads (from client to server, for example) are significantly slower
than downloads, especially if the connection is made from a mobile
terminal. Some clients may also experience brief Internet connectivity
outages [28]. We considered in our investigation that the connections
might not be available. In this instance, the client on the not-available
list will be replaced by a new client, and the server will compute the
average of just received data.

SGD and its variations (for example, mini-batch gradient descent) are the
most often used DL optimization methods [10]. Many advancements in DL
may be seen as modifying the structure of the model (and therefore the loss
function) to make it more accessible to optimization using basic gradient-
based approaches [10,45]]. Given the ubiquitous use of DL, it is only logical
to create new federated optimization methods based on SGD [[25].

SGD may be used naively in federated optimization by performing a sin-
gle mini-batch gradient computation (e.g., on a randomly selected subset of
participants) during each round of federated training. The processes of trans-
mitting updates from the participants to the server and the server back to
the participants, i.e., Steps 1–4 of Figure ??, are referred to as “one round” in
this context. This approach is computationally efficient, but it necessitates

65

Figure 5.5: Exemplary client-server architecture for an HFL system [24]

many communication rounds of training to produce satisfactory models; for
example, even using an advanced approach like batch normalization (BN) [63]
training on the MNIST dataset necessitates 50,000 rounds mini-batches of
size 60 [25].

Communication costs are generally low for DML with parallel training
within data centers or computer clusters, and computational costs dominate.
Recent techniques emphasize the use of graphics processing units (GPUs)
to reduce these expenses. In contrast, communication costs dominate in FL
since communication occurs via the Internet or wide area networks (WANs),
including wireless and mobile networks.

A single on-site dataset in FL is often tiny in comparison to the entire
dataset size, and current terminals (such as network equipment) have reason-
ably powerful processors. As a result, for many model types in FL, compute
costs are minimal when compared to communication expenses. As a result,
we may employ more computing to reduce the number of communication
rounds required to train a model. The following are the two major methods
for include computation [25].

• Increased parallelism. We can engage more participants working
independently in be- tween client-server communication rounds.

• Increased computation on each participant. Rather than per-
forming a simple computation like a gradient calculation, each client

66

performs a more complex calculation in between communication rounds,
such as performing multiple model weight update over a training epoch.

The optimization process is fully explained in the section 3.2.3

5.2.1.2 The FedAvg Algorithm

The FedAvg algorithm family, as described by [25], allows us to add com-
putation using both techniques discussed above. Three key parameters gov-
ern the amount of computation: (1) rho, the fraction of clients that perform
computation during each round; (2) S, the number of training steps each
client performs over its local dataset during each round (i.e., the number of
local epochs); and (3)M , the mini-batch size used for client updates. M =∞
denotes that the whole local dataset is handled as a single mini-batch.

We can use M = ∞ and S = ∞ to generate SGD with different mini-
batch sizes. During each round, this method picks a ρ-fraction of participants
and computes the gradient and loss function across all of the data possessed
by these players. As a result, ρ controls the global batch size in this method,
with ρ =∞ equivalent to full-batch gradient descent using all data stored by
all participants. We refer to this basic baseline technique as FederatedSGD
since we still pick batches by using all of the data on the chosen participants.
While the batch selection method differs from picking a batch by randomly
selecting individual samples, the batch gradients g calculated by the Feder-
atedSGD algorithm still fulfill E[g] = ∇f (w), given that the datasets owned
by various participants are IID [24].

It is usually believed that the coordinator or server knows the initial ML
model and that the participants are aware of the optimizer parameters. In a
typical implementation of distributed gradient descent with a fixed learning
rate, the kth participant computes gk = ∇Fk (wt), the average gradient on
its local data points at the current model weight wt, and the coordinator
aggregates these gradients and applies the model weight update described
by [25].

Alternatively, the coordinator can transmit the averaged gradients
gt
∑K

k=1
nk
n gk back to the participants, who will then compute the updated

model weights wt+1 using Equation line 20 of Algorithm 4. Gradient aver-
aging is the name given to this approach [42].

That is, each client performs one (or more) steps of gradient descent on
the current model weights w̄t using its local data, and then transmits the

67

68

Figure 5.6: Hyperparameters of the model based on ANN

locally updated model weights wk
t+1 to the server. The server then computes

a weighted average of the resulting models using Algorithm 4 line 9, and
returns the aggregated model weights w̄t+1 to the client. Model averaging is
the term used to describe this approach [25].

Algorithm 4 summarizes the model averaging variation of the FedAvg
algorithm. After writing the algorithm in this manner, it is reasonable to
wonder what happens when the participant iterates the local update many
times before proceeding to the averaging phase. The number of local updates
each round for a participant with nk local data points is provided by uk =
nk
M S. Algorithm 4 contains the entire pseudo-code for the FedAvg algorithm
with model averaging.

5.2.2 Model and Hyperparameters Search

As stated before, it is assumed that all the clients know the ML algorithm
that has been chosen. We decided to choose Artificial Neural Network(ANN)
as our algorithm. The parameters are taken from [53] so we created an ANN
with the parameter that are shown in the table 5.6.

This model is supplied to all clients with all of the hyperparameters pre-
selected. We must also initialize our weights. These weights will be trans-
mitted to all selected clients in each round after that. Because of privacy
concerns and the possibility of malevolent coordinators and other privacy at-
tacks, the server should typically have no knowledge of the data in each client.
It is difficult to select an appropriate initial weight without prior knowledge.
As a result, the optimum choice is to assume that all of the weights of the
specified ANN architecture are zero. So, the server will broadcast 0 as the
initial weights to the selected clients.

69

5.2.2.1 Convergence Condition

An iterative algorithm is said to converge when as the iterations proceed
the output gets closer and closer to a specific value. In some circumstances,
an algorithm will diverge; its output will undergo larger and larger oscilla-
tions, never approaching a useful result [64].

Gradient descent is a first-order iterative optimization algorithm for find-
ing a local minimum of a differentiable function. The idea is to take repeated
steps in the opposite direction of the gradient (or approximate gradient) of
the function at the current point, because this is the direction of steepest
descent. Conversely, stepping in the direction of the gradient will lead to a
local maximum of that function. The procedure is then known as gradient
descent.

In fact, getting to this maximum value takes a long time, hence a con-
vergence condition is required. The fluctuation of the gradient results is
minimized when we get close to the minimal point. So we may claim the
function has converged if the gradient does not change or only changes for a
limited amount after multiple iterations.

We experimented with several convergence conditions, which are specified
by the percentage of change of the loss function and the number of iterations
that it should stay within the change percentage defined, after which the
convergence time was measured. The change percentage 0.1 with 20 rounds
provided a fair compromise between the accuracy achieved and the time
spent, as indicated in the 5.3 1. It’s worth noting that after 1000 cycles of
learning, all of these prerequisites remain valid.

Table 5.3: Convergence Time in minuets with different conditions.

% NO. rounds duration(min)
0.1% 50 ∞
1% 50 ∞
0.1% 30 42
1% 30 35
0.1% 20 28
1% 20 20

1These measurements has been taken with apple MacBook with Memory 8 GB 2133
MHz LPDDR3 and Processor 1.4 GHz Quad-Core Intel Core i5

70

Hyperparameter Search

This section shows the hyperparameter search that we conducted. The
hayperparameters that we had to tune were (1) rho, the fraction of clients
that perform computation during each round; (2) S, the number of training
steps each client performs over its local dataset during each round (i.e., the
number of local epochs); and (3) M , the mini-batch size used for client
updates, Also, we could tune the learning rate.

