
Accelerating Convergence of Lin-
ear Iterative Solvers using Machine
Learning

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Luca Saverio

Student ID: 990172
Advisor Politecnico di Milano: Prof. Nicola Parolini
Advisor Sorbonne Université: Prof. Corrado Maurini
ONERA Supervisors: Emeric Martin, Jorge Nuñez, Florent Renac
Academic Year: 2022-2023

i

Abstract

This thesis explores the application of Machine Learning techniques to accelerate iterative
numerical methods, with a particular focus on the Generalized Minimal RESidual (GM-
RES) method, for solving arbitrary invertible linear systems. By training on the GMRES
convergence behaviour obtained on previous linear systems in a sequence, the main goal
of this work is to predict an adequate initial guess for each system of the sequence. This
thesis is organized as follows: first, Machine Learning is applied to simple problems, such
as the Laplace equation, where the right-hand side is modified at each iteration, and to
the Advection-Diffusion problem with a time-dependent right-hand side. The matrix or
operator does not change over the sequence. The model is trained using online learning
techniques and the prediction of the initial guess results in a significant speed-up of the
GMRES convergence on the considered linear systems. In the second part of the the-
sis, Neural Networks are applied to more complex and stiff systems, starting from the
Navier-Stokes equations: the flow around a cylinder, the flow around a NACA0012 airfoil
and the Taylor-Green Vortex test case are solved. The results of the classical GMRES
algorithm are then compared to the ones of the Machine Learning scheme. The effec-
tiveness of this approach is evaluated and compared to traditional methods, in terms of
number of matrix-vector products to satisfy user parameters driving the stopping of the
iterative solver. Considerations about gain in time taking into account the cost of the
coupling and the sensitivity of certain parameters on the ML strategy performance are
also addressed. Overall, this thesis demonstrates the potential of Machine Learning to
improve the efficiency and accuracy of iterative numerical methods, particularly in the
context of solving complex mathematical problems.

Keywords: GMRES, Neural Networks, Graph Neural Networks, CPU, GPU, Machine
Learning, CFD, Performance, Pytorch

iii

Abstract in lingua italiana

Questa tesi esplora l’applicazione delle tecniche di Machine Learning per accelerare i
metodi numerici iterativi, con particolare attenzione al metodo del residuo minimo gen-
eralizzato, per la risoluzione di sistemi lineari arbitrariamente invertibili. L’obiettivo
principale è quello di prevedere un’ipotesi iniziale adeguata all’algoritmo GMRES adde-
strando su precedenti sistemi lineari della sequenza. Questa tesi è organizzata come segue:
in primo luogo, l’apprendimento automatico viene applicato a problemi semplici, come
l’equazione di Laplace, in cui il lato destro viene modificato ad ogni iterazione per le stesse
matrici, e al problema di Avvezione-Diffusione con un vettore lato destro dipendente dal
tempo. Il modello viene addestrato utilizzando tecniche di apprendimento online mante-
nendo fissa la matrice o l’operatore. I risultati mostrano una significativa accelerazione
nella convergenza. Nella seconda parte della tesi, le Reti Neurali vengono applicate a
sistemi più complessi e rigidi, partendo dalle equazioni di Navier-Stokes: vengono risolti
il flusso attorno ad un cilindro, il flusso attorno ad un profilo alare NACA0012 e il caso
ddel vortice di Taylor-Green. I risultati del classico algoritmo GMRES vengono quindi
confrontati con quelli dello schema di Machine Learning. L’efficacia di questo approccio
viene valutata e confrontata con i metodi tradizionali, in termini di numero di prodotti
matrice-vettore per raggiungere la convergenza del sistema lineare. Vengono inoltre af-
frontate considerazioni sul guadagno nel tempo con l’accoppiamento e la sensibilità di
alcuni parametri sulle prestazioni dello schema ML. Nel complesso, questa tesi dimostra
il potenziale del Machine Learning per migliorare l’efficienza e l’accuratezza dei metodi
numerici iterativi, in particolare nel contesto della risoluzione di problemi matematici
complessi.

Parole chiave: GMRES, Reti Neurali, Reti Neurali per Grafi, CPU, GPU, Machine
Learning, Fluido-Dinamica Computazionale, Rendimento, Pytorch

Résumé en français

Ce mémoire porte sur l’utilisation des techniques d’apprentissage automatique pour ac-
célérer les solveurs itératifs, en particulier l’algorithme GMRES (Generalized Minimal
RESidual), dans le cas d’une suite de systèmes linéaires creux sans propriétés partic-
ulières. La phase d’apprentissage se base sur la convergence GMRES obtenue sur les
premiers systèmes linéaires de cette suite. L’objectif principal de ce travail est de prédire
pour chacun des systèmes restants de la suite une estimation pertinente de la solution.
Dans un premier temps, l’apprentissage automatique est appliqué à des problèmes sim-
ples, tels que l’équation de Laplace, où le second-membre est modifié à chaque itération,
et l’équation d’advection-diffusion, où le second-membre va dépendre du temps. La ma-
trice ou l’opérateur ne change pas au cours de la suite. Le modèle est entraîné à l’aide de
techniques d’apprentissage online et le fait de prédire une solution initiale plus adéquate
du système entraîne une accélération significative de la convergence GMRES sur les sys-
tèmes linéaires considérés. Dans un second temps, les réseaux de neurones sont appliqués
pour accélérer la résolution de systèmes plus complexes et rigides qui sont régis par des
équations de Navier-Stokes: la simulation d’un écoulement autour d’un cylindre, la simu-
lation d’un écoulement autour d’un profil aérodynamique NACA0012 et enfin le cas-test
du tourbillon de Taylor-Green. Les résultats obtenus avec l’algorithme GMRES classique
sont ensuite comparés à ceux obtenus avec la stratégie de résolution avec apprentissage
automatique mise en place. L’efficacité de cette stratégie est évaluée et comparée aux
méthodes traditionnelles, en termes de nombre de produits matrice-vecteur nécessaire
pour satisfaire les paramètres utilisateur pilotant l’arrêt du solveur itératif. Des con-
sidérations sur le gain en temps prenant en compte le coût du couplage et l’influence de
certains paramètres sur les performances de la stratégie proposée sont également abordées.
Globalement, les travaux de ce stage démontre le potentiel des techniques d’apprentissage
automatique pour améliorer l’efficacité et la précision des solveurs itératifs, notamment
dans le contexte de la résolution de problèmes mathématiques complexes.

Keywords: GMRES, Réseaux Neuronaux, Réseaux Neuronaux Graphiques, CPU, GPU,
Apprentissage Automatique, CFD, Performance, PyTorch

vii

Contents

Abstract i

Abstract in lingua italiana iii

Résumé en français v

Contents vii

Introduction 1

1 Solving Linear Systems with the GMRES Method 3
1.1 Iterative Methods for System Solution . 3
1.2 The Generalized Minimal RESidual Method 4
1.3 The Initial Guess of Iterative Methods . 9

1.3.1 Recycling the Previous Solution in Time-Dependent Simulations . . 10
1.4 Graph Representation of Matrices . 10

2 Machine Learning and Neural Networks 13
2.1 Introduction to Machine Learning . 13
2.2 Different Learning Modes . 15

2.2.1 Offline Learning . 15
2.2.2 Online Learning . 16

2.3 Neural Networks . 17
2.3.1 Dense Neural Networks . 18
2.3.2 Convolutional Neural Networks . 20
2.3.3 Graph Neural Networks . 22

2.4 Activation Function . 23
2.5 The Minimization Problem . 25

3 Development of the Prediction Algorithm 29

viii | Contents

3.1 Presentation of the Original Code . 29
3.2 The Prediction Algorithm . 32
3.3 Loss Function Evaluation . 32
3.4 Algorithmic Refinements and Code Modifications 35

3.4.1 Use of matrices and of Vectors . 36
3.4.2 New Neural Network Architectures 37
3.4.3 Generalization of the dataset expansion and retraining procedure . 43
3.4.4 Early Stopping . 44
3.4.5 Gradient Clipping . 45

4 Numerical Experiments on Simple Problems 47
4.1 Laplace Equation . 48

4.1.1 Results . 49
4.2 The Time-Dependent Advection-Diffusion Equation 52

4.2.1 Homogeneous Equation . 52
4.2.2 Constant Source Term . 53
4.2.3 Time-Dependent Source Term . 55
4.2.4 Results of the Homogeneous Case 56
4.2.5 Results of the Constant Non-Homogeneous Case 58
4.2.6 Results of the Time-Dependent Non-Homogeneous Case 59
4.2.7 Using an Increasing Time Step to Generate Stiffer Systems 60
4.2.8 Results of the Increasing Time Step Case 61
4.2.9 Results with GNNs . 64

4.3 Recycling of the Previous Solution . 66
4.3.1 Heat Equation . 67
4.3.2 Time-Dependent Advection-Diffusion Problem with Increasing time

step and Numerical Noise . 68
4.3.3 Advection Diffusion Problem with Increasing time step 69

5 Numerical Experiments on Representative Test Cases 73
5.1 Problem Extraction from CFD Cases using DG Discretization 74

5.1.1 Navier-Stokes equations for gas dynamics discretization 74
5.1.2 Discontinuous Galerkin Discretization 76
5.1.3 Time Discretization . 76
5.1.4 The Aghora Code . 78
5.1.5 About the Dimension of the Systems and Neural Networks 79

5.2 Laminar Flow around a Cylinder at Low Reynolds Number 79
5.2.1 Results of the Cylinder Test Case 80

| Contents ix

5.3 Laminar Flow around a NACA0012 airfoil 82
5.3.1 Results of the NACA0012 . 83

5.4 Taylor-Green Vortex . 86
5.4.1 Results of the Taylor-Green Vortex 87
5.4.2 Results using other NN-based Approaches 89

Conclusion 93

Bibliography 95

A Typical Result Plots 99
A.1 Moving Average . 99
A.2 Typical Plots using the Moving Average 100

B Time Analysis with respect to the Architecture and the Dimension 101
B.1 Comparing Times on CPU and GPU with and without ML 101

B.1.1 Computing Environment . 102
B.1.2 Machine Learning Training on the Laplace Equation 102
B.1.3 Using the Python Profiler . 103

B.2 Comparing Speed-ups with respect to the Dimension 103

C Implemented Code 105
C.1 Parts of the Code of the Prediction Algorithm 105
C.2 Definition of the Neural Networks . 107

C.2.1 Definition of the Dense Neural Network 107
C.2.2 Definition of the Convolutional Neural Network 108
C.2.3 Definition of the Graph Neural Network 110

D Calculation resources at ONERA 115

List of Figures 117

List of Tables 121

Listings 123

List of Symbols 125

Acknowledgements 127

1

Introduction

Iterative Numerical Methods (INMs) are widely used to solve complex mathematical prob-
lems in various scientific and engineering applications. However, these methods can be
computationally expensive and time-consuming, especially when dealing with large-scale
systems. To overcome this challenge, researchers have been exploring the use of Machine
Learning (ML) techniques to accelerate the convergence of INMs [20].
ML algorithms can learn patterns from large amounts of data and exploit them to make
informed predictions or decisions. In the context of INMs, ML models can learn the re-
lationships between the input parameters and the convergence behavior of the iterative
solver. By using these models to predict the optimal parameters for the iterative solver,
the convergence rate can be significantly improved, leading to faster and more efficient
computations.
The Generalized Minimal Residual (GMRES) method is a widely used INM for solving
non-symmetric, non-definite positive large linear systems of equations. It was introduced
in 1986 by Saad and Schultz [33] as an extension of the Minimal Residual (MINRES)
Method to non-symmetric matrices.
However, the GMRES method can be computationally expensive, especially for large-scale
problems. One way to accelerate the convergence of GMRES is the use of preconditioners,
which are operators that transform the original linear system into a more easily solvable
form.
This thesis studies the possibility of using ML techniques to predict an optimal initial
guess to then be fed into a GMRES solver, aiming to obtain an acceleration in the con-
vergence.
The use of ML for accelerating INMs is an active area of research, with promising results
in various fields such as fluid dynamics, structural mechanics, and computational electro-
magnetics. As the field of ML expands and continues to advance, it is plausible to expect
further developments and improvements in this area, making it possible to look forward
to faster and more accurate solutions to complex mathematical problems.
This study will be presented in five chapters: the first chapter will introduce the GMRES
method and underline the importance of an effective initial guess, the second chapter will

2 | Introduction

present the main concepts of Machine Learning that were used for this work, the third
chapter will focus on detailing the developed algorithm, finally the last two chapters will
present the results obtained on simple and representative test cases.

ONERA: The French Aerospace Lab

This work has been developed at the National Office for Aerospace Studies and Research,
in French Office National d’Études et de Recherches Aérospatiales (ONERA), the main
French research center in the aeronautics, space and defense sector. ONERA was founded
in 1946 [24] and it is placed under the supervision of the Ministry of the Armed Forces
and it employs around 2000 people, including a majority of researchers, engineers and
technicians. ONERA has significant test and calculation resources, and in particular the
largest fleet of wind tunnels in Europe. It is composed of three main divisions: Defence,
Aeronautics and Space Program.
ONERA’s mission is to develop and guide research activities in the aerospace field, while
designing, developing and deploying the resources required to conduct this research. More-
over, it aims to disseminate, in collaboration with the authorities or organisations respon-
sible for scientific and technical research, the results of said research at national and
international levels. Therefore, promoting their use by the aerospace industry and, where
appropriate, facilitating their application outside the aerospace field.
The Technical and Programs Department (DTP) guarantees state expertise and carries
out ONERA’s studies and research relating to its main purposes, aeronautics, space and
defence, via the seven scientific departments that make it up:

• DAAA - Aerodynamics, aeroelasticity, acoustics;

• DEMR - Electromagnetism and Radar;

• DMAS - Materials and structures;

• DMPE - Multi-physics for energetics;

• DOTA - Optics and associated techniques;

• DPHY - Physics, instrumentation, environment, space;

• DTIS - Information Processing and Systems.

This work was developed in the DAAA/NFLU department. NFLU develops numerical
methods for solving Navier-Stokes equations, in particular space-time numerical schemes
by finite volume approach and Discontinuous Galerkin, such as the Aghora code.

3

1| Solving Linear Systems with

the GMRES Method

Contents
1.1 Iterative Methods for System Solution 3

1.2 The Generalized Minimal RESidual Method 4

1.3 The Initial Guess of Iterative Methods 9

1.3.1 Recycling the Previous Solution in Time-Dependent Simulations 10

1.4 Graph Representation of Matrices 10

Chapter 1 introduces the Iterative Generalized Minimal RESidual (GMRES) method, the
primary iterative technique used in this thesis. The chapter presents the theoretical foun-
dations and algorithmic principles of GMRES, highlighting its effectiveness in solving
complex numerical problems. Additionally, the significance of selecting appropriate initial
guesses in iterative methods is explored through numerical experiments, emphasizing the
crucial role of thoughtful initialization strategies for efficient convergence. This chapter
serves as a crucial foundation for subsequent sections, offering essential insights into the
strengths and challenges of the GMRES method.

1.1. Iterative Methods for System Solution

In the field of computational mathematics, a system of partial differential equations can
be approximated to a linear system in the form:

Ax = b, (1.1)

where A represents the matrix of coefficients, of dimension n1× n2, b is the second mem-
ber vector, or right hand side (RHS), of size n1 and x represents the vector of unknowns
to be determined, of size n2. In this thesis all the problems considered are going to be

4 1| Solving Linear Systems with the GMRES Method

square, therefore A is going to be of size n×n, while both b and x are going to be of size
n = n1 = n2 and only real sparse linear systems will be considered.
In order to solve a linear system one could use different methods, for instance direct
methods are methods which give the exact solution to the system in a finite number of
steps, minus a rounding error produced by the limited capabilities of the machine, such as
Gaussian elimination or the LU and Cholesky decomposition [12]. When the size of the
matrix becomes larger, however, direct methods are no longer affordable due to memory
requirements, therefore a more acceptable solution is to use iterative methods. Classic
iterative methods are the Jacobi method, the Gauss-Seidel method and Krylov subspace-
based methods [12, 32].
The basic idea behind iterative methods is to start with an initial guess for the solution
and then repeatedly update the guess based on certain calculations. These calculations
typically involve matrix-vector multiplications and vector operations. The process con-
tinues until a convergence criterion is reached, indicating that the approximation of the
solution satisfies a certain level of accuracy.
Iterative methods can be advantageous in certain situations. They can be computation-
ally efficient for large sparse systems where direct methods may be impractical due to the
memory requirements. Additionally, iterative methods can be more flexible when dealing
with systems that are ill-conditioned or have specific properties.
However, it is important to note that iterative methods may not always converge or may
converge slowly. Preconditioning is then required and is used in order to attempt to
improve the spectral properties of the operator of the system by clustering as much as
possible the eigenspectrum of the initial system [5]. However, a tradeoff has to be found
between numerical efficiency of the approach and costs to construct and apply the pre-
conditioner. The convergence of an iterative method depends on the properties of the
matrix involved in the linear system. Therefore, it is crucial to analyze the convergence
behavior and select appropriate iterative methods accordingly.
This thesis will focus on the use of the GMRES method.

1.2. The Generalized Minimal RESidual Method

The Generalized Minimal RESidual method (GMRES) [10, 11, 32] is a classic iterative
method which does not require any particular form of the matrix and is perfectly ap-
plicable to non symmetric and non definite positive systems. The method is considered
iterative since at each step a new approximation of the solution of the system x is com-
puted. However, the algorithm is designed so that at most n iterations are necessary to
reach the solution x in exact arithmetic: GMRES could thus be qualified as a semi-exact

1| Solving Linear Systems with the GMRES Method 5

method.
One of the major advantages of the GMRES algorithm is the fact that the update on the
iterated xi (which is supposed to be an approximation of x) is carried out in order to min-
imize the residual ri := b− Axi associated, in the Eulerian norm, and this with respect
to all the other possible approximations on the space considered. The considered space
being chosen so as to contain all the previous search spaces, we obtain the property that
the residual only decreases (in norm) over the iterations. Stated otherwise, it is possible
to say that this algorithm guarantees that at each new iteration, the newly computed
xi is "better" than the previous one (in the sense that the norm ∥ri∥ := ∥b − Axi∥ is
smaller). In practice, the GMRES method will converge in far fewer steps than n, which
makes it all the more interesting (and viable in a context of limited computer memory
storage).
Consider an initial vector x0, which will serve as the starting point for our iterative
method, in most practical cases, x0 = 0. The associated initial residual is r0 := b−Ax0.
This method iteratively constructs a Krylov subspace, Km(A, r0), this operation is per-
formed by generating an orthonormal basis of Km(A, r0) through the use of the Arnoldi
procedure. The j-th Krylov space (j ∈ N∗) generated by A and r0 is the vector subspace:

Kj(A, r0) := L
{
r0, Ar0, A

2r0, ..., A
j−1r0

}
(1.2)

and if j = 0, the Krylov space will be the space generated by the null vector.
The principle underlying the definition of Krylov space is based on the Cayley-Hamilton
theorem and the notion of minimal polynomial [15]:

Theorem 1.1 (Cayley-Hamilton Theorem). Given A ∈ Rn×n, invertible, there exists a
polynomial of degree less than or equal to n which cancels A. Therefore, there exists a
polynomial P of degree less than or equal to n such that:

A−1 = P(A) . (1.3)

It is this polynomial that the Krylov space seeks to reach, while multiplying it by the
residual vector r0. Indeed, an element of Krylov space can well be written as a linear
combination of Alr0, that is to say as a polynomial in A multiplied by r0. As the Krylov
space increases in size, it is expected in practice that one can more reliably reach the
quantity A−1r0 and thus solve our problem. Considerations related to the eigenvalues of
the matrix of the system are also taken into account in the Krylov spaces (cf. [15] for
more details).

6 1| Solving Linear Systems with the GMRES Method

The idea then is to construct vector by vector a basis of Krylov space. However, in prac-
tice, the vectors resulting from the calculations of Alr0 will tend to be close to the linear
dependence, which makes their use less robust, in particular for the resolution of large
systems. Therefore, it is preferable or even necessary to generate an orthonormal basis of
the considered Krylov space and it is done by the Arnoldi’s procedure. The principle of
Arnoldi’s orthonormalization process is the same as that of a Gram-Schmidt algorithm,
by adapting its formulation to our Krylov space. In Arnoldi’s process, exact arithmetic is
assumed, however, with the presence of round-off, it is not always reliable. The classical
Gram-Schmidt method (CGS) is not very robust numerically, since the vectors obtained
have a fairly strong loss of orthogonality [32]. The modified Gram-Schmidt principle
(MGS) is therefore preferred, although it also happens that it is no longer sufficient: a
reorthogonalization is then sometimes employed by repeating the orthogonalization step
before normalizing. More than one reorthogonalization seems unnecessary according to
some theoretical results [32]. Arnoldi’s algorithm is written in detail in Algorithm 1.1 and
MGS with only one orthogonalization step will be the default in this work.
By fixing the size of the Krylov subspace as m it is possible to limit the increasing cost
in memory and the computational time of the procedure. Starting from an initial vec-
tor (denoted r0 for more generality) and after m stages of the Arnoldi process, we obtain
m+1 orthonormal vectors v1,v2, ...,vm+1 which constitute the columns of a matrix Vm+1,
where v1 := r0

∥r0∥ . Note that in case of "breakdown" (i.e., when a new vector obtained by
the process is zero and it is not possible to divide it by its norm), this means that we have
reached the maximum size of the Krylov space and thus reached the best approximation
of A−1 by this method. It happens then it is not possible to perform m steps, but a lower
number of steps. Even if they are rare, these "breakdowns" are to be taken into account
in the implementations because they make it possible on the one hand to avoid useless
calculations while convergence is reached, and on the other hand prevent the program
from crashing when it was a very favorable case.
Noting that (·, ·) represents the classic scalar product.

