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Abstract

With the growth of e-commerce, the need to enrich online catalogues data

has become an important factor for companies in all sectors. In particular,

this thesis focuses on the Fashion domain, where clothing companies offer

online catalogues overflowing with images which require tags and captions

so that the client is able to find the wanted item. However, assigning tags

and descriptions to this incredible amount of images is not an easy task, as it

requires not only a lot of time but also the knowledge of a fashion expert to

provide detailed and correct information. Therefore, the goal of this thesis

work is to design and implement systems able to automatically generate

tags and captions for clothing images leveraging Deep Learning techniques

applied to the Computer Vision and Natural Language Processing fields.

We develop an approach to generate tags from the image based on Convo-

lutional Neural Networks and we compare the obtained results with those of

others works related to ours, evaluated on a public dataset. We observe that

our approach reaches similar performance without leveraging landmarks,

additional annotations which identify a set of points of the garment. Fur-

thermore, to generate image captions we propose a novel approach based on

GPT-2, a language model which is able to generate complex sentences from

an initial text. The novelty of our approach is exploiting GPT-2 to generate

text from an image and, if it is available, also textual information such as

tags or metadata related to the item itself. We perform several experiments

to examine how the two input modalities, visual and textual, influence our

model and we compare its performance with other algorithms on industrial

datasets, to verify the quality of our work. Finally, we propose a system

in which we combine our approaches for tag and caption generation into a

unique model capable of performing both tasks simultaneously.
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Sommario

Con la crescita dell’e-commerce, la necessità di arrichire i dati dei cataloghi

online è diventato un fattore sempre più importante per le aziende di ogni

settore. In particolare, questo lavoro di tesi affronta questa sfida nel dominio

Fashion, in cui le aziende di abbigliamento mettono a disposizione i propri

cataloghi online con numeri elevati di immagini a cui devono essere associati

tag e descrizioni per fare si che il cliente sia in grado di trovare efficacemente

il capo che sta cercando. Tuttavia, assegnare tag e descrizioni per questa

mole incredibile di immagini non è un compito facile, siccome richiede non

solo molto tempo ma anche una esperta conoscenza della moda per poter

fornire informazioni dettagliate. Il nostro lavoro di tesi ha, quindi, come

obiettivo quello di studiare e implementare sistemi in grado di generare tag

e descrizioni per immagini di capi d’abbigliamento sfruttando tecniche di

Deep Learning applicate nei campi di Computer Vision e Natural Language

Processing.

Sviluppiamo un approccio per generare tag dall’immagine basato su Con-

volutional Neural Network e ne confrontiamo i risultati ottenuti con quelli di

altri lavori relativi al nostro, valutati su un dataset pubblico. Osserviamo che

il nostro approccio raggiunge simili risultati senza sfruttare i landmarks, an-

notazioni aggiuntive che identificano alcuni punti del capo d’abbigliamento.

Inoltre, per generare descrizioni per le immagini proponiamo un nuovo ap-

proccio che sfrutta GPT-2, un modello in grado di generare frasi comples-

se dato un testo di partenza. L’aspetto innovativo del nostro approccio è

sfruttare GPT-2 per generare frasi partendo da una immagine e, se sono di-

sponibili, anche informazioni testuali come tag o metadata legati allo stesso

oggetto. Svolgiamo diversi esperimenti per studiare come le due modalità

di input, visuale e testuale, influenzano il nostro modello e ne confrontiamo

le performance con altri algoritmi su dataset industriali, per verificare la

qualità del nostro lavoro. Infine, presentiamo un sistema in cui combiniamo

i nostri approcci per la generazione di tag e descrizioni in unico modello in

grado di svolgere entrambi i task.
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Chapter 1

Introduction

We are currently going through a digital transformation, where our actions

and our way of living are heavily influenced by the technology around us,

with its advantages and disadvantages. This can be noticed even more

in the industry where companies are always investing more resources in

new technologies, starting from e-commerce, i.e. the trade of products and

services online. With the growth of e-commerce, new challenges have come

up to deal with the incredible amount of data that is available online. Many

of these problems are related to managing and enriching data in online

catalogues, where users go in order to buy and sell products and services

over the Internet. Online catalogues store millions, even billions, of items

with the related images, tags and descriptions and, therefore, it’s almost

impossible to manually manage all of this data. Hence, the goal of this thesis

is to study the current state-of-the-art methods in the research community

and propose a novel approach that helps in managing web catalogues by

automatically labelling and providing descriptions to items online.

In this work we are specifically focusing on the fashion domain, since it

is one of the e-commerce domains where our approach is needed the most.

As a matter of fact, almost every fashion company nowadays is also selling

its products online, relying on catalogues filled with products images that

have to be correctly tagged and captioned so that the potential client is able

to find the garment which is looking for.

1.1 Context: Fashion Image Tagging and Caption-

ing

The research area of this thesis work is an intersection between two vast

area of research: Computer Vision and Natural Language Processing. The



former consists of all the techniques whose goal is to give machines the ability

to understand, at different levels, the content of an image, a video or their

surroundings just by ”looking” at it. The latter, instead, focus on creating

systems able to comprehend and reproduce human language for different

tasks.

More precisely, we focus on Image Tagging and Captioning applied to the

fashion domain in order to enrich fashion online catalogues. Even though

Image Tagging and Captioning are two tasks that have been vastly explored

over the last decades, the research community is still very active on these

topics and novel approaches are continuously proposed. Image Tagging is a

classification task where the model must be able to identify all the smallest

details and patterns in an image in order to correctly discriminate between

all the possible classes and generate tags. Image Captioning goal is to ana-

lyse an image and produce a syntactically correct sentence that describes the

content of the image. We study and analyse the most important techniques

in these vast areas of research and from these we build our own approach

to tackle the inherent challenges of the fashion domain, which we present in

the next chapter.

1.2 Scenario and Problem Statement

Every company that wants to sell its products online needs to have a com-

plete and detailed catalogue with all the available products and their re-

lated information. This list can contain thousands of different products

and, moreover, it is always changing, with new items added continuously.

In the fashion domain, this happens very frequently as each season or trend

correspond to new products to be inserted in the catalogue. One problem is

that there has to be someone responsible for manually checking each item,

looking at the image and assigning all the labels related to that item and,

possibly, a description. This process can take a great amount of time de-

pending on the number of products and how frequently this work has to be

done, while, instead, the people responsible for this could spend more time

on more creative and less mechanical tasks.

Furthermore, in the fashion domain, discriminating between different

garments types, styles, materials and fine-grained details is not always trivial.

As an example, there are more than 50 types of dresses1, that differ depend-

ing on the silhouette, sleeves, length, fabric, hem shape and so on. Therefore

it is necessary to have an expert with this knowledge capable of recognising

1https://sewguide.com/types-of-dresses/
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even the smallest details which characterise a garment. Another example

of the different details which characterise a fashion item is shown in figure

1.1. The amount of clothing parts, attributes and details make clothing

recognition a difficult task for humans and machines alike.

Figure 1.1: Example of fine-grained details for fashion items. Image taken from iMa-

terialist (Fashion) 2020 Kaggle Competition2

In summary, this problem is an important challenge that has to be faced

by fashion companies for both time and expert knowledge needs and having

a system able to assist manual work or even replace it would certainly be

an asset.

1.3 Contributions

With the knowledge acquired from the analysis of the state of the art related

to Image Tagging and Image Captioning, we propose novel approaches for

these two tasks applied in the fashion domain and we test and compare

them with other baselines on several datasets, both public and private. The

2https://www.kaggle.com/c/imaterialist-fashion-2020-fgvc7

3

https://www.kaggle.com/c/imaterialist-fashion-2020-fgvc7


task of Fashion Image Captioning, in particular, has not received a lot of

attention so far from the research community and, therefore, with our work

we also hope to help the research in this direction.

First, regarding the Fashion Image Tagging task, we compare our ap-

proach with state-of-the-art algorithms evaluated on a public large-scale

dataset for fashion called DeepFashion [LLQ+16]. We observe that the cur-

rent state-of-the-art approach [LL18] relies on a landmark attention branch

to improve the performances in the Category and Attribute prediction task,

where two different type of tags have to generated. Given the fact that

landmarks, which correspond to a set of key-points on the clothes structure,

are a type of annotation that is rarely available in real-word datasets, we

prefer to build a model that doesn’t exploit this extra information. We then

compare the results of our model with the current state-of-the-art and, as

explained in chapter 6.1.5, we show that our approach slightly outperforms

the baseline with landmark attention, suggesting that using this type of

mechanism based on the additional landmarks annotations doesn’t seem to

be necessary to improve the performance for the generation of fashion tags.

For the Fashion Captioning task, we propose a novel approach based on

GPT-2 language model [RWC+19] to generate captions for an image. GPT-2

architecture has surprised many for its ability to generate coherent and com-

plex text but, to the best of our knowledge, is yet to be used in the context

of generating text given features extracted from an image and, therefore,

with our work we want to provide a contribution to this research question.

Furthermore, we don’t limit our model to leverage only visual features but

we consider the possibility of improving the quality of the generated caption

by exploiting also additional textual information associated to the image,

if available. This is particularly useful when generating captions for cata-

logues which already have some information available as tags or metadata

that can serve as additional features to help the model understanding the

image content. We present a performance study comparing our approach

with other baselines and we also perform a multimodal analysis by examin-

ing whether our model relies on one input modality more than the other

in different settings, with both quantitative analysis on evaluation metrics

and qualitative ones by observing the generated captions and visualizing the

attention layers inside our GPT-2 model.

Finally, we present a model capable of generating simultaneously tags

and caption by combining our approaches for Fashion Tagging and Cap-

tioning into a unique system. We carry out a performance study also for

this approach by comparing its performance with those of our models which

perform, separately, Tagging and Captioning.

4



1.4 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 introduces the state of the art techniques on which this

thesis work is based and present them in depth to provide the reader

with the essential knowledge.

• Chapter 3 consists of the description and analysis of the datasets we

use to train and evaluate our algorithms, highlighting similarities and

differences between them.

• Chapter 4 outlines works by other authors which tackle similar prob-

lems, both in Image Tagging and Image Captioning tasks.

• in Chapter 5 we introduce our models architecture and design decisions

that lead us to implement our solutions.

• Chapter 6 presents the results obtained in the different tasks and com-

pares them with baseline works.

• Chapter 7 summarizes the contributions, limitations of our work and

proposes future research directions

5
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Chapter 2

Background

In this chapter we present the background related to the two challenges

we face in this thesis work: Image Tagging and Image Captioning. For

the former we present the most important techniques and algorithms which

involve the generation of tags for an image, at different levels of granularity

from the entire image categorization to object detection. For the latter we

list the most relevant architectures in the Natural Language Processing field

and their application to Image Captioning.

2.1 Image Tagging

Image Tagging is a big part of Computer Vision and it is one of the core

research tasks where the community is always proposing new and improved

solutions. This field includes all the techniques that focus on generating

labels for an input image.

Depending on the goal and on the type of labels, we can identify different

tasks that relate to this broad area of research. If the focus is on generating

a single label for the entire image, choosing from a finite set of labels, then

this task is generally referred to as Multi-Class classification. If, instead,

multiple labels can be used to describe a single image then we are usually

talking about a Multi-Label classification problem. In this thesis we are

mainly focusing on this two tasks of Image Tagging since we want to generate

multiple tags for a fashion image in order to enrich a catalog with data.

There are other problems that can be considered as subsets of Image

Tagging. Object Detection consists of identifying different object in an im-

age and also marking their position with a bounding box. Another example

is Image Segmentation where the goal is to assign a label to each pixel in

an image, one of the most fine-grained level of classification.



We also provide a brief description of Convolutional Network Networks

for their contribution in moving forward the research in Computer Vision

as effective visual feature extractors and since they are a fundamental com-

ponent in all our approaches.

2.1.1 Convolutional Neural Networks

A Convolutional Neural Network is a Deep Learning algorithm made spe-

cifically for learning autonomously how to extract useful features from an

image while reducing the image into a form that is easier to process, making

it scalable for big datasets. It is a trainable end-to-end architecture through

back-propagation, as normal feed forward neural network, with the addition

of convolutional and pooling layers.

Inside a convolutional layer, a convolution is performed between the

input image and a filter (or kernel), typically a square matrix with values

around 3 or 5 pixels for width and height and same depth as the input.

The filter slides across the input moving from left to right and from top

to bottom with a certain stride value, and, at each step, a dot product is

computed between the filter weights and the values in the portion of the

image over which the filter is hovering.

The reason why these layers are so effective when it comes to image

processing is that they can capture the spatial dependencies between the

pixels in an image and the filters are trained to search for relevant features.

Typically, the first convolutionals layer in a CNN architecture are responsible

for capturing low-level features such as edges, color, gradient orientation.

By adding more layers, the architecture learns also features that are more

high-level and obtain a general understanding of the image.

Another type of layer that is commonly used in a ConvNet is the pooling

layer. The goal of a pooling layer is to reduce the spatial dimensionality of

the feature to decrease the computational effort required to process them.

After convolutional and pooling layers, a convolutional block is com-

pleted by a non-linear activation function such as ReLU that is responsible

for the neurons activation as in the normal feed forward neural networks.

Thanks to these non-linear operations the neural network is able to model

complex non-linear functions that otherwise, as a linear regression model,

would not be capable of.

In a image classification setting, for example, the final output of CNN is

flattened into 1-dimensional array that serve as input to a fully connected

layer. The last layer gives as output a vector with size equal to the num-

ber of classes which, after passing through a softmax or sigmoid activation

8



function, returns the probabilities of all the classes.

ResNet

ResNet, short for Residual Networks [HZRS16], is one of the most used back-

bone architectures in Computer Vision tasks and the winner architecture of

the ImageNet1 challenge in 2015 with a 3.57% error rate.

A common thought in the Deep Learning field is that deeper architec-

tures always achieve better results than their shallow counterpart. However,

this is not always the case, as He et al. [HZRS16] prove by plotting the

training and test error of a 20-layer CNN versus a 56-layer CNN (figure 2.1

) where the deeper network has both higher training and test errors, there-

fore the worse results don’t seem to be due to an overfitting problem which

is evident when the training error is low but the test error is high.

Figure 2.1: Training error (left) and test error (right) with 20-layer and 56-layer net-

works. The deeper network has higher training error, and thus test error. Image taken

from [HZRS16]

There could be different reasons for the failure of 56-layer CNN: optim-

ization function, initialization of the network, vanishing/exploding gradient

problem.

He et al. [HZRS16] propose a solution that makes it possible to train

deeper networks that obtain better results: the Residual Block. As shown in

figure 2.2, the residual block is composed by a normal layer and a identity

mapping that does not have any parameters and is just there to add the

output from the previous layer to the layer ahead. ResNet is a CNN with

the addition of residual blocks that help in the training of deeper models.

According to [Dwi19], the Residual Blocks work because they mitigate the

problem of vanishing gradient by allowing this alternate shortcut path for

1http://www.image-net.org/challenges/LSVRC/
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Figure 2.2: Residual Learning: a building block. Image taken from [HZRS16]

gradient to flow through and also because they allow the model to learn an

identity function which ensures that the higher layer will perform at least

as good as the lower layer, and not worse. In this work we use ResNet as

the backbone of our architectures.

2.1.2 Object Detection

Object Detection represents a group of problems in which the task is to

identify the type of objects present in an image and also localize their po-

sition, typically with bounding boxes (e.g. defined by a point, width, and

height). Therefore, it includes both image classification and object localiz-

ation tasks.

One of the most successful application of Deep Learning to the problem

of Object Detection is Faster R-CNN [RHGS15]. This model is composed by

three different components: a Feature Extractor,a Region Proposal Network

and a Classifier. The Region Proposal Network (RPN) analyse the output

feature map generated by the feature extractor and it decides whether an ob-

ject is present in the input image and return its location and its estimate size

as Region of Interest. This is done by using anchors, i.e. rectangular boxes

of different dimensions, placed on the output features and the RPN check

whether the anchors contain objects while refining the anchors coordinates

to return bounding boxes. The regions proposed by RPN are then resized

to a fixed size with a RoI pooling layer. Finally, all the feature maps are

flattened and fed as input to fully connected layers that have two outputs.

The first is the softmax classification layer that finds the probabilities for

the object in the region. The second is the Bounding Box regressor, which

outputs the bounding box coordinates for each object class. Figure 2.3 illus-

trate the architecture of Faster R-CNN for object detection and recognition

applications.

10



Figure 2.3: Faster R-CNN Architecture. [RHGS15]

2.1.3 Image Segmentation

Among all the tasks than can be considered as Image Tagging, Image Seg-

mentation is the one that operates at the most fine-grained level. As a matter

of fact, the goal of Image Segmentation is to assign a label to each pixel in an

image such that pixels with same labels share certain characteristics. Pixels

clustered in the same regions can identify different surfaces, objects or part

of objects. Semantic Segmentation corresponds to the task of finding objects

of different classes in the picture, without discriminating different entities

of the same class. This last part is done in the Instance Segmentation task

which, in fact, is typically more challenging than semantic. Semantic Seg-

mentation is also used in the Fashion Industry to extract clothing items from

an image to provide similar suggestions from retail shops [Raj19].

One of the state-of-the-art image segmentation techniques is Mask R-

CNN [HGDG17]. Mask R-CNN is built on top of a Faster R-CNN and,

therefore, in addition to the class label and the bounding boxes of each

object in the image, it will also return the object segmentation masks. It

extends Faster R-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recognition and it outputs

a binary mask for each RoI.

11



2.2 Image Captioning

In this thesis work we are exploring different ways of enriching fashion online

catalogues, not only by generating tags from an image but also a correct

caption, capable of describing an item in a syntactically and semantically

correct way. The task of making machines able to describe the content of

a picture is often referred to as Image Captioning and it is also one of the

most studied problems in the Computer Vision research community. In this

section we are going to provide an overview of the current background of

Image Captioning, starting from Natural Language Processing techniques

which are at the core of many solutions.

2.2.1 Language Modeling

Natural Language Processing (NLP) is defined as the automatic manipula-

tion of natural language, like speech and text, by software. It’s a vast area

of research, with different application such as speech recognition, language

translation and sentiment analysis, with the goal of making machines cap-

able of understanding language and also generating it. A machine, however,

operates on the basis of mathematical rules and therefore it needs to rely on

a mathematical model to perform a kind of reasoning that a human would

do with ease. The creation of this mathematical model is called Language

Modeling.

Language Modeling (LM) is the use of various statistical and probabil-

istic techniques to determine the probability of a given sequence of words

occurring in a sentence2. It includes different techniques to translate a text

into a machine-understandable format and analyse it. Language is usually

very complex to understand even for a human and all languages have their

unique words and rules that makes them different from one another. How-

ever, each word in a sentence is somehow related to the other words in the

sentence that are frequently used with it. As an example, a simple statistical

model could analyse how each word is frequently used after another word

and, with this, compute the probability of each word and build a language

model. However, this model is not capable of learning all the intrinsic nature

of a language so neural models based on deep learning are used to learn the

rules of a grammar, all without explicit teaching.