To begin, we partitioned the data into three sub-datasets at random.
There was a hard constraint for all of them: no link which is indicated in the
data set with the IDLink should be repeated in any two sub-datasets. For
speedier results, we relaxed the number of rounds requirement above. After
500 cycles of learning, the same conditions apply.

We intended to adjust the number of training steps each client takes (local
epochs), S, as well as the mini-batch size used for client updates, as indicated
by the letter M . Weighted accuracy is the point of comparison, with the
number of points in each customer. Also, this technique was repeated ten
times for all the combinations of S and M according to below numbers, and
the results were averaged.

S = [10, 100, 200, 500]andM = [32, 64, 128]

The best ones were S = 500 and M = 64. To speed up the training pro-
cess, we need to fine-tune the learning rate eta, which was set between
[0.1, 0.001, 0.00001, 0.0000001]. The trick is to train a network by starting
with a low learning rate and gradually increasing it for each batch. To better
understand the outcome, we needed to plot the learning curve for each of
them. The test and train errors make up the learning curve. The examina-
tion of train-test mistakes allows for the detection of potential issues. [65]:

• high bias: Training error is close to test error but they are both higher
than expected

• high variance: Training error is smaller than expected and it slowly
approaches the test error

After elimination of the ones with the problem the best learning rate
turned out to be 0.00001. For the relatively small number of clients, ρ is one,
so we can select all the clients. At the end in the hyperparameters of table

71

5.4 with the initialize weights of our model will be bradcasted at each round
to our clients.

Table 5.4: Hyperparameters for the FedAvg Algorithm

hyperparameter value
ρ 1
S 500
M 64
η 0.00001

72

Chapter 6

Numerical Results

Now we focus on evaluating our proposed frameworks. The evaluation is
executed using the performance metrics presented in Chapter 3.
Initially, we go deep into the dataset analysis after performing the data prepa-
ration procedures presented in Chapter 5. Then, we provide details of how
we created real-life use cases and how we evaluated the performance of our
FL algorithm. In the end, we will we discuss numerical results.

6.1 Data analysis and presentation

As previously stated, our raw data is collected every 15 minutes. We con-
struct 45-minute frames in order to capture the fluctuation of radio power
measurements across time. These windows are defined by 43 features, includ-
ing six features evaluating the Es and Ses performances (Chap.3.3.4), twelve
features presenting the maximum and minimum transmitted power on both
sites, and twelve features relating to the received power. Four features define
different power thresholds related to the link’s design, and one binary feature
indicates whether the AC is operational. Also, eight of them that represent
the design information are discarded.

Human specialists manually labeled the windows, assigning a label to
each window based on the behavior of the radio power measurements over 45
minutes. The labels are applied to the 45-minute time intervals and specify
the reason for the failure event within that period. The indicated windows
are two, and their class occurrences are displayed in Table 6.1, indicating

73

Table 6.1: Class occurrences in the labeled data.

Failure Cause Occurrences
Deep Fading 284

Extra Attenuation 581
Interference 49
Low Margin 190

Self-Interference 187
Hardware Failure 1222

Figure 6.1: Distribution of the values for the received power.

a significant imbalance between several classes. This is due to the rarity of
some events (e.g., Interference events), as well as the fact that a large number
of occurrences, classified as "Hardware Failure", have no apparent behavior
that can be safely ascribed to one of the "well-known" root-causes.

The missing values problem in the power measurement is solved by im-
putation. The missing values in received power attributes are replaced with
the value -150 dBm because the distribution of the values is entirely in the
negative part of the axis, as shown in Fig. 6.1. For the transmitted power
attributes, missing values are replaced with the value 100 dBm; the choice is
driven by the fact that the distribution of the points is mainly in the positive
part of the axis, as shown in Fig. 6.2.

74

Figure 6.2: Distribution of the values for the transmitted power.

6.2 Data Separation

As previously stated, the goal of our FL use case is to solve the classifi-
cation problem where the classifier is able to distinguish a newly unobserved
given point with aforementioned features and classify it in one of the 6 failure
root-causes, of a certain number of participants (clients) without sharing any
data and just sharing the model characteristics. We decided to create our
clients in a way to replicate this behavior. As discussed in sections 3.2.2,
there are two forms of device distribution for FL: cross-silo and cross-device.
In cross-device, we require hundreds of devices, which necessitates more data
points than we currently have. To restate some of the challenges, we are
working at scale, potentially needing many millions of devices for federation
to work. Devices may be offline, we need to be careful about when we con-
sume compute and impact user experience. In the case of cross-silo, we may
have as many devices as we like as long as the data in them is large enough.
The goal is the same as cross-device, to update and improve a central, and in
this case shared model, there are arguably greater challenges on the security
side. At the same time, there’s scope to use more consistent, powerful and
scalable compute within each organisation.

We began with three participants for this purpose. We cannot do less
than three since there will be no cross-silo case for FL. We established a
strict limitation for our separation in this case: no two datasets can have the
same link. This restriction exists because three distinct operators who wish
to participate in the FL classification to categorize freshly incoming data

75

points cannot share a link in their equipment. So, in order to simulate this
real-world behavior, we imposed this tight limitation on our separation. We
chose three sub-datasets totally at random for separation, but we nevertheless
adhered to our strict constraint.

We used a systematic approach to handle training datasets and clients for
these separations. We want to examine the impact of missing labels on each
client and how FL may enhance or degrade accuracy whether the clients
were trained alone or if we put the time and space to collect the data in
one location and violated the privacy of the operators (we call the former
Isolated knowledge and the latter Complete knowledge).

To be fair to all clients, we attempted to have around the same number
of data points in each of them. in this case we can eliminate a portion of
space state on the available cases. Since we have the rigid constraint of link
ID, we could not have precisely the same number of points. To provide a
fair comparison, we also ensured each customer had at least 5 data points for
each failure cause. We removed 20% of these datasets to have 20% of data
points from each class since we want to analyze the effect of the missing label
in FL for testing and maintain the remaining 80% for training.

To that aim, we should remove the labels one by one to observe what
happens. If we remove all of the labels from three clients one by one and
do all of the conceivable combinations, we will obtain 262144. There are six
labels in such a manner that each client can have a label or not have one.
Thus 26 = 64 modes exist for a client, we have three clients, and we can
have any combination of three clients. As is clear, the state space is too vast
to attempt everything. As a result, we need to condense our states into a
smaller space.

Table 6.1 shows the number of data points for each label. Our analysis
focuses on the domain of repetition of each class, as indicated in the ta-
ble above 6.1, we may categorize our labels into three sub-categories: least
repeated, medium repeated, most repeated, see Table 6.2.

