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Abstract  

Nowadays deep learning-based solutions are widely spread among different fields. 
The employment in the surgical domain may result a useful tool to address the 
challenges proposed by the new frontiers of medicine. Indeed, telementoring, 
teleoperation and remote diagnosis, now realities thanks to advances in 
telecommunication technology and video coding system, require sophisticated 
system to storage and transmit big data, e.g., high-resolution videos. Focusing on 
video transmission, constrains are present in terms of latency and bandwidth to 
guarantee the real time application, without losing quality. In the specific case of 
remote surgery, low-latency and bandwidth are essential to ensure the stability of 
the system employed.  Even though traditional approaches are highly performant, 
a further improvement would increase the efficiency, thus the employment, of these 
services. Since the leading standards for video compression, i.e., H.264/AVC and 
H.265/HEVC, have reached a turning point in terms of performance, alternative 
solutions for their optimizations and brand-new schemes needs to be explored. 
Deep Learning (DL) techniques may be well suited for the purpose, as they can 
overcome the limitations featured by the traditional video codecs. In this work, a 
deep learning-based method is proposed to enhance the performance of H.264/AVC 
in terms of quality, bandwidth and latency for Robot Assisted Minimally Invasive 
Surgery (RAMIS), namely for the Robotic Assisted Radical Prostatectomy (RARP). 
A binary autoencoder is proposed to compress the residual, thus the difference 
between the original and the compressed frame. The output of the network is 
summed to the one of H.264/AVC to obtain a better image reconstruction while 
saving compression time. The scheme proposed overcomes the traditional codec 
both in terms of quality and speed in a low bitrate scenario. Moreover, it is 
computational friendly and it could be further optimized to become a powerful tool 
for telemedicine applications.  

Key-words: telesurgery, teleoperation, remote surgery, video compression, deep 
learning, real time, high quality, robotic assisted minimally invasive surgery
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Abstract in italiano 
Oggigiorno le soluzioni basate sul deep learning sono ampiamente diffuse in 
differenti contesti. Il loro utilizzo nel dominio chirurgico potrebbe risultare uno 
strumento utile per affrontare le sfide proposte dalle nuove frontiere della medicina. 
Infatti, le applicazioni di telemedicina sono divenute ormai realtà grazie ai progressi 
della tecnologia nel campo delle telecomunicazioni e del sistema di codifica video, 
e richiedono sistemi sofisticati per archiviare e trasmettere big-data, quali ad 
esempio video ad alta risoluzione. Nel caso specifico della trasmissione video, sono 
presenti vincoli in termini di latenza e larghezza di banda per garantire 
l'applicazione in tempo reale. La qualità deve essere comunque preservata. Per la 
chirurgia da remoto, bassa latenza e larghezza di banda sono essenziali per 
assicurare la stabilità del sistema impiegato. Anche se gli approcci tradizionali sono 
altamente performanti, un miglioramento ulteriore consentirebbe un aumento 
dell'efficienza con conseguente diffusione di questi servizi. Poiché gli standard 
correnti utilizzati per la compressione video, i.e., H.264/AVC e H.265/HEVC, hanno 
raggiunto altissimi livelli in termini di prestazioni, è necessario esplorare soluzioni 
alternative per la loro ottimizzazione, oppure sviluppare nuove tecniche di 
compressione. I metodi di Deep Learning (DL) possono considerarsi adatte allo 
scopo, poichè in grado di superare le limitazioni proprie dei codec tradizionali. In 
questa tesi si propone una rete neurale per migliorare le prestazioni di H.264/AVC 
in termini di qualità, larghezza di banda e latenza per la chirurgia mini-invasiva 
assistita da robot. Si propone un autoencoder binario per comprimere il residuo, 
ossia la differenza tra il frame originale e quello compresso. L'output prodotto dalla 
rete è sommato a quello di H.264/AVC al fine di ottenere una migliore ricostruzione 
dell'immagine, riducendo tempo di compressione. Lo schema proposto supera il 
codec tradizionale sia in termini di qualità che di velocità nello scenario dei bassi 
bitrate. Inoltre, è di facile implementazione e potrebbe essere ulteriormente 
ottimizzato, divenendo un potente strumento per la telemedicina. 

Parole-chiave: telechirurgia, teleoperazione, chirurgia da remoto, compressione 
video, deep learning, tempo reale, alta qualità, chirurgia mini-invasiva.
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Introduction 

Video compression and transmission methods have changed among time; 
nowadays many Deep Learning algorithms are exploited to guarantee high 
performances in terms of quality while reducing bandwidth requirements at the 
same time. Deep Learning (DL) solutions are investigated in different fields and 
among companies, to ensure customers an increasingly efficient service. Disney can 
be mentioned as a clear example of the usage of DL methods [1].  

In recent years, advances in telecommunication technology and video coding 
system have opened new perspectives also in the surgical area, where 
telementoring, teleoperation and remote diagnosis were at their infancy. Surgery in 
the 21st century is facing new challenges, as it plays an increasingly significant role 
in the treatment of acute and chronical diseases. However, the access to timely, 
affordable and safe surgical care is limited not only in middle and low-income 
countries, but also in the high-income ones, where centralization of cares 
concentrates specialist surgery in metropolitan hubs, with a consequent limitation 
of accessing surgery in rural areas [2], [3]. Telemedicine provides good alternatives 
to the emerging challenges. In particular, telementoring offers a solution which 
increases both quality and access to surgical care, allowing expert surgeons to guide 
their less experienced colleagues through the procedure from a remote location [2], 
[3]. In this context, high amount of data needs to be transmitted and the 
transmission error can affect the perceived video quality. This results in bandwidth 
constrains, which interfere with the achieving of real time performances. 
Furthermore, the usage of closed-loop-control mechanism and surgery robot in 
remote surgery requires a latency control [3], to guarantee the stability (no 
oscillations) of the system. Proper compression methods are necessary to satisfy the 
requests both on latency and bandwidth. Lossless algorithms cannot be used for 
real time application, for large bandwidth and high latency are required to maintain 
quality. In this context, a high compression level is not achieved. On the contrary, 
lossy algorithms can be well suited for the task. These techniques have been 
developed specially to reduce the data size for storage, handling, and transmitting 
content. H.264/AVC (Advanced Video Coding) and its successor H.265/HEVC 
(High Efficiency Video Coding) represent the most viable choice in many 
applications, for they can provide smaller files in higher quality with respect to the 
previous generations.  
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In fact, “they have a “smaller” algorithm that’s better at choosing the data to throw 
out” [5]. Since both H.264/AVC and H.264/HEVC are based on the hybrid 
prediction/transform coding method, proposed for the first time in 1979 by 
Netravali and Stuller [6], they can introduce block artefacts and other forms of 
quality compression degradation because of the quantization step applied before 
data transmission. Therefore, in recent times learning methods - Deep Learning 
techniques in particular - have been exploited for leveraging the potential of 
H.264/AVC and H.265/HEVC in the world of streaming and off-line video 
compression [1], [7]. Brand new codecs and solutions for improving one of the five 
main modules of the traditional codecs (intra-prediction, inter-prediction, 
quantization, entropy coding and loop filtering) have been developed through the 
years [6]. The analysis of the current state-of-art demonstrate that the employment 
of deep learning methods is still in its initial stages, but it shows good perspectives 
for the future.  

Focusing on the medical field, it can be said that although H.265/HEVC overcomes 
its predecessor in terms of quality, it is computationally more demanding, hence it 
is not as widely spread as H.264/AVC [8]–[10]. As regards the usage of Deep 
Learning-based solutions in this area, its application is reported in very few 
documents. The thesis aims to explore a brand-new technique for surgical video 
transmission, with its focus on robot assisted minimally invasive procedures. In 
fact, in modern times, the usage of robotic systems to increase both precision and 
safety of surgical procedures is spread among the surgical area[10], especially in 
Minimally Invasive Surgery (MIS). MIS techniques seek to perform surgical 
procedures while avoiding the morbidity of the conventional surgical wounds by 
employing little tools and miniaturized video cameras to allow the visualization of 
the surgical area inside the body [11]. Nowadays, MIS procedures are broadly 
exploited among every specialty of surgical medicine, and their employment is 
continuing to expand [13]. The reason which stands behind the fully establishment 
of MIS can be found in improved immune responses, shorter hospital stays, reduced 
size of the instruments with better cosmetic results and a minimization of the area 
exposed [13]. The employment of a master-slave surgical system, i.e., the Da Vinci 
Robot, in laparoscopic procedures provides several advantages, such as 3D vision, 
motion scaling, intuitive movements, visual immersion and tremor filtration [13]. 
Therefore, Robotic Assisted Minimally Invasive Surgery (RAMIS) can optimize MIS 
techniques, increasing the quality of surgical cares. Nowadays, RAMIS techniques 
are mainly exploited by urologists, general surgeons, cardiothoracic, gynecologists 
and pediatric surgeons [13]. Robot Assisted Radical Prostatectomy (RARP) 
constitutes one of the most performed Robotic Assisted MIS operations [14].  
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The procedure aims to remove the prostate and nearby tissues with great precision, 
through several small keyhole incisions in the patient’s abdomen [15].  

The robotic assisted surgery procedure involves a system composed by a 3D 
endoscope and an equipment for image processing is employed, to deliver a 
superior view of the surgical area and its surrounding structures. The surgeon 
performs the operation guiding the small wristed instruments into the patient’s 
body cavity through the console. 

 

 

 

 

 Figure 0.1 The Da Vinci robot system employed for many surgical procedures, included 
RARP. The surgeon performs the operation guiding the tiny wristed robotic arms through 
the console. Another surgeon is in charge of controlling the surgery through the video 
displayed, acquired by the 3D endoscope. 

