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Abstract 

 

Lung cancer is one of the major causes of cancer-related deaths due to delayed detections 

at advanced stages (Freddie Bray BSc, 2018). Early detection of lung cancer can 

significantly increase the chances of survival of high-risk patients. Generally, 

computerized tomography (CT), able to produce high resolution images and a 3D 

reconstruction of the anatomy, is used in case of suspicious pulmonary lesions; however,  

especially at early stages,  benign and malignant nodules show very close resemblance to 

each other and the erroneous detection of benign lesions can lead to additional unnecessary 

diagnostic analysis. 

Low-dose computed tomography (LDCT) has emerged as a promising mass screening 

method for the early diagnosis of lung neoplasms. During the last 15 years , several 

observational and randomized control trials  have confirmed a high sensitivity of LDCT in 

early stage and have demonstrated the effectiveness of these prevention programs in 

reducing lung cancer mortality (Team, 2011) (Giulia Veronesi, 2014) (Giulia Veronesi, 

2014) (U. Pastorino, 2015) (Maurizio Infante, 2015). 

However , even if these studies obtained encouraging results, the risk of over-diagnosis is 

still high in lung screening.  

Lung nodules show different characteristic in dimension, shape and growth rates. 

Published recommendations for the clinical management of pulmonary nodules 

differentiate among solid nodules that completely obscure the lung parenchyma and sub-

solid nodules that incompletely obscure the lung parenchyma, combining nodules with 

ground-glass attenuation and partly solid nodules into one category.  

Accurate identification and characterization of malignant lung nodules and development of 

clear algorithms for their management, remains a challenge. The guidelines published by 

the Fleischner Society along with the Lung CT Screening Reporting and Data System 

(Lung-RADS) (Radiology) represent the two most important and considered as reference 

by radiologists to manage indeterminate pulmonary nodules. Most of the high quality 

evidence for nodule management comes from screening studies that only include patients 

at high risk of lung cancer, and there is an acknowledged paucity of evidence for guiding 

nodule management in patients with a lower background risk of cancer.  
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In a large-scale screening context, radiologists are faced with the challenging task of 

identifying subtle abnormalities on a very noisy background. Moreover, they are required 

to review a large number of images for each patient. In this context, the integration of a 

computer aided detection (CAD) systems for lung nodule detection have been 

demonstrated to be extremely useful, achieving a higher sensitivity with respect to other 

proposed methods such as double reading of LDCT (Rubin GD, 2005). 

Different studies have highlighted the contribution of CAD in the detection of pulmonary 

nodules, providing radiologists a second opinion on early decisions diagnosis and also 

highlighting complementary information hidden in biomedical images. Several CAD 

system algorithms have been proposed for the detection of the pulmonary nodules, 

generally characterized by five fundamental steps: Data acquisition, Preprocessing, 

Segmentation, nodule detection and false positive reduction.  

In the last years many researchers have investigated the development of CAD systems for 

lung nodule detection. Starting from very basic workflows, more and more sophisticated 

systems have been implemented, able to detect different type of nodule with great 

performance. Recently, deep learning based approaches have shown impressive results 

outperforming conventional methods. These findings increased the curiosity of the 

researchers that are implementing different deep learning models to increase the 

performance of CAD systems in lung cancer screening with LDCT. Among several deep-

learning approaches, Convolutional neural network (CNN) gained a lot of prominence for 

its simplicity and performance dealing with imaging data. Different innovations were 

brought to CNN structure and parameters, from simple 2D CNN to more complicated 3D 

CNN and finally, in the context of object detection, to regional convolutional neural 

network(R-CNN).  

R-CNNs were introduced by Ross Girshick et al. in 2014 (2014). The proposed object 

detection approach consist in the definition of 2000 regions that are passed into a CNN. 

The feature vector obtained is then passed to (i) support vector machine(SVM) for 

classification of the object and to (ii) a bounding box regressor for localization. The main 

problem of this first version of RCNN is that the algorithm needs to classify 2000 region 

proposals for each image. For this reason, it takes a lot of time to train the network.  

To overcome these limitations, Fast R-CNN was proposed by the same author (2015), 

where instead of feeding 2000 regions to the CNN, the entire input image  is processed 



 Abstract 
 

11 
 

only one time by the CNN  generating a convolutional feature map. On the convolutional 

feature map, the region proposals are defined and warped into equal size squares by means 

of a ROI pooling layer. From the ROI feature vector, softmax layer is used to predict the 

class of the proposed region and also the offset values for the bounding box. 

Both R-CNN and Fast R-CNN use the selective search algorithm (J.R.R. Uijlings, 2012) to 

find out region proposals which is slow and time consuming. Therefore, Shaoqing Ren et 

al. (2017)proposed an object detection algorithm, called Faster R-CNN, that replace the 

selective search algorithm with a region proposal network (RPN) able to distinguish 

foreground from background regions. 

Faster R-CNN represent a progress in terms of efficiency and performance with respect to 

the other aforementioned R-CNN based network. This architecture , originally designed for 

object detection in natural images, in the last years have been exploited for lung nodule 

detection with several important innovations and changes (Jia Ding, 2017). 

Our work aims to evaluate the original implementation of Faster R-CNN, proposed by 

Shaoqing Ren (2017),  in order to set up an automatic detection model for lung nodule able 

to identify the position of lesion in LDCT scan.  We revisited the original structure of 

Faster R-CNN and at the same time we investigated the parameters of the network in order 

to be suitable for lung nodule detection, a small object detection task(Figure 0). 

 

 

Figure 0. Workflow of implemented lung nodule detection system 
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For the development of our project, a subset of the COSMOS study (Giulia Veronesi, 

2014) was considered. From the cohort of 286 patients a total number of 639 CT-scans was 

collected. 

A CT image contains not only the lung but also other tissues, and some of them may have 

spherical shapes and looks like nodule. In order to overcome this issue, the original CT 

scans were processed according to an algorithm proposed in literature in the field of 

pulmonary nodule detection (Fangzhou Liao, 2015). Specifically, to rule out those 

aforementioned distractors, as preprocessing step, we extracted the mask of the lung and 

ignored all other tissues in the detection stage. Finally, we applied an intensity 

normalization to prepare data for deep networks. 

The purpose of a Faster R-CNN is to generate candidate bounding boxes for suspicious 

nodules. 

Faster R-CNN network consists of two main blocks : the RPN and the Fast R-CNN. RPN 

and Fast R-CNN  share the same stack of CNN layers which takes as input the gray-scale 

image to elaborate it and extract a set of feature maps. These CNN layers ,dedicated to 

feature extraction, constitute the so called backbone neural network, in our work 

represented by the VGG16. In our implementation VGG16 was trained independently 

keeping  fixed its weights during the training of RPN and Fast R-CNN. For these reasons 

VGG16 was considered like a separate structure from RPN and Fast R-CNN, 

communicating in the same way with both subnetworks.  

We modified the architecture of VGG16 (i)by adding a deconvolutional layer after five 

convolution blocks in order to reach a structure more suitable for small-objects feature 

extraction, as suggested by Jia Ding et al. (2017). Considering that pre-trained weights 

have been adopted, the second main change of VGG16 consisted in (ii) adapting the 

classification output to the two classes of interest, slice with lesion and slice without lesion, 

to allow the fine tuning of last layers. Preliminary tests were done on VGG16,to establish 

the better architecture adaptation in order to avoid overfitting. The replacement of Max-

pooling  and Flatten layers with Global average pooling(GAP) layer in the training of our 

backbone network resulted necessary to avoid overfitting and process the input image to 

generate a good feature map. 

As regards the RPN, we maintained the structure proposed in  the original paper (Shaoqing 

Ren, 2017). Once the gray scale image was processed by the backbone network, from the 
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output feature map a set of region of interests(ROI), also called region proposals, was 

generated through the RPN. Specifically, RPN was applied sliding a 3x3 window over the 

feature map where each pixel, center of each feature map region, corresponded to a region 

of the original image of dimension equal to the stride applied by the feature extractor 

network (Section 2.3.2). Different batch strategies have been tested in the RPN training: 

the “image-centric sampling” strategy ,which include inside the batch only samples of one 

image (Shaoqing Ren, 2017), obtained better performance with respect to a multi-image 

batch approach. 

We filtered the proposals obtained from RPN in order to keep only proposals with higher 

probability to represent a lesion, with an appropriate dimension. Then, by means of non -

maximum suppression (NMS), we eliminated redundant proposals. 

The subset of proposals generated by RPN were then given as input to the Fast-RCNN. 

Specifically, the ROIs defined on the feature map previously generated by the feature 

extractor network, were warped into squares by means of ROI pooling layers and finally 

given as input to the dense layers, following the same procedure of Ross Girshick  (2015) 

.Fast R-CNN for each proposal returned two outputs that consist in the following 

classification and regression variables respectively: the probability related to the different 

class and the adjusted coordinates in order to better fit the object of interest.  

Different batch dimensions and strategies have been tested for the training of Fast-RCNN, 

balancing the negative and the positive class in order to obtain the higher sensitivity. By 

fixing the batch at 16 ROIs, we achieved the best performance. 

From an architectural point of view, different sizes of the ROI pooling layer of the Fast R-

CNN were exploited. In order to implement a correct ROI pooling layer, we decreased the 

dimension of the ROI fixed by Shaoqing et al. (2017)(7x7 pixels) by means of lower 

interpolation and the introduction of Max-pooling layer. This method did not appear the 

right solution to implement a real ROI pooling layer and other strategies should be tested 

in the future. 

Our Faster R-CNN did not achieve a good performance, that were very far from the results 

obtained in literature. However, further investigation on network parameters can be done. 

To understand if the poor performance was related to a bias of the net towards a particular 

lesion class, nodule-type specific models were tested, training the entire network on a 

specific nodule subset. Training the network only on solid class did not lead to a 
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substantial improvement. Only in the case of ground glass opacity (GGO) nodule and part-

solid, we can observe a better result in term of sensitivity. 

Future developments will be focused on (i)the implementation of alternating 

training(Appendix B), so that RPN and Fast R-CNN share the feature extractor network 

and on (ii) an additional reduction of the stride avoiding at the same time the overfitting of 

the feature extractor network. Future implementation could also take into account the 

integration of merging operation of overlapping candidates in adjacent slices and false 

positive reduction step, in order to set up a complete CAD system.  

  

This project has been performed in collaboration with the Istituto Europeo di Oncologia, 

which provided the LDCT dataset collected during the COSMOS study. 
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Sommario 

 

ll cancro ai polmoni è una delle principali cause di decessi per cancro a causa della 

rilevazione tardiva a stadi avanzati (Freddie Bray BSc, 2018). La diagnosi precoce del 

cancro del polmone può aumentare significativamente le possibilità di sopravvivenza. 

Generalmente, in caso di lesioni polmonari sospette, viene utilizzata la tomografia assiale 

computerizzata (CT, computed tomograpghy), in grado di produrre immagini ad alta 

risoluzione e una ricostruzione 3D dell'anatomia; tuttavia, soprattutto nelle fasi iniziali, i 

noduli benigni e maligni mostrano una forte somiglianza tra di loro e il rilevamento errato 

di lesioni benigne può portare a ulteriori analisi diagnostiche non necessarie. 

La tomografia computerizzata a basse dosi (LDCT, low dose computed tomograpghy) è 

diventata un metodo promettente di screening di massa per la diagnosi precoce delle 

neoplasie polmonari. Negli ultimi 15 anni, diversi studi di controllo randomizzati hanno 

confermato un'elevata sensitività per LDCT nella fase iniziale e hanno dimostrato 

l'efficacia di questi programmi di prevenzione nel ridurre la mortalità per cancro ai 

polmoni (Team, 2011) (Giulia Veronesi, 2014) (Giulia Veronesi, 2014) (U. Pastorino, 

2015) (Maurizio Infante, 2015). 

Tuttavia, anche se questi studi hanno ottenuto risultati incoraggianti, il rischio di 

sovradiagnosi è ancora alto nello screening polmonare. 

I noduli polmonari mostrano caratteristiche diverse per dimensione, forma e tasso di 

crescita. Le raccomandazioni pubblicate per la gestione clinica dei noduli polmonari si 

differenziano tra noduli solidi che oscurano completamente il parenchima polmonare e 

noduli sub-solidi che oscurano in modo incompleto il parenchima, quest’ultima classe 

comprende noduli a vetro smerigliato(GGO) e noduli parzialmente solidi.  

L'identificazione e la caratterizzazione accurata dei noduli polmonari maligni e lo sviluppo 

di algoritmi chiari per la loro gestione rimane una sfida. Le linee guida pubblicate dalla 

Fleischner Society insieme al Lung CT Screening Reporting and Data System (Lung-

RADS) (Radiology) rappresentano le due più importanti e considerate come riferimento 

dai radiologi per la gestione dei noduli polmonari. La maggior parte delle prove di alta 

qualità per la gestione dei noduli proviene da studi di screening che includono solo pazienti 
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ad alto rischio di cancro ai polmoni, e vi è una scarsità di prove per guidare la gestione dei 

noduli nei pazienti con un rischio di cancro inferiore.  

In un contesto di screening su larga scala, i radiologi devono affrontare l'impegnativo 

compito di identificare anomalie sottili su uno sfondo molto rumoroso. Inoltre, sono tenuti 

a rivedere un gran numero di immagini per ogni paziente. In questo contesto, l'integrazione 

di sistemi CAD (computer aided detection) per il rilevamento dei noduli polmonari si è 

dimostrata estremamente utile, ottenendo una sensitività maggiore rispetto ad altri metodi 

proposti (es. tecnica di doppia lettura) (Rubin GD, 2005). 

Diversi studi hanno evidenziato il contributo dei CAD nella rilevazione dei noduli 

polmonari, fornendo ai radiologi un secondo parere sulla diagnosi precoce ed evidenziando 

anche informazioni complementari nascoste nelle immagini diagnostiche. Sono stati 

proposti diversi algoritmi CAD per la rilevazione dei noduli polmonari, generalmente 

caratterizzati da cinque passaggi fondamentali: acquisizione dati, preprocessing, 

segmentazione, rilevamento del nodulo e la riduzione di falsi positivi. 

Negli ultimi anni molti ricercatori hanno studiato lo sviluppo di sistemi CAD per il 

rilevamento dei noduli polmonari. Partendo da CAD molto elementari, sono stati 

implementati sistemi sempre più sofisticati, in grado di rilevare diverse tipologie di noduli 

con grandi prestazioni. Recentemente, gli approcci basati sul deep learning hanno mostrato 

risultati superiori rispetto ai metodi convenzionali. Questi risultati hanno aumentato la 

curiosità dei ricercatori che stanno implementando modelli basati sul deep learning per 

aumentare le prestazioni dei sistemi CAD nello screening del cancro del polmone con 

LDCT. Tra i vari approcci basati sul deep learning, la rete neurale convoluzionale (CNN, 

convolutional neural network) ha guadagnato molta importanza per la sua semplicità e 

prestazione nel trattare immagini diagnostiche. Diverse innovazioni sono state apportate 

alla struttura e ai parametri della CNN, dalla semplice CNN 2D a una CNN 3D più 

complicata e infine alla rete neurale convoluzionale regionale (R-CNN, regional 

convolutional neural network). 

La R-CNN è stata introdotta da Ross Girshick et al. nel 2014 (2014). Il metodo di 

rilevazione di oggetti proposto consiste nella definizione di 2000 regioni che vengono 

inviate a una CNN. Il vettore delle features ottenuto viene quindi passato a (i)una macchina 

a vettori di supporto (SVM, support vector machine) per la classificazione dell'oggetto e a 

un (ii) bounding box regressor per la localizzazione. Il problema principale di questo 
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approccio di rilevamento degli oggetti è che l'algoritmo deve classificare 2000 regioni per 

ciascuna immagine. Per questo motivo, l'addestramento della rete richiede molto tempo. 

Per superare questo problema lo stesso autore propose la Fast-R-CNN (2015), dove invece 

di fornire 2000 regioni alla CNN, l'intera immagine viene processata una sola volta dalla 

CNN generando una feature map convoluzionale. Dalla feature map convoluzionale, le 

regioni proposte vengono definite e ridimensionate in quadrati di uguale dimensione per 

mezzo dello strato di ROI pooling. Dal vettore delle ROI features, lo strato softmax viene 

utilizzato per predire la classe della regione e anche i valori di offset per il riquadro di 

rilevamento. 

Sia la R-CNN che la Fast R-CNN utilizzano l’algoritmo selective search (J.R.R. Uijlings, 

2012) per ricavare le regioni proposte, un algoritmo lento e che richiede tempo. Pertanto, 

Shaoqing Ren et al. (2017) hanno proposto un algoritmo di rilevamento degli oggetti, 

chiamato Faster R-CNN, che sostituisce l'algoritmo di selective search con una rete neurale 

(RPN, region proposal network) in grado di distinguere regioni foreground da regioni 

background. 

La Faster R-CNN rappresenta un progresso in termini di efficienza e prestazioni rispetto 

alla R-CNN e alla Fast R-CNN. Questa architettura, originariamente progettata per il 

rilevamento di oggetti in immagini naturali, negli ultimi anni è stata sfruttata per il 

rilevamento dei noduli polmonari attraverso diverse importanti innovazioni e modifiche(Jia 

Ding, 2017). 

