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1. Introduction
The thesis outlined in this summary originates
from a collaboration with Nurjana Technologies
and its research and development team. The re-
search objective was to develop an attitude con-
troller capable of operating on-off thrusters in
the context of a co-orbital ASAT (Anti-Satellite)
attack. The chosen methodology to pursue this
goal is reinforcement learning, a branch of ma-
chine learning, which has been employed to si-
multaneously control all three rotation axes.
The research in this regard is progressing to-
wards an increasing interest in countermeasures
for potential ASAT attacks [1]. During the re-
search, several variations of existing algorithms
were introduced, such as the partitioned replay
memory (see section 4.3 and 5.1) and the pre-
training of a network with synthetic data from
a simpler controller (section 5.1).

2. ASAT weapons
Various ASAT weapons have been tested since
the early days of the space age, and some have
even been employed for military purposes. They
can operate through physical contact or electro-
magnetic waves. In this context, the focus is

on co-orbital physical ASAT weapons, namely
space weapons used from satellite to satellite in
orbit. These may include metal fragments gen-
erated by an explosion in orbit or, for example,
technologies designed for debris removal that
can also be adapted for use as weapons. Note-
worthy examples in this regard are the tests con-
ducted as part of the RemoveDEBRIS mission,
where the functionality of a satellite-capturing
net and a harpoon capable of attaching to target
satellite surfaces by perforating them was evalu-
ated [2]. Attacks with weapons of this kind will
be those simulated during the testing of the con-
troller obtained through reinforcement learning.

3. Theoretical Background
In order to better understand the topics covered,
the initial chapters will introduce the theoretical
context of the thesis, starting with the physics
of rigid body rotation and concluding with an
introduction to machine learning.

3.1. Physics of Satellite Rotation
Regarding the physics of rotation, the satellite
has been treated as a rigid body. The physical
model governing a rigid body, when the body
frame is taken coincident with the principal axes
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of inertia, is represented by equation 1.
Ixω̇x + (Iz − Iy)ωzωy = Mx

Iyω̇y + (Ix − Iz)ωxωz = My

Izω̇z + (Iy − Ix)ωyωx = Mz

(1)

The mentioned equation governs the temporal
evolution of the satellite’s angular velocity, given
its inertia and applied moments. When consid-
ering orientation as well, it is necessary to choose
a representation method. The most common
method, also employed in this thesis, is quater-
nions. Quaternions are a four-element vector
capable of describing the satellite’s orientation.
The evolution of quaternions, depending on the
angular velocities of the rigid body, is described
by the equation 2.

dq

dt
=

1

2
Ω(ω)q (2)

Where Ω(ω) is a four by four matrix function of
the angular velocity vector.

3.2. Machine Learning
In the chapter on machine learning, the two
forms of this technology utilized in the thesis,
namely supervised learning and reinforcement
learning, have been extensively described. The
foundational model of machine learning is the
artificial neural network. It consists of nodes
connected by weighted links, each node char-
acterized by a bias and an activation function
through which the input must pass. Neural net-
works aim to store and generalize what is learned
during their training.

3.2.1 Supervised Learning

Supervised learning is a process in which the
neural network is adjusted and modified to be
capable of providing desired outputs for the
given inputs. To achieve this, a training process
is carried out on a dataset containing a large
number of input data paired with corresponding
desired outputs, known as labels. Through a
process called backpropagation, the weights and
biases of the network are adjusted to make ac-
curate predictions based on inputs, even when
those inputs were not seen during training. In
this thesis, supervised learning is employed for
pre-training on a synthetic dataset to prepare
the network for effective training using reinforce-
ment learning.

3.2.2 Reinforcement Learning

Reinforcement learning, unlike supervised learn-
ing, does not rely on labeled data. Instead,
it involves an agent making decisions based on
a state within an environment. The decisions
made lead to a subsequent state, where an-
other decision must be made. At each transi-
tion from state to state, a reward is provided,
and the ultimate goal of the algorithm is to
find a map between states and actions to be
taken, that maximize the total sum of rewards.
The mathematical framework that underlies re-
inforcement learning, addressing the problem it
seeks to solve, is the Markov Decision Process.
The declinations of reinforcement learning used
in this thesis are:
• Q-Learning: in this case, each possible

state-action pair is associated with a num-
ber called the Q-Value within a table known
as the Q-Table. This table is modified dur-
ing the process to ensure that, for each
state, the optimal choice corresponds to the
highest associated Q-Value.