1| Solving Linear Systems with the GMRES Method 7

Algorithm 1.1 One step of the Arnoldi Algorithm
Input A, V , H̄, v1, j, m, ε
Output V , H̄, m

1: vj+1 = Avj

2: for i = 1, ..., j do
3: hi,j = (vi,vj+1)

4: vj+1 = vj+1 − hi,jvi

5: end for
6: hj+1,j = ∥vj+1∥
7: if hj+1,j ≤ ε then
8: m = j

9: else
10: vj+1 = vj+1/hj+1,j

11: end if

Arnoldi’s process allows us to write the following relation after m steps:

AVm = Vm+1H̄m , (1.4)

where H̄m is an upper Hessenberg matrix of dimensions (m + 1) ×m, whose coefficients
store the inner products between the previous orthonormal vectors of the Krylov basis
and the intermediate version of the new vector under construction. The interest of this
relation is to be able to work without the multiplication by A once the matrix H̄m has
been obtained, especially since the latter is of small size (m is in practice very small
compared to n).
After performing the m-th Arnoldi step, we are led to consider a Krylov space Km(A, r0).
Starting from an initial iteration x0, the search space of an approximation xm of the
solution x will be:

x0 +Km(A, r0) . (1.5)

The principle of GMRES, as its name indicates, is to determine the unique xm of the
search space, such that it is the vector having the minimum norm ∥rm∥ := ∥b − Axm∥
on the search space. In other words, we are looking for the vector y ∈ Rm such that:

xm = x0 + Vmy (1.6)

8 1| Solving Linear Systems with the GMRES Method

and such that

rm = argmin
xm∈Rn

∥b− Axm∥ . (1.7)

Now, ∥b − Axm∥ = ∥b − Ax0 − AVmy∥ = ∥r0 − AVmy∥ and according to the Arnoldi
relation, ∥r0−AVmy∥ = ∥r0−Vm+1H̄my∥. Moreover, v1 = r0

∥r0∥ and it is orthogonal with
all other vi, so is r0. So,

∥r0 − Vm+1H̄my∥ = ∥Vm+1(V
T
m+1r0 − H̄my)∥ = ∥V T

m+1r0 − H̄my∥ = ∥c− H̄my∥ (1.8)

with c := ||r0||e1 := βe1 and e1 the first vector of the canonical basis.

It is possible to write:

rm = b− Axm = b− A(x0 + Vmy) = r0 − AVmy
1.4
= βv1 − Vm+1H̄my = Vm+1(βe1 − H̄my) .

(1.9)

Therefore, since the smallest the norm of the residual the more accurate the solution is,
one could search for a solution by minimizing the functional:

J(y) ≡ ∥b− Ax∥ = ∥c− H̄my∥ . (1.10)

Therefore, one should solve:

y = argmin
ỹ∈Rm

∥c− H̄mỹ∥ . (1.11)

Equation (1.11) is a least squares problem since the matrix H̄m has one more row than
columns. A usual solution method consists in determining the QR factorization of H̄m,
with Q ∈ R(m+1)×(m+1) orthogonal and R ∈ R(m+1)×m upper triangular. So:

∥c− H̄mỹ∥ = ∥Q(QTc−Rỹ)∥ = ∥QTc−Rỹ∥ . (1.12)

Algorithm 1.2 details the classic GMRES algorithm.

In order to obtain better solutions and not to halt the computation only after m iterations

1| Solving Linear Systems with the GMRES Method 9

Algorithm 1.2 GMRES(m, tol)
Input A: squared matrix of dimensions (n, n), b: r.h.s. vector of the system of

dimensions (n, 1), x0: initial candidate of the solution vector of the system of dimensions
(n, 1), m: dimension of the Krylov subspace Km(A, r0)

Output xm: approximated solution of the system
1: Compute r0 = b− Ax0, β := ∥r0∥, and v1 := r0/β
2: for j = 1, ...,m do
3: Compute wj := Avj

4: for i = 1, ..., j do
5: hi,j := (wj ,vi)
6: wj := wj − hi,jvi

7: end for
8: hi+1,j = ∥wj∥
9: if hj+1,j == 0 then

10: m := j and go to 14
11: end if
12: vj+1 = wj/hj+1,j

13: end for
14: Define the (m+ 1)×m Hessenberg matrix H̄m = {hi,j}1≤i≤m+1, 1≤j≤m

15: Solve the least squares problem by computing ym, the minimizer of ∥βe1−H̄my∥ and
xm = x0 + Vmym, with Vm = [v1|v2|...|vm]

16: Compute the solution x = x0 + Vmy

the Restarted GMRES algorithm was developed [32]. Restarted GMRES is an extension of
GMRES which introduces an outer cycle to periodically restart the optimization process.
Algorithm 1.3 shows in detail the Restarted GMRES (RGMRES) algorithm.

Algorithm 1.3 RGMRES(m, tol)
Input A: squared matrix of dimensions (n, n), b: r.h.s. vector of the system of

dimensions (n, 1), x0: initial candidate of the solution vector of the system of dimensions
(n, 1), m: dimension of the Krylov subspace Km(A, r0), Nmax: maximum number of
restarts

Output xm: approximated solution of the system
1: Compute r0 = b− Ax0, β := ∥r0∥, and v1 := r0/β
2: Generate the Arnoldi basis and the matrix H̄m using Algorithm 1.1 starting from v1
3: Compute ym the minimizer of ∥βe1 − H̄my∥ and xm = x0 + Vmym

4: If satisfied or Nmax is reached then break, else set x0 := xm and go to 1

1.3. The Initial Guess of Iterative Methods

The effectiveness of iterative methods depends on the initial guess x0 used as a starting
point for the iterative process. While the choice of initial guess may appear arbitrary,

10 1| Solving Linear Systems with the GMRES Method

it significantly influences the convergence behavior of iterative linear solvers. A more
favorable initial guess can reduce the number of iterations required to achieve convergence,
thus enhancing computational efficiency.
By selecting an initial guess that is closer to the true solution, the number of iterations
required to reach convergence can be significantly reduced. Several techniques can help in
obtaining an improved initial guess, including utilizing previous solutions, incorporating
problem-specific information, or employing preconditioners to modify the system matrix.

1.3.1. Recycling the Previous Solution in Time-Dependent Sim-

ulations

Using the term recycling, in the field of iterative methods for solving linear systems ob-
tained from time-dependent problems, one refers to the utilization of the solution obtained
from the previous time iteration as an initial guess for the current iteration. This approach
aims to accelerate the convergence of the iterative solver and reduce the overall computa-
tional cost. While the initial guess for the first iteration is typically an arbitrary or zero
vector.
This operation is possible because linear systems in consecutive time steps are often re-
lated or similar, making the previous solution a reasonable starting point for the current
iteration. By leveraging the information contained in the previous solution, such as the
approximate structure of the problem or the dominant modes of the system, the recycling
technique can significantly improve the convergence behavior of the iterative method.
This process is repeated for subsequent time steps, with each recycled solution providing
an improved initial guess for the corresponding linear system. By recycling the solution
from the previous time iteration, the iterative solver benefits from the information already
captured in the previous solution, leading to faster convergence and reduced computa-
tional effort.

1.4. Graph Representation of Matrices

Each matrix A = {aij} can be represented as a graph, specifically the connectivity of
the graph is generated by the adjacency matrix of A, defined as Adj: adjij = 1 if and
only if |aij| > 0. Subsequently, a self-loop is added to each node. The non diagonal
elements of A can also be assigned to the corresponding edges as edge features, while the
diagonal elements are attached to the corresponding self-loops. The input and result of
this algorithm are shown in Figure 1.1. This procedure is defined because it serves the
purpose of utilizing matrix information through a graph structure, which can then be use

1| Solving Linear Systems with the GMRES Method 11

in the implementation of a Graph Neural Network, see Section 2.3.3 and Section 3.4.2.

C

BA

D

1

3

3

-4

-1

2

-37

2
1

Figure 1.1: Generation of a graph from a matrix.

This conversion was also performed by [36] to exploit matrix features in the prediction of
the best suited preconditioner for a linear system.

13

2| Machine Learning and Neural

Networks

Contents
2.1 Introduction to Machine Learning 13

2.2 Different Learning Modes . 15

2.2.1 Offline Learning . 15

2.2.2 Online Learning . 16

2.3 Neural Networks . 17

2.3.1 Dense Neural Networks . 18

2.3.2 Convolutional Neural Networks 20

2.3.3 Graph Neural Networks . 22

2.4 Activation Function . 23

2.5 The Minimization Problem . 25

Chapter 2 provides an introduction to Machine Learning, covering the core concepts and its
importance in data-driven problem-solving. It discusses two primary learning paradigms,
offline and online learning, highlighting their respective data processing and adaptability
approaches. Additionally, the chapter defines various Neural Network types and their
applications, facilitating informed choices for experimentation. Finally, the concept of the
loss function and its role in guiding model optimization during training is explained. These
foundational insights pave the way for the subsequent chapters, where Machine Learning
techniques are applied and evaluated.

2.1. Introduction to Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence (AI) that focuses on the de-
velopment of algorithms and models that enable computers to learn and make predictions

14 2| Machine Learning and Neural Networks

or decisions without being explicitly programmed to. It provides computational systems
the ability to automatically learn and improve from experience, allowing them to handle
complex tasks and data-driven problems.
At its core, ML revolves around the idea of creating mathematical models that can learn
patterns and relationships from data. By analyzing and processing large amounts of data,
these models can uncover insights, make predictions, and make data-driven decisions.
The fundamental goal of ML is to enable computers to learn from data and generalize
that knowledge to new, unseen examples. This process involves two main components:
training and inference. During the training phase, a ML model is exposed to a labeled
dataset, where it learns from the provided examples and adjusts its internal parameters
or structure to capture the underlying patterns in the data. Once the model is trained,
it can be deployed for inference, where it makes predictions or decisions based on new,
unseen data.
Deep learning (DL) is a subset of ML that uses artificial Neural Networks (NNs) to mimic
the learning process of the human brain. DL consists of multiple hidden layers in an
artificial NN. This approach tries to model the way the human brain processes light and
sound into vision and hearing. NNs are introduced and defined in Section 2.3.
ML algorithms can be categorized into different types, including supervised learning, un-
supervised learning, semi-supervised learning, and reinforcement learning.

• Supervised Learning: the model learns from labeled examples, where the input data
is paired with corresponding target labels or outcomes. This type of learning is used
for tasks such as classification, regression, and sequence labeling;

• Unsupervised Learning: it involves learning patterns and structures from unlabeled
data. The goal is to discover inherent relationships, clusters, or hidden patterns
within the data. Unsupervised learning algorithms are commonly used for tasks like
clustering, dimensionality reduction, and anomaly detection;

• Semi-supervised Learning: it combines elements of both supervised and unsuper-
vised learning, where the model learns from a combination of labeled and unlabeled
data. This approach is beneficial when labeled data is limited or expensive to obtain;

• Reinforcement Learning: it involves training agents to interact with an environment
and learn optimal actions through a trial-and-error process. The agent receives
feedback in the form of rewards or punishments based on its actions, enabling it to
learn and improve its decision-making abilities over time. Reinforcement learning is
often applied to problems in robotics, game playing, and control systems.

ML algorithms can be either offline or online learning algorithms. In offline learning, the

2| Machine Learning and Neural Networks 15

algorithm is trained on a pre-collected batch of data, and the training process does not
take into account any new data that may be received during deployment. In contrast,
online learning involves the continuous training of a model on incoming data, allowing it
to adapt to new information and make more accurate predictions.
ML has a wide range of practical applications across various domains. It is used in areas
such as image and speech recognition, natural language processing, recommendation sys-
tems, fraud detection, financial modeling, medical diagnosis, autonomous vehicles, and
many more.
In recent years, advancements in computing power, the availability of large datasets, and
breakthroughs in algorithms, such as deep learning, have accelerated the progress and
adoption of ML. These developments have enabled the creation of highly sophisticated
models capable of handling complex tasks and achieving state-of-the-art performance in
various domains.
As ML continues to evolve, researchers and practitioners explore new techniques and algo-
rithms to address challenges such as interpretability, fairness, robustness, and scalability.
The field holds immense potential for transforming industries, driving innovation, and
shaping the future of technology.
Apart from NNs, several other models exist for implementing ML. In this thesis NNs are
preferred thanks to recent advancements in GPU-based implementations of backpropaga-
tion algorithms that have made them much more efficient.

2.2. Different Learning Modes

2.2.1. Offline Learning

Offline learning, also known as batch learning or batch-mode learning, is a ML paradigm
where the learning algorithm is trained on a pre-collected batch of data before it is de-
ployed for prediction or inference tasks. In offline learning, the entire dataset, often
referred to as the training set, is available from the start and is used to train the model.
The offline learning process typically consists of the following steps:

1. Data Collection: the training dataset is gathered by collecting and assembling rele-
vant examples or instances that represent the problem domain. This dataset should
be diverse, representative, and cover a wide range of scenarios that the model is
expected to encounter during deployment.

2. Data Preprocessing: the collected dataset is processed to ensure its quality, con-

16 2| Machine Learning and Neural Networks

sistency, and suitability for training. This step may involve tasks such as cleaning
the data, handling missing values, normalizing or scaling features, and performing
feature engineering to extract relevant information.

3. Model Training: once the data preprocessing is complete, the training algorithm is
applied to the entire dataset. The model is built by learning the underlying patterns
and relationships within the training data. The goal is to create a model that can
generalize well to unseen data and make accurate predictions or classifications.

4. Model Evaluation: after the model is trained, it needs to be evaluated to assess its
performance and effectiveness. This is typically done by using a separate portion
of the dataset called the validation set or test set. The model’s predictions on this
set are compared to the known true values to measure metrics such as accuracy,
precision, recall, or F1 score. These metrics provide an indication of how well the
model is likely to perform on new, unseen data.

5. Model Deployment: once the model has been evaluated and deemed satisfactory, it
can be deployed for making predictions or classifications on new, unseen instances.
The trained model takes input data and produces the desired output, based on the
patterns it has learned during training.

One of the main characteristics of offline learning is that it assumes the availability of the
entire training dataset before the learning process begins. This implies that offline learning
algorithms do not consider new data that arrives after the training phase. Therefore,
offline learning may not be suitable for applications where the data distribution changes
over time or where a continuous stream of data needs to be processed.
Overall, offline learning provides a way to train models using a fixed dataset, making
it well-suited for scenarios where data is static or does not change significantly during
deployment.

2.2.2. Online Learning

Online learning is particularly useful in scenarios where the data distribution may change
over time, or when there is a large and continuous stream of data. One example of this is
in financial applications, where stock prices or other financial data are constantly changing
and new data is continuously being generated. Another example is in natural language
processing, where the language and vocabulary used by people are constantly evolving.
One of the key differences between online and offline learning is the way in which data is
processed. In offline learning, the entire dataset is typically loaded into memory and pro-
cessed in batches. This approach can be computationally intensive and time-consuming,

2| Machine Learning and Neural Networks 17

particularly when dealing with large datasets. In contrast, online learning algorithms
process data in real-time, as it arrives, making them more efficient and scalable.
Another key difference between online and offline learning is the way in which the model
is updated. In offline learning, the model is typically trained once on a fixed dataset, and
the resulting model is used for prediction. In contrast, online learning algorithms update
the model in real-time as new data arrives, allowing the model to adapt to changes in the
data distribution.
Online learning algorithms also typically require less memory and computational resources
than offline learning algorithms. This is because they only need to store and process a
small subset of the data at any given time, rather than the entire dataset.
Therefore, online learning in ML allows for the continuous training of models on incoming
data, making them more adaptable to changes in the data distribution. Online learning
algorithms differ from offline learning algorithms in the way they process data, update
the model, and require fewer computational resources.

2.3. Neural Networks

Neural Networks (NNs) are a fundamental concept in the field of ML and DL. They are
powerful computational models inspired by the structure and functioning of the human
brain, composed of interconnected nodes called artificial neurons or simply neurons.
At its core, a NN consists of multiple layers of interconnected neurons, forming a network-
like structure. The most common type of NN is the feedforward NN, where information
flows in one direction, from the input layer through one or more hidden layers to the
output layer.
Each neuron in a NN receives input from the previous layer’s neurons, processes the
information, and then produces an output. These outputs are then passed as inputs to the
neurons in the next layer, and this process continues until the final output is generated.
The connections between neurons are represented by weights w = {wj}nj=1 and a bias
b = {bj}nj=1, which determine the strength and influence of each connection. Each node j

of a layer can be represented by a combination of a scalar product and activation function
z, such that:

yj = z(w · x+ bj) , (2.1)

where x = {xj}nj=1 is the input vector of the node and yj is the j-th scalar component of
the output vector y corresponding to the j-th node of the considered layer.

18 2| Machine Learning and Neural Networks

During the training phase of a NN, the weights are adjusted iteratively to minimize the
difference between the network’s predicted output and the desired output. This adjust-
ment is achieved through a process called backpropagation, which calculates the gradient
of the network’s performance with respect to the weights and updates them accordingly
using optimization algorithms like gradient descent. This operation is made possible by
Automatic Differentiation, which is set of techniques to evaluate the partial derivative of
a function specified by a computer program.
The hidden layers of a NN enable it to learn complex and abstract representations of the
input data. By adjusting the weights, NNs can discover intricate patterns and relation-
ships within the data, making them capable of tasks such as classification, regression, and
even more advanced tasks like image and speech recognition.
One of the significant advantages of NNs is their ability to learn and generalize from large
amounts of data. This property, known as learning from examples, allows neural networks
to make predictions or decisions on new, unseen data based on patterns learned during
training.
NNs have witnessed tremendous success in various domains, including computer vision,
natural language processing, speech recognition, and recommendation systems, among
others. Their versatility and ability to handle complex problems have made them a cen-
tral component of modern ML and AI applications.
It’s worth noting that neural networks come in different architectures and variations, such
as Dense Neural Networks (DNNs), Convolutional Neural Networks (CNNs) used largely
for image processing, Graph Neural Networks (GNNs), each designed to excel in specific
tasks and data types.
Overall, NNs are a crucial and powerful tool in the field of ML, enabling computers to
learn from data and recognize patterns.

2.3.1. Dense Neural Networks

Dense Neural Networks (DNNs) have been a cornerstone in the field of ML, providing
effective solutions for a wide range of tasks. DNNs excel at processing sequential and
tabular data.
DNNs, also known as feedforward NNs, are composed of multiple layers of interconnected
neurons, as shown in Figure 2.1. The architecture follows a sequential flow of informa-
tion, with each neuron in a layer connected to all neurons in the subsequent layer. The
input data propagates through the network in a forward direction, without any recurrent
connections. DNNs leverage the power of activation functions, weight parameters, and
deep layer structures to learn complex representations and perform various tasks.

2| Machine Learning and Neural Networks 19

The architecture of a DNN typically comprises an input layer, one or more hidden lay-
ers, and an output layer. Neurons in each layer are fully connected to neurons in the
subsequent layer, resulting in a dense connectivity pattern. The hidden layers, with their
nonlinear activation functions, allow DNNs to capture intricate patterns and relationships
within the data. Different architectures, such as Multilayer Perceptrons (MLPs) and Con-
volutional Neural Networks (CNNs), have been developed to address specific types of data
and tasks.
Training DNNs involves optimizing an objective function through a process known as
backpropagation. Backpropagation calculates the gradients of the loss function with re-
spect to the network parameters, enabling the update of weights using gradient descent
optimization algorithms such as the ADAM (ADAptive Moment Estimation) algorithm.
The availability of large-scale labeled datasets, advancements in optimization techniques,
and the use of regularization methods, such as dropout and weight decay, have contributed
to the success of training DNNs.
The evaluation of DNNs involves assessing their performance on specific tasks using ap-
propriate metrics, such as accuracy, precision, recall, and F1 score [38]. Datasets with
ground truth labels enable the training and evaluation of DNN models. Experimental
analyses help researchers understand the impact of hyperparameters, network architec-
tures, and training strategies on the performance of DNNs.
While DNNs have demonstrated exceptional performance, they face several challenges.
Overfitting, where the model fails to generalize well to unseen data, remains a concern.
The interpretability and explainability of DNNs have also raised questions, as the com-
plexity of their architectures often leads to black-box decision-making. Adapting DNNs
to handle limited labeled data, addressing the computational requirements of training
large-scale models, and enhancing their robustness against adversarial attacks are areas
of ongoing research. The exploration of novel architectures, such as transformers and
generative models, further expands the potential applications of DNNs.
DNNs provide a powerful framework for processing sequential and tabular data, offering
exceptional performance in various domains. Their dense connectivity pattern, activation
functions, and deep layer structures enable them to learn complex representations and
solve a wide range of tasks.

20 2| Machine Learning and Neural Networks

Output Layer

Input Layer
Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Figure 2.1: General structure of a Dense Neural Network.

2.3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [25] have revolutionized the field of computer
vision and have become a fundamental tool for image and video analysis. These DL mod-
els are specifically designed to capture spatial and hierarchical patterns in data, making
them highly effective in tasks such as image classification, object detection, and image
segmentation.
CNNs are a class of DNNs that excel in processing grid-like data, such as images and
videos. Inspired by the organization of the visual cortex in humans and animals, CNNs
employ convolutional layers that extract local spatial features from the input data. By
leveraging shared weights and pooling operations, CNNs can efficiently learn hierarchical
representations, enabling robust and accurate analysis of visual data.
The architecture of a CNN typically consists of convolutional layers, pooling layers, fully
connected layers, and an output layer. Convolutional layers employ convolution opera-
tions, applying filters to the input data to extract relevant features. Pooling layers reduce
the spatial dimensions of the feature maps, capturing the most salient information. There
are two main types of pooling applied to CNNs: average and max pooling [39]. Fully con-
nected layers further process the extracted features, learning high-level representations
and making final predictions. The depth and width of the network, as well as the size of
filters and pooling regions, can vary based on the complexity of the task and the available
computational resources.
CNNs are trained using large-scale labeled datasets through a process known as backprop-

2| Machine Learning and Neural Networks 21

agation. During training, the network learns to optimize an objective function, typically
a loss function, by adjusting the weights and biases. Gradient descent optimization algo-
rithms, such as Stochastic Gradient Descent (SGD) [30] and its variants, are commonly
employed to update the parameters of the network. Regularization techniques, such as
dropout and weight decay, help prevent overfitting and improve generalization perfor-
mance.
As mentioned earlier, CNNs have been widely applied in computer vision tasks, as shown
in Figure 2.2, where the geneneral structure of a CNN is also presented. Image classifi-
cation, where CNNs assign labels to images based on their content, has seen remarkable
advancements with models like AlexNet, VGGNet [34] and ResNet [13]. Object detection
involves localizing and classifying objects within images, and CNN-based architectures
such as R-CNN, Fast R-CNN, and YOLO have achieved state-of-the-art performance. Im-
age segmentation, which involves pixel-level classification, has also benefited from CNNs,
with models like U-Net and Mask R-CNN being widely used. CNNs have found applica-
tions in other domains as well, including natural language processing, speech recognition,
and bioinformatics.
While CNNs have achieved remarkable success, challenges still exist. Training deep CNNs
requires large amounts of labeled data, which may not always be available. Addressing
the computational requirements of training large-scale models and reducing the memory
footprint are ongoing research areas. Improving the interpretability and explainability of
CNNs remains a challenge, as the complex hierarchical representations learned by deep
networks can be difficult to interpret. Advancements in transfer learning, domain adap-
tation, and model compression are expected to shape the future of CNNs.