Il nostro lavoro mira a valutare l'implementazione originale della Faster R-CNN, proposta 

da Shaoqing Ren et al. (2017), al fine di impostare un modello di rilevamento automatico 

del nodulo polmonare in grado di identificare la posizione della lesione nella CT. Abbiamo 

rivisitato la struttura originale della Faster R-CNN e allo stesso tempo abbiamo rivalutato i 

parametri della rete per adattare la rete al rilevamento di noduli polmonari, oggetti molto 

piccoli(Figura 1). 
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Figura 1. Schematizzazione del sistema di rilevamento dei noduli polmonari implementato 

Per lo sviluppo del nostro progetto, è stato considerato un sottoinsieme dello studio 

COSMOS  (Giulia Veronesi, 2014).Dalla coorte di 286 pazienti è stato raccolto un numero 

totale di 639 scansioni CT. 

Una CT contiene non solo il polmone ma anche altri tessuti e alcuni di essi possono avere 

forme sferiche e assomigliare a noduli. Per ovviare a questo problema, le CT originali sono 

state elaborate secondo un algoritmo proposto in letteratura nel campo del rilevamento dei 

noduli polmonari (Fangzhou Liao, 2015). Nello specifico, per escludere quei suddetti 

distrattori, nella fase di preprocessing, abbiamo estratto la maschera del polmone e 

ignorato tutti gli altri tessuti in fase di rilevamento. Infine, abbiamo applicato una 

normalizzazione dell'intensità per preparare i dati per la rete neurale. 

Lo scopo della Faster R-CNN è generare riquadri di delimitazione per noduli sospetti. 

La Faster RCNN è composta da due blocchi principali: RPN e Fast R-CNN. RPN e Fast R-

CNN condividono lo stesso blocco di strati della CNN che prende come input l'immagine 

in scala di grigi per elaborarla ed estrarre una serie di feature maps. Questi strati della 

CNN, dedicati all'estrazione di features, costituiscono la cosiddetta rete neurale backbone, 

nel nostro lavoro rappresentata dalla VGG16. Nella nostra implementazione la VGG16 è 

stato addestrata in modo indipendente mantenendo i pesi fissi durante l'allenamento di 

RPN e Fast R-CNN. Per questi motivi la VGG16 è stata considerata come una struttura 

separata da RPN e Fast R-CNN, comunicando allo stesso modo con entrambe le reti. 
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Abbiamo modificato l'architettura della VGG16 (i) aggiungendo uno strato 

deconvoluzionale dopo cinque blocchi di convoluzione al fine di raggiungere una struttura 

più adatta all'estrazione di features di piccoli oggetti, come implementato da Jia Ding et al. 

(2017). Usando i pesi pre-trainati, la seconda sfida principale della VGG16 consiste nell’ 

(ii) adattare l'output di classificazione alle due classi di interesse, fetta con lesione e fetta 

senza lesione, per permettere il fine tuning degli ultimi strati. Sono stati effettuati test 

preliminari sulla VGG16, per stabilire il miglior adattamento dell'architettura al fine di 

evitare l'overfitting. La sostituzione dello strato di Max-pooling e Flatten con quello di 

Global average pooling (GAP) nell’ allenamento della VGG16 è risultata necessaria per 

evitare l'overfitting e per ottenere una buona feature map. 

Abbiamo mantenuto la struttura della RPN del documento originale (Shaoqing Ren, 2017). 

Una volta che l'immagine in scala di grigi è stata elaborata dalla rete backbone, dalle 

feature maps in output sono state generate tramite l'RPN una serie regioni d’interesse(ROI, 

region of interests), anche dette regioni proposte. In particolare, la RPN è stata applicata 

facendo scorrere una finestra 3x3 sulla feature maps in cui ogni pixel (centro di ciascuna 

regione della feature maps) corrispondeva a una regione dell'immagine originale di 

dimensione uguale al passo applicato dalla VGG16. 

Diverse strategie batch sono state testate nella costruzione della RPN: la strategia di 

"image-centric sampling strategy", che include all'interno del batch solo campioni di 

un'immagine (Shaoqing Ren, 2017), ha ottenuto prestazioni migliori rispetto a un 

approccio batch multi-immagine. 

Abbiamo filtrato le regioni di interesse provenienti dalla RPN in modo da mantenere solo 

le regioni con maggiore probabilità di rappresentare una lesione, con una dimensione 

appropriata. Quindi, per mezzo del metodo della non-maximum suppression (NMS), 

abbiamo eliminato le regioni ridondanti. 

Il sottoinsieme di regioni generate dalla RPN sono state date in ingresso alla Fast R-CNN. 

In particolare, le regioni d’interesse definite rispetto alla feature map generata dalla 

VGG16 sono state ridimensionate in quadrati per mezzo dello strato di ROI pooling e 

infine date come input agli strati densi, seguendo la stessa procedura di Ross Girshick et al. 

(2015). Ciascuna proposta ha restituito due output che consistono rispettivamente nelle 

seguenti variabili di classificazione e regressione: la probabilità relativa alla diversa classe 

e le coordinate corrette per meglio adattarsi all'oggetto di interesse. 
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Diverse dimensioni e strategie dei batch sono state testate per addestrare la Fast-RCNN, 

bilanciando la classe negativa e positiva per ottenere la maggiore sensitività. Fissando il 

batch a 16 ROI, abbiamo ottenuto le migliori prestazioni. 

Da un punto di vista architettonico, sono state sfruttate diverse dimensioni dello strato di 

ROI pooling della Fast R-CNN. Al fine di implementare un corretto livello di ROI pooling, 

abbiamo diminuito la dimensione della ROI fissata da Shaoqing et al. (2017) (7x7 pixel) 

mediante una minore interpolazione e l'introduzione del livello di Max-pooling. Questo 

metodo non è risultato la soluzione corretta per implementare un livello di pooling ROI 

effettivo e altre strategie dovrebbero essere testate in futuro. 

Il nostro metodo basato sulla Faster R-CNN non ha ottenuto una buona performance, 

lontana dai risultati ottenuti in letteratura. Tuttavia, possono essere fatte ulteriori 

investigazioni sulla rete. 

Per capire se lo scarso rendimento fosse correlato a un bias della rete verso una particolare 

classe di lesione, sono stati testati modelli specifici del tipo di nodulo, addestrando l'intera 

rete su uno specifico sottoinsieme di noduli. Allenare la rete solo sui tumori solidi non ha 

portato a un miglioramento sostanziale. Solo nel caso di nodulo a vetro smerigliato (GGO) 

e parzialmente solido, possiamo osservare un risultato migliore in termini di sensitività. 

Gli sviluppi futuri saranno focalizzati su (i) l'implementazione dell'allenamento alternato 

(Appendice B), così che RPN e Fast R-CNN condividono gli strati della CNN e su (ii) 

un’ulteriore riduzione del passo evitando allo stesso tempo l'overfitting della VGG16. 

Un'implementazione futura potrebbe anche tenere conto dell'integrazione dell'operazione 

di fusione di candidati sovrapposti in sezioni adiacenti e della fase di riduzione dei falsi 

positivi, al fine di impostare un sistema CAD completo. 

 

Questo progetto è stato realizzato in collaborazione con l'Istituto Europeo di Oncologia, 

che ha fornito il dataset LDCT raccolto durante lo studio COSMOS. 
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Chapter 1. Introduction: lung cancer 

 

Lung cancer is the worldwide leading cause of tumor related dead and, along with breast 

cancer, is the most common cancer worldwide(Figure 2) (Freddie Bray BSc, 2018). This 

pathology is characterized by a lack of symptoms at the early stage and at the time of 

diagnosis 70% of patients are already inoperable and the chances of recovery are very 

limited. For these reasons, early detection has a very important role for successful lung 

cancer treatment and for mortality related rate reduction.  

In the actual clinical practice, X-ray imaging techniques are the most used to identify lung 

cancer in a non-invasive way. Specifically, in case of suspect of lung cancer, computerized 

tomography (CT) represents the gold standard granting, with respect to chest radiography 

(RX), a better identification of pulmonary nodules thanks to the 3D reconstruction of the 

anatomy but at the expenses of a higher radiation dose given to the patient. However, the 

introduction of low-dose CT (LDCT) brought to a reduction of the dose from 7 to around 

1.4-1.6 mS paving the way of lung cancer screening based on CT.   
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Figure 2.Bar Chart of Region‐Specific Incidence Age‐Standardized Rates by Sex for lung Cancers 

2018.Rates are shown in descending order of the world (W) age‐standardized rate among men, and the 

highest national rates among men and women are superimposed. 

 

1.1. Lung screening 

 

During the last 15 years, several clinical trials have shown that LDCT can reliably allow  

lung nodules identification of a few millimetre in diameter in asymptomatic individuals at 

high risk  and demonstrated the effectiveness of this prevention program in reducing lung 

cancer mortality (Team, 2011) (Ying Ru Zhao, 2011) (U. Pastorino, 2015) (Maurizio 

Infante, 2015) (Giulia Veronesi, 2014). 
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Among the numerous studies carried on in the last decades, the National Lung Screening 

Trial (NLST) (Team, 2011) is one of the most important in demonstrating the role of 

screening in the early diagnosis of lung cancer. Started in 2002, NLST was a randomized 

clinical trial conducted by the American College of Radiology Imaging Network (ACRIN) 

and the Lung Screening Study group. The enrolled subjects were 53,454 current or former 

heavy smokers (30 pack-years) without signs, symptoms, or history of lung cancer with 

age between 55 and 74. Participants were randomly assigned to receive three annual 

screens with either low-dose helical CT or standard chest X-ray. It reveals that participants 

who received low-dose helical CT scans had a 15 to 20 % lower risk of dying from lung 

cancer than participants who received standard RX. This is equivalent to approximately 

three fewer deaths per 1,000 people screened in the LDCT group compared to the chest X-

ray group over a period of about 7 years of observation. 

On average over the three rounds of screening exams, 24.2 percent of LDCT screens and 

6.9 percent of the chest X-rays were positive. In both arms of the trial, the majority of 

positive screens led to additional tests.  

Despite the initial enthusiasm, the data emerging from the American NLST study was not 

yet sufficiently convincing to recommend spiral LDCT as a routine screening procedure 

but subsequent European trials opened new perspectives and hopes. 

In September 2018, new data from the second largest randomized-controlled trial, the 

Dutch-Belgian Lung Cancer Screening study (NELSON) (Ying Ru Zhao, 2011) showed an 

even bigger reduction in deaths with respect to NLST. 

More than 15,000 high risk patients were enrolled and followed for more than 10 years 

through national registries and case notes review.  

In this case, the group of screened subjects was compared with those not screened which 

had similar baseline characteristics, including age, gender ratio, smoking history, and 

smoking cessation. 

About 50% of the cancers diagnosed in the screening arm were early stage (65% to 70% at 

stages IA to II) while about 70% of cancers in the control arm were stage III/IV at 

diagnosis. 

Overall result of NELSON trial confirmed those found in NLST trial: LDCT scanning 

decreased mortality by 26% in high-risk men and up to 61% in high-risk women over a 10-

year period. 
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Another confirmation of the effectiveness of lung cancer screening, resulted from the 

MILD study (U. Pastorino, 2015), conducted by the National Cancer Institute of Milan. 

This trial involved 4,000 heavy smokers since 2005 underwent spiral LDCT, annually or 

biennially, for a period of 10 years. The study has shown that an early diagnosis program 

that continues beyond 5 years, up to 10 years of screening, can achieve a 39% reduction in 

lung cancer mortality with respect to the control group who had just primary prevention.  

The greater efficacy of NELSON and MILD compared to the NLST study were attributed 

to the longer duration of follow-up but also by the choice of observational control arm.  In 

fact, even if less sensitive, thoracic chest radiography can anticipate the presence of lung 

cancer. Instead the control arm of NELSON and MILD did not undergo to any type of 

diagnostic screening. 

Different findings resulted instead from DANTE trial that reopened the debate on the 

efficacy of lung cancer screening. 

The DANTE trial (Maurizio Infante, 2015) started in 2001 with the purpose to verify 

whether the large-scale application of diagnostic tests could help reduce mortality due to 

lung cancer. The study involved around 2,500 heavy male smokers aged between 60 and 

74 years of age. The protocol was based on the use of spiral LDCT and molecular biology 

tests and stated that there was still insufficient evidence to recommend these tools as 

routine screening procedures in heavy smokers. 

According to the obtained results, the author stated that,actually, it was not possible to 

recommend LDCT as a spontaneous screening method: it was necessary to narrow the 

range of patients considered at risk by means of new clinical, epidemiological and 

biological indicators, minimizing the phenomena of over-diagnosis and the percentage of 

unnecessary surgical procedures.  

Another relevant trial, conducted by the European Institute of Oncology  between 2005 and 

2015, is the Continuous Observation of Smoking Subjects (COSMOS), observational study  

addressed to  smokers or ex-smokers high risk patients (smoking history ≥20 pack-years). 

An overall group of 5201 asymptomatic  individuals aged 50 years or older were enrolled 

in the 10-year single-center COSMOS study and underwent  multi-detector LDCT annual 

repeated scans (Giulia Veronesi, 2014). Specifically, in case of no lesions or in presence of 

nodules <5 mm, patients underwent repeated LDCT at 1 year; with nodules of 5.1–8 mm, 

LDCT was repeated 3 months later whereas for nodules >8 mm a combined CT-positron 
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emission tomography (CT-PET) was applied before a normal biopsy. The minimization of 

invasive techniques was indeed one of the particularities of the study.  

The COSMOS study provides encouraging results both for its sensitivity (90.3%) and 

specificity (99.4%) in the detection. Another important aspect is that 78% of diagnosed 

tumors occurred at the localized stage, obtaining a 5-year survival rate of 78%. With 

respect to the screening trials presented above, the portion of patients that undergo further 

tests was limited to 6.4%. 

However, although the encouraging results in terms of number of false positives , the risk 

of over-diagnosis was still too high in lung screening. It is frequent that the detection of a 

lesion does not lead to malignancy and therefore leads the subject to an unnecessary 

exposure to radiation. This limit is partly due to the CT parameters, but it is also related to 

the experience of the clinician in reading the image and the position of the nodules inside 

the lung volume. 

Even if a lot of studies and trial support the utility of LDCT screening for lung cancer, 

there is still concern that exposure to the ionizing radiation of LDCT  might increase the 

risk of developing solid cancers and leukemia. (Council, 2016) 

To address this problem, in a recently study, Rampinelli et al (2017) evaluated the 

cumulative radiation exposure and lifetime attributable risk of cancer incidence associated 

with LDCT in the COSMOS study. 

The median cumulative effective dose after 10 years was found equal to roughly 9 mSv for 

men and 13 mSv for women. Compared with  standard dose CT exam, this means that a 

patient taking part to a 10 year LDCT screening program would receive a dose similar to 

that delivered  with a standard chest  (7-8 mSv) or abdomen-pelvis (13-14 mSv) CT scan. 

On the overall set of lung cancer diagnosis of the COSMOS study, only 1.5 lung cancers 

and 2.4 major cancers were found to be hypothetically caused by radiation which 

corresponds to an additional overall risk of major cancer of 0.05% (Cristiano Rampinelli, 

2017)(Figure 3). 
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Figure 3. Lung cancers and major cancers theoretically induced per 10 000 people screened, according to 

sex and age at start of CT screening for lung cancer 

 

Also, additional measures can be applied  for further dose reduction: firstly, with accurate 

patient selection and optimization of acquisitions protocols; secondly, taking advantage of 

new reconstruction algorithms, such as iterative reconstruction, that allow to obtain the 

same quality of the image with a 80% dose reduction respect to standard filtered back-

projection. 

Despite the importance of lung cancer screening for mortality reduction underlined by the 

majority of the trials (NLST, NELSON, MILD and COSMOS) and the results obtained by 

Rampinelli study for the dosimetric concerns, the problems of high cost and risk of false 

positives remain and constitute a potential obstacle to the large-scale clinical 

implementation of this prevention program. 

These problems stress the need for automatic or semi-automatic tools to support  the 

detection of pulmonary nodules and the clinical decision-making process, where an 

increase of exams, linked to the introduction of screening programs in clinical practice, 

needs more advanced and fast algorithms (Cristiano Rampinelli, 2012). 
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1.2. Management of pulmonary nodules 

 

The incidental finding of lung nodules in asymptomatic individuals is an increasingly 

common clinical issue encountered by radiologists in daily clinical practice. Accurate 

identification and characterization of malignant lung nodules and implementation of clear 

algorithms for their management, still remain a challenge. (Konstantinos Loverdos, 2019 ) 

According to the appearance in the CT scan, non-calcified pulmonary nodules are 

distinguished by radiologists in solid and sub-solid nodules. The latter are further classified 

as non-solid and part-solid nodules(Figure 4). In addition to their aspect, different nodule 

classes are characterized also by different growth rates and probability of malignancy, 

therefore a distinct management is required.  

Specifically, non-solid nodules, called also ground grass opacity (GGO), are more likely to 

be malignant, but their growth rate is usually slower with respect to solid lesions. Solid and 

part-solid nodules are the lesion categories most frequently identified and also those related 

to the majority of false positive diagnosis. Indeed, when malignant, these lesions are more 

likely to be invasive and faster growing cancers.  