2https://searchenterpriseai.techtarget.com/definition/language-modeling
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2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a particular type of Neural Network

that are made specifically for modelling sequence data and, since sentences

are just sequences of words where the order matters, they are used also for

language modeling. The main difference with the simple statistical model

described in the previous section, is that RNNs don’t simply compute the

probability P (X|Y ) of a word X given the past word Y, but they also have

a memory that stores information about previous words in a hidden state

vector. RNN work sequentially as we feed it one word as input at each step,

it returns the output and the modified hidden state which will be used at the

next step. One problem of traditional Recurrent Neural Networks is that

they suffer from short-term memory meaning that, if a sentence becomes

quite long, the network will tend to forget the first words in the sequence

and it may leave out important information. There are two specifics types of

Recurrent Neural Networks that are meant to mitigate this problem: GRU

and LSTM.

LSTM and GRU works almost identically as traditional RNNs, but they

have additional layers called Gate layers that are capable of learning long-

term dependencies. These gates can learn what information to add or remove

to the hidden state so that it can pass the relevant information down the

long chain of sequences.

Figure 2.4: LSTM and GRU cells internal architecture. Image taken from [Phi20]

13



In figure 2.4, the internal structures of LSTM’s and GRU’s cells are

showed. LSTM cell is characterised by three gates: forget gate, input gate

and output gate. The first one decides what information should be thrown

away or kept, the input gate is responsible for updating the cell state and the

last one is used to compute how the next hidden state should be. The cell

state and the hidden state are the final output which is fed as input in the

next time step. GRU’s structure is similar to LSTM’s but it removes the cell

state and use the hidden state to transfer information. It also only has two

gates, a reset gate and update gate. GRUs are faster to train than LSTMs

but typically they are less used than their counterparts. These networks,

however, don’t completely solve the long-term dependencies problem and

they are quite long to train for their recurrent structure that prevents parallel

computation.

2.2.3 Transformers

The Transformer [VSP+17] architecture represents one major breakthrough

in language modeling for its ability to overcome the computational limit-

ations of its predecessors and also to achieve better performances. Trans-

former relies on self-attention blocks, without any recurrent unit, making it

possible to analyse an input sentence and generate a new one in a parallel

way and not sequentially as for RNN. This accelerates greatly the computa-

tion and, thanks to a self-attention mechanism, the model is able to attend

to all the input words at any time and learn which are the most important

to rely on at each step.

As an example, in figure 2.5 it is possible to visualize at an high level

what the attention mechanism is really about. Here the focus is on the

attention related to the word ”it” in the sentence ”The animal didn’t cross

the street because it was too tired”. The attention highlights more the part

of the sentence close to the word ”animal”, to which ”it” refers to, while

others are less important and, therefore, their attention score is lower.

The model is composed by two components: a stack of encoders and

one of decoders having the same number of layers. The encoders have all

the same structure composed of two blocks: a Self-Attention block and a

Feed-Forward Neural Network. Decoders are composed by the same blocks,

interleaved by a block of Encoder-Decoder Attention that helps focusing on

relevant parts of the encoder outputs. The model architecture is shown in

figure 2.6 where the module of the left is the Encoder stack and the one on

the right is the stack of decoders.

Firstly, before being fed to the encoder, each word in the input sentence
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Figure 2.5: Visualization of the Attention Mechanism. Image taken from [Ala18]

is converted into an embedding vector of a fixed size. This is done thanks

to an embedding matrix, learned during training, with rows equals to the

vocabulary size and columns number as the embedding size. This new input

vector flows through the bottom encoder and its self-attention layer. Here,

for each input word, query, key and value vectors are obtained from learnable

matrices and they are used to compute the attention scores. In fact, for each

word, its corresponding query vector is multiplied with the key vectors of the

other words to obtain attention scores. These scores encode how much each

word is related to the other words in the sentence and are used to obtain

the best encoding for each word given the context. The attention scores

are passed through a softmax layer which squeezes them to values between

0 and 1 and that all sum to 1. Each of these scores is multiplied with its

corresponding value vector which are then summed together to obtain the

final embedding. The particularity of the Transformer is that this process

happens concurrently for each word in input, so each word flows through

its path but, at the same time, the computation takes into consideration all

the other words thanks to the self-attention.

The self-attention mechanism just explained describes what happens in

a single attention head but, actually, the complete process is called Multi-

Head Attention where there are different query, key and value representation

for each attention head. This extension expand the model ability to focus

on different positions while, with only one head, it could happen that the

attention focuses only on the same word. Another reason is that by learning
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Figure 2.6: Transformer Model Architecture. Image taken from [VSP+17]

different query, key and value matrices the model also projects the input

embedding into different representation subspaces.

Another important feature of Transformer is the fact that they address

the problem of considering the word order in the sentence, a relevant in-

formation in a sentence translation, by using positional encodings, vectors

which follow a particular pattern that the model learn and are added to the

input embedding.

The decoding phase consist in generating each output word step by step.

After the encoder processed the input sentence, its output is converted into

keys and value matrices which are fed to the decoder in the Encoder-Decoder

attention layer that helps the decoder focus in the more relevant part of the

input sequence. The bottom of the decoder stack is fed with the target se-

quence which is encoded in the same way as for the encoders input sequence

with the embedding matrix and positional encodings. The attention layers

in the decoder works in a slightly different way than the encoder since in

the decoder self-attention, each token can attend only those preceding it and

not those that follows it in the sentence. This is done by masking future

positions so that a current position can only be influenced by past positions
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and not future ones.

The final output embedding of the decoder is passed through a linear

layer that maps it into a vector of size equal to the vocabulary length. Here

each score, after a softmax layer, represents the probability for each word in

the vocabulary of being decoded at the current step.

2.2.4 GPT-2

GPT-2 [RWC+19] is a large-scale transformer-based language model created

by OpenAI3 and trained on a dataset composed by 40GB of Internet text.

Even if it is trained to simply predict the next word given all the previous

words within some text, the diversity of the training dataset gives this model

the capability to perform well also in other datasets and other tasks. As a

matter of fact, GPT-2 outperforms on language tasks like question answer-

ing, reading comprehension, summarization, and translation other language

models trained on these specific domains. Therefore GPT-2 implicitly learns

these tasks from the raw text, using no task-specific training data.

Figure 2.7: Decoder-Only block in GPT-2 stack of decoders. [Ala19]

GPT-2 architecture is transformer-like but it’s different from the tra-

ditional model as it exploits only a stack of decoders, without the stack

of encoders that completes the Transformer. The Decoder-Only block of

GPT-2 are composed by a layer of Masked Self-Attention and a Feed For-

ward Neural Network. The Masked Self-Attention is necessary for the next

token computation as it allows the model to attend to only to previous words

in the sentence, without peaking at tokens to its right. This is what makes

GPT-2 an auto-regressive model: predicting each new token on the basis of

previous tokens, which will then be added to the sequence of inputs for the

3https://openai.com/
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model in its next step.

The authors have released several variant of GPT-2 with different sizes

going from 117 million parameters to the biggest one of 1.5 billions. More

recently, OpenAI created GPT-3 [BMR+20], an even bigger language model

with 175 billion parameters. The model algorithm and weights, however,

are not disclosed yet at the time of writing.

2.2.5 NLP and Image Captioning

After the undeniable success of techniques such as Recurrent Neural Net-

works and, more recently, Transformers in the Natural Language Processing

tasks, these models are also starting to be at the core of many solutions for

Image Captioning where the goal is to generate a description for an image.

However, the main difference is that, in this case, the task is not sequence

to sequence, i.e. generating a sentence from another one, but image to

sequence and, therefore, more challenging as they belong to different rep-

resentation spaces. As a matter of fact, sentences correspond to a sequence

of words while images are collections of pixels with a spatial distribution.

Furthermore, an image descriptor needs to be able to recognise what kind

of object or details are present in an image and describe them in a natural

and cohesive way.

Before examining a bit more in depth how Deep Learning NLP models

are applied to Image Captioning, it is worth saying that Image Captioning

models without Deep Learning are mainly based on template-based methods

and search-based approaches. The former firstly align each sentence frag-

ments (e.g., subject, verb, object) with detected words from image content

and then generate the sentence with pre-defined language templates. The

generated sentences have a correct syntactical structure but this approach

is not very flexible as it depends on the templates of sentences and their

goodness. Search-based approaches find a sentence for an image by select-

ing the most semantically similar sentences from a sentence pool or directly

copying sentences from other visually similar images. Hence, the generated

captions will be most likely syntactically correct and human-like, but these

models lack the ability to explore all the possible ways to describe an image

and to learn objects representations and their relations.

Language modeling architectures combined with the feature extraction

ability of Convolutional Neural Networks are, instead, able to learn the

probability distribution in the common space of visual and textual content

and exploit it to generate new sentences with a flexible syntactical structure.

Typically, these architectures are composed by an encoder which is a CNN
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that extract features from the image, and a decoder represented by a RNN

that takes the image embedding as input and, starting from it, generate

sequentially the sentence tokens. An example of this model is shown in figure

2.8. One problem with this approach is that the model fully attends to the

image embedding only at the beginning when it is fed as input and then it

starts to lose track of that information as it decodes the next tokens, same

as in the long-term dependencies problem which affects RNNs. A solution to

this problem is presented in [XBK+15], where, thanks to a visual attention

mechanism, the model is able to attend to the image embedding at each

decoding step and, therefore, it learns to focus on the most relevant part of

the image related to the current token.

Figure 2.8: CNN+RNN Image Captioning Architecture. Image taken from [Yun]

Since Transformers have demonstrated their effectiveness in many NLP

tasks, the research community is also proposing new applications of this

architecture in other fields, including Computer Vision. In fact, some ap-

proaches [SZC+19] [LHL+19] [KBFT19] use Transformer model as the back-

bone, and extends it to take both visual and linguistic embedded features

as input. In [SZC+19], each element of the input is either of a word from

the input sentence, or a region-of-interest (RoI) extracted using a Faster

R-CNN on an input image and the goal is to solve Visual Question Answer-

ing task. In [LHL+19] a similar approach is used in a unified model whose

goal is to solve not only VQA task but also Image Captioning with a single

model. [KBFT19] it’s an interesting approach as it combines both text em-

bedding and image embedding and feed them as input to a BERT [DCLT19]

architecture, based on Transformers, that has to classify both images and

text.
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2.3 Summary

In this chapter we present the background related to our work, with the

most relevant techniques for Image Tagging and Image Captioning tasks.

The most important references to better understand our approach are:

• Convolutional Neural Network that we exploit to extract visual fea-

tures from fashion images.

• LSTM architectures which are employed as caption generator in Image

Captioning baselines that we compare to.

• GPT-2 language model which is a fundamental component in our novel

approach for Fashion Image Captioning.
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Chapter 3

Datasets

In this chapter we present the datasets we use to train and evaluate our

models on the Fashion Tagging and Captioning tasks. In particular, we use

one public dataset and two private datasets which we obtain thanks to a

collaboration with our industrial partners. We first describe a large-scale

publicly available fashion dataset called DeepFashion which is one of the

few large datasets on fashion rich of annotation such as classes, attributes,

bounding boxes and landmarks and it allows us to compare our models with

related work evaluated on this dataset. Our other datasets have less items

but have also caption annotation, making them very useful for the Fashion

Captioning task. Our datasets and the related tasks for which we use them

are summarised in table 3.1.

Datasets and Tasks

Dataset Tagging Captioning

DeepFashion X

Industrial Dataset 1 X X

Industrial Dataset 2 X

Table 3.1: Tasks and related datasets

3.1 DeepFashion

DeepFashion [LLQ+16] is a large-scale fashion dataset with comprehensive

annotations which is used for several task related to fashion as Category

and Attribute Prediction, In-Shop Retrieval, Consumer-To-Shop Retrieval,

Fashion Landmark Detection and Fashion Synthesis. We focus on the Cat-

egory and Attribute Prediction as our goal is to generate tags for a clothing



item, i.e. generate a list of labels which characterise the garment class and

more fine-grained details. This dataset is available online1 and it contains

289,222 fashion images ranging from high quality shop images to uncon-

strained customer photos collected from fashion websites and image search

engines. We follow the same setting of [LLQ+16] which splits the dataset

into 209,222 for training, 40,000 for validation and the remaining 40,000 for

the evaluation.

This dataset is annotated with:

• 50 different classes which are a set of mutually exclusive labels where

each image can be associated with only one class. Classes represent

the high-level type of garment which can be, for example, ”Sweater”,

”Blouse”, ”Shorts” or ”Jeans”.

• 1000 attributes which corresponds to different characteristic and de-

tails of clothing items and are, therefore, more fine-grained than classes

and are not mutually exclusive, i.e. different attributes can be assigned

to a single item. There is an average of 3.32 attributes per item in the

dataset. Attributes are further distinguished into five groups: Texture,

Fabric, Shape, Part and Style.

• clothing landmarks which correspond to a set of key-points on the

clothes structure as left/collar end, left/right sleeve end, left/right

waistline and left/right hem.

• one bounding box per image which identifies the clothing item in the

picture

Figure 3.1a shows that the class distribution has a long-tailed shape with

thousand of items in the top classes and few hundreds in the last. The top-

10 represented classes in the dataset are, in order: Dresses, Tee, Blouse,

Shorts, Tank, Skirt, Cardigan, Sweater, Jacket and Top.

Attributes have also a highly unbalanced distribution as it can be noticed

in figure 3.1b, meaning that there are attributes which appear a lot more

frequently than others. As a matter of fact, the most frequent attributes in

the training set are assigned to thousands of images while the least frequents

are associated with less than fifty items. Another significant statistic is that

more than half of the total number of attributes annotated in the training

set belong to only 63 attributes types of the 1000. The top 10 most frequent

attributes are print, floral, lace, knit, sleeve, maxi, shirt, denim, striped and

chiffon.
1http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.

html
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(a)

(b)

(c)

Figure 3.1: DeepFashion Class and Attributes Distributions
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Since attributes can be distinguished into five types (Texture, Fabric,

Shape, Part and Style), we also analyse how the attributes are distributed

between the different types. Texture attributes consist of labels related to

visual pattern and design in the clothing item such a floral design, stripes,

dots or other prints. Fabric describes the material of the garment which

can be for example lace or leather. Shape refer to the fit and shape while

Part identify specific details in the item such as a pocket, sleeves or V-

neck. Finally, Style attributes are different from the other types as they

don’t refer to a particular visual feature but rather to a concept related to

the garment such as elegant, summer or shopping. Figure 3.1c shows that

attributes type are quite balanced, apart from the fabric type which is more

represented than others and style attributes are less frequent.

Furthermore, we observe also the attributes frequency inside each attrib-

utes group. A common pattern in Texture (figure 3.2a), Shape (figure 3.2c)

and Part (figure 3.2d) groups is that one or two attributes stand out in terms

of appearances in each group, with a number of images that is more than

double the others. Fabric (figure 3.2b) and Style (figure 3.2e ) attributes

have a more gradual descent in the form of a long-tail distribution. The

Style attributes, in particular, don’t have any attribute which exceed 10000

appearances as other types but, on the other hand, the appearances seem

to be more evenly distributed between the attributes.

3.2 Industrial Dataset 1

Thanks to the collaboration with our industrial partner H&M, we are also

able to work with a new industrial dataset that we cannot share, but we can

provide a description of its statistics and its main features.

We start creating the correct dataset for our needs from a complete

catalogue of items in different languages and types also unrelated to fashion

such as homeware and personal care. From this we select only those with

English labels and from Clothing, Footwear and Accessories super groups

and we remove duplicates. We obtain a dataset of clothing items with

different features such as the main category, supercategories, colors, age

groups, concepts, sizes and a description. We restrict the main categories to

27 classes and the remaining features are all grouped into a Attributes set

composed by 255 labels. We keep the description as a separate feature and

we don’t use it to enrich the labels set.

After all these steps, the final datasets is composed by 77254 images

which we split into 54387 for training, 13597 for validation and 9270 as test

set. The dataset is annotated with:
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(a) Texture (b) Fabric

(c) Shape (d) Part

(e) Style

Figure 3.2: DeepFashion Attribute Types Distributions
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• 27 classes which are mutually exclusive.

• 255 attributes composed by more specific clothing categories, colors,

age groups and concepts. Several attributes may be assigned to an

item and there are on average 5.41 attributes per item.

• A description in English for each item with an average of 23.36 words

per description. Caption examples can be seen in table 3.2.

Given the fact that this dataset is annotated with tags and descriptions,

we perform experiment on it in both the Fashion Tagging and Fashion Cap-

tioning tasks.

As it is shown in figure 3.3a, classes are more evenly distributed that the

DeepFashion dataset classes, however, there are classes which are much more

frequent than others such as Tops, Accessories, Dresses, Trousers with more

than 5000 counts. Attributes have a long-tail distribution, as it can be seen

in figure 3.3b, with ladies, kids, adult, black and blue as top-5 attributes.

Class Caption

Dresses Short dress in washed woven viscose fabric with a round neck short

sleeves with sewn cuffs and a rounded hem. Slightly longer at back.

Tops T-shirt in soft cotton jersey with embroidered text at the top

Trousers Trousers in stretch twill with a high elasticated waist and a concealed

zip in one side. Fake welt pockets at the back and slim legs with

creases and short slits at the hems.

Table 3.2: Industrial Dataset 1 - Caption Examples

3.3 Industrial Dataset 2

We can leverage a second industrial dataset thanks to the collaboration with

another fashion industrial partner. This dataset is different from the others

both in terms of dimension and type of annotations. First of all, it consist

of 1526 images, which is a small number compared to the other datasets,

which we split into 1225 for training, 137 for validation and 164 for the

evaluation. Despite its size, it is a relevant dataset in our experiments since

it has fine-grained annotations and rich and complex descriptions which we

exploit for the Fashion Captioning task.

The dataset is annotated with:
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Figure 3.3: Industrial Dataset 1 - Classes and Attributes Distributions
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• 1087 attributes which are not mutually exclusive as they contain both

clothing categories, colors and more specific detail as fabric and cloth-

ing parts. Therefore, there can be more than one attribute for each

item.

• 593 details which are short sentences (the average length is 5.64 words)

which describe fine-grained details as pockets, zip closures, neckline

shape and so on.

• one long description for each item which is characterised by a complex

structure and refined words which are meant to arouse the customer

interest in the garment. The average length of these captions is 52.77

which is more than double the length of our Industrial Dataset 1 de-

scriptions (23.66). Caption examples can be seen in table 3.3.

Class Caption

Trousers The slightly shaded color of the delave linen chevron enhances the

style of the trousers with a light touch. The drawstring and pleating

details are paired with the modern leisure fit, which offers soft pro-

portions in the seat and rise, while the cut of the leg remains close

to the body.

Sneaker New materials inspired by the Active world update the style of these

sneakers. The upper combines a sophisticated fabric which mimics

the look of mesh, with washed suede details on the toe and heel.

Fine grooves enrich the back of the two-tone EVA outsole and the

TPU insert at the base of the heel counter. A lightweight rubber

tread with custom design provides the fit with added comfort.

Pullover Precious cashmere fiber enhances the long sleeve pullover, four-

season piece for a man’s wardrobe. Narrow, contrasting color trim

on cuff and collar edges adds refined detail to the garment which

offers a regular fit with a close-fitting shape.

