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Jarvis, sometimes you have to run, before you can walk.

- Tony Stark
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Abstract

In this thesis, the feasibility of implementing a cheap and reliable monitoring system to check

the quality of the machined surfaces was researched. The proposed system only needs a small

camera mounted next to the tool. Di�erent monitoring CNN architectures were trained and

compared in order to choose the most suitable one. Additionally, an optimisation system using

Bayesian optimisation was implemented to choose the best machining parameters at priori and

use that knowledge to take actions when the machining results were not as expected, testing the

model's performance as an online optimiser directly connected to the monitoring system. The

created system, if further improved, will be capable of performing in an industrial machining

environment and can easily be implemented, opening the possibility of introducing autonomous

and automated systems even in the small to medium companies' reality.

Keywords: CNC machine, on site monitoring, online decision making, Convolutional Neural

Networks, Bayesian Optimisation



Abstract in lingua italiana

In questa tesi è stata analizzata la fattibilità e possibilità di realizzare un sistema di controllo af-

�dabile ed economico in grado di esaminare la qualità delle super�ci fresate. Il sistema proposto

è semplicemente formato da una telecamera USB montata vicino all'utensile e collegata a un

computer. Di�erenti architetture di reti neurali convoluzionali sono state analizzate e testate al

�ne di sceglierne la migliore. In aggiunta, è stato realizzato un ottimizatore Baesiano in grado di

scegliere la miglior combinazione di parametri di taglio prima d'iniziare la lavorazione e capace

d'intervenire durante il processo di fresatura, in quanto direttamente collegato al sistema di

monitoraggio, qualora la qualità della super�cie non fosse su�ciente. Il sistema, realizzato, se

ulteriormente migliorato, potrà essere implementato in un contesto industriale o�rendo la pos-

sibilità, anche per le piccole e medie imprese, di un allacciamento al paradigma dell'industria 4.0.

Parole chiave: Macchine Utensili CNC, controllo in tempo reale, controllo diretto, Reti Neurali

Convoluzionali, Ottimizzazione Baesiana
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1

Introduction

Since the beginning of times, humans have always tried to overcome their limitations by push-

ing the innovation boundaries to the extreme, constantly challenging themselves. Observation

was always one of the main characters in this evolution and most of the time represented the

starting point of any newness. Even this thesis, which aims to improve and assess some of

the major problems present in a manufacturing environment, was ignited after recalling many

times spent observing CNC machines working in factories and in the laboratory. In detail, this

work is focused on monitoring a CNC milling operation using Arti�cial Neural Networks (ANN),

in particular Convolutional Neural Networks (CNN) which are part of the family of Machine

Learning (ML). This constant inspection is then used by a controller unit that, using a Statisti-

cal Optimization algorithm called Bayesian optimization, automatically corrects the system to

guarantee a �nal constant quality of the machined product.

This Introductory section was written to provide the reader with a general overview of the

milling environment, giving an answer to some of the most common questions that may arise

in his or her mind while imagining the process; the focus will then be shifted to some of the

challenges that must be overcome to conduct an e�cient and reliable machining operation, com-

bined with the current solutions and their respective limitations, paving the way to the proposed

approach.

0.1. A milling overview

Even during the Neanderthal Era, we realised that to create valuable objects, raw materials had

to be processed with di�erent techniques to gradually obtain the �nished products. Among those,

subtractive ones, in particular chopping, cutting, and chipping ..., were always intensively used.

As technology evolved subtractive methods have become more and more accurate, e�cient and

reliable. This section is focused on introducing the reader to the basics of the milling paradigm

which represents one of the most ancient and employed techniques among the whole family of

subtractive manufacturing processes.

0.1.1. Orthogonal cutting

Imagine a knife cutting through butter or scraping the surface of an ice block. What do these

processes have in common with a tool cutting its way through a block of steel on a milling
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machine? All of them are paving their way through a solid mean that is opposing to be sheared.

In both cases, the material is contrasting the action of the tool that is trying to detach some

mass, called chips, from the main body. The simplest and most intuitive theory to model this

process is called the The Orthogonal Cutting Model [1].

Figure 1: Sketch of an Orthogonal cutting model. The tool is moving and it is perpendicular to the
piece along the cutting line.

As it can be seen from Figure 1 the chip is formed and moves along the rake of the tool.

Compression and shear are both present during the cutting operation; the �rst can be noticed

because the shear plane is formed and scales are generated along its length due to the deforma-

tions induced on that plane. The compression load is instead generated by the �ank of the tool

that is scraping the machined surface. In orthogonal cutting the cutting speed, Vc, is linear and

is possessed by the tool, if this is moving, or by the piece, in case the other is still. This cutting

parameter is very important because in�uences the chip formation and the power loss due to the

friction generated during the cutting operation, that leads to a temperature rise changing the

material properties, consequently it has to be chosen wisely according to the tool and workpiece

materials. Another important parameter is the feed, f, which in orthogonal cutting is usually

�xed because measured along the uncut chip thickness (to). This is correlated to the feed rate

(also called feed in the machining environment), Vf , which usually identi�es how fast is the tool

moving along the feed direction in contact with the workpiece. Last but not least there is the

depth of cut which in Figure 1 is identi�ed with the width of cut Wo. Even if the tool used

in this orthogonal model possesses simple geometries and cutting pro�les it is very useful to

make the reader understand the most important angles. As it can be noticed from the picture

two of the main were represented: the rake angle, γ, and the �ake one or clearance angle, α.

In order to identify these two parts of the tool the chip formation must be observed so that

the �ank and the rake can be identi�ed. While the chip is formed its crystalline planes are

sliding on each other because of the shear action that is induced by the tool (Figure 2). This

process starts on the shear plane identi�ed with the shear angle, ϕ. The observation of the chip

formation is very important because it is a rapid and e�ective way to determine how the tool is

cutting. Its colour [2], length and shape are key features that must be considered and can give

qualitative information regarding the condition of the tool, the temperature and friction that is
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generated on the contact point and the quality of the material that has been cut. The formation

of long chips must always be avoided because can lead to injuries and bad �nal quality as they

can get stuck inside the machine and cause additional scratches and marks on the machined

surface. Although much more can be said about the cutting phenomena, including the whole

force discussion, what was explained before is enough to prepare the reader to understand the

basics of a milling process and the core identity of this work.

Figure 2: Sketch of a more realistic Orthogonal cutting model. The sliding between planes can be
noticed and the chip deformation is added.

0.1.2. From Orthogonal cutting to Milling

Figure 3: Representation of a basic milling operation. The main milling parameters have been included.

In a milling machine, the tool is mounted on a spindle that spins and moves along the three main

axes, if the machine is a traditional one, or additional ones if the machine is more complex and

advanced. The Z axis is always the spindle's rotation axis while the X and Y can be determined

using the right-hand rule.
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During a milling operation, the tool is spinning at a �xed angular speed, n, (measured in RPM

in the industry) around the rotation axis, which generates the cutting action. Because of the

revolutions, the motion is no more linear but uniform circular and the tangential speed of the

tool must be calculated considering n.

Vc =
πnD

1000

[
m

min

]
(1)

Where n represents the RPMs of the tool and D represents the diameter of the tool expressed in

mm. Due to the di�erent geometry of the cutting part, the feed must take into consideration the

number of teeth of the tool; this facilitates the calculations and helps to understand how much

the cutting edges are stressed while operating. In a milling operation the feed, f, is measured in

mm per tooth and the Vf can be directly calculated knowing n, f and the number of teeth, z,

present on the tool:

Vf = nfz

[
m

min

]
(2)

A higher feed rate leads to less machining time and higher productivity but can be detrimental

for the quality. The engagement of the tool is set by choosing the depths of cut; these are two

in milling: the radial depth of cut, ae and the axial one, ap, that can be identi�ed from Figure

3.

Figure 4: Facing and slotting operations. During slotting the minimum width of the channel that can
be created is the diameter of the tool.

There are unthinkable operations that can be done with a milling machine by changing the

relative position of the piece to the Z axis, combined with speci�c tools; in this work however,

only facing and slotting were taken into consideration (Figure 4). These are among the most

used and common ones in the machining industry.
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The trajectory of the tool during a machining process is called tool path. During a facing

operation, the tool path is often linear and big diameter tools are used so to reduce the number

of passes, increasing the planarity of the machined surface and the smoothness. When machining

a slot instead, various machining strategies can be used. One of the fastest and most adopted

ones is called trochoidal slotting. A trochoidal tool path is a combination between a uniform

circular motion with a uniform linear motion characterised by a continuos trajectory radius [3]

(Figure 5). This motion generates less cutting forces and allows to increase the productivity by

having a combination of high ap and low ae extending the tool life, increasing the heat dissipation

[4]. Pay attention that this strategy can only be used when the width of the slot is bigger than

the diameter of the tool.

Figure 5: Conventional linear facing path and trochoidal one. The blue lines represent when the tool is
cutting while the yellow ones when the tool is not engaged with the material.

0.1.3. An introduction to milling tools

We cannot neglect that inside the machining scenario tools are among the main characters.

No matter the type of operation performed tools are always present and have to perform in

the most extreme environments guaranteeing high performances and high resistance. There is

a wide variety of milling tools that are speci�cally designed according to di�erent operations

and to cut several types of materials. However, the angles introduced before in the Orthogonal

cutting environment can still be identi�ed in each of them, with some additional ones derived

from the basic ones, no matter their complexity. There are two big families of cutting tools:

solid tools and indexable tools. The �rst ones are unique piece that is usually extruded or cast

and then machined to obtain the cutting edges and the �nal shapes. These are usually made

out of tungsten carbides, high-speed steels (general information for details please read the tool

catalogues) or advanced ceramic materials, and can have advanced coatings to reduce their wear.

The latter are usually made in two parts: the body of the tool, which often is made out of high

alloyed tempered or hardened steels and more rarely of tungsten carbide, and the cutting inserts
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which are secured on the body and provide the cutting edges. High Speed Steel (HSS) solid tools

are usually less fragile than inserts because these, are made out of extremely hard materials that

cannot be cast and must be sintered starting from powders. One of the biggest advantages of

using inserts is that they are easy to change and each insert usually has more than one available

cutting edge, so it can be switched once it becomes dull.

Figure 6: Solid tool and tool body with insert descriptions and comparison. Credits to [5].

As stated before the same angles introduced in the Orthogonal cutting environment can be used

also in a milling one. Considering a solid tool for example we can identify the rake of the tool

as the surface on which the chips �ow. As a consequence, the main angles can be de�ned.

Because in a milling tool there are usually two cutting edges then the rake angles are two: axial

and radial. Moreover, usually, the cut is not orthogonal anymore and the main cutting edge is

not perpendicular to the horizontal machined surface but has its own angle called Lead angle.

Clearance angles can still be identi�ed and are fundamental to avoid the cutting edges from

scraping the machined surface and most importantly they avoid the cutting edges from stopping

into the bumps that can be formed due to the accumulated local compressions that are generated

under the surface while carving the chips. Many more angles can be identi�ed and called with

various names according to the di�erent types of tools, tool companies and uses; however, only

the most characteristic and general ones were introduced in this introduction.
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Figure 7: Scheme representing the bottom and side view of a single cutting insert and the tool body in
which the radial and axial rake angles can be seen (pay attention to the fact that the rotation directions

are di�erent for each view).

During a milling operation, many agents and factors are contributing to attack the structure

and integrity of the tool. Among those heat, abrasion, high local pressures and friction have a

major role. Each time the cutting edge is engaged with the material it has to resist becoming

dull, reducing its cutting ability and productivity of the overall process. This is why a correct

tool wear study and prevention is very important in a machining environment. The most famous

equation that rules the wearing process is the Taylor's equation:

VcT
n = C (3)

Or its extended version [6]:

VcT
nfadb = C (4)

Where Vc is the cutting speed, T is the life of the tool, f is the feed per revolution and d is the

depth of cut, in case of milling the axial can be used, and C is a machining constant that must

be determined experimentally or using manuals and numerically represents the cutting speed

that makes the tool last one minute when both the feed and depth of cut are numerically equal

to one. All the exponents of the equation must be calculated experimentally solving a linear

system that is obtained by applying the properties of the logarithm to the equation:

log(VcT
nfadb) = log(C) → log(Vc) + n · log(T ) + a · log(f) + b · log(d) = log(C) (5)

But how can we measure the progressive deterioration of the tool's cutting edge? The ISO 8688-
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2:1989 standard regulates exactly how tool wear can be identi�ed and quanti�ed on milling

tools. In detail, it considers the �ank of the end mills as the area on which the wear must be

considered. When uniform wear is present the limit on the width of the wear land, VB, is set to

be a maximum of 0.3 mm on the mean value [7]. In the case of non-uniform is set to 0.5 mm

on any of the �utes' maximum wear values.

Figure 8: Tool wear representation according to the the ISO standards. [7].

In general, the tool's wear progression graph has a sigmoid shape that can be divided into three

main phases. During the �rst one, all the sharpest edges are rounded o� because those are the

areas in which the local pressure is the maximum; in the second phase the main deteriorating

agents and e�ects start to work on the tool rake and �ake �ghting against the coating, if present,

or the hardened layer of the tool. Once this layer is broken the third phase is identi�ed in which

there is a rapid increase of the wear and the tool can break or become dull and as a consequence

unserviceable any more for cutting operations.

Figure 9: Typical tool wear evolution according to di�erent cutting speeds. [6].

It is crucial to correctly identify these three regions, when analysing the wear progression of

the tool, to consequently calibrate the correct cutting parameters depending on the machining

operation and the �nal process output. For example, if during a batch lot production the tool

wear assessment identi�es the condition to be in the third region, the most crucial one, the

decision to change the tool can be taken if many more pieces need to be produced and a failure

of the tool during a machining operation can cause a bigger time loss and production loss caused
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by the damage of the machined piece combined with the tool change process. If instead, the

batch is nearly done, we can change the cutting parameters and be more precautionary and

�nish the production without the need of changing the tool. Please notice that these are two

general qualitative examples that are only useful to show the reader how important the tool

monitoring process is and how variable the decision-making aspect can be.

0.1.4. How can we measure the quality?

Quality inspection represents a crucial step in any manufacturing process. Although both the

qualitative and quantitative approaches can be used to inspect the �nal machined products, the

industry mostly relies on quantitative ones especially when parts need to be post-processed or

assembled. Many quality indicators are used to evaluate a �nished product but in the machining

environment, without question, roughnesses are among the most utilised and important ones.

The measured ones are always present in any quality report while their tolerated range is always

imposed in the technical drawings upstream of the manufacturing processes. They guarantee

the correct surface �nish. Even if a considerable amount of literature and normative is present

about the subject and much more can be documented, in this work only pro�le and surface

roughnesses were taken into consideration but from a machining point of view and the full

theoretical knowledge behind was not fully investigated as all the modern measuring machines

are compliant to the corresponding ISO standards. However, in this section, an introduction to

the basic theory and principles will be given to have a better understanding of the overall work.

'Surface roughness refers to microscopic geometric features of tiny peaks and valleys on a ma-

chined surface ...' [8], these features determine the �nal quality of the machined piece and

a�ect also the mechanical, physical and chemical properties of the part itself. But how can

we identify them e�ciently and synthetically? To correctly diagnose them we need to �nd a

numerical indicator that can be directly associated with a characteristic of those. In the litera-

ture, in particular inside the ISO 4287:1997 [9], there are plenty of indicators that can be used

to correctly characterise these peaks and valleys. Because their distribution is random all of

those values are extrapolated using statics and maths. Among those, the most used one is the

Arithmetical mean height of the assessed pro�le, Ra :

Figure 10: Ra de�nition according to ISO 4287:1997. lr represents the sampling or inspection length
considered for the evaluation and the centre line is such that the aggregate of the zones over the line is

equivalent to the aggregate of the regions beneath the line. Credits to [9].
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Ra =
1

lr

∫ lr

0
|z(x)|dx [µm] (6)

As it can be seen, this type of measurement is a one-dimensional one because only considers the

distribution over one line. The location and the parameters of the measurement must be chosen

according to the standards. This indicator is the most known one and gives a rapid indication

of the state of the surface and its quality of it. In the industry, experienced workers can have a

rough estimation of it just by passing their nails over the machined piece or looking at the marks

left by the cutting tool. There are also tables that can be used to understand the roughness

requirements based on the �eld of application of the part (Figure 11).