Size and growth are the most important parameters in the management of pulmonary 

nodules. However, the decision of the radiologist, when an indeterminate pulmonary 

nodule is detected, often depends on his experience and other external factors that cause 

variability among operators. 
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Figure 4. Example of lung nodules. Pure ground glass opacity (GGO) tumor was defined as a lung tumor 

without a solid component and part solid tumor was defined as a lung tumor characterized by both a GGO 

and solid component, whereas pure solid tumor was defined as a lung tumor showing only consolidation 

without GGO component  

 

1.2.1         Clinical practice in managing and 

detecting pulmonary nodules through LDCT  

 

Many scientific societies published guidelines recommending standard procedures for the 

management of lung nodules(Figure 5). 

The guidelines published by the Fleischer Society, recently revised in 2017 (Heber 

MacMahon, 2017), along with the Lung CT Screening Reporting and Data System (Lung-

RADS) (Radiology)  created by the American College of Radiology in 2014, are two of the 

most important and considered as reference by radiologists to manage indeterminate 

pulmonary nodules.  

All the mentioned guidelines agree with the need to minimize radiation dose for CT 

surveillance, according to the low likelihood of malignancy of small nodules and to the 

choice to avoid nodule management in patients with a lower background risk of cancer. All 

guidelines recognize that sub-solid nodules need a different management approach, 

characterized by a less interventional and aggressive approach (M.Callister). 
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The threshold size, under which nodules can be ignored, is similar between the guidelines: 

Lung-RADS recommends to avoid intervention for nodules<6mm (or<4mm for new 

nodules), while the Fleischner Society guidelines states to consider nodule under 6 mm 

only with high risk subjects.  

On the contrary of Lung-RADS that defines a risk-prediction scores, the Fleischner 

guidelines highlight the presence of several risk factors to be considered, but do not 

suggest the use of a risk prediction score.  

Another determinant parameter in considering the lesion as malignant, is the growth rate 

which is considered as significant for both guidelines when an increase in diameter of 

1.5/2mm is observed. Other guidelines (M. Callister, 2015) fix this threshold on the 

volume, classifying as malignant nodules with volume changes higher than 25%. 

 

 

 

 

Figure 5.Summary of significant differences between nodule management strategies recommended by 

various guidelines/assessment categories. 

 

Even though a lot of studies exist regarding the management of lung nodule, these 

guidelines are followed only by minority of clinicians and usually the management is 

based on the judgment of them.  

For what concerns the detection of pulmonary nodules, also in this case there is the 

necessity of standards in the reading procedure. Different studies revealed a low inter-

observer agreement amongst radiologists due to multiple factors such as CT parameters, 

reader experience and nodule location, and some of them investigated how the 

radiologist’s sensitivity can be increased. 
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As first, the detection of the nodule is influenced by its location, as asserted in the study of 

Naidich et al. (Naidich DP, 1993) where they showed that perihilar lung nodules were 

detected with a sensitivity of 36.7% versus 73.9% of peripherally located nodules. They 

also noticed that nodules attached to vessels were detected with a low sensitivity (32.5%). 

At the same time CT parameters play an important role: the application of thin-slice CT 

increases the readers sensitivity for lung nodule detection (Fischbach F, 2003) 

Many approaches have been introduced in order to improve the radiologist performance.  

Specifically, a double reading technique has been proposed for LDCT. Wormanns et al. 

(2005) showed that the average sensitivity in identifying  lung nodules  for single readers 

raised from 64% to 79% with double reading. Also, the integration of a computer aided 

diagnosis/detection (CAD) systems in the clinical practice have been demonstrated to be 

extremely useful for the detection of small pulmonary nodules and can achieve an even 

higher sensitivity with respect to double reading, as showed by Rubin (Rubin GD, 2005). 

Therefore, CAD systems can act as a “second opinion” for the radiologists, by making 

final decision quickly with higher accuracy and greater confidence.  

Moreover, the advance of technology lead to an increasing number of diagnostic images to 

be reviewed and as consequence a larger amount of data radiologists have to deal with. 

This limit opens the research interest in CAD system that are able to automatically detect 

and characterize pulmonary lesions.  

 

 

1.3 Cad systems 

 

 

Different studies demonstrated the importance of CAD systems as tools that can help the 

detection of pulmonary nodules, provide radiologists a second opinion on early decisions 

diagnosis and also can highlight complementary information hidden in biomedical images. 

Particularly attention was always given to the automation of nodules detection, being the 

most tedious part and prone to human errors.  

CAD systems can be subdivided in two branches: CADe (computer-aided detection 

system) and CADx (computer-aided diagnosis system), which aim respectively to detect 
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lesions and to a propose a characterization of the lesion, for example, determining the 

malignancy and staging of the cancer. 

CAD systems for detecting pulmonary nodules are usually composed of five subsystems 

(Macedo Firmino, 2014)(Figure 6): 

 Data acquisition subsystem is responsible for obtaining medical images. 

 Preprocessing is the treatment that attempt to improve the quality of the image and 

to increase the precision and accuracy of algorithms that are introduced after this 

step. Preprocessing step aims to remove imperfections caused by the image 

acquisition process, noise and lack of contrast. 

 Segmentation aims to separate the region of interest(lung) from other organs and 

tissues in order to reduce the computational cost and to simplify the detection of 

lung nodule.  

 Nodule detection stage attempts to check the presence of lung nodule and then to 

detect it. The main challenge is to recognize the true nodule from other pulmonary 

parenchymatous injuries or different organs and tissues(false positive).  

 False positive reduction step aims to solve the main problem of lung nodule 

detection: the number of false positive, that compromise and reduce precision. For 

this reason, after the detection stage, it is used a classifier that aim to learn the 

characteristic of nodule and then try to separate the nodule from other tissue or 

injury (false positive). The main classifiers of false positive reduction steps are: 

linear discriminant analysis , clustering , Markov random field , artificial neural 

networks , support vector machines (SVM) , massive-training neural network 

(MTANNs) , and double-threshold cut. 
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Figure 6. Typical workflow of CAD system for lung nodule detection composed by five steps: data 

acquisition, preprocessing, lung segmentation, lung nodule detection and false positive reduction step. 

 

In the last years, several studies have been conducted on the development of CAD systems 

for lung nodule detection. Starting from very simple CAD algorithm, more and more 

sophisticated ones have been implemented, able to reach an higher detection speed and 

sensitivity and also able to detect different type and shape of nodules. Recently, deep 

learning approaches have shown impressive results outperforming classical methods. This 

increases the curiosity of the researchers that are implementing different deep learning 

techniques to improve CAD systems performance in lung cancer screening with computed 

tomography. 

In the following overview, several CADe systems proposed in literature during the last 

decades will be discussed. 

 

1.3.1. Conventional CAD systems  

 

In 1963 Lodwick et al. (1963) proposed for the first time the use of digital computers for 

lung nodule detection. However, only in the late 80s, the first CAD systems for detecting 

lung nodules was proposed. Although encouraging results have been obtained, these first 

attempts were not successful, due to lack of computational resources and sophisticated 

image processing algorithm. 
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The first proposed CAD systems were usually based on simple thresholding operations and 

on the circularity or sphericity calculation of the observed regions. The nodule isolation 

strategy of Giger et al. consists in the investigation of circularity and size and their 

variation with threshold level (Giger M. D., 1988) . 

In a second work (Giger M. A., 1990), with the addition of a feature-extraction technique, 

Giger reduced the true-positive rate by 13% and the false-positive rate by 50% . With 

respect to Giger et al. (1990), the framework proposed later by Armato et al. (1999) 

includes both 2D and 3D analyses. A rolling ball algorithm and multiple gray-level 

thresholds were applied to the lung regions to identify nodule candidates reaching an 

improvement on juxtapleural nodules detection (Armato SG G. M., 1999). 

In 2001, Lee et al. found a solution to speed up the template matching technique. 

Specifically, with the introduction of a genetic algorithm, Lee was able to determine the 

target position in the image and to select the correct template from several patterns for a 

faster matching (Lee Y, 2001). 

One of the biggest barriers was the lack of labelled data and especially the absence of 

database with a significant number of medical images. In 2004, a public database of chest 

CT images of healthy patients and patients with lung cancer in different stages was created 

by the Lung Image Database Consortium (LIDC). This database had a fundamental role in 

the improvements done with CAD systems for lung nodule detection in the last two 

decades in particular for what concerns the detection of smallest lesions. 

Few years later, Hara et al. proposed a small-object detection system that use second order 

autocorrelation and multi-regression analysis to detect small nodules (diameter ≤7 mm) on 

CT scans. By combining a previously developed technique, the algorithm improved the 

sensitivity(94%) and decreased the value a false positive per scan(2.05 FP/scan) (T. Hara, 

2005). 

In 2007, Murphy et al. presented a CAD system, ISI-CAD, characterized by the 

introduction of the region growing technique and morphological smoothing. Geometric 

filters and the k-nearest neighbor classifier were then introduced to determine the candidate 

nodules and to reduce false positives (Murphy K, 2007). 

In 2009 Ye et al.  presented a new system that optimizes the detection of non-solid 

nodules, one of the main criticality of CAD system . The algorithm consisted in calculating 

, for each voxel of the lung, the volumetric shape index map and the ldquodotrdquo map in 
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order to highlight objects with spherical shape. The combination of volumetric shape index 

map and idquodotrdquo map offered a descriptor for the initial nodule candidate generation 

(Ye, 2009).  

During the evolution of CAD systems, detection algorithm started to be integrated with 

classification techniques, that aim not only to distinguish malignant from benign nodules, 

but also to stratify the degree of malignancy. Namin et al. proposed a CAD system for lung 

nodule detection and classification on CT scans using volumetric shape index (SI) and 

fuzzy k- NN. Features such as sphericity, mean and variance of the gray level, elongation 

and border variation of potential nodules were extracted to classify nodules as benign or 

malignant. Finally, fuzzy K-Nearest Neighbor(fuzzy K-NN) was employed to classify 

potential nodules as non-nodule or nodule with different degree of malignancy (S. 

Matsumoto, 2008). 

Similarly in 2011, Kumar et al. (2011) presented a CAD system that not only attempts to 

detect lung nodules through fuzzy inference system but at the same time classifies nodules 

into benign nodule (granuloma, hamartoma, for example), malignant neoplasia or 

malignant neoplasia in advanced stage.   

The use of SVM, often associated with other machine learning algorithms, was also central 

both for nodule detection and false positive reduction. Riccardi et al. presented a new 

system where 3D fast radial filter was applied in order to detect candidate nodules and 

estimate their geometrical features. Finally, a false positive reduction step, comprising a 

heuristic FPR, applied threshold based on geometrical features and a supervised false 

positive reduction, based on SVM classification, was enhanced by a feature extraction 

method based on maximum intensity projection  and Zernike moments. (A. Riccardi, 

2011). In 2012 Hong, Li and Yang proposed a CAD system where adaptive thresholding 

was used for detection of candidate nodules and then SVM was used to eliminate false 

positives. (Shao H, 2012 ). In the same year Orozco et al.  presented a CAD system that 

computed the characteristics of texture by means of Discrete Cosine Transform and the 

Fast Fourier Transform and used SVM for detecting lung nodules (Orozco HM, 2012 ). 
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1.3.2. Deep learning based CAD systems  

 

 

Deep learning algorithms have been considered valuable tools in the field of medical 

imaging, for lesion detection, characterization, and analysis.  

In the context of lung nodule detection, Artificial neural networks (ANN) were initially 

adopted by many authors to reduce false positives, replacing SVM algorithm, and then, 

with the evolution of deep learning, significant improvements in speed and sensitivity have 

been done. 

The first applications of ANN in CAD took place in the late 90s when a work of particular 

relevance was proposed by Xu et al. (1997).They introduced a CAD system where nodule 

candidates were selected initially by multiple gray‐level thresholding of the difference 

image and then classified into six groups. A large number of false positives were 

eliminated by adaptive rule‐based tests and an ANN (Xu X-W, 1997). 

In the last twenty years, several contributions and progresses were done with deep learning 

based CAD systems especially with the advent of convolutional neural networks (CNN) 

and massive training artificial neural network (MTANN) that are the two most recent 

approaches used in deep learning. Both structures use pixel values in images directly as 

input information, instead of handcrafted features calculated from segmented regions of 

interest (ROIs) (Tajbakhsh N, 2016).  

Among the two, CNN is the most used architecture when deep learning is adopted to solve 

imaging related problems.   

A convolutional layer is characterized by a convolution operation, applied by sliding a 

kernel on the image. The kernel acts as a filter and, on the basis of its values, different 

features are extracted from the input image (Appendix A). Stacking multiple convolutional 

layers, deep learning models based on CNN are obtained, also known as “ConvNets”. 

Usually, in the first layers of a ConvNet, low-level features such as edges, color and 

gradient orientation are extracted while last layers are associated to more abstract features. 

According to the kernel dimensions, ConvNets can elaborate both 2D or 3D images.  

For its efficiency and lower computational cost with respect to a 3D approach, 2D CNN 

have been more frequently used for lung nodule detection. Setio et al. (2016) proposed a 

CAD system based on multiple streams of 2-D Convolution. Initially, they combined three 
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candidate detector algorithms specially designed for solid, sub-solid, and large nodules for 

nodule candidate detection. Then for each candidate, a set of nine 2-D patches of size 

64 × 64 pixels were extracted from differently oriented planes and feature extraction from 

each one was done through multiple 2-D ConvNets .The outputs were finally merged 

applying three fusion techniques: committee fusion, late fusion and mixed fusion.  

Dou et al. ( 2016) proposed a 3-D CNN-based architecture for lung nodule detection. A 

hierarchical architecture consisting in 3-D CNNs was used to encode spatial information 

and representative features. For the three architectures, different receptive field sizes were 

adopted and finally, features extracted from the three CNNs were merged for nodule 

detection. The main advantage of 3-D CNN is that it is able to take into account more 

information related to the context around the lesions producing multi-view features. 

The availability of a large amount of data and innovations in the hardware technology has 

intensified the research in CNNs. Several inspiring ideas to bring advancements in CNNs 

based deep learning models have been explored, such as the use of different activation and 

loss functions, parameter optimization and regularization techniques, and especially 

architectural innovations. Regional convolutional neural networks (R-CNN) represents 

certainly one of the main deep learning architecture discovery which brought to 

considerable progresses in solving object detection problems. 

 

1.4. Overview on R-CNN based network  

 

R-CNN is a pioneering approach originally implemented to detect objects in a natural 

image where the object detection aim is to estimate the position of the bounding box 

around the object of interest. In the last decade, different improvement has been done with 

RCNN: it has been used for pulmonary nodules detection too, harder task with respect to 

the identification of objects in a natural image . 

In this paragraph, an overview of the main improvements done with R-CNN is presented, 

to understand how it was born the Faster-R-CNN, one of the most recent implementations 

of R-CNN as well as the deep learning architecture chosen for our project. 
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1.4.1. R-CNN 

 

One of the first versions of R-CNN is that proposed by  Girshick et al. (2014). As 

schematized in Figure 7, the workflow designed by Girshick et al. starts with the extraction 

of a series of region proposals from the input image. After the normalization of regions 

dimensions to a fixed size, a feature map is extracted from each warped region through a 

deep CNN. The generated feature map is then used by SVM classifier to assign a specific 

category to the region. Despite the use of the selective search algorithm (J.R.R. Uijlings, 

2012) that allowed to limit the set of initial proposed regions to around 2000, the 

computational cost of this R-CNN is too high, being the proposed regions singularly 

processed. Moreover, selective search is a fixed algorithm, so there is no learning 

happening at that stage. This could lead to the generation of bad candidate region 

proposals. 

 

 

Figure 7. R-CNN workflow 
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1.4.2. Fast R-CNN 

 

The limitations of the first R-CNN version of  Girshick et al. (2014) were partially 

overcome in a subsequent work (Girshick, 2015) where the author presented an object 

detection algorithm known as Fast R-CNN. The main difference introduced in Fast R-CNN 

is that the entire input image (not the region proposals as before) is fed into the deep CNN 

to generate a convolutional feature map (Figure 8). The region proposals are then selected 

from the feature map given as output from the deep CNN. Feature map regions are then 

normalized to a fixed size by means of a ROI Pooling layer. Following, a series of fully 

connected layers elaborate the normalized feature map region whose belonging object 

category is estimated along with its bounding box position in the original image.  

Fast R-CNN is definitely faster respect to R-CNN because one image instead of 2000 

regions is fed into CNN to obtain feature map and so the convolution operation is done 

only one time. 

 

 

Figure 8. Fast R-CNN workflow 
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1.4.3. Faster-RCNN workflow and relative 

studies for lung nodule detection 

 

Both R-CNN and Fast R-CNN use selective search to provide region proposals. Selective 

search is slow, time consuming for the algorithm performance and especially ,not being a 

trainable algorithm, it is not able to learn from the data. 

In the solution proposed by Shaoqing Ren et al. (2017) selective search was replaced with 

a neural network dedicated to the selection of region proposals, known just as Region 

proposal Network (RPN). The inclusion of the RPN into the Fast R-CNN gave rise to the 

so-called Faster R-CNN.  