Table 3.3: Industrial Dataset 2 - Caption Examples

3.4 Datasets Comparison

As we summarise in table 3.1, we use these datasets for specific tasks ac-

cording to the type of annotations that they have available.

For the Image Tagging task we train and evaluate our models with Deep-

Fashion and Industrial Dataset 1 since they both have tags annotations in
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the form of Category, coarse-grained and mutually exclusive labels, and At-

tributes, more fine-grained and independent tags. In table 3.4, we compare

the two datasets to highlights the differences in term of size of the dataset

splits and number of classes and attributes types.

Tagging Datasets Comparison

Dataset Train Val Test Classes Attributes

Deep Fashion 209222 40000 40000 50 1000

Industrial Dataset 1 54387 13597 9270 27 255

Table 3.4: Comparison between datasets for Fashion Tagging

Regarding Fashion Captioning, we present a comparison between our

datasets provided with clothing item descriptions. As it is possible to notice

from table 3.5, the dimensions of the two dataset differ greatly as Industrial

Dataset 2 has very few items with respect to Industrial Dataset 1. On the

other hand, the former dataset has an average caption length of 52.77 which

is more than double than the length of the latter.

Captioning Datasets Comparison

Dataset Train Val Test Avg. Caption Length

Industrial Dataset 1 54387 13597 9270 23.36

Industrial Dataset 2 1225 137 164 52.77

Table 3.5: Comparison between datasets for Fashion Captioning
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Chapter 4

Related Work

In this section we present the works in the literature which are mostly related

to our approach in the performed tasks and the algorithm structure. We

present separately the approaches related to the Image Tagging task from

those that are more relevant for Image Captioning.

4.1 Fashion Tagging

Several interesting Fashion Image Tagging approaches related to our work

are trained and tested on the large-scale fashion dataset DeepFashion [LLQ+16].

They propose Deep Neural Networks architectures which differ in the model

structure and in the tasks that they achieve, where some focus also in Land-

mark Localization, i.e. identifying a set of points related to clothing part, in

addition to Category and Attributes Prediction, which consist in generating

two type of tags, categories and attributes, as explained in chapter 3.1.

4.1.1 Deep Fashion Analysis with Feature Map Upsampling

and Landmark-driven Attention

This work [LL18] is the current state-of-the-art in terms of evaluation met-

rics on landmark localization, category classification and attribute prediction

for DeepFashion public dataset. The model is based on the VGG-16 CNN

and the authors add a landmark localization branch and a landmark-driven

attention branch. In particular, they combine the predicted landmark in-

formation with the convolutional features to form an attention map which

helps the network in focusing on the most functional parts of the clothes

for category and attribute prediction with the reference to both local land-

mark positions and global features. The goal of this attention mechanism

is to enhance the visual features which are more related to fashion analysis



while filtering out unrelated features. The attention branch and the network

architecture are shown in figure 4.1.

Figure 4.1: Architecture with Feature Map Upsampling and Landmark-driven Attention.

Image taken from [LL18]

In order to obtain heatmaps with high resolution, the landmark local-

ization branch is a series of transposed convolution used to upsample the

feature map. In this way the predicted landmark heatmaps have the same

size as the input image, which improves the accuracy of landmark localiz-

ation. The features obtained for landmark localization are combined with

the visual features to obtain the landmark-attention mask, after passing

through a series of downsampling and upsampling operations in the atten-

tion branch. The masked visual features are fed as input to the last layer of

VGG16 and then used to predict scores for categories and attributes.

4.1.2 Leveraging Weakly Annotated Data

The model presented by Corbiere et al. [CBYRO17], differs from other ap-

proaches evaluated on the Deep Fashion dataset as it doesn’t exploit land-

mark information to achieve good results for both category and attributes

prediction. This model is trained in a weakly supervised way, learning from a

dataset crawled on e-commerce catalogues and without any explicit labeling.

The labels associated to each item are extracted from the textual description

associated to the image, keeping preprocessing as light as possible.

The model is based on a ResNet-50 as the image feature extractor and

the image features are coupled with the word embedding in a dot product

to compute the compatibility scores of the image with respect to all the

32



labels. In order to manage the highly unbalanced word distribution in the

noisy dataset, they perform uniform sampling where, during training, they

sample uniformly a word w from the vocabulary and then randomly choose

an image whose bag-of-words contains w and they try to predict w given

the image. Since they want to predict a single label w, the compatibility

scores obtained with the dot product are passed through a softmax layer and

the loss is computed with a categorical cross-entropy loss as in a multi-class

classification scenario.

With this model, they reach performances comparable to the state-of-

the-art on the DeepFashion dataset on both Image Retrieval and Attribute

Predictions tasks, without using the training dataset to refine the image

features, thus providing a way to overcome the issue of finding a large and

clean e-commerce dataset.

4.2 Image Captioning

Image Captioning is a widely studied problem with several interesting ap-

proaches presented in recent years. This section is devoted to analysing dif-

ferent models in Image Captioning, from more traditional approaches with

a encoder-decoder paradigm where a CNN encodes the input image and a

RNN decoder generate the description, to recent architecture that exploit

the capabilities of Transformers architecture. We only refer to one work of

Image Captioning related to fashion, recently published, since this specific

domain has not received a lot of attention from the research community yet.

Therefore, with our work we also hope to help the research in this direction.

4.2.1 Show, Attend and Tell

Show, Attend and Tell [XBK+15] is one of the most popular approaches

related to Image Captioning in recent years. In this work, Xu et al. present

a model based on a encoder-decoder architecture with a CNN as encoder and

a LSTM as decoder, incorporating also an attention mechanism that allows

to focus on different parts of the image each time a new word is decoded.

The CNN encoder extracts the features from the image and, instead of

using fully connected layers, the authors keep the output features of the

lower convolutional layers maintaining a correspondence between the fea-

ture vectors and portions of the 2-D image and this allows the decoder to

selectively focus on certain parts of an image by selecting a subset of all

the feature vectors. These features are combined together with the hidden

states of the LSTM to compute a set of weights, one for each image feature
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vector. These weights indicates how much each image feature is relevant

in the current decoding step and are used with an attention mechanism to

obtain the final image features that become the context vector. The model

architecture is shown in figure 4.2.

The authors present also two different variant of the attention mech-

anism: a ”soft” deterministic attention mechanism trainable by standard

back-propagation methods and a ”hard” stochastic attention mechanism

trainable by maximizing an approximate variational lower bound.

Figure 4.2: Show, Attend and Tell architecture. Image taken from [XBK+15]

4.2.2 Unified Vision-Language Pre-Training

With the rise of Transformer as state-of-the-art for NLP, different Com-

puter Vision tasks, including Image Captioning, are also being tackled by

approaches based on these architectures. In the work ”Unified Vision-

Language Pre-Training for Image Captioning and VQA” [LHL+19], Zhou

et al. present a unified approach for Image Captioning and Visual Question

Answering based on a shared multi-layer Transformer network for encoding

and decoding. Firstly, they extract a fixed number of object regions from

the image using an off-the-shelf object detector and combine region features,

object labels and coordinate of the bounding boxed into a unique region em-

bedding. These visual embeddings and the sentence are fed as input to the

Transformer layers with three special tokens [CLS], [SEP], [STOP], where

[CLS] indicates the start of the visual input, [SEP] marks the boundary

between the visual input and the sentence input, and [STOP] determines

the end of the sentence. The [MASK] tokens indicate the masked words,

where some random tokens are masked and the task is to predict them in

the form of a classification problem, thus forming a language model. The

main difference between the Image Captioning and VQA tasks lies in the

self-attention mask. The mask used for the VQA bidirectional objective
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allows unrestricted message passing between the visual modality and the

language modality while in text generation, the next word to be predicted

cannot attend to the words in the future, therefore the tokens on the right

of the next word in the caption are masked. The model structure and the

self-attention mask are illustrated in figure 4.3.

Figure 4.3: Unified Vision-Language Pre-Training. Image taken from [LHL+19]

VLP model achieves state-of-the-art results on both image captioning

and visual question answering tasks, across three benchmark datasets: COCO

Captions, Flickr30k Captions, and VQA 2.0, relying on a unified pre-training

without needing multiple trained models for distinct tasks.

4.2.3 Fashion Captioning: Towards Generating Accurate De-

scriptions with Semantic Rewards

Yang et al. [YZJ+20] present an approach which focus on our same task

of Fashion Captioning. Their algorithm is based on an architecture similar

to the one of Show, Attend and Tell [XBK+15], i.e. a encoder-decoder

model with a CNN as encoder and LSTM decoder equipped with a a visual

attention mechanism to focus on specific regions of the input image at each

decoding step. The novelty of their approach is that they extend this model

with additional mechanisms meant to increase the accuracy and quality of

the generate caption for a fashion setting. The idea which guides their

algorithm design is that each clothing item has several attributes which

define it and the model should learn to give more relevance to these details

when generating a caption.

The first innovation they introduce is the use of a visual attribute pre-

dictor, a feed forward layer, which extract from the image features a at-

tribute embedding vector used to condition the LSTM caption generator as
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shown in figure 4.4 where z is the attribute embedding vector. The attribute

predictor is trained as in a multi-label classification setting with attributes

as label and binary cross entropy loss function.

They also present another way of increasing the accuracy of generated

captions by exploiting two semantic rewards as the objective to optimize

the model using Reinforcement Learning. Specifically, they propose an

attribute-level semantic (ALS) reward with an attribute-matching algorithm

to measure the consistency level of attributes between the generated sen-

tences and ground-truth. The goal of this reward is to encourage the model

to generate as many correct attributes as possible in a caption. As a second

reward, they propose a sentence-level semantic (SLS) reward to capture the

semantic meaning of the whole sentence. They train a text classifier to

predict the correct item category given the input caption and then use the

output of this classifier during training to enforce the generated sentence to

describe an item with the correct category. Since both ALS reward and SLS

reward are non-differentiable, they use Reinforcement Learning to optimize

them.

Figure 4.4: Semantic Rewards guided Fashion Captioning (SRFC) architecture.

[YZJ+20]
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Chapter 5

Approach

In this chapter we present our approaches for Fashion Tagging and Cap-

tioning and we discuss the design decision behind each component. First,

we describe our model for tag generation, an architecture composed by a

CNN and a Double-Head classification layer to predict class and attributes

tags. We then propose a novel approach based on GPT-2 language model

for Image Captioning. Finally, we combine our approaches for Tagging and

Captioning into a unique model capable of generating both tags and cap-

tions.

5.1 Double Head TagNet for Fashion Tagging

Tags generation algorithms for fashion items have to deal with various chal-

lenges given by the nature of clothing items and real-world applications.

First, difficulties arise from the fine-grained details that an algorithm has to

find in order to identify correctly a garment. Additionally, clothing items are

sometimes deformed or occluded and images often show serious variations

depending on the setting in which they are taken, such as in-shop catalogue

images or social network images.

In our datasets we have two different types of tags: categories and at-

tributes. The former are mutually exclusive, meaning that each item can

belong to at most one category. The latter refer to labels that don’t ne-

cessarily exclude one another and can be assigned together to an image, in

a multi-label setting. Therefore, our solution has to generate both type of

labels in order to perform a complete tagging for a fashion image.

Another design decision is to have an architecture which doesn’t rely on

any other information apart from tags during training. While several state-

of-the-art models on DeepFashion dataset leverage landmark information to



enhance the visual features extracted from the image in order to improve

category and attribute prediction, we want to keep our approach as flexible

as possible, since landmark data has a very high labeling cost and rarely,

both in research and industry, we have this information available.

In order to satisfy these requirements, we design an architecture based

on Convolutional Neural Network with two heads, one for classifying the

category and the other for classifying attributes as two different tasks, as

represented in figure 5.1.

Figure 5.1: Double Head TagNet Architecture for Categories and Attributes Prediction

Feature Extractor

To encode images in a meaningful representation, we choose ResNet archi-

tecture presented in [HZRS16] as feature extractor. This architecture has

proven its efficiency in different challenges and it is used as backbone in

many works across several Computer Vision tasks. Among all the ResNet

variant which differs in the number of parameters, we mostly employ Res-

Net50, as it is used in related works such as [CBYRO17] and it performs

well in our experiments.

The input to the feature extractor is an image I ∈ Rci×wi×hi with width

wi, height hi and 3 channels ci for the RGB format. The image pass trough

the convolutional blocks of the feature extractor which outputs a convoluted

feature maps M ∈ Rco×wo×ho , with more channels and smaller size.

Double-Head Classifier

The output maps of the feature extractor are flattened into a single vector

with a 2D adaptive average pooling with output size=(1,1) which pools each
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channel into a single value, transforming M into a single vector v ∈ Rco . V

is fed to the classification heads which output the scores for categories and

attributes. These heads apply a linear transformation to the incoming data

y = xA+ b where A is a weight matrix of size Rco×n and b ∈ Rn is the bias

vector with n equal to the number of categories for the category head and

number of attributes for the attribute head.

Loss Functions

Given the different nature of category and attribute tags, they also corres-

pond to two different classification tasks: multi-class and multi-label classi-

fication. The main difference between these tasks is that in the former only

one specific class can be assigned to the item while in the latter multiple

labels may coexist together. To each tasks correspond a loss function that is

responsible of expressing the ”distance” between the model results and the

target so that the model parameters can be optimized to make this value

as small as possible. In a classification setting, Cross-Entropy is the default

loss function and it is defined as follows:

CE = −
C∑
i

ti log(si) (5.1)

Here ti and si are, respectively, the target and score for each class i in

C. There exist different variants of Cross-Entropy depending on the task.

In our case for the Multi-Class classification task of predicting categories we

use the so-called Categorical Cross-Entropy which is a Softmax activation

plus a Cross-Entropy and the target vector is one-hot encoded and only one

element in the target vector has non-zero value. The loss function is different

in the Multi-Label attribute prediction tasks where, instead of a Softmax

layer, there is a Sigmoid activation function, which squeezes the input values

between 0 and 1 independently of one another, while the Softmax forces also

the values sum to be 1. Furthermore, this loss sets up a binary classification

problem for each label, with negative and positive class to indicate whether

the label ”activates” or not. For this reason this loss is called Binary Cross-

Entropy and it is defined as:

BCE = −
C∑
i

(ti log(σ(si)) + (1− ti) log(1− σ(si))) (5.2)

Where ti and si are, respectively, the target and score for each class i in

C and σ corresponds to the sigmoid function.
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5.2 Multimodal GPT-2 for Fashion Captioning

Image Captioning is a widely studied problem with interesting and successful

solutions as we show in chapter 4. In this thesis work, our focus is on the

specific Fashion domain that has few relevant differences with respect to the

general Image Captioning setting.

Firstly, as in Fashion Tagging, Fashion Captioning has to recognise the

fine-grained attributes of a single item while in a general captioning setting

(e.g MS COCO [CFL+15]) generally the caption just need to describe the

objects and their relations in the image. Furthermore, since fashion cap-

tions need to include different details, they also tend to be longer with a

more complex and engaging expression style meant to arouse the customer

interest. In figure 5.2 it is possible to notice the differences between an im-

age taken from the MS COCO dataset and a fashion image from one of our

industrial datasets.

Another important difference is that current state-of-the-art approaches

as [LHL+19] rely on object detectors to extract regions of interests related

to specific objects in the image. In our case, object detectors cannot be

exploited as the fashion captioner doesn’t describe objects and their relations

but fine-grained details as patterns, shapes or clothing parts which cannot

be easily identified by bounding boxes to train a object detector.

With these challenges guiding our design decisions, we propose a novel

architecture based on GPT-2 [RWC+19] that is able to generate a caption

leveraging the features extracted from a fashion image. So far, GPT-2 has

surprised many because of its ability to generate long and complex sentences

starting from a textual context as input. However, the research community

has still not answered to the question if these capabilities can serve to gen-

erate text from an image and therefore, with our work, we want to provide

an answer, or at least give our contribution, to this question.

In addition, given the fact that fashion catalogues are rich not only of

images, but also metadata and tags, we consider also the possibility of ex-

ploiting both visual and textual features together in a multi-modal approach.

This gives our model the flexibility to rely on image features and, if addi-

tional information is available, it can leverage it to improve the quality of

the generated caption. The architecture of Multimodal GPT-2 is shown in

figure 5.3.
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(a) ”The man at bat readies to swing at the pitch while the umpire looks on.” Image taken

from [CFL+15].

(b) ”Materials with light patterns reinterpret the retro silhouette of this dress with a lively,

fresh touch. The pure cotton fabric reworks a classic striped pattern with the season’s colors

and enhances the garment’s fluid lines and feminine proportions, which are gathered at the

waist with a removable belt. Rows of shiny monili embroidery on the shoulder straps are

paired with the fabric’s delicate pleated effect, creating an elegant note.” Image taken from

our industrial dataset.

Figure 5.2: Comparison between General Captioning and Fashion Captioning

Figure 5.3: Multimodal GPT-2 Architecture for Fashion Captioning
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GPT-2

As presented in 2.2.4, GPT-2 is a large-scale transformer-based language

model, trained on a vast dataset composed of raw text taken by the web,

with the sole purpose of predicting the next word given the past context.

Thanks to this simple task, it is able to learn a language model, meaning

it is able to learn all the correlations and rules between words that form a

language and this knowledge can be leveraged for other downstream tasks.

GPT-2 expects as input a sequence of words, with the proper preprocessing

and formatting, which goes through its two main blocks: the transformers

block and the language modeling head. The former is a stack of Decoder

Transformer blocks which exploit multi-head attention to compute an em-

bedding of the next word. The latter is a linear fully-connected layer that

takes this embedding as input and return a vector of length equal to the

vocabulary length (50257) whose values represent the probabilities of as-

signing each word to that embedding. There are different variants of GPT-2

that vary in the size of the network, from the smallest version with 117M

parameters to the biggest with 1.5 billions.

Multimodal Embedding

Normally, the input of GPT-2 consists only of a sequence of words that must

be tokenized, i.e. converted from human readable words into tokens, enu-

merated from 0 to the model vocabulary size. We use GPT-2 pre-trained

Tokenizer which is based on byte-level Byte-Pair-Encoding, a tokeniza-

tion algorithm which consider text as a sequence of bytes and is language

agnostic. It keeps the frequent words as they are while representing rare

words with sub-word units, which solves the out-of-vocabulary problem. In

addition to the vocabulary tokens, GPT-2 uses another special token to

indicate padding and sequence end: < |endoftext| >. Internally, GTP-2

converts the tokens to their corresponding embedding Xtext ∈ Rn × hidden

where n is the number of tokens and hidden is the embedding size (768

for gpt2-small, 1024 for gpt-2 medium), before giving them as input to the

transformer layers.

In our multi-modal setting, we want GPT-2 to accept as input also visual

features and not exclusively word tokens. Visual features are extracted from

the image using a Convolutional Neural Network, a ResNet architecture as

in 5.1, and flattened into a vector v ∈ Rco where co is the number of out-

put channels of the CNN. We then convert v into visual token embeddings

Xvis ∈ Rm × hidden of the same hidden size as the token embeddings using a

Remapper block. The Remapper is composed by m linear fully-connected
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layers which map the visual embedding into the token embedding size, with

m being an hyper parameter to select the number of visual token embed-

dings to produce. The reasoning behind this block is that we want to map

visual features into different subspaces in the form of visual tokens which

possibly represents attribute types of the clothing item. While in general

captioning the state-of-the-art approaches exploit object detectors to get

features related to entities in the image, we can’t use such method as we

don’t have specific objects to identify, and, therefore, the role of Remapper

block is to learn subspaces to help the model in focusing and discriminating

different clothing attributes.