This theory can be easily extended to a surface instead of a single line in order to have a more

speci�c and accurate quanti�cation. This evolution was possible due to the advent of optical

machines that can scan a whole surface by taking a single picture. Although machinists still

prefer to use pro�le parameters like Ra and the literature is as not well documented as for the

others, surface parameters are getting more and more used, usually in combination with pro�le

ones. This led to the de�nition of a similar parameter called Arithmetical mean height of the

assessed surface, Sa :

Sa =
1

A

∫ ∫
A
|z(x, y)|dxdy [µm] (7)

Even though the two look like they can be compared by some scaling factors or equation,

performing so is theoretically wrong and will lead to a wrong analysis; however, we can use

them together to extrapolate even more quality related information [8].

Figure 11: Example of a machinist table that can be found in any machinist or mechanical manuals.
Credits to Wikipedia.

0.2. What is a CNC milling machine?

In traditional milling machines the human presence is necessary to operate them, moving the

tool manually according to the speci�cations. This makes them slow and hugely reduce the
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accuracy and repeatability of each manufacturing operations. To solve these and increase the

productivity James Parsons, an Air force computer pioneer [10], decided to control a boring

machine with data stamped on punched cards creating the �rst Numerical Controlled (NC)

machine (1949). However the �rst ever Computer Numerical Control (CNC) machines started to

make chips during the coldWar in which computers gain more attention and became fundamental

elements among the research equipments. Nowadays, with the advancement of Computer Aided

Manufacturing (CAM) and Computer Aided Design (CAD) softwares is possible to create a 3D

model of the desired �nished piece and convert it into lines of code, the G-Code, that are fed

directly into the machine and guide the tools to realize the �nal shapes. Closing the circle,

a CNC machine is such that a computer directly controls the tools through a programming

code. This thesis directly targets CNC milling machines which are intensively used in the

modern manufacturing environments to produce a wide range of products with a wide range of

materials.

0.3. Why do we need CNC milling machines?

Although today's Industry 4.0 is focusing on additive technologies such as 3D printing, subtrac-

tive processes are still the beating heart in most manufacturing companies and CNC milling

machines are no less. The ability to work with a huge variety of materials with di�erent hard-

nesses and mechanical properties, combined with a high level of automation, repeatability and

precision are some of their key features. Moreover, as the research progresses and innovation

grows, they are gradually becoming more accessible to small to medium businesses that are

replacing the old traditional machines with more advanced ones. Tool companies are creating

tools that when put to the test withstand extreme forces and loads to such levels that machines

are becoming the bottleneck of the process because they are not powerful and sti� enough,

su�ering from vibrations and instabilities [11].

0.4. Issuing the problem

Even if these machines are beautiful, fascinating, extremely advanced and e�cient they still

possess downfalls as every other creation of humans including them-self. These are related to

their complexity and the nature of the cutting process itself which is hard to be changed but still

o�ers much space for improvements and developments. Furthermore, the human factor cannot

be neglected, which still plays a big role inside the whole manufacturing chain.

0.4.1. The machining parameters tuning problem

Whenever a cutting operation starts the correct machining parameters must be chosen. These

are crucial elements that directly a�ect the output of the process. Although in a milling machine

there are many of those, all of them can be derived from the four cardinal ones (Vc , Vf ap , and

ae). These were detailed in the Introduction in which an insight into the milling environment
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was given. How to choose those to obtain an e�ective and e�cient process is still a challenge

that companies and researchers have to face and constantly solve. The adaptability of CNC

machines is indeed a great property but at the same time introduces complications when the

machining environment must be con�gured; because each time, new aspects of the process must

be considered before proceeding with the cutting; especially when choosing the best combination

of the previously mentioned machining parameters. Most industries rely on the understanding

generated by decades of chips produced and by experienced workers that can identify the perfect

blending through a trial and error process. These acknowledged manufactures are able to listen

and look at the machine while is cutting, process the outputs and change the parameters based

on what they have already experienced. Although this method is e�ective and widely used, it

lacks responsiveness and adaptability to new materials like composited and advanced alloys; in

addition, possesses high variance, because is strictly related to the operator that is performing

the monitoring so it is also di�cult to hand down between new workers. New solutions have been

developed using more sophisticated approaches that include the use of �nite element simulations,

theoretical calculations and the tool-manufacturer tables that are provided for speci�c cutting

equipment. However, all of these are implemented before the machining operation starts and do

not have accessibility and control over the process as the tool is cutting. They are approaches

that are completed at priori and, the �rst two, are based on scienti�c models that have to be

validated and adapted to every scenario.

0.4.2. The monitoring problem

As stated before the nature of the milling process is a subtractive one. This means that once the

chips are produced the material is removed permanently. Even if additive methods, like welding,

forging or casting, can be used to restore the removed volume it is rarely convenient to apply

those, because the amount of time and resources needed will lead to higher costs. This implies

that if the material is wrongly cut the quality of the �nal piece will be irreversibly a�ected and

most of the time the machining operations must be restarted on a new chunk. Extreme care

must be taken during the machining phases because the corresponding environment has a strong

dynamic nature in which many phenomena can arise while the tool is engaged with the material.

Besides that, modern CNCs have travelling accelerations that are in the order of magnitude of

the gravitational one and in most industries, the monitoring of the procedures is still carried

out by human operators. As known, individuals are very versatile but lack reproducibility and

reaction time compared to robots, this leads to poor risk prevention because actions are taken

once the damage or the problem occurs. It is not rare to see operators pressing the red emergency

bottom to shut down a process after a scary noise has been heard. Moreover, most of the time

the visibility inside the machine is limited due to the presence of additional components like

�xing devices and additional tools combined with the chips that are produced which �y all

around. A human eye stationed outside the machine has a low possibility of clearly seeing what

is really happening inside, and as a consequence to take action when needed.
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0.4.3. Previous related work

Improving the machining process has always been the focus of any research. Even if the targets

could change, according to the di�erent �elds of interest, still, the priorities have consistently

been the same. Because milling is an articulated dynamic operation, in which many components

are working together, the improvement development cannot be focused only on one of those

but must also consider the synergies and relationships. As with all industrial processes, the

advancements are always guided by the four fundamental core values: cost, quality, rate and

�exibility. As a matter of fact, all the late and past research in the �eld is trying to improve

at least one of those four [12], [13]. The monitoring aspect is mainly targeting three of those:

the reduction of production costs, the increase of the production rates and the enhancement

of the production quality. Supervising a complicated machine requires deep knowledge of the

environment and of the phenomena that can arise during machining. There is no unique best

solution but instead, each one possesses strengths and weaknesses. Moreover, the adoption

of one strategy over the other can also be induced by the speci�c tasks or �nal outputs that

need to be obtained in addition to the speci�c conditions and environment in which we are

operating. The monitoring topic has always been a crucial and delicate aspect of the machining

environment. When traditional machines were dominating the industry humans relied on their

senses to supervise. Eyes, ears, nose and hands are and were our most important sensors that

could extrapolate information during the process, then processed by our brain and at the end

decision were taken. With the advent and advancements of new technologies, powerful sensors

have been developed together with sophisticated control units. Ears can now be replaced by very

sensitive microphones that can analyse the sound spectrum far beyond the human range and

with those pieces of information, the machining condition can be identi�ed. Y.D. Chethan et al.

[14] optimized the machining parameters of a lathe machining process by identifying the tool

wear with a combination of machine vision and acoustic emission that can be directly correlated

to the state of the tool. The combination of the two allows to obtain a better estimation and to

extend the adaptability of the method to di�erent machining environments. As we know sounds

and vibrations are correlated and important information such as the surface quality and the

tool state can be extrapolated from them. T. Y. Wu et al. [15] obtained an estimation of the

surface roughness using an Arti�cial Neural Network that receives as input the post-processed

vibration signals obtained from the accelerometers placed on the vice and on the spindle of the

milling machine and is able to predict the Ra of the machined surface with an overall Mean

Absolute Percentage Error (MAPE) of 25 %. Vibrational approaches are very powerful and

useful but require intensive data post-processing and feature identi�cation. Moreover, the signal

can be spoiled from many environmental elements and also can vary according to the di�erent

materials and tools used. In addition, the other vibrating elements of the machine can interact

with the signals and create additional noise or resonance peaks that can ruin the measured

data. During quality inspection, eyes always play a very important role, especially when trained

ones are used. These can easily recognise imperfections, spots or traces left by worn-o� tools

or damaged ones. The industry technological equivalent of those are cameras that, combined
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with machine vision systems, can extrapolate information from acquired images and videos. In

the manufacturing environment, this is nothing new. Machine Vision for monitoring purposes

has been already implemented for nearly half of a century and has enabled to reach production

speeds far beyond the human eye tracking possibilities. Regarding milling, research has been

done both in the monitoring and estimation domains. Before the advent of CNNs S. Palani et al.

[16] used a camera connected to a computer to take pictures of the machined surfaces; these were

fed into a computer to extrapolate the relevant features needed to perform the evaluation. In

the work, the authors chose to analyse the images using the Fourier Transform (FT), due to the

repetitive nature of the texture created by the tools. The Ra was estimated using an ANN that

took as inputs the machining parameters, the average Grayscale and the Major peak frequency

(F1) and the Principal component magnitude squared (F2), which are calculated from the FT.

They managed to obtain an average error of 2.47 % which proved the feasibility of the system

in an industrial environment. However, this method requires feature extraction which can be

challenging if the machining pattern changes and the ANN must be calibrated every time the

material or the tool changes. As stated before CNNs are part of the Machine Learning family

and extrapolate information from the images by convoluting them with di�erent �lters that each

time try to focus on particular features. One of the advantages of these is that those �ltering

layers can be calibrated based on a set of pictures used as reference (the so-called training

set) and do not need any features estimation to be performed; in Chapter 2 a more complete

explanation will be given about the whole families of ANN and CNN. Achmad P. Rifai et al.

[17] applied these to evaluate the Ra of both milled and turned surfaces. They created their own

architecture and trained it using 5 di�erent loss functions. Images were preprocessed by applying

di�erent �lters and also enhanced by splitting and rotating them. The prediction time of each

model was also measured and they were able to obtain a prediction accuracy between 88 % and

91 % depending on the di�erent machining operations. Yonglun Chen et al. [18], [19] compared

3 di�erent well know CNN architecture: the ResNet50 [20], Xception [21] and DenseNet121 [22]

to classify di�erent families of Ra . They took the roughness range and divided it into 6 and 12

categories. The problem was shifted from a regression one to a classi�cation one. In addition,

they try to assess the performance of the models in di�erent light environments. They were able

to generate a dataset of 2840 images after the data enhancement step which was split between

training, validation and testing. A total of 100 epochs of training were executed and a �nal

accuracy of maximum 98.24 % was achieved in a controlled lighted environment. As it can be

understood another possible approach could be to estimate the roughness directly by knowing

the machining parameters and tool wear. This solution can be really e�ective when coolant is

used and so images cannot be taken properly; moreover, the machining parameters are always

known at priori without using any sensor because are inputs that are given to the machine and

are directly present in the G-Code. When machining composites for example it can be hard to

take the correct pictures because the light absorption and re�ection can be problematic, also the

machined surface is usually composed of many particles and elements laying at di�erent layers

that can trick the CNN due to their repetitive nature. As matter of fact, Cam Boga et al. [23]
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developed an ANN that, taken as inputs the type of cutting tool, the spindle angular speed and

the feed rate, is able to predict the �nal Ra of the machined surfaces of high-strength carbon

�ber composite plates. The development of the perfect architecture (for example the number of

hidden neurons) of the network was conducted using a genetic algorithm and the �nal trained

ANN was able to make predictions with an overall coe�cient of correlation (R2 ) of 0.96 and

a Mean Squared Error (MSE) of 0.076. Once the quality is estimated actions must be taken as

a consequence of the estimation. As stated before, in the manufacturing �eld action are taken

mainly on the machining parameters that must be changed or set based on speci�c conditions.

The optimisation of those before starting a full machining cycle can be a really complicated

challenge that most of the time can only be overcome using trial and error approaches. However,

with the advent of machine learning and with the advancement of computational power more

and more optimisation methods and algorithms have been investigated and proven to be suitable

for such tasks. Even here, we have to consider that there is not a unique solution that stands

up among all the others but di�erent alternatives are present with their negative and positive

properties. Besides that, other factors like the computational resources and the optimization

nature can deeply in�uence the choice. Reinforced Learning (RL) de�nitely represents one of the

most important machine learning paradigms of nowadays and has been widely implemented in

many engineering �elds such as robotics and manufacturing being capable of dealing with multi-

objective optimisation tasks. Zhenhui Wang et al. [24] used this to optimize the machining

parameters of a milling operation in order to obtain the minimum Ra with the maximum MRR.

The roughness of each combination of variables was estimated using DDQN-improved support-

vector regression which allowed them to use a small batch of raw data to train the regression

model and the prediction results were better than those obtained using a genetic algorithm. After

performing the optimisation the system was able to identify the Pareto curve and suggest the best

combination of machining parameters based on the initial input space and constraints. In the

machining environment, the bene�ts of a well-developed optimisation system can be appreciated

both before starting the machining operations (at priori) and especially while performing them

(online). The latter can be a more sophisticated topic due to its dynamics and tool material

complex iterations. The bene�ts of combining an online monitoring system with a real-time

optimisation module were already investigated one decade ago. Ghassan Al-Kindi and Hussien

Zughaer [25] mounted two cameras on a CNC milling machine to constantly monitor the process

and extrapolate the surface roughness in real time of the last machined areas. The system was

intelligent enough to switch between the two to get the perfect picture and also was able to

analyse the G-Code to understand the coordinates of the machined area. In addition, the system

was able to directly modify the G-Code and put the machine in a waiting state until the new code

was uploaded. The Ra was estimated by pre-processing the images and feature extraction based

on the grey-scale intensity. Results proved that the machining operation and the machine can

bene�t from this monitoring system; however, they did not validate their results with additional

experiments and they did not investigate the applicability of the system to industrial machines.

Ravi Sekhar et al. [26] created a control loop control system that was able to control the �nal Ra
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of Al-Mg matrix composites reinforced with carbon nanotubes and other carbides that made the

camera estimation very di�cult to be implemented and so an ANN was implemented to predict

the �nal roughness and adjust the machining parameters as a consequence to meet the initially

set requirements using a PID controller. Results proved that the method was actually able to

control the quality oscillations and keep them in a limited range. As it can be noticed, once

the AI paradigm was been able to be developed all the research moved towards that direction

implementing more and more advanced algorithms to solve sophisticated problems. Tien-Dung

Hoang et al. [27] were able to optimise high-speed milling processes by creating an ANN that

was able to predict the �nal tool wear based on the initial one, the machining parameters, the

cutting force and time; this information was then fed, together with the depth of cut and the

textitcutting speed, in another ANN that was able to optimise the Vf to keep the Ra in a

limited range, which was modelled using an empirical exponential function whose coe�cients

were estimated using the machined samples. The ANN was able to predict the tool wear with a

Root-Mean-Squared-Error (MSE) of 0.023 mm and was able to keep the roughness in the allowed

range even with global tool wear of 0.06 mm.