Similar to Fast R-CNN, in the Faster R-CNN the image is provided as input to a deep 

convolutional network which extracts a feature map. 

Instead of the application of selective search, the feature map is elaborated by the RPN that 

generate a set of region proposals. The aim of the RPN is to distinguish background 

regions from foreground ones. This purpose is done by sliding a window on the feature 

map and by processing singularly each feature map region inside the window. For each 

feature map region, the RPN returns two outputs related to multiple regions of the image: 

the first output is the probability of being foreground while the second consists in its 

coordinates in the image reference frame.  

The particularity of the RPN training procedure is that for each region defined on the 

feature map, multiple regions on the input image are associated and labelled to a specific 

class (background or foreground). These predefined regions are known as “anchors”. To 

each feature map region, a fixed set of anchors is assigned, which are caracterized by 

different shape and size but all centered in the image reference frame.  

The region on which is build the set of anchors is called “base anchor box” and 

corresponds directly to the feature map region analyzed by the RPN. The dimensions of 

base anchor box are equal to the stride that has two different values, one given from the 

ratio of the width and the other one coming from the ratio of the heights of image and 

feature map(Figure 9). 
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Figure 9. An illustration of the arrangement of the anchors in the case of stride 16[a.u.](A) and stride 

8[a.u.](B) 

 

The operations underlying the calculation of anchors can be summarized in few steps: each 

center of base anchor box constitutes the center point of k anchors with different scale and 

ratio respect to the original box. The original paper (Shaoqing Ren, 2017) set by default 3 

scales and 3 aspect ratios, yielding so k= 9 anchors at each sliding window position(Figure 

10). 

 

A B 
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Figure 10. Each sliding window position on the convolution feature map correspond to a group of k anchors 

built on the corresponding base anchor box of the image 

 

As already mentioned above, the RPN returns a series of region proposals associated with 

a probability of including or not an object of interest along with the etimate of the position 

of these regions. RPN does not share any information about which class the foreground 

refers to but it only aims to establish if the region could contain the object of one of the 

multiple classes. 

Proposals coming from RPN, are then used by the region-based object detection CNN  

represented by the Fast R-CNN like in the previous work(Figure 11). 

Specifically, in Fast R-CNN the proposals generated by RPN are extracted from the feature 

map generated by feature extractor, warped into squares by means of ROI pooling layers 

and finally input to the dense layers, following the same procedure of Ross Girshick et al. 

work (2015) (section 1.4.2). Fast R-CNN for each proposal return two outputs which 

consist, as in RPN, in the following classification and regression variables respectively: the 

probability related to the different class and the adjusted coordinates in order to better fit 

the object of interest. In contrast to RPN, Fast R-CNN give information about which object 

the proposals actually contain ,including the background class. 
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Figure 11. Faster R-CNN workflow 

 

The training of Faster R-CNN is certainly the trickiest part. The easiest way to train RPN 

and Fast R-CNN is to train independently the two networks.  However, more sophisticated 

implementations allow the sharing of convolutional layers between the two networks, 

approach that should improve the performance of the overall Faster-RCNN architecture. 

Different methodologies have been already proposed in literature such as alternative  

training (Appendix B), approximate joint training and non-approximate joint training. 

 

In the last years, many researchers work on Faster R-CNN for lung nodule detection, 

introducing some important innovations and changes. 

In the implementation of CAD system for lung nodule detection, Faster R-CNN start to be 

juxtaposed to a preprocessing part and followed by a false positive reduction part, usually 

implemented with a 2D-CNN. 

Following this approach ,Xia Huang et al. proposed a Faster R-CNN CAD system that 

incorporates several steps: Faster RCNN was trained by means of four step alternative 

training (Appendix B) according to the original implementation (Shaoqing Ren, 2017), 

followed by a merging operation which fuses overlapping candidates (obtained from Faster 

R-CNN) combining 2D patches with close Euclidean distances. A traditional three-layer 

2D CNN based FP reduction further eliminated FPs and finally a modified FCNs computed 

nodule segmentation (Xia Huanga, 2019). 
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A  very important innovation in the structure of the network was implemented by Jia Ding 

et al. that proposed a Faster R-CNN based on deep convolutional neural network(DCNN), 

introducing a deconvolutional structure to the classical structure of Faster RCNN for lung 

nodule detection on 2D slices. Then a three-dimensional DCNN was added for false 

positive reduction step. The distinctive feature of this project is the addiction of one 

deconvolutional layer at the end of backbone neural network to solve the issue related to 

the small size of lung nodule. (Jia Ding A. L., 2017) 

Yanfeng Li et al. (2019)proposed a Faster R-CNN method based on deep learning for 

thoracic MR image. They aimed to replicate the results for CT-scans for a different 

diagnostic image(MRI). The advantage is that MRI is a non-radiation examination and can 

provide not only morphological information but also functional information. The proposed 

method is pretty the same and consists in a Faster RCNN followed by false positive 

reduction step. This study shows that is possible to obtain good result in term of sensitivity 

and false positive even with thoracic MRI images. 

 

 

1.5. Open issues and aim of the project 

 

CAD systems are fundamental to improve the accuracy of the diagnosis and assist the 

radiologist in early detection, aspect that becomes fundamental in case of lung cancer 

prevention. 

Different studies obtained great results from the employment of CAD systems, but many 

problems and obstacles need to be overcome to allow their introduction in the clinical 

practice and give a real support to radiologists (Macedo Firmino, 2014).  

An open issue in CAD system for lung nodule detection is related to the identification of 

GGO nodules: characterized by not-defined boundaries and low contrast with respect to the 

background, these lesions are often missed by detection model and representing a risk in 

automatic detection being the likelihood of malignancy of this particular nodule higher 

than that of solid nodules.  



  
 

44 
 

Beside GGO nodules, false positives are surely the main challenge for CAD system and 

are also the reason why CAD system are still not used as standalone tools in the clinical 

practice . 

This work aims at creating an automatic detection model for pulmonary nodules able to 

identify the position of suspected lesions in low-dose CT (LDCT) screening. To reach this 

task a Faster-RCNN has been implemented and preliminary optimized. For the feature 

extraction part, a pre-trained network was used and its architecture adapted according to 

the dataset available. For the detection part, only the ROI pooling layer, dedicated to size 

normalization, was exploited from an architectural point of view, whereas many 

experiments were performed to identify the  more efficient detection model. Additionally, 

the behavior of the implemented network on different nodule types was evaluated.  

This work was conducted within a collaboration with the Istituto Europeo di Oncologia, 

which provided the LDCT dataset collected during the COSMOS study. 
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Chapter 2. Materials and methods 

In this chapter, materials and methods adopted for the Faster R-CNN implementation are 

explained. In particular we report the modification applied to the original implementation 

of the network (Shaoqing Ren, 2017). The proposed CAD following the typical CAD 

workflow presented in Section 1.3. 

 

2.1. Dataset 

For the development of the presented work, a subset of the COSMOS study was 

considered. From the cohort of 286 patients a total number of 639 CT-scans was collected. 

Different CT-scans could be therefore associated to the same subject according to the fact 

that we are dealing with a longitudinal data. Only CT scans with similar acquisition 

parameters were included in our subset. Specifically, 639 cases were acquired with a kVp 

and mA respectively equal to 120 and 30 while a standard kernel was applied to 

reconstruction all the series. Images resolution on the axial plane ranged between 0.5234 

and 0.9160 mm while slice thickness is always equal to 2.5 mm.    

On each of the collected LDCT scan, at least a pulmonary nodule was previously identified 

by an expert radiologist and the same could be present in multiple scans. Overall, a set of 

639 pulmonary nodules was available and, for each one, we disposed of a binary mask 

defined through manual segmentation by an expert radiologist.  

In a first analysis a subset of 639 CT-scans was used for the development of Faster R-CNN 

network. In particular, a subset of 500 CT-scans (80%) was used for training and 125(20%) 

CT-scans for validation.  

Among our set of data, pulmonary nodules belonging to the three class of non-calcified 

nodules were included: solid, part-solid and non-solid nodules. The majority of the cases 

were solid nodules (286) while the number of part-solid and non-solid was respectively 

equal to 149 and 197. Considering that the implemented model works in 2D, cases of solid, 

part-solid and non-solid nodules in terms of number of CT slices were equal to 1380, 642 
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and 902 respectively. Figure 12 summarizes how the dataset is subdivided in terms of 

nodule type and as can be noted, for few isolated samples (31), the texture was not known. 

Additionally, 8 samples of calcified nodule was also present. 

 

 

Figure 12. percentage of different type of tumors 

 

 

 

In Figure 13 are shown three different nodules. Specifically, a solid nodule with its typical 

homogeneous soft-tissue attenuation is reported in Figure 13A; figure 13C shows an 

example of non-solid nodule characterized by an hazy increase in local attenuation of lung 

parenchyma not obscuring the underlying bronchial  and vascular structures; in the central 

panel (Figure 13B) a lesion with mixed solid and non-solid components is finally reported, 

i.e. a part-solid nodule. 
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The slices considered are int16(pixel’s values range from [-32768, 32767]) grayscale 

images of 512x512 without any type of preprocessing previously applied. 

 

 

2.2. Preprocessing 

 

In the field of automatic object detection, to improve the training process of the network 

the input image can be processed to limit possible confounding factors. In case of 

pulmonary nodule detection, the region we are interested to inspect is the lung parenchima. 

However, other organs and anatomical structures are always present in a thorax CT scan. 

 

  

   

Figure 13. An illustration of solid (A), part-solid(B) and GGO(C) tumors 
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A 
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Some of them may have spherical shapes and intensity value very similar to a lung nodule 

representing therefore a possible confounding factor that can negatively influence the 

behavior of the model. In order to limit this problem, the original CT scans were processed 

according to an algorithm proposed in the literature in the field of pulmonary nodule 

detection based on deep neural networks (Fangzhou Liao, 2015). After a preliminary 

conversion of the image from Housfield Units (HU) to UINT8 values, a clipping operation 

was applied to limit the gray scale image values within the range [-1200, 600]. A linear 

transformation was then applied to compress the range of values within 0 and 255. 

To apply the last step of the processing algorithm, lung binary masks were needed to 

define the region of the lungs in which we can find pulmonary nodules. For each LDCT 

scan, the lung segmentation approach proposed by Yashin Dicente et al. (2015) et al was 

applied, by taking advantage of the online available 

application(http://publications.hevs.ch/index.php/publications/show/1871). 

The pre-processed image was then multiplied by the lung mask and a value equal to 170 

was assigned to all the voxels outside the lung’s parenchima. In addition, all values greater 

than 210 (high-luminance) were replaced with 170,  to avoid  the inclusion of some areas 

surrounding the lung mask previously defined. These areas contain generally bones (the 

highest luminance tissues), that are easily misclassified as calcified nodules (also high-

luminance tissues). 

LDCT were processed also to a dimensional point of view. To homogenize the resolution 

of different CT scans, a resampling was performed by fixing the value of pixel in the axial 

plane at 0.5 mm on both directions. This step allowed also to increase the dimension of the 

input image to 683x683 pixels. Finally lungs areas(obtaining by the multiplication of the 

original image and lung mask) were centered in the image . In Figure 14, a comparison 

between an original CT slice and a slice after the preprocessing procedure is reported. 

Unlike other works (Qiang Li) on lung nodule detection, dot filtering techniques were not 

applied to the image, keeping the difficulty in the distinction between nodule and tissue 

like vessel or bronchi, that are often eroded by filtering. 
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Figure 14.CT image before(A) and after(B) preprocessing procedure  

2.3. Detection network implementation 

 

The purpose of a nodule detection model is to generate candidate bounding boxes for 

suspicious nodules. 

Faster R-CNN is proposed in this work for pulmonary nodule detection, being the network 

architecture with highest performance in object detection tasks (Shaoqing Ren, 2017). 

Faster R-CNN network consists of two blocks (Figure 15): the Region Proposal Network 

(RPN) and the Fast R-CNN. RPN and Fast R-CNN share the same stack of CNN layers 

which takes as input the gray-scale image to elaborate it and extract a set of feature maps. 

These CNN layers dedicated to feature extraction constitute the so-called backbone neural 

network, in our work represented by the VGG16. In our implementation VGG16 was 

trained independently and therefore it kept weights fixed during the training of RPN and 

Fast R-CNN. For these reasons VGG16 was considered like a separate structure from RPN 

and Fast R-CNN, communicating in the same way with both networks (Figure 15).  

The RPN was fed with the output feature maps of the backbone network with the aim to 

propose candidate regions in which the pulmonary nodule could be present. Finally, Fast 

R-CNN, starting from the proposals of RPN and the feature map coming from VGG16, 

A B 
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provided the class whose proposals belong to and also the coordinates adjusted to better fit 

the object of interest. 

In the following sections a detailed description of each part of the architecture is reported. 

 

 

 

Figure 15. Architecture of Faster R-CNN implemented for lung nodule detection. The network can be divided 

in turn in three networks: VGG16, RPN and Fast R-CNN.     

2.3.1. VGG16 

 

 

Different backbone networks have been tested in literature to support the Faster-RCNN. 

Among these, VGG16 is one of the architectures more frequently used.  

VGG16 was in origin designed for the classification of 1000 different classes of the 

ImageNet dataset. This network can be considered composed by two parts: feature 

extractor, represented by five convolution blocks, and the fully connected layers needed for 

the classification purposes. In the presented work, we took advantage of the original 
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feature extraction architecture of VGG16 where each one of the five convolution blocks is 

composed by both convolutional and max pooling layers creating an overall set of eighteen 

layers (Figure 16)(Appendix A) . 

 

 

 

 

 

Figure 16. Input image is concatenated three times in order to be compatible with the input of VGG16, that 

is composed by a feature extractor part and a classifier part.  

 

The second part of VGG16 was instead modified to (i) reach an architecture more suitable 

to small-objects feature extraction, such as in the case of lung nodule detection, and (ii) 

adapt the classification output to the two classes of interest.  

For what concerns point (i), a deconvolutional layer was added at the end of the 

convolution blocks setting the kernel, stride and padding sizes equal to 4, 4 and 2, 

respectively. The number of output feature maps was instead fixed to 512 (Figure 16). The 
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introduction of the deconvolutional layer lead to the recovering of more fine-grained 

features (Jia Ding A. L., 2017) which are fundamental to detect small objects. Therefore, 

we considered a feature map of dimensions (84,84,512) instead of (42,42,512), i.e. 

dimension of the output feature map in the original architecture. Indeed, being the original 

VGG16 architecture established to extract features from objects of higher size with respect 

to pulmonary nodules, the original-architecture feature map is not able to explicitly depict 

the features of nodules and consequently poor detection performance would be reached. 

Section 2.3.2 in which RPN is introduced, clarifies the reasons behind the inclusion of a 

deconvolutional layer. 

The other main modification applied, is related to the classification part of the net (point 

(ii)) which is needed to allow the network training on our dataset where the two classes of 

interest are only two: slice with lesion and slice without lesion. Specifically, after the 

deconvolutional layer, a global averaging pooling layer was inserted, followed by 2 dense 

layers (1024 units) and finally a 2 unit softmax layer according to the number of classes 

considered (Figure 17). 
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Figure 17. VGG16 architecture for training 

Global average pooling (GAP) layers was used in order to minimize overfitting by 

reducing the total number of parameters in the model. Similar to max pooling layers, GAP 

layers are used to reduce the spatial dimensions of a three-dimensional tensor. However, 

GAP layers perform a more extreme type of dimensionality reduction, where a tensor with 

dimensions 84×84×512 is reduced in size to have dimensions 1×1×512. GAP layers 

reduced each 84×84 feature map to a single number by simply taking the average of all 84 

values (Figure 18). The importance of GAP was stressed by MIT researcher (olei Zhou) 

that demonstrated that CNNs with GAP layers (a.k.a. GAP-CNNs), originally trained for a 

classification task, can also be used for object localization.  
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Figure 18. GAP layers dimensionality reduction: each channel of the feature map is reduced to a single 

neuron 

 

Deep learning models generally require large datasets to train properly and to avoid 

overfitting. VGG16, to reach good performances, was trained using 1.2 million images 

from ImageNet dataset. Unfortunately, in the medical field, a similar amount of labelled 

images does not exist, and therefore is very difficult to reach a good representation of the 

data by training the network from scratch. For these reasons, the use of pre-trained weights 

along with the application of transfer learning is a commonly adopted approach to train 

deep learning models for clinical support.   

According to these limitations, we applied transfer learning by initializing the VGG16 

weights with those of a VGG16 pre-trained on the ImageNet (Chao Tong, 2019). 

Weights of the first 15 layers were kept fixed, indeed is well known that in the first layers, 

image features with a lower level of abstraction, such as edges, are usually extracted, i.e. 

features that are common to any type of image. Fine-tuning was instead applied to the last 
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convolution block, to adapt the original weights so to reach a good representation of the 

new dataset (Thakur). 

The training process was carried on using a Stochastic Gradient Descent optimizer (SGD) 

with momentum equal to 0.9 while the learning rate was fixed to 0.001. Categorical cross-

entropy was used as loss since the output of the model is categorical. The model was 

trained for 100 epochs using a batch size of 16 images As final model, the one at the epoch 

characterized by lowest validation loss was chosen. 