It is clear that in this context image processing is of great importance within the 
system, thus it requires advanced methods for compression, transmission and 
reconstruction of the image, to avoid loss of clinically relevant detail. 

In this work a Neural Network has been trained on 1280x720 (720p) RARP videos - 
thus HD videos - collected from the Da Vinci robot for remote surgery, to achieve 
good performances both in terms of quality and time of transmission, to ensure a 
safe and precise execution by the surgeon, who operates from a remote position.  
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More precisely, the stability and the effectiveness of the system are guaranteed by: 

 Latency: the stability of the closed-loop-system is strictly associated to the 
delay of the control signal going back to the robotic arm, as well as the 
one related to the transmission of the surgical field images acquired 
through the cameras [16]. Both delays need to be the smallest possible for 
real time application, hence average and maximum latency value have to 
be defined [17]–[19].  
 

 Bandwidth: the bandwidth required to transmit the data does not have to 
exceed the bandwidth allowed by the transmission system. 

 
 Quality: the quality needs to be good enough for the surgeon must be able 

to detect any clinically relevant detail during the procedure, e.g., small 
bleeding or unexpected tumor masses [8], [9]. 

The results achieved by the Neural Network implemented in the thesis have been 
compared to those of H.264/AVC. More precisely, PSNR and SSIM have been 
considered to assess quality; latency has been evaluated in terms of encoding and 
decoding time, considering 30 ms (latency value for real time applications) as 
maximum acceptable value for both encoding and decoding time. Both quality and 
time have been calculated for different bitrate, ranging from 1 to 10 Mb/s, at 
different presets: ultrafast, medium, slow. The network shows to overcome 
H.264/AVC quality performances in a low bitrate scenario, featuring an encoding 
time lower than 30ms, thus suitable for real time application.  Since the employment 
of deep learning structures in the surgical area is still at its infancy, there is a large 
space for improvement and optimization, allowing increasingly better services and 
opening new prospective toward unexplored horizons. 

The thesis proposes a computational friendly solution for real time and high-quality 
endoscopic video transmission, to enhance the services offered by telemedicine and 
telementoring, increasing the possibility of their application, which can lead to an 
improvement in terms of life quality among different contexts. In particular, the 
work focuses on RARP. 
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The thesis is organized as follows: in Chapter I is proposed an overview of the 
existent methods which address the same challenge, both for video compression 
among different fields and for endoscopic video compression. Chapter II illustrates 
the proposed method and its application on a specific dataset; Chapter III presents 
the results achieved in terms of quality and time and a comparison between the 
performance associated to the H.264/AVC and to the scheme proposed. Chapter IV 
contains a discussion of the results, followed by the conclusions.  
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1 State of the art 
 

The limitations in storing and transmitting picture data for video applications led 
to the development of techniques to overcome the constrains, reducing the large 
quantity of information used to represent the content without excessively reducing 
the quality of the original data. More in detail, video compression methods and 
tools aim to diminish size of a video by eliminating redundancies, which can be of 
four types: spatial, temporal, statistical and color space [20]. The reduction of the 
amount of data leads to lower bandwidth requirements and a smaller storing space.  

Compression techniques can be categorized as Lossy or Lossless. Lossless algorithms 
allow a more efficient saving of data in their compression state, without losing any 
information, hence the original data can be perfectly reconstructed from the 
compressed ones. In other words, the process eliminates redundancies without 
affecting quality, hence guaranteeing data integrity and fully reversibility. 
Unfortunately, a high compression level cannot be reached and the file size is not 
significantly reduced. These methods are mainly used for text, programs, images 
and sounds [5]. Huffman coding can be cited as an example of lossless compression 
algorithm and it will be further deepened. Lossy techniques are based on the 
assumption that some data are irrelevant for human perception, thus they can be 
eliminated (perceptual coding). This results in a substantial data size reduction 
which leads t0 an approximate recovery of the original data [5], [16]. If compression 
is important the losses become noticeable, causing visible artifacts, such as 
blockness, blur, color bleeding, and banding in the reconstructed image or video 
[20]. Lossy algorithms, like Discrete Cosine Transform (DCT), are applied for 
images, audio and video [5].  
Video can be compressed using both intra and inter-frame strategies. The first one 
refers to a compression of an individual frame. The inter-frame strategy instead 
utilizes redundancies between two successive video frames, thus the encoding 
scheme only keeps the information that changes. Various codecs, tools that perform 
compression, deploy these strategies [20]to guarantee quality without being highly 
computational demanding, both in terms of time and space.   
As previously mentioned, video codecs are systems aim to compress video data, 
changing their format in a supported one by video player or decoders.  
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Over the last four decades, MPEG - Motion Pictures Expert Group – have developed 
MPEG-1, MPEG-2, MPEG-4 and MPEG-H video compression standards and the 
collaboration with the International Standard Organization/Motion Picture Expert 
Group - ISO/MPEG and International Telecommunication Union - ITU have 
allowed their harmonization and standardization [20]. MPEG-1 was the first codec 
standard, and it was completed in 1993 and it was widely deployed within Video 
CDs.  
Its successor, MPEG-2, made its official appearance in 1995, becoming of popular 
usage with DVDs and digital TV broadcasting. In 2003 H.264, also known as AVC 
or MPEG-4 part 10, was introduced and mostly deployed for HD-TV and Internet-
based video services.  
The codec has been jointly created by ISO-MPEG and ITU and it represents the 
leading standard for many applications among different fields, comprising the 
surgical one.  
Since compression efficiency and speed guaranteed by H.264 can no longer be 
substantially improved efforts are made for extending today’s standards rather than 
developing completely new video coding methods. Therefore, the research has been 
directed towards pre-processing operations or layer enhancement to give customers 
exceptional visual quality [20], [21]. The AVC standard has been upgraded with 
H.265/High-Efficiency Video Coding (HEVC) which has entered the market in 2013 
and it has been widely adopted for 4K and 8K, high dynamic range (HDR) and wide 
color gamut (WCG) video applications [20]. In the surgical domain the codec 
standard currently in use for dealing with data transmission is H.264 [9], [10], [18], 
since it is less computationally demanding then HEVC [10], thus hardware-friendly, 
easily implemented and distributed in its accelerated version. As a result of the 
algorithm optimization, small latency can be reached and it is a strict requirement 
for real time applications.  
 

1.1 H.264/AVC standard codec 
Since the H.264/AVC codec is nowadays considered the leading standard for 
surgical video compression, an overview is proposed. More in particular, the focus 
is placed on the encoder side, since the central decoder is standardized, 
guaranteeing the possibility to optimize the encoding implementations for specific 
applications [23].  
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H.264, as its predecessor MPEG-2, is based on hybrid block-based scheme (Figure 
1.1) which exploit both temporal and spatial prediction in combination with block-
based transform coding [24].  
A coded video sequences is composed by a sequence of coded pictures, which can 
represent either an entire frame or a single field [23], [24]. The frame can contain, in 
general, two interleaved fields, a top and a bottom one. Field-based coding is useful 
when the scene presents strong motion. It can happen that some scenarios require 
parts to be encoded in field mode, while others are more efficiently encoded in 
frame mode. Therefore, H.264 supports macroblock-adaptive switching between 
frame and field coding [24]. At the beginning of the encoding process, frames are 
partitioned in macroblocks of fixed size, which cover a rectangular picture area of 
16x16 samples for the luma component and 8x8 samples each of the two chroma 
components, in the case of 4:2:0 chroma sampling format [24]. Luma component Y 
refers to brightness, while the two chroma components Cb and Cr represent the 
extent to which the color deviates from gray toward blue and red respectively [23]. 
In fact, the human visual system perceives scene contents in terms of brightness and 
color information separately, with more sensibility to brightness than colors.  

Figure 1.1 Structure of an H.264/AVC encoder 
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To create a functional video transmission design that leverage this characteristic, 
the chroma component has one fourth of the number of samples in both vertical and 
horizontal direction than the luma component (4:2:0 configuration).  
The previously mentioned macroblocks are grouped into slices, regions of a given 
picture that can be decoded independent of each other. A picture comprises the set 
of slices representing a complete frame or field [24].  
Five slice coding types are supported by the H.264/AVC encoder [23], [24]:  
 

 I slice: intra-prediction is used for the entire number of macroblocks of the 
slice and spatially neighboring samples of a given block already decoded are 
used as a reference for spatial prediction [24].  

 P slice: macroblocks are coded in inter-prediction mode, hence prior coded 
images are used to form a prediction signal [24]. Each P-type macroblock is 
divided into sub-blocks, employed for motion compensation. The prediction 
signal is realized by displacing an area of the corresponding reference picture 
[23], [24]; the displacement is described by a translational motion vector and 
a picture reference index. The innovation apported by H.264 with respect to 
its predecessor lies in the possibility of using more than one coded picture as 
reference for motion-compensated prediction [24].  

 B slice: B-types can be coded using inter-prediction employing a weighted 
average of two motion-compensated prediction values per prediction blocks 
for building the signal; in fact, B stands for bi-directional. As for P slices, 
H.264 allows to exploit any arbitrary pair of reference pictures for the 
prediction of each region [24]. 

 SP slice:   the switching P slice allows efficient switching between different 
pre-coded pictures. 

 SI slice: switching I slices permit to match with precision macroblock for 
random access and error recovery purpose [13]. 
 