After going through most of the research conducted so far we can understand that the monitoring

and optimisation �elds are still of interest. However, most of the presented works are either using

feature extraction algorithms, which possess low adaptability and they need to be calibrated

every time through a trial and error process and by an expert that fully knows the theory that

stands behind the mathematics and the procedure, or rely on ANN that are trained using many

samples and try to predict the output after many epochs of training and validation. Related to

optimisation instead [28], most of the techniques used in research always need an estimator that

is able to predict the outcome of the process so that its parameters can be estimated. In addition,

this phase is mostly conducted before starting the machining operations and only a few were

able to successfully change the parameters as the machine was working. In the presented work

the monitoring phase was realised using a camera that is able to predict the output using CNNs

without the need for feature extraction and elaborated pre-processing of the acquired image,

which is helpful to perform the operation in real-time; in addition, the optimisation module was

developed using the so-called 'black box optimisation' family of methods with do not care about

identifying the model that connects the outputs and the inputs but tries to generate this link

using statical methods. This ensures that only a limited amount of samples are needed to create

an optimiser that can fully respond and take action when needed.

0.5. Thesis overview

0.5.1. Thesis's target

As it can be imagined reading the previous sections of this thesis the aim of this work is to

create a quasi-autonomous machine that is capable of self monitoring and control itself with a

low human presence. This can be achieved combining di�erent algorithms of machine learning
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that have been trained on a small number of samples created using the same milling machine.

The controlling of the system is realised using Python because the CNC software is a closed one

that was realised by the manufacturing company and this needed speci�c attention because of its

architecture. Di�erent machines have di�erent controlling units so each time the controller must

be calibrated speci�cally. The overall system, once a machining operation is concluded, takes a

picture of the machined surface and the tool, identi�es the surface roughness and optimises the

feed rate and rpm based on those inputs to guarantee the same surface quality with the highest

MRR. The created system is low cost and requires parts that can be purchased online and are

widely available on nowadays market, showing the possibility of creating a solution that can be

adopted also in the medium to small manufacturing companies.

0.5.2. Thesis Structure

After the introduction, the attention will be brought to Chapter 1, which gives the reader more

information about the methodologies and machines used to complete this thesis and details

the terminologies and parts present in each machine. In addition, a �nal description of a CNC

machine is given and the basic concepts behind Machine Learning and Arti�cial Neural Networks

are presented including a deeper characterization of the algorithms used in this work, some of the

Math behind the performance evaluation metrics, the network architectures and the connections

between di�erent code parts. This part, combined with the Introduction Chapter and Chapter

2 which analyses the approach used and the choice made, gives the reader the possibility to

close the knowledge circle about machining, understand all the parts of the �nal system and

develop his or her own critical opinion about the results and performances. These are illustrated

in Chapter 3 which discusses and comments on them, giving also an answer to most of the why

questions that can arise while reviewing the previous chapter, especially regarding the choices

that were made. All the work is summarized in Chapter 4 in which the crucial achievements are

outlined and a door on future developments and also feasible dreams is widely opened.
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1| Computer Numerical Control

machines & Arti�cial Neural

Networks

Even if in the Introduction a brief description was given about both the CNC machines and

ANN (Arti�cial Neural Networks), still more information can be given about these two im-

portant topics that compose the groundings of this work, giving the reader a better view and

understanding of the overall project. However, not all the speci�c details will be given and only

the basics will be discussed. If a deeper understanding is desired, readers may consider reading

and studying the related cited documents.

1.1. Computer Numerical Control (CNC) milling machines

Figure 1.1: The CNC machine used in this work (Pocket NC V2-50 CHB, see the Appendix B: CNC
Speci�cations, to look for the technical speci�cations).
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Figure 1.1 shows a CNC used in this work which is a 5-axis CNC milling machine, and it will be

used in this chapter to provide a general characterization of these pieces of machinery. As it can

be noticed from Figure 1.1, it has 3 linear axes: the Z one, which in CNC machines is always

the tool axis, the X one and the Y one. The orientation and position of these are decided by

the manufacturer of the machine but they are always orthogonal to each other in order to form

a reference system. In addition, this machine has 2 rotational axes that are called A and B that

are centred around the two linear axes X and Y respectively. In this equipment, the X axis is

�xed with the tool holder but in bigger machines, the tool holder usually only possesses the Z

one while the other two are �xed with the machined piece. In every CNC each axis is controlled

by a di�erent motor and is independent of the others, although in some machines motors can be

linked together using a master to slave hierarchy. In most milling machines we can divide them

into two main areas: the tool one and the piece one. The �rst one, represented by the dotted

box on the right part of Figure 1.1, regards all that is needed to make the tool cut. In this case,

the spindle, the cutting tool and the motor that provides the torque. The second area regards

what is related to the machined piece (dotted box on the left part of Figure 1.1). In this case,

is a platform that has holes in it to address the multiple clamping systems that can be installed

to hold the material in place while the tool is cutting. This is a crucial element of the machine

because has to be able to clamp down di�erent materials and shapes and hold them steadily as

the tool is removing the chips from them, resisting the vibrations and forces that are generated.

In addition, it must also facilitate the switching between one piece and the others in order to

reduce the overall processing time.

1.1.1. The G-Code

How do we control these machines? As stated before once the 3D model of the �nal piece is

completed and the tool path is generated, these are converted into the machine language creating

a G-Code. This stands between the human and the equipment and controls its functions and

motors. The code is automatically generated by the CAM software through the use of a post

processor, that is usually present directly inside the software, itself once all the tool paths and

processing are de�ned.

Figure 1.2: Development phases of a machined piece before actually entering the CNC machine.
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As it can be seen from Figure 1.2, once the CAD model has been �nished it is handled by a CAM

software that, as stated before, generates the �nal G-Code. Before proceeding with the actual

machining a simulator is usually used to check the running of the code and identify any collisions

between the di�erent moving elements or any not allowed movements that are requested by the

G-Code [29]. These simulators are also implemented inside the CAM software but sometime

they are also provided by the CNC company or third parts companies, possessing the best

�delity in terms of environment and machine components. Modern simulators can also check

and calculate the instantaneous cutting forces and power that is generated during the cutting

process and even predict the tool wear or the heat generated during the process. However,

these are used only in speci�c applications in which the machining tolerances and accuracies

must satisfy strict requirements and as a consequence, every phenomenon must be considered

and counter-measures must be rapidly taken. This is usually done by making the simulation

environment and the real one interact with each other so that the software is constantly uploaded

with real-time signals and predictions can be performed with better accuracies; this family of

models is called Digital Twin [30] and usually requires big e�orts from the economical and data

gathering points of view.

Figure 1.3: Example of a G-Code produced by the post processor of the CNC machine used in this work.
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In Figure 1.3 it can be seen that the G-Code taken into consideration can be divided into three

main parts. The �rst one is the opening which usually de�nes the global variables, reference

systems that are used and the units of measurement which are crucial and care must be put

into choosing the correct ones, to avoid damages that can occur inside the machines as the tools

move. The second part de�nes the milling operations. In this case, only one was conducted ("2D

ADAPTIVE13"). Even here can be identi�ed an opening section, in which the system coordi-

nates are de�ned, the tool is assigned and some of the machining parameters and coordinates

are set; this is followed by the machining section in which, for each line, the coordinates at which

the tool must be positioned are given in order to remove the chips. Finally, the closing part

positions all the axes in a reference position and stops the tool and all the other movements and

speeds. Care must be put each time because di�erent machines can have some modi�cations of

the code functions based on the manufacturer choices and language used.

1.2. Arti�cial Neural Network (ANN)

Machine learning (ML) is a sub�eld of arti�cial intelligence that gives computers the ability to

learn without explicitly being programmed (MIT de�nition). Arti�cial Neural Network (ANN) is

a technique of the ML family that is inspired by the learning mechanisms of biological organisms

[34]. This section was speci�cally created to provide to the reader the basic terminologies and

theory related to the �eld. If further studies and understating are needed we suggest the read

of the related scienti�c work used as benchmark to create this section [31], [32], [33].

1.2.1. Introduction

Imagine opening the head of a student while he is listening to a Math lesson and seeing what is

happening inside his brain. What we will notice is that there are a big number of neurons that

are connected to each other through the dendrites and axon, exchanging electrical and chemical

signals of di�erent intensity among themselves (synapses). If, pushed by curiosity, we take and

compare a normal student's brain to Einstein's one we will see that, even if the scientist one is

heavier, what makes the real di�erence is the number of connections. Einstein's brain de�nitely

has a more complicated and entangled network of connections between neurons that allows him

to think, elaborate data and generate stimuli involving more neurons. Indeed, the training of a

biological neural network consists in creating new connections and strengthening or weakening

the existing ones. As stated in the opening part of the thesis observation is the key element

to innovation. In fact, since these biology mechanisms became clearer (formulation of Hebbian

Learning by D.O. Hebb in 1940), it did not take much for humans to develop the �rst ANN,

the perceptron by Frank Rosenblatt in 1957 [35], inspired by the learning process of the human

brain.
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1.2.2. Basics Math and architectures

Figure 1.4: General structure of the perceptron. Inspired by the connections between biological neurons
[31], [35].

The perceptron is the simplest ANN because it only has one neuron. As it can be seen from

Figure 1.5 the network takes as input n inputs plus the bias and gives a single output. In

mathematical terms let's consider a number of m examples each one containing n elements.

This can be represented by a matrix X which is a m × n matrix. If we consider a single

experiment, this can be represented by the vector x(i) which represents the i-th row of the

matrix. Now in order to train the network we have to create a training set which is composed

by the matrix X̄ that is modi�ed to consider the bias and the target values of each experiment

that can be grouped in the vector y = [y1, y2, .., ym]T . Each time one of the i-th experiment,

x̄(i) is fed into the neuron, a weighted sum with the relatives weights w = [w0, w2, .., wn] is

performed and then the scalar result is processed by an activation function Φ and so the output,

ŷ(i), is created:

ŷ = Φ(X̄ ×w) → ŷ(i) = Φ

j=n∑
j=0

wj x̄
(i)
j

 , ∀i ∈ [1, ...,m] (1.1)

There are many activation functions that can be used, and each of them has its own charac-

teristics and peculiarities that must considered depending on the nature of the problem. For

example, in this network the step function was used, but other like the identity, Φ(x) = x, or the

Relu, Φ(x) = xmax(0, x) and others can be used. The output of the network must be compared,

ŷ(i), to the real corresponding value, y(i), in order to "teach" the ANN how good its prediction

was and its weights must be uploaded based on the error of prediction, in other word the ANN

must be trained. There are many loss functions that can measure this error among them two

of intuitive and most popular ones are the mean squared error (MSE):

L(w) =
1

2m

m∑
i=1

(ŷ(i) − y(i))2 (1.2)
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and the mean absolute error (MAE):

L(w) =
1

m

m∑
i=1

|ŷ(i) − y(i)| (1.3)

To train the network the weights must be uploaded following a certain criteria that is dictated

by the �rst derivative of those loss functions. Because it is a minimization problem we can

upload the weights following the direction provided by the negative of the derivative but scaled

by a factor, learning rate α, that determines how much to move each time.

wj = wj − α
∂L(w)

∂wj
(1.4)

The choosing of α is a crucial task because determines the e�ciency of the training. A too-

high value will speed the training process but there is a higher chance of getting stuck into

local minimums and the solution will be more unstable because during training jumps between

di�erent minimums. On the other side, a too-low learning rate will require a lot of training time

and there is the risk that training will be stopped before the optimum solution is reached.

Although the perceptron has only one neuron and it is a linear model, so has all its limitations,

it paved the way to modern neural networks in which the linear limitations are overcome gaining

together more neurons to form a fully connected network. However, the same principles described

before are applied even to more complicated ANN with little di�erences.

The structure of a more advanced ANN extends the perceptron concept. There are still n inputs

nodes but then more than one neuron is present. These are the so-called hidden layers that are

agglomerate of neurons with di�erent weights and, sometimes, di�erent activation functions.

Lastly, there is the output layer which processes the data and obtains the output or the outputs.

Figure 1.5: Example of ANN with n inputs nodes, two hidden layers (one with three neurons the other
with two) and a single output node.

The same notation is used to explain the maths behind this more complex networks but this
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time the weights are grouped into weight matrices [36]. To keep track of each layers the variable

l is used to indicate the hidden layer number that we are referring starting from the �rst one,

while pl is the variable used to indicate the size of the l-th layer. Let's consider a neural network

with n inputs nodes, L hidden layers and pL outputs. Wl+1 represents the matrix of weights

that links the layer l with the l+1 one and hl+1 the vector of the outputs generated by the

neurons of the (l+1)-th layer. As a consequence the W1 matrix has a size (n + 1) × p1, while

WL+1 matrix (pL + 1)× pL+1:

h1 = Φ(X̄ ×W1)

hl+1 = Φ(Hl ×Wl+1) ∀l ∈ [1, ..., L− 1]

ŷ = Φ(HL ×WL+1)

(1.5)

Where Hl+1 represents the matrix of the outputs generates the neurons of the (l+1)-th layer

and is a pl × pl+1 one. The computations explained by Eq. 1.5 are referred to the forward in

which the data is passed through the network to be evaluated and the estimation are generated.

In the backward pass instead the errors and gradients are propagated in the opposite direction

to calibrate the weights layer by layer. The combination of the two operations is the core value

of any neural network and the algorithm that performs such tasks is called backpropagation

algorithm. This can be computed after all the dataset has been passed forward or by dividing

the inputs into smaller batches and propagate the errors each time a batch is analysed; once all

the batches have been processed, and so all the input data, an epoch is completed. Usually it

takes many to train a whole ANN.

A more detailed analysis of the gradient calculations and the algorithm body can be found in

the cited literature at the opening of the sub-chapter.

1.2.3. Convolutional Neural Networks (CNN)

When we think about ANN we think about the inputs in form of a column vector. But what if

those are multidimensional matrices? Imagine that we want to process black-and-white images

inside our networks. In that case, we maybe need many input nodes, one for each pixel so as the

resolution increases our network would become massive and this would slow the training process

and the estimation part. Moreover, do we really need to evaluate each time a single pixel on its

own or it is better to have a more global view of the image by a group of pixels? The answers

to these questions pushed the research to create a di�erent type of network that could process

RGB images with a low number of parameters needed but still impressive results. These neural

networks use the so-called convolutions. In pure mathematics, this is an operator that takes two

functions and produces a third one that shows how the second one modi�ed the �rst one, CNN

is a mapping operation in which a pixel is mapped in an output pixel using a mathematical

operator (�lter) that consider also the other pixels surrounding it or the only pixel itself.
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Figure 1.6: A 2D convolution operation explained. In this case the �lter extracts the trace of each
sub-matrix to make it easier to understand.

In Figure 1.6 a simple convolution is explained. In reality, images are 3-dimensional matrices

because they have 3 matrices, one for each fundamental colour. As a consequence, the convolu-

tion is extended to the third dimension by summing the results of each 2D one. Each cell of the

matrix represents the intensity associated with the pixel of that colour channel. This requires

that also �lters are 3 dimensional so there is one �lter for each channel. The �lter size is usually

expressed as f × f × nf and the number of channels is omitted because it is equal to the input.

nf represents the number of �lters so if for example the number of channels is three and n is

ten that means that there ten �lters that are f × f × 3 so the output of the convolution will

have ten channels and no more three.

Not only one single type of mapping operator exists but others like the maxpooling or the aver-

agepooling are used too. These, instead of performing a sum between elements, act di�erently:

the �rst extract the maximum value of each sub-matrices while the second performs the mean

for each one. In addition not always the �lter moves inside the matrix by one cell at time and it

can also jump by two or three. These amounts are represented by the so-called stride (s) that is

an integer bigger than zero. In addition, padding (p) of zeros can be added to the input matrix

borders to increase its size. In the end, if the input is a n× n matrix the output size will be :

[
n+ 2p− f

s
+ 1

]
×
[
n+ 2p− f

s
+ 1

]
(1.6)
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Figure 1.7: Scheme of a complete convolutional neural network.