With respect to RGB images that are represented by three channels, CT scans, being gray-

scale images, are associated to a single channel. Although VGG16 architecture was 

designed to deal with RGB images, a replicate of the 2D gray scale image was used to 

reach consistent dimensions with the number of channels and therefore to allow the 

weights transfer.  

The image taken from the deconvolutional layer represent the output of the feature 

extractor network and it was fed into both region proposal network and object detection 

network (Fast R-CNN).  As such, the choice of the addition of the deconvolutional layer is 

crucial for the performance of the network considering our limited dataset. 

 

 

2.3.2. Region proposal network 

 

 

The implementation of RPN and Fast R-CNN have been done following the work of 

Shaoqing Ren (2017) and two reference codes from 

github(https://github.com/dongjk/faster_rcnn_keras, https://github.com/you359/Keras-

FasterRCNN). 

Once the gray scale image was processed by the backbone network, from the output 

feature map a set of region proposals was generated through the RPN. Specifically, RPN 

was applied by sliding a window over the feature map where each pixel was connected to a 

region of the original image by a correspondence which was defined through a set of 

“anchors”.   
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The smallest regions on the input image which have a correspondence with a single pixel 

of the feature map, are called “base anchor box”. The dimension and shape of the base 

anchor boxes limit the minimum size of the detectable object and are determined by the 

overall stride applied in the backbone network. This parameter needs therefore to be 

adjusted to reach anchors dimensions that better fit pulmonary nodules sizes.   

The overall stride of the backbone network can be calculated as the ratio between the 

dimension of the original image and the dimension of the deconvolutional layer feature 

map taken as output. 

 

 

 

𝑠𝑡𝑟𝑖𝑑𝑒𝑥 =
𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ
= 𝑏𝑎𝑠𝑒 𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑤𝑖𝑑𝑡ℎ  

 

 
𝑠𝑡𝑟𝑖𝑑𝑒𝑦 =

𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝ℎ𝑒𝑖𝑔ℎ𝑡

= 𝑏𝑎𝑠𝑒 𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥ℎ𝑒𝑖𝑔ℎ𝑡 
 

(1) 

 

 

Where 

 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ represent respectively image height and width, both 

equals to 683. 

  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝ℎ𝑒𝑖𝑔ℎ𝑡  𝑎𝑛𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ  represent respectively 

deconvolutional layer feature map height and width, both equals to 84. 

 

Knowing the stride, a grid was defined on the input image where each cell corresponded to 

a base anchor box with height and width equal to the stride along x and the stride along y, 

respectively. 

In our implementation, squared input images of 683x683 pixels were considered and same 

stride ratio along the two directions was applied, therefore base anchor boxes were squared 

too(Figure 19).  
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Figure 19  An illustration of the change of base anchor box according to a stride value of 8[a.u.](A) and 

16[a.u.](B). It is also represented the image reference frame with axis X and Y. 

 

Figure 19 shows a comparison between grids of base anchor boxes derived from a feature 

map associated with a stride equal to 8[a.u.] (Figure 19A) and equal to 16[a.u.] (Figure 

19B), respectively. 

The dimension of the base anchors is therefore directly proportional to the stride and both 

are inversely proportional to the size of the feature map as described in Equation (2). 

 

𝑠𝑡𝑟𝑖𝑑𝑒 ↓↓     𝑏𝑎𝑠𝑒𝑎𝑛𝑐ℎ𝑜𝑟 ↓↓     𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ↑↑ 

 

𝑠𝑡𝑟𝑖𝑑𝑒 ↑↑     𝑏𝑎𝑠𝑒𝑎𝑛𝑐ℎ𝑜𝑟 ↑↑     𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ↓↓ 

(2) 

 

A lower size of the base anchors allows to detect smaller pulmonary nodules; therefore, the 

more suitable base anchor size could be reached considering a larger feature map. 

However, if we do not modify the original architecture of the VGG16, the only way to 

obtain a larger feature map is taking it from a less deep convolution block, losing the 

information elaborated in the subsequent layers.  

B A 
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To overcome this problem, as said in section 1.4.3, a deconvolutional layer was introduced 

to decrease the stride value from the usual 16[a.u.] (VGG16) to 8[a.u.] without losing 

information. An ulterior addition of deconvolutional layer was avoided, in fact it will 

increase drastically the number of parameters inside the neural network, increasing the risk 

of overfitting even with GAP layers. 

Once we defined the base anchors, for each one of these, a set of 9 additional anchors with 

common center was defined (Figure 20). Considering that lung nodules have 

approximately a circular shape, we chose to exploit anchors dimensions which differ each 

other only in terms of scale while the ratio parameter was kept constant and equal to 1:1. 

Nine different scales were therefore applied to the base anchor box. The set of scales was 

established in order to maximize the number of anchors overlapping with the nodule binary 

masks, whose maximum bounding box dimension was equal to 74 pixels. The optimum set 

of 9 scales was found in the range between 1:2 and 1:10. 

 

 

 

Figure 20. In red are represented k=9 different scale anchors(from1:2 to 1:10) built on the same base 

anchor box. Note that all anchors share the same center. 
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Having computed 9 anchors for each base anchor, the overall set of anchors was equal to 

84x84x9 (63504) where 84x84 pixels is the dimension of our feature map. It is evident that 

a lower stride lead to an increase of the number of anchors and consequently to a higher 

computational load.   

As such, small object detection requires a low stride and so smaller base anchor boxes. 

Indeed, keeping a lower anchor scale in the case of high value of stride do not solve the 

problem: all different size anchors were centered on the same square base anchor box and 

if an object is positioned on the border of the square, its detection results impossible(Figure 

21). No methods present in the literature use anchor scale ratio lower than 1:1. 

 

 

Figure 21. Also the use of scale ratio lower than 1:1 does not allow the detection of small nodules localized 

at the boarder of base anchor box 

 

Anchors that overflow from the boarder of CT scan were excluded according to the 

original paper (Shaoqing Ren, 2017), since it is improbable that a boarder anchor includes 

a pulmonary nodule having centered the lungs in the preprocessing step. 
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Figure 22. Illustration of the architecture of RPN and of the relationship between anchors and output feature 

map: each group of k=9 anchors correspond to a pixel of the feature map, that is the center of 3x3x512 input 

block of RPN. 

 

Figure 22 shows the architecture of the RPN network which was not modified with respect 

to the original implementation. 

As already mentioned, a window of 3x3 and with depth of 512 channels, slid on the feature 

map to define a new input for the RPN. The input of the RPN consists therefore in a 

(3,3,512) block of feature map. In order to consider also the pixel on the boarder of feature 

map a padding operation was applied. 

The first layer is a 3x3 convolutional layer characterized by 512 channels (with RELU 

activation function), since VGG16 was used as feature extractor network (Shaoqing Ren, 

2017). 

The first convolution is followed by two parallel 1x1 convolutional layers(Figure 23): 

 the first one returns an output vector of 1*9 units, which represent the predicted 

probabilities of the presence of the object of interest in the anchor set. Specifically, 

each one of the 9 probabilities is associated to a specific anchor of the same set, i.e 
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anchors with common base anchor. Anchors with highest probabilities will be 

classified as foreground while as background in the other cases.   

 the second output returns an output vector of 4*9 units, which represent the 

predicted transformed coordinates of the box which should contain the object of 

interest. 

 

 

 

 

 

Figure 23. RPN network architecture 

 

Considering the nature of the two different outputs, the training of the RPN consists in the 

optimization of a classification and a regression problem. Two different loss functions 

needed therefore to be minimized. 

The classification loss 𝐿𝑐𝑙𝑠 is a function of the predicted probability 𝑝 and the target class 

𝑝∗ which is equal to 1 for anchors that belong to the foreground and equal to 0 for anchors 

of the background. Binary cross entropy was used as classification loss, therefore, for an 

anchor 𝑖, 𝐿𝑐𝑙𝑠  can be calculated as follows: 

 

 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) =    − ( 𝑝𝑖

∗𝑙𝑜𝑔(𝑝) + (1 − 𝑝𝑖
∗)𝑙𝑜𝑔(1 − 𝑝) ) (3) 
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Because the anchors target class 𝑝∗ is not known a priori, it needs to be defined. Knowing 

the ground truth box (i.e. minimum squared box that contains the lesion), Intersection over 

Union (IoU),that is the ratio between the area of overlap and area of union between two 

boxes, between each anchor and the ground truth box was calculated. Two IoU thresholds 

were then applied: anchors with IoU above the upper threshold (𝑡ℎ𝑢𝑝) were considered as 

foreground (𝑝* = 1) while anchors with IoU below the lower threshold (𝑡ℎ𝑙𝑜𝑤) will be 

labelled as background (𝑝* = 0).Values of 𝑡ℎ𝑢𝑝 and 𝑡ℎ𝑙𝑜𝑤 were fixed to 0.5 and 0.02 

respectively, according to an RPN implementation presented in literature for pulmonary 

nodules detection (Broyelle, 2018).  

Anchors resulted with a IoU between 𝑡ℎ𝑢𝑝 and 𝑡ℎ𝑙𝑜𝑤 were discarted to avoid the insertion 

of confounding anchors. These anchors are called “hard negative” and they will become 

central in the implementation of Fast R-CNN. 

For some images no foreground anchors were found, and it happens when the condition 

𝐼𝑜𝑈 < 𝑡ℎ𝑢𝑝 is true for the overall set of anchors. In order to include these images, 

Shaoqing Ren et al. introduced a second condition assigning positive label also to the 

anchor with the highest intersection-over union (IOU) overlap with a ground-truth box. 

However, in a small object detection problem, it happens frequently that no anchors have 

IOU>0.5 and, for this reason, this condition was not implemented, avoiding the 

identification of anchors with very low IoU as positive label. 

In order to avoid having an RPN biased for a specific class, we need to deal with the class 

imbalance problem; indeed, for each image sample, the number of negative anchors was 

always >> of the number of positive anchors. A random subsampling of negative anchors 

was therefore applied: a number of negative anchors equal to 2 ∗ 𝑁𝑎𝑛𝑐_𝑝𝑜𝑠 was considered 

for each image sample according to the reference code, where 𝑁𝑎𝑛𝑐_𝑝𝑜𝑠  is the number of 

positive anchors. Following the reference code, the batch size was fixed to 512, including 

more than one image in the batch, always maintaining the same balance. Only in a second 

time we referred the batch to a single image following the so called “image-centric 

sampling strategy” of the original paper (Shaoqing Ren, 2017).  

 

Similarly, to 𝐿𝑐𝑙𝑠, the regression loss 𝐿𝑟𝑔𝑠 is a function of a prediction 𝑡 and a target term 

𝑡∗. Since we want to predict the position of the squared box that better fits the object of 

interest, 4 are the variables to be estimated:  
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 x and y, that represent the center coordinates of the box. 

 h and w, that represent the height and the width of the box. 

Likewise, the ground truth box is represented by 4 target variables 𝑥∗, 𝑦∗, ℎ∗ and 𝑤∗. 

However, to properly maximize the similarity between predicted and target box, we have 

also to consider their dependence to the anchor box. For this reason, the predicted box and 

the target box coordinates are parameterized as a function of the anchor box coordinates as 

reported in the following transformations: 

 

 𝑡𝑥 =
𝑥 − 𝑥𝑎
𝑤𝑎

, 𝑡𝑦 =
𝑦 − 𝑦𝑎
ℎ𝑎

,  

 
𝑡𝑤 = log(

𝑤

𝑤𝑎
) , 𝑡ℎ = log(

ℎ

ℎ𝑎
), 

 

 
𝑡𝑥
∗ =

𝑥∗ − 𝑥𝑎
𝑤𝑎

, 𝑡𝑦
∗ =

𝑦∗ − 𝑦𝑎
ℎ𝑎

, 
 

 
𝑡𝑤
∗ = log (

𝑤∗

𝑤𝑎
) , 𝑡ℎ

∗ = log(
ℎ∗

ℎ𝑎
), 

 

 

                                       (4) 

 

 

 

 

Where: 

 𝑡𝑥/𝑡𝑥
∗ and 𝑡𝑦/𝑡𝑦

∗  denote the transformed center coordinate of the predicted/ground 

truth box; 

 𝑡𝑤/𝑡𝑤
∗  and 𝑡ℎ/𝑡ℎ

∗  are the transformed width and height of the predicted/ground truth 

box; 

 𝑥𝑎 , 𝑦𝑎 , 𝑤𝑎 and ℎ𝑎 are finally the 4 variables that describe the anchor position in the 

image; 

 

Both 𝑥∗, 𝑦∗, ℎ∗, 𝑤∗ and 𝑥𝑎 , 𝑦𝑎 , 𝑤𝑎, ℎ𝑎 were derived from upper-left corner(𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛) and 

lower-right corner(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) coordinates of the corresponding box. 
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𝐿𝑟𝑔𝑠 is therefore a function of the trasnsformed coordinates of the predicted box (𝑡) and the 

transformed coordinates of the ground truth box (𝑡∗). The adopted regression loss was the 

Huber loss, which is a piecewise function that for an anchor 𝑖 can be calculated as follows: 

 

 

 

𝐿𝑟𝑔𝑠(𝑡𝑖, 𝑡𝑖
∗) =

{
 
 

 
 ∑

1

2
(𝑡𝑖,𝑐 − 𝑡𝑖,𝑐

∗ )2
4

𝑐=1

=∑
1

2
(𝑑𝑖𝑠𝑡𝑖,𝑐)

2                    

4

𝑐=1

, |𝑑𝑖𝑠𝑡𝑖,𝑐| < 𝛿

∑𝛿|𝑡𝑖,𝑐 − 𝑡𝑖,𝑐
∗ | −

1

2
𝛿2

4

𝑐=1

=∑𝛿|𝑑𝑖𝑠𝑡𝑖,𝑐| −
1

2
𝛿2

4

𝑐=1

 ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

 

 

(5) 

   

 

where 

𝑐 = 1, . . ,4 = 𝑥, 𝑦, 𝑤, ℎ 

While 𝛿 is a distant threshold which in our case was left to its default value (𝛿 = 1).  

To minimize in parallel 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑔𝑠, the two losses in each batch were merged as follows:  

 

 
𝐿({𝑝𝑖}, {𝑡𝑖}) =

1

𝑁𝑐𝑙𝑠
∑𝐿𝑐𝑙𝑠

𝑖

(𝑝𝑖 , 𝑝𝑖
∗) + 𝝀

1

𝑁𝑟𝑒𝑔
∑𝑝𝑖

∗

𝑖
𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗). 
 

            (6) 

 

Where 𝑖 is the 𝑖-th anchor in the batch and 𝜆 is a regularization factor used to balance the 

influence of the two losses. By default λ is set to 10 , and thus both classification and 

regression terms are roughly equally weighted . Shaoqing Ren et al. (2017) show by 

experiments that the results are insensitive to the values of λ in a wide range(Table 1). 

 

λ 0.1 1 10 100 

mAP(%) 67.2 68.9 69.9 69.1 

 

Table 1. Mean average precision obtained in function of different values 



 Chapter 2. Materials and methods 
 

65 
 

 

To train our implementation of RPN, we chose Adam optimizer. The learning rate was 

initialized to 0.001 and adapted for two times when a plateau was reached. Specifically, 

when the training loss did not decrease for 10 subsequent epochs (patience=10), the 

learning rate was decreased by a factor of ten(Figure 24). 

 

 

 

 

Figure 24. Representation of trend of training loss and learning rate in RPN over epochs. It is evident two 

drop of learning rate linked to the insertion of ReduceLrOnPlateau and the effects on training loss.  

To go through the Fast R-CNN, we need to know the position of the regions proposals 

given by the RPN in the image reference frame. This was done by applying the following 

inverse transformation of previous equation (4) : 
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 𝑥 = 𝑡𝑥𝑤𝑎 + 𝑥𝑎 , 𝑦 = 𝑡𝑦ℎ𝑎 + 𝑦𝑎 ,  

 𝑤 = e𝑡𝑤𝑤𝑎 , ℎ = 𝑒𝑡ℎℎ𝑎 ,  

 𝑥∗ = 𝑡𝑥
∗𝑤𝑎 + 𝑥𝑎 , 𝑦∗ = 𝑡𝑦

∗ℎ𝑎 + 𝑦𝑎 ,    

 𝑤∗ = 𝑒𝑡𝑥
∗
𝑤𝑎 , ℎ∗ = 𝑒𝑡ℎ

∗
ℎ𝑎 ,  

                                   

(7) 

 

2.3.3. Fast R-CNN 

For each anchor given as input to the RPN, a new region of interest (ROI) was defined 

through the coordinates given as output from the RPN. Along with the set of coordinates, 

the probability of the ROI of being background or foreground was calculated. However, 

the RPN makes a high-level estimation of regions that can contain the objects of interest. 

Fast R-CNN was therefore needed to apply a lower-level classification and to refine the 

predicted position of the nodules bounding boxes.  

To properly apply this refinement, the number of ROI proposals was limited in four ways, 

following the reference code implementation: 

i. Eliminating ROI overflowing image boundary 

ii. Including ROI of size between 8 and 50 pixels with respect to image reference 

frame. 

iii. Taking those with highest probability of being foreground; 

iv. Excluding redundant ROIs through Non Maximum Suppression (NMS).  