In a typical encoding sequence in field mode, the first field is encoded with intra 
prediction, while inter-prediction is used for the second one [24]. As regarding the 
frame mode, the I-frame is found at the beginning and at the ending of the sequence, 
while the remaining part is composed by P and B-frames [25]. As for slices, I-frame 
is obtained by using intra-prediction, while P and B-frame are inter-coded frames. 
I-frames are characterized by a spatial compression made by exploiting only the 
information contained within that frame. P-frames and B-frames involve temporal 
compression; in particular, P-frame contains only the changes from the previous 
one, while B-frames uses differences between the current frame and both the 
preceding and following frames to determine its content [25]. 
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The encoding process aim to select which samples need to be used and the way to 
combine them for a good prediction; the choice is finally communicated to the 
decoder. The residual, defined as the difference between the original sample and the 
predicted one, is transformed. The transform coefficients are then scaled and 
approximated through scalar quantization. A quantization parameter, which can 
take 52 values, is used for the purpose. The organization of these values has been 
established so that an increase of 1 in quantization parameter means an increase of 
quantization step size by approximately 12% [23].  Successively, the entropy coding 
process is applied and the new coefficients are transmitted together with the 
entropy-coded prediction information [24]. In H.264 two entropy coding 
configurations are supported: the exponential-Golomb code for all the syntax 
elements, excluding the quantized transform coefficients, for which the Context-
Adaptive Variable Length Coding (CAVLC) is employed [23], [24]. A model of the 
decoding process is contained in the encoder, to allow it to compute the same 
prediction values calculated by the decoder. The decoder inverts the entropy coding 
process and performs the prediction using the information given by the encoder 
[24]. Moreover, the decoding phase involves the inverse-scaling and the inverse-
transforming of the quantized transform coefficients to produce the approximated 
residual, which is added to the prediction. Since a peculiarity of block-based coding 
is the accidental production of visible discontinuities along block boundaries which 
can diffuse into the blocks, an adaptive deblocking filter is applied. The solution 
allows a reduction of the so-called blocking artifact, without changing the sharpness 
of the continent. The perceived quality is considerably improved, and the bitrate is 
diminished by 5%-10% [23], [24]. Finally, the decoded video is provided as output.  

1.2 H.265/HEVC standard codec 
The increasing demand for high compression efficiency due to a growing 
popularity of HD and Ultra HD videos together with the transmission needs for 
video-on-demand services and the necessity to handle the traffic caused by video 
applications for mobile devices, tablet and PCs, have pushed researchers toward the 
development of more performant codecs. H.265/HEVC has been designed to 
provide the same services of its predecessor, i.e., H.264/AVC, with an increased 
video resolution and an increased parallel processing architectures [26]. In HEVC, 
as well as in H.264, the standardization interests only the syntax and the bitstream 
structure, as well as the bitstream constrains and the mapping for the generation of 
the decoded output. In this way a certain freedom for optimization for specific 
applications is conferred [16]. HEVC scheme employs the block-based hybrid 
approach (Figure 1.2).  
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Although the video coding technique is similar to the one employed by its 
predecessor, HEVC shows brand new features aimed to improve the parallel 
processing capability or the ability to modify the structuring of slice data for 
packetization purposes [26].  

 

 

 

The Coding Tree Units (CTU) constitute the principal processing units, which size 
is selected by the encoder according to memory and computational requirements; 
they substitute the macroblock used by the previous codecs. The variable size 
represents a novelty with respect to the other standards, which are characterized by 
16 x 16 luma samples macroblocks, and it is beneficial for high-resolution video 
content. Each CTU is composed by a Luma Coding Tree Block (CTB), the 
corresponding chroma CTBs and syntax elements [26]. CTBs can be either used 
directly as CBs (Coding Block) or being splitter into various CBs. The partitioning 
is performed simultaneously for luma and chroma component and is achieved by 
using a tree structure. CBs are split through the quadtree splitting process, which 
exploit the quadtree syntax [26] contained in the CTU.  

Figure 1.2 The HVEC scheme 
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The coding unit (CU) consists of one luma Coding Block (CB) and two chroma CBs; 
each CTB can contain a CU or can be split in multiple CUs to which are associated 
partitioning into Prediction Units (PUs) and a tree of Transform Units (TUs) [26]. 
The prediction-type decision, i.e., inter or intra prediction, is decided at the CU 
level, where the PU partitioning structure has its root.  
In compliance with the prediction strategy chosen, luma and chroma CBs are split 
and predicted from luma and chroma prediction blocks (PB). For both intra and 
inter-prediction, slices are a fundamental concept in HEVC; they contain a variable 
number of CTUs and they are introduced mainly for resynchronization after data 
losses [26]. In compliance with slices, HEVC presents tiles to increase the parallel 
processing. Tiles are independently decodable rectangular regions of a picture, 
encoded with some shared header information [26]. TU tree structure is designed 
for the transformation of prediction residual. The transformation can be computed 
by employing integer basis function similar to DCT or derived from the discrete 
sine transformation (DST), in case of luma intra-picture prediction [26]. The luma 
and the chroma CB residual can either coincide with the transform block (TB) or 
being split into multiple TBs. Intra-prediction strictly depends upon the TB size and 
the prediction signal is formed by previously decoded boundary samples from 
spatially neighboring TBs [16]. HEVC adopts three intra-coding methods, i.e., Intra-
Angular, Intra-Planar and Intra-DC [26]. Inter-prediction coding follows the same 
strategy of H.264, thus uni-predictive and bi-predictive coding are employed. 
However, while AVC applies a two-stage interpolation process for fractional 
samples, HEVC employs a single stage procedure, increasing the precision and 
simplifying the architecture designed for the purpose. The interpolation of 
fractional sample positions is computed through 7-tap or 8-tap filters, longer than 
the one used in AVC. Moreover, an Advanced Motion Vector Prediction (AMVP) is 
introduced in HEVC. The quantization process is performed as in the previous 
standard, while only one entropy coding method, i.e., CABAC, is specified for 
HEVC. To reduce blocking artifacts a simplified blocking filter is utilized, in 
conjunction with a Sample Adaptive Offset (SAO), aimed to reconstruct the original 
signal amplitude exploiting a non-linear amplitude mapping. 

1.3 Deep Learning for video compression 
In recent years researchers have developed deep-learning based solutions either for 
implementing a brand-new end-to-end scheme to improve video quality or to 
increase the performance of one of the five main stages of the traditional codecs: 
intra-prediction, inter-prediction, quantization, entropy coding and in-loop filtering 
[6]. In fact, although the modules are well designed, the whole compression system 
is not end-to-end optimized [27].  
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Deep Neural Network can exploit large scale end-to-end training and highly non-
linear transformations [27], which can lead to better compression performances. 
However, deep learning-based solutions are at their infancy since they are not 
trivially applied to develop an efficient compression system. The first problem lies 
on the generation and compression of motion information to reduce temporal 
redundancy.  

Even though learning-based optical flow represents a possible solution, it is often 
not optimal for a particular video task [27], [28]. The second obstacle stands in the 
creation of a scheme able to optimize the rate-distortion for both motion information 
and residual [27].  
Fukushima and LeCun have laid the foundation of research around Convolutional 
Neural Network (CNN) with their works [29], published respectively in 1980 [30] 
and 1989-1990 [31], [32]. The structure implemented have paved the way for the 
development of increasingly sophisticated structures to face challenges in many 
fields. In particular, CNN have been widely employed in computer vision and 
natural language processing for text classification. Moreover, they have become the 
state of art for many visual applications, such as image classification [33]. The 
structure is a multi-layered feed-forward neural network characterized by 
convolutional layers, which performs an operation called convolution. The 
convolution kernel slides along the input matrix for the layer, generating a feature 
map which provides the input of the next layer. Through convolution, the network 
can extract progressively more complex shapes. Convolution can be 2D or 3D, when 
the kernel slides in 2 or 3 dimensions respectively.  

The output size of convolutional layer can be computed as: 

 

⎩
⎪
⎨

⎪
⎧𝑆𝑆𝑥𝑥 =  𝐼𝐼𝑥𝑥+2𝑧𝑧𝑥𝑥−𝑓𝑓𝑥𝑥

𝐿𝐿𝑥𝑥
+ 1

𝑆𝑆𝑦𝑦 =  
𝐼𝐼𝑦𝑦+2𝑧𝑧𝑦𝑦−𝑓𝑓𝑦𝑦

𝐿𝐿𝑦𝑦
+ 1

𝑆𝑆𝑧𝑧 =  𝑛𝑛𝑠𝑠+2𝑧𝑧𝑧𝑧−𝑓𝑓𝑧𝑧
𝐿𝐿𝑧𝑧

+ 1

   (1.1) 

 

where: I is the input image, z is the zero padding size, f is the filter size, L is the 
stride length of the filter, ns is the number of slices of the image.  
A typical CNN features also pooling layers and a final fully connected layer (Figure 
1.3). 
Nowadays, CNN have been extensively adopted for image/video compression 
tasks. 
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Figure 1.3 Typical Convolutional Neural Network framework [34] 

 

The autoencoder is also considered one of the promising deep-learning structures, 
specifically a feed-forward non-recurrent neural network, aimed to efficiently 
compress and encode a series of input data (x) and to reconstruct the data back from 
the reduced and encoded ones to a representation which is as close as possible to 
the input (x’). The architecture features two functions: the encoder E, parametrized 
by ϕ, and the decoder D, expressed in function of θ. The first one learns intrinsic 
features of a dataset, which is represented by a vector. The output of the function 
results in a smaller vector than the one given as input. The coded input is referred 
h=Eϕ(x) is referred to as code or latent variables. The layer which contains the 
ultimately compressed representation is named bottleneck The second function, i.e., 
the decoder, learns to reconstruct the compressed information, to return an output 
x′=Dθ(h) similar to the input. 
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Figure 1.4 The structure of a simple autoencoder 

As shown in Figure 1.4, the input 𝒙𝒙 ∈  𝑹𝑹𝒅𝒅 is mapped to 𝒉𝒉 ∈  𝑹𝑹𝒑𝒑 such that h = σ(Wx 
+ b). σ is the activation function, W is the matrix of weights and b is the bias. The 
last two elements are randomly initialized and then iteratively updated during 
training through backpropagation. The decoder takes as input h and reconstruct a 
x same-shaped vector x’ = σ’(W’h + b’). Notice that σ’,W’ and b’ can be unrelated to 
the corresponding encoding values. The autoencoder is trained to minimize the 
reconstruction error or loss, which can be computed employing different functions, 
e.g., Mean Square Error (MSE) and Cross Entropy.  
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Going into detail, many authors have been interested in developing deep-learning 
structures to address the challenges of video compression. 
Lu et al. [27] have proposed an end-to-end deep video compression (DVC) scheme 
(Figure 1.5) which jointly optimizes the key components of video compression - i.e., 
residual compression, motion compression and estimation, quantization and bitrate 
estimation. The implemented scheme minimizes the reconstruction error through a 
single loss function while reducing the bits required for compression, and it is one-
to-one mapped with the components of traditional video compression techniques 
[27].  