Figure 2.2: Scheme representing the general architecture of CNNs. Image taken from
[14, 19]

22 2| Machine Learning and Neural Networks

2.3.3. Graph Neural Networks

Graph Neural Networks (GNNs) [40] have gained significant attention in recent years as
a powerful framework for learning and reasoning on graph-structured data. With the rise
of complex and interconnected datasets, such as social networks, citation networks, and
molecular structures, the need to effectively model and analyze graph data has become
increasingly crucial. Traditional ML approaches often struggle to handle the irregularity
and varying sizes of graphs, making GNNs an appealing solution.
GNNs represent a class of NNs specifically designed to process graph-structured data.
They leverage the connectivity and relationships between nodes in a graph to learn in-
formative representations and perform tasks such as node classification, link prediction,
and graph classification. GNNs build upon traditional neural networks, incorporating
mechanisms that capture the local and global graph structure.
The architecture of a GNN consists of multiple layers, each performing message passing
and aggregation operations to update node representations. The process typically involves
the exchange of information between neighboring nodes, allowing nodes to capture the
characteristics of their local graph neighborhoods. Various GNN architectures have been
proposed, including Graph Convolutional Networks (GCNs), Graph Attention Networks
(GATs), GraphSAGE, and Graph Isomorphism Networks (GINs). These architectures
differ in terms of the aggregation functions, propagation rules, and attention mechanisms
employed.
The general framework of Graph Neural Networks consists of a graph-in/graph-out archi-
tecture, meaning that this architectures accept a graph G = (V,E), where V = {vi}Ni=1

and E = {e(vi, vj) : vi, vj ∈ V } are the sets of nodes and the set of edges, as input,
consisting of an adjacency matrix A together with the information loaded into nodes (e.g.
nodes’ features matrix X), edges and global-context, and returns a graph with the same
connectivity structure of the input together with a progressively transformed embedding
of the carried information. This behaviour can be observed in Figure 2.3. From this
perspective a GNN can be defined as an optimizable transformation applied to one or
multiple attributes of the graph (nodes, edges, global-context) preserving graph struc-
ture, so it is a permutation invariant transformation.
Training GNNs involves optimizing a specific objective function, typically through a com-
bination of supervised, semi-supervised, or unsupervised learning techniques. Supervised
learning on graphs requires labeled nodes or edges to learn node representations, while
semi-supervised learning leverages a small portion of labeled data combined with unla-
beled data. Unsupervised learning on graphs aims to capture latent graph structures
without explicit supervision. GNNs utilize optimization algorithms and regularization

2| Machine Learning and Neural Networks 23

techniques to update the model parameters and prevent overfitting.
GNNs have demonstrated their efficacy across a wide range of domains. In social network
analysis, GNNs can capture community structures, detect anomalies, and predict missing
links. Recommendation systems benefit from GNNs by leveraging user-item interaction
graphs to provide personalized recommendations. Knowledge graph completion tasks in-
volve predicting missing relations between entities, and GNNs excel at capturing complex
relational patterns. GNNs also find applications in bioinformatics and drug discovery,
where they can analyze molecular graphs, predict molecular properties, and aid in drug
design.
While GNNs have shown promise, several challenges remain. Scalability and efficiency
are important concerns, as the computational complexity of GNNs grows with the size of
the graph. Robustness and generalization are also crucial, as GNNs may struggle with
handling noisy or incomplete graph data.
Figure 2.3 shows the idea behind GNNs. A graph is represented by G = (V,E), the input
of the network is X ∈ RN×F , the array of graph features and H ∈ RN×dout is the output
array of the network.

Figure 2.3: Scheme representing the idea behind GNNs. Extracted from [1]

2.4. Activation Function

In order to introduce non-linearities in a NN activation functions are used. In this thesis
the main activation functions are introduced [16]:

1. Sigmoid: the sigmoid function is one of the special functions in the DL field, thanks
to its simplification during back propagation. As it is possible to observe in Fig-
ure 2.4:

• it ranges from [0,1];

• it is not zero centered;

24 2| Machine Learning and Neural Networks

• it contains the exponential operation, therefore it is computationally expensive.

The main problem faced when using this function is because of saturated gradients,
as the function ranges between 0 to 1, the values might remain constant and thus
the gradients will have very small values. Resulting in almost no change applying
gradient descent.

2. Hyperbolic Tangent (tanh): the hyperbolic tangent also has the following properties:

• it ranges between [-1,1];

• it is zero centered.

This function can be considered as a good example in case when the input is greater
than 0, so the gradients obtained will either be all positive or negative, which can
lead to explosion or vanishing issue, thus usage of the hyperbolic tangent can be a
good thing. However, it still faces the problem of saturated gradients.

3. Rectified Linear Unit Activation Function (ReLU): ReLU is the most commonly
used activation function, because of its simplicity during backpropagation and since
it is not computationally expensive. It has the following properties:

• it doesn’t saturate;

• it converges faster than some other activation functions.

Still, one could face an issue of dead ReLU, for instance, if: w > 0, x < 0. So,
ReLU(w · x) = 0, always.

4. Leaky ReLU: Leaky ReLU can be used as an improvement over ReLU. It has all
properties of ReLU, plus it will never have a dead ReLU problem.

5. Exponential Linear Units (ELU): ELU is also a variation of ReLU, with a better
value for x < 0. It also has the same properties as ReLU along with:

• no Dead ReLU Situation;

• closer to zero mean outputs than Leaky ReLU;

• more computations because of exponential function.

6. Maxout: Maxout has been introduced in 2013. It has the property of linearity in
it. So, it never saturates or dies. But is expensive as it doubles the parameters.

2| Machine Learning and Neural Networks 25

Figure 2.4: Different activation functions. Extracted from [16].

In this thesis ELU will be used as activation function since it has shown the best results.

2.5. The Minimization Problem

Finally, one crucial component in training NNs is the loss function. The evaluation of
the loss function plays a crucial role in training and optimizing models. The loss function
quantifies the discrepancy between the predicted outputs of the model, on a batch of n
elements, {ŷ(i)}ni=1 and the actual target values {y(i)}ni=1. By measuring this discrepancy,
the loss function provides a numerical representation of how well the model is performing.
The choice of a specific loss function depends on the nature of the ML task. Different types
of problems, such as classification, regression, or sequence generation, require different loss
functions tailored to their respective objectives.
In regression problems, such as this case, where the aim is to predict continuous or numeric
values, popular loss functions include:

• Mean Squared Error (MSE) Loss: MSE measures the average squared difference
between the predicted and true values. It penalizes large errors more than smaller
ones and is commonly used in tasks such as predicting housing prices or stock market
trends.

MSE =
1

n

n∑
i=1

(y(i) − ŷ(i))2 . (2.2)

• Mean Absolute Error (MAE) Loss: MAE computes the average absolute difference
between the predicted and true values. It provides a more robust measure of error

26 2| Machine Learning and Neural Networks

compared to MSE and is less sensitive to outliers.

MAE =
1

n

n∑
i=1

|y(i) − ŷ(i)| . (2.3)

During training, the model’s parameters are iteratively updated to minimize the chosen
loss function. This process is typically achieved using optimization algorithms like gra-
dient descent [30] which calculate the gradients of the loss function with respect to the
model’s parameters. By iteratively adjusting the parameters in the direction that mini-
mizes the loss, the model gradually improves its predictions.
For instance, backpropagation is a fundamental algorithm used in training neural net-
works. It is a form of supervised learning that enables the network to adjust its parameters
iteratively based on the errors in its predictions. The primary goal of backpropagation
is to minimize the loss function, which measures the discrepancy between the predicted
outputs and the true targets.
In this explanation a feedforward neural network with Nl layers will be considered. The
input to the network is denoted as x, and the output is denoted as ŷ.
Each layer i of the network is associated with a set of trainable parameters, represented
by a two-dimensional tensor Wi = {wijk}nj,k=1, denoted as weights, and bi = {bij}nj=1 the
bias vector. The output of each layer is obtained through a series of transformations and
activations. The output of layer i is denoted as li and l0 = x.
The forward pass in the neural network involves propagating the input x through each
layer to obtain the final prediction ŷ. This process can be mathematically represented as:

li = z(Wi li−1 + bi) , (2.4)

where z(·) represents the activation function applied element-wise to the input.
During the training process, one computes the loss function L(ŷ,y), following the formula
obtained by Equation (2.2) or Equation (2.3), which measures the error between the
predicted output ŷ and the true target y.
The key idea behind backpropagation is to compute the gradients of the loss function
with respect to the network’s parameters. This process starts from the output layer and
moves backward through the layers, hence the name backpropagation.
The gradient of the loss function with respect to the parameters in layer i is denoted as
∇Wi

and ∇bi .
The gradients are computed using the chain rule of calculus. For the output layer (Nl),
the gradients are computed as follows:

2| Machine Learning and Neural Networks 27

∇WNl
=

∂L

∂lNl

· ∂lNl

∂WNl

, (2.5)

∇bNl
=

∂L

∂lNl

· ∂lNl

∂bNl

. (2.6)

Then, for each layer i (Nl − 1, Nl − 2, ..., 2), the gradients are recursively computed using
the chain rule:

∇Wi
=

∂L

∂li
· ∂li
∂Wi

, (2.7)

∇bi =
∂L

∂li
· ∂li
∂bi

. (2.8)

After computing the gradients for all layers, the network’s parameters are updated using
an optimization algorithm, such as stochastic gradient descent (SGD) or its variants like
ADAM or Adagrad [6, 9, 18, 30]. The ADAM algorithm is a stochastic gradient descent
method, meaning it replaces the actual gradient by an estimate calculated from a ran-
dom subset of the data (batch). It combines the benefits of both adaptive learning rates
and momentum, while Adagrad adapts the learning rates of each parameter individually
based on their historical gradients. These adaptive methods enable faster convergence
and better handling of different parameter scales. The gradients are used to update the
weights and biases of each layer, aiming to minimize the loss function and improve the
model’s performance.
The evaluation of the loss function occurs after each batch. The loss value represents the
current performance of the model on the training data. Lower loss values indicate better
alignment between the predicted outputs and the true target values.
Pytorch is able to perform automatic differentiation, precisely, it uses a dynamic compu-
tational graph. It offers automatic differentiation through backpropagation.

29

3| Development of the Prediction

Algorithm

Contents
3.1 Presentation of the Original Code 29

3.2 The Prediction Algorithm . 32

3.3 Loss Function Evaluation . 32

3.4 Algorithmic Refinements and Code Modifications 35

3.4.1 Use of matrices and of Vectors 36

3.4.2 New Neural Network Architectures 37

3.4.3 Generalization of the dataset expansion and retraining procedure 43

3.4.4 Early Stopping . 44

3.4.5 Gradient Clipping . 45

Chapter 3 presents an in-depth explanation of the prediction algorithm used in this thesis,
tracing its origins from a seminal work and elucidating its core principles. The chapter
delves into the intricacies of the algorithm, providing comprehensive insights into its inner
workings. Furthermore, it highlights the modifications and improvements made in the new
implementation, paving the way for enhanced performance and adaptability. By offering
a detailed account of the algorithm’s evolution and customizations, this chapter sets the
stage for subsequent testing and evaluation, showcasing the algorithm’s applicability in the
context of the thesis objectives.

3.1. Presentation of the Original Code

The ML algorithm developed in this thesis was inspired by the work described in: ‘Ac-
celerating GMRES with Deep Learning in Real-Time’ written by Kevin Luna, Katherine
Klymko and Johannes P. Blaschke [20]. In the paper the implementation of a ML accel-
erated GMRES solver in Python, and using Pytorch, is defined. The solver is then used

30 3| Development of the Prediction Algorithm

to accelerate the Poisson and Advection-Diffusion equation and different architectures of
NNs are tested. The GitHub GMRES-Learning [21] contains two demos:

• 2D Poisson Problem;

• 2D Advection Diffusion Problem.

Thanks to these demos the potentials of accelerating the GMRES algorithm with ML
wrappers is shown more clearly.
Specifically, the code used in the demos worked on problems of the form: Axi = bi, where
A is a linear operator defined as a stencil operator for a n-cell 2D grid, one of which is
shown in Listing 3.2.
A sequence of linear problems of the form Axi = bi are solved over the course of a sim-
ulation. The goal here is to train a NN N(b) in real-time as linear problems are solved
by GMRES. This is accomplished by having the NN provide an initial guess N(bi) = xi

0

to GMRES. The training objective is that this initial guess then improves the rate of
convergence of GMRES.
The first training of the model is performed after a certain initial set of problems is solved,
that is done in order to generate a first dataset to train on. After the first training the
model is retrained with each addition to the dataset. The size of the initial set N train is
an input of the algorithm, as shown in Listing 3.1, and can be chosen by the user.
The dataset used to train the model consists of RHS-solution pairs {(bi,xi)}. However,
unlike traditional deep learning approaches, the goal here is to train the network in real-
time while data is being generated from the simulation. This naturally leads to an online
supervised learning problem since at a given time t < T , only a finite number of (bi,xi)

pairs are available. In order to ensure a high-quality dataset some time steps are dis-
carded, while only ‘high-quality’ ones are kept.
This operation is performed by computing two quality metrics once a system is re-
solved. The first is the time to reach convergence, or to obtain the solution, starting
from xi

0, TOS(xi
0), while the second metric is the residual at the end of the first restart,

Eκ(x
i
0). These two values are then compared with the averages of the previous p itera-

tions (Mp(TOS(x0)), Mp(Eκ(x0))). Now, if the new values are worse than the averages,
specifically if both are greater, the system is saved into the dataset, as this indicates that
the model is not apt to provide good predictions for this type of data.
Figure 3.1 and Figure 3.2 show the speed-up for each linear system obtained by the ML
routine. For the i-th system the speed-up is computed as the ratio between the time to
reach convergence of the classic GMRES algorithm and TOS(xi

0).

https://github.com/ML4FnP/GMRES-Learning

3| Development of the Prediction Algorithm 31

Figure 3.1: Iteration speed-up obtained in the Demo found at [21]. The problem considered
is the Laplace equation for a grid of 20× 20, with an initial set of 32 problems, the model
is applied on a set of 1000 problems and is trained using CNNs.

Figure 3.2: Iteration speed-up obtained in the AdvectionDiffusion_Demo found at [21].
The problem considered is the Advection-Diffusion equation for a grid of 20 × 20, with
an initial set of 32 problems, the model is applied on a set of 500 problems and is trained
using CNNs.

Following [20], the aim of this thesis is to accelerate the GMRES method by feeding it a
better initial guess, predicted using ML. In the following, the algorithm is explained in
detail, with all the modifications performed on the original code. In Chapter 4 the original
simple test cases of [20] are taken into consideration in the new framework, studying
also lager dimensions, exploring different NN architectures and also comparing the ML
efficiency with respect to previously used methods. Furthermore, Chapter 5 tackles the
application of the implemented algorithm on compressible CFD problems.

32 3| Development of the Prediction Algorithm

3.2. The Prediction Algorithm

First, the RHS vector is generated, either randomly for non-time-dependent problems or
from the solution of the previous iteration. If the network is already trained, and therefore
the index of the system i > N train, the NN is evaluated using as input bi to obtain as
output a new initial guess xi

0 = N(bi). Then new data is then fed into the GMRES
code, with output xi

m, the approximated solution of the system. When the new solution
is computed the metrics (TOS(xi

0), Eκ(x
i
0)), defined in Section 3.1, are calculated and

compared to the averages (Mp(TOS(x0)),Mp(Eκ(x0))). In the case that the new metrics
are below average, then the next system in the sequence is considered and therefore the
process starts again by generating the new RHS bi+1.
When, instead, the metrics are above average the system is added to the new batch of
data and if the size of the new batch is equal to the retrain frequency fr the data is check
for orthogonality and linear independence, before being added into the training dataset
and retraining the model. After these operations are performed the new RHS is generated
and the process restarts once again, until the last system is solved.
The algorithm by [20] is shown in Figure 3.3 for the sake of completeness. Figure 3.4
represents one iteration of the prediction algorithm in a more compact manner.

There are two main versions of the algorithm. The first one is used for non-time-dependent
problems and therefore the algorithm iterates on different right hand sides, see Section 4.1.
The second version of the algorithm iterates on time and therefore it is used for time-
dependent problems, see Section 4.2.
Both versions are detailed in Algorithm 3.1. It is important to remember that 1 ≤ κ ≤ m

represents the number of iterations to end the first restart of the GMRES algorithm.
Moreover, d(·, ·) defines a distance operation used in order to check the orthonormality
of the different b vectors. This version of the algorithm is applied in the numerical
simulations reported in Section 4.1.1.

3.3. Loss Function Evaluation

In the implemented model’s training process, the loss function plays a crucial role in guid-
ing the network to make accurate predictions. The loss function measures the discrepancy
between the predicted initial guess, denoted as x0, and the actual solution computed by
the GMRES algorithm, denoted as x.
The loss function is defined as the Mean Squared Error (MSE) between the predicted
initial guess and the true solution:

3| Development of the Prediction Algorithm 33

Time step: generate RHS

Evaluate Neural Network
using RHS input to

generate inital guess

Compute solution using
GMRES

Update and

Check if and
 are below

average

Add solution and RHS to
new batch of data

No
Have solution and RHS

to new batch of data

Check spread of data in
new batch, and add data

to training set

Train Neural Network for a
fixed number of epochs

No

Yes

Yes

Figure 3.3: Scheme of the whole algorithm. In red the sections ran with CPU and in
green the ones ran with GPU. The scheme was taken from [20].

34 3| Development of the Prediction Algorithm

Predictor GMRES .
.

Dataset TrainingCheck

Figure 3.4: ML workflow of iteration i of the algorithm.

Algorithm 3.1 MLGMRES after the model has been trained
1: Simulation has reached iteration k (or time t = tk−1)
2: Neural Network N(b) has been trained using training set Xt

3: Set of candidate data pairs Ct is empty, the size of the new batch of data is Nb = 0
4: while Nb < fr do
5: Compute RHS bk as a random distribution on [−1, 1] (or bk = B(xk−1

m))
6: Use NN xk

0 = N(bk)
7: Compute solution xk

m = GMRES(xk
0, b

k)
8: Compute performance metrics Eκ(x

k
0) and TOS(xk

0)
9: Compute averages Mp({Eκ(x0)}) and Mp({TOS(x0)})

10: if Eκ(x
k
0) < Mp({Eκ(x0)}) and TOS(xk

0) < Mp({TOS(x0)}) then
11: Proceed with the simulation. Set k = k + 1
12: else
13: Compute d(bk, b) ∀ b ∈ Ct

14: if d(bk, b) ∀ b ∈ Ct is acceptable then
15: Add (bk,xk

m) to Ct

16: Set Nb = Nb + 1
17: end if
18: Set k = k + 1 (and t = tk−1 +∆t = tk)
19: end if
20: end while

3| Development of the Prediction Algorithm 35

L(x0,x) = ∥x0 − x∥2 = ∥N(b)− x∥2 , (3.1)

where ∥ · ∥ denotes the Euclidean norm, also known as the L2 norm, which measures the
squared distance between x0 and x. Minimizing this loss function encourages the network
to provide initial guesses that are closer to the numeric solutions.
During each iteration of training, the model’s trainable parameters are updated based
on the gradients of the loss function with respect to these parameters. This process of
computing the gradients and adjusting the parameters iteratively refines the network’s
ability to predict more accurate initial guesses.
In the implementation, an adaptive gradient descent optimization algorithm is used to
efficiently update the parameters. In the implemented code the ADAM algorithm is
applied.
By defining the loss function and employing these optimization techniques, our model
learns to improve its predictions iteratively, achieving more accurate initial guesses (x0)
for the GMRES algorithm, which leads to improved overall performance and convergence
speed for the linear system solver.

3.4. Algorithmic Refinements and Code Modifications

In the given context, the goal was to integrate ONERA’s version of the GMRES code
into the existing codebase. The integration was accomplished by modifying the Python
decorator, responsible for invoking the GMRES algorithm within the algorithm. In the
programming context, a decorator is a design pattern that allows you to modify the
functionality of a function by wrapping it in another function. The outer one is called
the decorator, which takes the original function as an argument and returns a modified
version of it. Python decorators are used to enhance the functionality of functions or
methods in a non-intrusive manner. The original code by K. Luna et al. [20] employed
such a decorator to facilitate the use of GMRES in certain computations.
The custom GMRES algorithm was designed to retain the core purpose and functionality
of the original version. However, its internal implementation was better suited to fulfil the
requirements of ONERA, specifically in order to tackle linear systems applied to vectors.
By adjusting the Python decorator, it was ensured that all invocations of the GMRES
algorithm within the algorithm were routed to the new implementation instead of the
original one. Through this approach, the integrity of the existing code was maintained,
still many modifications had to be performed.

1 InputDim = dim

36 3| Development of the Prediction Algorithm

2 OutputDim = dim
3 # Number of samples to collect before using prediction from Neural

Network:
4 Initial_set = 32
5

6 nn_predict = CNNPredictorOnline(InputDim , OutputDim , DenseNN_blocks)
7 trainer = PredictorTrainer(nn_predict , Initial_set = Initial_set)
8

9 @timer
10 @cnn_predictorOnline_timed(trainer)
11 def MLGMRES(A,b,x0 ,n,m,e,max_restart ,M,flagM ,method_precond_right):
12 return GMRES_ML(A,b,x0,n,m,e,max_restart ,M,flagM ,

method_precond_right)

Listing 3.1: Definition of the MLGMRES function with the decorator defined in
Appendix C Listing C.3.

3.4.1. Use of matrices and of Vectors

The original code used linear operators, defined as a python function, for instance, for
the Laplace equation, it was defined as shown in Listing 3.2. These operators were then
applied to n×n matrices and produced a RHS of size n×n. This thesis, instead, applies
the GMRES method to systems composed of matrices and vectors.