The first filtering(i) consist in the removal of ROI that cross the image boundary as already 

done for the RPN. 

The second operation attempt to circumscribe the size of the ROI to better fit the nodule’s 

sizes. ROIs with size inferior to 8 pixels with respect to image reference frame represent an 

area inferior to one pixel in feature map, making senseless their inclusion. For what 

concerns high dimension ROIs, these are usually characterized by higher score and, except 

for few cases, by a low value of IoU with nodules. Considering that the filtering step (iii) 

keeps only the ROIs with higher score, the inclusion of ROIs with dimensions above 50 

pixels, causes the exclusion of smaller ROIs in the next step. For these motivations we 
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chose 50 pixels as maximum dimensional threshold to let the model to better fits the 

validation set characterized by nodules with size between 3 and 55 pixels. 

For what concerns the solution (iii), since there is not a clear distinction between 

probabilities distributions of ROIs associated to positive anchors and probabilities 

distributions of ROIs related to negative anchors, it is not convenient to limit the proposals 

on the basis of a probability threshold. For this reason, a maximum number of 6000 ROIs 

was fixed in this first filtering step which correspond to the 6000 ROIs classified with 

highest probability of being foreground. 

In the fourth filtering step (iv), NMS was applied to avoid redundant information. 

Specifically, IoU was applied among ROIs and, when there is an overlap higher than 0.7, 

only the ROI with highest 𝑝 was considered. Figure 25 shows a comparison between the 

region proposals before (Figure 25A) and after (Figure 25B) the filtering procedure. 

 

  

 
Figure 25. Output of RPN without any filtering(A) and after the filtering operations(B).In the figure A ROIs 

appears to be concentrated on the lung region,while in figure B ROIs give more information about the lung 

nodule position even with lots of false positive. In red is represented ground truth box. 

A B 
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The remaining proposals are 300 regions which were differently managed in training and 

validation phase. Specifically, for the training phase, a subsampling was applied to have 

balanced positive and negative ROIs in the same batch.  

In the validation phase, no subsampling was applied and all the 300 ROIs are treated. 

 

As regards the Fast R-CNN architecture, the implementation of Shaoqing Ren et al. (2017) 

was reproduced as done for RPN. 

As already mentioned in section 1.4.3 and as summarized in Figure 27, the Fast R-CNN 

with respect to RPN takes two inputs:  

 the feature map given as output by the backbone network (“Input_1”, Figure 26); 

 the position of the ROIs with respect to the feature map reference frame which is 

described as usual by the center (𝑥𝑟𝑜𝑖, 𝑦𝑟𝑜𝑖) ,the height and the width of the ROI 

(𝑤𝑟𝑜𝑖, ℎ𝑟𝑜𝑖)(“Input_2”,Figure 26) . 

Knowing the ROIs coordinates with respect to the image reference frame, 

coordinates of the ROI with respect to feature map were obtained through the 

following proportion: 

 

 

𝑥𝑖𝑚𝑎𝑔𝑒: 𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ = 𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ  

 

𝑦𝑖𝑚𝑎𝑔𝑒 : 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔𝑡ℎ = 𝑦𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝ℎ𝑒𝑖𝑔𝑡ℎ  

 

Where 

 𝑥𝑖𝑚𝑎𝑔𝑒  and 𝑦𝑖𝑚𝑎𝑔𝑒  represent ROI coordinates with respect to the image 

reference frame. 

  𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝 and 𝑦𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝   represent ROI coordinates with respect to 

feature map reference frame.  
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Figure 26. Fast R-CNN network architecture 

 

The feature map ROIs were then processed through a ROI Pooling layer 

(“ro_i_pooling_1”,Figure 26)  that bring all different sizes input ROIs to a fixed size, that 

is usually set equal to 7x7 pixels as reported in the original paper (Shaoqing Ren, 2017). 

Generally in ROI Pooling layer, a Max pooling operation is applied in order to bring all 

different sizes ROIs to 7x7 pixels with respect to the feature map reference frame. 

However, in our dataset, the majority of the nodules were represented by ROIs of size 

equal to 1x1 or 2x2, condition in which the size is too limited to apply a subsampling 

through Max-Pooling and reach the desired dimension. For this reason, the ROIs 

dimension was increased through the application of a bilinear interpolation. In our 

experiments, three different ROI Polling input size were investigated: 7x7 (section 

2.4.1.4),3x3 (section 2.4.1.4) and 2x2 ( section 2.4.1.4) pixels. 
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Figure 27. Fast R-CNN workflow. You may notice that Roi pooling receive in input the coordinates of the 

ROIs  with respect to the feature map reference frame and extract from the deconvolutional layer(feature 

map considered) region of 7x7x512 by means of a bilinear interpolation. 

 

 

Once ROIs size have been normalized by the ROI Pooling layer, a flatten operation was 

applied to proceed with two subsequent fully connected layers (4096 units) where a 

Hyperbolic tangent activation function (TanH) was used instead of a ReLU. This solution 

was adopted to avoid the death of neurons after few steps; indeed, the Fast R-CNN is 

subjected to very high gradient values that could cause the weights to update in such a way 

that the neuron will never activate again on any data point.  

The Fast R-CNN, as well as the RPN, terminates with two output layers: 

 a classification output, given by a softmax layer which returns for each ROI a 1x2 

vector with the probabilities of being and not being a pulmonary nodule; 
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 a regression output, given by a linear layer  which returns a 1x4 vector which 

describes the refined predicted position of the ROI with respect to image reference 

frame. 

Also the training of the Fast R-CNN thus consists in the parallel minimization of a 

classification loss 𝐿𝑐𝑙𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁  and a regression loss 𝐿𝑟𝑔𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁. 

Similarly, to the RPN, the 𝐿𝑐𝑙𝑠 is a function of the predicted probability of being a 

pulmonary nodule and the target class.  

Since ROIs correspond to different patches of the original image with respect to the 

previously defined anchors, the target class associated to each ROI needs to be established 

again. Specifically, IoU between the Fast R-CNN input ROIs and the ground truth box was 

calculated and new IoU upper was fixed(𝑡ℎ𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁 = 0.4). The threshold value was 

decreased from RPN according to reference code. Thus, ROIs with IoU < 𝑡ℎ𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁 

were associated with the target class [1,0] (i.e.  non-pulmonary nodule), otherwise the 

target class [0,1] was assigned. The original implementation (Shaoqing Ren, 2017) 

excluded background ROI from the training: in a such small object dimension problem the 

high number of background ROI makes necessary to compare the results excluding and 

including background ROIs. For the accomplishment of this comparison, we fixed the 

lower threshold (𝑡ℎ𝑙𝑜𝑤 = 0.016) in order to distinguish background from hard-negative 

ROIs. Also 𝑡ℎ𝑙𝑜𝑤 was reduced with respect to the RPN value, with the same reduction 

applied for 𝑡ℎ𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁. 

According to the chosen softmax classification layer, Categorical cross-entropy was used 

as Lcls which is defined as following:  

 

 

 

 

 

 

 

𝐿𝑟𝑔𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁 =  1/𝑀∑−log (

𝑀

𝑝

𝑒𝑠𝑝/∑ 𝑒𝑠𝑗
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(8) 
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Where M are the positive class of a sample and where each 𝑠𝑝 in M is the CNN score for 

each positive class. 

For what concerns 𝐿𝑟𝑔𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁 , same implementation of Huber loss was used. 

𝐿𝑟𝑔𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁  is consequently a function of the predicted and target transformed 

coordinates which in this case depend on the ROIs position instead of the anchors position. 

Therefore, the previously defined equation (4) becomes: 

 

 𝑡𝑥 =
𝑥 − 𝑥𝑟𝑜𝑖
𝑤𝑟𝑜𝑖

, 𝑡𝑦 =
𝑦 − 𝑦𝑟𝑜𝑖
ℎ𝑟𝑜𝑖

,  

 

 

 

                                             

 

 

 

                                            

(9) 

 
𝑡𝑤 = log(

𝑤

𝑤𝑟𝑜𝑖
) , 𝑡ℎ = log (

ℎ

ℎ𝑟𝑜𝑖
), 

 
𝑡𝑥
∗ =

𝑥∗ − 𝑥𝑟𝑜𝑖
𝑤𝑟𝑜𝑖

, 𝑡𝑦
∗ =

𝑦∗ − 𝑦𝑟𝑜𝑖
ℎ𝑟𝑜𝑖

, 

 
𝑡𝑤
∗ = log(

𝑤∗

𝑤𝑟𝑜𝑖
) , 𝑡ℎ

∗ = log (
ℎ∗

ℎ𝑟𝑜𝑖
), 

 

 

 

 

Where 

 𝑡𝑥/𝑡𝑥
∗ and 𝑡𝑦/𝑡𝑦

∗  denote the transformed center coordinates of the predicted/ground 

truth box; 

 𝑡𝑤/𝑡𝑤
∗  and 𝑡ℎ/𝑡ℎ

∗  are the transformed width and height of the predicted/ground truth 

box; 

 𝑥𝑟𝑜𝑖, 𝑦𝑟𝑜𝑖 , 𝑤𝑟𝑜𝑖  and ℎ𝑟𝑜𝑖 are finally the 4 variables that describe the ROI position in 

the image. 

 

The overall loss of Fast R-CNN was obtained summing up 𝐿𝑐𝑙𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁  and 

𝐿𝑟𝑔𝑠−𝐹𝑎𝑠𝑡 𝑅−𝐶𝑁𝑁  multiplied by a regularization factor (λ= 10) similarly to equation (6). 
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As for RPN, to train Fast R-CNN we used Adam as optimizers. The learning rate was 

initialized to 0.0001 and reduced when a plateau was reached. Specifically, if the loss does 

not change for two subsequent weight updating, the learning rate was reduced(Figure 28). 

This procedure was repeated for two times.  

 

 

 

 

Figure 28. Representation of trend of training loss and learning rate in Fast R-CNN over epochs. It is 

evident two drop of learning rate linked to the insertion of ReduceLrOnPlateau  and the effects on training 

loss. 

 

In order to obtain the final proposal adjusted coordinates, we need to know the coordinates 

of the ROI with respect to image reference frame. This was done applying the following 

inverse transformation of the equation (9): 
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 𝑥 = 𝑡𝑥𝑤𝑟𝑜𝑖 + 𝑥𝑟𝑜𝑖, 𝑦 = 𝑡𝑦ℎ𝑟𝑜𝑖 + 𝑦𝑟𝑜𝑖 ,  

 𝑤 = e𝑡𝑤𝑤𝑟𝑜𝑖, ℎ = 𝑒𝑡ℎℎ𝑟𝑜𝑖,  

 𝑥∗ = 𝑡𝑥
∗𝑤𝑟𝑜𝑖 + 𝑥𝑟𝑜𝑖, 𝑦∗ = 𝑡𝑦

∗ℎ𝑟𝑜𝑖 + 𝑦𝑟𝑜𝑖,    

 𝑤∗ = 𝑒𝑡𝑥
∗
𝑤𝑟𝑜𝑖, ℎ∗ = 𝑒𝑡ℎ

∗
ℎ𝑟𝑜𝑖,  

                                   

(10) 

 

2.4. Experiments 

 

 

To optimize the performance of the Faster-RCNN in detecting pulmonary nodules, the net 

was exploited from multiple points of view. We first investigated how modifications of 

parameters and architecture of the networks can influence the detection of lung nodules 

(Section 2.4.1). In a second time we carried out experiments on different classes of 

nodules, by examining the behavior of the network on different type of nodules(solid, part 

solid and GGO) and  trying to figure out if a training on a specific class of nodule can 

improve the performance on that specific class (Section 2.4.2).  

For the following reported experiments, the dataset and the subsets considered were always 

partitioned in training, the 80 % of the samples, and validation the remaining 20%. The 

validation set was considered to evaluate models on samples not involved in the training 

procedure and so to avoid conditions of overfitting in new data. For each test, the best 

model was considered as that the one associated with the lowest validation loss.  

To train the VGG16, an equal set of images without lesions was considered to represent the 

negative class (slice without nodule class), along with 2D images where at least an 

identified pulmonary nodule was present (slice with nodule class). To train and validate 

RPN and Fast-RCNN only the set of 2901 2D images with presence of a lesion was instead 

considered.  

In this implementation we did not use the alternative training (Appendix B), but VGG16, 

RPN and Fast R-CNN were considered as separated network and they were trained 

separately. 
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As evaluation metric, sensitivity and false positive per scan (FP/scan) were computed to 

derive the Free-Response ROC Curve (FROC curve).  The FROC curve was chosen to 

evaluate the performance of different models and methods (Yanfeng, 2019).The FROC 

curve shows the relationship between the true positive rate (TPR, sensitivity) and the false 

positives per scan (FPs/scan) at different probabilities thresholds. 

We also used the competitive performance metric (CPM) score, used in the LUNA16 

challenge (Arnaud Arindra, 2016), to quantify the improvements between different 

experiments and to compare our results with those reported in the literature.  

The CPM score was defined as the average sensitivity at the following seven predefined 

false positive points: 0.125, 0.25, 0.5, 1, 2, 4, and 6. 

2.4.1. Technical experiments 

 

Preliminary tests were done both on the backbone network (VGG16), to establish the best 

architecture adaptation in order to avoid overfitting in the application of transfer learning, 

and on the dimensional filtering applied to RPN outputs, by setting different thresholds 

(section 2.4.1.1). Defined the feature extraction procedure and relying on the public 

available implementation of RPN and Fast-RCNN, different batch dimension and 

strategies have been tested to train the Fast-RCNN (section 2.4.1.2). Different batch 

strategies have been tested also in RPN training (section 2.4.1.3). From an architectural 

point of view of the detection subnet, only different sizes of the ROI pooling layer of the 

Fast-RCNN were exploited (section 2.4.1.4).  

 

 

2.4.1.1. Preliminary experiments on VGG16 

architecture and RPN filtering procedure 
 

The principal issue of backbone neural network is the high risk of overfitting, related to its 

depth and so to the high numbers of parameters to train(Section 2.3.1). 
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As preliminary tests, we therefore investigated multiple solutions to adapt the last portion 

of the backbone neural network structure in order to avoid overfitting. Specifically, before 

establishing the use of a GAP layer, max pooling layers were also tested. Keeping the same 

number of neurons in dense layers (1024), we replaced GAP with (i) two max-pooling 

layers and a Flatten layer and also with (ii) three max pooling layers and a Flatten layer.  

Lung nodules represent a difficult target not only for the small dimension but also for their 

dimension variability. For this reason, another parameter established with a preliminary 

experiment, was the dimensional threshold applied to filter the ROI proposed by the RPN 

(section 2.3.3). Considering that in the validation set nodule’s size ranges from 3 to 55 

pixels, in the second preliminary experiment we evaluated three different maximum ROI 

size thresholds equal to 50,60 and 70 pixels, respectively.  

 

 

2.4.1.2. Experiments on different Fast R-CNN 

batch composition 

 

In the following experiments, different batch size and composition strategies were 

exploited to train the Fast-RCNN network, keeping the same feature extractor network and 

RPN. Specifically, VGG16 adapted with a GAP layer and the insertion of a 

deconvolutional layer was used as feature extractor after a training of 69 epochs. The RPN 

model applied in this phase was derived by training the net for 34 epochs and using batches 

of 512 samples; therefore, multiple 2D slices were involved in the same batch that could 

belong to different lesions or subjects. The set of 2D images considered to train and 

validate the RPN as well as the Fast R-CNN was the same and consisted in the entire set of 

nodules available. Solid, part-solid and non-solid nodules were therefore considered a 

unique set for this set of experiments. 

A preliminary test was applied to evaluate the effect of including in the training phase 

ROIs with IoU < 0.016 instead of considering only hard negatives (0.016<IOU<0.4). 

Indeed, in the original implementation of Faster R-CNN proposed by Shaoqing Ren et al. 

(2017)  background proposals (IOU<0.016) were not included; the negative class used to 

train the Fast R-CNN consisted only in hard negatives since they have a major overlap 
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with the object of interest. This experiment was motivated by the difference between a 

natural images detection problem, such as the one faced by Shaoqing Ren et al. ( 2017), 

and lung nodule detection problem, where the difficulty related to the detection of small 

object could lead to an high number of background proposals output from RPN. Indeed, as 

already mentioned, a clear distinction between background and foreground classification 

probabilities output by RPN was not observed, meaning a poor ability of the subnet in 

catching better proposals. Considering background ROIs in Fast-RCNN training, can allow 

it to learn additional features previously not seen by the RPN.  

The best strategy to define the negative training samples was defined evaluating the model 

behavior on the validation set and then different batch composition were tested in order to 

balance negative and positive class. 

The batch dimension was chosen according to the medium number of positive ROIs 

(IOU>0.4) found among the 300 proposals sampled from the RPN output in the training 

dataset. The medium number of positive ROIs, with the generated RPN model, was equal 

to 8. Considering that the number of positive ROIs ranged between 20 and 1, the following 

4 different batch size composition were evaluated: 

 

1. Fixed batch size equal to 25 ROIs with maximum of positive ROIs fixed to 12 

2. Fixed batch size equal to 16 ROIs with maximum of positive ROIs fixed to 8 

3. Fixed batch size equal to 8 ROIs with maximum of positive ROIs fixed to 4 

4. Variable batch size in order to keep 1:1 ratio between positive and negative ROIs 

 

For tests 1-3 in case of 𝑁𝑝𝑜𝑠_𝑟𝑜𝑖𝑠  higher than the fixed quantity, a random subsampling was 

applied to both negative and positive ROIs.  