As it can be seen from Figure 1.7 a fully constructed CNN is composed of many di�erent parts.

Once the information is extrapolated from the image through the di�erent �lters, the �nal

prediction is computed using a tailor-made ANN. Images are usually preprocessed before being

processed by the network to reduce the noise and guarantee maximum performance. The training

of these networks consists in uploading the �lters and the weights of the fully connected layer.

This is done using the same algorithm introduced before but with images as inputs combined

with their respective true outputs.

CNNs have improved by far the machine vision �eld by introducing advanced architectures that

can operate in many di�erent �elds and carry out di�erent tasks. They have the advantage of

feature sharing because they can share the feature detection among di�erent parts of the image

and each output of the layer is in�uenced only by a fraction of the inputs. In addition, they

can be compact and faster than traditional ANN because they require fewer parameters and

knowledge can be transferred from one network, which has been trained on the same task but

on a di�erent dataset and outputs, to another so they can be reused and adapted.
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Application

The overall concept of this thesis can be divided into three main parts. The �rst one regards

the estimation of the roughness from the taken pictures during the machining operations. The

second is founded on the optimisation strategy used to get the best machining parameters for

the speci�c machining operation. The last one closes the circle by combining the previous

two in order to create an autonomous system that is capable of monitoring and correcting

a manufacturing process. This section explains in detail how each task was mastered, using

speci�c equipment and procedures. The CNC mill used to perform all the machining operations

was the one represented in Figure 1.1 with three independent linear axes and two independent

rotational axes. This machine has a limited power of 600 W and mounts only tools that have a

4 mm shaft diameter. In addition, it has a limited clamping surface of maximum nearly 100 mm

by 80 mm. This device is controlled by a company developed software (Penta Machine, Pocket

NC [37]) that is accessible through the Web and has an integrated tool calibration system.

2.1. Estimation method

To get the CNN to perform a proper estimation, training had to be performed. In this case,

however, no transfer learning could be used because the task was completely di�erent from an

image classi�cation one. In addition, no database was available so, it had to be built from

scratch.

2.1.1. Dataset creation

To build the dataset to train and test the CNN many samples had to be machined and also

a good distribution of pieces per roughness range had to be achieved. Because the machine

power is low, aluminium was chosen to make most of the samples because of its mechanical

properties of being lighter and easier to cut compared to steel. In addition, no coolant was used

so to avoid spoiling the pictures and the machined surfaces. Steel samples were also created but

in a limited number. Billets of aluminium 6061 of size 40mm by 40mm by 80mm were used.

The manufacturer speci�cations indicated that all the six faces of the billets were face milled

guaranteeing a dimensional error from 0 to -0.2 mm; however, once arrived, one's dimensions

were measured and stored in an Excel �le, to account for the machining error of the producer.
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Figure 2.1: Aluminium billets after being measured and catalogued.

To obtain the maximum number of samples per billet all the top and bottom surfaces were

machined. As it can be seen from Figure 2.2 the machined surface is full of little rectangles that

have di�erent depths.

Figure 2.2: 3D model of a machined billet. On the top surface each rectangle at a di�erent height
represents a di�erent sample. The deepest ones will have rounded edges in the real billets, generated

from the milling operation.

Each of these was machined with diverse machining parameters (at least one among ap, ae, f

and n see Table 2.1 for more details) allowing to put twenty samples per surface. Moreover, the

front was engraved to keep track of the sample's number and its orientation. It was fundamental

to precisely catalogue each piece to later match the images with the machining parameters and

the measured roughnesses.

Figure 2.3: Step by step procedure to machine a single billet. Inside the CAM software the CNC
company post processor was installed.
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Figure 2.3 shows the procedure to obtain the �nal G-Code and consequently machine a billet.

Once the machined parameters were chosen an Excel �le was created. This was linked to the

billets �le so that the exact shape of the starting block could be identi�ed. Afterwards a 3D

parametric model was created using the software Autodesk Inventor and was linked with the

sample Excel �le. This allowed to speed the modelling phase because, once the link between the

documents was set, all was needed to generate a new machined billet was to copy an exiting one

and link it with another sample's Excel �le and all the parameters would have automatically

been uploaded. The 3D model was then exported into a CAM software and the machining phases

were de�ned. Finally, the G-Code could be generated. But how were the machining parameters

chosen? Choosing the admissible ranges of machining parameters was a big challenge. A good

guess could be elaborated from the machining tables like the one shown in Figure 2.4 that was

elaborated directly by the tool manufacturer. However, the machine itself represented a huge

obstacle due to its low power and reduced size which was very prone to vibrate while machining

with aggressive depth of cuts and so the upper bounds had to be changed. In addition, the cutting

tool head diameter varied from 1.5 mm up to 4 mm creating the need of developing a MATLAB

script (reported in Appendix A: Main Scripts, Section Machining Parameters Combination )

that could calculate all the possible combinations, according to the di�erent materials and tool

sizes, and save them into an Excel �le.

Figure 2.4: Cutting table of a family of tools based on the operation and material. Credit to MISUMI
corp.
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In Table 2.1 it can be noticed that to achieve a big range of roughness, the parameter space

boundaries were very large; needless to say that it was not possible to machine using high radial

and axial depth of cuts at the same time or use the maximums of these with small diameter

tools. Before choosing the machining parameters a rough estimation of the maximum power

needed was calculated using the interface created from Iscar [38] implemented directly online,

which o�ered a quick solution to check the feasibility of the process.

Diameter Parameter Minimum Maximum δ increment

1.5 mm

ap [mm] 0.1 0.5 0.1
ae [mm] 0.2 1.2 0.2
n [rpm] 20000 25000 5000
Vf [mm

min ] 50 550 50

3 mm

ap [mm] 0.1 0.6 0.1
ae [mm] 0.2 1.4 0.2
n [rpm] 20000 25000 5000
Vf [mm

min ] 50 550 50

4 mm

ap [mm] 0.1 2 0.2 up to 1 then 0.5
ae [mm] 0.2 0.8 0.2
n [rpm] 16000 16000 0
Vf [mm

min ] 50 550 50

Table 2.1: Machining parameter ranges divided by tool diameter and relative to the aluminium billets.
Please notice that the choice of one parameter in�uences the range of the others due to the limited

power of the machine.

The CAM software automatically developed four di�erent machining strategies according to the

position and depth of the each rectangle.

Figure 2.5: The di�erent machining strategies developed by the CAM software.

These strategies are created to optimise the tool load, the machining time and to reduce the

vibrations as the tool starts to bite into the material. Each of them was directly elaborated from

the software without the possibility of directly choosing which one to adopt. The reason behind

these choices, was not further investigated as it was embedded inside the software algorithms.

Moreover, di�erent strategies created di�erent surface patterns, increasing the variety of the



2| Proposed Solution and its Application 31

samples and, as a consequence, of the overall dataset used to train the CNNs enhancing their

adaptability and �exibility.

Figure 2.6: Two machined aluminium billets. The four di�erent adopted machining strategies can be
noted on the surface.

Once all the samples were machined the roughness of each one was measured. This process

was conducted using an optical machine that was able to scan an entire surface every single

time, speeding up the process. The measuring equipment, Keyence VR-500 [39], uses a white

patterned led light to illuminate the surface and captures the re�ection of this structured beam

to recreate a 3D model of the scanned area. This method is able to achieve a precision of ± 2.5

µm when measuring heights and ± 0.1 µm regarding roughness measures. Both Ra and Sa were

measured for each sample considering the widest possible rectangular area from the centre of

each sample. While for the Ra only a single line parallel to the longest side of each rectangular

areas and passing through the middle, was used.

Figure 2.7: The measuring of the Sa and Ra of a machined billet. The optical machine can be noticed
with the sample laying on the measuring table. The markings to identify the billet (blue letters) can

also be noticed.
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For each machined sample, a picture was taken. This was possible using a USB Camera

(Bysameyee USB Digital Microscope [40]), characterised by a resolution of 640 by 480 and

maximum zooming capability up to 1000, mounted directly next to the tool and �xed to the

moving chuck.

Figure 2.8: On the left is shown the global view of the camera mounted on the machine. On the right
the camera holding device.

As it can be noticed from Figure 2.8 the holder was designed to allow the correct positioning of

the camera by guaranteeing two linear degrees of freedom and a rotational one. The 3D-printed

structure is light, and fast to be produced and assembled. Two pictures were taken for each

sample: one with the brightness of the led light of the camera at 100% and the other one with

about 50%. This was performed to mimic the conditions of an ideal testing environment, in

which the light is well calibrated with the surroundings and a real working ambient that has

light noises and shadows that can spoil the �nal images.

Figure 2.9: On the left is portrayed the full bright taken picture. On the right the half bright one.

One of the problems of this dataset was its dimension. Datasets like the MNIST [41] or CIFAR-

10 [42], which are the benchmarks used to test most of the newly developed CNN, have 60000

images for the training phase and 10000 for the testing. This is achieved after years and years

of data gathering and analysis. However, is very hard to achieve such sizes in a machining

environment, especially with a small machine like the one used in this work. As a consequence

image enhancement is used. This technique allows to generate additional data by modifying
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the existing one, changing some of the features and parameters. In this work it was applied six

times for every image, drastically increasing the number of samples. In detail, the ColorJitter,

Sharpness, Orientation and Position were changed. In particular, the Orientation was randomly

changed from 0 to 90 degrees and the Sharpness was adjusted using a sharpness_factor up to 20

(see Appendix A: Main Scripts, Section Data Enhancement, to �nd the code and more details).

Figure 2.10: Applied enhancements. [A] Real image, [B] Jitter change, [C] Sharpness change, [D]
Rotation, [E] Jitter change, [F] Jitter change and [G] Mirror.

All of this was computed using a Python script (Appendix A: Main Scripts, Section Data

Enhancement) that was developed using the PyTorch package [43] which is speci�cally designed

to create datasets for machine learning applications. In the end, the dataset is composed of

4886 pictures that are linked to their roughness. Even if Ra is still more used and known in

the machining industry, in this work, surface parameters were chosen instead of linear because

the measuring optic instrument is better suited to measure such parameters. In addition, the

nature of the machining operations is mainly related to generate �at surfaces and consequently

the whole quality of the area is relevant instead of multiple lines. Nevertheless, creating a dataset

that uses a di�erent roughness metric is a trivial operation in this case because the data were

already gathered.
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2.1.2. CNN estimation models

There are many available models that have been developed by researchers that could be used

to perform this regression task of estimating the Sa directly from the images of the machined

surfaces, however, most of them are born as classi�cation ones instead. In a classi�cation task,

the trained model usually predicts the probability of an instance or image belonging to a class,

in a regression one instead, the output of the model is continuous as the architecture is trying

to predict continuous values. This complicates the choice because all the architectures are

speci�cally designed and optimised to perform such tasks. However those models' structures

are able to decompose images at di�erent levels to extract, �rstly the simplest features, like

horizontal and vertical lines, and in the deeper layers of the CNN the most complex ones.

Because of this, they can still be adapted to perform regression tasks by changing the Fully

Connected layer from a logical one too, as in this case a Linear Regression one. This condenses

the outputs (whose size changes according to di�erent architectures but in this case was always

a row vector) of the CNN �lters into a single value that represents the actual prediction of the

model. In this work only two models were used and compared: the ResNet50 [20] and Xception

[21]. The �rst one was chosen because it is one of the most used ones, was adopted before in the

same �eld of estimation and represents the benchmark when testing the developed architectures.

Figure 2.11: On the left (a) it is represented the general structure (not the complete one) of the
ResNet50 with the fully connected layer highlighted by the red dotted circle. On the right (b), the
structure of a residual block with the skip connection is highlighted by the orange dotted circle. [20].
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The ResNet50 has �fty layers of convolutions and a total number of training parameters of

more than 25 million, making it part of the family called Deep Convolutional Neural Netwroks.

These architectures are able to detect low to high-level features but su�er from the problem of

the vanishing gradients in which, during the backpropagation step, the gradient is too low and

is not able to upload the weights and so the network is not trained anymore. This can cause

a rapid convergence of the training session but with poor results or a bad performance of the

network. The deeper the model the higher the chance of this happening because the information

is not able to penetrate into the deeper layers. To reduce the chances of this happening the

developers introduced residual layers that, combined with the Relu (presented in Chapter 1)

activation function, allowed to create deeper architectures keeping a low computational time

and no increase in the number of parameters to be trained. The skip connection (see Figure

2.11) convolutes the input with identity �lters to resize its last dimension, making it compatible

with the output. This connection jumps over all the convolutional �lters and arrives directly

at the output of the block, propagating the information to the deeper layers of the network. If

one layer gets a zero gradient upload then, that particular residual block, has only to learn an

identity function and will not hurt the performances of the overall architecture.

Deep networks used to su�er from the problem of over�tting. This happens when the network

is too good at predicting the training dataset but lacks accuracy when tested on a new dataset

never seen before. The Xception model tries to avoid this problem by reducing the number of

parameters needed per layer but still extracting the features at most levels of de�nition.

Figure 2.12: On the left (a) is shown the general structure (not the full one) of the Xception with the
residual layers highlighted by the orange dotted rectangular boxes and the fully connected layer by the

red dotted circle. On the right (b), the structure of a Depthwise Separable Convolution block is
schematised. [21].

The problem with traditional convolution operations is that they require a lot of memory and

time because the �lters are convoluting on three dimensions. To reduce the use of resources
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extreme Depth Convolutions were introduced. The input is �rstly convoluted with nf 1 by 1

by nc convolution �lters (point-wise convolution) that work only on the number of channels

and so the third dimension. Consequently, 2D �lters are applied to each channel separately and

the results are concatenated along the channels' direction (depth-wise convolution). The �rst

step allows the network to compress the information of each channel into a single output per

cell. The last convolution instead allows us to consider each channel separately from the others

gathering information from also the surrounding elements. The Xception model proved to be

more accurate compared to the ResNet50 regarding classi�cation tasks and still less sensible to

the vanishing gradient phenomena due to the presence of residual layers that can be seen in

Figure 2.12. In addition, it has a lighter architecture with fewer connections between each block

(22.8 million parameters).

Both models were implemented using the Pytorch platform on the Python base. In addition, the

fully connected layer of each was modi�ed with linear activation functions and only one output

node because initially they were provided with logic regression activation functions and 10000

output nodes that are suitable for classi�cation purposes.

2.1.3. Training of the models

To train each model the dataset was split into three main parts. Eighty percent was used for

training purposes, ten percent for validation and the remaining ten percent for testing. The

division was based on similar studies ([16], [17], [18]) and based on the size of the dataset.

Because the latter was limited, most of the samples were used to train the models while only

a small amount was used to test them. If the size of the training dataset is not big enough,

under-�tting can occur and it had to be avoided, especially in a regression task like this in which

the output was used as a control input. Validation is used to tune the hyperparameters (in this

case it was only the learning rate, that was changed according to Table 2.3) and to control that

over�tting does not occur while training. The mini-batch descent algorithm [44] was used with

a size of sixteen pictures per batch. This is a variation of the gradient descent algorithm that

trains the model over small batches of the overall training dataset instead of using the whole one,

uploading the weights of the networks gradually instead of once per epoch. Its choice was mainly

driven by the limitations of the GPU which was an Nvidia GEFORCE RTX with a capacity

of 12 Gb. A bigger batch size would have required fewer iterations per epoch but would have

occupied more memory and a slower convergence would be veri�ed. In theory, the validation

and testing tasks can be fused into a single one performed on a single database; however, to

increase the accuracy it is better to tune the hyperparameters of the model on a single database

and then test the �nal performance of the model on a new dataset that the network has never

seen before (testing phase).
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Figure 2.13: Total dataset distribution among di�erent roughness values.