Since visual token embeddings cannot be fed as input to GPT-2 as word

tokens with the vocabulary index, we also convert word tokens to their

embeddings using GPT-2 Embedding matrix, performing the same process

that GPT-2 does internally, obtaining Xtext. After this, we concatenate the

visual token embeddings Xvis with word token embeddings Xtext. During

training, all the input vectors inside a batch must have the same length, how-

ever items can have different number of tags and, therefore, the word token

embeddings will have various lengths. For this reason we pad input vectors

with GPT-2 padding token up to the length of vector with maximum length

plus one, leaving always at least one pad token to separate input tokens

and the ground truth caption. In fact, during training, the ground truth

captions is fed as input, after being tokenized and turned into embeddings

as the tag tokens, so that GPT-2 can learn the language model with the

teacher forcing method using the ground truth from a prior time step as

input. The complete input embedding is illustrated in figure 5.4, where VT

correspond to visual tokens Xvis, WT to Xtext and CT are tokens of ground

truth caption. We mask GPT-2 attention for pad tokens between the input

and the ground truth caption tokens so that GPT-2 doesn’t attend to the

pad tokens when computing the next token embedding.

Loss function

The model output is O ∈ R b × o × vocabsize where b is the batch size, o =

m + n + p1 + c is the total number of tokens in the multi-modal input

embedding given by the sum of visual tokens m, tag tokens n, extra padding

p1 and caption tokens c, vocabsize is the number of words in the vocabulary.

As the output represents the scores of all the vocabulary words for each

output token, the loss is computed by comparing only the last c output

tokens which corresponds to the generated caption with the ground truth

caption tokens. As in a multi-class classification task the loss we use is a
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Figure 5.4: Multimodal Embedding at Training Time

Categorical Cross Entropy loss function, where the target classes are the

ground truth caption tokens.

Caption Generation

During inference, instead of feeding the ground truth caption as input as at

training time, the model relies solely on the visual and tag tokens combined

in the multi-modal embedding. In order to generate a caption we use Beam

Search, a decoding method that doesn’t simply selects the word with the

highest probability as its next word as Greedy Search, it keeps a number

of most likely hypothesis sentences and eventually it chooses the one that

has the overall highest probability. The problem with Greedy Search is, in

fact, that if first words chosen are not the best, then everything that follows

is sub-optimal. Beam Search gives the possibility to consider, at each step,

the top k words candidates, consider the combinations with the best overall

score and discard the rest. This reduces the risk of missing hidden high

probability word sequence and guarantees that Beam Search will find an

output sequence with higher probability than Greedy Search. Figure 5.5

provides an example of Beam Search decoding method.

5.3 TagCaptioner GPT-2 for Fashion Tagging and

Captioning

We also present a model which is able to perform both the Image Tag-

ging and Image Captioning tasks simultaneously. As a matter of fact, this

model, which we refer to as TagCaptioner GPT-2, is a combination of our
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Figure 5.5: Beam Search Example. Image taken from [Vin]

approaches explained in the previous sections where, instead of using ground

truth tags as additional information in the multimodal embedding to gener-

ate the caption, it generates itself the tags from visual features. As it possible

to see from figure 5.6, the architecture is very similar to Multimodal GPT-

2, however here the CNN output is also fed to a double-head classification

layer, same as the one explain in 5.1, which return the prediction scores for

categories and attributes. This model is flexible and is not strictly related to

the type and number of tags where, for example, we could add more heads

to take care of other type of tags or split the attributes head into one head

for each attributes type for a more fine-grained classification.

Figure 5.6: TagCaptioner GPT-2 Architecture
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Loss Function

In our experiments we keep this setting with two classification heads, there-

fore the model has 3 different loss functions: a Categorical Cross-Entropy

loss for category prediction and a Binary Cross-Entropy for attributes pre-

diction, as explained in 5.1, and the Categorical Cross Entropy for captions

as explained in 5.2. For the experiments on Industrial Dataset 2, however,

which has different types of tags than categories and attributes, we use a

different approach with two Binary Cross Entropy losses for tag generation,

which we explain more in depth in chapter 6.2.6.

Tag Generation

Before being converted to human language text and pre-processed, the tags

are just vectors of prediction scores returned by the double-head classifica-

tion head. From these scores, we take the top-k scores for both categories

and attributes, top-1 for the former since there should be only one category

for each item and top-5 for the attributes which are, instead, not mutu-

ally exclusive. After this, we take the corresponding labels in natural lan-

guage from the category and attributes dictionaries and concatenate them

in unique sentence which is processed to become a part of the multimodal

embedding as we explain in 5.2.
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Chapter 6

Experiments and Results

In this chapter we present an analysis of the performances of our approaches

for Fashion Tagging and Captioning on the respective datasets. We are

going to present separately the experiments and results on the two tasks

and analyse them quantitatively using evaluation metrics and qualitatively

by providing examples. Table 6.1 summarizes which datasets we use to

evaluate our approaches. DeepFashion and Industrial Dataset 1 allow us to

test our model on the tag generation, thanks to their class and attributes

annotations and the latter is also used for the generation of captions with

Industrial Dataset 2, since they both have caption annotations.

Datasets and Tasks

Dataset Tagging Captioning

DeepFashion X

Industrial Dataset 1 X X

Industrial Dataset 2 X

Table 6.1: Tasks and related datasets

6.1 Fashion Tagging

In this section we present different experiments and results that we per-

form on the Fashion Tagging task, i.e. label an item with the corresponding

garment class and more fine-grained attributes. We evaluate the perform-

ance of the Double Head TagNet architecture presented in chapter 5.1 on

two datasets: the public fashion dataset DeepFashion and a private dataset

which we refer to as Industrial Dataset 1. One of our goals is to compare the

performance of our approach, capable of recognising classes and attributes



of a fashion garments without relying on the additional landmark data, with

other works on DeepFashion which instead exploit it. As a matter of fact,

this type of extra annotation is rarely available in an industrial setting and,

therefore, we want to find out whether we can obtain similar performance

without using it.

6.1.1 Evaluation Metrics

In order to evaluate and compare the experiments we compute different

evaluation metrics to obtain reliable results. The Fashion Tagging task

is a type of classification and, therefore, we use traditional classification

metrics as accuracy, precision and recall and also others more related to

the information retrieval field, as precision@k, recall@k and mean average

precision (mAP).

First, we must distinguish between the two type of tags that our mod-

els generates for each item: class and attributes. The class tag refers to

the unique type of garments to which an item belong, e.g Dress, and the

generation of this tag corresponds to a multi-class classification, where only

one label among multiple ones is assigned to an item. The attributes refer,

instead, to more fine-grained details that can characterise an item such as

the fabric, shape or style and, therefore, multiple labels may be associated

to an item. This correspond to a multi-label classification task and it’s

more challenging than the multi-class as the algorithm needs to discrimin-

ate between more labels with an increased attention to particular details.

Since these two type of tag generation correspond to different classification

task, we also use different evaluation metric to evaluate them.

For the class prediction task, we compute the top-k accuracy metric, i.e.

for each prediction we assign 1 if one of the top-k scores correspond to the

correct class, and 0 otherwise and the final metric is the mean of all the item

scores in the evaluation set. A top-1 accuracy corresponds to the traditional

accuracy that verifies if the class with highest prediction score is the correct

one.

To evaluate attribute prediction, we use other metrics related to precision

and recall for information retrieval where, given a query, they count the

number of relevant item among the retrieved ones. Precision is actually the

fraction of true positives (retrieved and relevant items) and true positive

plus false positives (the retrieved items). Recall, on the other hand, is

the percentage of true positives out of the sum of true positives and false

negatives which correspond to all the relevant items. In our setting the

retrieved items correspond to the top k attributes with the highest score
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and relevant items are the attributes in the ground truth for each item.

This is how precision@k and recall@k metrics are computed.

Recall@k metric is in a way limited by the choice of k, where it may

happen that the number g of attributes in the ground truth is higher than k

meaning that, even if the model puts all the ground truth attributes in the

top scores the maximum recall achieved is k
g . On the contrary, if k is much

higher than g then it becomes more easy to obtain a high recall. Therefore,

we also employ another metric, which we refer to as recall@sample k, that is

based on recall@k with the difference that k is not fixed, but it correspond

to the number g of ground truth items for each samples. In this way, the

number of retrieved attributes is always equal to the number of relevant

items, which helps in mitigating the limitations just mentioned.

Another metric we use to obtain more robust and reliable evaluations, is

the Mean Average Precision (mAP). Average Precision metric is obtained

by computing, for each k position of the ordered retrieved items n, the

precision@k score only if the item at position k is relevant, then sum all the

scores and divide by the number of relevant items g. The mAP score is the

mean of AP scores of all queries:

AP =
1

g

n∑
k

(precision@k × rel@k) (6.1)

mAP =
1

N

N∑
i

APi (6.2)

6.1.2 Experimental Setup

All of our models, training and evaluation blocks are implemented in Py-

thon with PyTorch1 deep learning framework. Our architecture for tag

generation, the Double-Head TagNet described in 5.1, is composed by a

Convolutional Neural Network, as image features extractor, and two linear

layers, responsible for computing the scores respectively for class and attrib-

utes, given the image features. As feature extractor, we select a ResNet50

pre-trained on ImageNet for our experiments, since related works use this

architecture or other comparable ones, such as VGG-16. The dimension of

the output vector of the ResNet is 2048 which is fed directly to the linear

layers for the downstream classification tasks. Each input image is resized

to a 224 square, normalized with the same mean and standard deviation

1https://pytorch.org/
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of the models trained on ImageNet and, during training, is randomly hori-

zontally flipped with a 50% probability. Furthermore, images from Deep-

Fashion dataset, which is also annotated with one bounding box per image,

are cropped to the bounding box size, since all other related works trained

on DeepFashion perform this transformation. We use a stochastic gradi-

ent descent optimizing algorithm with momentum set to 0.9. A Plateau

learning rate scheduler is responsible of decreasing the learning rate with a

factor of 0.1 after observing that the validation loss stops decreasing. After

performing hyper-parameter tuning with a grid search on the metrics eval-

uated on the validation set, results reported at appendix A.1, we select as

initial learning rate 1e − 3 with batch size 8. We perform early stopping

on our training when the validation loss stops decreasing for 3 epochs. All

our experiments have been carried out on a p2.xlarge instance available on

Amazon Web Services2 with one NVIDIA K80 GPU.

6.1.3 Data

As we explain in chapter 3.4, we evaluate our approach for Fashion Tagging

on the datasets DeepFashion and Industrial Dataset 1. Table 3.4 in the

same chapters highlights the most relevant differences between them which

are the number of items (289222 vs 77254 total images respectively), number

of classes (50 vs 27) and number of attributes (1000 vs 255).

6.1.4 Experiment 1: Attributes Loss Function

Our model performs two different tasks simultaneously: Class Prediction

and Attributes Prediction. In the case of DeepFashion dataset, the latter

task is quite challenging as there are 1000 attributes and they represent fine-

grained details of the garment which are difficult to identify and discrimin-

ate. Therefore, our goal is to improve the Attribute Prediction performance

without affecting the Class prediction task performance. In this section we

present the results on different experiment we perform on the loss function

for attributes.

Attributes Loss Scaling

First, we try a different reduction method than the default method of the

Binary Cross Entropy (BCE), the loss function we employ for the Attributes

Prediction task, as we explain in 5.1. In the default implementation the

final loss value for a batch is computed by reducing with the mean over the

2https://aws.amazon.com/
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attributes loss values and then averaging over all the items in the batch.

Instead of averaging over the attributes, which shrinks the loss function to

low values, we sum their values and then compute the mean over the batch.

The main difference is that we don’t divide the loss by the total number of

attributes, which is 1000 in DeepFashion, and therefore, the attributes loss

function has an higher value thanks to this scaling.

Loss Function Experiments with scaling

Attribute Loss
p@k r@k r@sample k map

top-1 top-3 top-5 top-1 top-3 top-5

BCE (default) 40.95 28.11 21.92 13.51 26.26 33.51 26.87 31.28

BCE with scaling 47.96 33.88 26.22 16.14 31.91 40.16 32.68 37.9

Table 6.2: DeepFashion Attribute Prediction - Improvement with Scaling

As it is possible to notice from table 6.2, the model trained with the

attribute loss function with scaling outperforms the one with the default

reduction method. This is probably due to the fact that, without the scaling

the attribute loss function has a low value and, therefore, the optimization

of our model parameters is mainly guided by the loss function of the Class

Prediction task which has an higher value. With the attribute loss scaling,

our model and, in particular, the feature extractor is more optimized to

encode image features that contain fine-grained attribute details than the

more class-specific characteristic to discriminate high-level classes.

Loss Function Experiments

Attribute Loss
class accuracy@k

top-1 top-3 top-5

BCE (default) 75.01 91.98 96.26

BCE with scaling 75.44 92.04 96.33

Table 6.3: DeepFashion Class Prediction is not affected by Attributes Loss Scaling

On the other hand, this procedure might have a drawback on the Class

Prediction task. The results on table 6.3 seem to indicate that this is not the

case given the fact that performance on Class Prediction are very similar

between the experiment with the default attribute BCE loss and the one

with scaling. Therefore, the features encoded by the CNN optimized by the

scaled attribute loss, are also useful to discriminate between classes.

Weighted Loss for Unbalanced Datasets

One of the main challenges that can be encountered in a classification task

is dealing with an unbalanced dataset. Unbalance means that there is a
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disparity in the class distribution where some classes have much more in-

stances than other and, therefore, the algorithm tends to assign items more

to labels that belong in the majority rather than the less frequent ones. We

notice a similar characteristic also in DeepFashion attributes distribution as

we explain in chapter 3.1.

There are sampling techniques to mitigate this problem such as under-

sampling and oversampling, where the former consists in randomly deleting

samples from the classes with an higher frequency while the latter increase

the number of samples from the minority classes by just presenting to the

algorithm multiple copies of the same data point. Another way of handling

this disparity is to use class-wise weights in the training loss with the goal

of re-weighting the loss function to give more relevance to the less frequent

labels, with the advantage that it doesn’t involve manually changing the

data distribution. In our setting, in order to deal with the unbalance of the

attributes distribution in the DeepFashion dataset, we choose to perform

experiments with different weighting schema for the attribute loss function.

As we explain in chapter 5.1, the loss function that we use to optimize

our models parameters for the attribute prediction task is the Binary Cross

Entropy loss function which compares the attributes prediction scores with

the ground truth binary vector. This loss functions computes a value for

each label depending on the prediction score and if it is in the ground truth.

In the PyTorch implementation of this function3, there is the possibility to

pass as input to the loss function also a vector of positive weights which are

multiplied independently with the positive term of the loss function:

PW = −
C∑
i

( pi ti log(σ(si)) + (1− ti) log(1− σ(si))) (6.3)

pi = log

(
negative counti
positive counti

)
(6.4)

here ti and si are, respectively, the target and score for each class i in C and

σ corresponds to the sigmoid function, pi is the positive weight of label i

and it is computed as the fraction between the number of negative example

and positive examples of label i in the dataset. Therefore, the loss acts as if

the number of positive and negative samples in the dataset were balanced.

When pi is a vector of ones, then this correspond to the normal BCE loss.

A different type of weighting is used in Focal Loss [LGG+17], which

is a loss function, based on the BCE loss, used to address the problem of

3https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.

html
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class imbalance. In the original paper, Focal Loss is adopted in the contest

of Object Detection where there can be imbalance between the foreground

(the objects that the algorithm wants to detect) and the background where

the latter usually represent the vast majority. The goal of Focal Loss is to

control the weighting of the BCE loss to give more importance to ”hard”

misclassified foreground samples than the ”easy” correctly classified back-

ground. Focal Loss is formulated as:

FL = −
C∑
i

( α (1− σ(si))
γti log(σ(si)) + (1− α) σ(si)

γ (1− ti) log(1− σ(si)))

(6.5)

where α and γ are hyper parameters set respectively to 0.25 and 2 which,

according to the study mentioned in [LGG+17] give the best results.

We also experiment with another type of loss function in which we im-

plement our own weighting schema based on the ranking of the scores, i.e.

the label ordering according to their prediction scores. The idea is to com-

pute the loss not only with the score of each label independently from one

another, by penalizing low score for correct labels and high scores for wrong

ones, but also with a knowledge about the ordering of the labels where cor-

rect classes should be ranked higher than wrong ones. The loss formulation

is very similar to PW weighting schema with the difference that here the

positive weights are not computed a priori from the training dataset and

fixed but change for each sample:

RL = −
C∑
i

( ri ti log(σ(si)) + (1− ti) log(1− σ(si))) (6.6)

ri = α log(ranki + 1) + 1 (6.7)

here, ri are weights built from the rank of each label in the scores order

where ranki corresponds to the number of false labels which have a score

higher than label i, α is an hyper parameter set to 0.25. Since we use ri as a

positive weight, i.e. it multiplies the positive term of BCE when ti = 1, this

weight penalizes when a correct label is ranked lower than false labels which

happens often with less frequent classes. We refer to this loss function as

Rank Loss.

In table 6.4 we compare the results of the model with different weighted

loss function with the performance of the standard BCE loss with scaling.

For a fair comparison, we apply scaling also on the weighted losses to make

sure they all have similar values at training time. These models are trained

until early stopping. As it can be noticed from table 6.4, the experiments we
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Loss Function Experiments

Attribute Loss
p@k r@k r@sample k map

top-1 top-3 top-5 top-1 top-3 top-5

BCE 47.96 33.88 26.22 16.14 31.91 40.16 32.68 37.9

PW 44.49 31.76 24.97 15.02 30.12 38.56 30.72 36.06

FL 42.08 28.98 22.51 13.79 26.92 34.21 27.49 31.91

RL 47.06 33.49 26.08 15.83 31.58 39.99 32.31 37.7

Table 6.4: Deep Fashion Attribute Prediction - Weighted Loss Function Experiments

perform with different weighting schema don’t achieve better results than the

standard BCE loss with attributes scaling. Therefore, trying to balance the

long-tail attributes distribution using weighting schema for the loss function

doesn’t seem to improve the performance of our model.

6.1.5 Experiment 2: Comparison with Baselines

Baselines

We compare our approach with related works on the Deep Fashion dataset

and, in particular, we focus on two baselines, presented also in chapter 4,

which are among the reported state-of-the-art approaches in terms of metrics

for this dataset.

The first baseline corresponds to the work of Liu et al. in the paper

Deep Fashion Analysis with Feature Map Upsampling and Landmark-driven

Attention [LL18] in which the authors present a model based on a Con-

volutional Neural Network that leverages the extra landmark annotations

in the dataset with a landmark localization branch and a landmark-driven

attention branch. In particular, they combine the predicted landmark in-

formation with the convolutional features to form an attention map which

helps the network in focusing on the most functional parts of the clothes for

category and attribute prediction with the reference to both local landmark

positions and global features. The results reported in the paper are the

current state-of-the-art for DeepFashion dataset and our main reason for

comparing our results with this approach is to check whether the landmark

attention mechanism is needed to obtain good results or it is possible to

have good performance without the additional landmarks annotation. The

official implementation of this paper is available online4, without pre-trained

models.