1 def appl_2d(op, x, Nx , Ny):
2 Ax = np.zeros((Nx , Ny))
3 for ix, iy in np.ndindex(Ax.shape):
4 Ax[ix, iy] = op(x, ix+1, iy+1)
5 return Ax
6

7 def mk_laplace_2d(Nx , Ny , bc="dirichlet", xlo=0, xhi=0, ylo=0, yhi=0):
8 ’’’
9 mk_laplace_2d(N, bc=" dirichlet", xlo=0, xhi=0, ylo=0, yhi=0)

10

11 Generates laplace operator as a stencil operation for a N-cell 2D
grid , for

12 given boundary conditionds.
13 ’’’
14 def build_bc_1(x_in):
15 x_out = np.zeros ((Nx + 2, Ny + 2))
16 x_out [1:Nx+1, 1:Ny+1] = x_in[:, :]
17 x_out[0, :] = xlo
18 x_out[Nx+1, :] = xhi
19 x_out[:, 0] = ylo

3| Development of the Prediction Algorithm 37

20 x_out[:, Ny+1] = yhi
21 return x_out
22

23 def build_bc_2(x_in):
24 x_out = np.zeros ((Nx + 2, Ny + 2))
25 x_out [1:Nx+1, 1:Ny+1] = x_in[:, :]
26 x_out[0, 1:Nx+1] = x_in[-1, :]
27 x_out[Nx+1, 1:Nx+1] = x_in[0, :]
28 x_out [1:Nx+1, 0] = x_in[:, -1]
29 x_out [1:Nx+1, Ny+1] = x_in[:, 0]
30 return x_out
31

32 def laplace_2d(x, i, j):
33 return (-4*x[i, j] + x[i-1, j] + x[i+1, j] + x[i, j-1] + x[i, j

+1])
34

35 if bc == "dirichlet":
36 op = lambda x, i, j: laplace_2d(build_bc_1(x), i, j)
37 elif bc == "periodic":
38 op = lambda x, i, j: laplace_2d(build_bc_2(x), i, j)
39 else:
40 raise RuntimeError(f"bc={bc} not implemented")
41

42 return lambda x: appl_2d(op, x, Nx, Ny)

Listing 3.2: Example of Linear Operator used in [20]. Extracted from
src_dir.linop.py at [21].

Therefore, one preliminary modification to the code was to adapt the decorator to use
sparse matrices, since when dealing with large systems of equations it is much more
effective to store the data in sparse format. This was done by changing the (·) operator
of a function with the @ Python3 operator. Moreover, as detailed in Section 3.4.2 all the
Neural Networks developed by [20] were to be modified in order to work with 1D vector
data and not 2D.

3.4.2. New Neural Network Architectures

Since the Neural Networks defined in [20] were defined to work on different class of data
and for problems of small dimension overall, it was pivotal to develop new models.
Three different architectures were implemented and tested:

1. Dense Neural Network based Model;

38 3| Development of the Prediction Algorithm

2. Convolutional Neural Network based Model;

3. Mixed model: Combination of a Convolutional NN to process the input vector b

and a Graph NN to process the input matrix A.

The code used to define the new version of NNs is found in Appendix C.

Dense Neural Network based Model

The proposed DNN architecture comprises the following components and operations:

• Normalization: The features of the input data are normalized with respect to the
norm. This normalization step ensures that the features are appropriately scaled
for effective learning;

• Linear Layers and Activation: Following the normalization step, the network applies
a series of linear layers to increase the size of the input vector. Each linear layer
performs a linear transformation on the input, gradually expanding its dimensions.
After each linear layer, an activation function is applied to introduce non-linearity
into the network;

• Iterative Linear Layers and Activation: The number of iterations for the linear
layers is determined based on the size of the initial vector. The network repeats the
linear layer and activation function operations iteratively, increasing the size and
complexity of the input vector. This iterative process allows the network to learn
and capture higher-order representations from the data;

• Final Linear Layer: After the iterative linear layers and activation functions, the
network performs one last linear layer to reshape the output vector to its original
size.

This structure is detailed in Figure 3.5. The iterative application of these layers and
activations enables the network to learn and represent the data in a progressively more
expressive manner. The final linear layer reshapes the output vector to match the original
size.

3| Development of the Prediction Algorithm 39

Linear
ELU

Linear
ELU
...

Linear

feature
normalization

Loss function to minimize

Update
weights prediction

Update Dataset

ELU
Linear

Figure 3.5: Structure of the Dense Neural Network used.

Convolutional Neural Network based Model

The proposed CNN architecture comprises the following components and operations:

• Normalization: The features of the input data are normalized with respect to the
norm. This normalization procedure ensures that the features are appropriately
scaled for effective learning by the network;

• Convolutional Layers, Activation, and Average Pooling: Each iteration of the net-
work begins with a convolutional layer applied to the input data, followed by an
activation function. The convolutional layer performs convolutions on the input,
extracting pertinent features. The activation function introduces non-linearity, en-
abling the network to learn intricate patterns and relationships within the data.
Subsequently, average pooling is applied, which reduces the spatial dimensions of
the feature maps while retaining their depth;

• Iterative Convolution and Activation: Following each average pooling operation, a
series of convolutional layers and activation functions are applied iteratively. The
number of iterations for each vector is contingent upon the size of the initial vector.
This iterative process facilitates the successive extraction and refinement of features
from each vector, incorporating additional context and detail into the network’s
representation;

• Upsampling and Concatenation: Once the iterative convolution and activation steps
are completed, the smaller-sized feature maps are upsampled to match the size of
the original feature map (pre-pooling). This step ensures uniform spatial dimensions
across all vectors for subsequent operations. Following upsampling, the feature maps

40 3| Development of the Prediction Algorithm

are concatenated together, through a summation. This concatenation procedure
enables the network to amalgamate information from various levels of abstraction,
as each feature map captures distinct spatial scales and patterns;

• Final Convolution Layer: Subsequently, a final convolutional layer is applied to the
combined feature map. This layer further processes the aggregated information and
produces the ultimate output of the network.

This structure is detailed in Figure 3.6. By employing iterative convolution and activation
steps, the network enhances its capacity to extract intricate features from the data. The
incorporation of normalization, pooling, upsampling, and concatenation facilitates the
integration of information from multiple scales and levels of abstraction. Ultimately, the
final convolutional layer refines the extracted features and generates the network’s final
output.

conv2d
ELU

conv2d
ELU
...

conv2d
ELU

conv2d

feature
normalization

Loss function to minimize

Update
weights prediction

Update Dataset

AvgPool1d
...

Upsample

Figure 3.6: Structure of the Convolutional Neural Network used.

Mixed Model

This architecture was inspired by and adapted from [36].

The final network architecture is a hybrid model that combines a CNN and a GNN. The
structure is as follows:

1. CNN Component:

3| Development of the Prediction Algorithm 41

• Input: The input data b is fed into the CNN component, following the same
architecture described in Figure 3.6.

• Normalization: The features of the input matrix are normalized, respecting
the norm.

• Convolution and Activation: The normalized features undergo a series of convo-
lutional layers and activation functions. These operations increase the feature
size.

• Pooling: After each convolutional layer, average pooling is applied to reduce
the feature map’s spatial dimensions while preserving its depth.

• Iterative Convolution and Activation: The convolutional layers and activation
functions are repeated for the same number of times as the convolutional op-
erations after pooling. This iterative process enhances the network’s ability to
extract and refine features.

• Upsampling: The smaller-sized feature maps obtained through pooling are
upsampled to match the original size, ensuring consistency in the spatial di-
mensions.

• Final Convolution Layer: The upsampled feature maps are combined and pro-
cessed by one last convolutional layer.

2. GNN Component:

• Input: The input matrix A is transformed into a graph representation, where
each node has a certain number of features, and the edges capture the connec-
tivity of the matrix.

• Feature Normalization: The features of the graph are normalized, similar to
the CNN component.

• Graph Convolutional Layers and Activation: The normalized features undergo
a series of graph convolutional layers, specifically designed for processing graph-
structured data. After each graph convolutional layer, an activation function
is applied to introduce non-linearity.

• Iterative Graph Convolution and Activation: The graph convolutional layers
and activation functions are iterated for the same number of times as the
convolutional operations after pooling in the CNN component. This iterative
process enables the GNN to extract and refine features from the graph data.

42 3| Development of the Prediction Algorithm

• Final Graph Convolution Layer: The features from the last graph convolutional
layer are reshaped to a vector of size 1.

Once both branches of such architecture have finished, there is a combination operation:
The output vectors from the CNN and GNN components are summed element-wise. The
resulting vector represents the combined features from both branches of the network.
To finish with, here are the post-combination operations that have been implemented:

1. Convolution and Activation: The combined vector undergoes a convolutional layer
and an activation function.

2. Average Pooling: Following the convolution and activation, average pooling is ap-
plied to reduce the vector’s size while preserving important features.

3. Convolution and Activation: Another convolutional layer and activation function
are applied to further process the pooled vector.

4. Upsampling: The pooled vector is upsampled to match the original size.

5. Final Convolution Layer: The upsampled vector is passed through one last convo-
lutional layer.

This structure is detailed in Figure 3.7. The final network architecture, combining both
the CNN and GNN components, leverages the strengths of both approaches. The CNN
processes the input matrix through convolutions and pooling, capturing spatial informa-
tion, while the GNN operates on the graph representation, capturing relational infor-
mation between the matrix’ features. By combining the outputs of both branches, the
network can leverage the complementary strengths of both components to produce the
final output.

3| Development of the Prediction Algorithm 43

Loss function to minimize

Update
weights prediction

Update Dataset

SAGEConv

feature
normalization

Convolutional
Network

with Pooling

sum

ELU
AvgPool1d

ELU
Upsample

conv2d

conv2d

conv2d

SAGEConv
ELU
...

SAGEConv
ELU

Figure 3.7: Structure of the Graph Neural Network used.

3.4.3. Generalization of the dataset expansion and retraining
procedure

In the original code the model was retrained with every addition to the training dataset,
therefore the retrain frequency fr was fixed to 1. In order to decrease the computational
cost of the simulations and to avoid overfitting the code was changed to accept differ-
ent values for fr. Specifically, the retrain frequency was defined such that it depended
on the size of the training dataset. The idea behind this definition is that, whenever
the simulation changes a lot with time, the model must retrain frequently to adapt the
trainable parameters, however this would result in a large computational time dedicated
to the training, therefore making different non-ML strategies more efficient. Moreover,
retraining at each addition to the dataset could possibly result with overfitting on certain
problems. To avoid these issues, fr was fixed so that the larger the size of the dataset
becomes, the less frequent the model would be retrained. This procedure showed great
savings in real time, since, for a sequence of 1000 systems at the end of the simulation
more than 200 systems could have been added to the dataset. Therefore, had the code
remained the same, this would have resulted in hundreds of retrainings.

44 3| Development of the Prediction Algorithm

3.4.4. Early Stopping

Early stopping is a powerful technique employed in ML to optimize model performance.
Its purpose is to prevent overfitting and enhance the generalization capabilities of a model.
Overfitting occurs when a model becomes too complex and starts memorizing the training
data instead of learning the underlying patterns. As a result, the model’s performance
on unseen data tends to suffer. Early stopping mitigates this problem by monitoring the
model’s performance during training and terminating the process at an optimal point.
During the training phase, a ML model iteratively adjusts its parameters to minimize a
predefined loss function. This process aims to find the optimal configuration that best
fits the training data. However, if the model is allowed to continue training for too long,
it may start to overfit. Overfitting can be detected by observing the model’s performance
on a separate validation set, which consists of data not used for training.
Early stopping operates by stopping the training process when the performance starts
to deteriorate consistently, indicating that the model’s ability to generalize has reached
its peak. The rationale behind early stopping is rooted in the bias-variance trade-off.
The bias represents the error introduced by approximating a real-world problem with a
simplified model, while the variance captures the model’s sensitivity to fluctuations in
the training data. Initially, as the model learns, both the bias and variance decrease. As
training progresses, the bias continues to decrease while the variance begins to rise. At
some point, the increasing variance leads to overfitting, causing the model’s performance
on unseen data to decline.
By stopping the training process early, the model’s capacity to fit noise and irrelevant pat-
terns in the training data is limited. Early stopping effectively strikes a balance between
bias and variance, resulting in a model that generalizes well to unseen data. Moreover,
early stopping helps reduce computational resources and training time, as the model is
not allowed to converge fully before termination, this is especially important for the case
of online learning, when the training operation could be performed a large number of
times.

3| Development of the Prediction Algorithm 45

(a) No Early Stopping (b) Early Stopping

Figure 3.8: Comparison of the behaviour of the loss function with and without early
stopping.

Hence, in the context presented, early stopping enables an approximate 60% reduction
in evaluations. The code describing the implementation of early stopping is found in
Listing C.1.

3.4.5. Gradient Clipping

In the field of ML, exploding gradients [2] is a term used to indicate when the gradients
reach too large values during the training, making the model unstable. Similarly, vanishing
gradients refer to the case of gradients getting too small values. These problems prevent
the trainable weights of the network from changing values in a coherent way and therefore
they result causing the model to be unable to learn from the training data.
If these issues arise, one possible solution is the use of gradient clipping. Gradient clipping
is a technique that tackles exploding gradients. The idea of gradient clipping is very
simple: If the gradient gets too large, it gets rescaled to keep it small. More precisely, if
∥g∥ ≥ c, then g ← c g

∥g∥ .

47

4| Numerical Experiments on

Simple Problems

Contents
4.1 Laplace Equation . 48

4.1.1 Results . 49

4.2 The Time-Dependent Advection-Diffusion Equation 52

4.2.1 Homogeneous Equation . 52

4.2.2 Constant Source Term . 53

4.2.3 Time-Dependent Source Term 55

4.2.4 Results of the Homogeneous Case 56

4.2.5 Results of the Constant Non-Homogeneous Case 58

4.2.6 Results of the Time-Dependent Non-Homogeneous Case 59

4.2.7 Using an Increasing Time Step to Generate Stiffer Systems . . 60

4.2.8 Results of the Increasing Time Step Case 61

4.2.9 Results with GNNs . 64

4.3 Recycling of the Previous Solution 66

4.3.1 Heat Equation . 67

4.3.2 Time-Dependent Advection-Diffusion Problem with Increasing
time step and Numerical Noise 68

4.3.3 Advection Diffusion Problem with Increasing time step 69

Chapter 4 provides first validations for the proposed algorithm on simple test cases. The
chapter begins with the investigation of the Laplacian equation with a series of random
right hand sides, exploring the algorithm’s efficacy in accelerating this classical mathemat-
ical problem. Subsequently, the algorithm’s performance is evaluated in the context of the
advection diffusion equation, providing insights into its ability to handle time-dependent

48 4| Numerical Experiments on Simple Problems

problems. Through comprehensive analysis and comparisons with established methods, this
chapter demonstrates the algorithm’s capabilities and adaptability, further validating its
suitability for tackling diverse classic problems within the scope of the thesis.

4.1. Laplace Equation

First, the real-time deep-learning methodology is applied to the 1D Poisson problem. In
particular, a sequence of problems is solved:

− ∂2u

∂x2
= fk

u|∂Ω = 0

(4.1)

(4.2)

where Ω = [−1, 1] and fk are randomly generated for every index.
The discretized system is written as:

−Ui+1 − 2Ui + Ui−1

∆x2
= fk(xi) ∀ i = 1, ..., n− 1, (4.3)

with

U0 = 0, Un = 0 ∀ k = 1, ..., NS. (4.4)

Finally, the system is studied as:

Axk = bk , (4.5)

where A is the matrix obtain with the discretization of the equation, xk is the n-
dimensional vector of unknowns and bk is the n-dimensional vector such that bki = fk(xi).
In order to recreate the same problem presented in [21], the RHS vector is taken as as a
random dipole distribution on [−1, 1], as detailed in Listing 4.1.

1 # Definition of a random RHS fro the Poisson problem
2 xloc = np.random.uniform(xx[0], xx[-1])
3 xlocShift = np.random.uniform (-0.25, 0.25)
4 AmplitudeFactor = np.random.uniform (1 ,10)
5 AmplitudeFactor2 = AmplitudeFactor*np.random.uniform (1,2)
6 sigma = 0.07* np.random.uniform (0.9 ,1.1)

4| Numerical Experiments on Simple Problems 49

7 b = AmplitudeFactor*Gauss_pdf(xx ,xloc ,sigma) \
8 + AmplitudeFactor2*Gauss_pdf(xx ,xloc+xlocShift ,sigma)
9 Field = np.random.normal(loc=0.0, scale =1.0, size=(dim ,))

10 Field = AmplitudeFactor*np.random.normal(loc=0.0, scale =1.0, size=(dim ,)
)

11 b = b + Field
12

13 b = b * dx ** 2 # Finite difference grid spacing

Listing 4.1: Definition of the random RHS for the Laplacian testcase.

4.1.1. Results

The algorithm was tested on a set of 1000 systems each of size 20× 20, fixing the residual
tolerance to 10−10 and the Krylov space, m = 4, also in order to compare the results
with the ones obtained by [20]. The simulation is run using the DNN model defined in
Section 3.4.2, with 800 trainable parameters and with the initial set size fixed to 32 (i.e.,
the training of the network, will wait until at least 32 systems are in the database to
begin the online training procedure). At the end of the simulation the size of the dataset
is equal to 234 (i.e., 202 sets of b and x, where added to the database since the system they
represented was above the average with respect to the time to solution or the error, i.e.,
see Section 3.2). It is possible to plot the residual at the end of the first restart (Eκ(x

k
0))

with respect to the number of iterations. Figure 4.1 shows the comparison between the
values obtained by the classic GMRES method with the zeros vector as initial guess and
the ML enhanced version.

Appendix A explains in detail the figures and how they were obtained.

50 4| Numerical Experiments on Simple Problems

Figure 4.1: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

(according to the x-axis label) of the Laplace equation, comparing GMRES to MLGM-
RES. Obtained by using n = 20, NS = 1000, using an initial set of dimension 32 and
DenseNN.

From Figure 4.1 one can see that the initial guesses predicted by the model are already
closer at the first restart than for the classic algorithm. Moreover, it becomes evident
that as the number of systems increases, there is a discernible learning process occurring,
as evidenced by the decreasing residual, depicted by the black line in the figure.
Furthermore, one can take the last system of the simulation and see how the standard
and ML-powered GMRES behave with respect to the norm of the normalized residual
∥r∥/∥b∥ = ∥b − Ax∥/∥b∥, as shown in Figure 4.2. From the figure it is possible to
observe that already the norm initial residual ∥r1000

0 ∥ = ∥b − Ax1000
0 ∥ is much smaller

than the initial residual with the classic choice of taking x0 = [0, ..., 0]T .

4| Numerical Experiments on Simple Problems 51

Figure 4.2: Behaviour of the norm of the normalized residual for the last system of the
Laplace sequence w.r.t. the number of matrix-vector products.

When all the NS are completed, it is also possible to observe the number of matrix-
vector products needed to reach convergence for each single system solved by the GMRES
method. Figure 4.3 displays the behaviour of the ML enhanced version of the GMRES
code, confirming that indeed a learning is taking place, indeed the number of matrix-vector
products decreases as the simulation goes on, after the first training is performed.

Figure 4.3: Number of matrix-vector products to reach convergence of the Laplace equa-
tion w.r.t. the number of systems.

Finally, one can observe the plot of the iterations’ speed-up, as shown by Figure 4.4.
The speed-up is computed as the ratio between the time taken to resolve the system by

52 4| Numerical Experiments on Simple Problems

the classic GMRES solver (T_GMRES) and the one taken by the MLGMRES solver
(T_MLGMRES).

Figure 4.4: Iteration speed-up of the sequence of Laplace problems.

Figure 4.4 shows that the implemented algorithm recovered approximately the same
speed-up observed by [20], considering that for the demo for the Laplace equation showed
a speed-up of approximately 2.

4.2. The Time-Dependent Advection-Diffusion Equa-

tion

4.2.1. Homogeneous Equation

On Ω = [0, 1] the considered problem is:

(A)︷︸︸︷
∂u

∂t
+

(B)︷︸︸︷
c
∂u

∂x
=

(C)︷ ︸︸ ︷
ν
∂2u

∂x2

u(0, x) = u0(x)

u(t, 0) = l

u(t, 1) = r

(4.6)

(4.7)

(4.8)

(4.9)

One needs to specify the initial condition, in this case u0(x) = 0, and the advective
constant, c = 1. This study is performed with a constant diffusion coefficient ν = 1.

4| Numerical Experiments on Simple Problems 53

Numerically, the time derivative (A) is discretized using backward Euler, the diffusion
term (C) is discretized using Central Differences and the advection term (b) is discretized
using the Upwind Scheme.
The discretized system is written as:

Uk
i − Uk−1

i

∆t
+ c

Uk
i+1 − Uk

i

∆x
= ν

Uk
i+1 − 2Uk

i + Uk
i−1

∆x2
∀ i = 1, ..., n− 1, k = 2, ..., NS,

(4.10)

with ∆t the time step, ∆x the spacial step and

Uk
0 = l, Uk

n = r ∀ k = 1, ..., NS. (4.11)

Finally, the system can be expressed in matrix form as:

Axk = bk , (4.12)

where xk = Uk = {Uk
i }ni=0 and bk is the n-dimensional vector, such that bki = Uk−1

i ,
explicit RHS.

Figure 4.5: Steady State Solution for the Homogeneous Case.

4.2.2. Constant Source Term

On Ω = [0, 1] the considered problem is:

54 4| Numerical Experiments on Simple Problems

(A)︷︸︸︷
∂u

∂t
+

(B)︷︸︸︷
c
∂u

∂x
−

(C)︷ ︸︸ ︷
ν
∂2u

∂x2
=

(D)︷ ︸︸ ︷
c
∂uπ

∂x
− ν

∂2uπ

∂x2

uπ(x) = x(1− x) sin(Nπx)

u(0, x) = u0(x)

u(t, 0) = l

u(t, 1) = r

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

One needs to specify the initial condition, in this case u0(x) = 0, and the advective con-
stant, c = 1. This study is performed with a constant diffusion coefficient ν = 1 and with
N = 10.
Numerically, the time derivative (A) is discretized using backward Euler, the diffusion
term (C) is discretized using Central Differences and the advection term (B) is discretized
using the Upwind Scheme, while (D) is computed for each point of the discretization.

The discretized system is written as:

Uk
i − Uk−1

i

∆t
+ c

Uk
i+1 − Uk

i

∆x
= ν

Uk
i+1 − 2Uk

i + Uk
i−1

∆x2
+ fi ∀ i = 1, ..., n− 1, k = 2, ..., NS,

(4.18)

with

Uk
0 = l, Uk

n = r ∀ k = 1, ..., NS, fi =

(
c
∂uπ

∂x
− ν

∂2uπ

∂x2

) ∣∣∣
x=xi

, (4.19)

Finally, the system is studied as:

Axk = bk +∆tf , (4.20)

where xk = Uk = {Uk
i }ni=0 and bk is the n-dimensional vector such that bki = Uk−1

i .

4| Numerical Experiments on Simple Problems 55

Figure 4.6: Steady State Solution for the Constant Non-Homogeneous Case.