As shown in Figure 2.13 the samples' distribution was not balanced. This was due to the fact

that the machine had some limitations in terms of power and tool size so the machining was not

aggressive compared to an industrial milling machine. To assess this issue the three datasets were

created by gathering the samples by ranges of Sa and then, for each range, elements were picked

to from the three datasets with the same percentages reported before. So for example, if in the

range between 2.5 micron and 3 µm there were 100 specimens, 80 were added to the training

database, 10 to the validation and 10 to the test. To optimise even more the performance of

the training, the images had to be processed before being given as input into the network. In

detail the ResNet50 and Xecption architecture require the images to be pre-processed di�erently

because of the networks' architectures. Speci�cally, the pictures had to be cropped form the

centre and normalized with di�erent parameters (Table 2.2).

Model Operation Operation Parameters

ResNet50
CenterCrop 224
Normalize mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

Xception
CenterCrop 229
Normalize mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]

Table 2.2: Pipeline of pre-processing transformations.

The Adam optimiser [46] was chosen because it is a more advanced one compared to Gradient

Descend. The learning rate varied from 0.0005 down to 0.00005 as the number of epochs increased

to avoid the saturation of the errors.

Epoch number 1 2 3 4 5 6 7 8 9 10

Learning rate 0.0005 0.0005 0.0005 0.0005 0.0003 0.0003 10−4 10−4 10−4 5×10−5

Table 2.3: Learning rate evolution over 10 epochs.
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Three di�erent loss functions were tested to �nd out which one was more suitable to perform the

regression task and all models were trained for at least 64 epochs. In particular the MSE was

adopted, which was introduced in Chapter 1, the Mean Absolute Percentage Error (MAPE):

MAPE =
1

m

m∑
i=1

|y(i) − ŷ(i)|
|y(i)|

(2.1)

and the Huber Loss:

l(i) =


1

2
(y(i) − ŷ(i))2 , if |y(i) − ŷ(i)| < δ

δ · (|y(i) − ŷ(i)| − 1

2
· δ) , if |y(i) − ŷ(i)| ≥ δ

(2.2)

The Huber Loss is e�ective in minimizing the outliers and uses the advantage of the MAE

error to not put penalise too much the big ones. It, in fact, represents a hybrid between the

MAE and MSE loss functions. Its δ represents the threshold set to clip the gradients to δ for

residual (abs) values larger than δ. Basically, when the errors are too large the training can be

in�uenced and the weights may be uploaded too much in the direction of minimising such errors

but increasing the residual on the data that has already been learned. To avoid such, the Huber

Loss's derivative is constant and equal to δ after the residuals are bigger than δ itself. In this

work, its value was set to 0.8 as this threshold was considered more than enough in terms of

errors for the estimation of the Sa and also because the outliers with bigger errors were really

hard to remove and always a�ected the training of the model. To better tune this loss function,

it should be data-driven [45]. For the test phase also the coe�cient of determination (R2) was

used when evaluating the overall predictions.

R2 = 1−
∑m

i=1(y
(i) − ŷ(i))2∑m

i=1(y
(i) − ¯̂y)2

,where ¯̂y represents the mean of all the predictions (2.3)

These metrics were chosen because they can provide di�erent analyses about the training process,

the validation and the test. In addition, they supplied the information needed to choose the

best model accommodating the upsides and downsides of each of them. Each time a model

completed all the pre-set epochs of training a complete analysis of the process was computed.

This included the evaluation of the training error and validation errors for every iteration to

identify the e�ectiveness of the chosen learning rates and the starting of over�tting. There

is not a unanimous way to identify such behaviours quantitatively, usually ML engineers are

experienced enough to look at the shape and slope of the training and validation curves to

understand if the model is over�tted or not. In this case, a more quantitative analysis was used

based on the evaluation of the training curves and test ones. This consisted in stopping the

training process to the epoch in which there was no change in the slope of the validation curves

from a negative descending trend from an ascending one (look for example at Figure 3.1 in which
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the validation curves suddenly jumps). In addition for each epoch, the correlation plot between

the ground truth and predictions was plotted (refer to Chapter 3 and take as an example Figure

3.3) to observe its evolution and the presence of outliers. This was produced both over the test

database and the complete one. The test losses evolution over all the epochs were analysed to

identify the best model and the starting of the over�tting phenomena. The equivalent was done

using the same errors but computed over the whole dataset (as for example shown in Figure

3.2). In addition, the distribution of the AE, computed over all the samples, was observed to

quantify the quality of the predictions and of the training process. Finally, the best models

were taken and compared. The comparison was �rst done over the test errors. Then it was

extended to the whole dataset comparing the previously used metrics (MSE, MAE, MAPE and

R2). Moreover, the correlations were also plotted one over the other to visually contrast them

and identify the outliers. Finally, the AE of all the analysed models was computed among the

di�erent Sa ranges to identify the most critical areas of each architecture-loss combination. This

analysis was combined with the AE distribution for each one computed over all the samples

in the database. To �nally get a visual view of the performance the best model was tested to

predict four random images picked from the test dataset.

2.2. Optimisation method

The optimisation of these machining operations is a particular task that must be considered

carefully. In this case, no simulator or model was available to generate samples because the

machine is a particular one that cannot be compared to the industrial ones. Its size, stability

and sti�nesses are far below the traditional ones. As a consequence, every time a new sample

needed to be created a large amount of time was used. In addition tests and trials using a

never-seen combination of parameters could resolve in a catastrophic failure of either the tool

or one part of the machine itself like the motors or the chuck, leading to a huge increase in

downtime. The choice of the optimisation method was then restricted to a few ones but, among

them, Bayesian Optimisation using a Gaussian Process Regression was thought to be the best

from the beginning. Initially Reinforced Learning (RL) was taken into consideration because of

its applications in the robotic industry and e�ectiveness in learning tasks, being similar to the

learning process of humans. However, this learning methods require many samples, millions of

iterations and it is based on a trial and error approach which was not suited for this work because

too risky and dangerous to the CNC itself. Gradient-based methods were also considered, but

usually required the construction of a regression model or the development of an additional ANN

to predict the chosen outputs of the machining process, reducing the adaptability of the system

and increasing the number of samples required.

2.2.1. Introduction to Bayesian Optimisation

Imagine that an oil drilling company has to decide where to drill the next hole to �nd a new

oil �eld. Beyond any doubt, the company cannot make many trials because each time all the
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equipment must be moved to the new site and drilling is not an easy operation but requires plenty

of time and money. In addition, they cannot build a model of the all underground of that area

because it will require scanning for thousands of square kilometres. This demands the use of a

method that is only based on what the company knows so far about the environment and on the

previous data that was gathered during the previous drilling operations. The explained example

is the perfect candidate for the optimisation family of methods called Black Box optimisation

in which, the function that maps the inputs to the outputs is not known and the method does

not need to know it [47].

This optimisation method is focused on minimising or maximising an objective function:

maxf(x) or minf(x) , where x ∈ A (2.4)

Where the input x belongs to ℜd and d is usually smaller than ten. In addition, f must be

continuous and expensive to evaluate and calculate its derivatives including the �rst-order ones.

A represents the space in which the optimal x is located and it is usually an hyper-rectangle

[48].

Bayesian optimisation is mainly composed of two main parts: a statistical model that mimics the

objective function and an acquisition function that is used to evaluate the created "model" and

understand where to �nd the optimal points. An optimisation loop using Bayesian optimisation

is divided into three main phases. Firstly the initial samples are generated and used to �t the

chosen model. As a rule of thumb it is recommended to generate at least 10·d samples [49].

These can be created by picking up random spots among the all parameters space or using

sampling strategies like Latin-Hypercube sampling. Once the model is �tted the acquisition

function runs all over the space A and �nds the best point in order to maximise or minimise the

objective function. A new sample is then created based on those chosen inputs and the model is

then uploaded. This procedure is then repeated until a stopping criterion, usually based either

on the number of optimisation iterations or on the di�erence between two consecutive outputs,

is met.

2.2.2. Choosing the statistical model

The regression function chosen to �t the inputs is very important in a Bayesian optimisation

system. This is because it represents the groundings on which the acquisition function will look

for new points. In this work, a Gaussian Process Regression (GPR) was used to �t the available

data. This regressor assumes that the objective function values associated with di�erent inputs

have a joint Gaussian distribution [50], [51]. The choice of this regression model was driven by

the nature of our problem and the aim of the work. In this application, the intention was not

to make a regression model that could associate the machining parameters to the Sa but to �nd

the best combination of those regardless of the input-to-output mathematical relationship. In

addition, the outcome of the process is by itself of a statistical nature, due to the fact that with
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the same machining conditions there is the possibility that two di�erent �nal roughnesses could

be measured due to variation of the external environmental conditions, the mechanical stability

and the reliability of the used machine. This is why a GPR is a well-�tted candidate to relate

the inputs to the outputs of the machining process because creates a model with a con�dent

interval, �tted on the available data-points. As it can be understood a statistical regression can

be identi�ed with its mean function µ(x) and covariance function k(x′,x) whose importance

and characteristics will be explained later. In particular, the mapping relationship between

input and output can be assumed to be :

y = f(x) + ξ (2.5)

Where ξ is the noise that, by assumption, follows a Gaussian distribution. In detail, the GPR

is able not only to provide the mean value of the estimation but also its variance quantifying

the uncertainty of the prediction [52]. This is very useful when dealing with complicated models

because it gives the opportunity to evaluate the quality of the estimation and the admissible

ranges. Mathematically, given the real observation data y and its prediction ŷ, based on a given

set of unknown inputs X ′ and known inputs X, they can be linked using a GPR in the form of

a joint distribution:

[
y

ŷ

]
∼ N

(
0,

[
K(X,X) K(X,X ′)

K(X ′,X) K(X ′,X ′)

])
(2.6)

In this case, the inputs are matrices in which xi represents the i-th single sample. The covariance

function k(xi,x
′
j), also called kernel, is one of the cardinal elements of the GPR because it holds

the links between the input points. This function must be chosen according to the problem type

and the data type. In this study, two kernels were considered: the Exponential kernel,

k(xi,xj) = σ2 exp

(
− r

2l

)
where r =

√
(xi − xj)T (xi − xj) (2.7)

and the Matern 5/2 kernel

k(xi,xj) = σ2

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−

√
5r

l

)
where r =

√
(xi − xj)T (xi − xj) (2.8)

The Exponential one is among the simplest ones that could be used a. The Matern 5/2, instead

is more complicated and has a higher computation time compared to the previous one. It was

chosen because was already employed from the previously considered studies [49], [51], [52] that

considered its application in mechanically related �elds. These kernels are dependent on the

signal variance σ2, the characteristic length-scale l and the distance between each pair of inputs.

The �rst one works on the total magnitude of the function as a scale factor, the second instead
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sets the boundaries for the sensitivity of the function to the distance between points. A high

value of l means that to consider two inputs uncorrelated they have to be very far; vice versa

a low one needs a lower distance to consider them uncorrelated. These hyperparameters are

delicate because they must be tuned, based on the inputs, to improve the �t of the function.

The �rst kernel is one of the most basic ones and has a wider peak compared to, the more

complicated, second kernel which possesses a narrower peak but decades faster as the distance

between points increases [53]. As explained before the Matern 5/2 kernel is more sensitive to

a sharp change of the data and it is recommended to model smoother series [56].In particular,

the mapping relationship between input and output can be assumed to be :

Figure 2.14: Kernels comparisons based on di�erent hyperparameters. Credit to [53].

There are many approaches to �nd the optimal hyperparameters. Some of them use statistical

methods and others use gradient-based methods. In this work, the maximum likelihood estimate

(MLE) approach was used which aims to maximize the posterior likelihood probability. If we

indicate with η and f(X) as the observations computed by the GPR at each input point the

method aims to maximise the probability of P (f(X)|η) in mathematical words:

η̂ = argmax
η

P (f(X)|η) (2.9)

To �nd those values the optimizer initialises some random hyperparameters and then uses an

iterative method to �nd them. To avoid getting stuck into local minimum the process is started

more times from di�erent random positions. In this work, the package developed by She�eld

University called GPy [54] and GPyOpt [55] was added in Python to model the GPR. In this case,

the optimiser followed the Broyden�Fletcher�Goldfarb�Shanno algorithm [57] with a maximum

number of iterations of 2000 and 10 number of restarting.
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Once the GPR is �tted then predictions can be made all over the hyper-rectangle. In particular,

the conditional probability can be used to generate unknown predictions, ŷ′, from unknown

inputs X ′, based on the all available inputs, D. As stated before both the mean and the

con�dence interval can be predicted.

p(ŷ′|X ′,D) = N (ŷ′|µ′, σ2′) (2.10)

The mean can be calculated using the covariance matrix and function:

µ′ = kTK−1y (2.11)

and the variance :

σ2′ = k(X ′,X ′)− kTK−1k (2.12)

2.2.3. Choosing the acquisition function

As stated before the acquisition function has to evaluate the objective function and suggest the

next best input to minimise or maximise it. This choice must be done by �nding a compromise

between exploration and exploitation. The �rst one implies looking for other areas in which

there is the possibility to �nd better parameters but, because it is an unknown space, the risk of

getting worse instead of improving is present; the second instead, aims to search in the neighbour

of what the model already knows to be safer and work close to the minimum. Among all the

available functions the one used in this work was the Expected Improvement (EI), which provides

a good balance between exploration and exploitation and has been already adopted in similar

studies [49], [51], and [52].

2.2.4. Assembling the optimiser

Bayesian optimisation was applied to �nd the combination of the best machining parameters of a

slotting operation using the trochoidal tool path. Only the Vf and the rpm were optimised. This

was done because due to the nature of the machine it was not possible to �nd a range of depth

of cuts that was compatible with an equally wide one of feeds and speeds. In addition, when

real-time optimisation has to be performed, a modi�cation in ap and ae required communication

between the CAM and the milling machine to generate a totally new G-Code with di�erent tool

paths. The optimisation process had a multi-objective nature because two objective functions,

in contrast to each other, were created. The �rst one regards the minimisation of the Sa of the

machined surface, while the second the maximization of the MRR of the machining process.



44 2| Proposed Solution and its Application

Parameter Minimum Maximum

ap [mm] 0.6 0.6

ae [mm] 0.6 0.6

n [rpm] 11500 13500

Vf [mm
min ] 500 950

Table 2.4: Corners of the hyper-space of the inputs of the process.

As it can be seen from Table 2.4, the depth of cuts were �xed to values that were admissible

and in the ranges advised by the tool manufacturing company table. The feed rate was varied

between a reasonable minimum to keep the machining time (which varied between 50 seconds

to 2 minutes per sample according to the di�erent chosen Vf ) feasible and a maximum that

required a machining power within the limits of the actual CNC. The rotational speed was

chosen around the neighbour of the advised one from the machining table. The tool used to

machine all the samples was always a new one that had no sign of any wear or defects, as it was

used only to manufacture a maximum of 4 samples.

Figure 2.15: Initial points generated using Latin Hypercube Sampling.

The initial inputs were generated from the available space using the Hyper Cube Latin sampling

method (blue dots in Figure 2.15). In addition, the four corners of the hyper-rectangle were

added [58] to generate a total of seven �nal inputs (red dots in Figure 2.15).

In a multi-objective optimisation problem that is not a unique best solution but instead, a

group of them. This Pareto Front is represented by all the non-dominated solutions of the

problem in which no objective can be improved without sacri�cing at least one other objective

[59]. The aim of the optimiser is to �nd that front and then obtain the best solution based

on the previously imposed constraints. The acquisition function used in the model was only

able to handle single objective functions and was not suitable to operate with multiple ones.

Even if there are extensions of it like the hypervolume expected improvement (HEVI) still, the

solution adopted was to create a unique objective function. This choice was taken because, when
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implementing the online optimisation task the system had to be able to choose between a range

of di�erent parameters that were generated all at the same time and not upload after upload.