The second baseline we refer to is from the paper Leveraging Weakly An-

notated Data for Fashion Image Retrieval and Label Prediction [CBYRO17]

4https://github.com/fdjingyuan/Deep-Fashion-Analysis-ECCV2018
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written by Corbiere et al. This model differs from other approaches evalu-

ated on the Deep Fashion dataset as it doesn’t exploit landmark information

to achieve good results for both category and attributes prediction and it

is trained in a weakly supervised way, learning from a dataset crawled on

e-commerce catalogues and without any explicit labeling. After this pre-

training, the feature extractor is used to encode image features for Deep-

Fashion Class and Attribute prediction, without further training.

We also compare to a naive baseline, that we refer to as Top Popular

which simply ranks class and attributes according to their frequency in the

training set, returning a fixed score ordering for each item.

Deep Fashion Dataset

In this section we present the results of our approach on the Deep Fashion

dataset in comparison with the mentioned baselines using the evaluation

metrics reported in the literature for this dataset: accuracy for Class Pre-

diction and top-3, top-5 recall for the Attributes Prediction, considering also

individually each one of the attributes type: Texture, Fabric, Shape, Part

and Style.

First of all, since the code of Liu et al. [LL18] baseline is available online,

we try to reproduce ourselves the results reported in the paper by retraining

the model and using also their evaluation code. What can be noticed from

table 6.5, is that Liu et al. trained by us achieve similar results to the

reported one apart from the top-3 and top-5 recall for all the attributes

where the reported results are 54.69 and 63.74 while the reproduced are

25.60 and 33.40 and also for only-Style attributes type where the reported

Style top-3 and top-5 recall are, respectively, 68.82 and 74.13 while the ones

reproduced reach 30.29 and 38.80. Style attributes are quite different from

the other types as they don’t specifically refer to a visual feature, but rather

to a particular meaning related to the garment, as an example attributes

related to style are ”summer”, ”elegant”, ”baseball”, ”shopping” and so on.

Therefore, for the fact that they are less strictly related to a single visual

feature, they are also less easy to discriminate and this could suggest why

the algorithm struggles on that part. However, the results they report on

the paper go against this reasoning as the Style recall metrics are higher

than all the other attributes types metrics. Above all, they are also very

different from the results that we have reproduced. We notice in the ’Issues’

page5 of the online repository that other people as well don’t succeed in

reproducing the results of the Style attributes and, since the authors don’t

5https://github.com/fdjingyuan/Deep-Fashion-Analysis-ECCV2018/issues
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share their pre-trained models online and we have been trying to contact

them without success, we decide to give more relevance to the reproduced

results rather than the reported ones.

Deep Fashion Results

Algorithm

Class - Accuracy Attributes - Recall@k

Texture Fabric Shape Part Style All

top-1 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

Top-Popular 24.91 46.18 58.43 37.84 45.96 19.61 27.27 21.09 27.70 18.51 25.06 14.94 23.69 08.52 12.27

Corbiere et al. 86.30 92.8 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40

Liu et al. (reported) 91.16 96.12 56.17 65.83 43.20 53.52 58.28 67.80 46.97 57.42 68.82 74.13 54.69 63.74

Liu et al. (trained) 72.30 90.2 95.1 55.00 64.76 42.00 52.20 55.90 65.36 44.10 54.36 30.29 38.80 25.60 33.40

Ours (VGG16) 73.01 90.86 95.74 57.05 66.77 44.57 54.72 58.89 68.09 47.33 57.75 32.84 41.46 27.69 35.88

Ours (ResNet50) 75.44 92.04 96.33 60.00 69.70 49.40 59.70 62.06 71.00 52.3 62.6 37.8 46.04 30.71 39.63

Table 6.5: Deep Fashion - Comparison with Baselines

The results reported on table 6.5, shows that our approach, based on

a ResNet50 as feature extractor, a double head classification layers for the

Class and Attributes prediction and with attribute loss scaling achieve res-

ults which are better than the other baselines. Corbiere et al. [CBYRO17] is

the one more similar to our approach since it doesn’t exploit the additional

landmark information and it’s also different from us as it doesn’t fine-tune

its feature extractor on DeepFashion and this is probably why our metrics

are higher, since we train the CNN to extract features more specific to this

dataset. Liu et al., instead, exploit a landmark localization and landmark

attention branch to enhance the features extracted by a VGG16 and use

them to improve category and attribute prediction. However, what can

be noticed from the results is that our model without landmark attention

achieve higher evaluation metric values, therefore this suggests that using

a landmark attention branch doesn’t seem to be really effective in the clas-

sification of classes and fine-grained attributes of clothing items. To make

the comparison more fair, we also test our approach with a VGG-16, the

same one used by Liu et al. and, while obtaining results lower than our

approach with ResNet50, we still have similar values, even slightly better,

to the reproduced results of Liu et al.

Industrial Dataset 1

We perform experiments with our model also on a private dataset that we

refer to as Industrial Dataset 1. This dataset differs from the large-scale

public dataset as it has a lower number of classes and attributes, respectively

27 and 255, and the latter don’t contain fine-grained details of clothing

item but more categorical information as particular clothing sub-categories,

gender, age or color, making it less challenging than DeepFashion.We can’t
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compare our results with the same baselines of DeepFashion as we can’t

reproduce the Corbiere et al. [CBYRO17] approach since we don’t have their

pretrained model and we can’t train the Liu et al. baseline since for this

dataset we don’t have the additional landmark information. Nevertheless,

we present the results of our best model in comparison with the TopPopular

naive baseline in table 6.6, using the evaluation metrics presented in 6.1.1. It

is possible to state that our model is able to recognise more than 87% of the

item classes in the test set, by placing the correct label in the first position.

As we explain in 3.2, there are on average 5.41 attributes per item in this

dataset and this explain why the r@sample k (74.34) is higher than the r@5

metric (70.67), since r@sample k computes the recall after retrieving the top

attributes in equal number to the ground truth attributes while r@5 always

retrieve the first top 5 attributes.

Industrial Dataset 1 Results

Algorithm

Class Attributes

accuracy p@k r@k r@sample k map

top-1 top-3 top-5 top-1 top-3 top-5 top-1 top-3 top-5

Top-Popular 10.1 27.1 41.2 50.1 38.2 31.0 9.20 21.0 28.8 29.58 30.2

Ours (ResNet50) 87.61 98.30 99.36 97.09 87.78 75.56 18.46 49.78 70.67 74.34 83.74

Table 6.6: Industrial Dataset 1 - Comparison with Baselines

6.2 Fashion Captioning

In this section we present the results of Multimodal GPT-2 for Fashion Cap-

tioning, explained in chapter 5.2, evaluated in our datasets annotated with

captions. Given the fact that the model relies on two different types of in-

put (visual and textual) we also carry out a multimodal analysis, comparing

the model performance in difference settings to understand which of these

components affect the performance the most. In addition, we also compare

our model with other approaches based on the CNN-LSTM encoder-decoder

paradigm, with and without visual attention. The comparison between dif-

ferent models consists of a quantitative and qualitative evaluation, where

the former is a comparison between evaluation metrics and the latter, in-

stead, corresponds to comparing the generated captions, thus it is a human

evaluation to verify the text quality, correctness and coherence.

6.2.1 Evaluation Metrics

In order to compare different experiments and models, we compute several

evaluation metrics that are also used to evaluate caption generation on the
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COCO-Caption dataset [CFL+15]. The evaluation code is available online6

and we adapt it to support our datasets format. In particular, we refer to

the BLEU-n, ROUGE-L, METEOR, and CIDEr metrics in our experiments.

BLEU-n [PRWZ02] is a modified form of precision that compares n-

grams (groups of n adjacent words in a sentence) of the candidate sentence

with the reference sentence (the ground truth caption). This metric is cre-

ated to overcome a problem with the standard unigram precision which

simply counts up the number of candidate translation words (unigrams)

which occur in any reference translation and then divides by the total num-

ber of words in the candidate translation. In this case, however, candidate

captions which repeat words with high probability, such as ”the”, can have

a high-precision score just because they overgenerate words that are present

also in the reference caption. For example if the candidate caption is ”The

the the the the the the” and the reference caption is ”The cat is on the mat”

then the standard unigram precision score will be 7/7. BLEU-1 is a modified

unigram precision as it first counts the maximum number of times a word

occurs in the reference caption, then it compute the ”count clip” for each

word, meaning it clips the total count of each word by its maximum refer-

ence count, and it sums all count clips in the candidate sentences. Finally, it

divides this sum by the total number of distinct unigram (unclipped) in the

candidate. The BLEU-1 score for the above example will be 2/7 since 2 is

the maximum number of time that the word ”the” appears in the reference

sentence. The modified n-gram precision is computed similarly by counting

all candidates n-gram and their corresponding maximum reference counts.

Generally, BLEU scores are based on an average of unigram, bigram, tri-

gram and 4-gram precision. The higher the n is, the more the metric is able

to capture word order,but it also becomes more restrictive and constrained

to the exact form of the reference. The strength of BLEU is that it is an

intuitive and easy to compute metrics, however there are some drawbacks

as the fact that all n-gram are treated equally, therefore minor errors as

prepositions difference (such as ”in” or ”on”) are penalized as heavily as

more important words related to the content.

While BLEU focuses on computing the precision, i.e the number of can-

didate words that are present in the reference caption, ROUGE [Lin04] is

a recall-oriented evaluation measure which, instead, focuses on how many

of the reference captions n-gram are captured in the generate sentence. In

particular, COCO-Caption evaluation framework uses a variant of ROUGE

called ROUGE-L which is a F-measure based on the computation of the

6https://github.com/ruotianluo/coco-caption
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Longest Common Subsequence between candidate and reference sentence.

ROUGE-L estimates the similarity between the reference caption r of length

m and the candidate caption c of length n, as follows:

R =
LCS(c, r)

m
(6.8)

P =
LCS(c, r)

n
(6.9)

ROUGE L =

(
1 + β2

)
RP

R + β2P
(6.10)

where LCS(c, r) is the length of a longest common subsequence of c and r

and β is an hyper parameter usually set to favor recall(β = 1.2). ROUGE

has similar strengths and weaknesses as BLEU, however using LCS is an

advantage as it automatically includes longest common n-grams, therefore

it is not required to specify a predefined n-gram length.

The METEOR [DL14] metric is computed by aligning the candidate

sentence and the reference sentence which corresponds to constructing a set

of alignments by identifying all possible matches between the two sentences

according to exact word matches, matches between word stems, synonyms or

paraphrases. The final assignment is found as the largest subset of matches

which maximize the number of covered words across both sentences and

minimizes the number of chunks, contiguous and identically ordered tokens

in the sentence pair. After this, the METEOR score for the obtained set of

matches m is computed as the harmonic mean of precision P and recall R :

R =
|m|∑
k hk (r)

(6.11)

P =
|m|∑
k hk (c)

(6.12)

F =
PR

αP + (1− α) R
(6.13)

Pen = γ

(
ch

m

)θ
(6.14)

METEOR = (1− Pen)F (6.15)

where hk(s) is the number of times an n-gram wk occurs in a sentence s, m is

the total number of matched words, Pen is penalty to account for gaps and

differences in word order and ch is the number of chunks. All parameters

α, γ, δ are tuned to maximize correlation with human judgments.

CIDEr [VLZP15] is a metric specifically made for Image Captioning and

it measures consensus in image captions by performing a Term Frequency
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Inverse Document Frequency (TF-IDF) weighting for each n-gram. As ex-

plained in the work of Vedantam et al. [VLZP15], CIDEr computes the

TF-IDF weighting for each n-gram wk of a sentence s:

gk(s) =
hk(s)∑
wl∈Ω hl(s)

log

(
|I|∑

Ip∈I min(1,
∑

q hk(rpq))

)
(6.16)

where Ω is the vocabulary of all n-grams and I is the set of all images

in the dataset, rpq is a reference caption for image p and reference number

q for multiple references. The first term computes the TF of each n-gram

and gives more weights to n-grams which appear frequently in the sentence

describing an image. The second term, instead, computes the IDF reducing

the weight of n-grams which appear frequently in the dataset descriptions.

The CIDEr score for n-gram of length n is computed using the average

cosine similarity between the gn(s) vector formed by gk(s) corresponding to

all n-grams of length n and ||gn(s)|| is the magnitude of the vector gn(s), of

both candidate and reference sentences (Si is the set of reference captions

for image i):

CIDErn(ci, Si) =
1

m

∑
j

gn(ci) · gn(sij)

||gn(ci)|| ||gn(sij)||
(6.17)

The final CIDEr score is computed as a weighted sum of the CIDErn
scores of n-gram of different lengths. The advantages of CIDEr are that it

gives more weight to important n-grams and it has a higher correlation with

human consensus scores compared to other metrics.

6.2.2 Experimental Setup

All of our models, training and evaluation blocks are developed in Python

with PyTorch deep learning framework and PyTorch Lightning7, a PyT-

orch wrapper which is useful to structure the code into functional modules

and it handles the training procedure, for a faster and more scalable pro-

ject deployment. As presented in 5.2, Multimodal GPT-2 is composed by

a Convolutional Neural Network as feature extractor and a GPT-2 network

which generates the caption from the multimodal embeddings created by

the intermediate layers. For memory reasons, we use the smallest variant of

GPT-2 pre-trained models, available in the Hugging Face transformers lib-

rary8. This version has a hidden size equal to 768, 12 transformer decoder

7https://pytorchlightning.ai/
8https://huggingface.co/transformers/
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layers, a 12 heads attention and 117 millions parameters. As feature ex-

tractor we use a ResNet50 as we do in our experiments on Fashion Tagging.

The dimension of the output vector of the ResNet is 2048 which is mapped

to 768 for each visual token that is fed as input to GPT-2.

Each input image is resized to a 224 square, normalized with the same

mean and standard deviation of models trained on ImageNet and, during

training, is randomly horizontally flipped with a 50% probability. Text

tokens go only through stop words removal, i.e. removing the most common

words, before being tokenized, as we want to keep preprocessing as light as

possible to make our model more flexible and robust. The tokenizer we use

is the GPT2Tokenizer, available in the Hugging Face transformer library,

and its role is to convert the input text into a vector of integers where each

integer correspond to a token in the dictionary, composed by 50257 words.

During training, we unfreeze gradually the layers of the feature extractor

at fixed milestones until they are all unfrozen. We use ADAM optimizer to

update the parameters with the loss function presented in 5.2. A Plateau

learning rate scheduler is responsible of decreasing the learning rate with a

factor of 0.1 after observing that the validation loss stop decreasing for a

number of epochs equal to the patience parameter, which we set to 3. The

initial learning rate is automatically set using the learning rate finder offered

by PyTorch Lightning. We perform early stopping on our training when the

validation loss stops decreasing for 3 epochs. All our experiments have been

carried out on a p2.xlarge instance available on Amazon Web Services with

one NVIDIA K80 GPU.

6.2.3 Data

As we explain in chapter 3.4, we evaluate our approach for Fashion Caption-

ing on the datasets Industrial Dataset 1 and Industrial Dataset 2. Table 3.5

in the same chapter highlights the most relevant differences between them,

which are the number of items (77254 vs 1526 total images respectively) and

average captions length (23.36 vs 52.77).

The datasets differ also on the types of tag annotations for each item.

Industrial Dataset 1 items are annotated with one Class label, which rep-

resent the clothing item type, and several Attributes label which include

other information such as clothing subcategories, gender, age group, color

and concepts. Class and Attributes of each item are concatenated together

to form the tag tokens inside the multimodal embedding. The tags for In-

dustrial Dataset 2 are, instead, obtained by the concatenation of Attributes,

which are labels including clothing categories, colors and more specific detail
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as fabric and clothing parts, with Details annotations, which are short sen-

tences that describe more fine-grained details such as pockets, zip closures,

neckline shape and so on. Therefore, tags in Industrial Dataset 2 include

more detailed information and are more numerous for each item, as the

corresponding average of tag tokens per item is 22.30 while in Industrial

Dataset 1 there are on average 9.06 tags per item.

6.2.4 Experiment 1: Multimodal Analysis

In this section we present a multimodal analysis of our model where we study

its performance in different settings according to the type of input modality:

only image (visual tokens), only tags (text tokens) or both (multimodal).

The text tokens are additional information related to the item, in our ex-

periments they correspond to tags such as class and attributes. With this

study we want to show whether our model exploits one modality more than

the other and how it performs with a single input type. We evaluate the

performance on our two fashion industrial dataset which contain captions

for all the images.

Industrial Dataset 1

In this subsection, we present our results on the multimodal analysis per-

formed on Industrial Dataset 1. The models share the same architecture as

Multimodal GPT-2 described in 5.2 and they differ only in the input type

during both training and inference, where Image-Only GPT-2 corresponds

to the one which uses only visual tokens from image features to generate

the caption, Tags-Only leverages only text tokens (class, attributes or other

textual information) associated to the item and Multimodal exploits both

modalities.

Ind. Dataset 1 - Multimodal Analysis

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Image-Only GPT-2 54.27 41.9 33.59 27.76 27.31 53.71 204.50

Tags-Only GPT-2 47.28 35.45 27.76 22.61 22.78 46.46 148.61

Multimodal GPT-2 58.63 46.98 38.84 32.96 30.10 57.89 242.96

Table 6.7: Industrial Dataset 1 - Multimodal Analysis

As it can be seen from table 6.7, Multimodal GPT-2 outperforms the

other models in all the metrics, indicating that using both modalities clearly

seems to improve the quality of the generated captions. This could be due

to the fact that leveraging both image and tags helps the model in under-

standing the fashion item better thanks to the features extracted directly
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from the image and the additional knowledge coming from tags associated

to the item. The results also suggest that the most important contribution

to the caption inference seems to be coming from the visual features rather

than tag; in fact, the metrics of Image-Only GPT-2 are all better that those

of Tags-Only GPT-2. A possible explanation of this performance is that

tags in Industrial Dataset 1 are coarse-grained, i.e. they generally refer to

the class of the item and other high-level attributes such as colors, gender or

age group, without more fine-grained details. Therefore, the caption gener-

ated using only this information is not able to correctly describe particular

attributes of the garment or, when it does, it usually refers to characteristic

that are frequent in a certain item category.

(a) Tags: Swimwear swimwear tops ladies bikini sets yellow adult

Ground Truth: Fully lined, strapless bikini top with a frill trim at

the top, removable inserts and no fasteners. The polyester con-

tent of the bikini top is recycled.

Multimodal: Fully lined off-the-shoulder bikini top with wide

elastication at the top. The polyester content of the top is re-

cycled.

Image-Only: Fully lined textured off-the-shoulder blouse in an

airy organic cotton weave with elastication and a wide flounce at

the top.

Figure 6.1: Industrial Dataset 1 - Multimodal vs Image-Only Captions

Similar trends can be noticed also when analysing the captions generated

in these different settings. In figure 6.1 are reported the captions generated

by Multimodal GPT-2 and Image-Only GPT-2 for the bikini top shown in

the image. The model that generates the captions only from visual features

makes a mistake since the caption is describing a blouse, a type of upper gar-

ment which has similar features of the bikini in the image. On the contrary,

the caption generated by the model which exploits both images and tags is

correct as it describes a bikini top as reported in the ground truth caption.