 

More in detail, motion compression and estimation are performed by compressing 
and decoding the optical flow values through a MV encoder-decoder network, 
instead of directly encoding the raw ones. Motion compensation is achieved 
through another Convolutional Neural Network, exploiting a pixel-wise method 
which provides more accurate temporal information and avoids blocking artifacts 
[27] , meaning that no deblocking filter is required.  

Figure 1.5 The video compression pipeline proposed by Lu et. all [27] 
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The residual is transformed by a high non-linear residual encoder-decoder network, 
which substitutes the linear transform.  
Quantization operation is not differential, hence it cannot be applied to an end-to-
end training; to address the problem quantization has been replaced by adding 
uniform noise during the training phase. For the bitrate estimation the CNNs of [35] 
have been employed. The frame reconstruction is obtained by adding the predicted 
frame to the reconstructed residual and by passing the result through the decoder. 
The proposed scheme has been demonstrated to outperform the H.264/AVC video 
compression standard [27].  
The method proposed by Lu et. al aims to exploit deep learning techniques for the 
whole compression scheme, i.e., the five main modules. Other authors, instead, 
have concentrated their efforts on the implementation of a single stage of the 
system; in particular, solutions have been proposed for the intra/inter prediction 
and for the post-processing filtering techniques. 
Li et. al [36] have developed CNN-based block up-sampling scheme for intra-frame 
coding. In detail, the learning-based approach performs an up-sampling of different 
regions of the frame, instead of compressing the entire sample, since pictures are 
equipped with locally variant features, hence different parameters or coding 
methods are required [36]. The basic unit for down/up-sampling is the Coding Tree 
Unit (CTU), in compliance with HEVC. The up-sampling strategy is based on the 
employment of both CNN and Discrete Cosine Transform Based Interpolation 
Filters (DCTIF), for dealing respectively with complex image regions (e.g., 
structures) and fractional pixel interpolation for motion compensation. Two 
different five layers CNN are developed for luma and chroma up-sampling.  

 
 
 

Figure 1.6 The luma up-sampling scheme. The kernel size is indicated by the numbers at the top of 
the picture, while the number of the output channels are reported at the bottom [36]. 
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The luma up-sampling system (Figure 1.6) features four stages: multi-scale feature 
extraction, deconvolution, multi-scale reconstruction and residue learning [36].  
 
 
 

 

 
The chroma up-sampling scheme (Figure 1.7) is similar, but presents two more 
features, i.e., the prediction of chroma from luma and a joint training of the chroma 
components, to improve the reconstruction quality. The designed structure is 
implemented based on the HEVC reference software and is shown to achieve a 
significant bit saving at low bitrates when compared to the traditional encoding 
system [36]. On the other hand, compression noise due to the dependency of the 
CNN from the Quantization Parameters (QPs) used in compressed training videos 
has been highlighted in some cases. Moreover, the CNN encoding/decoding time 
was significantly higher when compared to HEVC (although without any 
optimization for speed on the CNN side [36]). In 2019 the same authors have 
proposed an extension of the scheme for inter-frame prediction [37].  Here, reference 
frames are employed by a trained CNN model to improve the up-sampling of the 
current frame, exploiting the temporal correlation. As in their previous work, the 
scheme has been implemented referring to HEVC software and it has shown better 
performances than the traditional codec for high-definition videos compressed at 
low bitrates [37].  

Figure 1.7 The chroma up-sampling scheme [36]. 
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To reduce artifacts in HEVC intra coding, Dai et. al have built a Variable-filter-size 
Residue-learning CNN (VRCNN) [21], aimed to replace the two post-processing 
systems in the traditional codec (Figure 1.8). It presents a 4 layers configuration, 
which features a combination of 5 x 5 and 3 x 3 filters in the second layer, to better 
reduce the noise given by the quantization. The third layer, which handle the 
feature restoration, also presents 3 x 3 and 1 x 1 filters. Fixed filters are used for the 
first and the last layer, because they perform respectively feature extraction and 
final reconstruction, which are not affected by variable block size transform in 
HEVC [38]. The processed image by the presented scheme suppresses both blocking 
and ringing, offering a better visual quality with respect to HEVC; moreover, a 
significant bitrate reduction is achieved. However, the decoding time does not 
satisfy the requirement for real time applications and, besides, is highly memory 
demanding. 
Wang et. al [39] have designed a neural network-based enhancement to inter 
prediction (NNIP) to improve the coding performance at the inter-prediction level. 
The scheme (Figure 1.9) is composed by a residue estimation network, a 
combination network and a deep refine network.  

Figure 1.9 The framework proposed by Wang et. all to improve the inter-prediction [39] 

Figure 1.8 The VRCNN pipeline 
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The first one aims to estimate the residue between current block and its predicted 
block using available spatial neighbors [39]. The combination network concatenates 
the feature maps of the estimated residue and the predicted block together, once 
extracted. The last network is designed to derive the refine residue, which is added 
to the predicted block. Although the system overcomes HEVC in terms of quality, 
the computational complexity leads to a significant increasing in the encoding and 
decoding time. To refine motion compensation in video coding, Huo et. al [40]have 
studied a CNN-based motion compensation refinement (Simple CNNMCR) scheme 
to enhance the prediction signal directly, based only on temporal features. 
Furthermore, a CNN which exploits both temporal and spatial correlation to 
improve the prediction accuracy is proposed (CNNMCR). More in details, the 
CNNMCR is structured as the VRCNN [38] previously described, but it is trained 
to leverage the information extracted both from motion compensation and the 
already reconstructed region of the current frame to refine the prediction signal [40]. 
The implemented scheme has shown better quality performances then HEVC, with 
1.8-2.3% bitrate saving. 
Fractional interpolation for inter-prediction has been widely employed among the 
traditional codecs [41]–[43] to remove the temporal redundancy in consecutive 
frames. The method adopts filters, either fixed or adaptive, to generate fractional 
samples from integer pixel values in a reference picture. In recent years, various 
CNN models have been presented to further improve the fractional interpolation 
efficiency [26]–[28]. Zhang et. al [41] have designed a Compression Priors assisted 
Convolutional Neural Network (CPCNN).  

 

Figure 1.10 The CPCNN framework: a unique architecture with three branches. The feature maps 
are extracted from these components separately and then combined together to derive the final 

output fractional prediction [41]. 
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Three sources of information have been inputted into the scheme (Figure 1.10): the 
reconstruction component of reference block, used as the integer reference to 
generate the interpolated samples, the corresponding residual component, that 
indicates the prediction efficiency and contains effective texture information, and 
the co-located high quality component, employed to reduce quality fluctuations. 
The first source is used as the only input in traditional methods. The second 
component has been added as a complementary tool to handle the hard-predictable 
areas, e.g., sharp edges zones and complexity textures, which result in non-zero 
residual. The residual prior allows a better detection of the non-zero residual areas 
and further reduces the noise in the reconstructed components. The third prior has 
been designed to deal with quality instability derived from quantization, providing 
high quality information to improve the real reference reconstruction and 
introducing no-local information for better interpolation performances. Compared 
to HEVC, the scheme has been demonstrated to achieve superior performances in 
terms of bitrate saving. Yan et. al have depicted the fractional-pixel motion 
compensation as an inter-picture regression problem [42], which can be well 
handled by CNN. In fact, they have proposed fractional-pixel reference generation 
CNN (FRCNN) for both uni-directional and bi-directional motion compensation. A 
first CNN set, corresponding to different fractional pixel location, has been trained 
for uni-directional motion compensation. Following, another CNN set has been 
introduced to enhance the first set for bi-directional motion compensation. 
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Zang et. al [43] have considered the interpolation problem as a generation task and 
have designed a dual-input CNN-based structure (Figure 1.11) to exploit the real 
integer position samples at the reference block to predict and generate fractional 
samples [43].  