We want to select three labels, one label from each category that men-
tioned in Table 6.2, from all 6 available labels. Later, we will remove in a
systematic manner all the points that are associated to the selected label. To
include in our experiment, we require a label from the moderately repeated
ones, as a result, of the four medium repeated labels (Deep Fading, Extra
Attenuation, Low Margin, Self-Interference, summing-up Deep Fading will
be adequate for our purposes. Furthermore, we have one label with a few

76

Table 6.2: Categories of label distribution of dataset.

label N. in dataset label Cat. of repetition
0 Deep Fading Medium
1 Extra Attenuation Medium
2 Interference Least
3 Low Margin Medium
4 Self-Interference Medium
5 Hardware Failure Most

repetitions (Interference) and one with a high number of repetitions (Hard-
ware Failure); both are unique, and no other labels have nearly the same
amount of repetition.

Table 6.3: State space of removing labels for one client.

case removed label
1 0
2 2
3 5
4 0,2
5 0,5
6 2,5
7 0,2,5
8 None

In the end, we chose three labels from a total of five. These labels will be
removed in a systematic way from the clients. The process is as follows: we
have three clients in each one, we can remove three labels, 0, 2, 5. So each
client can be constructed in 23 ways. All the ways are shown in the table
6.3. Each client can have eight modes, and we can have any combination of
these three. So we can have 83 modes which equal to 512.
In real-world settings, there is always one operator who has seen all the failure
causes due to it’s dimension. This implies that we have an operator working
for a long time and have seen all potential failure causes, so there is no need
to remove label from this client and the labels inside should always be fixed.
We make one of our clients fixed operator, so it has to have all the labels
at all times. With that in mind, the overall number of instances would be
reduced. We now only have two clients that can miss labels, and they are

77

our benefit participants. They can each have eight states, as shown in the
table 6.3. We can also have any combination of these two. As a result, we
shall limit our state-space to 64 modes.

Now, we want to extract only the one-of-a-kind instances. Because we
distributed our clients randomly and equitably, there is minimal variation in
the number of points and failure causes amongst our three clients. Consider
the scenario when client 2 lacks the label "0" in its training set, while client
1, as previously stated, has all the labels, and we suppose that client 3 can
likewise have all the labels. Also, another case is similar to the last one,
except that client 3 is the missing label "0" while client 2 has all of the labels
in its training set. Cases like these are referred to be recurrent cases. We
approach the topic as if it were a statistical problem.

Now, assume we have two baskets and eight different colors. We also offer
16 balls in eight different colors. As a result, every two balls are the same
color. We want to choose two balls such that we may select one ball from
each basket, and there should be no duplicate occurrences. We answer this
issue in statistics by first computing all of the potential combinations, which
are 64, as previously mentioned; secondly, we must eliminate the duplicates;
to remove the duplicates, we must first determine how many there are. To
do so, we declare we wish to pick two colors from a set of eight. (This implies
we picked four of them with the same combination two by two.)

If we extend this simple problem of statistics to our case we can say that
balls indicated the combination in the table 6.3, and the baskets are clients.
So in conclusion we can have:

64−
(

8

2

)
= 64− 28 = 36

All these cases are shown in the table 6.4.

6.3 Failure Identification

The FedAvg algorithm’s objective is to train a model collaboratively to
distinguish between the six classes linked to the failure cause, as stated in
chapter 3.3.5, without exchanging data amongst participants.

To further understand this, we trained our model with training data of
each client using three distinct methods. The first is to train a client inde-

78

Table 6.4: Space state for 3 clients. the showed numbers are missing labels.

N.O. case client 1 client 2 client 3
1 None 0 0
2 None 0 2
3 None 0 5
4 None 0 2 and 5
5 None 0 0 and 2
6 None 0 0 and 5
7 None 2 2
8 None 2 5
9 None 2 2 and 5
10 None 2 0 and 2
11 None 2 0 and 5
12 None 5 5
13 None 5 2 and 5
14 None 5 0 and 2
15 None 5 0 and 5
16 None 0 and 2 0 and 2
17 None 0 and 2 0 and 5
18 None 0 and 2 2 and 5
19 None 0 and 5 0 and 5
20 None 0 and 5 2 and 5
21 None 2 and 5 2 and 5
22 None None None
23 None None 0
24 None None 2
25 None None 5
26 None None 0 and 2
27 None None 0 and 5
28 None None 2 and 5
29 None 0 and 2 and 5 None
30 None 0 and 2 and 5 0
31 None 0 and 2 and 5 2
32 None 0 and 2 and 5 5
33 None 0 and 2 and 5 0 and 2
34 None 0 and 2 and 5 0 and 5
35 None 0 and 2 and 5 2 and 5
36 None 0 and 2 and 5 0 and 2 and 5

79

pendently with its training data set and then test it with the separated test
set described in 6.2 we call this isolated model. It is important to note that
we might have a label in our test set because the test set was split before
removing the labels but not in our train set. This method will demonstrate
the impact of FL more effectively. The second is to train a model collabora-
tively using FedAvg (Algorithm 4) and test it independently on each client’s
train set. We refer to this model FedAvg. The next step is to collect all of
the data from all clients and train them in a centralized machine learning
model, which we call the centralized model.

We evaluate the performances of three different approaches to solve the
problem as mentioned earlier, to identify which one is the most suitable for
classifying a new point (i.e., a 45-minutes window within UAS in the last
15-minutes slot) in different use cases.

The three models are as follow:

• Isolated model: This model trains one client with only its local data.
The separated test data will be tested on the model that is obtain for
each client using only its local data.

• FedAvg model: We will train this model collaboratively between all
three clients. The separated test data of each client will be tested
separately on the model that has been obtained using FedAvg between
three clients, without sharing any data and just by sharing the model
characteristics.

• Centralized model: We will train this model on the pooled dataset of
three clients. The separated test data of each client will be tested
separately on the model that has been obtained using the pooled data.

For all three techniques, we used the hyperparameters as in tables 5.6
and 5.4 for our ANN algorithm, which will be broadcasted to all clients be-
fore starting the training procedure. In addition, we maintain the train and
test sets the same for all methods. Furthermore, these techniques employ
an Artificial Neural Network as the foundation algorithm and SGD for opti-
mization. We decided to fine-tune parameters to maximize the performance
of the algorithms, so we took case 22 in the table 6.4 and ran the FedAvg
ten times with a combination of hyperparameters to ensure we had the best
values; this procedure was thoroughly explained in the section 5.2.2.1.

80

Our instances may be divided into three sub-categories. The grouping
can occur in a wide range of variables, but because we are evaluating the
influence of label repetition on the outcome of FL, the category based on the
different forms of missing labels appeared appropriate, and we can arrange
our instances as shown in the figure 6.3

Figure 6.3: Resulting categories of FL. left: scenario 1, middle: scenario 2 and
right: scenario 3

So we can break the table of 6.4 into three tables. Moreover, analyze
them one by one. we start with scenario 1 of figure 6.3.

6.3.1 Scenario 1: where only one type of label is missing

Scenario 1: Investigate the case where one or two clients miss only one
type of label.

Objective: To understand in which cases a collaboration is profitable.
we try to investigate the case where one or two clients miss only one type

of label. This helps us understand if it is preferable for two clients to perform
FL or just train them separately or agree on some type of data aggregation
of centralized training if two clients are lacking in their data set the same
failure cause.

Table 6.5 shows all the cases where only one type of label is missing. This
label can be missing in one or two clients, and we have a strong client with all
the labels included. We compared the accuracy of isolated machine learning,
FL, and centralized machine learning techniques. We report the results in
the Fig. 6.4.