4.2.3. Time-Dependent Source Term

Finally, on Ω = [0, 1] the considered problem is:

(A)︷︸︸︷
∂u

∂t
+

(B)︷︸︸︷
c
∂u

∂x
−

(C)︷ ︸︸ ︷
ν
∂2u

∂x2
=

(D)︷ ︸︸ ︷
∂uπ

∂t
+ c

∂uπ

∂x
− ν

∂2uπ

∂x2

uπ(x, t) = x(1− x) sin(Nπ(x− t))

u(0, x) = u0(x)

u(t, 0) = l

u(t, 1) = r

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

One needs to specify the initial condition, in this case u0(x) = 0, and the advective
constant, c = 1. This study is performed with a constant diffusion coefficient ν = 1 and
with N = 10.
Numerically, the time derivative (A) is discretized using backward Euler, the diffusion
term (C) is discretized using Central Differences and the advection term (B) is discretized
using the Upwind Scheme, while (D) is computed for each point of the discretization. The
discretized system is written as in Equation (4.18).
Figure 4.7 presents the solutions of the considered problem at different time instances.

56 4| Numerical Experiments on Simple Problems

(a) At the first iteration the
solution has not yet converged to
the stable one.

(b) At time iteration 50 the solution
is stable, but time-dependent.

(c) The solution is different to the
one at t = 2.5

Figure 4.7: Time-Dependent Solutions of the Time-Dependent Source Case.

4.2.4. Results of the Homogeneous Case

In order to test the implemented algorithm on a larger dimension n is set to 100. In
this case, NS = 1000 is the number of time iterations, hence, the resulting procedure
corresponds to solving a set of 1000 systems each of size 100× 100, fixing the tolerance to
10−10 and m = 4. This choice of parameters allows to compare the results with the ones
obtained by [20], despite that the authors in [20] used a maximum dimension of n = 40.
Moreover, ∆t = 0.05 and T = 50. The simulation is run using the DNN model defined in
Section 3.4.2, with 60000 parameters and with the initial set size fixed to 32. At the end
of the simulation the size of the dataset is equal to 186. It is possible to plot the residual
at the end of the first restart (Eκ(x

k
0)) with respect to the number of iteration. Figure 4.8

shows the comparison between the values obtained by the classic GMRES method with
the zeros vector as initial guess and the ML enhanced version.

4| Numerical Experiments on Simple Problems 57

Figure 4.8: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

of the homogeneous case. Obtained by using n = 100, NS = 1000, using an initial set of
dimension 32 and DenseNN.

From Figure 4.8 it is possible to acknowledge that also with a larger dimension and with
a time-dependent problem the ML decorator is able to predict a better x0 in order to
minimize the residual at the end of the first restart of the GMRES code.
In Figure 4.9 it is possible to see that the speed-up in this case is not as good as in the
previous test, however it is still comparable to [20].

Figure 4.9: Iteration speed-up of the homogeneous case sequence.

58 4| Numerical Experiments on Simple Problems

4.2.5. Results of the Constant Non-Homogeneous Case

The ML algorithm is tested on a set of 1000 systems each of size 100 × 100, fixing the
tolerance to 10−10 and m = 4. The simulation is run using the DNN model defined in
Section 3.4.2, with 60000 parameters and with the initial set size fixed to 32. At the end
of the simulation the size of the dataset is equal to 191.
The same figures of Section 4.2.4 are again plotted for the non-homogeneous case.
Figure 4.10 demonstrates that the implemented model is able to predict good initial
guesses to feed into the GMRES method.

Figure 4.10: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

of the constant non-homogeneous case. Obtained by using n = 100, NS = 1000, using an
initial set of dimension 32 and DenseNN.

In this case, the speed-up is worse than in the homogeneous case, however there is still a
gain in time with respect to the zeros initial vector, as shown in Figure 4.11.

4| Numerical Experiments on Simple Problems 59

Figure 4.11: Iteration speed-up of the constant non-homogeneous case sequence.

4.2.6. Results of the Time-Dependent Non-Homogeneous Case

In order to test the ML algorithm on systems with a faster changing RHS, a time-
dependent source term is introduced, as defined in Section 4.2.3. The test case consisted
in a set of 1000 systems each of size 100× 100, fixing the tolerance to 10−10 and m = 4.
The simulation is run using the DNN model defined in Section 3.4.2, with 60000 param-
eters and with the initial set size fixed to 32. At the end of the simulation the size of the
dataset is equal to 186.
Figure 4.10 demonstrates that the implemented model is able to predict good initial
guesses to feed into the GMRES method.

60 4| Numerical Experiments on Simple Problems

Figure 4.12: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

of the time-dependent non-homogeneous case. Obtained by using n = 100, NS = 1000,
using an initial set of dimension 32 and DenseNN.

In this more complex case, the speed-up obtained is still lower than in the homogeneous
case, however it is comparable to the results obtained by [20], showing an interesting gain
in time with respect to the zeros initial vector, as shown in Figure 4.13.

Figure 4.13: Iteration speed-up of the time-dependent non-homogeneous case sequence.

4.2.7. Using an Increasing Time Step to Generate Stiffer Sys-
tems

To increase problem stiffness while mitigating diagonal dominance, an approach is adopted
that involves introducing an increasing time step. This technique aims to optimize the

4| Numerical Experiments on Simple Problems 61

numerical stability and accuracy of the system being analyzed. To accomplish this, a
vector comprising ascending values is defined using the built-in function linspace from
the NumPy library.
When dealing with stiff problems, conventional numerical methods might become ineffi-
cient, leading to inaccurate results or even instability in the computation. While, diagonal
dominance means that the diagonal elements of a matrix dominate the off-diagonal ele-
ments in magnitude. Such dominance can occur in systems of equations, especially those
arising from linearized partial differential equations or other complex mathematical mod-
els.
It is possible to observe the dependence of the system on ∆t by rewriting it as:

(
I

∆t
+

∂R(Un)

∂Un

)
δUn+1 = RHS , (4.26)

where δUn+1 = Un+1 − Un, R(U) is the residual of the semi-discretized equation and
RHS = −R(Un) + Source Terms.
By introducing an increasing time step, we can effectively regulate the resolution at which
the system evolves over time.
In this case, the range of values is defined to increase progressively, conforming to the
requirements of the problem at hand. This newly created vector serves as a set of time
steps that facilitate the temporal discretization of the problem, providing the numerical
solver with the necessary information to accurately simulate the system’s behavior over
time.

4.2.8. Results of the Increasing Time Step Case

The implemented algorithm is tested on a set of 2000 systems each of size 100×100, fixing
the tolerance to 10−10 and m = 10. The simulation is run using the DNN model defined in
Section 3.4.2, with 60000 parameters and with the initial set size fixed to 32. At the end
of the simulation the size of the dataset is equal to 340. The time step assumes values in
the interval [0.01, 5]. The number of matrix-vector products needed to reach convergence
for each single system solved by the GMRES method can be studied. Figure 4.14 displays
the behaviour of the ML enhanced version of the GMRES code, confirming indeed that
as the simulation advances, the network is learning to predict a better x0, indeed the
number of matrix-vector products increases as the simulation goes on for both methods,
since the systems become stiffer as the time step increases. Indeed, it is easy to see that
the number of matrix-vector products of the implemented algorithm is always lower than
the number needed by the classic method.

62 4| Numerical Experiments on Simple Problems

Figure 4.14: Number of matrix-vector products w.r.t. the number of systems.

Then, Figure 4.15 shows the comparison between the values of the normalized residual at
the end of the first restart obtained by the classic GMRES method with the zeros vector
as initial guess and the ML enhanced version. From the figure it is possible to observe
the learning taking place, as the normalized residual plotted decreases as the simulation
goes on.

Figure 4.15: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems.

Moreover, Figure 4.16 shows the behaviour of the normalized residual for the final system
of the simulation with respect to the number of matrix-vector products. From the figure
it is possible to observe that already the norm of the initial residual ∥r1

0000∥ = ∥b −
Ax1

0000∥ is a little smaller than the initial residual with the classic choice of taking x0 =

[0, ..., 0]T , yet this small difference produces a much significant difference in convergence.

4| Numerical Experiments on Simple Problems 63

Figure 4.16: Behaviour of the norm of the normalized residual for the last problem w.r.t.
the number of matrix-vector products.

Figure 4.17 shows the speed-ups with respect to the number of the system. Also in this
stiffer case it is observed that the ML prediction results in much faster convergence, with
approximately 30% of the time spent solving systems saved.

Figure 4.17: Iteration speed-up.

Finally, it is important to notice that in this case, as well as in the previously defined
ones, the total times of the simulations using the ML enhanced code, considering all
the GMRES computations, all the trainings of the model and all the other operations,
are smaller than the total times of the simulations with the classic GMRES algorithm, in
other words, the gain induced by using a ML-based initial guess for GMRES (training time
included) supersedes the same GMRES implementation using an initial guess coming from

64 4| Numerical Experiments on Simple Problems

usual heuristics. For instance, this test case, run on the computing environment defined
in Appendix D, finished with the times reported in Table 4.1.

Component Runtime (s) Percentage
Total non-decorated simulation 625.57 53.05

Total decorated simulation 553.63 46.95

Total simulation 1179.20 100

Table 4.1: Runtimes of the different components of the total simulation.

Therefore resulting with a 11.50% of real time saved by Machine Learning for this partic-
ular case and with respect to this heuristic. One could study also the different portions
of the Machine Learning Simulation. As shown in Table 4.2.

Component Runtime (s) Percentage
MLGMRES (only GMRES time) 500.28 90.36

Training 44.27 8.00
Other 9.08 1.64

Table 4.2: Runtimes of the different components of the decorated simulation.

One must note that the summation of the percentages of the GMRES algorithm and of the
training does not give 100%, that is because the simulation contains also the prediction
times and other less relevant computations.

4.2.9. Results with GNNs

Since, until now the initial guess was predicted only from the RHS b vector, it is interesting
to investigate what happens when the hybrid model defined in Section 3.4.2 is deployed, in
other words, to see the effect of using matrix features to extrapolate the matrix importance
in the choice of the initial guess. The features used are very simple to extract, the values
on the principal diagonal of the matrix and the value of diagonal dominance, defined as:

ddi =
|aii|∑
i ̸=j |aij|

, (4.27)

where aij is the element of A in position (i, j).
As detailed in Section 3.4.2, the implemented GNN-based architectures uses a combination

4| Numerical Experiments on Simple Problems 65

of GNN and CNN layers.
Considering that this test case has a matrix that changes only with regards to the time
step, and considering that the implemented model uses CNNs and not DNNs, the results
will very much differ from the previous section.
The implemented algorithm is tested on a set of 2000 systems each of size 100×100, fixing
the tolerance to 10−10 and m = 10. The model has 540179 parameters and the initial set
size is fixed to 32. At the end of the simulation the size of the dataset is equal to 105.
The dataset’s final size is significantly smaller compared to the previous case, due to the
GNN model’s training process being computationally intensive. Consequently, to add a
problem to the dataset and undergo retraining, more stringent conditions were imposed.
The time step assumes values in the interval [0.01, 5]. By observing Figure 4.18, indeed,
it is understandable that the new method is not as efficient as previously shown, still the
results show that the moving average of number of matrix-vector products mostly remains
below the average of the classic method.

Figure 4.18: Number of matrix-vector products w.r.t. the number of systems. Obtained
by using an initial set of dimension 32 and the hybrid NN architecture.

The speed-ups, shown in Figure 4.19, also confirm that the model was not optimal for
the considered test case. Yet, it is anyway possible to observe better times with the ML
enhancement.

66 4| Numerical Experiments on Simple Problems

Figure 4.19: Iteration speed-up using the hybrid model.

From this results it is important to notice that, in test cases where the matrix does not
change drastically, the use of matrix features using GNNs doesn’t seem to improve model
performance. In fact, quite to the contrary, the added trainable parameters seem to
complexify the learning process of the network which would require a more detailed look
at other trainable parameters and better tuning of the model to obtain better results.
Moreover the use of Dense Neural Network, if applicable, is much more efficient that the
use of Graph Neural Networks.

4.3. Recycling of the Previous Solution

In order to make a comparison between the ML enhanced algorithm and other more
classical heuristics with regards to the initial guess used with GMRES, the recycling of
the previous time step’s solution, as defined in Section 1.3.1, is applied to strengthen the
classic GMRES algorithm.
First, a comparison with the solution recycling method is performed on the Heat equation
with the introduction of a time derivative, as defined in Equation (4.28):

∂u

∂t
− ∂2u

∂x2
= fk

u|∂Ω = 0

(4.28)

(4.29)

Then, the time-dependent Advection-Diffusion equation is taken into consideration, at
first with the introduction of numerical noise in the RHS vector b, in order to repre-
sent contributions from source terms that can be of a stochastic nature, while making

4| Numerical Experiments on Simple Problems 67

the system more complex to solve. Lastly, the noise is removed and the ML enhanced
solver is compared to the solution recycling GMRES on the same test case as defined in
Section 4.2.3.

4.3.1. Heat Equation

The simulation is performed using the same implementation defined in Section 4.1.1.
After the first training is performed it is possible to observe in Figure 4.20 that the
normalized residual at the end of the first restart with the predicted x0 is smaller in
norm than the one recycling the previous solution. This shows that for time-dependent
problems with a rapidly changing RHS the ML enhanced code can provide a better initial
guess than classic heuristics.

Figure 4.20: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

of the Heat equation.

The capabilities of the algorithm are also shown by the computed speed-ups, plotted in
Figure 4.21. In fact, the classic GMRES takes in average 20% more computational time
to reach the sought convergence criterion.

68 4| Numerical Experiments on Simple Problems

Figure 4.21: Iteration speed-up w.r.t. recycling the previous solution.

4.3.2. Time-Dependent Advection-Diffusion Problem with In-

creasing time step and Numerical Noise

The simulation is performed using the same implementation defined in Section 4.2.8,
introducing a numerical error in the RHS vector. The time step assumes values in the
interval [2.5, 150].
After the first training is performed it is possible to observe in Figure 4.22 that the number
of matrix-vector products with the predicted x0 is lower than the ones of the algorithm
recycling the previous solution. This shows that also in this test case the ML enhanced
code can provide a better initial guess than classic heuristics.

Figure 4.22: Number of matrix-vector products w.r.t. the number of systems.

4| Numerical Experiments on Simple Problems 69

The capabilities of the algorithm are also shown by the computed speed-ups, plotted in
Figure 4.23. In fact, the classic GMRES takes in average 10% more computational time
to reach the searched convergence criterion.

Figure 4.23: Iteration speed-up w.r.t. recycling the previous solution.

4.3.3. Advection Diffusion Problem with Increasing time step

Finally, the solution recycling method is applied to the non-perturbed Advection-Diffusion
equation, still with an increasing time step. The time step assumes values in the interval
[2.5, 150].
By, investigating the number of matrix-vector products required in order to resolve each
linear system, one can notice, as depicted in Figure 4.24, that until half of the simulation,
around system 1000, the average number of products required by the implemented solver
is higher than the number required by using as initial guess the solution of the previous
time iteration. However, the figure also presents a decreasing trend with the black line,
and an increasing one with the green line. In fact, after a certain number of systems the
ML algorithm requires less iterations to reach convergence, in average.

70 4| Numerical Experiments on Simple Problems

Figure 4.24: Number of matrix-vector products w.r.t. the number of systems.

The behaviour interpreted in Figure 4.24 is also sustained by Figure 4.25. In fact it is
possible to see that the residual at the end of the first restart of recycling solver keeps
approximately constant at around 10−2, while the one of the ML solver shows indeed that
the learning produces better results with each new training.

Figure 4.25: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems.

Finally, the speed-ups show that indeed, before the training, feeding a vector of zeros in
much worse than recycling the last computed solution, as the first values in Figure 4.26
are below 1. However, as the simulation continues the same time as the recycling version
is reached and even reduced by the ML counterpart, as showed in Figure 4.26.

4| Numerical Experiments on Simple Problems 71

Figure 4.26: Iteration speed-up w.r.t. recycling the previous solution.

73

5| Numerical Experiments on

Representative Test Cases

Contents
5.1 Problem Extraction from CFD Cases using DG Discretization 74

5.1.1 Navier-Stokes equations for gas dynamics discretization 74

5.1.2 Discontinuous Galerkin Discretization 76

5.1.3 Time Discretization . 76

5.1.4 The Aghora Code . 78

5.1.5 About the Dimension of the Systems and Neural Networks . . 79

5.2 Laminar Flow around a Cylinder at Low Reynolds Number . 79

5.2.1 Results of the Cylinder Test Case 80

5.3 Laminar Flow around a NACA0012 airfoil 82

5.3.1 Results of the NACA0012 . 83

5.4 Taylor-Green Vortex . 86

5.4.1 Results of the Taylor-Green Vortex 87

5.4.2 Results using other NN-based Approaches 89

Chapter 5 applies the prediction algorithm to representative test cases governed by the
compressible Navier-Stokes equations and discretized in space using the Discontinuous
Galerkin method. The chapter outlines the extraction of the problems, introduces the Dis-
continuous Galerkin method briefly, and discusses the time discretization strategy. Three
significant test cases are presented: the subsonic flow around a cylinder, the transonic flow
around a NACA0012 airfoil, and finally the Taylor-Green vortex simulation. The algo-
rithm’s efficacy in handling complex fluid dynamics scenarios is demonstrated, showcasing
its applicability in realistic simulations. This chapter validates the algorithm’s potential
for achieving the thesis objectives.

74 5| Numerical Experiments on Representative Test Cases

5.1. Problem Extraction from CFD Cases using DG

Discretization

High-fidelity simulation of turbulent compressible flows in aerodynamics often implies a
large number of discretization elements to tackle complexity arising from physics and
geometry. Furthermore, the physical modeling of more and more complex phenomena
and industrial demand for accurate solutions lead to address increasingly stiff problems.
This work mainly focuses on a typical Computational Fluid Dynamics (CFD) application:
the research of the fixed point of the equations by means of an inexact Newton method in
the contest of steady-state computation. Several 2D test-cases with Navier-Stokes (N-S)
or Reynolds-Averaged Navier-Stokes (RANS) modeling are considered with a spatial DG
discretization method. In a first step, the N-S model is presented, then the DG method
and the time discretization, finally the Aghora CFD code is introduced and the test cases
are described.

5.1.1. Navier-Stokes equations for gas dynamics discretization

Flow problems governed by the compressible N-S equations for gas dynamics are now
considered, by using the DG method (see [29] for details). Let Ω ⊂ Rd be a bounded
domain where d is the space dimension (typically 2 or 3). Consider the following problem:

∂tu+∇ · fc(u)−∇ · fv(u,∇u) = 0, on Ω× (0,+∞) (5.1)

with initial condition u(·, 0) = u0(·) in Ω and appropriate boundary conditions prescribed
on ∂Ω. The vector

u =

 ρ

ρv

ρE

 (5.2)

represents the conservative variables with ρ the density, v = (u, v, w)T the velocity vector
and E = e+ |v|2/2 the total specific energy where e denotes the internal specific energy.
The nonlinear convective and diffusive fluxes in Equation (5.1) are defined by

5| Numerical Experiments on Representative Test Cases 75

fc(u) =

ρu ρv ρw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p

ρHu ρHv ρHw

 (5.3)

and

fv(u,∇u) =

 0

τ

vT τ − qT

 , (5.4)

where p is the pressure, defined by an equation of state of the form p = (γ − 1)ρe, with γ

the ratio of specific heats, H := E + p
ρ

is the total specific enthalpy, q = −k∇T , with k

the thermal conductivity and T the temperature, is the heat flux vector of Fourier’s heat
conduction law, τ = µ (−2

3
(∇ · v)I + ∇ v + ∇ vT) is the viscous stress tensor and

µ = µ(T) = µ(Ts)
√

T
Ts

(
1+Cs

Ts

1+Cs
T

)
is the kinematic viscosity defined by Sutherland’s law as

a function of the reference temperature Ts with Cs = 110.4K [29].
By applying the time mean operator:

v =
1

T

∫ t0+T

t0

v(x, t) dt (5.5)

to the system in Equation (5.1) and by introducing the decomposition v = v + v′ one
can obtain the RANS equations [27]. Since, these equations contain the Reynolds stress
tensor, representing the turbulent fluctuations in the flow, ones needs a turbulence model
to close the system. In this thesis the RANS are coupled with the one-equation turbulence
model of Spalart-Allmaras [31], which couples the system defined by Equation (5.1) with
Equation (5.6), in order to define the eddy viscosity νt.

∂νt
∂t

+ v · ∇νt − cb1(1− ft2)Stνt =

−
[
cw1fw −

cb1
κ2

ft2

] (νt
d

)2

+
1

σ

[
(∇ · ((ν + νt)∇νt)) + cb2|∇νt|2

]
(5.6)

All the details and additional definitions can be found at [31].

76 5| Numerical Experiments on Representative Test Cases

5.1.2. Discontinuous Galerkin Discretization

The principle of the Discontinuous Galerkin (DG) approach is based on a division of the
domain Ω into a regular mesh Ωh, without overlapping or empty element, h being defined
as a characteristic size of the elements (i.e. a measure of the elements is chosen and h will
be the maximum among all the elements of the mesh). We will denote κ a given element
of Ωh.
A finite-dimensional space Vp

h is introduced, defined as:

Vp
h = {ϕ ∈ L2(Ωh) | ϕ|κ ◦ Fκ ∈ Pp(Id),∀κ ∈ Ωh}, (5.7)

where Pp(Id) is the space of polynomials in d variables of degrees at most p, and defined
on the unit cube with I = [−1; 1] (Fκ representing a bijection between Id and κ). Each
physical element κ is the image of Id through the mapping Fκ. The numerical solution of
Equation (5.1) is sought under the form

uh(x, t) =

Np∑
l=1

ϕl
κ(x)U

l
κ(t), ∀x ∈ κ, κ ∈ Ωh,∀t ≥ 0, (5.8)

where (Ul
κ)1≤l≤Np are the degrees of freedom (DOFs) in the element κ. The subset

(ϕ1
κ, . . . , ϕ

Np
κ) constitutes a hierarchical and orthogonal modal basis of Vp

h restricted onto
the element κ and Np is its dimension.
The semi-discrete form of Equation (5.1) reads: find uh in [Vp

h]
d+2 such that for all vh in

Vp
h we have

∫
Ωh

vh∂tuhdx+ Lc(uh, vh) + Lv(uh, vh) = 0 . (5.9)

The formulation of the discretizations of the convective and diffusive fluxes Lc(uh, vh) and
Lv(uh, vh) as well as the details of the calculations are not presented in this report since
they would be too far from the main subject, namely the resolution of linear systems.
More details are provided in [3] and [4].