More in detail, the proposed approach involves a six-layer fully convolutional 
network which receives prediction and residual input. The sources are initially 
handled by means of separate convolutional layers. The extracted features are 
eventually concatenated to form the input of the following layers, interested by non-
linear operations. Moreover, the residual learning strategy has been adopted to get 
the final output. Therefore, the final result is derived by adding the two inputs 
(prediction and residual) together with the output of the 6th layer. 
In the inter-prediction module bi-prediction represents a fundamental step in the 
state-of-art video coding standard, i.e., H.264 and H.265, aimed to perform motion 
compensation exploiting two predictive signals. The assumption of a linear pixel-
to-pixel correspondence which lies at the basis of the traditional codecs is limiting, 
for complicated motion scenarios cannot be well handled [44]. Therefore, a non-
linear fusion between prediction blocks is recommended. Deep learning provides 
various non-linear activation functions, which allow a better prediction accuracy. 
In [44] the authors have designed a six-layer CNN to deal with the prediction error 
caused by irregular motion. The first layer takes as input a tensor with two channels, 
each corresponding to one of the prediction blocks. The last layer performs the 
prediction of the current block exploiting a non-linear combination. Each 
convolutional layer is characterized by a 3 x 3 spatial shape. ReLu is adopted as 
activation function for the first five layers.  

Figure 1.11 The dual-input-scheme pipeline 
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As the network becomes deeper, the long-term memory is required to generate a 
reasonable output. However, it can lead to exploding or vanishing gradient, thus a 
skip connection is added to deal with the problem. The proposed method has been 
demonstrated to enhance the regions that cannot be well handled with traditional 
bi-prediction, such as the boundaries of a moving object [24]. Moreover, an 
important bitrate reduction has been achieved.  
Bi-prediction improvement through deep-learning methods has been also 
presented by Mao et. al [45]. The authors have created a CNN model fed with spatial 
neighboring pixels of both current block and two reference blocks, other than the 
two reference blocks themselves. The first input provided aims to estimate the 
similarity between current block and reference blocks [45]for a more accurate 
prediction and a reduction of blocking artifacts. To deal with blocking artifacts 
specifically post processing techniques, i.e., performant filtering systems have been 
introduced in traditional codecs to. Although the performances have been boosted, 
the quality degradation still remains a problem to be handled. For this reason, many 
deep-learning solutions have been introduced in recent years. 
In [46] a deep learning-based design has been proposed for the post processing, 
aimed to enhance quality of the reconstructed frames without conflicting with the 
deblocking filter and the sample adaptive offset typically found in HEVC. In fact, 
the residual highway convolutional neural network (RHCNN) is added to the 
filtering systems of the codec. To achieve better performances and robustness of the 
network, the entire quantization parameters range is divided into bands for which 
a RHCNN each is trained following a progressive training scheme [46].  

Figure 1.12 The highway units present in the scheme 
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The network designed is composed by several cascade highway units, 
convolutional layers and identity skip connections (Figure 1.12), to build a very 
accurate mapping between the distorted reconstructed frames and their 
corresponding original distortion-free ones [46]. The highway units constitute the 
main components of the RHCNN; each one of them is preceded by a convolutional 
layer, to guarantee that unit state and transform feature maps are the same size as 
input [21]. The network is composed by 12 layers with a spatial size of 3 x 3, 
followed by a closing 1 x 1 convolutional layer, which is fundamental for improving 
accuracy. Among the structure identity skip connections (shortcuts) are placed, for 
better handling the gradient vanishing and recovering clean images. It is 
noteworthy that shortcuts do not introduce computational complexity nor extra 
parameters. This framework achieved substantial coding gains, especially for low 
bit rates, but the encoding time heavily increased [6].  
Improving one of the modules of traditional codecs with deep learning-based 
techniques is a valid solution, but it remains the doubt around the possibility of 
further significantly improving the compression performances. For that reason, 
many researchers have focused on the implementation of brand-new schemes.  
Feng et. al’s work aims to reduce compression artifacts in a low-bitrates and Super 
Resolution (SR) scenario by placing an enhancement network [47] ahead the CNN-
based Super Resolution, in combination with a purpose-modified geometric self-
ensemble strategy [48] for the improvement of the SR performances (Figure 1.15).  

 

 

Both enhancement and Super Resolution can be regarded as a regression problem 
[47]; therefore, to handle the compression degradation a CNN with 20 layers which 
takes the rectified linear unit (ReLu) as activation function is employed. To cope 
with the Super Resolution problem, the VSDR structure is introduced right after 
[49].  

Figure 1.13 The pipeline of the dual network structure: the enhancement network is introduced 
before the VDSR, employed to manage the Super Resolution [47]. 
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Experimental results have shown a 31.5% bitrate saving for 4K video compression 
with respect to HEVC, when applied in a SR-based video coding scheme [47]. 
Han et. al have designed an end-to-end deep generative structure, built upon the 
Variational Autoencoder model [1], [50] to parametrize the transformation to and 
from the encoder and the decoder. In particular, a sequence of frames is transformed 
into a group of latent states and a global state. In addition, an entropy coding has 
been applied to remove the redundancy in latent space variables. The model learns 
has been implemented to learn simultaneously the predictive model required for 
entropy coding and the optimal lossy transformation into the latent space [1]. The 
scheme has shown to outperform the traditional codecs, achieving superior image 
quality at a significantly lower bitrate [1]. Although in this regime blurry video tend 
to be generated, block artifacts are not present. 
In [51] a 3D Rate-Distortion Autoencoder has been created for lossy video 
compression. The latent variable model has been trained to capture the important 
information to be transmitted, allowing the reconstruction of the input. Both 
encoder and decoder are fully convolutional structure, with residual connections, 
batch-norm and ReLu activation function. Moreover, an autoregressive prior is 
added ahead. Despite the simplicity of the structure, the scheme has achieved 
comparable performances with respect to HEVC [51]. 
An interesting framework has been proposed by Tsai et. al [52], that employs both 
H.264/AVC and a deep learning-based technique for domain-specific video 
streaming, to achieve a better video quality and low-latency transmission (Figure 
1.16).  

 

 

Figure 1.14 The pipeline proposed for domain-specific video streaming consists of two modules: 
the H.264 scheme and the Residual Autoencoder. 



27 
 

In particular, domain-specific videos are compressed by the AVC standard, while 
the leftover residual information is encoded into a binary representation by a 
specifically trained autoencoder. Moreover, the Huffman Coding performs a further 
lossless compression on the residual. These representations are eventually 
delivered to the client together with the AVC stream [52]. The solution shows better 
performances both in terms of quality and runtime in comparison with H.264. 

1.4 Deep Learning for endoscopic video compression  
Even though many studies have been conducted over the employment of deep 
learning-based architectures for video compression among different fields, their use 
in the surgical domain is still at its infancy. In fact, as the survey conducted by Unzer 
et. al [53] demonstrates, the major efforts of researchers have been directed toward 
the implementation of deep learning strategies for surgical image analysis, surgical 
task analysis, surgical skill assessment, and automation of surgical tasks in 
Minimally Invasive Surgery (MIS) [43]. Surgical video compression for real-time 
applications through DL architectures remains a challenge faced by few.  
It has been proved that the detection of clinically relevant spatio-temporal 
information is crucial for saving compression time, while maintaining quality 
during the transmission process. To the purpose, deep learning-based solutions 
have been implemented for the input frame segmentation and the recognition of the 
Regions Of Interest (ROI), which requires the quality preservation. A flexible and 
interactive ROI-based video coding scheme for low-bandwidth scenario has been 
proposed by Khire et. al[54] In this work, more bits are assigned to the ROI 
decreasing the Quantization Parameters (QP), since they are inversely proportional 
to the bitrate. Munzer et. al [55] have highlighted relevant features and irrelevant 
contents, i.e., dark frames, out-of-patient frames and blurry frames, in endoscopic 
videos.  In [56] the authors have proposed a relevance-based compression approach 
using two different CNN integrated to HEVC to compress cataract surgery videos. 
In detail, the first CNN, namely static frame-based CNN, has been developed to 
detect temporal regions where no instrument is visible [56] , i.e., idle phases. The 
second network, specifically a region-based CNN (Mask R-CNN), has been 
implemented to automatically locate the relevant spatial regions. In [57] a Shallow 
Convolutional Neural Network (S-CNN) based segmentation approach has been 
tailored to compress in high quality surgical incision regions, while the background 
has been handled by using a lossy technique. The scheme has been demonstrated 
useful for real time applications in a limited bandwidth scenario [57] Surgical 
regions are identified by the S-CNN and then transmitted by employing low QPs, 
that correspond to high quality output.  
On the contrary, high QPs values have been used for the background. A significant 
bitrate reduction of 88.8% has been achieved in comparison with HEVC.
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2 Materials and methods 
In this section is presented an overview of the framework proposed to deal with the 
need of high compression quality under latency constrains in surgical domain. In 
particular, the work is focused on endoscopic video compression for remote 
surgery.  

It is decided to employ the network implemented by Tsai et. all [52] as it can well 
compresses domain-specific videos in a low bandwidth scenario, thus shows 
suitable features for the task. The section describes the technicalities of the scheme, 
as well as the dataset used, the training of the residual neural network and the 
experiments conducted to analyze its performances both in terms of quality and 
speed. 