This required the creation of multiple objective functions that had to be optimised at the same

time and in the same optimisation loop. In addition, according to previous studies, when using

HEVI for each objective function a single GPR must be created and �tted; in this case however,

the MRR is identi�ed by a deterministic function and consequently its related GPR cannot be

created. In the end, the �nal objective functions were generated by summing the two outputs

of the process each of them multiplied by a weight that could vary between zero and 0.5.

fj(xi) = wj · y1,i + (1− wj) · y2,i , where

y1,i = −MRRi

60

y2,i = Sai

(2.13)

As it can be noticed from Eq. 2.13 the MRR is made negative to aim for the minimisation of

the �nal objective function. Each time the weight w is increased the solutions move toward a

higher removal rate to the detriment of a higher Sa . Before �tting the GPR the inputs were

scaled down because of their di�erent order of magnitude. In particular, the feed was divided

by 100 and the rpm by 1000.

Wiegths w1 w2 w3 w4

Value 0 0.15 0.35 0.4

Table 2.5: Weights used to create the di�erent objective functions.

2.3. Assembling the �nal system

Once the monitoring and the optimiser were developed the combination of both was tested

combining them in a system that was able to predict the surface roughness of a machined surface

and change the Vf and rpm if the former was bigger than the imposed limit. To accomplish

so, the programmed 'brain' had to be able to interact directly with the machine. As reported

in the Introduction each company builds its machines using a particular type of controller that

interfaces with the hardware using the universal G-Code. Even in this case the machine was

controlled by a web Page speci�cally designed using the Linux interface.
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Figure 2.16: Web built interface that controls the CNC machine. The red box represents the part
related to the uploading of a new G-Code, the orange one directly acts on the machine movements and
can change the Vf and rpm while the tool is cutting, while the blue one indicates the axis coordinates

in real time.

The computer had to be able to directly talk to the interface shown in Figure 2.16 by clicking

the needed buttons and uploading the correct �les. To perform such task a script was created

with the selenium package [60] that enabled web scraping actions. The steps to get the new

machining parameters can be synthesised as follows:

1. Initial G-Code modi�cation

2. G-Code uploading on the interface

3. Machining operation

4. Machined surface's picture acquisition

5. Optimisation

6. G-Code modi�cation

7. G-Code uploading on the interface

8. Second machining operation

Because of the design of the machine's controller, the changing of the machining parameters

could not be done while the tool was cutting. This was because even if the override functions

are available and implemented in the interface, these can only modify the feed rate and the

cutting speed by an integer percentage amount that is �xed to be ±5% without the possibility

to change them continuously. In addition the monitoring system would had problems to identify
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the machined area while the tool was working due to its presence in the middle of the picture and

the taken images would have been blurred or spoiled by the vibrations caused by the cutting

operation. Moreover, it would have been hard to fully identify the �nished surface because

the tool movement is not always linear. This is why it was taken the decision to perform the

monitoring and optimisation once the machining process was over.

2.3.1. Modifying the G-Code

Once the G-Code was compiled by the CAM program it had to be modi�ed in order to move

the camera to the centre of the machines surface and take a picture. To achieve so a Python

script was made that was capable of reading the whole code to �nd the start and the end of

the machining operation. Once these are identi�ed, the maximum and minimum of each linear

coordinates are recognised so that the complete tool path can be characterised. With these

values the codes adds four lines of commands in the G-Code that move the tool to the correct

X, Y, Z position and stop the program waiting for the picture to be taken.

Figure 2.17: On the left is pictured the original G-Code. On the right the modi�ed one with the added
parts highlighted by the blue dotted box.

The start and end of the operation can be easily identi�ed because the CAM introduces the

name of the speci�c machining operation as the opening line ((FACE1) in Figure 2.17, while

(FACE1) represents the title of the G-Code) while the end is characterised by an extremely high

feed rate that is used to move back the tool to the standard position (line 26 in Figure 2.17).

After inserting the coordinates positions in the added lines, the command M00 is added to make

the machine pause until the picture is taken and then the Python code automatically presses

the start button on the controlling software of the CNC and the tool is positioned at the home
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position.

2.3.2. Parameters modi�cation strategy

If the surface roughness Sa was above the imposed limit by the user the system had to take

some action and try to change that. To achieve that, two strategies could be used. The �rst

one is the most simple one and is based on the history of the optimization. Instead of looking

for new points the system can just look at all the history of the previously found combinations

and choose one that will machine a surface with the required surface roughness but still keeping

a high removal rate. The second instead, is a more dynamic that requires the system to look

for new points never seen before and it is very e�ective when the surrounding environment is

changing and so the conditions are time dependant. In this case the decision is usually based

on a previous history that has been limited to only the most recent samples [61] so that the

next prediction can be focused on the most recent environmental conditions. In alternative, the

system decision can also be based on a pre-calibrated model [62] that is initialised using on site

acquisitions right before performing the optimisation so that the statistical model is directly

tailored based on the most recent environmental conditions [63].

For this particular case, the �rst approach was used. Even if, it is a less precise and simpler

one it was more suitable for the type of environment in which the tool was cutting. This

was mainly due to the actual machine and material. As stated before, mostly aluminium was

machined using not aggressive parameters because of the low power and stability of the actual

CNC. This deeply in�uenced the state of the tool that did not worn enough to be considered an

environmental condition change even when machining with the most aggressive combination of

parameters. In addition, the on-site calibration of the model was not feasible because machining

a sample and measuring it required much time and resources and it was not representative of a

real industrial context in which the machine must always be ready to machine. In the end, after

the CNN had estimated the surface roughness of the newly machined surface, if this was higher

than the pre-imposed reference value, the optimisation module looked at the history generated

using the Bayesian optimisation approach and picked all the combinations of parameters that

produced an Sa that was below the threshold. Among those, the ones fed to the machine were

taken evaluating the Vf of each. The combination with the highest feed rate was the one that

guaranteed the required Sa with the highest material removal rate and was chosen to machine

the next piece. Once the choosing phase was over the system automatically modi�ed the G-Code

of the next machining operation and uploaded it on the web interface and the new sample could

be machined.
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3.1. CNN Training

In this section, the training of each model is discussed. Performances and training analysis are

formulated and explanations about the errors' trends are given. It may look like a repetitive

section for each model but it is not because each trained network behaved di�erently and had

its own peculiarities.

3.1.1. Xception using MSE loss function

Figure 3.1: Training and validation errors of the Xception model trained using the MSE loss function.
The right image represents a zoom of the left one.

As it can be noticed from Figure 3.1, the training process progressed smoothly but over�tting

was veri�ed. This can be noticed because the validation errors suddenly increase while the

training error becomes saturated. This is also justi�ed by test error evolution shown in Figure

3.2.
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Figure 3.2: Evolution of test errors (Xception model trained using the MSE loss function). Each epoch
group considers the model after 8 epochs of training.

Indeed, after the sixth group of epochs, the error increased while the R2 started to decrease

leading to a poorer estimation performance of the network.

Figure 3.3: Correlation evolution between the ground truth and the predictions per epoch group
(Xception model trained using theMSE loss function).

Looking at Figure 3.3 it can be noticed how the training improved the estimation performances

of the network epoch by epoch. Initially, the model was characterised by big errors and a big

number of outliers. As the training advanced the model got better and better at predicting the

correct values from the given pictures. In the end, only a little number of outliers are present

while most of the predictions' AE were below 0.1 µm (Figure 3.4).
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Figure 3.4: AE distribution calculated over the whole dataset (Xception model trained using the MSE
loss function). The dotted red line represents the number of samples analysed. In this case is the size of

the database itself.

What is interesting is that initially, the model improved hugely but as the number of epochs

increased, only minor improvements were achieved. This was related to the fact that the network

saturated rapidly and also the learning rate reduced as further epochs were executed, performing

a �ne-tuning training instead of a massive one.

3.1.2. Xception using MAPE loss function

Figure 3.5: Training and validation errors of the Xception model trained using the MAPE loss function.
The right image represents a zoom of the left one.

In this case, the training did not produce any over�tting. As it can be noticed from Figure 3.5

both the validation and training errors keep following the decreasing trend even during the last

epochs. The loss function used in this training session is less sensitive to outliers but is less

penalising for big mistakes compared to a squared di�erence.
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Figure 3.6: Evolution of test errors (Xception model trained using the MAPE loss function). Each
epoch group considers the model after 8 epochs of training. The R2 is zero in the �rst epoch because it

resulted in a negative value.

As it can be noticed the improvement rate is slower compared to the previously used loss function

with a really poor performance at the initial stage of training.

Figure 3.7: Correlation evolution between the ground truth and the predictions per epoch group
(Xception model trained using the MAPE loss function).

Looking at Figure 3.7 it can be noticed how the training improved the estimation performances

of the network epoch by epoch. Initially, the model was characterised by big errors and a big

number of outliers. As the training advanced the model got better and better at predicting the

correct values from the given pictures. In this case, however, still, a big number of outliers are

present even after the many executed epochs and the model has a higher overestimation error



3| Results & Discussion 53

over the outputs than the underestimation one.

Figure 3.8: AE distribution calculated over the whole dataset (Xception model trained using the
MAPE loss function). The dotted red line represents the number of samples analysed. In this case is

the size of the database itself.

3.1.3. Xception using Huber loss function

Figure 3.9: Training and validation errors of the Xception model trained using the Huber loss function.
The right image represents a zoom of the left one.

During this training, the validation errors had some huge peaks related to some batches of

images. What is interesting is that these disappear at the end of the training as it can be seen

from Figure 3.9. In the �nal training session, the network was saturated because no improvement

in both the training error and the validation was measured. The training error instead, followed

a pretty standard �ow and was able to decrease rapidly as the number of epochs increased as

it can be seen from Figure 3.10. In Figure 3.9 this cannot be noticed because the peaks of the

validation losses are too high even when compared to the initial training errors.
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Figure 3.10: Training error evolution per iteration (Xception model trained using Huber loss function).

Even when analysing the test losses evolution a slight saturation at the end can ben noticed,

in which the errors do not improve considerately compared to the previous epochs. Also is

interesting to notice that the MAPE and the MAE are very similar in value as the model

improves (Figure 3.11).

Figure 3.11: Evolution of test errors (Xception model trained using the Huber loss function). Each
epoch group considers the model after 8 epochs of training.

The correlation plot shows the asymmetrical nature of the loss function as the model tends

to commit higher underestimation errors than overestimation ones. Even after all the training

epochs still, the biggest outliers are present as underestimations.
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Figure 3.12: Correlation evolution between the ground truth and the predictions per epoch group
(Xception model trained using the Huber loss function).

Even the AE evolution plot in Figure 3.13 shows the same trend as the others with an improving

behaviour as the number of epochs increases. The error saturation can be noticed because the

advancement after the �fth epoch is not as sharp as before.

Figure 3.13: AE distribution calculated over the whole dataset (Xception model trained using the
Huber loss function). The dotted red line represents the number of samples analysed. In this case is the

size of the database itself.
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3.1.4. ResNet50 using MSE loss function

Figure 3.14: Training and validation errors of the ResNet50 model trained using the MSE loss function.
The right image represents a focus on a particular range of iterations of the left one.

In this case, the training did not produce any over�tting. As it can be noticed from Figure 3.14

both the validation and training errors keep following the decreasing trend but saturation occurs

during the last thousands of iterations. It is interesting to see how the losses' trend bounces

two times before stabilising and saturating in the end. These bounces can be attributed to

particular batches, in which the inputs were still 'strange to the trained' model, generated by

the imbalances of the training dataset.

Figure 3.15: Evolution of test errors (ResNet50 model trained using the MSE loss function). Each
epoch group considers the model after 8 epochs of training. The R2 is zero in �rst epoch because it

resulted in a negative value.

During the initial stage of training, the model performed really poorly and a little over�tting

can be noticed, in Figure 3.15 at the end of the last epoch.
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Figure 3.16: Correlation evolution between the ground truth and the predictions per epoch group
(ResNet50 model trained using the MSE loss function).

Looking at Figure 3.16 it can be noticed how the model struggles to get rid of the big outliers.

These, indeed, are still present even after all the computed epochs of training and get bigger

when the last one is completed, reinforcing the hypothesis of a possible intimation of over�tting.

Figure 3.17: AE distribution calculated over the whole dataset (ResNet50 model trained using the MSE
loss function). The dotted red line represents the number of samples analysed. In this case is the size of

the database itself.

It is interesting to see that, unlikely to the Xception, this network did not have a gradual

improvement during the training. As it can be noticed from Figure 3.17, there is a big jump in

the error distribution after the �fth epoch which also corresponds to the decrease in the learning

rate.
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3.1.5. ResNet50 using MAPE loss function

Figure 3.18: Training and validation errors of the ResNet50 model trained using the MAPE loss
function. The right image represents a zoom of the left one.

Because the weights are randomly initialised the starting training and validation errors are big

compared to the rest. However, in the last stages, the trend is a decreasing one and the reduction

in the learning rate helps to lower them even more. Even here the test error analysis shows little

sign of over�tting after the last epoch.

Figure 3.19: Evolution of test errors (ResNet50 model trained using the MAPE loss function). Each
epoch group considers the model after 8 epochs of training. The R2 is zero in �rst epoch because it

resulted in a negative value.

As it can be noticed, the model performs badly during the initial training stages and a little

sign of over�tting can be noticed at the end of the last epoch as the test losses increase (Figure

3.19).
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Figure 3.20: Correlation evolution between the ground truth and the predictions per epoch group
(ResNet50 model trained using the MAPE loss function).

The correlation evolution plot shows that the training process was able to signi�cantly improve

overestimation outliers but not the underestimation ones that are heavily present even in the

last stages of the training process. The many white spaces that can be noticed in Figure 3.20

and all the previous ones of the same type (3.3, 3.7, 3.12, 3.16) represent a lack of data in those

areas. This is created due to the imbalance of the training dataset that does not have the same

amount of samples per each Sa range, which reasons were justi�ed in Chapter 4.

Figure 3.21: AE distribution calculated over the whole dataset (ResNet50 model trained using the
MAPE loss function). The dotted red line represents the number of samples analysed. In this case is

the size of the database itself.
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3.2. CNN Models comparison

Once all the models were trained the best had to be chosen. To determine the most suitable

one among all of them the di�erent errors were analysed. In particular, both the performance

of the models over the whole dataset and the test dataset were considered. As shown in the

previous section, some networks did not improve after a certain number of epochs but, instead,

they reduced their performances. To consider this, the best model for each training error and

architecture was chosen based on the evolution of the error among the test and total dataset. If

the same model performed better on the total set after a certain number of training iterations

but had a better accuracy on test one after a di�erent number of training steps, priority was

given to the latter. This is because the chosen one will be implemented to monitor the machine

in a new environment and maybe will have to make predictions based on inputs never seen

before. Moreover, if the priority was given to the best performance over the whole dataset and,

considering that eighty percent of this was used for training, choosing that network could result

in using a model with over�tting problems. So the best ones were �rstly selected among each

training session with di�erent loss functions, resulting in a total of �ve networks, and after, the

best one was picked among them evaluating the same metrics used before.

Model CompleteDataset TestDataset

Architecture Loss MSE MAE MAPE R2 MSE MAE MAPE R2

Xception MSE 0.015 0.038 0.036 0.97 0.062 0.102 0.097 0.854

Xception MAPE 0.049 0.057 0.038 0.912 0.138 0.143 0.114 0.717

Xception Huber 0.016 0.042 0.037 0.969 0.063 0.102 0.096 0.854

ResNet50 MSE 0.022 0.044 0.038 0.956 0.072 0.109 0.1 0.827

ResNet50 MAPE 0.069 0.12 0.089 0.872 0.107 0.164 0.145 0.77

Table 3.1: Best models errors and metric calculated using the complete dataset and the test one.
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3.2.1. Xception models comparison

The Xception models performed better than the ResNet50 ones both on the test and the global

dataset.

Figure 3.22: Correlations comparisons of the three Xception models over the whole dataset.