As shown in Fig. 6.4 in case number 24(the fifth set of columns from the
bottom), we see that for client 3, the FL degraded the accuracy by 2%. The

81

F
ig
ur
e
6.
4:

C
om

pa
ri
so
n
of

ac
cu
ra
cy

fo
r
sc
en
ar
io

1.
ea
ch

se
t
of

th
re
e
co
lu
m
ns

di
sp
la
yi
ng

on
e
ca
se

co
rr
es
po

nd
in
g
to

th
e
ta
bl
e

6.
5
(g
ro
up

s
fr
om

ri
gh

t
to

le
ft
in

th
e
fig

ur
e
m
at
ch

w
it
h
th
e
ca
se
s
in

th
e
ta
bl
e
fr
om

up
to

do
w
n)
.
Fu

rt
he

rm
or
e,

ea
ch

co
lu
m
n
re
pr
es
en
ts

a
cl
ie
nt
,a

nd
th
e
nu

m
be

rs
un

de
r
ea
ch

co
lu
m
n
in
di
ca
te

th
e
cl
ie
nt
’s

m
is
si
ng

la
be

l.
E
ac
h
co
lu
m
n

di
sp
la
ys

is
ol
at
ed

ac
cu
ra
cy
,F

ed
A
vg

ac
cu
ra
cy
,a

nd
ce
nt
ra
liz
ed

ac
cu

ra
cy

fo
r
on

e
cl
ie
nt
.

82

Table 6.5: Scenario 1 where only type of label is missing in each case. The numbers
correspond to the numbers of table of 6.4.

N.O. case client 1 client 2 client 3
1 None 0 0
7 None 2 2
12 None 5 5
23 None None 0
24 None None 2
25 None None 5

reason for this could be the extra information that is coming from another
client. The model of client 3 is focused on understanding better other labels
rather than label 2. When we mix new knowledge with the model, this focus
is also now in label 2, and since we only have one data point in the test case
of client 3 with label 2, this effect will show itself by reducing the accuracy of
other labels. In case number 23 (the fourth set of columns from the bottom),
we can see that for client 3, the accuracy improved by 8% compared to the
isolated model. Moreover, we see 3% improvement in comparison with the
centralized model. In case 25 (the first set of columns from the top), we can
see a much better improvement in the accuracy of the client 3 models. FedAvg
is better than isolated but 17%. This significant difference is because of many
data points with label 5. Since label 5 is the most repeated, we expect to
have more data points with label 5 also in the test set.

In case number 7 (the second set of columns from the bottom), we can
see no apparent difference between the isolated case and the FedAvg model
client 2 has the same 89% accuracy for both, and client 3 has the accuracy
84% for the former and 87% for the latter. However, on average, we see
a 2% improvement for the FedAvg according to the centralized model. In
conclusion, we have the best improvement compared to the isolated case
when the most repeated label is missing (label 5) in one client but not in
two. This difference can be interpreted as follows: we do not have enough
data to support two clients even though the repetition is high in our main
client. Also, when the least repeated label is missing in both situations, we
do not observe much of an improvement. However, this slight improvement
in the case where the least repeated one is missing can show that now all the
clients can recognize and classify the missing failure cause without seeing it
in their database.

83

Now we will look at Scenario 2. We may further divide scenario two into
three sub-scenarios, which are depicted in Fig. 6.5.

84

6.3.2 Scenario 2: where two types are labeled is missing

Scenario 2: Investigate the case where one or two clients miss two types
of label.

Objective: To understand in which cases a collaboration is profitable.
We can claim that any combination of missing two kinds of labels in two
clients can impact the final judgments of the firms to develop a more robust
model since we simulated the instances where two types of labels between the
categories of (high, medium, and low repetition are absent) in this section.

Figure 6.5: sub-division of scenario 2. Each sub-division shows a combination of
two types of label that can be missing from one or two clients at the
same time. The letters indicated near, are the reference inside the text

First, we discuss case "a" shown in the table 6.6, where only label types
medium (0) and low (2) are missing from one or two clients. We start analyz-
ing the results in Fig. 6.6, case 2 (the first set of columns from bottom). It
shows an improvement of 7% in FedAvg compared to the centralized model
for client 2 and 4% in client 3 of FedAvg, compared to the centralized model.
Also, we can see the overall average is improved for FedAvg according to
the centralized and isolated models. This behavior depends on the fact that
we have two clients that have focused on their isolated training on two dif-
ferent sets of five labels. When we aggregate these focused models, we can
see an improvement in the FedAvg of 7% percent in average compared to
centralized. Now we move on the case 5 (the second set of columns from the

85

Table 6.6: sub-division of scenario 2, case "a", where only label types medium (0)
and low (2) are missing from one or two clients. The numbers correspond
to the numbers of table of 6.4.

N.O. case client 1 client 2 client 3
2 None 0 2
5 None 0 0 and 2
10 None 2 0 and 2
16 None 0 and 2 0 and 2
26 None None 0 and 2

bottom); the picture shows the for client 2 we have FedAvg as 90% whereas
the centralized is 85%, also for the third client, we can see FedAvgt working
better with 3% different compared to centralized the same reasoning as the
previous case can be applied here.

For the third set of columns (case 10), the FedAvg algorithm decreased the
accuracy by 3% according to isolated accuracy as was expected and explained
in case 24 of the first scenario. The third client shows the exact behavior of
the previous case. In case 16 (second set of columns from the top), we can
see that FedAvg has an accuracy of 74%, whereas centralized has 75% and
isolated has 73% which are relatively close. For the second client, we can
see that FedAvg improved the accuracy by 10%. This phenomenon is the
number of zeros in the test case of client 3, which are relatively higher than
in client 2. Moreover, for the last case (first set of columns from the top),
we can see that FedAvg has an accuracy of 78%, whereas the isolated model
has 69% and centralized has 79% of accuracy. The difference between the
FedAvg and isolated is 9%, which can be considered as a good improvement.
Fig. 6.6 depicts the outcome of this treatment. In comparison to the isolated
example, this case shows no improvement in the FL model. Compared to the
centralized model, on the other hand, FL is improving. This gain may be
because, in isolated training, our models are more focused on detecting the
most often repeated label, label 5. We can observe this impact in FL since
it is the average of these models, but in the centralized model, we remove
this emphasis, making it more likely to misclassify label 5, which has a high
recurrence in the test set.

After that, we move on to case "b" of scenario 2, where only label types
low (2) and high (5) are missing from one or two clients. We demonstrated
these cases in the table 6.7.

86

F
ig
ur
e
6.
6:

C
om

pa
ri
so
n
of

ac
cu
ra
cy

fo
r
sc
en
ar
io

2,
th
e
ca
se

"a
."

ea
ch

se
t
of

th
re
e
co
lu
m
ns

di
sp
la
yi
ng

on
e
ca
se

co
rr
es
po

nd
in
g

to
th
e
ta
bl
e
6.
6
(g
ro
up

s
fr
om

ri
gh

t
to

le
ft

in
th
e
fig

ur
e
is
m
at
ch
in
g
w
it
h
th
e
ca
se
s
in

th
e
ta
bl
e
fr
om

up
to

do
w
n)
.