2.1 Binary Residual Neural Network for RARP video 
compression 

Telemedicine applications require advanced compression system to deliver 
contents both in high quality and real time. Thus, such schemes need to guarantee 
superior performances in a low-bitrate and low-latency scenario. Deep learning-
based techniques have been shown to achieve high-level performances, overcoming 
the ones of the traditional codecs. Therefore, the research consisted in developing 
and training a neural network for real time stream of data in the surgical domain, 
guaranteeing the preservation of high quality. For the aim, the scheme proposed by 
Tsai et. al [52] has been employed. The framework features two modules: a video 
compression module, i.e., H.264/AVC, and a deep learning-based autoencoder. The 
traditional scheme compresses surgical videos, while the neural network is 
employed to recover the lost information during compression on the client side, 
exploiting the fact that videos belong to the same domain (Figure 1.16). More in 
detail, H.264 compressed the input X and the output Y is obtained. The residual R 
is the result of the difference between the input and the output, thus R = X – Y. The 
residual cannot be compressed employing a traditional method because is highly 
nonlinear, thus an autoencoder has been developed for the purpose. The deep 
learning scheme consists in three functions: the encoder E, which performs down-
sampling, the binarizer B that maps the residual into binary values, and the decoder 
D that recover the residual information from the binary map. The compressed 
residual R’ is eventually combined with Y, thus the final output Y + R’ is obtained. 
The transmission of the residual bit stream necessitates additional bandwidth, but 
the autoencoder can be trained to reduce the bandwidth requirement.  
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The choice to employ what de facto can be defined as a Binary Neural Network lies 
upon the capability of the structure to largely saving storage and computation [46]. 
Over the years, researchers have proposed a variety of algorithms to optimize the 
promising technique. Binarization consists in transforming both weights and 
activation in 1-bit values at run time. At the training time these binary quantities are 
employed for the gradient computation [59].   

In the scheme (Figure 2.1) proposed by Tsai et. al [52] the autoencoder features three 
components: the encoder E, the binarizer B and the decoder D.  

 

The encoder is composed by L 2D-convolutional layers, with equal number of 
channels C, characterized by a stride of 2, which performs the down-sampling. The 
decoder consists of L 2D-convolutional layers, each one of them followed by a 
SubPixel layer [60], [61] featuring an upscaling factor of 2; the convolution process 
and subpixeling are jointly employed for up-sampling. In this case, the number of 
channels used in the first two convolutional layers is equal to 4xC, due to the 
presence of the SubPixel layer. For the same reason a stride of 1 is employed. The 
last layer of the decoder, instead, presents 12 output channels C Both the encoder 
and the decoder present ReLu as activation function: 

 

𝑓𝑓(𝑥𝑥) = max(0,𝑥𝑥) (2. 1) 

 

An additional operation, i.e., batch-normalization [62] with a momentum of 0.999 is 
also included to facilitate the learning process.  

Figure 2.1 The pipeline of the proposed autoencoder for the residual compression: the number of 
layers is equal to 3 for both encoder and decoder. The number of channels corresponds to C = 32 

for the encoder and to 4xC for the first two layers of the decoder [52]. 
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The kernel size is set to 2 for the convolution operations during encoding, while is 
set to 1 for each convolutional layer of the decoder. The binarization phase features 
two stages: a mapping of each element of the encoder output ei  to the interval [-1, 
1] and a following discretization to {-1,1} through the activation function 𝜎𝜎 and the 
discretization function 𝑏𝑏:  

 

𝐵𝐵(𝑒𝑒𝑖𝑖) = 𝑏𝑏�𝜎𝜎(𝑒𝑒𝑖𝑖)�  (2. 2) 

 

The binarization function selected is hardtanh:  

 

𝑏𝑏(𝑧𝑧) =  �
1,                     𝑖𝑖𝑖𝑖 𝑧𝑧 > 1

 𝑧𝑧,          𝑖𝑖𝑖𝑖 − 1 ≤ 𝑧𝑧 ≤ 1
−1,                    𝑖𝑖𝑖𝑖 𝑧𝑧 < 1

  (2. 3) 

With  𝑧𝑧 = 𝜎𝜎(𝑒𝑒𝑖𝑖). 

The size of the binary map strictly depends upon the width W and the height H of 
the input image as well as on the number of channels C and the layers L which 
characterized the neural network. Specifically, the size is given by: 

 

𝑆𝑆 =
𝐶𝐶 × 𝑊𝑊 × 𝐻𝐻

22𝐿𝐿
   (2. 4) 

A deeper neural network corresponds to a smaller the binary map; intuitively, the 
compression task would be easier, while the training would be harder. Therefore, C 
and L have to be carefully chosen to guarantee a good trade-off between these two 
processes. Based upon the studies developed by Tsai et.al [52], the number of 
channels C is set to 32, while the number of layers is set to 3.  
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2.2 Dataset 
For the aim of the work, five high-quality videos with the endoscopic view captured 
during RARP (1280 x 720) are downloaded from YouTube. The video duration 
ranges from 72 up to 100 minutes. The first video (Video A) is used for testing, while 
the other three (Video B, C, D, E) are used for training.  

RARP includes three main phases. The first one is the pelvic lymphadenectomy, 
where the focus is concentrated at the level of the iliac vessels; in this phase, the 
most delicate structures in the centre of the field are the blood vessels that must be 
freed from the lymph nodes; the surgical field is small, the surgical movements are 
slow and more delicate. In the following step, called “demolition phase”, the 
prostate is isolated posteriorly from the bladder, from the nerve bands laterally and 
anteriorly from the urethra; here the surgical field is wider, movements are faster 
and the organ of interest, the prostate, is in the centre of the visual field; the 
peripheral area is occupied by the iliac vessels laterally and by the pubic bone over. 
In the last reconstructive phase, the bladder neck is sutured to the urethra; the 
surgical field is tight since the anastomosis between bladder and urethra is 
performed in the small pelvis; movements are small and mostly in the centre of the 
surgical field.  

To highlight the different phases of the procedure from each video, ten 40 seconds 
clips are selected. They include different anatomical sections, surgery instruments, 
levels of illumination and degrees of action performed in the surgery field (Figure 
2.2).  
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From each videoclip is extracted one frame every ten (Figure 2.3), thus each testing 
dataset – one for each bitrate/preset configuration (see the following section) – is 
composed by 1216 frames, while the training/validation dataset– one for each 
bitrate/preset pair (see the following section) - is formed by 4802 frames (70% 
training set/30% validation set).  

 

Figure 2.3 An example of extracted frames 

Figure 2.2 The three sequences extracted from different clips of the testing video (Video A) show 
three distinct events during RARP: smoking, rapid movements, bleeding. 
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2.3 Training the residual neural network 
The autoencoder is implemented in Python, using the PyTorch library [63]. The 
training hyperparameters, i.e., learning rate η, batch size and number of epochs, are 
set respectively to 0.01, 5 and 50. Moreover, the learning rate is reduced by a factor 
of 0.5 every 5 epochs; in fact, decreasing the learning rate during training can lead 
to improved accuracy and reduced overfitting of the model [64]. Mean Square Error 
(MSE) [65] is utilized as loss function, while Adam is employed as optimizer [64]. 
The training is performed by using the NVIDIA GeForce GTX 850M GP.  

2.4 Performance evaluation 
The clips are extracted and eventually compressed and decompressed by using the 
H.264 implementation provided by FFmpeg [67], with a particular focus on 
bandwidth and latency, both dependent on the bitrate and the preset selected. The 
FFmpeg preset represents the coding speed value [68], thus returns a certain 
compression ratio / frame quality / compression time. More specifically, some preset 
is designed to compress the frame in a short amount of time (low latency) at the cost 
of decreased quality and larger bandwidth, while others achieve the highest 
compression rate and frame quality but require more processing time. For the aim 
of the research, it has been employed Ultrafast, Medium and Slow presets. The first 
one allows for a very fast compression, but it results in a low-quality profile. The 
medium preset represents a good trade-off between speed and quality, while the 
last preset results in better quality at the cost of high computational time.  
Compressing at different bitrate allows to investigate the codec performance as a 
function of the transmission bandwidth. In this work the first evaluation is 
conducted employing three bitrate values, i.e., 1,2,5 Mb. Each bitrate/preset pair – 
thus 9 configurations - is analyzed. A further assessment is proposed based on the 
results obtained from the first analysis. In particular, the 10 Mb-Ultrafast 
configuration is eventually explored. For each clip and each bitrate/preset pair of 
the video A the Peak-to-Noise-Ratio (PSNR) [69]–[71]and the Structural Similarity 
(SSIM) [70]–[72] are computed to determine the quality of the compression 
performed by H.264, employing the original, uncompressed data as ground truth. 
More in detail, one frame every ten is extracted from each clip of the testing video, 
either the original and the compressed one, and the metrics are computed for each 
original-compressed couple of images. Furthermore, the mean and the standard 
deviation are calculated.  



35 
 

Moreover, the encoding and the decoding time are measured for a single frame 
which indicates latency, once summed to the transmission time. Successively, the 
residual R is calculated for each original-compressed paired frame of the testing 
video and encoded/decoded by the trained autoencoder. The training is performed 
for each bitrate-preset pair, employing the images obtained from the compressed 
video B, C, D and E. Each compressed residual R’ is eventually summed to the 
correspondent H.264 compressed frame. Finally, SSIM and PSNR are calculated for 
each paired original-reconstructed image of the testing dataset and both mean and 
standard deviation are measured for the two metrics. The mean encoding/decoding 
time normalized on the number of frames is also computed and summed to the 
encoding/decoding time featured by H.264 only. 

PSNR, SSIM as well as encoding and decoding time for each configuration are 
reported on a plot in function of the bitrate, expressed in Bit-Per-Pixel (BPP), 
computed as: 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵 =  
80000 ×  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝐾𝐾𝐾𝐾𝐾𝐾)

𝐻𝐻 ×𝑊𝑊 × 𝑓𝑓𝑓𝑓𝑓𝑓   (2. 5) 

 

Where fps corresponds to frame per second, thus it indicates the framerate. In this 
work, it is set to 29.9. H and W are respectively the height and the width of the 
video. The bitrate needs to be expressed in Kb.
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3 Results 
In this chapter are reported the results both in terms of quality and time obtained 
with the method proposed; the findings are compared with the performances of 
H.264/AVC.  