As it can be seen from Figure 3.22 the model trained with the MAPE as loss function performed

worse.

Figure 3.23: On the left are represented the results of the correlation over the test data of the model
trained with the MSE loss function. On the right the results of the Xception model trained with the

Huber loss function.

In particular, it cannot be used in a real machining application because it has many outliers

both in the overestimation region and in the underestimation one. The other two instead, are
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quite similar also in terms of errors. Even the test analysis con�rms that the di�erences between

the two models are very small.

Figure 3.24: The �rst prediction is made using the model trained with the MSE loss function. The
second, using the model trained with the Huber loss function.

Figure 3.24 was created to show the reader that the model is able to make predictions using

real pictures of machined surfaces. As it can be seen, some of them are blurred or with di�erent

brightnesses because they were randomly chosen from the test dataset which was formed also

from pictures that have been generated during the data enhancement process. In addition, it can

be noticed that di�erent parameters have been used to create the samples; especially the radial

depth of cut was di�erent among the di�erent pictures as the distance between each pattern

varies among them. This example is not su�cient to quantify the accuracy of the trained models

but shows how predictions can be made using pictures of real machined surfaces.

Figure 3.25: MAE calculated over the total available samples divided by Sa ranges.

Finally, a study over the distribution of the MAE was done to analyse the performances of the

models in di�erent areas of the available input space. Surprisingly, the worst model performs
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better than the others until 1.35 µm but then loses its advantage and becomes the worst, by

far. All the previously shown plots are crucial to evaluate and choosing the best model because

only one metric or just the numerical values are not enough to conduct a correct evaluation.

3.2.2. ResNet50 models comparison

As stated before the ResNet50 models underperformed compared to the Xception ones. As it

can be seen from Figure 3.26 both models contain more outliers and a bigger dispersion of the

data around the centre diagonal line compared to the previous ones. In addition, they both have

higher overestimation and underestimation. This is re�ected in Table 3.1 with higher values of

the errors and a lower R2 .

Figure 3.26: Correlations comparisons of the two ResNet50 models over the whole dataset.

Surprisingly, the test results looked very similar to the Xception models ones. This shows

how this network possesses high adaptability and �exibility due to its simple and less deep

architecture.
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Figure 3.27: On the left are shown the results of the correlation over the test data of the model trained
with the MSE loss function. On the right the results of the model trained with the MAPE loss function.

Even these networks can be used to make predictions based on pictures extracted from real

machined surfaces. Care must be put into using the correct pre-processing transformations

because they are di�erent from those used for the Xception models, as explained in Chapter 2.

Figure 3.28: The �rst prediction is made using the model trained with the MSE loss function. The
second, using the model trained with the MAPE loss function.

Finally, the study over the distribution of the MAE by Sa ranges could be made among all

the �ve models together. As it can be seen from Figure 3.29 for low values of Roughnesses the

di�erence between the models is not as big as for the higher values of Sa . This is mainly due to

the distribution of the samples inside the training dataset which, as explained before, was not

uniform but presents many more samples in the low Sa range. However, the Xception models

were able to tackle this problem by relying on a more advanced and upgraded architecture that

was able to lower the prediction errors even in areas with a scarce amount of training data.
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Figure 3.29: MAE calculated over the total available samples divided by Sa ranges.

3.2.3. Final model test performances

After having analysed all the single models' performances over the complete dataset and the

test one, only one was chosen to be tested over 52 new samples that were machined using new

parameters. This was done to see its adaptability and performance over a totally new dataset

that is composed of new pictures that are not enhanced but are directly taken on the machine.

Even in this application both the full brightness and half brightness conditions were tried while

taking the new images. To increase the prediction accuracy the �nal estimation was made after

averaging all the outputs of the network fed with the real image and additional ones generated

by enhancing it with the di�erent six di�erent techniques used to create the dataset. This also

reduced the probability of creating outliers.

Figure 3.30: On the left are represented the results of the estimations when the input are picture taken
using the full brightness of the camera's LED. On the right, when half brightness is used.
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It is hard to specify if there was a clear di�erence between the case of full brightness or half.

Even in Figure 3.31 it can be seen that the di�erence between the two cases is minimal.

Figure 3.31: Analysis of the AE between the estimations performed over the new 52 machine samples.

In Figure 3.31 it can be seen that the MAE is below 0.3 µm but the maximum measured AE is

above 1 µm . In addition, the minimums are not 0 µm but, because the results were rounded

to the second signi�cant digit, they resulted in 0 µm . Clearly, it can be noticed that the model

was not outliers-free but instead at least two huge ones can be observed (Figure 3.30). One

interesting notice is that for lower values or Sa the model performed slightly better when the

light was fully turned on while for higher values when it was in half brightness mode. This can

be reasonably explained because when the roughness is lower, more details are present and the

tool marks are usually closer to each other so a higher illumination helps in better identi�cation

of the features. When instead the surface is rougher too much can cause unwanted re�ections

that can spoil the real picture confusing the network during the estimation process.
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3.3. Static Optimisation

The trochoidal slotting operation on aluminium was optimised by applying what was introduced

and explained in Chapter 2. The Matern 52 kernel was used because of its better sensibility to

the distance between two near points compared to the Exponential one.

(a) wMRR = 0 and wSa = 1

(b) wMRR = 0.05 and wSa = 0.95

Figure 3.32: Posterior mean, Posterior standard deviation and Acquisition function of the di�erent
models created using di�erent weights. They are named "Posterior" because computed after the GPR

model was �tted on the available data-points and the BO process was concluded. The red points
present on the �rst two heat maps represent the data-points used to �t the model. The one on the last

picture to the right instead, represents the newly suggested one from the BO process.

A little increase in the weights does not sharply in�uence the decision of the optimiser which

decides to stay in the neighbourhood of the lowest feed rate but pushes for higher rpm which

proved to be bene�cial to the roughness and do not a�ect the MRR. Among all the reasons

to explain why a higher speed of rotation produces a better surface quality, considering the

machine and tools, a reasonable one could be that when the machining parameter is higher the

tool is in contact with the piece more frequently generating a smoother transition between each

tooth as they bite into the material and, considering that the tool used only have two �utes,

this generates a more stable process.
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(a) wMRR = 0.1 and wSa = 0.9

(b) wMRR = 0.2 and wSa = 0.8

Figure 3.33: Posterior mean, Posterior standard deviation and Acquisition function of the di�erent
models created using di�erent weights. They are named "Posterior" because computed after the GPR

model was �tted on the available data-points and the BO process was concluded. The red points
present on the �rst two heat maps represent the data-points used to �t the model. The one on the last

picture to the right instead, represents the newly suggested one from the BO process.

In Figure 3.33 it can be seen how a bigger set of weights is able to 'convince' the optimiser to

look for spaces in which there is a higher MRR to the detriment of the Sa . The optimizer in

fact, suggests a point that is pushed to the far right of the last heat map portrayed in Figure

3.33, where the maximum MRR can be obtained. It is interesting to see that a �fty-�fty balance

between the MRR and Sa weights are not needed to push the optimiser to suggest the highest

feed rate possible, but instead, this result is already achieved with a twenty to eighty per cent

one. The optimiser is also very sensitive to small changes in the ratio of the weights as it can

be noticed by comparing the (a) and (b) suggested points �gured in the far right heat maps

present in Figure 3.33.
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Figure 3.34: Suggested points by the optimiser after the �rst iteration is completed.

As the weights increase the optimiser reduced the rpm and increases the feed rate to push toward

higher values of MRR.

Figure 3.35: Correlation between Sa and MRR that generates a Pareto with some of the achieved
results, after the �rst iteration of the optimiser.

The optimiser was able to �nd news points that lay on a hypothetical Pareto front. Indeed as

can be noticed from Fig 3.35 the new points generated with lower feed rate produced samples

with the lowest Sa measured. This can be attributed to the fact that a too low Vf generates a

feed per tooth that is not enough to correctly remove the chips from the surface because they

are compressed and stacked instead of cut. The optimization procedure was stopped after just

one iteration and four new suggested points because the optimiser was not able to propose any

other new parameter combinations.
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3.4. Combined system

Figure 3.36: The �nal assembled system. There can be noticed the python script, the CNC controller
web page, and the machine with the installed monitoring system.

The assembled system was able to successfully identify the machined surface roughness and,

because this was above the set threshold, change the feed rate and speed to obtain a better

surface quality.

Figure 3.37: On the left is portrayed the machined surface generated following the initial G-Code. On
the right the one using the modi�ed one. The correspondent G-Codes are represented below and the

machining parameters are highlighted by the dotted boxes.
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"Only the people who are crazy enough to think they will change the world are the once who'll

do."

- Steve Jobs -

4.1. Summary

In this thesis, a monitoring system capable of identifying the surface roughness of a milled

surface using a simple USB Camera was implemented. This was realised by training di�erent

architectures of Convolutional Neural Networks and comparing their performances over a �xed

dataset and a newly created one. The training of these involved the creation of a big dataset

of images realised by machining aluminium and steel billets (mainly the �rst material) with

di�erent parameter combinations to obtain a wide range of roughness values. Image enhancement

was also used to obtain even more useful images. The creation of a sample required many

resources and time due to the limitations of the used machine which was a small 5-axis CNC

mill. Because of that, parametric 3D modelling and CAD to CAM linking were used to speed up

the modelling and G-Code generation times. In addition, an optical non-contact measurement

system was used to directly extract useful information regarding multiple machined surfaces in a

single shot just by taking pictures from above. The created dataset was split between training,

validation and testing and, because of the unbalanced distribution of the roughness values,

care was put to guarantee that each dataset contained all the values of measured Sa reducing

the probability that, during training, each model only saw a part of the obtained roughnesses.

Subsequently, Multi-Objective Bayesian Optimization was used to �nd the best combination

of feed and speed for a speci�cally trochoidal slotting milling operation. Because the aim of

the optimization was to obtain the lowest surface roughness with the highest material removal

rate possible, the objective function was created using a weighted sum between the two target

outputs. Di�erent weights allowed exploring di�erent areas of the allowed inputs space obtaining

di�erent parameters combination. Finally, after all the trained models had been compared using

di�erent error metrics evaluated over the training and test datasets, the best model was chosen

and the monitoring system was combined with the optimisation one. The scope of this operation

was to prove the possibility of evolving a normal CNC machine into an autonomous device. The

assembling of this system included the linking between the optimisation module, the monitoring

system and the CNC. Because the machine was controlled using a web-built interface developed
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by the company, the monitoring and optimisation had to be connected to a particular web

page. This was achieved using a web scraping script that was able to substitute the human-to-

screen interaction. Once completed the system was able to take a G-Code, modify it to let the

monitoring system perform its estimation, analyse the estimated data and, if needed, change the

targeted machining parameters of the next G-Code using a simple strategy based on the data

found using the optimization procedure. The new machining operation could then be started

with the new updated parameters and G-Code.

4.2. Conclusions

The realised monitoring system was able to correctly characterise most of the machined surfaces.

The errors in the training and test set showed that the architecture was well-trained and e�ec-

tive. In the end, the best model proved to be the Xception architecture trained with the MSE

loss function. Also, the Huber loss function proved to be e�ective but su�ered from asymmetry

and a higher number of outliers. The �nal MAE measured over the new 52 machined samples

proved that the system was accurate enough to predict the various roughnesses. Clearly, each

machining sector has its speci�cations in terms of tolerances and precisions. For example, in

a micro-machining application, the accuracy of the network would not be su�cient to consider

it feasible to be implemented in such an environment. Because di�erent machining strategies

were used the adaptability was improved compared to previous studies in which only a single

machining operation with a �xed tool path is chosen. The use of the camera directly mounted

on the machine that takes pictures as soon as the machining operations are �nished was rarely

adopted in the previous studies, which mainly focused on conducting the estimation once the

manufact was taken out of the device. In addition, the machining environment was not specif-

ically designed, with an external concentrated source of illumination or advanced mirrors, to

accommodate a machine vision system. This, combined with the use of a cheap USB camera

mounted on a 3D printed stand, gave this work a relative novelty compared to most of the

previous studies in which the system is realised using very expensive and advanced optics and

cameras. Once the model is fully trained it can be run on any modern device and the estimation

time is below one second, which makes it suitable to be installed in a typical manufacturing

environment. However, the presence of few but huge outliers needs to be improved because

it can lead to wrong predictions and as a consequence wrong parameters modi�cation. In this

work, their presence was hard to get rid of due to the nature of the manufacturing process which,

as stated before generated most samples with a particular range of roughness. In addition, the

dimension of the dataset should be raised without applying data enhancement extensively so

that the set is composed of truly di�erent samples. The optimisation strategy used obtained

a good distribution of feasible parameters with only a single new iteration. In total, only 11

samples were machined to obtain such results and no prediction model was needed. This was

the perfect application for this type of operation in which creating a new specimen required time

and resources due to the many operations needed between machining and measuring. Even if a
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full Pareto curve was not obtained the method proved to be e�ective and identi�ed three new

combinations of parameters that had a higher MRR compared to the minimum one but a lower

surface roughness. Compared to previous studies this method possesses higher adaptability

because only needs a few iterations to achieve satisfactory results and so can be adapted to dif-

ferent machining operations and strategies. The fully assembled system proved to be successful

in changing the machining parameters once an anomaly in the Sa of the machined surface was

detected by the monitoring system. The optimisation strategy adopted in this case was simple

but productive. However, it is not suitable to be applied in a dynamic environment in which the

conditions can change and are time-dependent. To be implemented in a real industrial system

also the tool wear must be considered when choosing the best combination of parameters, as

a consequence, this strategy would not be suitable anymore and the model would have to be

uploaded every time. In addition, even if the bene�ts of the optimisation system can already be

seen, in an industrial context the optimisation strategy should target more machining param-

eters including the depth of cuts, which indirectly in�uence the �nal quality of the machined

surfaces as higher ones generate higher instabilities, machining forces, vibrations and less heat

dissipation, and should also aim to minimise the tool wear. This will require additional samples

to be produced, many more iterations and an additional monitoring system that can visually

check the state of the tool after each machining operation.