Fu
rt
he
rm

or
e,

ea
ch

co
lu
m
n
re
pr
es
en
ts

a
cl
ie
nt
,
an

d
th
e
nu

m
be

rs
un

de
r
ea
ch

co
lu
m
n
in
di
ca
te

th
e
cl
ie
nt
’s

m
is
si
ng

la
be

l.
E
ac
h
co
lu
m
n
di
sp
la
ys

is
ol
at
ed

ac
cu

ra
cy
,F

ed
A
vg

ac
cu

ra
cy
,a

nd
ce
nt
ra
liz

ed
ac
cu

ra
cy

fo
r
on

e
cl
ie
nt
.

87

Table 6.7: sub-division of scenario 2, case "b", where only label types high(2) and
low(5) are missing from one or two clients. The numbers correspond to
the numbers of table of 6.4.

N.O. case client 1 client 2 client 3
8 None 2 5
9 None 2 2 and 5
13 None 5 2 and 5
21 None 2 and 5 2 and 5
28 None None 2 and 5

Fig. 6.7 shows the result of the case "b" in scenario 2, where only label
types low (2) and high (5) are missing from one or two clients. We can see in
cases 8 and 9 (the first and the second set of columns from the bottom), we
have a degradation of 5% in the accuracy for client 2 comparing FedAvg and
isolated. Nevertheless, we can see a good improvement in client 3 with 11%
and 9% of improvement. In client 3, centralized learning has an accuracy of
70% in both cases, making it a promising approach for client 3 to use the
pooled data if it has the chance. The subsequent two cases (13, the third set
of columns from the bottom, and 21, the second set of columns from the top)
has the same behavior as client 2. FedAvg improved accuracy 7% and 6%
compared to isolated model respectively. These relatively close numbers show
that when we have more than one label missing, the lowest repeated label (2)
does not affect FL. The last case (fist set of columns from the top) shows that
in client 3, we had an increase of 11% in FedAvg with respect to the isolated
case. This good improvement is related to the fact that label 5 is repeated
the most in our test set, and when client 3 can recognize it without ever
seeing it in its data set, the accuracy improves a lot. We interpret the figure
as follows: we can see that when label 2 is missing with label 5, and both do
not exist in one client, the effect of the low repeated label (2) is negligible,
and the pattern of scenario 1 for label 5 is appearing. However, when both
are missing in one client, we see a rapid degradation of FL compared to the
centralized case.

Following that, we go to case "c" of scenario 2, where only the label
types medium (0) and high (5) are absent from one or two customers. These
examples are included in the table 6.8.

The situation with two missing labels, in which the medium and high
labels are absent from one or two customers, differs from the preceding one.

88

F
ig
ur
e
6.
7:

C
om

pa
ri
so
n
of

ac
cu
ra
cy

fo
r
sc
en
ar
io

2,
ca
se

"b
."

ea
ch

se
t
of

th
re
e
co
lu
m
ns

di
sp
la
yi
ng

on
e
ca
se

co
rr
es
po

nd
in
g
to

th
e
ta
bl
e
6.
7
(g
ro
up

s
fr
om

ri
gh

t
to

le
ft

in
th
e
fig

ur
e
is

m
at
ch
in
g
w
it
h
th
e
ca
se
s
in

th
e
ta
bl
e
fr
om

up
to

do
w
n)
.

Fu
rt
he
rm

or
e,

ea
ch

co
lu
m
n
re
pr
es
en
ts

a
cl
ie
nt
,
an

d
th
e
nu

m
be

rs
un

de
r
ea
ch

co
lu
m
n
in
di
ca
te

th
e
cl
ie
nt
’s

m
is
si
ng

la
be

l.
E
ac
h
co
lu
m
n
di
sp
la
ys

is
ol
at
ed

ac
cu

ra
cy
,F

ed
A
vg

ac
cu

ra
cy
,a

nd
ce
nt
ra
liz

ed
ac
cu

ra
cy

fo
r
on

e
cl
ie
nt
.

89

Table 6.8: sub-division of scenario 2, case "c", where only label types medium
(0) and high (5) are missing from one or two clients. The numbers
correspond to the numbers of table of 6.4.

N.O. case client 1 client 2 client 3
3 None 0 5
6 None 0 0 and 5
15 None 5 0 and 5
19 None 0 and 5 0 and 5
27 None None 0 and 5

Fig. 6.8 shows the result of the cases which are shown in Table 6.8. In case
3 (the first column from the bottom), we do not see much improvement in
client 2 where the medium repeated label (0) is missing, as the pattern is the
same in previous cases. Nevertheless, we see a good improvement in client 3
with a 19% increase in FedAvg compared to the isolated case. The reason, as
told, is because the number of test points with label 5 is more than others,
so when a client finds knowledge to recognize it, we immediately see the
difference. However, we see that the centralized model has 70% accuracy in
client 3 whereas the FedAvg accuracy is 62%, again the best option for client
3, in this case, can be a centralized model.

Case 6 (the second set of columns from the bottom) shows the same
trend for client 2 as the previous case, but now that we have even more
labels missing in client 3, inaccuracy of FedAvg improved 19% as before. We
can say that when label 5 is missing if any other label is missing, we can
see the same improvement as if only label 5 is missing from the client. Now
we move on to the next case, 15 (the middle set of columns). We can see
interesting results here; we do not see much improvement comparing FedAvg
and isolated model in client 2 and client 3, only 6% improvement for both.
The reason for this number is that now too much label is missing from the
client which can affect badly the aggregated results we cannot have enough
knowledge about label 5 which is the most repeated one so just the knowledge
of client 1 is added to them which is not enough the same reasoning goes for
case 19 (the second set of columns from the top). Case 27 (the first one
from the top) shows the most improvement between other cases comparing
FedAvg with the isolated model. FedAvg improved the isolated accuracy by
22% which by far is the best increase that we have. The reason for that is
because the knowledge of client 3 is few, but client 2 and client 1 has complete

90

knowledge about all the 6 failure causes; this can, of course, improve a lot
the client 3 accuracies because now client 3 can recognize 2 types of the label
without every observing them in the training phase. Now by comparing
average values, we may conclude that FL works better than isolated learning
but is near to centralized learning.

Now we can move on to the third scenario; Here, we cannot divide clearly
by category, so our examination would be general and on all cases.

6.3.3 Scenario 3: where three types of the label is miss-
ing

Scenario 1: Investigate the case where one or two clients miss three
types of label.

Objective: To understand in which cases a collaboration is profitable.
This scenario considers cases in which we have a very powerful operator

will all the labels inside the dataset but one or two of the other operators
are pretty weak and miss some labels in their own data. This knowledge of
the missing label is crucial for the more vital operators to understand which
situations they should avoid or require more and which cases they may safely
work on.

Table 6.9: Space state for scenario 3. The showed numbers are missing labels.