3.1 Quality  
The following plots and tables report the PSNR and SSIM values, employed as a 
measure of quality. First the performance of H.264/AVC and the deep learning-
based scheme (AE + H.264) are presented separately, to allow a better visualization 
of the standard deviation associated to each value, the variability of results is 
highlighted (Figure 3.1). 

 

 

Figure 3.1 The plots represent quality in terms of SSIM (top) and PSNR (bottom) in 
function of the bitrate both for H.264 (left) and for the scheme proposed (right). For each 

configuration also the deviation standard is computed and represented. 
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Successively, a comparison between the quality achieved by the leading standard 
H.264/AVC and the scheme proposed is presented (Figure 3.2, Table 3.1, Table 3.2).  

 

 

Figure 3.2 The plots show a comparison between the codec standard H.264 and the 
proposed scheme in terms of quality. Both PSNR (right) and SSIM (left) are expressed in 
function of the bitrate. 

 

PSNR 

Table 3.1 The table shows PSNR values for both H.264 and the proposed method 

Preset/Bitrate 
(Mb) 

1 2 5 

H.264 H.264 + AE H.264 H.264 + AE H.264 H.264 + AE 

Ultrafast 27,760 30,984 30,375 33,710 34,152 36,181 

Medium 30,900 35,073 34,251 37,001 38,267 38,270 

Slow 30,560 34,872 35,064 37,772 38,068 38,064 
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SSIM 

Table 3.2 The table shows SSIM values for both H.264 and the proposed method 

Preset/Bitrate 
(Mb) 

1 2 5 

H.264 H.264 + AE H.264 H.264 + AE H.264 H.264 + AE 

Ultrafast 0,864 0,920 0,905 0,948 0,942 0,958 

Medium 0,931 0,965 0,953 0,970 0,965 0,965 

Slow 0,930 0,965 0,962 0,971 0,961 0,961 

 

In terms of quality the developed structure outperforms the traditional standard 
H.264/AVC in a low bitrate scenario. More in detail, the quality shows an increasing 
trend within 1 and 5 Mb for videos compressed using the medium and the slow 
preset, thus H.264/AVC performs better at bitrates higher than 5Mb. Moreover,  
Figure 3.2 indicates that the results obtained exploiting the proposed scheme for 
videos compressed with ultrafast preset are always better than the ones given by 
the traditional codec, thus it can achieve better quality than H.264/AVC for bitrate 
values greater than 5Mb. Therefore, the 10Mb-Ultrafast configuration is 
additionally analyzed. The following plots show a comparison between the 
performances of both techniques only for videos compressed with the Ultrafast 
preset.  
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Figure 3.3 The plots show a comparison between the codec standard H.264 and the 
proposed scheme in terms of quality. Both PSNR (right) and SSIM (left) are expressed in 
function of the bitrate. 

The plots in Figure 3.3 report the trend of the PSNR and SSIM only for the ultrafast 
preset for bitrate values which range from 1 to 10 Mb. It is found that the 10Mb 
bitrate value represents the point in which H.264/AVC achieves the same 
performance in terms of quality of the deep learning-based scheme.  

A further analysis to state the reliability of the results is conducted by employing 
the Mann-Whitney U test [69]. It is demonstrated that there is a difference between 
the traditional and the proposed method for almost the entire bitrate/preset set, with 
an exception for the 5Mb-Medium/5Mb-Slow/10Mb-Ultrafast pair, for which the p 
value is respectively 0.86, 0.90 and 0.79, thus the null hypothesis is not rejected.  
This result offers a further proof that H.264/AVC is capable of reconstructing frames 
with the same quality featured by the deep learning-based solution for those 
configurations. 
 

3.2 Time 
Time presents a superior limit, since low latency is requested to guarantee real time 
applications. More in detail, the threshold is set to 33,3ms (30 Hz) per frame, for both 
encoding and decoding time.  
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As for quality, also for encoding and decoding time it is first proposed a 
highlighting of the values variability for both H.264/AVC and the DLL-based 
scheme; thus, each point of the plot is associated with its own standard deviation 
(Figure 3.4). The purple line represents the 30ms threshold. 

 

Traditionally, the time requested for the encoding process is significantly higher 
than the one addressed to the decoding one, as it is shown in the plots which 
presents the encoding/decoding time for H.264/AVC only (Figure 3.4). However, 
the method implemented shows opposite results, since the values associated to the 
decoder are higher than the ones of the encoder (Figure 3.4). The reason lies on the 
fact that the first one is more computationally demanding than the last one. 

Figure 3.4 The plots show the trend of both encoding and decoding time for H.264/AVC and the 
scheme proposed (H.264 + AE) for each bitrate/preset pair. Each plot reports also the standard 

deviation. The purple line represents the threshold for real time application. 



42  Results 
 

 

Successively, it is shown a comparison between the results achieved by the 
traditional method and the one implemented (Figure 3.5). As in Figure 3.4, also in 
Figure 3.5 the purple line represents the 30ms threshold. 

 

It can be noticed that the decoding time never overpasses the real time threshold, 
differently from the encoding time. 

 

 

 

 

 

 

 

 

Figure 3.5 The plots report a comparison between the performances in terms of 
encoding/decoding time of H.264 and of the scheme implemented, for each 

configuration. The purple line represents the threshold for real time applications. 
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Since the 10Mb-Ultrafast configuration is additionally investigated, it is reported 
also the encoding/decoding time trend for the Ultrafast preset for bitrate values 
which range from 1Mb to 10Mb.  

 

Figure 3.6 The plots report a comparison between the performances in terms of 
encoding/decoding time of H.264 and of the scheme implemented for each configuration 

for the specific Ultrafast preset. 

 

Figure 3.7 The plots show the trend of both encoding and decoding time for H.264/AVC 
and the scheme proposed (H.264 + AE) for each bitrate/preset pair for the specific Ultrafast 
preset. Each plot reports also the standard deviation. The purple line represents the 
threshold for real time applications. 
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The plots indicate that it real time applications are still possible for higher bitrate 
exploiting the ultrafast preset for compression, since both encoding and decoding 
time are highly below the 30 ms threshold. 
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4 Discussion 
In this chapter it is reported a discussion to highlight strengths and limits of the 
method proposed. Furthermore, it is presented the conclusions, which wants to 
address further improvement to the algorithm proposed and brand-new challenges 
for future research.  

To assess the quality of the reconstructed frames PSNR and SSIM have been 
employed. The first one is the most used metric to evaluate the reconstruction 
quality of lossy compression codecs [74]; typical PSNR values for 8-bit data range 
from 30 dB to 50 dB, where the higher the better. SSIM predict the perceived quality 
of digital images and videos [75], thus can be useful to further assess the 
performance achieved by both the traditional and the deep learning-based methods. 
SSIM values range from 0 to 1, where 1 indicates the perfect structural similarity. 
As Table 3.1 shows, the mean PSNR value of each bitrate/preset pair is comprised 
between 30 dB and 38 dB for both H.264/AVC and the method proposed, except the 
one associated to the 1Mb-Ultrafast configuration for H.264/AVC. It is worth 
noticed that the standard deviation computed for each point (Figure 3.1) indicates 
a variability which increases with the bitrate and also passing from ultrafast to 
medium to slow preset. However, as concerns the deep learning scheme, the 
minimum PSNR value of each bitrate/preset pair remains higher than 30 dB, except 
for the 1Mb-Ultrafast/2Mb-Ultrafast pair, whose value lies around 28 dB. As regards 
H.264/AVC, the minimum PSNR value it is not lower than 30 dB only for the 5Mb-
Medium/5Mb-Slow pair. The comparison between the minimum PSNR values of 
the implemented scheme and the mean PSNR values of H.264/AVC shows that the 
deep learning-based solution performs always  better than the traditional codec 
only for a bitrate equal to 1 Mb. Summing up the information obtained by analysing 
the PSNR values, it can be stated that the quality of the reconstruction performed 
by the scheme proposed is on average good (PSNR values > 30 dB) and better than 
the one achieved with H.264/AVC, except for the 5Mb-Medium/5Mb-Slow pair, as 
it is demonstrated in the first plot of Figure 3.2 . The Table 3.2, together with the 
plots in Figure 3.1, demonstrates that the percieved quality is on average meaningly 
better for the frames reconstructed by the DL-based scheme for a bitrate equal to 1 
Mb and for the 2Mb-Ultrafast configuration, while is almost unnoticeable for higher 
bitrate, i.e., 2 Mb and 5 Mb. Moreover,  the SSIM values related to 5Mb-
Medium/5Mb-Slow pair indicates a slighetly higher percieved quality for images 
compressed by the traditional codec.   
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Considering the error associated to each mean value computed, i.e. the standard 
deviation, it can be noticed that the percived quality is always superior for frames 
obtained by employing the scheme proposed only for a bitrate equal to 1 Mb. In 
fact, the minimum SSIM value associated to 2 Mb and 5 Mb for the DL method is 
lower than the mean SSIM value computed for H.264/AVC. The percieved quality 
is high for frames reconstructed both by H.264/AVC and the scheme proposed; 
therefore, it can be visually noticed a difference in the images compressed by using 
the ultrafast preset.  

Since the Ultrafast preset shows the possibility to employ higher bitrate values, a 
further evaluation for the configuration 10Mb-Ultrafast is conducted. As Figure 3.3 
indicates, the quality reached by employing the traditional method is equal to the 
one achieved by the proposed scheme. Thus, it can be stated that the deep learning 
solution overcomes the performance of H.264/AVC for bitrate values that range 
from 1Mb to 10Mb. 
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The following images allow a visual comparison between the quality of 
reconstructed frames achieved by H.264/AVC and the method proposed, for a better 
comprehension of the results.  