4.3. Future Work

To make this system fully applicable in a real industrial context tool wear will also be considered

and the optimisation strategy will include also the minimisation of the �nal tool wear and will

optimise also the depths of cut. This will require the linking between the CAM software and

the optimization module because each time the radial depth of cut is changed the tool path

changes. In addition, the monitoring system will be improved to remove the outliers and reduce

accuracy errors by using state-of-the-art architectures or tailor-made networks. It would be

really interesting and useful to create a repository in which companies could upload samples,

data and could download taylor-made datasets to train their models for speci�c tasks. This

will increase the accuracy of the models and the training speed because it will save the samples

creation process that has to be done each time datasets are not available. In addition, the

adaptability could be further raised using meta-learning [64], [65] which, when a new material

must be analysed, can derive a new set of weights of the CNN instead of randomly initialising

them during the training. Considering the tool wear while uploading the machining parameters

directly on the machine will require the implementation of Bayesian optimisation also for this

task. In this case, because the environment is time-dependent, each time the monitoring system

detects the anomaly in the roughness the model would be uploaded and the optimiser can suggest

a new set of machining conditions that guarantee a surface roughness in the constrained limits,

a maximum material removal rate and minimal �nal tool wear.
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A.1. Machining Parameters Combination

MATLAB script used to create all the possible machining parameter combinations to create the

samples:

1 clc

2 clear all

3 close all

4

5 % mac_comb = xlsread('machined_combo.xlsx ',1,'T2:V121 ') ;

6

7 diameter = 4;

8 ap = [0.2, 0.4, 0.6, 0.8, 1, 1.2];

9 n = [21500 , 20000 , 20000 ,20000 ,20000 ,20000];

10

11 per_ae = [0.15, 0.30, 0.45, 0.60, 0.75, 0.90];

12 %ae = round(diameter .*per_ae ,1);

13 ae = [0.2, 0.4, 0.6];

14 min_f = 500;

15 max_f = 800;

16 delta_f = 100;

17

18 feed = min_f:delta_f:max_f;

19

20 AP = zeros(length(ap),length(ae)+1);

21 AP(:,1) = ap;

22 AP(:,2:end ,1) = ae.*ones(length(ap),length(ae));

23

24 AP(:,2:end ,2) = min_f .*ones(length(ap),length(ae));

25 AP(1,2:end ,3) = max_f;

26 AP(2,2:end ,3) = [800 800 700];

27 AP(3,2:end ,3) = [800 700 600];

28 AP(4,2:end ,3) = [800 600 500];

29 AP(5,2:end ,3) = [600 500 400];

30 AP(6,2:end ,3) = [500 500 400];

31 % AP(7,2:end ,3) = [300 250 200 150 75 50 50];

32 %%

33 row = 1;

34 %combos
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35 for i = 1: length(ap)

36 for j = 2: length(ae)+1

37 for k = 1:find(feed==AP(i,j,3))

38 combo(row ,1) = AP(i,1,1);

39 combo(row ,2) = AP(i,j,1);

40 combo(row ,3) = feed(k);

41 combo(row ,4) = round(pi*n(i)*diameter /1000 ,1);

42 combo(row ,5) = combo(row ,3)/(n(i)*2);

43 row = row+1;

44 end

45 row = row+1;

46 end

47 row = row+1;

48 end

49

50 combo(combo (:,1)==0,:) =[];

51 updated_combo = combo;

52 index =[];

53

54 % for i = 1:size(mac_comb ,1)

55 % in = find(sum(combo (: ,1:3) == mac_comb(i,:) ,2)==3);

56 % index = [index;in];

57 % end

58 updated_combo(index ,:) = [];

59 writematrix(updated_combo , 'updated_combo ');

60

61 %% Organising them

62 n=20;

63 ap1 = updated_combo(updated_combo (:,1)==ap(1) ,:);

64 ap2 = updated_combo(updated_combo (:,1)==ap(2) ,:);

65 ap3 = updated_combo(updated_combo (:,1)==ap(3) ,:);

66 ap4 = updated_combo(updated_combo (:,1)==ap(4) ,:);

67 ap5 = updated_combo(updated_combo (:,1)==ap(5) ,:);

68 ap6 = updated_combo(updated_combo (:,1)==ap(6) ,:);

69

70 % l = [size(ap1 ,1), size(ap2 ,1), size(ap3 ,1), size(ap4 ,1), size(ap5 ,1), size(ap6

,1)];

71 l = [size(ap1 ,1), size(ap2 ,1), size(ap3 ,1), size(ap4 ,1), size(ap5 ,1)];

72 l_sorted = sort(l)
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A.2. Data Enhancement

Python script used to enhance the data:

1

2 import numpy as np

3 import os

4 import glob

5 import cv2

6 import torchvision

7 from PIL import Image

8 from matplotlib import pyplot as plt

9 import csv

10 import pandas as pd

11 import openpyxl

12 trs1 = torchvision.transforms.ColorJitter(brightness =0.1, contrast =0.1, hue =0.1)

13 trs2 = torchvision.transforms.RandomAdjustSharpness(sharpness_factor =20)

14 trs3 = torchvision.transforms.RandomRotation(degrees =(0, 90))

15 trs4 = torchvision.transforms.ColorJitter(brightness =0.25 , contrast =0.25 , hue

=0.25)

16 trs5 = torchvision.transforms.ColorJitter(brightness =0.5, contrast =0.5, hue =0.5)

17 trs6 = torchvision.transforms.RandomHorizontalFlip(p=0.99)

18 def aug_save(img , imgname , path):

19 tr_img1 = trs1(img)

20 tr_img2 = trs2(img)

21 tr_img3 = trs3(img)

22 tr_img4 = trs4(img)

23 tr_img5 = trs5(img)

24 tr_img6 = trs6(img)

25

26 dummy_imgname = imgname.split(".")[0]

27

28 img1name = dummy_imgname + '_aug1.png'

29 img2name = dummy_imgname + '_aug2.png'

30 img3name = dummy_imgname + '_aug3.png'

31 img4name = dummy_imgname + '_aug4.png'

32 img5name = dummy_imgname + '_aug5.png'

33 img6name = dummy_imgname + '_aug6.png'

34

35 img.save(path+'/'+imgname)

36 tr_img1.save(path+'/'+img1name)

37 tr_img2.save(path+'/'+img2name)

38 tr_img3.save(path+'/'+img3name)

39 tr_img4.save(path+'/'+img4name)

40 tr_img5.save(path+'/'+img5name)

41 tr_img6.save(path+'/'+img6name)

42

43 names = [[ imgname], [img1name], [img2name], [img3name], [img4name], [

img5name], [img6name ]]

44
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45 return(names)

A.3. Model Training

Python script used to train the models:

1 import timm

2 import torch

3 import torch.nn

4 import torchvision

5 from torch import nn

6 from torch.utils.data import Dataset

7 from torchvision import datasets

8 from torchvision.transforms import ToTensor

9 from torch.utils.data import DataLoader

10 import torchvision.transforms as transforms

11 import matplotlib.pyplot as plt

12 import random

13 import numpy as np

14 from customDataser import Roughness

15 from torchvision.transforms import ToTensor

16 from torchvision.transforms import CenterCrop

17 from torchvision.transforms import Normalize

18 from torch.utils.data import random_split

19 import pickle

20 import matplotlib.pyplot as plt

21 import statistics

22 from torchmetrics import R2Score

23 from torchmetrics import MeanAbsolutePercentageError

24 from torchmetrics import MeanAbsoluteError

25 from GPUtil import showUtilization as gpu_usage

26 from numba import cuda

27 from Functions import csv_range

28 from Functions import imshow

29 from Functions import model_test

30 from Functions import correlation

31

32 # CNN Model

33 model_type = 'resnet50 '

34 loss_type = 'MSE'

35 device = torch.device('cuda')

36 itererations = range (2,9)

37 l_rates = [0.0005 , 0.0005 , 0.0005 , 0.0005 , 0.0003 , 0.0003 , 0.0001 , 0.0001 ,

0.0001 , 0.00005]

38

39 for iteraz in itererations:

40 it_num = iteraz

41 model_number = 3

42
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43 composed_res = transforms.Compose ([ ToTensor (), CenterCrop (224), Normalize(

mean =[0.485 , 0.456, 0.406] , std =[0.229 , 0.224 , 0.225]) ])

44 composed_xce = transforms.Compose ([ ToTensor (), CenterCrop (229), Normalize(

mean =[0.5 , 0.5, 0.5], std=[0.5 , 0.5, 0.5]) ])

45

46 if model_type == 'xception ':

47

48 composed = composed_xce

49 model = timm.create_model(model_type , pretrained=False , num_classes = 1)

50 model = model.to(device)

51

52 elif model_type == 'resnet50 ':

53

54 composed = composed_res

55 model = torch.hub.load('pytorch/vision:v0 .10.0', model_type , pretrained

= False)

56 model.fc = nn.Linear (2048, 1)

57 model = model.to(device)

58 # DATASET LOADING

59 if it_num <= 1:

60 # print('Fully connected layer:',model.fc)

61

62 # dataset = Roughness(csv_file = 'C:/ Users/AMSE/OneDrive/Filippo/

Educazione /3- University/KAIST/Kaist_university/Thesis/Machine_Learning/Git/

code_mine/CNN/Datasets/dataset.csv ', root_dir = photo_path , transform =

composed)

63 # train_data = Roughness(csv_file = mother_csv +'/ dataset_train.csv ',

root_dir = photo_path , transform = composed)

64 # val_data = Roughness(csv_file = mother_csv +'/ dataset_val.csv ',

root_dir = photo_path , transform = composed)

65 # test_data = Roughness(csv_file = mother_csv +'/ dataset_test.csv ',

root_dir = photo_path , transform = composed)

66

67 # print('Training dataset length:', len(train_data))

68 # print('Validation dataset length:', len(val_data))

69 # print('Test dataset length:', len(test_data))

70 # print('Datset length:', len(dataset) ,'+=' ,len(train_data)+len(

val_data)+len(test_data))

71

72 # pickle.dump(dataset , open(mother_csv +'/'+ model_type +'/data_all.dat ', '

wb '))

73 # pickle.dump(train_data , open(mother_csv +'/'+ model_type +'/ data_train.

dat ', 'wb '))

74 # pickle.dump(val_data , open(mother_csv +'/'+ model_type +'/data_val.dat ',

'wb '))

75 # pickle.dump(test_data , open(mother_csv +'/'+ model_type +'/data_test.dat

', 'wb '))

76 # print('Model and Data created for the:', model_type)

77 train_data = pickle.load(open(mother_csv+'/'+model_type+'/data_train.dat

', 'rb'))
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78 val_data = pickle.load(open(mother_csv+'/'+model_type+'/data_val.dat', '

rb'))

79 test_data = pickle.load(open(mother_csv+'/'+model_type+'/data_test.dat',

'rb'))

80 dataset = pickle.load(open(mother_csv+'/'+model_type+'/data_all.dat', '

rb'))

81 print('Model Created ')

82

83 if it_num > 1:

84 model.load_state_dict(torch.load(model_path+'/trained_model '))

85 # model = torch.hub.load('pytorch/vision:v0.10.0', model_type ,

pretrained = False)

86 # model.fc = nn.Linear (2048, 1)

87 model = model.to(device)

88 train_data = pickle.load(open(mother_csv+'/'+model_type+'/data_train.dat

', 'rb'))

89 val_data = pickle.load(open(mother_csv+'/'+model_type+'/data_val.dat', '

rb'))

90 test_data = pickle.load(open(mother_csv+'/'+model_type+'/data_test.dat',

'rb'))

91 dataset = pickle.load(open(mother_csv+'/'+model_type+'/data_all.dat', '

rb'))

92

93 print('Training dataset length:', len(train_data))

94 print('Validation dataset length:', len(val_data))

95 print('Test dataset length:', len(test_data))

96 print('Datset length:' ,len(train_data)+len(val_data)+len(test_data))

97 print('Model and Data Loaded for the:', model_type)

98

99 # TRAINING

100 # HYPER PARAM

101 learning_rate = l_rates[iteraz -1]

102 # learning_rate = 0.0005

103 batch_size = 16

104 n_epoch = 8

105 delta_h = 0.8

106

107 # Datasets

108 train_dataloader = DataLoader(train_data , batch_size , shuffle=True)

109 val_dataloader = DataLoader(val_data , 1 , shuffle=True)

110 test_dataloader = DataLoader(test_data , round(len(test_data)*0.5)+1, shuffle

=True)

111 random_dataloader = DataLoader(test_data , 4 , shuffle=True)

112

113 # Training

114 # Losses per batch

115 optimizer = torch.optim.Adam(params = model.parameters (), lr = learning_rate

)

116 MSE = nn.MSELoss ()

117 MSE = MSE.to(device)



A| Appendix A: Main Scripts 85

118 MAE = MeanAbsoluteError ()

119 MAE = MAE.to(device)

120 MAPE = MeanAbsolutePercentageError ()

121 MAPE = MAPE.to(device)

122 HUBER = nn.HuberLoss(delta = delta_h)

123 HUBER.to(device)

124 r2score = R2Score ()

125 r2score = r2score.to(device)

126 batch_loss = []

127 MSE_val = []

128 MAE_val = []

129 MAPE_val = []

130

131 print("Initial GPU Usage")

132 gpu_usage ()

133

134 for epoch in range(n_epoch):

135

136 print('Learning rate:', learning_rate)

137

138 for i,data in enumerate(train_dataloader):

139

140 inputs , labels = data

141 labels = labels.type(torch.FloatTensor)

142 inputs = inputs.to(device)

143 #print(inputs.size(), labels.size())

144 y_pred_train = model(inputs)

145 y_pred_train = y_pred_train.to(device)

146 labels = labels.view([len(labels), 1])

147 labels = labels.to(device)

148 train_loss = MSE(y_pred_train , labels)

149 train_loss.backward ()

150 optimizer.step()

151 optimizer.zero_grad ()

152 batch_loss.append(train_loss.item())

153

154 # Validation of training

155

156 loss_MSE , loss_MAE , loss_MAPE , R2 = model_test(val_data , device ,

model , save_var_path+'/Training/Loss', '', False)

157 MSE_val = np.append(MSE_val , loss_MSE)

158 MAE_val= np.append(MAE_val , loss_MAE)

159 MAPE_val = np.append(MAPE_val , loss_MAPE)

160

161 if i%50 == 0:

162 print('Epoch {}, batch {} loss: {}'.format(epoch + 1, i + 1,

train_loss))

163

164 model.train()

165
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166 # if epoch % 3 == 0:

167 # [prediction , g_truth] = correlation(dataset , device , model ,

save_var_path +'/Figures/Correlation '+str(epoch), False)

168 # pickle.dump(prediction , open(save_var_path +'/Training/

correlation_p '+str(epoch)+'.dat ', 'wb '))

169 # pickle.dump(g_truth , open(save_var_path +'/Training/correlation_g '+

str(epoch)+'.dat ', 'wb '))

170

171 print(f"epochs {epoch+1}, loss:{ train_loss}")

172

173 # Variable save

174 torch.save(model.state_dict (),save_var_path+'/trained_model ')

175 pickle.dump(batch_loss , open(save_var_path+'/Training/Loss/batch_loss '+'

.dat', 'wb'))

176 pickle.dump(MSE_val , open(save_var_path+'/Training/Loss/MSE'+'.dat', 'wb

'))

177 pickle.dump(MAE_val , open(save_var_path+'/Training/Loss/MAE'+'.dat', 'wb

'))

178 pickle.dump(MAPE_val , open(save_var_path+'/Training/Loss/MAPE'+'.dat', '

wb'))

179

180 # TEST

181 model.load_state_dict(torch.load(actual_model_path+'/trained_model '))

182 model_test(test_data , device , model , save_var_path+'/Test', '', True)

183

184 # Plotting the errors

185 batch_loss = pickle.load(open(save_var_path+'/Training/Loss/batch_loss '+'.

dat', 'rb'))

186 MSE_val = pickle.load(open(save_var_path+'/Training/Loss/MSE'+'.dat', 'rb'))

187 MAE_val = pickle.load(open(save_var_path+'/Training/Loss/MAE'+'.dat', 'rb'))

188 MAPE_val = pickle.load(open(save_var_path+'/Training/Loss/MAE'+'.dat', 'rb')

)

189

190 x_batch = list(range(len(batch_loss)))

191 fig1 = plt.figure ()

192 plt.plot(x_batch , batch_loss)

193 plt.plot(x_batch , MSE_val)

194 plt.plot(x_batch , MAE_val)

195 plt.plot(x_batch , MAPE_val)

196 plt.xlabel('Number of batches ')

197 plt.ylabel('Errors per Batch ')

198 plt.title('Losses ')

199 plt.legend (["Train",'MSE', 'MAE', 'MAPE'], loc ="upper right")

200 #plt.show()

201 plt.savefig(save_var_path+'/Figures/Training_errors ')

202

203 # Plotting the correlation

204 prediction , g_truth = correlation(dataset , device , model , save_var_path+'/

Figures ', True)
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205 pickle.dump(prediction , open(save_var_path+'/Training/prediction '+'.dat', '

wb'))

206 pickle.dump(g_truth , open(save_var_path+'/Training/g_truth '+'.dat', 'wb'))

207

208 print('Number of excecuted Epochs:', iteraz *8)
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Pocket NC V2-50CHB technical speci�cations:

Variable Value

Spindle speed from 1000 to 50000 rpm

Spindle run-out 2.5 µm

Power 600W

Max tool Diameter 4 mm

Collet CHB 1.5, 3, 4 mm µm

Max X travelling 115.5 mm

Max Y travelling 128.3 mm

Max Z travelling 90.1 mm
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