N.O. case client 1 client 2 client 3
4 None 0 2 and 5
11 None 2 0 and 5
14 None 5 0 and 2
17 None 0 and 2 0 and 5
18 None 0 and 2 2 and 5
20 None 0 and 5 2 and 5
22 None None None
30 None 0 and 2 and 5 0
31 None 0 and 2 and 5 2
32 None 0 and 2 and 5 5
33 None 0 and 2 and 5 0 and 2
34 None 0 and 2 and 5 0 and 5
35 None 0 and 2 and 5 2 and 5
36 None 0 and 2 and 5 0 and 2 and 5

91

F
ig
ur
e
6.
8:

C
om

pa
ri
so
n
of

ac
cu
ra
cy

fo
r
sc
en
ar
io

2,
ca
se

"c
."

ea
ch

se
t
of

th
re
e
co
lu
m
ns

di
sp
la
yi
ng

on
e
ca
se

co
rr
es
po

nd
in
g
to

th
e
ta
bl
e
6.
7
(g
ro
up

s
fr
om

ri
gh

t
to

le
ft

in
th
e
fig

ur
e
is

m
at
ch
in
g
w
it
h
th
e
ca
se
s
in

th
e
ta
bl
e
fr
om

up
to

do
w
n)
.

Fu
rt
he
rm

or
e,

ea
ch

co
lu
m
n
re
pr
es
en
ts

a
cl
ie
nt
,
an

d
th
e
nu

m
be

rs
un

de
r
ea
ch

co
lu
m
n
in
di
ca
te

th
e
cl
ie
nt
’s

m
is
si
ng

la
be

l.
E
ac
h
co
lu
m
n
di
sp
la
ys

is
ol
at
ed

ac
cu

ra
cy
,F

ed
A
vg

ac
cu

ra
cy
,a

nd
ce
nt
ra
liz

ed
ac
cu

ra
cy

fo
r
on

e
cl
ie
nt
.

92

The results of this experiment are depicted in the figure 6.9. Cases 4, 11,
14, 17, 18, and 20 (the first six sets of columns from the button) are following
the same trend as has been explained in scenario 1, see 6.3.1, and scenario
2, see 6.3.2. So we move on to case 22 (the seventh set of columns from
the bottom). In this case, we can see that we have all the labels available
in all three clients; the question is, will FL improve the accuracy if they
collaborate? The answer is yes, and we can see in client 1 and client 3, 3%
and 2% improvement in FedAvg compared to isolated model respectively.
Also, we can see a better improvement of FedAvg concerning the centralized
approach in average 12% of improvement. The reason is that when we have
three big clients with all the failure causes available in their data sets. Each
can train a model more focused on labels to recognize some labels better
than another based on the number of specific points. The focus can then
be averaged in FedAvg and improve accuracy since this focus will not exist
while training on a whole dataset.

In cases 30, 31, 32 (the seventh, sixth and fifth set of columns from the
top), we see the same pattern as discussed before on client 3. However,
for client 2 we degradation of 1% inaccuracy of FedAvg in comparison with
isolated. The reason for this is based on the fact that client 2, due to the lower
number of variations in the label, now can recognize much better the rest of
the labels, so the accuracy of the isolated model is high (89%) considering
the fact the client 2 does not know labels 0, 2, 5. So, giving client 2 the
knowledge of these three labels does not change the accuracy much since
now the ability of the model to recognize the rest of the labels except for 0,
2, 5 is lower. For the rest of the cases, the same reasoning will apply except
that the degradation in FedAvg compared to the isolated model is based on
the combination of the labels missing from the third client. For example,
in case 35(the second set of columns from the top), the degradation is bout
10%. Here we can see that when many labels are missing in two clients, see
the last case (number 36 in the table 6.9), the FedAvg accuracy of the client
1 which has all the labels on its dataset will descrease by 5% in comparison
with isolated case. This case is helpful for the second and third operators but
not convenient for the first party. Also, merging all the data will not help
much because it violates privacy and requires a large database unit, and the
accuracy would be the same as FL. The other examples follow the patterns
illustrated and discussed in the sections 6.3.1 and 6.3.2 since the label with
the lowest repetition will not have a significant impact on the final accuracy.

93

F
ig
ur
e
6.
9:

C
om

pa
ri
so
n
of

ac
cu
ra
cy

fo
r
sc
en
ar
io

3.
ea
ch

se
t
of

th
re
e
co
lu
m
ns

di
sp
la
yi
ng

on
e
ca
se

co
rr
es
po

nd
in
g
to

th
e
ta
bl
e

6.
5
(g
ro
up

s
fr
om

ri
gh

t
to

le
ft

in
th
e
fig

ur
e
m
at
ch

w
it
h
th
e
ca
se
s
in

th
e
ta
bl
e
fr
om

up
to

do
w
n)
.
Fu

rt
he

rm
or
e,

ea
ch

co
lu
m
n
re
pr
es
en
ts

a
cl
ie
nt
,a

nd
th
e
nu

m
be

rs
in

ea
ch

co
lu
m
n
in
di
ca
te

th
e
cl
ie
nt
’s
m
is
si
ng

la
be

l.
E
ac
h
co
lu
m
n

di
sp
la
ys

is
ol
at
ed

ac
cu
ra
cy
,F

ed
A
vg

ac
cu
ra
cy
,a

nd
ce
nt
ra
liz
ed

ac
cu

ra
cy
.

94

6.4 Effect of missing labels on one client

We investigate the impact of missing labels on only one client. This study
will help you understand how FL can assist increase accuracy as the number
of missing labels grows.

We assumed in this case that we have two clients with all of the accessible
labels. Furthermore, one client can profit from the expertise of its two peers.
As seen in Fig 6.10, When there is no label missing in the last client, we can
see that FL is improving the accuracy by 2% in comparison with isolated
model and 8% compared to centralized. We can see how FL aids in the
development of a more accurate failure-case detection model where we can
classify a newly seen data point with the features mentioned earlier in the six
failure root-cause categories. Following this, we will go to the low repetition
label (label 2); this label is missing from the third client. We can see that
FedAvg decreases the accuracy concerning isolated and centralized models
by 5% and 3%, respectively. This decrease happens because of the added
knowledge of label 2 where we only have one of it in our test set, and it
can bring the accuracy of our classifier to recognize other labels with more
repetition correctly.

As we move on to the fourth column of the table with label 5, which has
the highest repetition is missing, we can see the effect of FL on accuracy here
FedAvg has the accuracy of 75% whereas isolated has 67% and centralized
68%. We can see here that an operator is missing a high repeated label. The
gain of the accuracy improvement with FedAvg is about 8%. Now we explain
the following case where labels 0 and 2 are missing, and we can that even
though when each one of them is missing alone in a client, we would not
see a good improvement in accuracy of FedAvg compared to isolated when
both of them are missing from a client, we can see that the improvement is
about 9%. This improvement can be significant for this client since from now
on, and it can classify two more failure causes without ever seeing them. In
the cases where label 5 is missing with labels 0 and 2, we can see that the
improvement of FedAvg is noticeable compared to the isolated model. To be
precise, when labels 2 and 5 are missing from one client, the improvement of
FedAvg is 9%; however, when labels 2 and 0 are missing, the improvement is
22%. Here we can see that the more labels with more repetition are missing
in one client, the improvement of FedAvg in comparison to an isolated case
in increasing; for example, this improvement in when label 2 is missing is -5%

95

but when labels 0,5 are missing which have 22% and difference between them
27%. So, the best option for this client is FedAvg according to the isolated
model. We have not seen any improvement after the number of low-response
sites was reduced. We do not notice any progress since the low repeated
label points are too little, which does not impact the model and reduces
FL accuracy. This effect can be explained by the fact that the accuracy of
predicting other labels might be lowered compared to the isolated instance.
The critical aspect here is that the more labels, and thus the more points
missing from one client, the more the FL may assist in having an accuracy
approaching centralized model.