5.1.3. Time Discretization

Once the previous steps have been implemented, we obtain a semi-discrete formulation
of the basic problem, the spatial discretization having been carried out: it therefore
remains to discretize the temporal dimension of the equations. For this, a (potentially

5| Numerical Experiments on Representative Test Cases 77

non-constant) time step ∆t(n) > 0 is chosen, such that t(n+1) − t(n) = ∆t(n) and t(0) = 0.

Several choices of diagrams of implicit temporal integration are then possible, like Euler,
Crank-Nicolson or Runge-Kutta for example. For the sake of clarity, the time discretiza-
tion through the Backward Euler scheme is introduced:

1

∆t(n)
M

(
U (n+1) −U (n)

)
+R(U (n+1)) = 0 , (5.10)

where:

• M is the diagonal mass matrix, resulting from the discretization by Galerkin method.

• U (n) is the vector of the DOFs for the conservative variables studied, and on all the
elements of the domain. The exponent indicates the time step considered.

• R is the residual vector function defined by the discretization of the convective and
diffusive fluxes. It is evaluated at U .

The Jacobian matrix of the residual is then computed in an approximate way. This yields
the following equation:

A(n)δU (n+1) = −R(U (n)) , (5.11)

where:

• δU (n+1) := U (n+1) −U (n) is the change on U from one time step to the next.

• A(n) := 1
∆t(n)M + ∂R

∂U

∣∣∣
U=U (n)

is called implicit matrix (with ∂R
∂U

∣∣∣
U=U (n)

the Jacobian

of R at point U (n)).

In this form, the search for the approximate solution U (n+1) at time n + 1 is reduced to
solving a system of linear equations, since the values of U at previous times are known.
The matrix of the system as well as the second member are brought to change with each
step of time but are known at the time of the resolution. One could rewrite this sequence
of equations in the more classical form:

A(n)x(n) = b(n) . (5.12)

Due to the nature of the problem, the resulting matrices are real, non-symmetric, non-
positive-definite, with a block-wise structure and a symmetric pattern.
The time step is limited locally according to a CFL-like condition:

78 5| Numerical Experiments on Representative Test Cases

∆t(n)κ = CFL
(hκ

λmax(u)
,
ρh2

κ

2 µ
Pr

)
, (5.13)

where the value of the Courant number CFL is defined as a function of a user-defined
parameter CFLin and the maximum eigenvalue of convective fluxes, λmax(u), is evaluated
from the mean value of the numerical solution in the element κ and Pr = 0.72 is the
Prandtl number. For unsteady computations, a global time step is used and set CFL =

CFLin and ∆t(n) = minκ∈Ωh
∆t

(n)
κ , while for steady-state computations a local time step

and the pseudo-transient continuation technique are used [8] where the CFL number is
related to norms of the residuals according to the following relations:

CFL = min
(
1
r
, CFLin

)
,

r = max
(∥R(U (n))∥
∥R(U (0))∥

,
∥R(U (n))∥∞
∥R(U (0))∥∞

)
.

(5.14)

(5.15)

A user-defined constant time step may also be imposed throughout the computation. In
general, the computation can be stopped either when a given number of physical time
steps NT is reached, or when a given physical time is reached, or when the global L2-norm
of the explicit residuals is below a given tolerance εres.

5.1.4. The Aghora Code

The research code developed at ONERA, called Aghora , offers a parallel implementation
of the DG method presented in this chapter. Several turbulence models are available, and
since the first versions of the code, many improvements have been added in order to take
into account new models. Aghora is written in Fortran 2003 and comprises approximately
130,000 lines of code, spread over several Fortran modules, which offers great flexibility
and good maintainability of the code. Calls to Intel’s Math Kernel Library (MKL) are
made, in particular for BLAS and LAPACK functions usual in linear algebra (matrix-
vector products, resolution of eigenvalue problems, descent or rise method for solving
triangular linear systems, etc.).
In the presented contex, the core of the code is required to solve a series of linear sys-
tems of the form A(i)x(i) = b(i), and a substantial part of Aghora’s computation time (for
a given simulation) is spent solving these linear systems. Currently, it is the precondi-
tioned, with the block ILU(0) algorithm, GMRES algorithm [26] with restart which is
used in the solver, with the flexible variants or with deflation FGMRES, GMRES-DR.
These iterative methods have been the subject of several efficiency studies in a DG or

5| Numerical Experiments on Representative Test Cases 79

Finite Volume contexts [17, 22, 28, 29]. The flexible version of the code is devoted to the
need of accuracy, therefore, it is not required for steady-state calculations, where a rough
approximation is enough.
In the context of this research endeavor, the GMRES and Predictor Codes were exe-
cuted using the Python programming language. To generate the matrices of interest and
their corresponding right-hand side vectors, the computational framework of Aghora was
employed.

5.1.5. About the Dimension of the Systems and Neural Net-

works

Due to the substantially larger dimensions of the upcoming test cases compared to the
previously examined ones, employing the previously tested DNN-based model is imprac-
tical. The reason is that the DNN model demands a considerable number of parameters,
which exceeds the available memory capacity of the ONERA system, Appendix D. Con-
sequently, utilizing the DNN-based approach for testing the forthcoming systems is not
feasible within the current computational constraints.
To address this issue and facilitate the evaluation of the larger-scale systems, an alter-
native approach will be adopted. Specifically, the testing will be conducted using the
CNN-based architecture, as introduced and described in Section 3.4.2. Unlike the DNN
model, the CNN architecture is known for its ability to efficiently process and extract
relevant features from high-dimensional data, making it more suitable for handling the
increased complexity of the upcoming test cases.
By leveraging the CNN-based model, we aim to maintain the quality and accuracy of the
evaluations while mitigating the computational requirements, thus ensuring that the test-
ing process remains feasible and within the capabilities of the ONERA system’s memory
constraints. This decision allows us to effectively explore and assess the performance of
the model on the larger systems without compromising the reliability of the results.

5.2. Laminar Flow around a Cylinder at Low Reynolds

Number

Understanding the flow characteristics around a cylinder is of great importance in various
engineering applications. This work focuses on a 2D laminar flow over a cylinder using
a DG approach. The fluid dynamics are modeled using the RANS equations [27], with
the one-equation turbulence model of Spalart-Allmaras [31]. The flow operates at a Mach

80 5| Numerical Experiments on Representative Test Cases

number (M∞) of 0.15 and a Reynolds number (Re) of 80.
The computational domain focuses on the 2D flow around a cylinder. The mesh dis-
cretization comprises 1028 triangular elements. The flow operates at a laminar state, and
the specified Mach and low Re ensure a subsonic flow. These values do not produce an
unsteady wake, therefore, a steady solution is searched.
The spatial discretization is performed using the DG method, with a modal basis and
order of the discretization equal to 3 and 4.
The convective flux is approximated using the Roe numerical flux, which handles shock
waves and discontinuities accurately. The viscous flux is treated using the BR2 method
[3, 7], ensuring accurate representation of the viscous effects near the cylinder surface.
The implicit Backward Euler scheme is employed for time integration, using a local time
step. This time discretization method allows for larger time steps while maintaining
numerical stability, enabling efficient simulations of the flow evolution over time.

(a) Illustration of the unstructured mesh used. (b) Steady-state density field.

Figure 5.1: Cylinder test case.

5.2.1. Results of the Cylinder Test Case

The implemented algorithm is tested on a set of 98 systems each of size 30840 × 30840,
with 3621600 non-zeros, fixing the GMRES residual tolerance to 10−3, m = 50 and impos-
ing a maximum of 2 restarts. The simulation is run using the CNN model, with 1500929
parameters and with the initial set size fixed to 32. At the end of the simulation the size
of the dataset is equal to 42.
In this specific test case, convergence is not reached within the researched tolerance with-
out the use of a preconditioner, therefore it would not make sense to analyse the speed-ups

5| Numerical Experiments on Representative Test Cases 81

result. Still it is of interest to observe the behaviour of the residuals.
Taking into consideration a system solved after the first training is performed, specifically
system number 50, it is possible to observe how the predicted x0 results with better de-
creasing rate for the normalized residual, with respect to the classic GMRES algorithm.
This fact is shown in Figure 5.2.

Figure 5.2: Behaviour of the norm of the normalized residual w.r.t. the number of matrix-
vector products for system 50 (after training) of the cylinder test case.

Studying the last system, it is interesting to see the values of the norm of the normalized
residual at the end of the two restarts. Indeed, the ML algorithm presents better values
than the non enhanced version. This is quite interesting since it was possible to reach
better convergence values without the use of a preconditioner for complex and large linear
systems.

82 5| Numerical Experiments on Representative Test Cases

Figure 5.3: Behaviour of the normalized residual w.r.t. the number restarts for the last
problem of the cylinder test case.

Finally, Figure 5.4 shows the behaviour of the residual at the end of the first restart for
each system of the simulation. It can be easily extracted that after the training the values
of Eκ(x

k
0) are better using a ML predicted initial guess.

Figure 5.4: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems.

5.3. Laminar Flow around a NACA0012 airfoil

The study of aerodynamics around airfoils is crucial for various engineering applications,
and the NACA0012 airfoil is a standard benchmark case [35]. This work focuses on a
2D laminar flow around a NACA0012 airfoil. The fluid dynamics are modeled using the
Navier-Stokes equations, capturing the behavior of the flow with M∞ = 0.5, with an angle

5| Numerical Experiments on Representative Test Cases 83

of attack (AoA) set to 0 degrees, and a Re of 5000.
The mesh discretization comprises 1600 quadrangular elements, providing sufficient res-
olution to accurately capture the flow features near the airfoil surface. The spatial dis-
cretization is performed using the DG method with modal basis and a polynomial degree
equal to 1 (order 2). Furthermore, to enhance computational efficiency, Reduced Basis
techniques are employed, reducing the number of DOFs required for accurate representa-
tion.
The implicit Backward Euler scheme is employed for time integration.
The convective flux is approximated using the Roe numerical flux, which effectively cap-
tures shock waves and discontinuities in the flow. On the other hand, the viscous flux is
handled using the BR2 method, providing accurate treatment of the viscous effects near
the airfoil wall and in the wake.
In order to solve the laminar compressible N-S equations at the wall the adiabatic no-slip
condition is enforced.

(a) Illustration of the mesh used.(b) Steady-state Mach number
field.

(c) Steady-state density field.

Figure 5.5: NACA0012 test case.

5.3.1. Results of the NACA0012

The implemented algorithm is tested on a set of 431 systems each of size 19200× 19200,
with 1128960 non-zeros, fixing the GMRES residual tolerance to 10−3, m = 50 and
imposing a maximum of 2 restarts. The simulation is run using the CNN model, with
1253889 parameters and with the initial set size fixed to 32. At the end of the simulation
the size of the dataset is equal to 126.
By observing the behaviour of the norm of the normalized residual, it is important to
note that Figure 5.6 shows that the norm of the initial residual ∥r0∥ computed by the
ML enhanced algorithm is greater than the one computed by the classic algorithm. Even
if this is the case, the final value demonstrates that the learning does result with better

84 5| Numerical Experiments on Representative Test Cases

estimates. This phenomenon is quite peculiar, however, it could be a result of the fact
that the studied system is non-symmetric, therefore the related functional to optimize is
not convex, resulting with a more complex behaviour of the residual.

Figure 5.6: Behaviour of the norm of the normalized residual for the last system of the
NACA0012 test case w.r.t. the number of matrix-vector products.

Additionally, it is interesting to investigate the values of the norm of the normalized
residual at the end of the two restarts. Indeed, the ML algorithm presents better values
than the non enhanced version. This is quite interesting, considering the first value
observed, and it also confirms the conclusions made in Section 5.3.1, specifically that it
was possible to reach better convergence values without the use of a preconditioner for
complex and large linear systems.

Figure 5.7: Behaviour of the norm of the normalized residual for the last system of the
NACA0012 test case w.r.t. the number restarts.

5| Numerical Experiments on Representative Test Cases 85

Figure 5.8 shows the behaviour of the residual at the end of the first restart for each
system of the simulation. This time it is quite complicated to recognize the difference
between the two values, therefore, a further study could be to observe the behaviour of
the residual at the end of the GMRES algorithm and therefore after two restarts.

Figure 5.8: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems.

Figure 5.9 shows the behaviour of the residual at the end of the second and last restart
for each system of the simulation. Now it is easier to see that the values of the ML
enhanced version of the algorithm are better than the ones of the classic implementation.
Specifically, the two average lines have a similar behaviour, still the black line is mostly
below the green one, confirming that the training does in fact produce a smaller value
of the last residual and therefore a smaller final error. Probably, performing a longer
simulation, with additional trainings of the NN, would improve the results.

86 5| Numerical Experiments on Representative Test Cases

Figure 5.9: Behaviour of the norm of the normalized residual after the second restart
w.r.t. the number of systems.

5.4. Taylor-Green Vortex

The Taylor-Green Vortex (TGV), a well-known benchmark problem in fluid dynamics,
serves as an ideal test case for studying turbulent flows. This work focuses on a 3D
turbulent flow within a box with periodic boundary conditions, utilizing Direct Navier-
Stokes. The periodicity allows the simulation to evolve without any external influences,
maintaining a constant total energy level throughout the decay process.
The simulation employs Direct Numerical Simulation (DNS) of a flow with M∞ set at
0.1 and models the fluid dynamics using the Navier-Stokes equations. The computational
domain consists of a Cartesian mesh of 64 hexahedral elements. The simulation employs
the fourth-order Rosenbrock-like scheme (ROS44) for time discretization. This choice
guarantees high temporal accuracy and stability, enabling a precise representation of
the flow’s transient behavior during the decay process. This case, being outside of the
considered framework, is used as a last validation of the ML approach.

5| Numerical Experiments on Representative Test Cases 87

Figure 5.10: Visualisation of the solution of the Taylor-Green Vortex.

5.4.1. Results of the Taylor-Green Vortex

As final test case, the implemented algorithm is tested on a set of 4000 systems each of
size 2560 × 2560, with 716800 non-zeros, fixing the GMRES residual tolerance to 10−3,
m = 50 and imposing a maximum of 2 restarts. The simulation is run using the CNN
model, with 265729 parameters and with the initial set size fixed to 32. At the end of the
simulation the size of the dataset is equal to 695.
This final test case does reach tolerance without the use of a preconditioner. Therefore,
all the previous metrics can be analyzed.
First, Figure 5.11 shows the number of matrix-vector products needed to reach the desired
tolerance. It is possible to see that, since after the first training, and except from a very
small number of systems, the number of products to reach convergence with the optimized
x0 is smaller than with the classic x0.

88 5| Numerical Experiments on Representative Test Cases

Figure 5.11: Number of matrix-vector products w.r.t. the number of systems of the TGV
test case.

Figure 5.12 shows instead the speed-ups, since this time it is an interesting result to
investigate. It can be seen that the value of the speed-ups is mostly above 1, showing
that indeed the time to reach convergence with the ML implementation is smaller than
without. Despite our expectations for speed-up improvements, there are instances where
we observe speed-up values below 1, indicating sub-optimal performance. However, the
retraining mechanism of the model comes to the rescue in such situations. This retraining
process works diligently to address the issues, ultimately resulting in better speed-up
values.

Figure 5.12: Iteration speed-up.

5| Numerical Experiments on Representative Test Cases 89

5.4.2. Results using other NN-based Approaches

Results with Offline Learning

Another interesting investigation is to observe what happens when applying an Offline
Learning approach to the test case. Since, as observed in the previous section, having
a good behaviour for a certain number of systems does not necessarily mean that the
model will continue to work perfectly, one could study what happens without retraining
the system and thus understand the interest of using an online approach.
The structure of the test case is precisely the same as in the previous section, with the
exception that the training is performed after 2000 systems are solved. Then, the model
is trained on this very large dataset and it is finally applied to a test set of 400 systems.
The plot of the number of matrix-vector products required to reach convergence, shown
in Figure 5.13, shows an interesting behaviour. Even though the system is not retrained,
there is a decrease in the number of products.

Figure 5.13: Number of matrix-vector products w.r.t. the number of systems of the test
set.

The figure shows only the systems solved after the training.
Then, the speed-ups are shown. Figure 5.14 shows the moving average of the speed-ups,
and it confirms the behaviour of the previous one. The time to solve the systems with
the ML prediction decreases, resulting in better values of the speed-ups, reaching at the
end of the simulation a value of approximately 1.4.

90 5| Numerical Experiments on Representative Test Cases

Figure 5.14: Iteration speed-up of the test set.

Results with GNNs

Finally, since Section 5.4.1 has shown great promise, as last investigation it is of interest
to investigate the same TGV case using the information provided by GNNs, in order to
analyze the influence of matrix features, the same defined in Section 4.2.9, on the model
efficiency. The size of the Krylov subspace is changed to m = 30, in order to better study
the value of the residual at the end of the first restart. The model is composed of 1320899
trainable parameters and with the initial set size fixed to 32. At the end of the simulation
the size of the dataset is equal to 102.
By studying the behaviour of Eκ(x0), it is possible to see that the values of the ML
prediction solver are below the values of the normal implementation. Moreover, it is
possible to observe that, even having decreased m, some values are very close to the
imposed tolerance.

5| Numerical Experiments on Representative Test Cases 91

Figure 5.15: Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems.

Obtained by using an initial set of dimension 32 and the hybrid NN architecture.

Finally, observing the plot of the speed-ups in Figure 5.16, it is possible to see that better
values are obtained with respect to the case where only CNNs where being used. This
confirms the assumption that capturing matrix features in the model is essential to obtain
better results.

Figure 5.16: Iteration speed-up using the hybrid model.

However, when considering the total times, the one of the ML simulation is much larger
than the time spent by the classic GMRES method. This is a result of the fact that the
trainings of the GNN-based model require large computational times, resulting in a longer
simulation and also CNNs seem to be more optimized within Pytorch.

93

Conclusion

This thesis has presented an approach, based on Machine Learning techniques, that aims
to deliver an adequate initial guess for the iterative Krylov methods in the contest of a
series of linear systems, where A and b can change significantly. Furthermore, one of the
main concerns of this work is to explore its application to representative cases arising
from compressible flows in compressible computational fluid dynamics.
First, the Iterative Generalized Minimal RESidual (GMRES) method was introduced,
highlighting the importance of the initial guess for iterative algorithms. Then, the fo-
cus was moved to the topic of Machine Learning, understanding the two main learning
paradigms, offline and online, and defining various neural network types (DNN, CNN,
GNN). The concept of the loss function was elucidated, essential in guiding model opti-
mization during training.
Subsequently, the prediction algorithm was presented, showcasing where the inspiration
was taken from and explaining its evolution and modifications done for tackling a wide
range of simple problems, including the Laplacian equation and the Advection-Diffusion
equation. Furthermore, the proposed ML-based algorithm is compared to a classic heuris-
tic used to obtain an initial guess, which consists in recycling the previous solution during
an time-iteration scheme. The results obtained are quite promising. The ML predicted
initial guesses accelerate the convergence for most of the considered cases. Moreover, the
algorithm demonstrated to have a better behaviour with respect to the recycling algo-
rithm for the advection-diffusion equation with an increasing time step.
Finally, the algorithm’s application was extended to representative test cases governed by
the Navier-Stokes and RANS equations thanks to tests carried out on extracted matrices
from the Aghora code. The DG method was introduced, along with the Backward-Euler
method for time integration. The algorithm’s ability was tested for solving the flow
around a cylinder with low Reynolds number, the flow around a NACA0012 airfoil and
finally the Taylor-Green vortex test case was studied. The results obtained demonstrate
that the developed algorithm leads to shorter times to reach the stopping conditions of
the GMRES solver, unfortunately, the training of the network causes the computational
time and memory constraints for large systems to be still prohibitive with the current

94 | Conclusion

implementation. Hopefully, advancements of algorithms and GPU hardware could lead
to address these issues in the future.
While we have achieved interesting results, this work also opens avenues for future re-
search. Further exploration of hybrid approaches, combining iterative methods and Ma-
chine Learning, could lead to even more robust and efficient solvers for fluid dynamics
simulations. Additionally, investigating larger-scale problems and exploring new architec-
tures for neural networks may unveil even greater potential for computational efficiency.
On a final note, the findings presented in this thesis contribute to the advancement of
Machine Learning techniques to accelerate iterative methods for computational fluid dy-
namics. The interesting findings in the current work pave the way for continued innova-
tion in the field of fluid dynamics simulations, bringing closer the goal of more accurate,
efficient, and scalable computational methods for real-world engineering applications.

95

Bibliography

[1] P. F. Antonietti, N. Farenga, E. Manuzzi, G. Martinelli, and L. Saverio. Agglomera-
tion of Polygonal Grids using Graph Neural Networks with applications to Multigrid
solvers. https://doi.org/10.48550/arXiv.2210.17457, 2022.

[2] A. Bajaj. Understanding Gradient Clipping. https://neptune.ai/blog/

understanding-gradient-clipping-and-how-it-can-fix-exploding-

gradients-problem, 2023. Accessed: 2023-07-03.

[3] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high order accurate
discontinuous finite element method for inviscid and viscous turbomachinery flows.
In Turbomachinery - Fluid Dynamics and Thermodynamics, European Conference,
2, pages 99–108, 1997. ISBN 90-5204-032-X. URL https://www.tib.eu/de/suchen/

id/tema%3ATEMAM97071562579.

[4] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solu-
tion of the Reynolds-Averaged Navier–Stokes and k - ω turbulence model equa-
tions. Computers & Fluids, 34:507–540, 05 2005. doi: https://doi.org/10.1016/
j.compfluid.2003.08.004.

[5] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. Journal
of Computational Physics, 182(2):418–477, 2002. ISSN 0021-9991. doi: https://
doi.org/10.1006/jcph.2002.7176. URL https://www.sciencedirect.com/science/

article/pii/S0021999102971767.

[6] S. Bock, J. Goppold, and M. G. Weiß. An improvement of the convergence proof of
the ADAM-Optimizer. CoRR, abs/1804.10587, 2018. URL http://arxiv.org/abs/

1804.10587.

[7] L. Botti and L. Verzeroli. BR2 discontinuous Galerkin methods for finite hy-
perelastic deformations. Journal of Computational Physics, 463:111303, 2022.
ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2022.111303. URL https:

//www.sciencedirect.com/science/article/pii/S0021999122003655.