The difference is given by the fact that the tags tokens contain ”swimwear”

and ”bikini” which helps the model in overcoming the ambiguity of the

image.

In figure 6.2, the focus is on the different performance of the Multimodal

and Tags-Only models. In this case, the target item is a turtleneck sweater

but the associated tags are noisy since they contain wrong tokens as ”t shirt”

and ”shirts”. Misled by these noisy tags, the Tags-Only caption describes

the item erroneously as a ”Short-sleeved top”. On the other hand, the

Multimodal model describes the garment with correct visual attributes as
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(a) Tags: Tops t shirts kids girl 14 y shirts white

Ground Truth: Turtleneck sweater in a soft cotton-blend rib knit.

Multimodal: Long-sleeved turtleneck top in soft cotton jersey.

Tags-Only: Short-sleeved top in printed cotton jersey.

Figure 6.2: Industrial Dataset 1 - Multimodal vs Tags-Only Captions

”long-sleeved” and ”turtleneck” without, however, specifying the sweater

and its fabric. This is an example of how having also visual features can

improve the quality of the generated caption and that they are also necessary

when dealing with noisy labels.

Industrial Dataset 2

In this subsection we present the results of the multimodal analysis per-

formed on our second Industrial Datasets, with the same settings as the

previous section. What can be noticed from the results of table 6.8 is that

Multimodal GPT-2 outperforms the other algorithms by a large margin,

similar to what happens with Industrial Dataset 1. This is an additional

proof of the fact that the model benefits from both input modalities as it

can leverage visual features and additional information to construct a quality

caption.

Ind. Dataset 2 - Multimodal Analysis

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Image-Only GPT-2 43.27 27.43 20.09 16.29 17.7 32.48 88.42

Tags-Only GPT-2 48.82 35.35 28.51 24.43 21.91 40.44 143.67

Multimodal GPT-2 54.68 42.66 36.46 32.83 25.89 47.08 236.44

Table 6.8: Industrial Dataset 2 - Multimodal Analysis

However, there is a significant difference with respect to the other data-

set as, in this case, the model that exploits only tags information performs

better in all the metrics than the Image-Only approach, while in the other

dataset it was the opposite. There could be various explanation of this be-

haviour. First, the dataset size plays an important role as Industrial Dataset

1 has a training split composed by more than 50 thousands elements, while

Industrial Dataset 2 has just above 1 thousands element in the training
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set. Therefore, the feature extractor for Industrial Dataset 2 might not have

enough data points to learn effectively what are the most important features

needed to generate a caption and this might explain the worse performance

of Image-Only GPT-2 in this situation. Furthermore, the difference in the

number and type of tags tokens between the two datasets is also an im-

portant factor. In fact, the average number of tags associated to an item

in Industrial Dataset 2 is 22.30 while in Industrial Dataset 1 is 9.06, as

we specify in section 6.2.3, therefore in the former one, tags include more

information that can be leveraged by the model.

(a) Tags: Man Trousers Bermuda Shorts Beige Steppe Back welt pockets Double pleat Front

pockets Zipper closure metal hooks drawstring

Ground Truth: The light summery touch of linen and cotton cover, pairs perfectly with the

sporty style of these new Bermuda shorts, complete with a drawstring elastic waistband. The

garment features a regular fit.

Multimodal: The crisp, light and compact texture of the twisted linen fabric combines per-

fectly with the sporty style of these Bermuda shorts, a summer wardrobe must-have. An

elasticated drawstring waistband, pleat details and regular fit complete the garment.

Image-Only: The classic character of the Italian fit trousers is enriched with the excellence of

American Pima cotton gabardine, a fabric with superior characteristics for the length, sheen

and durability of its fibers. The new Italian fit remains close to the body, but at the same

time, offers slightly softer lines than the more traditional fit.

Tags-Only: The refined qualities of American Pima cotton gabardine enrich the sporty char-

acter of these Bermuda shorts, a must-have piece for the summer. The drawstring waistband

and double pleating details are paired with a modern leisure fit, offering soft proportions in

the seat and a slightly low rise.

Figure 6.3: Industrial Dataset 2 - Multimodal Captions Comparison

In figure 6.3 is shown a comparison between the captions generated by

the models for one image of Bermuda shorts. The Multimodal and Tags-

Only captions are very similar to the original one since they both recognise
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the Bermuda shorts and also more fine-grained attributes as the summery

and sporty style and the drawstring waistband, thanks to tags tokens which

contain ”Bermuda shorts” and ”drawstring”. On the other hand, Image-

Only which exploits only visual features is not able to discriminate the Ber-

muda shorts characteristic and it describes the item as a pair of trousers.

This shows the role of rich and fine-grained tags and how they can improve

the quality of the generated captions, especially, when the dataset size is

small and it is not easy to discriminate between image features.

Attention Visualisation

We perform an additional analysis of our multi modal approach by visualiz-

ing the attention layers inside GPT-2 architecture. As we explain in chapter

2.2.4, GPT-2 is composed by a stack of Transformer decoder blocks where

each of them has a layer of Masked Self-Attention and a Feed Forward layer.

The role of the attention layers is to compute how much each input token

is related to the others and use this information to produce the output em-

bedding by focusing on the input tokens which are more relevant to it. We

analyse this layer in our model to better understand from which type of in-

put modality (visual or tag tokens) our model is exploiting more information

each time it is decoding a new word. One way of performing this analysis

is by visualizing how the attention shift each time a new token is decoded.

In figure 6.5, we show this type of visualisation for our Multimodal GPT-2

model caption generation for the sample on figure 6.4, focusing on the at-

tention for three decoded tokens at the last Transformer block. For each

figure, the words on the left column are from the generated caption, split

in different tokens by the GPT-2 tokenizer using Byte-Pair Encoding, while

the right column contains the multimodal input, with visual tokens and tag

tokens. Visual tokens are the output of the Remapper block which convert

the visual features into a fixed number, in this case 5, of visual embedding

tokens of the same dimension as word tokens, as we explain in chapter 5.2.

Tag tokens are the actual tag annotations, processed by GPT-2 tokenizer.

The lines connecting tokens represent the level of attention between each

output-input token pair and the colored rectangles correspond to the atten-

tion for each attention head, which are 12 for gpt2-small.

It is interesting to notice from figure 6.5 that the model seem to bene-

fit from both types of input modalities, varying its focus according to the

current decoded token. For example in figure 6.5a, the model attention for

token ”Long” of the n-gram ”Long-sleeved blouse” seem to attend almost

equally to all input tokens, which probably means that its exploiting visual

66



(a)

Tags: Shirts Blouses blouses ladies divided shirts blouses

blue adult

Ground Truth: Wide V-neck blouse in a crinkled weave

with an embroidered pattern and decorated with em-

broidered ribbon. Double ties with tassels at the neck

and long sleeves with narrow elastication and a flounce

at the cuffs.

Multimodal GPT-2: Long-sleeved blouse in a patterned

viscose weave with a V-neck buttons down the front and

a flounce at the cuffs and hem. Unlined.

Figure 6.4: Sample from Industrial Dataset 1

features to infer the long sleeves attribute and it’s also benefiting from tags

such as ”blouses” and ”shirts” to better understand the type of garment it’s

going to describe. Same reasoning can be applied to the attention visual-

ization for token ”bl” of word ”blouse” in figure 6.5b. In figure 6.5c it is

possible to observe a different behaviour for token ”V” of ”V-neck” as, in

this case, the attention focuses mostly on the visual tokens rather than the

tag tokens. One reason for this can be that at this point the model has

already returned the tokens which describe the garment type and it’s now

shifting its attention to fine-grained attributes by ”looking” at the visual

tokens.

Furthermore, it is also worth noticing that the model seem to attend

to all visual tokens and this suggests that mapping the visual features into

different subspaces is helping the model to distinguish different type of at-

tributes. There seems to be also a form of redundancy as there are two

visual tokens, the first and the fourth, with similar attention head values

and this could mean that less visual tokens are actually needed. We present

additional experiments with different visual tokens numbers in appendix.

A.2.

To sum up, the attention visualisation in the GPT-2 layers confirms

the same trend that we observe by analysing the evaluation metrics and

caption generated by the different model, where the model which rely on

the multimodal input benefits from both type of inputs and this leads it to

outperform the models with a single input modality.
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(a) Attention for token ”Long” (b) Attention for token ”bl” (c) Attention for token ”V”

Figure 6.5: GPT-2 Self Attention Visualisation

6.2.5 Experiment 2: Comparison with Baselines

Baselines

In order to evaluate the performance of our model with respect to other

approaches we use two different baseline algorithms: one that uses both

image and text tokens as input and another one, based on Show, Attend

and Tell paper, presented in Related Word (chapter 4), which relies only on

image features.

The first baseline, that we refer to as Multimodal LSTM, is a model

based on the encoder-decoder paradigm with a Convolutional Neural Net-

work (a ResNet as in our model) and a LSTM as decoder. The LSTM is

a Recurrent Neural Network, as explained in 2.2.2, made specifically for

modelling sequence data and used frequently in many text generation ap-

68



proaches. The input size and hidden size of the LSTM are both set to 768,

as the hidden size of our GPT-2. The multimodal embedding composed by

visual and tag tokens is built in the same way that we do for our model, as we

describe in 5.2, and is fed as input to the LSTM, using the same vocabulary

and tokenizer. Therefore, this baseline only differs from our approach in the

decoder, where we use GPT-2 instead of a LSTM. Since GPT-2 can lever-

age a pre-training on 40GB dataset of text while LSTM is not pre-trained

on a large corpora, we make the comparison more fair by giving the token

embeddings and language model linear head weights of pre-trained GPT-2

to the LSTM, so that it can better discriminate tokens among all the 50257

words in the vocabulary.

The second baseline, based on the Show, Attend and Tell [XBK+15] im-

age captioning paper, is taken from a image captioning repository available

online9. It is a model based on a encoder-decoder architecture with a CNN

as encoder and a LSTM as decoder, incorporating also an attention mech-

anism that allows to focus on different parts of the image each time a new

word is decoded, as described in 4.2.1. Since this approach support only

image as input, we compare this baseline with our model trained only with

image visual tokens, without relying on additional textual tags. As in the

first baseline we ”upload” the token embeddings and language model linear

head weights of pre-trained GPT-2 to the LSTM to make the comparison

more fair.

We choose to compare our results with these baseline because other state-

of-the-art approaches for Image Captioning, as [LHL+19], train also object

detectors using bounding boxes to extract features related to the entities in

the image and, in our datasets, we don’t have bounding boxes that identify

clothing items or parts in an image. Furthermore, the task of our models

is to generate a caption which describe a single garment with its attributes

and details and not different objects in an image and their relations as in a

general captioning scenario.

Industrial Dataset 1

In this subsection we report the results of our approach compared to the

baselines on our Industrial Dataset 1.

Multimodal LSTM Baseline

In table 6.9, we compare Multimodal GPT-2, our model explained in

5.2, and the baseline Multimodal LSTM which has the same structure with

9https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
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a LSTM as decoder instead of GPT-2. Observing the results, it is possible

to state that having GPT-2 as decoder improves the performance by a good

margin in all the metrics than having a LSTM as decoder.

Ind. Dataset 1 - Multimodal

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Multimodal LSTM 50.29 37.79 29.29 23.44 24.22 48.76 150.83

Multimodal GPT-2 58.63 46.98 38.84 32.96 30.10 57.89 242.96

Table 6.9: Industrial Dataset 1 - Comparison with Multimodal Baseline

One explanation of this improvement is to be found in the self-attention

block of the Transformer layers inside GPT-2 which allows the model to at-

tend to all the input words and focus on the most important ones, partially

solving the long-term dependency problems that affect Recurrent Neural

Networks. Thanks to these layers, GPT-2 learns the correlations between

the visual tokens and tag tokens inside the multimodal input and the output

tokens of the generated caption and this lead to the generation of caption

with better quality and more attention to fine-grained details. We also re-

port an example of the caption generated by both models in figure 6.6. In

the first image both captions are overall correct, apart from some errors in

details as ”rounded hem” for Multimodal GPT-2 and ”with a motif” in Mul-

timodal LSTM, however the model with GPT-2 recognises also the ”viscose

crepe” fabric and ”flounced sleeves” which is similar to ”frilled”10 of the

ground truth. Similarly, in the second image, GPT-2 identifies correctly the

item as ”Joggers” and other details as ”side pockets” and ”ribbed hems”

while LSTM confuses it for ”Leggings” and provides less details. This ex-

ample also shows that even if tags tokens contain the word ”leggings”, even

repeated, our model is still able to infer correctly that the item is a pair

of joggers from the visual feature without being negatively affected by tag

tokens. Therefore, it seems that Multimodal GPT-2 is more able to infer

correctly the item type and build a more correct and precise caption than

its counterpart with LSTM.

Show, Attend and Tell Baseline

The other baseline that we want to compare with our approach is one

based on the work presented by Xu et al.[XBK+15] in which they propose a

Image Captioning framework based on a CNN encoder and a LSTM decoder.

The novelty of this approach is that they apply a visual attention mechanism

on the image features which, at each decoding step, attends to the most

relevant features to produce the next word in the caption. Our model doesn’t

10https://papertheorypatterns.com/pages/frill-and-flounce
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(a) Tags: Tops tops short sleeves ladies short sleeve green adult

everyday fashion

Ground Truth: Top in an airy viscose crepe weave with a small

frill around the neckline short frilled sleeves that slope downwards

at the sides and a small opening and button at the back of the

neck.

Multimodal GPT-2: Top in viscose crepe jersey with short

flounced sleeves and a rounded hem.

Multimodal LSTM: Short-sleeved top in jersey with a motif.

(b) Tags: Trousers Leggings Pants trousers kids girl 14 y trousers

leggings grey

Ground Truth: Joggers in a soft fine-knit viscose blend with elast-

icated ribbing and a drawstring at the waist side pockets and

tapered legs with ribbed hems.

Multimodal GPT-2: Joggers in soft sweatshirt fabric with an

elasticated drawstring waist side pockets and tapered legs with

ribbed hems. Soft brushed inside.

Multimodal LSTM: Leggings in soft patterned cotton jersey with

an elasticated waist.

Figure 6.6: Industrial Dataset 1 - Captions generated by Multimodal GPT-2 and Mul-

timodal LSTM baseline

have this kind of attention mechanism and we perform this experiment to

understand if our approach reaches similar perfomances to one that exploits

it. Since this baseline works with only image as input, for a fair comparison

we confront its results with those of our model trained and tested with only

images as input and not with the multimodal embedding.

Ind. Dataset 1 - Only Images

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Show, Attend and Tell 56.09 44.65 36.65 30.85 28.84 56.27 224.13

Image-Only GPT-2 54.27 41.9 33.59 27.76 27.31 53.71 204.50

Table 6.10: Industrial Dataset 1 - Comparison with Show, Attend and Tell baseline

What can be noticed from table 6.10 is that the results from the baseline

are all higher than our approach, meaning that having a visual attention

mechanism as the one described in [XBK+15], seems to improve the per-

fomances of caption generation. Therefore, this can be seen as a future

improvement of our current work and it could require more investigations

and experiments to include this kind of mechanism in our approach. One

possible limitation is that a network such as GPT-2, based on Transformers,

performs the operations on the input tokens in parallel (which is actually
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one of the most important advantages since it reduces training time), dif-

ferently from RNN which performs operation sequentially and the attention

mechanism operates between the recurrent steps. Therefore, working on

introducing such mechanism on our approach is not so trivial and would

require further research.

After comparing also the captions produced by both models, we notice

that the quality of the generated captions is very similar, with sometimes

some differences in more fine-grained details where the Show, Attend and

Tell baseline is more precise, probably thanks to its attention mechanism.

(a) Ground Truth: Dress in a soft fine-knit viscose blend a round

neckline 3/4-length sleeves and a gently flared skirt. Unlined.

Image-Only GPT-2: Short dress in ribbed jersey with a turtle

neck and long sleeves.

Show, Attend and Tell: Short dress in ribbed jersey with a round

neckline and 3/4-length sleeves Unlined.

(b) Ground Truth: Set with a top and dungarees in soft cotton.

Top in patterned jersey with a press-stud on one shoulder. Dun-

garees in a crinkled weave with flounces at the front elastication

at the back of the shoulder straps press-studs at the crotch and

down the legs (not in sizes 1-3Y) and elasticated hems.

Image-Only GPT-2: Set with a long-sleeved bodysuit pants and

accessory in soft organic cotton jersey. Bodysuit with snap fasten-

ers at gusset. Pants with wide foldover ribbing at waist and ribbed

hems.

Show, Attend and Tell: Set with a long-sleeved top and pair of

dungarees in soft organic cotton. Bodysuit in a patterned weave

with elastication and a frill at the top concealed press-studs at the

crotch and down the legs and elasticated hems.

Figure 6.7: Industrial Dataset 1 - Captions generated by Image-Only GPT-2 and Show,

Attend and Tell baseline

In the first image in figure 6.7, Show, Attend and Tell baseline describes

also the details ”round neckline” and ”3/4-length sleeves” while our model

misses them and mistakes the neckline for a ”turtleneck”. In the other

example, the baseline recognises correctly the set made of a top and dun-

garees with specific details while our model describes a set with a bodysuit

and pants. Therefore, while, in general, the captions of the two models are

very similar, these two example suggests that the reason why the baseline
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performs better than our approach is because of it higher attention to certain

details.

Industrial Dataset 2

In this subsection we report the results of our approach compared with the

baselines on Industrial Dataset 2.

Multimodal LSTM Baseline

The results reported in figure 6.11 suggests that, as in Industrial Dataset

1, our Multimodal GPT-2 performs better than its counterpart with LSTM,

according to all the metrics. Furthermore, in this case the gap between the

two algorithms is even greater than that of the previous dataset, reported

in figure 6.9. There are several differences between the two dataset and the

model architectures that could explain this trend. First, this dataset has an

average number of tags of 22.30, i.e. each item is labelled, on average, with

22 tag tokens, while Industrial Dataset 1 average is much lower with 9.06.

With the higher number of input tokens in the multimodal embedding, the

LSTM model might not be able to embed all the relevant information into

a unique state and use it as a context to generate the next work, similar to

the long-term dependencies problem that notoriously affects RNNs. GPT-2,

on the other hand, has several multi-head self-attention layers which allows

it to attend at all the tokens simultaneously with the key, query and value

vectors. This difference might be crucial when dealing, as in this case, with

a multimodal input of this length. Similarly, Industrial Dataset 2 captions

are longer (52.77 average length) than Industrial Dataset 1 (23.36) and, for

the same problems related to learning long-term dependencies, the quality

of the generated captions might suffer from this.