Figure 6.10: Accuracy comparison for missing labels in one client. The numbers
on x axis define the missing labels in the client

96

Chapter 7

Conclusions and Future Work

This thesis presented the failure identification problem in microwave net-
works as a federated learning classification problem. We took a data sequence
from a genuine Italian microwave network and showed our data preparation
technique to make them acceptable for our algorithm.

We examine the performance of three alternative classification approaches
(Isolated, Federated, and Centralized) and find the trade-offs in classification
accuracy, privacy, and needed space. We also assess the algorithms’ perfor-
mance using varying amounts of labeled data. Based on our findings, we con-
clude that federated learning may enhance accuracy significantly more than
isolated learning and can be as good as or better than centralized learning,
assuming we have the proper state.
To decrease the cost of sharing the model, we should carefully examine the
missing label. In our work, the focus was on the repeating of the failure;
we examined three types of labels with low (2), medium (0), and high(5)
repetition.
We can say that for the most repeated label(5), we can see an increase of 20%
in accuracy compared to isolated. Also, when all the participants share their
data through federated learning, the final result can be better. Nevertheless,
we can see a slight improvement in the least repeated label which means the
client who lacks it can now recognize and classify it. However, if we have a
big operator with all the data available, we may see a degradation inaccuracy
in all the cases.

So, in conclusion, federated learning can be beneficial in terms of the
users’ privacy and communications of the data. However, operators should

97

first consider the missing label and then examine if federated learning can
benefit them or not.

As future work, the followed research directions can be identified:

• Evaluate other aspects like the number of labels that are missing in the
client.

• Analyse other classification algorithms able to classify and can be in-
tegrated with federated learning.

• Do other data separation based on other features like geographical sep-
aration.

• Try with aggregation biased towards the specific client

98

Bibliography

[1] A. Alhosban, Z. Malik, K. Hashmi, B. Medjahed, and H. Al-Ababneh, “A
two phases self-healing framework for service-oriented systems,” ACM
Trans. Web, vol. 15, Apr. 2021.

[2] M. Nouioua, P. Fournier-Viger, G. He, F. Nouioua, and Z. Min, “A sur-
vey of machine learning for network fault management,” Machine Learn-
ing and Data Mining for Emerging Trend in Cyber Dynamics, p. 1–28,
2021.

[3] B. C. Wyld, “Failure detection method in a communication channel with
several routes,” Apr. 7 1998. US Patent 5,737,311.

[4] B. Wang, H. Yang, Q. Yao, A. Yu, T. Hong, J. Zhang, M. Kadoch, and
M. Cheriet, “Hopfield neural network-based fault location in wireless and
optical networks for smart city iot,” in 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), pp. 1696–
1701, IEEE, 2019.

[5] H. Wietgrefe, K.-D. Tuchs, K. Jobmann, G. Carls, P. Fröhlich, W. Nejdl,
and S. Steinfeld, “Using neural networks for alarm correlation in cellular
phone networks,” in International Workshop on Applications of Neu-
ral Networks to Telecommunications (IWANNT), pp. 248–255, Citeseer,
1997.

[6] S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, “Machine-
learning-based soft-failure detection and identification in optical net-
works,” in Optical Fiber Communication Conference, p. M3A.5, Optical
Society of America, 2018.

[7] F. Musumeci, L. Magni, O. Ayoub, R. Rubino, M. Capacchione, G. Rig-
amonti, M. Milano, C. Passera, and M. Tornatore, “Supervised and semi-
supervised learning for failure identification in microwave networks,”
IEEE Transactions on Network and Service Management, vol. 18, no. 2,
pp. 1934–1945, 2021.

99

[8] I. Syrigos, N. Sakellariou, S. Keranidis, and T. Korakis, “On the employ-
ment of machine learning techniques for troubleshooting wifi networks,”
in 2019 16th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pp. 1–6, IEEE, 2019.

[9] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini,
and M. Tornatore, “An overview on application of machine learning tech-
niques in optical networks,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1383–1408, 2018.

[10] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Federated learning for
machinery fault diagnosis with dynamic validation and self-supervision,”
Knowledge-Based Systems, vol. 213, p. 106679, 2021.

[11] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-
based computation offloading optimization in edge computing-supported
internet of things,” IEEE Access, vol. 7, pp. 69194–69201, 2019.

[12] B. Shariati, P. Safari, G. Bergk, F. I. Oertel, and J. K. Fischer, “Inter-
operator machine learning model trading over acumos ai federated mar-
ketplace,” in Optical Fiber Communication Conference (OFC) 2021,
p. M2B.7, Optical Society of America, 2021.

[13] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” CoRR, vol. abs/1812.06127, 2018.

[14] S. Liu, D. Wang, C. Zhang, L. Wang, and M. Zhang, “Semi-supervised
anomaly detection with imbalanced data for failure detection in optical
networks,” in Optical Fiber Communication Conference (OFC) 2021,
p. Th1A.24, Optical Society of America, 2021.

[15] C. Wang, N. Yoshikane, F. Balasis, and T. Tsuritani, “Acceleration and
efficiency warranty for distributed machine learning jobs over data center
network with optical circuit switching,” in 2021 Optical Fiber Commu-
nications Conference and Exhibition (OFC), pp. 1–3, 2021.

[16] J. Li, L. Chen, and J. Chen, “Scalable federated learning over passive
optical networks,” CoRR, vol. abs/2010.15454, 2020.

[17] G. Yufeng, “The 7 steps of machine learn-
ing.” https://towardsdatascience.com/
the-7-steps-of-machine-learning-2877d7e5548e. Accessed :
2019-09-11.

100

https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e

[18] F. Trovò, “Exercises notes in machine learning,” 2019.

[19] A. Tharwat, “Classification assessment methods,” Applied Computing
and Informatics, 2018.

[20] W. S. Sarle, “Neural networks and statistical models,” 1994.

[21] S. S. Haykin et al., Neural networks and learning machines/Simon
Haykin. New York: Prentice Hall„ 2009.

[22] M. Nielsen, “Neural networks and deep learning.” http:
//neuralnetworksanddeeplearning.com/chap2.html. Accessed
: 2019-09-13.

[23] “Introduction to support vector machines.” https://docs.opencv.
org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_
to_svm.html. Accessed : 2019-09-16.

[24] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Feder-
ated Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers, 2019.

[25] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” CoRR,
vol. abs/1602.05629, 2016.

[26] Y. Lie, W. Yang, T. Chen, and Z. Wei, “Federated learn-
ing and transfer learning for privacy, security and confidential-
ity.” AAAI 2019 Tutorial, https://aisp-1251170195.file.myqcloud.
com/fedweb/1552916850679.pdf.

[27] W. A. Department, “Federated learning white paper v1.0 webank,
shenzhen, china.” https://aisp-1251170195.cos.ap-hongkong.
myqcloud.com/fedweb/1552917186945.pdf2,5, September 2018.