The Fast-RCNN batch strategy resulted the most performant was then adopted in the 

subsequent experiments. 
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2.4.1.3. Experiments on different RPN batch 

strategy 

 

 

In our experiments, we focused not only on the Fast R-CNN training(Section 2.4.1.2), but 

we attempted to figure out also the best way to train RPN. 

As said in section 2.4.1.2, for the experiments reported in the same section, the RPN was 

trained considering a fixed batch size equal to 512 according to reference 

code(https://github.com/dongjk/faster_rcnn_keras), including feature map coming from 

different lesions or patients inside the same batch. In this experiment section we wanted to 

compare the previously RPN adopted training approach with the “image-centric sampling 

strategy “ used in the original implementation (Shaoqing Ren, 2017)in order to define the 

best strategy.  This second approach consists in the inclusion of samples coming from a 

single image in each batch. 

Keeping the same RPN batch composition explained in section 2.3.2(number of negative 

anchors equal to 2 ∗ 𝑁𝑎𝑛𝑐_𝑝𝑜𝑠), we compared the performance of a Faster R-CNN trained 

with a RPN characterized by mono-image batch and a Faster R-CNN trained with RPN 

characterized by multi-image batch approach. 

 

 

2.4.1.4. Experiments on different implementation 

of ROI pooling layer 

 

The first implementation of the network did not operate a real ROI pooling , but performed 

a simple interpolation of the ROI to 7x7 pixels regions. Indeed, as explained in section 

2.3.3, the ROIs with respect to the feature map reference frame were always inferior than 

7x7 pixels. For this reason we can not operate a features selection by means of Max-

pooling operation and also we have to introduce an interpolation procedure in order to 

bring all the ROIs to the desired dimension (7x7 pixels).In order to overcome this problem, 

in these experiments, we followed a different strategy changing the dimension of the ROI 
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pooling fixed by the paper which was equal to 7x7 pixels (Shaoqing Ren, 2017). 

Specifically, the interpolated ROI size was decreased and then a Max-pooling operation 

was applied as explained following where the two experiments are reported: 

1. ROIs interpolation to 6x6 pixels and max-pooling application of pool-size(2,2), 

obtaining 3x3 pixels regions in input to Flatten layer(Figure 26). 

2. ROIs interpolation to 4x4 pixels and max-pooling application of pool-size(2,2), 

obtaining 2x2 pixels regions in input to Flatten layer(Figure 26). 

 

2.4.2. Experiments on different classes of 

lung nodules 

 

This section of experiments had the aim to evaluate the behavior of the net on the three 

different types of nodules (solid, part-solid and non-solid) and to establish if there is an 

advantage in using a specific model for each class.  

Three different subsets were defined for solid, part-solid and GGO nodules respectively. 

With respect to the overall set of nodules, only lesions associated with box dimensions 

above 16 pixels were included to simplify the problem of small object detection and to 

better evaluate the model’s limits with respect to nodule type. 

For each subset, a partition in training and validation was applied. A nodule type-specific 

Faster-RCNN was therefore derived retraining VGG16, RPN and Fast-RCNN. For what 

concerns solid nodules, a number of 724 images were considered as training samples. The 

generated model was then evaluated on the 158 samples of the validation set.  

The same approach was used to evaluate part-solid and GGO specific models. For the part-

solid model, a subset of 337 and 74 2D images samples were considered for training and 

validation respectively; in the two sets, for the non-solid model, a number of 461 and 103 

images was instead included.   

On these three sets of data(solid, part-solid and GGO) also the best model obtained using 

the entire set of nodules (section 2.4.1.2) was evaluated and its performance were 

compared with those of the solid type-specific model. 
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Chapter 3. Results and discussions 

 

In this chapter we present and discuss the results in terms of performance of the different 

Faster R-CNN implementation. 

3.1. Results on technical experiments 

 

In the first part we present and discuss the results relative to the technical experiments 

underlining the detection improvement or worsening obtained from parameters and 

structure changes(Section 2.4.1). 

 

3.1.1. Preliminary results on VGG16 

architecture and RPN filtering procedure 

 

For what concern the architecture of VGG16, we evaluated the model by replacing GAP 

with max pooling layers. 

In the first preliminary experiment, keeping the same number of neurons in dense layers 

(1024), we substituted GAP with two max-pooling layers and a Flatten layer(i) (section 

2.4.1.1). 
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Figure 29.Replacemenet of GAP with two max-pooling and Flatten layer in VGG16 architecture. Number of 

features drastically increase to 251 millions. 

As reported in Figure 29, the number of features relative to VGG16 training increased 

from 21 millions (in the GAP implementation) to approximately 251 millions. Even if we 

use the pre-trained Imagenet weights, this solution led to overfitting due to a huge increase 

of features as can be noted comparing the trend of training and validation losses in Figure 

30. 
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Figure 30. The replacement of GAP with two max-pooling layers cause overfitting 

 

In the second experiment(ii) (section 2.4.1.1), we also evaluated the behavior of the 

VGG16 after the addition of an additional max pooling layer, reducing number of features 

from 251 to 72 millions.  

Even the addition of this ulterior max pooling layers, did not solve the problem of 

overfitting resulting in a behavior of losses during training similar to that observed in 

Figure 30. 

These results show that the reduction of features operated by GAP layers, which reduce a 

tensor of dimensions 84×84×512  to 1×1×512, proved its usefulness to avoid overfitting. 

Regarding the maximum size ROI threshold applied in dimensional filtering, we chose the 

threshold value according to the minimum validation loss obtained which corresponded to 

a threshold equal to 50 pixels (Table 2). 
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Maximum ROI size threshold[pixels] 50 60 70 

Validation loss 0.1868 0.2387 0.3156 

 

Table 2. Validation loss corresponding to different maximum ROI size thresholds 

 

Including ROIs of size higher than 50 pixels reduce the performance of the network. 

Indeed high size ROIs are generally characterized by high score but a low IoU with the 

ground truth box, thus causing the exclusion of small size ROIs in the score filtering 

step(iii), that more likely fit better lung nodules(Section 2.3.3). For these reasons, we chose 

50 pixels as maximum size threshold. 

 

3.1.2. Results on different batch composition 

 

 

 

Here we report results related on how the dimension and composition of batch size of Fast 

R-CNN influenced the performance of the Faster R-CNN. 

The Fast R-CNN training approach of  Shaoqing Ren (2017) that excludes background 

ROI(IOU<0.016) and considers only the hard negative ROIs (0.016<IOU<0.4) as negative 

class,  did not lead to a good performance in our experiments. Conversely, the inclusion of 

background ROIs in the training phase improved the performance of the network: Figure 

31 reports the FROC curve related to the Fast RCNN trained excluding the background 

samples in comparison to the case characterized by the inclusion of background samples, 

with both trainings using a fixed batch equal to 16 (Section 2.4.1.2). 
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Figure 31. Comparison between two Faster R-CNN: Fast R-CNN including(red) and excluding(green) 

background region(IOU<0.016)  inside negative label of batch. 

 

With the first method, characterized by the inclusion of  background ROIs inside the 

training of Fast R-CNN, a CPM score equal to 0.0431 was obtained confirming the 

improvement with respect to the second experiment  where  a CPM score of only 0.0158 

was reached.  

This result underlines the importance including background ROIs inside the Fast R-CNN 

training and can be associated in part to a bad performance of the RPN, which was not 

sufficiently able to discriminate between background and foreground proposals. In 

addition, some aspects of the four step filtering can be call into question too; the choice to 

reduce the number of ROIs to 300 in NMS step(section 2.3.3) is one of them. Being a 

number established a priori, different values needs to be exploited in order to reduce the 

bakground proposals output from RPN and at the same time to not lose proposals that well 

represent the nodule. However, further investigations should be done on a larger dataset 

and after improving the performances of the backbone network. 
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In Figure 32, a comparison of models generated according to experiments 1-4 of section 

2.4.1.2 is reported. As can be noted, better performance was reached training the Fast-

RCNN with a fixed batch of 16 ROIs samples: with equal false positive per scan, a higher 

sensitivity can be appreciated with respect to the others training approaches. Indeed the 

CPM score relative to Batch16 method was 0.0431, higher than the CPM score of Variable 

batch, Batch25 and batch8 methods equal to  0.0424,0.0381 and 0.0356, respectively. 

 

 

 

 

Figure 32. FROC curve for different Fast R-CNN batch composition and dimension. 

 

Considering that, after the application of the filtering processes i-iv (section 2.3.3), the 

mean number of positive ROIs was equal to 8, it should be noticed that  fixing a batch at 8 

ROIs and so a more precise  balance of positive/negative samples in the batch, higher 

values of sensitivity are obtained (yellow line, Figure 32), but at the same time there was 

an increase of FP/scan. This behavior characterizes also the batch “variable batch” (green 

line, Figure 32) implementation, where we have always a precise balance of 

positive/negative samples. The better performance of variable batch implementation with 
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respect to batch 8, can be due to the fact that ,by fixing a batch at 8 ROIs, we applied a 

subsampling of positive ROIs  causing a general reduction of the informative ROIs 

samples included in the training. 

The opposite result can be observed in the implementation with batch fixed at 25 ROIs 

(blue line, Figure 32) , where positive sample represent a smaller portion of the batch with 

respect to the previous cited case. For this reason, we obtained better performance in term 

of FP/scan, but at the same time a reduction of sensitivity. 

According to the considerations reported above, the choice of a batch size equal to the 

double of the mean number of positive ROIs, represents a good trade-off between the 

tested strategies and this has been considered in the next experiments(Section 

2.4.1.3/2.4.1.4). 

 

Figure 33 show a qualitative example of the outputs of Faster R-CNN with Batch 25 (A) 

,Batch 16 (B),Batch 8 (C) and Variable batch (D) implementations. 
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Figure 33. Output of  Faster R-CNN with Batch 25 (A) ,Batch 16 (B),Batch 8 (C) and Batch-variable (D) 

implementations. In white is represented the ground truth box, while in green, red and blue the ROIs with 

probability(p) of being nodules respectively: p>0.9(green), 0.7<p<0.9(red) and 0.5<p<0.7(blue). 

As can be noted from the qualitative example reported in Figure 33, using a batch size of 

16 ROIs (Figure 33 B), a better detection of the nodule is achieved, avoiding lots of FP that 

are conversely present using a batch size of 8 ROIs (Figure 33 C) and “variable 

batch”(Figure 33 D). Batch of 25 ROIs (Figure 33 A) , even if characterized by a  
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reduction of false positive with respect to the other cases, does not detect the nodule. 

Moreover, although Batch 16 implementation recognized the nodule, the ROIs are focused 

with higher probability on another part of the parenchyma (Figure 33B), behavior that 

characterize also  the other implementations.  

The general poor performance of the network may be related to the difficulty encountered 

in identifying small nodules. For this reason, we evaluated the dimension of the tumors that 

the network identifies correctly (Figure 34). Overall, the network mainly fell in identifying 

small nodules (nodules with dimension < 13), although errors are also present in case of 

medium and large size nodules. It is expected that this result could potentially improve by 

performing a further reduction of the stride value. A stride of 8[a.u.] make impossible the 

extraction and classification of ROIs of size inferior to 8 pixels with respect to the image, 

because they become smaller than one pixel with respect to the feature map reference 

frame. As such, a reduced stride allows recovering more fine-grained features  which are 

fundamental to detect small objects (Jia Ding A. L., 2017). 

 

 

Figure 34. Number of tumors recognized(blue) and not recognized(orange) in function of their dimension in 

pixel. 
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3.1.3. Results on different RPN batch strategy 

 

 

An additional attempt done to improve the network behavior acts on the RPN training 

procedure and consists in the application of the image-centric sampling strategy(section 

2.3.2). In Figure 35 the FROC curves relative to Faster R-CNN with multi-image RPN 

batch and Image-centric sampling strategy are reported. 

 

 

 

Figure 35. FROC curve of Faster R-CNN with multi-image RPN batch(red) and image-centric sampling 

strategy (green) 

 

 

As we can see from Figure 35, the application of the image-centric sampling strategy(green 

curve), with respect of having a larger batch of 512 samples with multiple image features, 
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brought to an improvement in terms of sensitivity : The CPM score increased from 0.0431 

to 0.0723. This result not only highlights the convenience of treating image singularly but 

also that RPN achieved better performance adopting a smaller batch  (Shaoqing Ren, 

2017). 

For this reason, the RPN model trained through a single-image batch was considered for 

the latter section of technical experiments(Section 2.4.1.4). On Figure 36 a qualitative 

example is reported, where the RPN trained trough image-centric sampling is compared 

with the RPN trained with a fixed batch of 512. 

 

 

 

Figure 36. Output of Batch 16  (A)(Section 3.1.2) and Faster R-CNN trained with single-image RPN 

Batch(B). In white is represented the ground truth box, while in green, red and blue the ROIs with 

probability(p) of being nodules respectively: p>0.9(green), 0.7<p<0.9(red) and 0.5<p<0.7(blue). 

 

Although the improvement obtained with RPN image-centric strategy, the performance of 

the network was still poor, underlining the need for evaluating other parameters and 

structure’s characteristics to improve results. 
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3.1.4. Results on different implementation of 

ROI pooling layer 

 

 

 

The dimension of the input ROI which was fixed in the original paper (Shaoqing Ren, 

2017) and equal to 7x7 pixels, does not allow the correct implementation of ROI pooling 

layer in such small object detection problem, as lung nodules detection is. A possible 

solution that we investigated, was the reduction of original 7x7 pixels dimension by means 

of a lower interpolation and the insertion of a max-pooling operation(Figure 37). 

 

 

Figure 37.FROC curve of different ROI-pooling implementations. In blue is represented the performance of 

the image-centric RPN training(section 2.4.1.3) with the previous implementations of ROI pooling layers. In 

red and yellow are represented the two experiments concerning the modification of ROI pooling 

layers(section 2.4.1.4). 
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Figure 37 reports the result related to the three different approaches .  

The use of a 3x3 warped ROI (yellow line, Figure 37)by means of a lower interpolation 

and the introduction of Max-pooling layer led to a slight improvement of the 

performance(CPM score of 0.0789) with respect to the previous implementation based on 

the interpolation to 7x7 pixels ROI that obtained a CPM score of 0.0723(Section 3.1.3).   

The additional reduction of the dimension of the ROIs to 2x2 pixels did not bring to an 

improvement obtaining a CPM score of 0.0719 (red line, Figure 37). These results show 

that a lower interpolation and the selection of features operated by Max pooling layers ,as 

implemented in the paper (Shaoqing Ren, 2017) , aids the network in the detection task, 

but at the same time a too high reduction of the ROI features input to the network( 2x2 

pixels ROIs) worsen the performance of the Faster R-CNN.  

The approximate implementation of ROI pooling layers was certainly an issue of our 

detection system but the correct implementation by means of dimensionality reduction of 

input ROIs from 7x7 pixels (Shaoqing Ren, 2017) does not seem to be a convenient 

solution. The results of this section express furtherly the need for reducing the stride value 

in order to increase the ROIs dimension with respect to the feature map reference frame 

and implement a real ROI pooling layer without a reduction of the ROI’s size fixed by 

Shaoqing (2017). 

Further investigation of this parameter is therefore necessary and need to be done in 

parallel to the changes on the feature extraction part of the detection model in order to 

improve the performance of the network, that still remains far from a good result. 
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3.2. Results on different classes of lung 

nodules 

According to results reported in section 3.1.2, a clear lower performance only on nodule 

with lower size was not observed. To understand if the poor performance is related to a 

bias of the net towards a particular lesion class, nodule-type specific models were tested 

and, in this section, we present the obtained results. We removed nodules with box 

dimension below 16 pixels from the three subclasses(solid, part-solid, GGO)(Section 2.4.2) 

in order to simplify the small object detection issue and investigate more deeply on 

model’s behavior with respect to the lesion class. 

Firstly, the performance of batch16 model(Section 3.1.2) trained on the overall set of 

nodules, was evaluated on the three different subclasses(Figure 38).  

 

 

 

 

Figure 38. Performance of Batch-16 implementation(section 3.1.2) on solid(red) part-solid(green) and 

GGO(blue) nodules of size >16. 
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As it can be seen from Figure 38, the performances of the network on solid and part-solid 

nodules are better with respect to the performance on GGO nodules. 

The bad results could be related to the inability of the network in learning part of the 

features related to a particular type of nodules(groundglass features), therefore a 

comparison with a nodule type-specific network was necessary to understand if a large 

number of properties are caught. 

Following, the curves reported in figure 38 are compared with those trained on a specific 

class of nodules(Figure 39). 

 

 

 

Figure 39. In red is represented the result of batch-16 model(Section 3.1.2) validated on only solid(A), part-

solid(B) and GGO(C) nodules of size >16, while in green the network trained and validated on only 

solid(A),part-solid(B) and GGO(C) nodules of size >16. 
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Moreover, in order to obtain a better understanding on the results, we compared the CPM 

scores of the two strategies for the three subclasses(Table 3).  