[8] A. Crivellini and F. Bassi. An implicit matrix-free Discontinuous Galerkin solver for

https://doi.org/10.48550/arXiv.2210.17457
https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem
https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem
https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem
https://www.tib.eu/de/suchen/id/tema%3ATEMAM97071562579
https://www.tib.eu/de/suchen/id/tema%3ATEMAM97071562579
https://www.sciencedirect.com/science/article/pii/S0021999102971767
https://www.sciencedirect.com/science/article/pii/S0021999102971767
http://arxiv.org/abs/1804.10587
http://arxiv.org/abs/1804.10587
https://www.sciencedirect.com/science/article/pii/S0021999122003655
https://www.sciencedirect.com/science/article/pii/S0021999122003655

96 | Bibliography

viscous and turbulent aerodynamic simulations. Computers & Fluids, 50(1):81–93,
2011. ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2011.06.020. URL
https://www.sciencedirect.com/science/article/pii/S0045793011002088.

[9] J.-K. Fang, C.-M. Fong, P. Yang, C.-K. Hung, W.-L. Lu, and C.-W. Chang. AdaGrad
Gradient Descent Method for AI Image Management. In 2020 IEEE International
Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), pages 1–2, 2020. doi:
https://doi.org/10.1109/ICCE-Taiwan49838.2020.9258085.

[10] V. Frayssé, L. Giraud, S. Gratton, and J. Langou. Algorithm 842: A Set of GM-
RES Routines for Real and Complex Arithmetics on High Performance Comput-
ers. ACM Trans. Math. Softw., 31(2):228–238, jun 2005. ISSN 0098-3500. doi:
10.1145/1067967.1067970. URL https://doi.org/10.1145/1067967.1067970.

[11] V. Frayssé, L. Giraud, and S. Gratton. Algorithm 881: A Set of Flexible GMRES
Routines for Real and Complex Arithmetics on High-Performance Computers. ACM
Transactions on Mathematical Software, 35:1–12, 2008. doi: https://doi.org/10.1145/
1377612.1377617.

[12] G. H. Golub and C. F. van Loan. Matrix Computations. JHU Press, fourth edition,
2013. ISBN 1421407949 9781421407944.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
https://doi.org/10.48550/arXiv.1512.03385, 2015.

[14] C. Ick, S. Tamba, Z. Lei, and H. Tang. ConvNet Evolutions, Architectures, Im-
plementation Details and Advantages. https://atcold.github.io/pytorch-Deep-

Learning/en/week03/03-2/, 2020. Accessed: 2023-07-13.

[15] I. C. F. Ipsen and C. D. Meyer. The Idea Behind Krylov Methods. The Amer-
ican Mathematical Monthly, 105(10):889–899, 1998. doi: https://doi.org/10.1080/
00029890.1998.1200498. URL https://doi.org/10.1080/00029890.1998.12004985.

[16] S. Jadon. Introduction to different activation functions for deep learning. Medium,
Augmenting Humanity, 16, 2018. URL https://medium.com/@shrutijadon/

survey-on-activation-functions-for-deep-learning-9689331ba092.

[17] M. Jadoui, C. Blondeau, E. Martin, F. Renac, and F. X. Roux. Comparative study
of inner–outer Krylov solvers for linear systems in structured and high-order unstruc-
tured CFD problems. Computers and Fluids, 244:105575, 2022.

[18] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, 2017.

https://www.sciencedirect.com/science/article/pii/S0045793011002088
https://doi.org/10.1145/1067967.1067970
https://doi.org/10.48550/arXiv.1512.03385
https://atcold.github.io/pytorch-Deep-Learning/en/week03/03-2/
https://atcold.github.io/pytorch-Deep-Learning/en/week03/03-2/
https://doi.org/10.1080/00029890.1998.12004985
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092

| Bibliography 97

[19] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel. Handwritten Digit Recognition with a Back-Propagation Network.
In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2,
[NIPS Conference, Denver, Colorado, USA, November 27-30, 1989], pages 396–404.
Morgan Kaufmann, 1989. URL https://dl.acm.org/doi/10.5555/109230.109279.

[20] K. Luna, K. Klymko, and J. P. Blaschke. Accelerating GMRES with Deep Learning
in Real-Time. https://doi.org/10.48550/arXiv.2103.10975, 2021.

[21] K. Luna, K. Klymko, and J. P. Blaschke. GMRES-Learning, 2021. URL https:

//github.com/ML4FnP/GMRES-Learning.

[22] E. Martin and F. Renac. Parallel algebraic solvers for high-order Discontinuous
Galerkin methods for compressible turbulent flows, 2019. Slides ENUMATH.

[23] ONERA. Le calcul scientifique intensif. https://www.onera.fr/fr/les-moyens-

de-calcul-intensifs, 2023. Accessed: 2023-07-03.

[24] ONERA. ONERA: The Frech Aerospace Lab. https://www.onera.fr/en/identity,
2023. Accessed: 2023-08-20.

[25] K. O’Shea and R. Nash. An Introduction to Convolutional Neural Networks. ArXiv
e-prints, 11 2015. URL https://doi.org/10.48550/arXiv.1511.08458.

[26] P.-O. Persson and J. Peraire. Newton-GMRES Preconditioning for Discontinuous
Galerkin Discretizations of the Navier–Stokes Equations. SIAM, 30, 01 2008. doi:
https://doi.org/10.1137/070692108.

[27] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000. doi: https://
doi.org/10.1017/CBO9780511840531.

[28] F. Renac. Discrétisation implicite en temps des équations de Navier-Stokes pour
une méthode Galerkin Discontinue. Mise en oeuvre dans le code Aghora. RT 6/2013
DMFN. Technical report, ONERA, 2016.

[29] F. Renac, M. de la Llave Plata, E. Martin, J. B. Chapelier, and V. Couaillier.
Aghora: A High-Order DG Solver for Turbulent Flow Simulations, pages 315–335.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-12886-3. doi:
https://doi.org/10.1007/978-3-319-12886-3_15. URL https://doi.org/10.1007/

978-3-319-12886-3_15.

[30] S. Ruder. An overview of gradient descent optimization algorithms, 09 2016.

https://dl.acm.org/doi/10.5555/109230.109279
https://doi.org/10.48550/arXiv.2103.10975
https://github.com/ML4FnP/GMRES-Learning
https://github.com/ML4FnP/GMRES-Learning
https://www.onera.fr/fr/les-moyens-de-calcul-intensifs
https://www.onera.fr/fr/les-moyens-de-calcul-intensifs
https://www.onera.fr/en/identity
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.1007/978-3-319-12886-3_15
https://doi.org/10.1007/978-3-319-12886-3_15

98 | Conclusion

[31] N. C. Rumsey. The Spalart-Allmaras Turbulence Model. https://

turbmodels.larc.nasa.gov/spalart.html, 2020. Accessed: 2023-07-03.

[32] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003. URL https:

//www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf.

[33] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986. doi: 10.1137/0907058. URL https://doi.org/

10.1137/0907058.

[34] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In International Conference on Learning Representations, 2015.
doi: https://doi.org/10.48550/arXiv.1409.1556.

[35] R. Swanson and S. Langer. Comparison of NACA 0012 Laminar Flow Solutions:
Structured and Unstructured Grid Methods, 01 2016.

[36] Z. Tang, H. Zhang, and J. Chen. Graph Neural Networks for Selection of Pre-
conditioners and Krylov Solvers, 2022. URL https://openreview.net/forum?id=

tMlBpP1I3Bt.

[37] TOP500. TOP500 List - June 2017. https://www.top500.org/lists/top500/list/
2017/06/, 2017. Accessed: 2023-07-03.

[38] G. Varoquaux and O. Colliot. Evaluating machine learning models and their diag-
nostic value. In O. Colliot, editor, Machine Learning for Brain Disorders. Springer,
June 2023. URL https://hal.science/hal-03682454.

[39] A. Zafar, M. Aamir, N. Mohd Nawi, A. Arshad, S. Riaz, A. Alruban, A. K. Dutta, and
S. Almotairi. A Comparison of Pooling Methods for Convolutional Neural Networks.
Applied Sciences, 12(17), 2022. ISSN 2076-3417. doi: 10.3390/app12178643. URL
https://www.mdpi.com/2076-3417/12/17/8643.

[40] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.
Graph Neural Networks: A review of methods and applications. AI Open, 1:57–
81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.2021.01.001. URL
https://www.sciencedirect.com/science/article/pii/S2666651021000012.

https://turbmodels.larc.nasa.gov/spalart.html
https://turbmodels.larc.nasa.gov/spalart.html
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://openreview.net/forum?id=tMlBpP1I3Bt
https://openreview.net/forum?id=tMlBpP1I3Bt
https://www.top500.org/lists/top500/list/2017/06/
https://www.top500.org/lists/top500/list/2017/06/
https://hal.science/hal-03682454
https://www.mdpi.com/2076-3417/12/17/8643
https://www.sciencedirect.com/science/article/pii/S2666651021000012

99

A| Typical Result Plots

Contents
A.1 Moving Average . 99

A.2 Typical Plots using the Moving Average 100

This chapter, included in the appendix, delves into the visual representation of the research
findings and introduces the moving average designed to enhance the effectiveness of pre-
senting the results, therefore aiding in comprehending complex trends but also providing
a clearer understanding of the data patterns. Through this chapter, the commitment to
ensuring clarity and precision in conveying the research results is demonstrated.

A.1. Moving Average

In this thesis, in order to present clearer result patterns, with respect to the scattered
and messy data obtained by the simulations, a moving average is defined. The definition
is extracted and made more general from [20, 21]. Listing A.1 details the definition.

1 def moving_average(a, n, N):
2 """
3 Args:
4 a (array): Array over which the average is to be computed.
5 n (int): index of the last element of a.
6 N (int): Interval over which the average is computed.
7 """
8

9 if n == 0:
10 return 0
11 elif n < N:
12 Window=int(math.ceil (0.5*n))
13 else:
14 Window=N
15 return np.sum(a[-Window -1: -1])/Window

Listing A.1: Definition of Moving Average found in src_dir.util.py at [21].

Listing A.2 shows how to use the function to compute a moving average.
1 # Compute moving average of array

100 A| Typical Result Plots

2 array_AVG = np.zeros(len(array))
3 N = 25
4

5 for j in range(0, len(array)):
6 array_AVG[j] = moving_average(np.asarray(array[:j]), j, N)

Listing A.2: Call of Moving Average.

A.2. Typical Plots using the Moving Average

The results are presented using figures obtained thanks to the Matplotlib Python li-
brary. The figures represent important metrics to extract the efficiency of the prediction
algorithm, such as the rate of convergence, the normalized residual of each system at
the end of the first restart, the total number of matrix-vector products required to reach
convergence, in regards with defined user parameters, and the speed-up in the resolution
of a system with respect to the classic GMRES method. In order to better observe the
trend of the Online Learning in the plots with respect to the number of system the moving
average is also shown, alongside the complete data, as one can observe in Figure A.1a.
Furthermore, the figures depicting the speed-up of the new algorithm show only the com-
puted moving average, such as in Figure A.1b. In this example the two figures also present
a dashed red line, representing the position of the last system before the first training is
performed by the model. This is to highlight the difference between before of the training
and after it. In this case N train = 32.

(a) Number of matrix-vector products to reach con-
vergence w.r.t. the number of systems.

(b) Iteration speed-up.

Figure A.1: Plots with moving averages.

101

B| Time Analysis with respect to
the Architecture and the
Dimension

Contents
B.1 Comparing Times on CPU and GPU with and without ML . 101

B.1.1 Computing Environment . 102

B.1.2 Machine Learning Training on the Laplace Equation 102

B.1.3 Using the Python Profiler . 103

B.2 Comparing Speed-ups with respect to the Dimension 103

This chapter, included in the appendix, conducts a comprehensive comparison of CPU
and GPU performance, both with and without the integration of Machine Learning tech-
niques. Execution times for the implemented algorithms on CPU and GPU platforms
are evaluated, revealing potential speed-ups achieved through parallelization and hardware
acceleration in a transparent manner. Additionally, the impact of Machine Learning on
algorithm performance is examined. Furthermore, the chapter analyzes the speed-up trends
with respect to the system dimension of the algebraic problem, providing insights into the
algorithm’s scalability and efficiency.

B.1. Comparing Times on CPU and GPU with and

without ML

Central Processing Unit (CPU) and Graphics Processing Unit (GPU) are both types of
processors, but they have different architectures and are designed to handle different types
of tasks.
A CPU is the primary processor in a computer, responsible for executing instructions and
performing calculations for the operating system and applications. It has a few powerful

102 B| Time Analysis with respect to the Architecture and the Dimension

processing cores that can handle a wide range of tasks, including running software, man-
aging input/output operations, and communicating with other components.
On the other hand, a GPU is a specialized processor that is designed to handle graphics-
intensive tasks, such as rendering images, videos, and animations. It has thousands of
smaller processing cores that can work in parallel to perform complex mathematical cal-
culations and manipulate large amounts of data quickly.

B.1.1. Computing Environment

The tests have all been run on GPU rtx6000.

File CPU (s) GPU (s)
Spiro Torch DEMO 699.60 44.076

Table B.1: Time to solve the code autoencoder_mnist_spiro.py using CPU and GPU.

B.1.2. Machine Learning Training on the Laplace Equation

Solver CPU (s) pip GPU (s) spack GPU (s)
GMRES Demo 1.1663 1.0146 1.0234

MLGMRES Demo 0.6207 0.2411 0.3167
GMRES 0.1271 0.1174 0.1148

MLGMRES 0.0484 0.0425 0.0394

Table B.2: Times to solve a linear system with the GMRES algorithm compared with the
ML strategy using DNNs and the times of the Demo by [20] [21], run on CPU and GPU,
with n = 20, NS = 1000 and an initial set of dimension 32.

Solver CPU mean (s) pip GPU mean (s) spack GPU mean (s)
GMRES Demo 1.2165 0.8935 0.8835

MLGMRES Demo 0.7747 0.4906 0.5472
GMRES 0.1225 0.1134 0.1155

MLGMRES 0.0855 0.0802 0.0791

Table B.3: Average times to solve a linear system with the GMRES algorithm compared
with the ML strategy using DNNs and the times of the Demo by [20] [21], run on CPU
and GPU, with n = 20, NS = 1000 and an initial set of dimension 32.

B| Time Analysis with respect to the Architecture and the Dimension 103

Solver CPU (s) GPU (s) CPU mean (s) GPU mean (s)
GMRES 50.196 51.782 46.242 49.760

MLGMRES 36.406 40.980 46.092 49.163

Table B.4: Times to solve a linear system (maximum and average values) with the GMRES
algorithm compared with the ML strategy using DNNs, run on CPU and GPU, with
n = 200, NS = 100 and an initial set of dimension 16.

B.1.3. Using the Python Profiler

The following tests have been performed with Dense Neural Networks to observe the full
speed-up of the GPU with respect to the CPU.

Equation and Dimension Total CPU (s) Total GPU (s)
Laplace Equation n = 20 62.5 60.6
Laplace Equation n = 100 180 140

Advection Diffusion Equation n = 100 263 149

Table B.5: Full time of the Python decorator, without the time of solving the GMRES
system.

Equation and Dimension Training CPU (s) Training GPU (s)
Laplace Equation n = 20 59.6 58.1
Laplace Equation n = 100 118 81.6

Advection Diffusion Equation n = 100 248 134

Table B.6: Time of the training of the Python decorator.

B.2. Comparing Speed-ups with respect to the Di-

mension

In order to study the generalization properties of the solver one can apply it to different
sizes of the system, using also different models of Neural Networks, and observe the
different speed-ups which are obtained.
These simulations were performed on the Laplace equation testcase.

104 B| Time Analysis with respect to the Architecture and the Dimension

(a) Dense NN (b) Convolutional NN (c) ResNet

Figure B.1: Plots of the speed-up with systems 10× 10.

(a) Dense NN (b) Convolutional NN (c) ResNet

Figure B.2: Plots of the speed-up with systems 20× 20.

(a) Dense NN (b) Convolutional NN (c) ResNet

Figure B.3: Plots of the speed-up with systems 40× 40.

105

C| Implemented Code

Contents
C.1 Parts of the Code of the Prediction Algorithm 105

C.2 Definition of the Neural Networks 107

C.2.1 Definition of the Dense Neural Network 107

C.2.2 Definition of the Convolutional Neural Network 108

C.2.3 Definition of the Graph Neural Network 110

This chapter, included in the appendix, provides implementation details of the predictor
code and the neural networks utilized in the thesis. It offers insights into the structure and
key components of the predictor code. Additionally, the chapter explores the architectures
and configurations of the implemented neural networks. By providing a comprehensive
overview of the predictor code and neural networks, this chapter offers valuable informa-
tion for readers seeking a deeper understanding of the technical aspects underpinning the
thesis’s methodology and computations.

C.1. Parts of the Code of the Prediction Algorithm
1 class EarlyStopping:
2 """ Early stops the training if validation loss doesn ’t improve after a given patience

."""
3 def __init__(self , patience=7, delta =0):
4 """
5 Args:
6 patience (int): How long to wait after last time validation loss improved.
7 Default: 7
8 delta (float): Minimum change in the monitored quantity to qualify as an

improvement.
9 Default: 0

10 """
11 self.patience = patience
12 self.counter = 0
13 self.best_score = None
14 self.early_stop = False
15 self.delta = delta

106 C| Implemented Code

16

17 def __call__(self , val_loss , model):
18

19 score = -val_loss
20

21 if self.best_score is None:
22 self.best_score = score
23 elif score < self.best_score + self.delta:
24 self.counter += 1
25 if self.counter >= self.patience:
26 self.early_stop = True
27 else:
28 self.best_score = score
29 self.counter = 0

Listing C.1: Definition of Early Stopping.

1 def predict(self , x):
2 # inputs need to be [[x_1 , x_2 , ...]] as floats
3 # outputs need to be numpy (non -grad => detach)
4 # outputs need to be [y_1 , y_2 , ...]
5 device = torch.device("cuda:0" if torch.cuda.is_available () else "cpu")
6 a1 = torch.from_numpy(x).unsqueeze_ (0).float().to(device)
7 a2 = np.squeeze(
8 self.model.forward(
9 a1).detach ().cpu().numpy()

10)
11 return a2

Listing C.2: Prediction Code.

1 def cnn_predictorOnline_timed(trainer):
2

3 def my_decorator(func):
4 name = func.__name__
5

6 @wraps(func)
7 def speedup_wrapper (*args , ** kwargs):
8

9 # Get problem data:
10

11 A, b, x0, *etc = args
12

13 # Use predictor to generate initial guess:
14 b_norm , b_Norm_max = prob_norm(b)
15 if trainer.A_CHANGING:
16 if isinstance(A, np.matrix) or isinstance(A, scipy.sparse._csc.csc_matrix

) or isinstance(A, np.ndarray) or isinstance(A, scipy.sparse._csr.csr_matrix):
17 Ab_norm , Ab_Norm_max = prob_norm(A @ b)
18 pred_x0 = trainer.predict(A, A @ b, x0, Ab_norm*Ab_Norm_max)
19 else:
20 Ab_norm , Ab_Norm_max = prob_norm(A(b))
21 pred_x0 = trainer.predict(A, A(b), x0 , Ab_norm*Ab_Norm_max)
22 else:
23 pred_x0 = trainer.predict(A, b, x0, b_norm*b_Norm_max)
24

C| Implemented Code 107

25 # Run function (and time it)
26 tic = time.perf_counter ()
27 out = func(A, b, pred_x0 , *etc)
28 toc = time.perf_counter ()
29

30 # Check on the number of outputs of the function
31 out1 = False
32 if isinstance(out , tuple):
33 target , *other = out
34 else:
35 target = out
36 out1 = True
37

38 # Pick out solution from output list
39 sol = target [-1]
40

41 # Write diagnostic data (error and time -to solution) to list
42 IterTime = (toc -tic)
43 trainer.write_diagnostics(IterTime , A, target , b)
44

45 # Add problem to the training set
46 trainer.add_single(sol , b, b_norm*b_Norm_max)
47

48 if out1:
49 return target
50 else:
51 return target , *other
52

53 speedup_wrapper.__signature__ = signature(func)
54

55 return speedup_wrapper
56

57 return my_decorator

Listing C.3: Decorator Code.

C.2. Definition of the Neural Networks

C.2.1. Definition of the Dense Neural Network

1 class DenseNN(torch.nn.Module):
2

3

4 def __init__(self , D_in , D_out):
5

6 super(DenseNN , self).__init__ ()
7 device = torch.device("cuda:0" if torch.cuda.is_available () else "cpu")
8 self.n_blocks = D_in // 20 - 1
9 self.dimHid = D_in

10 self.Lin_in = torch.nn.Linear(D_in , self.dimHid , bias=False)
11 self.Lin_out = torch.nn.Linear(self.dimHid , D_out , bias=False)
12 self.act = nn.ReLU()
13 self.blocks = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])

108 C| Implemented Code

14

15 def make_block(self):
16 return nn.Sequential(
17 nn.Linear(self.dimHid , self.dimHid , bias=False),
18 self.act
19)
20

21

22 def forward(self , x):
23

24 x = self.act(self.Lin_in(x))
25

26 for block in self.blocks:
27 x = block(x)
28

29 x = self.Lin_out(x)
30

31 return x

Listing C.4: Dense Neural Network.