[28] F. hartmann, “Federated learning.” https://florian.github.io/
federated-learning/1,56,66, August 2018.

[29] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018.

[30] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” CoRR,
vol. abs/1903.02891, 2019.

101

http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://aisp-1251170195.file.myqcloud.com/fedweb/1552916850679.pdf
https://aisp-1251170195.file.myqcloud.com/fedweb/1552916850679.pdf
https://ai sp-1251170195.cos.ap-hongkong.myqcloud.com/fedweb/1552917186945.pdf 2, 5
https://ai sp-1251170195.cos.ap-hongkong.myqcloud.com/fedweb/1552917186945.pdf 2, 5
https://florian.github.io/federated- learning/ 1, 56, 66
https://florian.github.io/federated- learning/ 1, 56, 66

[31] V. Lier, “Robustness of federated averaging for non-iid data,” Master’s
thesis, Computer Science, 2018.

[32] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo, “Analyzing fed-
erated learning through an adversarial lens,” CoRR, vol. abs/1811.12470,
2018.

[33] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. A. Bonawitz, Z. Charles, G. Cormode, R. Cummings,
R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,
L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi,
M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Le-
point, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh,
M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U.
Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang,
L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances
and open problems in federated learning,” CoRR, vol. abs/1912.04977,
2019.

[34] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” CoRR, vol. abs/1810.06060, 2018.

[35] P. Vepakomma and O. Gupta, “Mit media lab’s split learning: Dis-
tributed and collaborative learning.”

[36] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2011.

[37] A. Gooday, “Understanding federated learning terminology,” Sep 2020.

[38] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” CoRR, vol. abs/1812.06127, 2018.

[39] K. Xu, H. Mi, D. Feng, H. Wang, C. Chen, Z. Zheng, and X. Lan,
“Collaborative deep learning across multiple data centers,” CoRR,
vol. abs/1810.06877, 2018.

[40] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fumarola, “To-
wards geo-distributed machine learning,” CoRR, vol. abs/1603.09035,
2016.

102

[41] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient intrusion
detection system based on support vector machines and gradually fea-
ture removal method,” Expert Systems with Applications, vol. 39, no. 1,
pp. 424–430, 2012.

[42] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with
autoencoder ensembles,” in Proceedings of the 2017 SIAM International
Conference on Data Mining, pp. 90–98, SIAM, 2017.

[43] D. Liu, T. A. Miller, R. Sayeed, and K. D. Mandl, “FADL: federated-
autonomous deep learning for distributed electronic health record,”
CoRR, vol. abs/1811.11400, 2018.

[44] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, H. B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” CoRR, vol. abs/1902.01046,
2019.

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[46] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-
formance evaluation of federated learning algorithms,” in Proceedings of
the Second Workshop on Distributed Infrastructures for Deep Learning,
DIDL ’18, (New York, NY, USA), p. 1–8, Association for Computing
Machinery, 2018.

[47] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
CoRR, vol. abs/1610.02527, 2016.

[48] Y. Wang, “Co-op: Cooperative machine learning from mobile devices.,”
Master’s thesis, Dept. Elect. and Comput. Eng., 2017.

[49] Commscope, “Microwave communication basics,” 2017.

[50] L. Reggiani, “Lecture notes in wireless communication,” 2018.

[51] “Multipath fading.” https://www.electronics-notes.com/
articles/antennas-propagation/propagation-overview/
multipath-fading.php. Accessed : 2019-08-29.

103

http://www.deeplearningbook.org
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-fading.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-fading.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/multipath-fading.php

[52] F. Coenning, “Understanding itu-t error performance recommen-
dations.” https://www.julesbartow.com/Pictures/ITS/ITU-T_
Errors_ApplicationNote2.pdf.

[53] L. Magni, “Machine-learning-assisted failure management in microwave
networks,” Master’s thesis, Telecommunications engineering, 2019.

[54] M. Asad, A. Moustafa, and T. Ito, “Federated learning versus classical
machine learning: A convergence comparison,” 10 2020.

[55] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR,
vol. abs/1610.03295, 2016.

[56] B. Ravi, J. Thangaraj, and S. Petale, “Data traffic forwarding for inter-
vehicular communication in vanets using stochastic method,” Wireless
Personal Communications, vol. 106, pp. 1591–1607, Jun 2019.

[57] G. Psychou, D. Rodopoulos, M. M. Sabry, T. Gemmeke, D. Atienza,
T. G. Noll, and F. Catthoor, “Classification of resilience techniques
against functional errors at higher abstraction layers of digital systems,”
ACM Comput. Surv., vol. 50, Oct. 2017.

[58] D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling,
“Learning to compose words into sentences with reinforcement learn-
ing,” CoRR, vol. abs/1611.09100, 2016.

[59] M. Ferdman, A. Almutaz, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, and A. Ailamaki, “Clearing the clouds: A
study of emerging scale-out workloads on modern hardware,” in 17th In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, March 2012.

[60] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” CoRR,
vol. abs/1912.09789, 2019.

[61] G. E. Batista and M. C. Monard, “An analysis of four missing data
treatment methods for supervised learning,” Applied artificial intelli-
gence, vol. 17, no. 5-6, pp. 519–533, 2003.

[62] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-
formance evaluation of federated learning algorithms,” in Proceedings of
the Second Workshop on Distributed Infrastructures for Deep Learning,

104

https://www.julesbartow.com/Pictures/ITS/ITU-T_Errors_ApplicationNote2.pdf
https://www.julesbartow.com/Pictures/ITS/ITU-T_Errors_ApplicationNote2.pdf

DIDL ’18, (New York, NY, USA), p. 1–8, Association for Computing
Machinery, 2018.

[63] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR,
vol. abs/1502.03167, 2015.

[64] A. Kanekar, “Optimization and convergence of machine learning algo-
rithms,” Jun 2018.

[65] D. Loiacono, “Model evaluation, selection and ensembles machine learn-
ing,” 2020.

105

	Introduction
	Thesis Contribution
	Thesis Outline

	Related work
	Failure Management
	Federated Learning in Networks

	Background
	Machine Learning Methodologies
	Machine Learning Definition
	Classification
	Classification algorithms

	Federated Learning Methodologies
	Federated Learning Definition
	Federated Learning Local Data Owners Distribution
	Federated Optimization
	Federated Learning Algorithms

	Microwave Networks Technologies
	Hardware Components
	Channel Characterization
	ACM
	Performance Metrics
	Categories Of Failures In Microwave Links

	Problem Statement
	Failure Identification
	Input Data

	Failure Identification With Traditional Machine Learning
	Supervised Failure identification

	Strategies for Training Machine Learning Model in Distributed Datasets
	Centralized Machine learning
	Distributed Machine learning
	Federated Learning Solution

	Federated-Learning-Assisted Failure Management in Microwave Networks
	Data Preprocessing
	Handling Incomplete Information
	Features Normalization

	Failure Identification Using Federated Learning
	Training
	Model and Hyperparameters Search

	Numerical Results
	Data analysis and presentation
	Data Separation
	Failure Identification
	Scenario 1: where only one type of label is missing
	Scenario 2: where two types are labeled is missing
	Scenario 3: where three types of the label is missing

	Effect of missing labels on one client

	Conclusions and Future Work