• Deep Q-Learning: it is conceptually sim-
ilar to Q-Learning, with the only difference
being that instead of the Q-Table, a neu-
ral network is used to perform the same
function. Its training can be quite time-
consuming, especially for long sequences of
choices. It functions with the use of replay
memory, which involves storing all the steps
taken to utilize them for learning [3].

• Proximal Policy Optimization: looking
at past research, this type of reinforcement
learning appears to be the most widely used
for solving the satellite control problem. It
relies on two networks: one that makes de-
cisions and explores the state-action space,
and another that evaluates the quality of
a sequence of choices. This approach al-
lows for a better assessment of sequences of
choices that may initially seem unfavorable
but ultimately lead to very high rewards [4].

4. 1D Controller with Rein-
forcement Learning (RL)

To proceed step by step, the problem was
initially addressed by starting with the one-
dimensional case, involving only one axis of ro-
tation. Initially, only angular velocity is consid-
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ered, and later both angular velocity and angle
are taken into account.

4.1. 1D angular velocity control with
Q-Learning

In this initial attempt, the environment model
was created based on the rotation equation
around an axis, and the necessary Q-Table for
the algorithm’s operation was generated. The
agent was designed so that at each step, it can
decide whether to apply a zero moment, a posi-
tive moment of 1 Nm, or a negative moment of -1
Nm. The chosen reward function is positional,
meaning it depends solely on the resulting state
after taking the action. A really negative reward
is given if the boundaries of the considered an-
gular velocity field il reached.

{
Rw(St+1) = −10 · (St+1)

2

Rw(St+1) = −20000 if |St+1| = 2

After a very short training period, the obtained
result is a functional controller capable of reduc-
ing the angular velocity to zero (figure 1).

Figure 1: Q-Learning controller

4.2. 1D angular velocity control with
Deep Q-Learning

Proceeding step by step, the same problem was
solved using Deep Q-Learning. The environ-
ment remains the same as in the previous case,
as do the possible actions that the agent can
take. Even in this early stage of problem resolu-
tion, one can observe the increased complexity
required for Deep Q-Learning to converge com-
pared to simple Q-Learning. Indeed, besides a
longer training time, convergence required the
use of a relative reward function instead of a po-
sitional one, meaning it is a function of both the
state before the action and the subsequent state.

Rw =


+1 if |St+1| < |St|
−1 if |St+1| > |St|
+2 if |St| < 0.01rad/s
+100 if |St| < 0.01rad/s

and |St+1| < 0.01rad/s

The advantage gained through this complication
of the problem is that the obtained network can
control the satellite over a much broader range of
velocities than those encountered during train-
ing (up to 2 rad/s compared to a maximum an-
gular velocity observed in training of 0.1 rad/s).
After just a few minutes of training, the obtained
controller behaves exactly as expected (figure 2).

Figure 2: Deep Q-Learning controller

4.3. 1D angular velocity and angle
control with Deep Q-Learning

In this section, a problem similar to the previous
one was addressed, with the addition of the angle
as a state to be controlled. The goal for the
agent is now to bring both the angle and the
angular velocity to zero. The environment is
similar to the previous one, with the addition
of the equation for angle propagation, and the
actions the agent can take are the same as in
the previous case. The chosen reward function
is positional.

Rw =
1

2π
e(−||St+1||)0.5

To aid the convergence of the algorithm in this
case, a variation of the original Deep Q-Learning
algorithm have been introduced, particularly
concerning the replay memory. To ensure bal-
anced learning among various possible actions,
it was decided to divide the replay memory into
compartments equal to the number of possible
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actions. An experience will then be stored in
a specific compartment depending on the ac-
tion taken during its occurrence. Later, dur-
ing training, an equal number of experiences will
be drawn from each compartment to ensure bal-
ance. This specific form of replay memory in this
thesis will be referred to as partitioned replay
memory. The training duration was relatively
short (20 mins), but the adjustment of hyperpa-
rameters was not straightforward. The resulting
controller operates as expected and, once again,
in a broader range of states than those encoun-
tered during training (figure 3).

Figure 3: Deep Q-Learning controller

5. 3D Controller with Rein-
forcement Learning

In this section, the expansion of the prob-
lem to the three-dimensional case is described,
which introduces numerous complications, start-
ing from the significantly larger action space (27
elements) to a more than tripled state dimen-
sionality.