C.2.2. Definition of the Convolutional Neural Network
1 class CNN(nn.Module):
2 def __init__(self , D_in , D_out):
3 super(CNN , self).__init__ ()
4 device = torch.device("cuda:0" if torch.cuda.is_available () else "cpu")
5

6 self.D_in = D_in
7

8 self.convIn = nn.Conv2d(
9 in_channels =1,

10 out_channels =16,
11 kernel_size =(1 ,3),
12 stride=1,
13 padding =(0,1),
14 dilation =1
15)
16

17 self.convGrow = nn.Conv2d(
18 in_channels =16,
19 out_channels =64,
20 kernel_size =(1 ,3),
21 stride=1,
22 padding =(0,1),
23 dilation =1
24)
25

26 self.convSame = nn.Conv2d(
27 in_channels =64,
28 out_channels =64,
29 kernel_size =(1 ,3),
30 stride=1,
31 padding =(0,1),
32 dilation =1

C| Implemented Code 109

33)
34

35 self.convShrink = nn.Conv2d(
36 in_channels =64,
37 out_channels =16,
38 kernel_size =(1 ,3),
39 stride=1,
40 padding =(0,1),
41 dilation =1
42)
43

44 self.convOut = nn.Conv2d(
45 in_channels =16,
46 out_channels =1,
47 kernel_size =(1 ,3),
48 stride=1,
49 padding =(0,1),
50 dilation =1
51)
52

53 self.kernel_size = max(self.D_in // 40, 2)
54 self.n_blocks = max(self.D_in // 20, 1)
55 #self.n_blocks = max(self.D_in // 100, 1)
56 #self.n_blocks = max(self.D_in // 500, 1)
57 self.AVG_big = torch.nn.AvgPool1d(self.kernel_size , stride=self.kernel_size)
58 self.AVG = torch.nn.AvgPool1d(2, stride =2)
59 self.Upsample = torch.nn.Upsample(mode=’linear ’, size=(D_in ,))
60

61 self.act = nn.ELU()
62

63 self.blocks1 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
64 self.blocks2 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
65 self.blocks3 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
66 self.blocks4 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
67

68 def make_block(self):
69 return nn.Sequential(
70 nn.Conv2d(in_channels =64, out_channels =64, kernel_size =(1,3), stride=1,

padding =(0,1), dilation =1),
71 self.act
72)
73

74 def forward(self , x):
75

76 def AVGPOOL(x, AVG):
77 x = x.squeeze (2) # shape (batch_size , 1, dim)
78 x = AVG(x)
79 x = x.unsqueeze (2) # shape (batch_size , 1, 1, dim)
80 return x
81

82 def UPSAMPLE(x):
83 x = x.squeeze (2) # shape (batch_size , 1, dim)
84 x = self.Upsample(x)
85 x = x.unsqueeze (2) # shape (batch_size , 1, 1, dim)
86 return x
87

110 C| Implemented Code

88 x1 = x.unsqueeze (1).unsqueeze (1) # shape (batch_size , 1, 1, dim)
89

90 x1 = self.act(self.convIn(x1))
91

92 #z2 = AVGPOOL(x1, self.AVG_big)
93 z2 = AVGPOOL(x1, self.AVG)
94

95 x1 = self.act(self.convGrow(x1))
96 z2 = self.act(self.convGrow(z2))
97

98 x1 = self.act(self.convSame(x1))
99 z2 = self.act(self.convSame(z2))

100

101 z3 = AVGPOOL(z2, self.AVG)
102

103 x1 = self.act(self.convSame(x1))
104 z2 = self.act(self.convSame(z2))
105 z3 = self.act(self.convSame(z3))
106

107 z4 = AVGPOOL(z3, self.AVG)
108

109 for block1 , block2 , block3 , block4 in zip(self.blocks1 , self.blocks2 , self.
blocks3 , self.blocks4):

110

111 x1 = block1(x1)
112 z2 = block2(z2)
113 z3 = block3(z3)
114 z4 = block4(z4)
115

116 x1 = self.act(self.convShrink(x1))
117 z2 = self.act(self.convShrink(z2))
118 z3 = self.act(self.convShrink(z3))
119 z4 = self.act(self.convShrink(z4))
120

121 x2 = UPSAMPLE(z2)
122 x3 = UPSAMPLE(z3)
123 x4 = UPSAMPLE(z4)
124

125 x = x1 + x2 + x3 + x4
126

127 x = self.convOut(x)
128

129 return x.squeeze (1).squeeze (1) # shape (batch_size , dim)

Listing C.5: Convolutional Neural Network.

C.2.3. Definition of the Graph Neural Network
1 class GNN(nn.Module):
2 def __init__(self , D_in , D_out , num_features , nnz):
3 super(GNN , self).__init__ ()
4 device = torch.device("cuda:0" if torch.cuda.is_available () else "cpu")
5

6 self.D_in = D_in
7 self.D_out = D_out

C| Implemented Code 111

8 self.num_features = num_features
9 self.nnz = nnz

10

11 # CNN
12

13 self.convIn = nn.Conv2d(
14 in_channels =1,
15 out_channels =16,
16 kernel_size =(1 ,3),
17 stride=1,
18 padding =(0,1),
19 dilation =1
20)
21

22 self.convGrow = nn.Conv2d(
23 in_channels =16,
24 out_channels =64,
25 kernel_size =(1 ,3),
26 stride=1,
27 padding =(0,1),
28 dilation =1
29)
30

31 self.convSame = nn.Conv2d(
32 in_channels =64,
33 out_channels =64,
34 kernel_size =(1 ,3),
35 stride=1,
36 padding =(0,1),
37 dilation =1
38)
39

40 self.convShrink = nn.Conv2d(
41 in_channels =64,
42 out_channels =16,
43 kernel_size =(1 ,3),
44 stride=1,
45 padding =(0,1),
46 dilation =1
47)
48

49 self.convOut = nn.Conv2d(
50 in_channels =16,
51 out_channels =1,
52 kernel_size =(1 ,3),
53 stride=1,
54 padding =(0,1),
55 dilation =1
56)
57

58 self.kernel_size = max(self.D_in // 40, 2)
59 self.n_blocks = max(self.D_in // 500, 1)
60 self.AVG_big = torch.nn.AvgPool1d(self.kernel_size , stride=self.kernel_size)
61 self.AVG = torch.nn.AvgPool1d(2, stride =2)
62 self.Upsample = torch.nn.Upsample(mode=’linear ’, size=(D_in ,))
63

112 C| Implemented Code

64 self.act = nn.ELU()
65

66 self.blocks1 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
67 self.blocks2 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
68 self.blocks3 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
69 self.blocks4 = nn.ModuleList ([self.make_block () for _ in range(self.n_blocks)])
70

71 # GNN
72

73 self.hidden_units = 8
74

75 self.convGNN1 = SAGEConv(self.num_features , self.hidden_units , aggr=’mean’,
node_dim =1)

76 self.convGNN2 = SAGEConv(self.hidden_units , 1, aggr=’mean’, node_dim =1)
77

78 # Mixing
79

80 self.linMIX1 = nn.Linear(self.D_out * 2, self.D_out , bias=False)
81

82 self.linMIX2 = nn.Linear(self.D_out , self.D_out , bias=False)
83

84 def make_block(self):
85 return nn.Sequential(
86 nn.Conv2d(in_channels =64, out_channels =64, kernel_size =(1,3), stride=1,

padding =(0,1), dilation =1),
87 self.act
88)
89

90 def forward(self , x, feats , edge_index):
91

92 # CNN
93

94 def AVGPOOL(x, AVG):
95 x = x.squeeze (2) # shape (batch_size , 1, dim)
96 x = AVG(x)
97 x = x.unsqueeze (2) # shape (batch_size , 1, 1, dim)
98 return x
99

100 def UPSAMPLE(x):
101 x = x.squeeze (2) # shape (batch_size , 1, dim)
102 x = self.Upsample(x)
103 x = x.unsqueeze (2) # shape (batch_size , 1, 1, dim)
104 return x
105

106 x1 = x.unsqueeze (1).unsqueeze (1) # shape (batch_size , 1, 1, dim)
107

108 x1 = self.act(self.convIn(x1))
109

110 #z2 = AVGPOOL(x1, self.AVG_big)
111 z2 = AVGPOOL(x1, self.AVG)
112

113 x1 = self.act(self.convGrow(x1))
114 z2 = self.act(self.convGrow(z2))
115

116 x1 = self.act(self.convSame(x1))
117 z2 = self.act(self.convSame(z2))

C| Implemented Code 113

118

119 z3 = AVGPOOL(z2, self.AVG)
120

121 x1 = self.act(self.convSame(x1))
122 z2 = self.act(self.convSame(z2))
123 z3 = self.act(self.convSame(z3))
124

125 z4 = AVGPOOL(z3, self.AVG)
126

127 for block1 , block2 , block3 , block4 in zip(self.blocks1 , self.blocks2 , self.
blocks3 , self.blocks4):

128

129 x1 = block1(x1)
130 z2 = block2(z2)
131 z3 = block3(z3)
132 z4 = block4(z4)
133

134 x1 = self.act(self.convShrink(x1))
135 z2 = self.act(self.convShrink(z2))
136 z3 = self.act(self.convShrink(z3))
137 z4 = self.act(self.convShrink(z4))
138

139 x2 = UPSAMPLE(z2)
140 x3 = UPSAMPLE(z3)
141 x4 = UPSAMPLE(z4)
142

143 x = x1 + x2 + x3 + x4
144

145 x = self.convOut(x)
146

147 x = x.squeeze (1).squeeze (1)
148

149 # GNN
150

151 feats = self.act(self.convGNN1(feats , edge_index [0]))
152

153 feats = self.convGNN2(feats , edge_index [0])
154

155 feats = feats.squeeze (2)
156

157 # Mixing
158

159 x = torch.cat([x,feats],1)
160

161 x = self.linMIX1(x.float ())
162

163 x = self.act(x)
164

165 x = self.linMIX2(x)
166

167 return x # shape (batch_size , dim)

Listing C.6: Graph Neural Network.

115

D| Calculation resources at

ONERA

This chapter, included in the appendix, offers a comprehensive, but brief, description of
the calculation resources utilized at ONERA. It provides detailed insights into the com-
putational infrastructure, hardware specifications, and software environment employed for
conducting the numerical simulations presented in the thesis. By outlining the calculation
resources used at ONERA, this chapter offers readers valuable context and transparency
regarding the computational environment, ensuring reproducibility and facilitating further
research in the field of fluid dynamics simulations.

(a) SATOR. (b) SPIRO.

Figure D.1: ONERA’s supercomputers.

ONERA has high-quality intensive computing resources, allowing the development of
massive code. parallel activities, for research or production purposes (for contracts with
industrial partners For example). Two supercomputers are thus available [23], each having
a targeted objective:

• the SATOR computer is dedicated to intensive scientific production with LINPACK
performance of 579.2 TFlops/s (which earned it the 343rd place in the Top500 in
June 2017 [37]), enabled thanks to its 43600 processing cores (17360 Broadwell, 7040

116 D| Calculation resources at ONERA

Skylake and 19200 Cascade Lake) and its memory RAM of 182.5 TB;

• the SPIRO calculator is dedicated to development and exploration activities for new
computing architectures. With a more heterogeneous architecture (Intel, AMD,
GPU and ARM), SPIRO has 225 computing nodes equipped with Intel Broadwell
(BRW) processors and 24 equipped with Intel Skylake (SKL). The interconnection
network is different depending on the partitions and types of affected processors,
with a Gigabit Ethernet (1 Gbit/s) network or an Intel Omnipath network (OPA)
at very high speed (100 Gbit/s).

117

List of Figures

1.1 Generation of a graph from a matrix. 11

2.1 General structure of a Dense Neural Network. 20
2.2 Scheme representing the general architecture of CNNs. Image taken from

[14, 19] . 21
2.3 Scheme representing the idea behind GNNs. Extracted from [1] 23
2.4 Different activation functions. Extracted from [16]. 25

3.1 Iteration speed-up obtained in the Demo found at [21]. The problem con-
sidered is the Laplace equation for a grid of 20× 20, with an initial set of
32 problems, the model is applied on a set of 1000 problems and is trained
using CNNs. 31

3.2 Iteration speed-up obtained in the AdvectionDiffusion_Demo found at
[21]. The problem considered is the Advection-Diffusion equation for a
grid of 20× 20, with an initial set of 32 problems, the model is applied on
a set of 500 problems and is trained using CNNs. 31

3.3 Scheme of the whole algorithm. In red the sections ran with CPU and in
green the ones ran with GPU. The scheme was taken from [20]. 33

3.4 ML workflow of iteration i of the algorithm. 34
3.5 Structure of the Dense Neural Network used. 39
3.6 Structure of the Convolutional Neural Network used. 40
3.7 Structure of the Graph Neural Network used. 43
3.8 Comparison of the behaviour of the loss function with and without early

stopping. 45

4.1 Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems

(according to the x-axis label) of the Laplace equation, comparing GMRES
to MLGMRES. Obtained by using n = 20, NS = 1000, using an initial set
of dimension 32 and DenseNN. 50

4.2 Behaviour of the norm of the normalized residual for the last system of the
Laplace sequence w.r.t. the number of matrix-vector products. 51

118 | List of Figures

4.3 Number of matrix-vector products to reach convergence of the Laplace
equation w.r.t. the number of systems. 51

4.4 Iteration speed-up of the sequence of Laplace problems. 52
4.5 Steady State Solution for the Homogeneous Case. 53
4.6 Steady State Solution for the Constant Non-Homogeneous Case. 55
4.7 Time-Dependent Solutions of the Time-Dependent Source Case. 56
4.8 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems

of the homogeneous case. Obtained by using n = 100, NS = 1000, using
an initial set of dimension 32 and DenseNN. 57

4.9 Iteration speed-up of the homogeneous case sequence. 57
4.10 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems

of the constant non-homogeneous case. Obtained by using n = 100, NS =

1000, using an initial set of dimension 32 and DenseNN. 58
4.11 Iteration speed-up of the constant non-homogeneous case sequence. 59
4.12 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems

of the time-dependent non-homogeneous case. Obtained by using n = 100,
NS = 1000, using an initial set of dimension 32 and DenseNN. 60

4.13 Iteration speed-up of the time-dependent non-homogeneous case sequence. 60
4.14 Number of matrix-vector products w.r.t. the number of systems. 62
4.15 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems. 62

4.16 Behaviour of the norm of the normalized residual for the last problem w.r.t.
the number of matrix-vector products. 63

4.17 Iteration speed-up. 63
4.18 Number of matrix-vector products w.r.t. the number of systems. Obtained

by using an initial set of dimension 32 and the hybrid NN architecture. . . 65
4.19 Iteration speed-up using the hybrid model. 66
4.20 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems

of the Heat equation. 67
4.21 Iteration speed-up w.r.t. recycling the previous solution. 68
4.22 Number of matrix-vector products w.r.t. the number of systems. 68
4.23 Iteration speed-up w.r.t. recycling the previous solution. 69
4.24 Number of matrix-vector products w.r.t. the number of systems. 70
4.25 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems. 70

4.26 Iteration speed-up w.r.t. recycling the previous solution. 71

5.1 Cylinder test case. 80

| List of Figures 119

5.2 Behaviour of the norm of the normalized residual w.r.t. the number of
matrix-vector products for system 50 (after training) of the cylinder test
case. 81

5.3 Behaviour of the normalized residual w.r.t. the number restarts for the last
problem of the cylinder test case. 82

5.4 Residual at the end of the first restart (Eκ(x
k
0)) w.r.t. the number of systems. 82

5.5 NACA0012 test case. 83
5.6 Behaviour of the norm of the normalized residual for the last system of the

NACA0012 test case w.r.t. the number of matrix-vector products. 84
5.7 Behaviour of the norm of the normalized residual for the last system of the

NACA0012 test case w.r.t. the number restarts. 84
5.8 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of systems. 85

5.9 Behaviour of the norm of the normalized residual after the second restart
w.r.t. the number of systems. 86

5.10 Visualisation of the solution of the Taylor-Green Vortex. 87
5.11 Number of matrix-vector products w.r.t. the number of systems of the TGV

test case. 88
5.12 Iteration speed-up. 88
5.13 Number of matrix-vector products w.r.t. the number of systems of the test

set. 89
5.14 Iteration speed-up of the test set. 90
5.15 Residual at the end of the first restart (Eκ(x

k
0)) w.r.t. the number of sys-

tems. Obtained by using an initial set of dimension 32 and the hybrid NN
architecture. 91

5.16 Iteration speed-up using the hybrid model. 91

A.1 Plots with moving averages. 100

B.1 Plots of the speed-up with systems 10× 10. 104
B.2 Plots of the speed-up with systems 20× 20. 104
B.3 Plots of the speed-up with systems 40× 40. 104

D.1 ONERA’s supercomputers. 115

121

List of Tables

4.1 Runtimes of the different components of the total simulation. 64
4.2 Runtimes of the different components of the decorated simulation. 64

B.1 Time to solve the code autoencoder_mnist_spiro.py using CPU and GPU.102
B.2 Times to solve a linear system with the GMRES algorithm compared with

the ML strategy using DNNs and the times of the Demo by [20] [21], run
on CPU and GPU, with n = 20, NS = 1000 and an initial set of dimension
32. 102

B.3 Average times to solve a linear system with the GMRES algorithm com-
pared with the ML strategy using DNNs and the times of the Demo by [20]
[21], run on CPU and GPU, with n = 20, NS = 1000 and an initial set of
dimension 32. 102

B.4 Times to solve a linear system (maximum and average values) with the
GMRES algorithm compared with the ML strategy using DNNs, run on
CPU and GPU, with n = 200, NS = 100 and an initial set of dimension 16. 103

B.5 Full time of the Python decorator, without the time of solving the GMRES
system. 103

B.6 Time of the training of the Python decorator. 103

123

Listings
3.1 Definition of the MLGMRES function with the decorator defined in Ap-

pendix C Listing C.3. 35
3.2 Example of Linear Operator used in [20]. Extracted from src_dir.linop.py

at [21]. 36
4.1 Definition of the random RHS for the Laplacian testcase. 48
A.1 Definition of Moving Average found in src_dir.util.py at [21]. 99
A.2 Call of Moving Average. 99
C.1 Definition of Early Stopping. 105
C.2 Prediction Code. 106
C.3 Decorator Code. 106
C.4 Dense Neural Network. 107
C.5 Convolutional Neural Network. 108
C.6 Graph Neural Network. 110

125

List of Symbols

Symbol Description

A Matrix of a linear system

aij Element in position (i, j) of A

| · | Absolute value

b RHS of a linear system

Ct New batch of data

dd Diaginal dominance

∆t Time step of a time discretization

∆x Spatial step of a space discretization

E Total specific energy

ej j-th vector of the canonical basis

Eκ(x0) Residual at the end of the first restart of GMRES starting form x0

fr Retrain frequency

H̄m Hessenberg matrix

Km(A, r0) Krylov space generate from A and r0

L Loss function

m Size of the Krylov subspace

Mp(·) Moving average of p elements

n Size of a linear system

Nb Number of elements in the batch

N(b) Neural Network N applied to b

Nmax Maximum number of iterations for the GMRES algorithm

NS Total number of systems of a simulation

N∗ Set of positive numbers (N \ {0})
Ntrain Size of the initial set

∥ · ∥ Eulerian norm

126 | List of Symbols

r Residual

R(Un) Residual of the semi-discretized equation

ρ Density

T Final time of a simulation

TOS(x0) Time to reach convergence with GMRES starting from x0

v Velocity vector

x0 Initial guess of the GMRES algorithm

xm Solution of the GMRES algorithm

Xt Training set

W Trainable weights

z(·) Activation function

Ω Domain

127

Acknowledgements

I would like to express my heartfelt gratitude towards Emeric Martin, Jorge Nuñez and
Florent Renac for the opportunity to conduct my internship at ONERA and for all the help
you gave me during the work. Your guidance, support and knowledge-sharing throughout
the internship have been crucial to me. Working under your mentorship has been an
enriching experience, which I believe will have a lasting impact on my personal and
professional growth. I am deeply grateful to IFPEN for their invaluable contributions
through insightful discussions and thoughtful recommendations. My journey would not
have been as enlightening without their engagement. Moreover, I wish to extend my
heartfelt appreciation to Dr. Kevin Luna and Dr. Johannes Blaschke for providing me
the foundations for my work. Their unwavering availability to address my queries has
been a testament to their commitment to research.

Desidero esprimere la mia profonda gratitudine al Professor Nicola Parolini per l’incessante
supporto che mi ha offerto durante l’intero processo di redazione di questa tesi. La sua
costante disponibilità a confrontarsi con me attraverso costruttivi colloqui e i suoi preziosi
consigli sono stati fondamentali per la stesura di questo lavoro. In aggiunta, desidero es-
tendere il mio sentito ringraziamento al Professor Corrado Maurini, il quale ha svolto un
ruolo assolutamente fondamentale nel corso del mio percorso di doppia laurea a Parigi.

| Acknowledgements 129

	Abstract
	Abstract in lingua italiana
	Résumé en français
	Contents
	Introduction
	Solving Linear Systems with the GMRES Method
	Iterative Methods for System Solution
	The Generalized Minimal RESidual Method
	The Initial Guess of Iterative Methods
	Recycling the Previous Solution in Time-Dependent Simulations

	Graph Representation of Matrices

	Machine Learning and Neural Networks
	Introduction to Machine Learning
	Different Learning Modes
	Offline Learning
	Online Learning

	Neural Networks
	Dense Neural Networks
	Convolutional Neural Networks
	Graph Neural Networks

	Activation Function
	The Minimization Problem

	Development of the Prediction Algorithm
	Presentation of the Original Code
	The Prediction Algorithm
	Loss Function Evaluation
	Algorithmic Refinements and Code Modifications
	Use of matrices and of Vectors
	New Neural Network Architectures
	Generalization of the dataset expansion and retraining procedure
	Early Stopping
	Gradient Clipping

	Numerical Experiments on Simple Problems
	Laplace Equation
	Results

	The Time-Dependent Advection-Diffusion Equation
	Homogeneous Equation
	Constant Source Term
	Time-Dependent Source Term
	Results of the Homogeneous Case
	Results of the Constant Non-Homogeneous Case
	Results of the Time-Dependent Non-Homogeneous Case
	Using an Increasing Time Step to Generate Stiffer Systems
	Results of the Increasing Time Step Case
	Results with GNNs

	Recycling of the Previous Solution
	Heat Equation
	Time-Dependent Advection-Diffusion Problem with Increasing time step and Numerical Noise
	Advection Diffusion Problem with Increasing time step

	Numerical Experiments on Representative Test Cases
	Problem Extraction from CFD Cases using DG Discretization
	Navier-Stokes equations for gas dynamics discretization
	Discontinuous Galerkin Discretization
	Time Discretization
	The Aghora Code
	About the Dimension of the Systems and Neural Networks

	Laminar Flow around a Cylinder at Low Reynolds Number
	Results of the Cylinder Test Case

	Laminar Flow around a NACA0012 airfoil
	Results of the NACA0012

	Taylor-Green Vortex
	Results of the Taylor-Green Vortex
	Results using other NN-based Approaches

	Conclusion
	Bibliography
	Typical Result Plots
	Moving Average
	Typical Plots using the Moving Average

	Time Analysis with respect to the Architecture and the Dimension
	Comparing Times on CPU and GPU with and without ML
	Computing Environment
	Machine Learning Training on the Laplace Equation
	Using the Python Profiler

	Comparing Speed-ups with respect to the Dimension

	Implemented Code
	Parts of the Code of the Prediction Algorithm
	Definition of the Neural Networks
	Definition of the Dense Neural Network
	Definition of the Convolutional Neural Network
	Definition of the Graph Neural Network

	Calculation resources at ONERA
	List of Figures
	List of Tables
	Listings
	List of Symbols
	Acknowledgements