 

CPM score Solid 

nodules 

Part-solid 

nodules 

GGO 

nodules 

Batch16 evaluated on the specific 

class 

0.0627 0.0664 0.0499 

Training on the specific class 0.0526 0.0728 0.0777 

 

Table 3. CPM scores relative to the experiments on different classes of nodules. In the first row are 

represented the CPM scores relative to Batch16 model(Section 3.1.2) evaluated on solid, part-solid and 

GGO nodules of size>16. In the second row are represented the CPM scores relative to the model trained on 

the specific classes of size>16. 

 

As shown in Table 2 no improvements were observed training the model with solid 

nodules as unique type of lesion(Figure 39A). This means that the network has already 

learnt the solid features and a mono-type training do not add additional information. On the 

contrary the performance is slightly lower, probably due to the reduction of images fed to 

the network. 

In contrast to the observed results on solid specific model, training a model on 

GGO(Figure 39B) or part-solid(Figure 39C) nodules only, brought to an improvement of 

the performance on the specific class(Table 2). These results could be  linked to the 

inability of the network, trained on all nodules, to learn the groundglass specific features, 

also present in part-solid nodules which, as stressed in (Section 1.2), contains both solid 

and groundglass features. As such, a mono-type training allowed the network to 

concentrate and learn groundglass features. The improvement in term of CPM score was 

more evident on GGO with respect to part-solid nodules, where solid features were already 

learnt by the algorithm and a mono-type training did not add additional information. 

 

On Figure 40 a qualitative example is reported where the result of Batch 16 

implementation is compared with Faster R-CNN  trained  only on GGO nodules. 
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Figure 40. Output of Batch 16 (Section 3.1.2) (A) and Faster R-CNN trained with only GGO nodules (B) on 

a GGO lesion of size>16. The ROIs output from a training on all classes are focused on different 

parenchyma’s structures(A) and the GGO nodule is not recognized. In white is represented the ground truth 

box, while in green, red and blue the ROIs with probability(p) of being nodules respectively: p>0.9(green), 

0.7<p<0.9(red) and 0.5<p<0.7(blue). 

 

 

According to our findings, despite some of the CAD systems include GGO and part-solid 

nodules among the detected nodules, more efficient dedicated approaches have been also 

proposed not only to improve GGO detection , but also part-solid one, that also contains 

groundglass features. (Kim KG, 2005) (Ye X L. X., 2007). 

However, the poor performance of our model trained including all the nodule classes can 

not be imputed just to the presence of non-solid nodules.  
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3.3. Performance comparison with 

literature’s work 

The technical results(Section 3.1) and the results on different class of nodules(Section 3.2) 

revealed the low performance of our implementation of Faster R-CNN. The obtained 

results in term of sensitivity are too low for including the implemented detection system in 

the clinical practice. 

From Figure 41 we can appreciate the CPM score of leader state-of-the-art nodule 

detection systems. Also the result relative to our most performing experiment(Section 

3.1.4), that achieves a CPM score of 0.0789, is very far from the literature detection 

systems. 

 

Figure 41. CPM score comparison of the state-of-the-art approaches. Note that “online” means models with 

online descriptions available on LUNA16 competition website: https://luna16.grand-challenge.org/Results/. 

In order to understand if our Faster R-CNN implementation is a suitable system for lung 

nodule detection, we need to investigate more on parameters optimization and especially 

different training strategy should be implemented(Appendix B). Only a complete analysis 

and evaluation of parameters, network’s architecture and training modality will definitively 

establish the adequacy of our modified Faster R-CNN in the field of lung nodule detection.  
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3.4. Analysis on computational cost of Faster 

R-CNN 

For computations, the graphical processing units (GPU) used were NVIDIA Quadro 

P5000. The Processor is an Intel Xeon W-2123 CPU@3.60 GHz and has a RAM of 64.0 

GB. 

In our implementation the training of Faster R-CNN was based on the separate training of 

three networks:VGG16,RPN and Fast R-CNN. Each of these network required different 

training time, which depended also on the network’s structure and batch size. 

VGG16 fine-tuning required a time of approximately 4 hours. Replacing GAP layer with 

Max-pooling layers and Flatten caused a small increase of training time in order of 

minutes, due to a higher number of features for the training. (Section 2.4.1.1)  

The most significant change regarded the RPN, where the use of the image-centric 

sampling strategy, with respect of having a larger batch of 512 with multiple image 

features, brought to an increase of training time from approximately 6 hours to 

approximately 22 hours (Section 2.4.1.3). 

Fast R-CNN required a longer time to train, nearly equal to 3 days. While changes of batch 

composition and dimension relative to Section 2.4.1.2 did not change considerably the 

training time, the introduction of Max-pooling layers decreased the computational cost by 

means of a reduction of the number of features, causing a reduction of training time in 

order of hours. 
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Chapter 4. Conclusions and future 

developments 

 

The aim of this project consisted in the implementation and investigation of an automatic 

system for detection of pulmonary nodules to optimize lung cancer screening based on 

LDCT.  A deep learning model was exploited and specifically Faster R-CNN was adopted, 

widespread architecture in the field of object detection. Faster R-CNN consists in two 

substructures: the RPN dedicated to generating a series of region proposals and finally the 

Fast-RCNN which associate each proposed ROI to an object. Both RPN and Fast R-CNN 

share a backbone network, dedicated to feature extraction. In our implementation VGG16 

was trained separately and for this reason is considered as a separate structure from RPN 

and Fast R-CNN. Each part of the detection system was trained separately. 

Our main aim was to evaluate the performance of Faster R-CNN in the field of lung nodule 

detection. Taking inspiration from the version proposed by Shaoqing Ren et al. (2017), the 

network was adapted to be more suitable for the dataset available following the literature 

approach on lung nodule detection and at the same time we investigated how different 

parameters and structure’s characteristics, not investigated by literature,  can influence the 

detection. Moreover a separate section was dedicated to the comprehension of the 

behaviour of Faster R-CNN on different classes of lung nodules. 

An initial preprocessing step was applied limiting the anatomical structures to the 

parenchyma in order to improve speed and accuracy of the detection network. VGG16, the 

network chosen for feature extraction, was modified to have a feature map more 

appropriate to small objects and to avoid overfitting due to the limited number of samples 

available. In contrast to the original Faster R-CNN (Shaoqing Ren, 2017), which utilizes 

all the five convolutional blocks of VGG16 Net, we followed the approach of Jia Ding et 

al. (2017), adding a deconvolutional layer in order to increase the feature map resolution 

adapting the network for a small object detection problem. We investigated different 

VGG16 architecture in order to avoid overfitting: the introduction of GAP layers instead of 

Max-pooling layers followed by Flatten layers, proved to be necessary(Section 2.4.1.1). 
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However, additional strategies can be tested regarding both (i) the backbone network 

structure and (ii) solutions to avoid overfitting. For what concerns the point (i), the training 

of the deconvolutional layer weights could be improved concatenating part of the features 

coming from the contraction path; strategy frequently adopted in architectures that includes 

a combination of contraction and expansion paths (Olaf Ronneberger, 2015). Additionally, 

other backbone architectures already used in literature like ResNet or U-net could be tested 

to replace VGG16 (Yanfeng, 2019) (Hao Tang, 2019). The principal issue of backbone 

neural network is the high risk of overfitting (ii), related to their depth and so to their high 

numbers of parameters to train. A solution to this problem could be the extension of the 

dataset with the inclusion of new images that could allow a training from scratch instead of 

the use of pre-trained weights. 

We realized that a parameter that need to be further investigated in order to improve the 

performance of the network was the stride value which determined the size of the base 

anchors and thus the range of detectable object size. We saw that the network is not still 

able to detect small nodules (size<13 pixels), even if we added the reduction of the stride 

from 16 to 8[a.u.] by means of the addition of the deconvolutional layer (Jia Ding, 2017).  

As explained in section 2.3.2, the stride value is limited by the feature map dimension and 

so by the strategy applied at the backbone network level. To manage the stride value, the 

adaptation of the backbone architecture to reach a proper feature map size is not the only 

solution. Another simple trick could be that of enlarging the field of view of the network 

by increasing the input image resolution, but also more complex solutions have been 

proposed in the literature: the use of feature pyramid network(FPN) demonstrated to be an 

efficient strategy (Tsung-Yi Lin, 2017) to improve RPN. Taking multiple feature map from 

different depth of the backbone network, feature pyramid networks allow combining 

features with higher level of abstraction and reduced field of view, with more simple 

features where a larger field of view is preserved.  

We noted that also the RPN training strategy can affect the network performance. The 

application of the image-centric sampling strategy, where each batch contains samples 

coming from a single image, brought to an improvement in terms of sensitivity with 

respect of having a larger batch of 512 samples with multiple image features(section 

2.4.1.3). Even if a reduction of the batch size increased the training time(Section 3.4), the 

performance improved. 
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RPN provides as output a set of regions of interest (ROIs), along with the probability of the 

ROI of being background or foreground. However, the RPN makes a high-level estimation 

of regions that can contain the objects of interest. Following the reference code 

implementation (https://github.com/dongjk/faster_rcnn_keras, 

https://github.com/you359/Keras-FasterRCNN), we applied a four-step filtering (section 

2.3.3) that reduces the initial number of ROIs, given then as input to Fast-RCNN, from 

63504 to 300 ROIs.  

This final number of ROIs is a parameter that have to be investigated in the future in order 

to verify if a more proper number instead of 300 exists in case of pulmonary nodules 

detection. 

In the Fast R-CNN, the proposals generated by RPN are warped into squares by means of 

ROI pooling layer and finally input to the dense layers (Section 2.3.3). For each proposal 

Fast R-CNN return two outputs: the probability related to the different class (nodule vs. 

non-nodule) and the adjusted coordinates to better fit the lung nodule box coordinates.  

The small object detection is surely the main issue in the construction of Fast R-CNN and 

opens some problematics also in the implementation of this part of the detection system.  

Specifically, the application of the ROI pooling layer, fixed to 7x7 pixels in Shaoqing Ren 

et al. (2017), lays the foundation on the dimension of the ROI with respect to feature map 

reference frame.  

As already mentioned above,by means of the insertion of the deconvolutional layer in the 

feature extractor network, we fixed the stride value to 8[a.u.], followed the approach of Jia 

Ding et al. (2017). Although the reduction of the stride with respect to the original 

implementation stride which was equal to 16[a.u.], the size of tumors with respect to the 

feature map reference frame in our dataset is always inferior to 7x7 pixels. For this reason 

in the first instance we applied an interpolation to bring the dimension of these small ROIs 

equal to that fixed in the original implementation (Shaoqing Ren, 2017) but without 

applying the Max-pooling. We faced the problem by reducing the original 7x7 pixels 

dimension through a lower interpolation and with the insertion of a Max-pooling operation. 

Using 3x3 ROI lead to an improvement of the performance, while the additional reduction 

of the dimension of ROI did not improve the results(Section 2.4.1.4). The results of these 

experiments express furtherly the need for reducing the stride value in order to increase the 
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ROIs dimension with respect to the feature map reference frame and implement a real ROI 

pooling layer without a reduction of the ROI’s size fixed by Shaoqing et al. (2017). 

We have also tested different batch composition of Fast R-CNN to balance negative and 

positive class (section 2.4.1.2). Training the Fast-RCNN with a fixed batch of 16 ROI 

samples achieves the best performance among the multiple experiments. 

Afterwards we have investigated the performance of the network on the three type of 

nodules: solid, part-solid and GGO. As we expected, the network performed better on solid 

and part-solid with respect to GGO nodules. The worst performance could be related to a 

bias of the net towards a particular lesion class. So, we have defined three different 

datasets for solid, part-solid and non-solid nodules respectively and we have trained and 

validated the network on each class of nodule. In these experiments we have considered 

only nodule with box dimensions above 16 pixels in order to simplify the problem of small 

object detection and better focus the model’s limitations with respect to the lesion type. 

Only training the network on GGO and part-solid, both characterized by groundglass 

features, led to a slight improvement on the corresponding class of nodules(Section 2.4.2). 

While in the case of solid no improvement can be appreciated. A possible solution could be 

the integration of a dedicated approach for GGO and part-solid nodules to improve the 

results on this class. 

Despite the experiments and studies conducted in order to adapt Faster R-CNN for lung 

nodule detection, our network performance remains poor and far from the results of the 

literature(Section 3.3). Further studies on parameters, network’s structure and especially on 

the training modality are needed in order to understand if our modified Faster R-CNN is a 

suitable method for lung nodule detection. 

The general poor performance of our implementation could be improved by means of 

different structure and parameters optimization of the three networks, but more complex 

training techniques such as alternative training (appendix B) need to be tested. In this 

implementation the weights of the network are trained separately for VGG16, RPN and 

Fast R-CNN, in contrast to the original paper implementation. Here, RPN and Fast R-CNN 

do not share the convolutional layers of backbone neural network and, in this sense, there 

is no communication between the two networks. In a future implementation we will surely 

follow the four-step alternating training in order to improve the performance of the 

network.  
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Another approach that could be tested in the future was applied in the implementation from 

which we took inspiration (https://github.com/you359/Keras-FasterRCNN). It consists into 

an end-to-end training where the three networks are trained conjunctly. This approach is a 

simple technique that allows to share information between the three networks.  

Future implementation could also take into account the integration of (i) merging operation 

of overlapping candidates in adjacent slices and (ii) false positive reduction step, in order 

to set up a complete CAD system.  
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Appendix A 

 

 

Convolutional neural network (CNN) is a particular type of neural network designed for 

2D images, although CNN can be used with 1D or 3D data. The most important and unique 

component of CNN is the convolutional layer, that performs a convolution operation on 

input image. Convolution levels extract ,by means of the use of filters, the features of the 

images whose content have to be analyzed. The filter is always smaller than the image 

analyzed and the multiplication applied between a filter-sized patch of the input image and 

the filter is a dot product. A dot product is the element-wise multiplication between the 

filter-sized patch of the input and filter, which is then summed, always obtaining a single 

value(Figure 42). 

 

 

 

Figure 42. Convolution operations consists in element-wise multiplication between the filter-sized patch of 

the input and filter 

The aim of convolutional layers is to identify patterns, like curves, angles, circles or 

squares in the image with high precision. In the first level the filter represents a low level 

characteristic because it identifies simple objects such as curves or lines. In subsequent 
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convolutional levels, the filters identifies more and more specific and sophisticated 

patterns. 

The dimension of the kernel represent an important parameter to set inside the neural 

network. Also padding and stride deserve a particular attention. 

Stride represent the amount of pixels by which the filter is shifted(Figure 43). 

 

 

 

Figure 43. The stride is equal to 2[a.u.], in fact the 3x3 kernel is moving by 2 pixel a time 

Padding consists in the insertion of additional layer at the border of an image in order to 

avoid the reduction of dimensionality that characterize a normal convolution and the 

consequent lost of information at the corners of the image. Typically, the values of the 

extra pixels are set to zero(zero padding)(Figure 44). 

 

 

Figura 44. Zero padding allows to maintain the same dimension 
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Pool layers is applied after convolutional layer and reduce the dimensions of the 2D image 

by combining the outputs of neurons at one layer into a single neuron in the next layer. 

The pooling layer acts on each feature map separately in order to form a new set of the 

same number of pooled feature maps. 

Two common functions used in the pooling operation are: 

 Average Pooling: compute the average value for each patch on the feature map. 

 Maximum Pooling (or Max-pooling): compute the maximum value for each patch 

of the feature map(Figure 45). 

 

 

 

Figure 45. Max pooling operation calculate the maximum value for each filter size patch of the original 

image 

 

 

Finally, fully connected layer takes place in the last part of the network. This level 

basically takes as input a vector(Input layer) and generates a dimensional vector N(Output) 

where N is the number of classes. 
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For instance, if you want a digit sorting program, N will be 10 since 10 are the numbers 

(0,1,2,3,4,5,6,7,8 and 9). Each number in this vector of dimension N represents the 

probability related to a certain class (Figure 46). 

 

Figure 46. Fully connected layers for digit classification 

 

 

 

 

 

 

 

 

 



 Appendix B 
 

108 
 

Appendix B 

 

In the original paper (Shaoqing Ren, 2017) is implemented a 4-Step Alternating 

Training(Figure 47), that consists in a 4-step training algorithm to learn shared features by 

means of alternating optimization. In the first step, RPN is trained. RPN is initialized with 

ImageNet-pre-trained weights and fine-tuned for the region proposal task. In the second 

step, Fast R-CNN is trained using the regions proposed by the RPN(first step). Also Fast 

R-CNN is initialized with ImageNet-pre-trained weights. Until now RPN and Fast R-CNN 

do not share convolutional layers. In the third step, Fast R-CNN is used to initialize RPN 

training procedure, but the shared convolutional layers are fixed and only the layers unique 

to RPN are fine-tuned. Now the two networks share convolutional layers. At last, keeping 

the shared convolutional layers fixed, the unique layers of Fast R-CNN are fine-tuned. 

RPN and Fast R-CNN share the same convolutional layers and constitute a unified 

network. 

 

 

Figure 47. Alternating training workflow for Faster R-CNN 
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