5.1. 3D attitude control with Deep Q-
Learning (DQN)

To address this problem, the environment was
adapted to the three-dimensional case with the
complete equations of motion. Initially, many
combinations of reward functions and hyperpa-
rameters were tested, but the problem’s com-
plexity, coupled with the slow exploration due to
Deep Q-Learning and its difficulty with long se-
quences of choices, made convergence challeng-
ing. To aid convergence, it was chosen to pre-
train the network using informations obtained
from the one-dimensional controller applied to
each of the three axes. To transform this raw

controller into a three-dimensional network, su-
pervised learning was performed on synthetic
data collected from the behavior of the one-
dimensional controller. This provided a good
initial guess for fine-tuning precision with Deep
Q-Learning. The reward function used was:

{
Rw = 1− 0.99 · [2 · cos−1(q4)]

0.2 if Rw > 0
Rw = 0 else

The process was successful, and the use of parti-
tioned replay memory proved crucial in the final
precision refining stage; without it, the problem
seemed to lack convergence. Overall, the train-
ing lasted almost ten hours and resulted in a
controller that, while lacking in final pointing
precision, exhibits a constant bias from zero, as
observed in initial tests. Fortunately, this bias
appears consistent, allowing for calibration. The
obtained behavior aligns with expectations (fig-
ures 4 and 5).

Figure 4: 3D_DQN calibrated controller angu-
lar velocity

Figure 5: 3D_DQN calibrated controller quater-
nion
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5.2. 3D control with Proximal Policy
Optimization (PPO)

Given that the use of Deep Q-Learning for con-
troller development proved to be complex and
required the use of partitioned replay memory
and pre-training, it was decided to also test
PPO, an algorithm commonly used for such
problems. The environment, as well as the ac-
tion space consisting of 27 elements, remains the
same as in the previous case, but the reward
function has been modified.

{
Rw = 1− 0.99 · (∥[q1, q2, q3]∥)0.2 if Rw > 0
Rw = 0 else

The reward is further multiplied by a factor of
two if the state is very close to the desired state,
and the maneuver performed is zero torque for
all three axes. Convergence with PPO was much
simpler and more linear compared to Deep Q-
Learning, although tuning of hyperparameters
was still required. The training lasted over eight
hours and produced a controller in line with ex-
pectations (figures 6 and 7).

Figure 6: 3D_PPO controller angular velocity

6. Testing
The testing chapter aims to assess the three-
dimensional controllers obtained: the one com-
posed of three 1D controllers, referred to as
1Dx3, the Deep Q-Learning with pre-training
controller referred to as 3D_DQN, and the one
created with PPO, referred to as 3D_PPO, in
the face of a co-orbital ASAT attack. The at-
tack, simulating what could be a harpoon or a

Figure 7: 3D_PPO controller quaternions

net thrown at the target satellite, is simulated
through a sudden change in inertia and an ap-
plied impulsive external moment, deviating the
satellite from its equilibrium. In a time span of
100 seconds, each controller’s ability to restore
the satellite to equilibrium is evaluated, consid-
ering precision and settling time, and comparing
them to a PD controller. This test is conducted
for three attack magnitudes and three increasing
amounts of available control torque, in each of
the combinations. The results demonstrate that
the controllers can restore the system to equilib-
rium in cases where the PD controller proves too
slow, as expected due to its dependence on the
satellite’s initial inertias. However, the precision
and settling velocities achieved in the prelimi-
nary testing during training were not replicated
in this final testing, indicating that precision is
still dependent on training parameters, particu-
larly the inertias and available control torques.
Additionally, 3D_PPO exhibits uncertain be-
havior in states not encountered during training.

7. Conclusions
The work aimed at creating a controller through
reinforcement learning capable of stabilizing a
satellite under co-orbital ASAT attack with on-
off thrusters, being able to simultaneously act
on all three control axes. The research process
yielded three 3D controllers with different char-
acteristics, which were analyzed during testing.
To achieve convergence for the 3D_DQN con-
troller, the variation of the replay memory called
partitioned replay memory was necessary, cou-
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pled with pre-training based on synthetic data
obtained from a simpler controller. These ad-
justments were necessary to achieve effective op-
eration of Deep Q-Learning with this problem.
The obtained controllers demonstrated good be-
havior but were unable to generalize the pre-
cision achieved in training to various combina-
tions of inertias and available control torques.
The controllers showed higher precision as the
ratio between available torque and inertia ap-
proached that of the training. Another final note
can be made: it is clear that PPO is generally
more suitable for developing such a controller
compared to Deep Q-Learning, because of the
linearity and simplicity that was demonstrated
during the training. The same conclusion has
been drawn in other previous works, which con-
sistently avoid choosing Deep Q-Learning when
solving attitude related problems. [5].
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