Ind. Dataset 2 - Multimodal

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Multimodal LSTM 39.07 25.16 18.80 15.55 15.77 30.09 64.26

Multimodal GPT-2 54.68 42.66 36.46 32.83 25.89 47.08 236.44

Table 6.11: Industrial Dataset 2 - Comparison with Multimodal Baseline

In figure 6.8, we report an example of the captions generated by the two

algorithms. In this case Multimodal LSTM is not able to correctly classify

the garment as it recognises a sweater instead of a shirt, which, instead,

Multimodal GPT-2 does correctly with other details as the ”button-down

collar” and the ”basic fit” with ”straight lines”. The LSTM model seems to

have problem at correlating the high number of tags and the visual features
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while our approach with GPT-2 is more capable of discriminating the most

important visual and text token to produce the correct caption.

(a) Tags: Man Shirts Button Down Shirt Blue Azure Basic-fit Button-down collar Cuffs mother

pearl buttons Patch chest pocket Placket closure mother pearl buttons

Ground Truth: The season’s colors enrich the pure cotton striped Oxford, a classic menswear

fabric. This button-down collar shirt is paired with a basic fit, which offers regular lines that

follow the body through the shoulders and along the torso.

Multimodal GPT-2: The colors of the season enrich the classic two-tone check pattern of

this button-down collar shirt, a menswear must-have. Pure cotton poplin shirt features a basic

fit, with comfortable, straight lines.

Multimodal LSTM: The excellence of [BRAND] materials enriches the classic style of the

lightweight and cotton sweater. The classic and versatile design of the top is enriched with the

small striped cotton ribbon embroidered with a stripe of shiny monili. The fit is comfortable

and relaxed.

Figure 6.8: Industrial Dataset 2 - Captions generated by Multimodal GPT-2 and Mul-

timodal LSTM baseline

Show, Attend and Tell Baseline

Ind. Dataset 2 - Only Images

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Show, Attend and Tell 38.62 23.94 17.40 14.19 15.39 30.04 86.081

Image-Only GPT-2 43.27 27.43 20.09 16.29 17.7 32.48 88.42

Table 6.12: Industrial Dataset 2 - Comparison with Show, Attend and Tell baseline

In this dataset, there is an important inversion of trends with respect to

the comparison between the Show, Attend and Tell baseline and our Image-

Only model on Industrial Dataset 1 (table 6.10) as the baseline performs

worse than our model in all the metrics. This suggest that the visual at-

tention mechanism of the baseline is not enough to overcome the inherent

challenges of this dataset. Despite the fact that in this experiment we are
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not using the tags token as input, since both models only exploits visual

features, the problem related to the caption length is still relevant, where

LSTM might not have enough complexity to model captions of this length

and rich of details. In addition, the size of this dataset (1225 items in the

training set) is much smaller than the other one (54387) and LSTM with the

attention mechanism might not have enough data points to correctly infer

which are the most relevant features in the image. In figure 6.9, for example,

our model produces a caption which describes correctly the outerwear gar-

ment of the image, with both correct details as the ”ideal to wear in warm

weather” and wrong ones as ”shiny monili embroidery on the side”. On the

other hand, the LSTM with attention mechanism is not able to recognise

the correct type of garment since it refers to it as a sweatshirt. These res-

ults could suggests that our model can be the best choice when it comes

to fine-tuning a small dataset, since it leverages GPT-2 pre-training and its

Transformers layers with self-attention blocks.

(a) Ground Truth: Versatile materials and comfortable proportions reinterpret the style of this

outerwear, inspired by classic raincoats. The lightness and fluidity of the gabardine exterior is

paired with the technical and casual look of the water-resistant microfiber, a lightweight fabric

ideal for the summer season. Comfortable and straight lines are offered by the fit.

Image-Only GPT-2: The excellence of [BRAND] materials enriches this new outerwear jacket

inspired by the classic flavor of men’s shirts. Shiny monili embroidery on the side adds a precious

touch and introduces the iconic element of the [BRAND] collections. Ideal to wear in warm

weather in the city or on a trip, this outerwear jacket features a practical fabric pouch to be

stored in the smallest of spaces.

Show, Attend and Tell: The quality of [BRAND] materials enhances the Travelwear line,

dedicated to moments of relaxation and free time. A sporty flavor of Activewear is interpreted

by the lightweight cotton French terry sweatshirt with a drawstring hood and personalized

two-way zipper closure with the Solomeo logo.

Figure 6.9: Industrial Dataset 2 - Captions generated by Image-Only GPT-2 and Show,

Attend and Tell baseline
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6.2.6 Experiment 3: Caption and Tag Generation

In this section we present the results of the experiments we perform with

our TagCaptioner GPT-2 model, presented in chapter 5.3, which combines

our approaches for Tagging and Captioning into a unique solution which is

able to generate both tags and captions.

Industrial Dataset 1

Regarding our first industrial dataset, we present the results on both the

Captioning and Tagging tasks. For the former, we confront the perform-

ance of TagCaptioner with the results obtained by our Multimodal GPT-2

approach, explained in chapter 5.2, which generate the caption using both

visual features and the associated tags and the baseline with LSTM decoder.

As it is possible to notice from table 6.13, TagCaptioner performance doesn’t

reach the same level of Multimodal GPT-2, which is a result that we expect

given the fact that Multimodal leverages the ground truth tags while Tag-

Captioner is using the tags that it generates by visual features, therefore

there is a performance gap between these two approaches. Nevertheless, we

observe that the quality of the captions generated by TagCaptioner is good

as it is better than the baseline with LSTM which leverages the ground truth

tags. We notice few errors in the caption generation that can be traced back

to incorrect or incomplete generated tags. For example, in figure 6.10, the

clothing item is a sports top and Multimodal GPT-2 is able to provide the

correct caption thanks also to the help the ground-truth tags which con-

tain the tag ”Sport”. On the other hand TagCaptioner doesn’t return any

tags which is related to the sport details and, therefore, also the generated

description is missing this particular detail which, apparently, is not able

to discriminate correctly from the image features. This represents also a

limitation of this model, since it depends on the quality of the generated

tags to achieve good performances also in the caption generation.

Ind. Dataset 1 - TagCaptioner for Captioning

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Multimodal LSTM 50.29 37.79 29.29 23.44 24.22 48.76 150.83

Multimodal GPT-2 58.63 46.98 38.84 32.96 30.10 57.89 242.96

TagCaptioner GPT-2 53.08 40.71 32.40 26.65 26.54 52.67 196.90

Table 6.13: Industrial Dataset 1 - TagCaptioner for Fashion Captioning

We also evaluate the performance of TagCaptioner on the Fashion Tag-

ging task and we compare it with the results that we obtain with our Double-

Head TagNet model, presented in chapter 5.1, on Industrial Dataset 1. As
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(a) Tags: Sport wear tops short sleeves sport ladies short sleeve

black adult

Ground Truth: Sports top in fast-drying sweatshirt fabric with

half-length raglan sleeves and a raw-edge hem. Slightly longer

and rounded at the back.

Multimodal GPT-2: Wide sports top in fast-drying functional

fabric with short cap sleeves.

TagCaptioner GPT-2: Top in organic cotton jersey with a ribbed

neckline in a contrasting colour and a gently rounded hem.

Generated Tags: Tops kids tops t shirts short sleeves black tops

Figure 6.10: Industrial Dataset 1 - TagCaptioner Example

Industrial Dataset 1 - TagCaptioner for Tagging

Algorithm

Class Attributes

accuracy precision@k recall@k recall@sample k map

top-1 top-3 top-5 top-1 top-3 top-5 top-1 top-3 top-5

Top-Popular 10.1 27.1 41.2 50.1 38.2 31.0 9.20 21.0 28.8 29.58 30.2

Double-Head TagNet 87.61 98.30 99.36 97.09 87.78 75.56 18.46 49.78 70.67 74.34 83.74

TagCaptioner 85.19 97.57 99.04 96.01 86.73 75.57 18.24 49.17 70.68 74.67 83.69

Table 6.14: Industrial Dataset 1 - TagCaptioner for Fashion Tagging

it can be noticed from table 6.14, TagCaptioner reaches similar results of

those obtained by the TagNet, which its only task is generating tags, also

slightly outperforming it in few metrics.

Industrial Dataset 2

We perform the same experiment, for the Fashion Captioning task, also

for Industrial Dataset 2. This dataset tags annotations, as we explain in

section 3.3, are different from those of DeepFashion and Industrial Dataset 1

which are divided into two types: mutually-exclusive classes and multi-label

attributes. In this dataset, tags are divided into a type which is similar

to attributes as it contains labels related to categories, colors and more

specific detail as fabric and clothing parts, and another type which is a set

of short description of fine-grained details as pockets, zip closures, neckline

shape and so on. In order to generate these type of tags we perform two

tasks, each of them with the same approach of attribute prediction in the

Image Tagging task, computing the loss function as a Binary Cross Entropy

after passing the scores through a Sigmoid activation function (Tag Loss

Functions chapter 5.1), one for predicting the attributes and the other for

the detail sentences.

As expected, the performances of TagCaptioner are worse than Mul-

timodal GPT-2, however, in this case the gap between them is more wide
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than in the case of Industrial Dataset 1. This is probably related to the fact

that, as we explain in 6.2.4, tags in this dataset plays a much important role

in the generation of captions, for the small dataset size and the fact that

they contain also fine-grained detail that the model can leverage. Therefore

TagCaptioner generated tags quality is still lower than that of ground-truth

tags and this affects the model performances on caption generation. As

an example, in figure 6.11, we notice that the generated tags contain the

token Sweater while the item is crew-neck T-shirt. In this case Multimodal

GPT-2 is able to identify correctly the garment as a crew-neck T-shirt while

TagCaptioner is misled by the wrong token ”Sweater” in the generated tags

and, therefore, it generates a caption for a sweater. This is another example

of how the performance of TagCaptioner can be affected by the generated

tags quality. Even so, TagCaptioner performs better than the baseline with

LSTM which leverages ground-truth tags, proving again the qualities of our

approach based on GPT-2.

Ind. Dataset 2 - TagCaptioner for Captioning

Algorithm BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Multimodal LSTM 39.07 25.16 18.80 15.55 15.77 30.09 64.26

Multimodal GPT-2 54.68 42.66 36.46 32.83 25.89 47.08 236.44

TagCaptioner GPT-2 43.79 28.37 21.2 17.43 18.36 33.58 107.04

Table 6.15: Industrial Dataset 2 - TagCaptioner for Fashion Captioning

Industrial Dataset 2 - TagCaptioner for Tagging

Task
precision@k recall@k recall@sample k map

top-1 top-3 top-5 top-1 top-3 top-5

Attributes Prediction 93.29 84.95 65.97 15.54 42.47 54.97 59.34 64.55

Details Prediction 76.21 53.25 41.46 21.07 41.36 52.19 48.61 56.26

Table 6.16: Industrial Dataset 2 - TagCaptioner for Fashion Tagging

For a complete evaluation, we also report the performance of the model

in the tag generation of attributes (1087 labels) and details (593 short de-

scriptions treated as single labels). In table 6.16, we show the results of

TagCaptioner on the two tasks that the model performs simultaneously with

the Caption Generation. What it can be noticed from the results is that

the model seems to perform better on the Attributes Prediction task than

the generation of Details (the short description labels), despite the larger

number of attributes than the one of details. The reason for this is that

Details are less easier to discriminate given the fact that they represent very

fine-grained details and, therefore, the model might not have enough data

points in the dataset to better learn these features.
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(a) Tags: Man Topwear Long Sleeve T-Shirt Blue Navy Blue Crew-neck Flat pressed hem

cuffs Slim fit

Ground Truth: The refined qualities of [BRAND] materials enrich the long sleeve crew-neck

T-shirt, a menswear essential. Lightweight cotton jersey offers a comfortable, subtle texture

that pairs perfectly with the slim fit.

Multimodal GPT-2: The crew-neck T-shirt, a year-round component of the male wardrobe,

combines the qualities of lightweight cotton jersey with the form-fitting lines of a slim-fit,

which remains close to the body both through the chest and shoulders.

TagCaptioner GPT-2: The virgin wool, cashmere and silk new sweater combines the excel-

lence of [BRAND] materials with details inspired by the Active world. Raglan-style sleeves

and the rib knit neckband, triangle insert, cuffs and bottom band characterize the garment’s

sporty flavor, while the contrast color edge of the cuffs adds a sophisticated finishing touch.

The proportions are regular both through the chest and shoulders.

Generated Tags: Man Blue Knitwear Crewneck Sweater Black Navy Blue Black Rib knit cuffs

and bottom band Plain stitch Crew-neck with triangle Raglan sleeve Crew-neck in rib knit

Figure 6.11: Industrial Dataset 2 - TagCaptioner Example
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Chapter 7

Conclusion and Future Work

In this chapter, the key outputs and contribution of our research work are

going to be presented and discussed. This work stems from the current

challenges related to the maintenance and enrichment of online catalogues

where millions of items and the corresponding images needs to be correctly

tagged with labels and descriptions in order to make them more appealing

and easy to find for the users. Specifically, the purpose of this work is to

tackle these problems in the fashion domain, where almost every fashion

company is now exploiting e-commerce websites to sell its products online.

Given the fact that each one of these online catalogue can contain thousands

of images and new items are continuously added for new seasons, collections

or trends it is crucial that all this vast amount of data is correctly annotated

but, at the same moment, it becomes extremely difficult and time-consuming

for human annotators to do it. Therefore, with our work we explore different

solutions in the state-of-the-art and propose our own novel approaches to

generate tags and descriptions for a fashion item by exploiting visual features

extracted directly from its image.

7.1 Outputs and Contributions

We study and propose approaches for two tasks in particular: Fashion Tag-

ging and Fashion Captioning. We test the performances of our models with

respect to different datasets, both public and private, and we compare them

with baselines from state-of-the-art approaches in order to have a complete

understanding of their capabilities and limitations. The task of Fashion Im-

age Captioning, in particular, has not received a lot of attention so far from

the research community and, therefore, with our work we also hope to help

the research in this direction.



For the Fashion Tagging task, our main research contribution is the

insight we gain from the analysis and comparison with other approaches.

We observe that the current state-of-the-art approach [LL18] in the public

large-scale dataset DeepFashion [LLQ+16] relies on a landmark attention

branch to improve the performances in the Category and Attribute pre-

diction task. Given the fact that landmarks, which correspond to a set of

key-points on the clothes structure, are a type of annotation that is rarely

available in real-word datasets, we prefer to build a model that doesn’t ex-

ploit this extra information. We then compare the results of our model with

the current state-of-the-art and, as explained in chapter 6.1.5, we show that

our approach performs better than the baseline with landmark attention,

suggesting that using this type of mechanism based on the additional land-

marks annotations doesn’t seem to be necessary to improve the Category

and Attributes prediction tasks.

Regarding Fashion Captioning, we propose a novel approach based on

GPT-2 language model to generate captions for an image. GPT-2 archi-

tecture has surprised many for its ability to generate coherent and complex

text but, to the best of our knowledge, is yet to be used in the context of

generating text given features extracted from an image and, therefore, with

our work we want to provide a contribution to this research question. We

carry out a performance study and baselines comparison on two industrial

datasets to test our model in a real-world industrial setting (chapter 6.2.5).

Another important feature that distinguishes our approach from the cur-

rent state-of-the-art models is that it is not based on object detectors which

recognise entities as in the general Image Captioning but it focuses on the

entire image features to extract details and attributes.

Furthermore, we consider the possibility of improving the quality of the

generated caption by leveraging not only visual feature but also additional

textual information, if available. This information can be metadata or tags

that are associated to the item and we combine them with the visual features

in a multimodal embedding which is fed as input to our model. We perform

a multimodal analysis to investigate whether our model relies on one input

modality more than the other in different settings, with both quantitative

analysis on evaluation metrics and qualitative by observing the generated

captions and visualizing the attention layers inside our GPT-2 model.

Finally, we present also a model capable of generating simultaneously

tags and caption by combining our approaches for Fashion Tagging and

Captioning into a unique system. We carry out a performance study also

for this approach on the industrial datasets comparing its results with those

of our previous models which perform, separately, Tagging and Captioning.
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7.2 Limitations

Even though several contributions are brought to the research field by this

work, limitations are still present and need to be addressed, as it is going

to be discussed in this section. First of all, in our experiments on Fashion

Tagging and the comparison with baselines, we can’t compare with the ac-

tual performance of one of the state-of-the-art model since no pre-trained

model is available and we observe a discrepancy between the reported results

and the one we reproduce. Therefore, even though our reproduced results

should be reliable as we use the code and setting released by the author, the

original model provided by the authors would clear any doubts.

Another limitation is brought by the fact that we can’t compare our

results with other works on Fashion Captioning as this particular task has

yet to be thoroughly studied by the research community. We find a work

by Yang et al. [YZJ+20], recently released in August 2020, which focus on

Fashion Captioning but we are not able to compare our approach with this

work as the authors say, in reply to our questions, that they can’t release

the code yet.

7.3 Future Work

A lot remains to be studied and experimented following this research work,

in particular in the field of Fashion Captioning which is yet to be explored

thoroughly and the applications of GPT-2 language model and Transformer-

based models for Image Captioning.

Restricting the focus in particular on this research work, a possible next

step is to include a layer of visual attention in our Multimodal GPT-2 ap-

proach for captioning giving the model the capability to not only to give more

relevance to certain visual or textual tokens, but also to learn which are the

most important visual features to select each time a word is decoded. We

observe in our experiment with the Show, Attend and Tell baseline (chapter

6.2.5) that this type on visual attention, applied to an LSTM, seems to

improve the quality of the caption and the attention to more fine-grained

details, therefore, it looks like a promising approach to try. Furthermore, we

could also explore new ways of mapping visual features into visual tokens,

using more complex architectures than linear fully-connected layers to learn

more precise sub-spaces mappings.

We identify another possible direction in the research on how to improve

the quality of the generated caption by increasing their structure complex-

ity and the use of polished words. For example, after observing that the
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captions of Industrial Dataset 1 have a simpler structure and less refined

words than Industrial Dataset 2 we try to perform a Caption Style Transfer

Learning by controlling the text generation, as it is done in [DML+20], of a

model trained on mixed dataset with captions coming by the two different

datasets. The goal is to ”transfer” the complex structure and refined words

of Industrial Dataset 2 to generated captions for the other dataset, charac-

terised by captions with a less complex structure. We are currently working

on this approach.

Another important future work is to add the possibility of translating

the generated caption in different language as online catalogues often need

to offer the same product in different countries with the description in the

proper language.
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Appendix A

Additional Tables

A.1 Tagging

Hyperparameter Tuning

We report the result of the hyperparameter tuning we mention in chapter

6.1.2. The model that perform better on the validation set has learning rate

equal to 1e-3 and batch size 8.

Parameters Class Attributes

lr batchsize accuracy
p@k r@k

top-1 top-3 top-5 top-1 top-3 top-5

0.01 4 74.02 89.85 73.95 61.28 17.06 41.71 57.11

0.01 8 75.62 92.06 77.82 64.46 17.46 43.59 60.06

0.001 4 76.35 91.75 78.19 65.15 17.44 44.14 60.74

0.001 8 79.93 93.59 81.08 67.40 17.79 45.86 62.94

0.0001 4 79.22 89.59 71.54 57.99 16.99 40.26 53.96

0.0001 8 78.19 86.84 6861 54.85 16.44 38.54 51.02

0.00001 4 60.03 64.90 45.77 38.06 12.20 25.57 35.40

0.00001 8 56.95 59.76 41.08 34.12 11.19 22.84 31.73

Table A.1: Industrial Dataset 1 - Hyperparameter tuning

A.2 Captioning

Visual Tokens Experiments

Below we present the results of experiment with different visual tokens num-

ber, i.e. the number of embedding in which the visual features are mapped.