 

 

 

Figure 4.1 The figures show the difference between the reconstructed frame and the original one for 
both H.264/AVC (left) and the proposed method (right). The compression is performed by using the 

ultrafast preset associated with (from top to bottom) 1Mb, 2Mb, 5Mb bitrate value.   
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Figure 4.2 The figures show the difference between the reconstructed frame and the original one 
for both H.264/AVC (left) and the proposed method (right). The compression is performed by 

using the medium preset associated with (from top to bottom) 1Mb, 2Mb, 5Mb. 
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Figure 4.3 The figures show the difference between the reconstructed frame and the original one 
for both H.264/AVC (left) and the proposed method (right). The compression is performed by 

using the slow preset associated with (from top to bottom) 1Mb, 2Mb, 5Mb. 
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Analyzing the mean values obtained both for PSNR and SSIM for each clip, which 
present a common trend, it is observed that significantly lower values are obtained 
for clip 5 and clip 7 for the entire bitrate/preset configurations set, thus a frame-by-
frame evaluation is conducted.  

 

 

Figure 4.4 The plot shows the PSNR for each frame of the clip 5 for the 5Mb-Slow pair 

 

Figure 4.4 indicates considerably low PSNR values among the entire video, 
characterized by very fast movements (Figure 4.5).    

 

Figure 4.5 A frame extracted by clip 5 that well shows the fast movement 
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Figure 4.6 The plot shows the PSNR for each frame of the clip 7 for the 5Mb-Slow pair 

The plot in Figure 4.6 presents minima around frame 40, then for frames ranging 
from 70 to 90 and again around frame 110. Therefore, the algorithm does not 
perform a good compression over the entire video, which features considerably fast 
movements (Figure 4.7).  

 

 

Figure 4.7 A frame extracted by clip 7 that well shows the fast movement 

As the remaining clips do not contain high-speed actions and feature good 
compression performance, it can be stated that the deep learning-based scheme 
performs lower quality compression where significantly fast movements are 
present.  
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Since the perceptive quality is shown to be really good for all the configurations, as 
the SSIM values are close to 1, the best bitrate/preset pair choice is made by 
considering the encoding/decoding time. Indeed, the latency of the video feedback 
highly limits telesurgery applications. It needs to be highlighted that the delay 
between the movement performed by the surgeon through the master console and 
its visualization on the video screen is composed by the sum of latency due to the 
video codec and the one associated to the transmission signal which allows the 
motion (Figure 4.8).  

 

 

 

In literature various experiments are proposed to assess the critical value of latency 
in this field. It needs to be considered that the impact of latency (transmission + 
compression) on surgeon’s performances is strictly related to the task to be 
completed[76]: the higher is the difficulty of the operation, the greater the delay 
negatively affects the success of the surgery. Moreover, the achievement of the 
purpose is influenced by the experience of the surgeon. Thus, more capable doctors 
are less sensitive to the delay.  

Figure 4.8 The telesurgery system [85] 
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As can be observed, the effects of latency are subjective, since they depend upon 
both surgeon’s experience and difficulty of the task. Anyway, a significant delay in 
the transmission of the videos results dangerous even for high-skilled medics, since 
unwanted events, e.g, bleeding and presence of mass, can occur. The studies on 
latency effects are based on the perception of the surgeons composing the 
experimental group, thus the evaluation is always subjective, thus it can vary 
among different assessments. In [76] is demonstrated that three distinct studies have 
conducted to different results: the first one has found 200ms to be critical for difficult 
tasks, while the other two noticed that 300ms can be accepted for the robot impose 
less physical and mental demands on the operator [76] In [77] a total amount of 
150ms, comprising the compression and decompression process performed by 
MPEG-2, is found to be critical for completing the surgical procedure employed for 
the experiment. During a well conducted transcontinental Robot Assisted Remote 
Telesurgery a time delay of 150ms [77] is calculated. Also, in [78] 150ms  is 
considered a “comfort zone” for such applications. Moreover, it is found 330ms to 
be the maximum value recommended for telesurgery, where the latency associated 
to the video codec is 70ms (encoding + transmission + decoding) [80]. Ideally, delay 
time is considered ideal for values less than 100ms [17].  

Considering the previous data, it can be stated that the delay associated to the video 
transmission is in general lower than the one due to the transmission of the motion 
signal and it may not be greater than 70ms.  

In view of the results obtained by the scheme proposed, only seven of the ten 
configurations are suitable: 

 

 1Mb-Ultrafast 
 2Mb-Ultrafast 
 5Mb-Ultrafast 
 10 Mb-Ultrafast 
 1Mb-Medium 
 2Mb-Medium 
 1Mb-Slow 
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From the six configuration 1Mb-Slow, 2Mb-Medium and 10Mb-Ultrafast are selected 
since they represent the best quality-time trade-off for that bitrate value. The most 
suitable bitrate/preset pair results 1Mb-Slow since it achieves the highest perceived 
quality, while not overcoming the time threshold. The last configuration shows an 
even lower encoding/decoding time than the 5Mb-Ultrafast pair. This result lies on 
the fact that the computation of the encoding/decoding time associated to the 
traditional codec is performed by FFmpeg, which can be affected by other processes 
that were running on the computer by the time the measures were taken. Since the 
ultrafast preset shows the possibility to perform real time coding, it should be 
further explored for higher bitrate, even if the quality achieved results lower than 
the one obtained by the traditional codec.  

The SSIM and PSNR values associated to this configuration are equal to the one 
obtained by employing the 5Mb-Slow pair, thus perception and the reconstruction 
are of good quality (Figure 4.9).  

The configurations chosen are able to transmit 30 frame per second, even if in some 
cases the sum between encoding and decoding time overcomes the threshold. 
Indeed, the real time application remains possible assuming that both encoder and 
decoder are working at maximum 33,3ms each - without considering the 
transmission time - since encoder and decoder run on different devices. 

It is worth noticing that the deep learning solution proposed is not developed 
specifically for high-speed compression, while H.264/AVC is highly optimized for 
the purpose. Moreover, a low-performing GPU is used, thus the computation could 
be accelerated by employing a better one.  

Figure 4.9 The figures show the difference between the reconstructed frame and the original one 
for both H.264/AVC (left) and the proposed method (right). The compression is performed by 

using the 10Mb-Ultrafast configuration. 
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Besides, the compression of the residual is performed frame-by-frame, hence it can 
be studied better solutions for saving time. It needs to be also considered that the 
videos employed for the analysis are downloaded from YouTube, therefore they 
have been previously compressed during the uploading on the site. It is clear that 
the implemented method may be widely optimized to achieve better performances 
both in terms of quality and speed. 
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5 Conclusions 
It has been analyzed the problem of the transmission in the surgery domain, which 
requires peculiar constrains in terms of quality and latency. In fact, the stability of 
the system is guaranteed under low latency and limited bandwidth conditions, 
while high quality needs to be preserved to avoid the loss of relevant clinical 
information during the whole process, which includes compression, transmission 
and reconstruction of the frames. Although much research has been conducted 
around increasing quality by leveraging the properties of deep learning structures, 
such strategies in the surgical domain, which joints high quality and low-latency 
requirements, are still scarcely widespread. Even though AVC and HEVC codecs 
are largely optimized for speed and quality, deep learning techniques have a much 
larger margin of improved not completely explored yet. This work presents a 
computational-friendly solution which is capable to jointly enhance the 
compression quality and work under low-latency constrains in a low bitrate 
scenario. In other words, this scheme offers the possibility to obtain good 
compression quality of high-resolution videos in a low-bandwidth domain, which 
is useful in all those contexts that feature a non-fast internet connection, e.g., 
developing Countries and rural areas. The quality guaranteed is high, thus it allows 
for the detection of every detail in the surgical area in different situations, e.g., 
bleeding and smoking. Even though the reconstruction of really fast movement is 
more difficult, the quality perceived do not compromise the result of the surgery. 
The solution proposed allows for remote surgery in which the distance between the 
surgeon and the patient could be of more than 14 000 km, since latency can remain 
considerably under 70ms. The method implemented can be widely modified to 
become a powerful tool for telemedicine, telementoring and remote surgery 
applications. In fact, further optimizations could make the network more 
performant, especially in terms of speed. There are, indeed, several methods to 
accelerate DNN that can be easily exploited, ranging from hardware-aware 
optimizations of the network implementation [81], up to lightweight learning-based 
solutions for image compression [6] and software-based solutions that prune the 
DNN to make them more efficient [82], or even the adoption of GPU accelerators 
for DNN, e.g., Tensor cores [83], and ad-hoc hardware DNN implementations 
which can be compared to hardware-accelerated AVC encoders and decoders [84]. 
In the end, it is worth noticing that many surgical procedures enable the 3D 
perception, exploiting stereo-images.  
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Although it results in a more complex transmission, as in a higher quantity of data 
to handle, it can be leveraged the redundancy between left and right images for the 
implementation of brand-new solutions to guarantee increasingly performances not 
only in the medical domain, but also among a large variety of fields, such as virtual 
reality and videogames.  
The progress in compression systems may lead to the spreading of tele-health, 
which can have a strong impact on the quality of life, allowing to perform surgical 
procedures in different context directly by highly experienced surgeons or less-
skilled doctors guided by experts. Moreover, an evolution in the teaching method 
can improve the learning process of medicine students.  
Even though the feasibility of telemedicine applications in terms of tools is 
demonstrated, their usage may be still difficult since these advanced technologies 
are expansive, thus such solutions could not be afforded by everyone. However, the 
cost-benefit should make the telematic system a worth investment to guarantee 
superior healthcare services to a higher number of people. 
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