From the results on Industrial Dataset 1 it seem that the number of visual

tokens doesn’t affect the model performances while for Industrial Dataset
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2 performance improves with an higher number of visual tokens. The reas-

ons for this behavior are probably to be found on the differences in term

of dimension and annotations between the dataset but further experiments

would be required to obtain more reliable results.

Ind. Dataset 1 - Visual Tokens Experiments

Visual Tokens BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

1 57.69 46.23 38.12 32.39 29.52 58.29 266.85

5 57.61 46.22 38.17 32.38 29.63 57.32 240.77

10 57.61 46.29 38.47 32.95 29.56 57.40 260.84

Table A.2: Industrial Dataset 1 - Experiments with different number of visual tokens

Ind. Dataset 2 - Visual Tokens Experiments

Visual Tokens BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

1 39.97 24.03 16.92 13.34 16.22 30.41 80.94

5 43.27 27.43 20.09 16.29 17.7 32.48 88.42

10 42.15 27.25 20.26 16.56 17.53 32.82 97.49

Table A.3: Industrial Dataset 2 - Experiments with different number of visual tokens



Appendix B

Generated Tags and Caption

Examples

B.1 Generated Tags

In this section we show the class and attributes tags generated by our model

from DeepFashion test set.

(a) GT Class: Blouse

GT Attributes: chiffon,

floral, floral print, print

Predicted Class: Blouse

Top-5 Attributes: print,

floral, shirt, floral print,

ruffle

(b) GT Class: Blouse

GT Attributes: lace, long

sleeve, shopping, sleeve,

woven

Predicted Class: Blouse

Top-5 Attributes: sleeve,

chiffon, button, shirt, long

sleeve

Figure B.1: Blouses
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(a) GT Class: Dress

GT Attributes: bejeweled,

leopard, leopard print , maxi

, print

Predicted Class: Dress

Top-5 Attributes: leopard ,

leopard print , print , maxi ,

animal

(b) GT Class: Dress

GT Attributes: heathered ,

trapeze

Predicted Class: Dress

Top-5 Attributes: trapeze ,

heathered , high-slit , knit ,

knit trapeze

Figure B.2: Dresses

(a) GT Class: Jeans

GT Attributes: distressed ,

skinny

Predicted Class: Jeans

Top-5 Attributes: skinny ,

distressed , ripped , wash ,

acid

(b) GT Class: Jeans

GT Attributes: dark , fit ,

slim , wash

Predicted Class: Jeans

Top-5 Attributes: slim ,

wash , fit , dark , classic

Figure B.3: Jeans

(a) GT Class: Cardigan

GT Attributes: hooded

Predicted Class: Cardigan

Top-5 Attributes: print ,

tribal , knit , dolman ,

hooded

(b) GT Class: Cardigan

GT Attributes: knit ,

striped

Predicted Class: Jacket

Top-5 Attributes: cropped

, crop , striped , faux , knit

Figure B.4: Cardigans
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(a) GT Class: Jacket

GT Attributes: fringed ,

leather , suede

Predicted Class: Jacket

Top-5 Attributes: suede ,

fringe , faux suede , fringed

, faux

(b) GT Class: Jacket

GT Attributes: floral ,

floral print , print

Predicted Class: Blazer

Top-5 Attributes: floral ,

floral print , print , daisy ,

daisy print

Figure B.5: Jackets

(a) GT Class: Leggings

GT Attributes: capri ,

heathered , performance ,

pocket

Predicted Class: Leggings

Top-5 Attributes: suede ,

fringe , faux suede , fringed

, faux

(b) GT Class: Leggings

GT Attributes: floral ,

floral print , print

Predicted Class: Leggings

Top-5 Attributes: floral ,

print , floral print , pink ,

rose

Figure B.6: Leggings

(a) GT Class: Poncho

GT Attributes: buttoned ,

refined

Predicted Class: Cardigan

Top-5 Attributes: dolman

, hooded , knit , batwing ,

dolman sleeve

(b) GT Class: Poncho

GT Attributes: fringe

Predicted Class: Poncho

Top-5 Attributes: fringe

, print , knit , crochet ,

fringed

Figure B.7: Poncho
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(a) GT Class: Shorts

GT Attributes: belted ,

classic , flat-front

Predicted Class: Shorts

Top-5 Attributes: belted ,

polo , chino , cotton , clas-

sic sleeve

(b) GT Class: Shorts

GT Attributes: belted ,

chino

Predicted Class: Shorts

Top-5 Attributes: flat front

, chino , flat , cargo , twill

Figure B.8: Shorts

(a) GT Class: Tee

GT Attributes: crew , crew

neck , pocket

Predicted Class: Tee

Top-5 Attributes: pocket ,

tribal , print , pattern , neon

sleeve

(b) GT Class: Tee

GT Attributes: crew , crew

neck , linen

Predicted Class: Tee

Top-5 Attributes:

heathered , knit , crew

, sleeve , crew neck

Figure B.9: Tee

(a) GT Class: Kimono

GT Attributes: embellished

, island , print , tropical

Predicted Class: Kimono

Top-5 Attributes: floral ,

print , floral print , chiffon

, lace

(b) GT Class: Kimono

GT Attributes: chiffon ,

embroidered

Predicted Class: Kimono

Top-5 Attributes: em-

broidered , fringe , print ,

tassel , fringed

Figure B.10: Kimono
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B.2 Generated Captions

Industrial Dataset 1

In this section we show the captions generated by our model. We provide

random examples for different categories of clothing from the test set of

Industrial Dataset 1.

(a) Ground Truth: Rain jacket in

windproof water-repellent functional

fabric with closed seams at critical

points. Detachable hood with elast-

icated sides a zip down the front and

elastication at the cuffs and hem. Re-

flective details. Unlined. The jacket

has a water-repellent coating without

fluorocarbons.

Multimodal GPT-2: Lightly pad-

ded jacket in water-repellent func-

tional fabric with a detachable lined

hood stand-up collar and zip down

the front. Front pockets elasticated

cuffs and folded seams and reflective

details at the back and on the hood.

Fleece lining. The jacket has a water-

repellent coating without fluorocar-

bons.

(b) Ground Truth: Lightly padded

parka in thick woven cotton fabric

with appliqués. Stand-up collar and

detachable hood. Zip and wind flap

at front with snap fasteners. Front

pockets with flap and snap fastener

vent at back and quilted lining.

Multimodal GPT-2: Padded parka in

woven fabric with a soft brushed fin-

ish. Detachable pile-lined hood with

faux fur trim zip and wind flap at front

with snap fasteners and front pockets

with flap and snap fastener. Inner rib-

bing at cuffs. Quilted lining.

Figure B.11: Jackets & Parka

(a) Ground Truth: Treggings in

stretch denim-look jersey. Elasticized

waistband mock fly mock front pock-

ets and regular back pockets.

Multimodal GPT-2: Treggings in

stretch denim-look jersey. Elasticized

waistband mock fly mock front pock-

ets and regular back pockets.

(b) Ground Truth: Trousers in

stretch twill with a high elasticated

waist and a concealed zip in one side.

Fake welt pockets at the back and

slim legs with creases and short slits

at the hems.

Multimodal GPT-2: Ankle-length

suit trousers in woven fabric with a

regular waist concealed hook-and-eye

fastener and zip fly. Side pockets fake

back pockets and tapered legs with

creases.

Figure B.12: Trousers
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(a) Ground Truth: Fitted dress in

ribbed jersey made from a cotton

blend with a V-neck decorative but-

tons down the front and a flare to the

hem.

Multimodal GPT-2: Short fitted

dress in sturdy jersey with a V-neck

buttons down the front and long

sleeves. Unlined.

(b) Ground Truth: Short dress woven

in a patterned linen blend with a

round neckline opening with a but-

ton at the back of the neck and short

sleeves. Seam and detachable tie

belt at the waist and a gently flared

skirt with side pockets. Flounced trim

around the sleeves and hem. Lined.

Multimodal GPT-2: Short dress in a

patterned crêpe weave with a round

neckline and an opening with a con-

cealed button at the back of the neck.

Short flounced sleeves a seam at the

waist and a flared skirt. Unlined.

Figure B.13: Dresses

(a) Ground Truth: Ankle boots in

suede with pointed toes and block

heels. Leather insoles and rubber

soles. Heel height 2 1/4 in.

Multimodal GPT-2: Ankle boots

with pointed toes elastic gores in the

sides and a loop at the back. Fabric

linings and insoles and rubber soles.

Covered heels 6 cm.

(b) Ground Truth: Trainers in nylon

and imitation suede with a lightly pad-

ded edge and tongue lacing at the

front and patterned soles.

Multimodal GPT-2: Trainers with

lacing at the front mesh linings and

insoles and rubber soles.

Figure B.14: Shoes

(a) Ground Truth: Metal hoop ear-

rings with a pendant. Diameter ap-

prox. 5 cm.

Multimodal GPT-2: Thin metal

hoop earrings. Diameter 2 cm.

(b) Ground Truth: Sunglasses with

plastic and metal frames and UV-

protective tinted mirrored lenses.

Multimodal GPT-2: Sunglasses with

plastic frames and UV-protective tin-

ted lenses.

Figure B.15: Accessories
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(a) Ground Truth: Triangle bikini top

with removable inserts and narrow ad-

justable shoulder straps that cross at

the back. Wide elasticated hem and

no fasteners.

Multimodal GPT-2: Triangle bikini

top with removable inserts and narrow

adjustable shoulder straps that cross

at the back. Adjustable fastening and

an elastic trim at the hem.

(b) Ground Truth: Print-patterned

swimming trunks with an elasticated

drawstring waist and lined front.

Multimodal GPT-2: Swim trunks

with a printed pattern. Elasticized

drawstring waistband and lined front..

Figure B.16: Swimwear

(a) Ground Truth: Suede shoulder

bag with a detachable shoulder strap

zip at the top and zipped inner com-

partment. Lined. Size 4x20x30 cm.

Multimodal GPT-2: Shoulder bag

in grained imitation leather with a

narrow detachable shoulder strap and

flap with a magnetic fastener. Two

inner compartments one with a zip.

Lined. Size 6x15x20 cm.

(b) Ground Truth: Shoulder bag

in glittery imitation leather with a

flap with a concealed hook and loop

fastening. Narrow shoulder strap with

a press-stud at one end. Lined. Size

approx. 4x9.5x13 cm.

Multimodal GPT-2: Small shoulder

bag in glittery imitation leather with

a zip at the top and narrow shoulder

strap with a press-stud at one end.

Lined. Size 5x12x20 cm.

Figure B.17: Bags

(a) Ground Truth: Sports tights in

fast-drying functional fabric with rib-

bing at the waist and a concealed key

pocket in the waistband.

Multimodal GPT-2: Sports tights in

fast-drying functional fabric with wide

ribbing to hold in and shape the waist.

Concealed mesh key pocket in the

waistband.

(b) Ground Truth: Short-sleeved

sports shirt in fast-drying breathable

functional fabric made partly from re-

cycled polyester.

Multimodal GPT-2: Short-sleeved

sports top in fast-drying breathable

functional fabric. The polyester con-

tent of the top is recycled.

Figure B.18: Sports
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(a) Ground Truth: 5-pocket skirt

in washed stretch cotton denim with

worn details an adjustable elasticated

waist (in sizes 8-12Y) zip fly and but-

ton and a raw-edge hem.

Multimodal GPT-2: Skirt in washed

stretch denim with an adjustable

elasticated waist (in sizes 8-12Y) zip

fly and button fake front pockets and

real back pockets.

(b) Ground Truth: Pleated skirt in

woven fabric with a high waist con-

cealed side zip and asymmetric hem.

Lined.

Multimodal GPT-2: Calf-length

skirt in a pleated weave with an elast-

icated waist. Lined.

Figure B.19: Skirts

(a) Ground Truth: Cardigan in soft

fine-knit cotton with a V-neck but-

tons at front and contrasting elbow

patches.

Multimodal GPT-2: Cardigan in soft

fine-knit cotton with a V-neck but-

tons down the front long sleeves and

ribbing around the neckline cuffs and

hem.

(b) Ground Truth: Sweater in a soft

fluffy knit with long sleeves motif

at front and slits at sides. Slightly

longer at back.

Multimodal GPT-2: Fine-knit

sweater in a soft viscose blend with

a motif at front. Dropped shoulders

and long sleeves.

Figure B.20: Cardigans & Sweaters

(a) Ground Truth: Shirt in an or-

ganic cotton weave with a collar but-

tons down the front a yoke with a

pleat at the back and long sleeves with

buttoned cuffs.

Multimodal GPT-2: Straight-cut

shirt in a soft viscose weave with a

collar buttons down the front long

sleeves with narrow buttoned cuffs

and a rounded hem.

(b) Ground Truth: Shirt in washed

superstretch denim with embroidered

details on one sleeve and at hem. Col-

lar snap fasteners at front and long

sleeves with snap fasteners at cuffs.

Chest pockets with snap fastener.

Yoke at back with pleat.

Multimodal GPT-2: Shirt in washed

stretch denim with a collar buttons

down the front flap chest pockets

with a button and long sleeves with

buttoned cuffs.

Figure B.21: Shirts
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Industrial Dataset 2

In this section we show the captions generated by our model. We provide

random examples from the test set of Industrial Dataset 2.

(a) Ground Truth: The excellence of BRAND materials elevates the style of these

timeless cigarette trousers, an emblem of elegant, feminine design. The trousers offer

proportions, which pair perfectly with the lightweight stretch cotton cover fabric:

regular in the seat and slim down the legs. A thin, rounded leather belt completes

the garment with an elegant contrast detail.

Multimodal GPT-2: The cotton twill’s lightweight and dry texture pairs perfectly

with the proportions of the new boy fit trousers, reworking the classic cigarettes

silhouette with a modern twist. The fit is comfortable both in the seat and along the

leg.

Figure B.22: Trousers

(a) Ground Truth: The deconstructed blazer’s style is defined by the combination

of the elegant linen, wool and silk hopsack with the casual patch pockets detail. The

proportions that distinguish BRAND style are offered by the fit: tapered through the

chest to highlight the male physique with slightly pronounced shoulders.

Multimodal GPT-2: New natural fabrics enrich the casual style of blazer with patch

pockets. Lightweight linen fabric updates the classic flavor of the chalk stripe pattern

with a subtle slubbed note. The proportions that distinguish BRAND style are offered

by the fit: tapered through the chest to highlight the male physique with slightly

pronounced shoulders.

Figure B.23: Blazer

(a) Ground Truth: Precious craftsmanship and refined BRAND materials elevate the

casual style of the Travelwear line, dedicated to moments of relaxation and free time.

Soft and lightweight, this cotton French terry sweatshirt showcases two different

colors to create a striped pattern in the season’s colors. On the neckline, a V-insert

embroidered with fine rows of monili updates a classic Sportswear detail with a shiny

touch.

Multimodal GPT-2: Refined BRAND materials marry with the casual style of the

Travelwear line, dedicated to moments of relaxation and free time. A sporty flavor

of Activewear is interpreted by the lightweight cotton French terry sweatshirt with

a precious touch: the V-insert embroidered with fine rows of shiny monili adds a

sparkling BRAND touch. The fit is comfortable and relaxed.

Figure B.24: Sweatshirt
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(a) Ground Truth: A combination between the casual flavor of the materials and the

feminine lines defines the style of this dress with an elegant touch. The striped cotton

poplin’s lightweight texture pairs perfectly with the fluid, unstructured silhouette,

characterized by soft proportions in the bust and the handkerchief hem skirt that is

slightly elongated on the side. A precious detail completes the garment: an acetate

and silk fabric insert on the sleeves is embroidered with rows of shiny monili to

recreate a classic ”roll tab” with the iconic embellishment of the BRAND collections.

Multimodal GPT-2: A combination between casual materials and feminine lines

defines the style of this dress. The cotton poplin’s lightweight texture enhances this

garment’s fluid volume, gathered at the waist with a removable fabric belt. Behind

the neck, shiny monili embroidery completes this dress with the iconic embellishment

of the BRAND collections.

Figure B.25: Dress

(a) Ground Truth: Refined materials enrich traditional knitwear patterns with del-

icate shiny details. The lightweight cotton, linen and silk sweater alternates classic

cable knitting with ribbing obtained with a special technique, creating an elegant

raised texture effect. In addition, the small paillettes incorporated into the yarn com-

plete the garment with a precious feminine touch. Regular proportions with slightly

dropped shoulders are offered by the fit.

Multimodal GPT-2: Inspired by artisanal weaves and traditional net stitches, knit-

ting of this new cotton Feather yarn Cable Net sweater creates an elegant effect of

texture and proportions. A netting technique forms a three-dimensional geometric

pattern with a texture that enhances the yarn’s full, lightweight and comfortable

traits. The fit is comfortable with slightly dropped shoulders.

Figure B.26: Sweater

(a) Ground Truth: Feminine inspiration and refined materials define the style of

this new pure silk Pongee shirt. The ultra lightweight, fluid and semi-glossy fabric is

printed with a floral-inspired design that combines the season’s colors to create an el-

egant three-dimensional effect. Relaxed, straight proportions with dropped shoulders

and slightly elongated lines in the back are offered by the silhouette.

Multimodal GPT-2: Precious feminine materials define the style of this pure silk

pongee shirt. The ultra-lightweight, fluid and semi-glossy fabric is printed with a

floral design that combines the season’s colors to create an elegant three-dimensional

effect. The garment features a regular fit and slightly dropped shoulders.

Figure B.27: Shirt
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(a) Ground Truth: For travel or everyday moments of leisure, these swimming trunks

are a must-have summer accessory. The lightweight nylon fabric, with its smooth

and semi-matte look, is enriched by the sporty striped pattern in the season’s col-

ors. A drawstring waist, practical pockets and stylish button-flap front pocket detail

complete the garment.

Multimodal GPT-2: For travel or everyday moments of leisure, this swimsuit is a

must-have accessory for the summer. Dyed in the season’s colors, the lightweight

nylon fabric stands out against the contrasting side bands. A sporty touch of the

cargo pockets and the drawstring waist completes this accessory.

Figure B.28: Swimwear

(a) Ground Truth: An elegant and refined accessory, the new pocket square com-

pletes the style of the jackets and suits in the collection with a modern touch.

Multimodal GPT-2: An elegant and refined accessory, the new pocket square com-

pletes the style of the jackets and suits in the collection with a modern touch.

Figure B.29: Accessory

(a) Ground Truth: The classic two-tone sporty striped pattern enriches the cotton

jersey T-shirt, a must-have menswear piece. A cotton insert visible along the edges

of the neckband completes the garment with a contrast detail. The slim fit offers

tapered lines that are close through the chest.

Multimodal GPT-2: The crew-neck T-shirt, a year-round component of the male

wardrobe, combines the qualities of lightweight cotton jersey with the form-fitting

lines of a slim-fit, which remains close to the body both through the chest and

shoulders.

Figure B.30: T-shirt
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